
GPU-ACCELERATED CROWD SIMULATION WITH

USER-GUIDANCE AND MULTI-LEVEL UNCERTAINTY

A Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Xiao Cheng

December 2013

GPU-ACCELERATED CROWD SIMULATION WITH

USER-GUIDANCE AND MULTI-LEVEL UNCERTAINTY

Xiao Cheng

APPROVED:

Dr. Zhigang Deng, Chairman
Dept. of Computer Science

Dr. Guoning Chen
Dept. of Computer Science

Dr. Jingmei Qiu
Dept. of Mathematics

Dean, College of Natural Sciences and Mathematics

ii

iii

GPU-ACCELERATED CROWD SIMULATION WITH

USER-GUIDANCE AND MULTI-LEVEL UNCERTAINTY

An Abstract of a Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Xiao Cheng

December 2013

iv

Abstract

A long-standing rule for evaluating the realism and robustness of the crowd simu-

lation is whether the simulations are capable of avoiding the congestion as well as

maintaining free agent-wise collision. Although a few methods solved this problem

in some specific case, no overall method has been explored. This paper proposes

a new approach to simulate large-scale crowd behavior with real-world properties

and without obvious artifacts. Specifically, we devised a lightweight user-interaction

scheme to combine the navigation field and continuum crowd method. Also, the

two-level uncertainty model is imposed onto the above crowd dynamic system to

simulate non-goal driven behavior. All of the computations are accelerated by using

GPU. Through our experiments and comparisons, we demonstrates the advantages

of our approach.

v

Contents

1 Introduction 1

1.1 Crowd Simulation . 1

1.2 The Contribution . 3

1.3 Structure of this thesis . 5

2 Related Works 7

3 Methods 11

3.1 Overview . 11

3.2 Uncertainty Model . 12

3.3 Construction of Eulerian Map . 13

3.4 Eulerian Uncertainty Field . 13

3.5 Lagrangian Uncertainty Model . 16

3.6 Sub-domain Navigation Field . 19

3.7 Hybrid Crowd Dynamics . 23

3.8 Collision Avoidance . 24

3.9 Collision Avoidance with Lagrangian Uncertainty 27

3.9.1 Collision Detection . 27

3.9.2 Resolve Collision . 28

4 Global Planner 29

vi

4.1 Continuum Crowd . 29

4.1.1 Density and Velocity Splatter 30

4.1.2 Anisotropic Speed . 31

4.1.3 Cost Field . 32

4.1.4 Potential Field . 32

4.1.5 Gradient Field . 35

4.2 Navigation Field . 36

4.2.1 User Guidance . 36

4.2.2 Anisotropic Cost Field . 36

4.3 Continuum Crowd with Eulerian Uncertainty 39

4.4 Navigation Field with Lagrangian Uncertainty 41

5 Implementation 45

5.1 GPU Computing Pipeline . 45

5.2 3D Rendering . 48

5.2.1 Skinning Animation . 48

5.2.2 Instancing . 51

6 Results 52

6.1 Simulations of Separate Component 52

6.1.1 Eulerian Uncertainty only . 52

6.1.2 Cultural Convention . 53

6.1.3 Lagrangian and Eulerian Uncertainty 54

6.2 Continuum crowd with Eulerian uncertainty 55

6.2.1 Continuum crowd . 55

6.2.2 Two-level Eulerian Uncertainties 57

6.3 3D Rendering Result . 57

vii

6.4 Performance of Simulation . 57

7 Conclusion 61

Bibliography 64

viii

List of Figures

3.1 A schematic overview of our method 14

3.2 Construction of the Eulerian map from a scene map example: (a) a
2D scene map from bird-view, and (h) its corresponding color-coded
Eulerian map. 14

3.3 The state transition diagram for non-goal directed agents with La-
grangian uncertainty . 19

3.4 An example of the sub-domain mask map in our approach 20

3.5 Example of sub-domain navigation field: (a) positive y-axis direction
, and (b) negative y-axis direction. Note that solid line with different
color indicates the navigating direction calculated by different pass. . 21

3.6 Illustration of Poisson disc sampling for collision avoidance in our ap-
proach . 26

3.7 Predictive Binning with Lagrangian uncertainty : (a) predictive bin-
ning, (b) collision resolving with lagrangian uncertainty. 26

4.1 Example of density and velocity splatter: (a) density splatter , and
(b) velocity splatter. 30

4.2 Cone texture for additive alpha blending 31

4.3 Anisotropic cost field: (a) simulation environment map , and (b) cal-
culated cost field. 33

4.4 Potential fields for four groups: (a) potential fields propagated from
up-left corner (goal area), (b) potential fields propagated from bottom-
right corner (goal area), (c) potential fields propagated from bottom-
left corner (goal area) and (d) potential fields propagated from up-right
corner (goal area) . 34

ix

4.5 Gradient fields for directing four groups: (a) directing gradient field
towards up-left corner (goal area), (b) directing gradient field towards
bottom-right corner (goal area), (c) directing gradient field towards
bottom-left corner (goal area) and (d) directing gradient field towards
up-right corner (goal area) . 35

4.6 Goal-oriented navigation field with user guidance: (a) user sketchy
interface to draw guidance field, (b) propagated guidance field based
on (a), (c) goal-oriented navigation field and (d) grey-scale potential
field . 37

4.7 Unlimited possible set of traversal path 38

4.8 Splatter Eulerian uncertainty radiant from source 41

4.9 Group of four global discomfort for the same environment: (a) group
0, (b) group 1, (c) group 2 and (d) group 3. 42

4.10 Group of four user guidance fields for four major destinations : (a)
group 0, (b) group 1, (c) group 2 and (d) group 3. 43

4.11 Group of four user computed navigation fields accordingly : (a) group
0, (b) group 1, (c) group 2 and (d) group 3. 44

5.1 The overall pipeline of the full GPU implementation of our approach 46

5.2 Data structure for VAO layout . 49

5.3 Bone matrix interpolation and packing 50

5.4 Bone matrix interpolation and packing 50

6.1 User-sketched Eulerian Field:(a)English Alphabetical (b) Result . . . 53

6.2 Sub-domain Navigation Field:(a)Congestion in bad crowd traffic area
(b) No congestion and follow cultural convention 54

6.3 Lagrangian Uncertainty simulation result 55

6.4 Multi-scale four corner continuum crowd with obstacles : (a) 300
agents, (b) 600 agents, (c) 1200 agents and (d) 2400 agents. 56

x

6.5 Simulation of Eulerian uncertainty with continuum crowd: (a) Two
Sources having emergent event, (b) Goal attraction uncertainty, (c)
Stop browsing uncertainty, (d) agents’s goal affected if closer to source,
(e) uncertainty stop agents and start browsing and (f) agents go back
to normal behavior after ending browsing. 58

6.6 3D Animation and Rendering for continuum crowd only: (a) Scene
layout before launching the simulation, (b) Simulation in crowd traffic
region . 59

6.7 3D Animation and Rendering for Eulerian uncertainty: (a) scene lay-
out with a show event (girl dancing) in middle, (b) two-level uncer-
tainty draw agents closer and stop to browse, (c) agents walk away
when finish watching. 59

xi

List of Tables

6.1 Performance comparison . 60

xii

Chapter 1

Introduction

1.1 Crowd Simulation

Over the past several decades, crowd simulation has been increasingly used in enter-

tainment industry such as numerous blockbuster movies and video games. Besides,

a realistic crowd simulation system either in macroscopic dynamic flow or in mi-

croscopic human behavior can find its important applications for urban planning,

safety engineering, evacuation simulation, etc. For example, urban planners, as well

as building designer, have started to use crowd simulation techniques to evaluate the

safety aspect of buildings or communities as certain emergencies or disasters occur.

Agent-based approaches have been the most studied techniques for crowd simu-

lation to date. In such models, each individual in real-world is modeled as an agent

in the simulation environment; and each agent is an autonomous decision-maker.

1

Indeed, agent-based approaches for crowd simulation have achieved significant suc-

cesses in recent years [30]. However, most of existing agent-based crowd approaches

are based on a fundamental assumption that the navigations of all the agents are

directed by certain implicit or explicit targets during the simulation. Few existing

approaches have been focused on simulating the non-goal directed navigation behav-

iors of agents. In certain real-world scenarios (e.g., shopping), people’s behaviors are

not always homogeneous as goal-directed agents.

Furthermore, to the best of our knowledge, a unified framework has not yet been

proposed to simultaneously simulate such heterogenous crowd phenomena, that is,

seamless mixing of goal-directed agent navigation and non-goal directed navigation

behaviors in the simulation. Also, since each agent in agent-based approaches needs

to do decision-making and handle collision avoidance based on its local information

at each simulation step, the performance of agent-based approaches is widely known

for its inefficiency when the number of agents is quickly increased. Any efficient algo-

rithms that can substantially speed up agent-based crowd simulation are potentially

useful for many crowd simulation applications.

Quite a few decision-making rules were proposed since the birth of the basic

model while most of these rules are based on local information. Due to the lack of

global information, agent-based system is usually very performance-expensive and

the path of agent is quite un-smooth. This gave the birth of the another type of

crowd simulation system, which simulated each agent as a group. Agents are grouped

together based on some rules or sharing some common properties: like destination,

age or gender. It is the group simulation thought that shed light on the global path

2

planning, which overcame the deficiency of agent-based system. However, group-

based system has its own problems like agent-wise artifacts as collision and unrealistic

moving trajectory. Therefore, researchers began to incorporate preprocessed moving

trajectory, from user-sketchy or movie footage, into the existing system to manipulate

the agent both individually and group-wise.

Agent-wise collision avoidance is another topic along with crowd simulation. Most

cases, it is positioned as the last step of the processing pipeline to sweep out the

potential pair-wise collision due to the processing granularity of global path planning.

Several collision avoidance approaches existed and usually it should be picked as the

need of your system. It might cause a dramatic performance drop-down to use a

over-complex scheme, which turned out to be incompatible with other part of the

pipeline.

Despite a lot of crowd-simulation approaches have been proposed in the past

a few years, little, if any, research has been done to model the crowd simulation

beyond the above scope. In addition, due to the lack of in-depth study of extra

model, simply using the global planning plus local collision avoidance are not robust

enough to simulate in all major real-world scenarios like non-goal driven behavior.

1.2 The Contribution

Our approach is motivated by the observation that in a real-world scenario, people’s

behavior not always looks as homogeneous as goal-oriented agents. Instead, people in

a realistic crowd simulation system should present goal-oriented group behavior while

3

allowing for the flexibility and individual variability of each agent. Besides, absolute

non-goal-oriented behavior should be found for certain portion of the agents. Typical

non-goal-oriented behaviors include visiting shop and wandering randomly in a mall.

In short, heterogeneous crowd behavior is displayed through goal-oriented behavior

with agent’s variation and purely uncertain agent’s behavior with no goal-oriented

characteristic.

Inspired by the above research problem, in this paper, we propose a unified ap-

proach to simulate various heterogeneous crowd behaviors (e.g., simulating both

goal-directed and non-goal directed navigation behaviors in a crowd), while being

capable to robustly handle general-purpose crowd simulation problems such as local

collision and pedestrian congestion avoidance. Our model has unified global planner

and local planner to handle the advection of two agent types: goal-directed and non-

goal directed. Specifically, we implement a GPU-based continuum crowd as the global

planner, since it is suitable for medium-density crowds while avoiding macroscopic

congestion with a look-ahead planning model. We use a spatial colonization system

on GPU as the local planner, which preserve smooth trajectories despite the agents’

decisions are made locally. We introduce an Eulerian uncertainty field to add realis-

tic variations into macroscopic group behaviors and a Lagrangian uncertainty model

to simulate non-goal-directed agents’ behaviors. To resolve congestion in pedestrian

traffic areas and simulate informal cultural convention, a user-guided, sub-domain

navigation field is also incorporated into our approach.

To speed up the performance of our approach, we fully implement our approach

on GPU and thus eliminate the data transfer bottleneck between CPU and GPU

4

that is needed in many current crowd simulation models. Finally, by integrating our

uncertainty models with the flow-based continuum crowd model [43], we demonstrate

our approach can simulate a variety of heterogenous crowds in different application

scenarios, while providing flexible and intuitive user controls.

The main contributions of our approach are: (1) We introduce a new crowd un-

certainty model that seamlessly combines Eulerian and Lagrangian uncertainties for

heterogenous crowd simulation. Eulerian uncertainty and a simplified navigation

field are computed off-line only once before the simulation starts. Lagrangian uncer-

tainly, on the other hand, is computed at each time step, and it can be controlled

by adjusting each agent’s attributes. Our uncertainty model can be conveniently

plugged into various existing crowd simulation systems and pipelines (e.g., continu-

um crowd model and navigation field). (2) The high efficiency of our approach, due

to its full GPU-accelerated implementation, makes it particularly potentially useful

for many real-time graphics and crowd simulation applications.

1.3 Structure of this thesis

The remainder of this paper is organized as follows. Chapter 2 briefly reviews some

recent crowd simulation efforts relevant to this work. Chapter 3 details the method-

ology of our approach, including how to construct the uncertainty models and a

sub-domain navigation field, and handle collision avoidance. Chapter 4 review the

two global path planner and how our proposed two-level uncertainty model can be

5

cooperative with them. Chapter 5 describes the non-trivial details of our full GPU-

based implementation and also some highlights of 3D character animation. Chapter

6 describes a variety of crowd simulation results by our approach as well as the com-

parisons between our approach and existing crowd simulation approaches. Lastly,

discussion and conclusion remarks are given in Chapter 7.

6

Chapter 2

Related Works

In this section, we will briefly review recent efforts related to this work. However,

comprehensively reviewing all the research efforts in crowd simulation is beyond the

scope of this paper; interested readers are referred to the recent survey in this field

[30].

Among numerous crowd simulation methods that are based local motion plan-

ning, probably, the most well-known approach is the social-force model proposed by

Helbing et al. [12, 11]. On top of it, many extensions or variations have also been

proposed [10, 20, 5, 2, 3]. However, the agent-based social force model has two limi-

tations: unsmooth agent motion paths and the need of heavy computation. Contrary

to the social force model, rule based models [34, 35] can produce more smoother mo-

tion paths; nevertheless, it can be effectively used only for small or medium density

crowds. And, due to its local decision property, collision is difficult to be detected

and processed if happens. One solution to collision avoidance is cellular automata

7

models [19, 18, 42]. This method discretizes the 2D simulation domain into regular

grids, and ensure agents only can occupy free cells at simulation time. Its drawback

is that the granularity of the simulation entirely relies on the domain discretization,

resulting blocky agent trajectories. Some hybrid approaches such as the HiDAC

model [29] consider the pros and cons of the above methods. Furthermore, the Hi-

DAC model also consider other factors including sociological [25] and psychological

effects [37, 31].

Another type of crowd simulation methods is based on global planning. Both Sud

et al. [41] and Pettré et al. [33] use navigation graphs but they are quite different.

The work of [41] introduces MaNG, constructed using first and second-order Voronoi

diagrams to perform path planning. The work of [33] decomposes the multi-layer

domain into navigation corridors through their proposed navigation graph. The work

of [38, 21] interprets the simulation environment as 2D maps to obtain sufficient

global information for path finding. In addition, approaches such as goal-driven

navigation fields to direct crowds [28] is another direction of global planning.

Continuum crowd methods [14, 43] formulate crowd simulation as an optimiza-

tion problem that considers both local and global planning. These methods are quite

effective in solving macroscopic congestion among different groups of people. How-

ever, it requires a per-time-step re-computation of potential fields for each group.

Hence, as the number of groups is increased, the runtime performance is expected

to slow down dramatically. As discussed in the work of [43], the original continuum

crowd method is not well suited for dense crowd simulation, since small granulari-

ty agent-wise collision is difficult to be resolved within the continuum optimization

8

framework. Similar to the continuum crowd optimization solution, the work of [28]

employs anisotropic cost functions to attain smooth potential fields and thus alle-

viates resulting blocky motion paths, assuming the 2D grid has a lower resolution

support. Another major difference between this method and the continuum crowd

is that it only needs to compute the navigation field at the initialization stage.

A number of efforts have been specifically focused on simulating very dense crowd-

s. For example, Narain et al. [26] use the Lagrangian and Eulerian method for each

agent and use density-dependent incompressibility to model the dynamics of human

crowds. Golas et al. [6] mention that their approach only relies on purely local

information and thus cannot plan around congestion at a larger distance.

Local Collision Avoidance (LCA) is a critical step in any crowd simulation sys-

tems. Actually, a wide range of LCA algorithms have been developed over the years.

Pairwise repulsion force method used in the work of [43, 26] is one of the most intu-

itive ways to avoid local collision between agents. However, its computational cost

can quickly become a performance bottleneck when the number of agents is increased.

Currently, one of state-of-the-art methods is to treat possible collisions as obstacles

in velocity space [45, 46, 47, 44]. The work of [1] proposes a new approach using

Voronoi diagram similar to [13] and further validates its mathematical correctness.

One limitation of this approach is that it is not well suited for large-scale simula-

tion due to the performance concern. All the above LCA algorithms somewhat only

consider a limited range of local area. Therefore, the work of [6] introduces a new

hybrid long-range collision-avoidance method to improve the smoothness of agent

trajectories.

9

In recent years, significant research interests have been drawn to data-driven

crowd-simulation models. These approaches automatically diversify agent motions

based on a limited motion capture dataset [7] or obtain realistic pedestrian patterns

from video footages for crowd simulation [28, 22, 32]. In addition, Lemercier et

al. [23] can simulate group of people, following one by one, to walk through a zigzag

tunnel. Gu and Deng proposed intuitive sketch-based interfaces to generate various

group formations during the crowd simulation process [8, 9].

In this work, we borrow the concept of continuum crowd as the base of global and

local planning. As mentioned above, the continuum crowd has two significant short-

comings: performance and LCA. Since our method is full GPU-implementation, the

performance has been effectively eliminated to certain extent. Furthermore, inspired

by the LCA algorithm in [1], we develop our own GPU-friendly LCA algorithm.

Specifically, our approach extends the global planning part of continuum crowd by

introducing the Eulerian uncertainty field, and add the Lagrangian uncertainty to

form a hybrid local planning scheme. We also add new types of agent groups without

goal-directed behavior to enhance both the Eulerian and Lagrangian uncertainties.

Our navigation field control is effective to alleviate severe agent congestion and en-

hance realistic moving trajectories.

10

Chapter 3

Methods

3.1 Overview

Our approach supports global and local planning on a high-resolution 2D grid for

simulation of various density crowds. As illustrated in Figure 3.1, at the initial-

ization step, our approach computes a Eularian uncertainty field and a sub-domain

navigation field in an offline manner. At runtime, a simulation loop is executed

for every step, described as follows: every goal-directed agent’s preferred velocity v

and motion vector m are computed by the global planner; and both v and m are

constrained by an Eularian uncertainty field. Every non-goal directed agent’s local

velocity v and motion vector m are computed by the local planner with Lagrangian

uncertainty. In addition, in certain pedestrian traffic areas, the agents’ v and m are

solely determined by a user-specified navigation field. Lastly, we adjust v and m to

avoid local collisions with other agents and the environment.

11

3.2 Uncertainty Model

Assumption and problem analysis: Our uncertainty model is built based on

the following real-world crowd observations in many scenarios (e.g., shopping malls,

parks, etc).

• (a) People are likely to stop and then look around in front of their places of

interest.

• (b) People towards the same destination are likely to gather in some common

waypoints through which their planning routes pass.

• (c) People without specific goals are likely to randomly roam within the area

of interest.

• (d) People with varied physical properties (e.g., age and gender) and psycho-

logical attributes (e.g., patience and aggressiveness) have different behaviors in

a crowd.

We analyze the above observations from the perspective of crowd simulation and

model them as follows.

• Macroscopic uncertainty characteristic as demonstrated in (a) and (c) can be

approximately modeled as a pre-computed 2D scalar field, combined with a

general purpose global planner.

• Microscopic uncertainty characteristic as demonstrated in (b) and (d) can be

12

modeled as a state machine of Region-of-Interest(ROI) ahead of the local plan-

ner in the simulation pipeline.

3.3 Construction of Eulerian Map

We first construct an Eulerian map based on a bird-view scene map. A step-ahead

analysis of the scene map is used to tag each building’s signature attributes, as illus-

trated in Fig. 3.2(a). Without loss of generality, we make a high-level simplification

on the scene map and only preserve four basic attributes: entertainment, shopping,

dinning and other. Then, we construct a four-layered Eulerian map based on the

four building attributes. Different layers in the Eulerian map can be illustrated in a

color-coded way, as shown in Fig. 3.2(b).

3.4 Eulerian Uncertainty Field

Eulerian uncertainty field in our model is to reflect the degree of uncertainty that

certain groups of agents overtake during their macroscopic advection in the whole

domain. For the sake of discussion, let us assume i is the ith building with attributes

Ai. The geometric attribute of i is described by Center Ci and Boundary Set Bi.

Empirical observations tell us that the closer people are moving to i, the more like-

ly people will consider to stop, wait and see. We use the following mathematical

13

Global
Planner

Goal-directed
Agents

None-goal
directed Agents

Local Collision
Avoidance

Sub-domain
Navigation Field

Eularian
Uncertainty Field

Local

Planner

Lagrangian
Uncertainty

Update Velocity, Direction
and Other Attritubes

Simulation Loop Initialization

Eularian
Map

Sub-domain
Mask Map

Environment

Figure 3.1: A schematic overview of our method

Restroom,
Female,…

Theatre,
Adult,…

Shopping,
Kids,…

Restroo-
m,Male

Café,…

Playground,
…

Customer Service,…

Shopping,
Mature,…

Sports
Center,…

(a) (b)

Figure 3.2: Construction of the Eulerian map from a scene map example: (a) a 2D
scene map from bird-view, and (h) its corresponding color-coded Eulerian map.

14

equation to model this uncertainty.

U(X, i) =

e−k∗dist(X,Bi) if dist(X,Bi) ≥ 0

0 otherwise

(3.1)

We can further extend the above equation for different layers of the Eularian

map, shown in Ai, assuming there are a total of m buildings in the k-th layer.

Uk(X) =
∑

0<i<m

U(X, i) (3.2)

In this way, the Eulerian map (total K layers) can be described as follows:

U(X) = [U0(X), U1(X), · · · , UK(X)] (3.3)

Agent j is only affected by the relevant layers of Eulerian Map through an

individual-specific or group-specific mask, M(j).

M(j) = [M0,M1, · · · ,Mi, · · · ,MK] (3.4)

For the agent j, now we have:

U
′
(X, j) = U(X) ∗M(j) (3.5)

A more smoother model is to use a Gaussian filter in 2D space after comparing the

Eulerian uncertainty model with Depth-of-Field Circle-of-Confusion (CoC)[36, 24].

Let G be a Gaussian convolution operator with 3 × 3 kernel. For the i-th building in

the Eulerian map, the propagated Eulerian uncertainty map is computed as follows:

Ug(X, i) = G ∗ Ei = wG

∑
P∈Ω

G(P −X)Ei(X) (3.6)

15

where G(X) is a typical Gaussian weight at offset X, wG is the sum of Gaussian

weights.

Then, by summing all the buildings in a certain layer in the Eulerian map, a

Gaussian-based Eulerian uncertainty field can be constructed accordingly as follows.

Ug,k(X) =
∑

0<i<m

Ug(X, i) (3.7)

Ug(X) = [Ug,0(X), Ug,1(X), · · · , Ug,K(X)] (3.8)

U
′

g(X, j) = Ug(X) ∗M(j) (3.9)

3.5 Lagrangian Uncertainty Model

The Lagrangian uncertainty model in our approach is build on the following several

hypotheses derived from empirical observations on the behavior of non-goal directed

agents in a crowd. Unlike goal-directed agents, non-goal directed agents have no clear

destination. Each agent has a set of goal candidates denoted by G, which changes

over time.

ASSUMPTION #1. Every agent should take into account the visual occlusion

of each building from his/her viewpoint. – Illuminated by the synthetic-vision based

crowd simulation work [27], we assume that each agent does not have infinite field of

vision. Instead, the visual condition of each building is rated from worst to excellent

based on each agent’s field of view.

16

ASSUMPTION #2. Each agent has a visit history to minimize the repeated

visiting on the same building. – After visiting a building, people typically exclude

their recent visits from their near-future targets. As such, those recently visited

buildings should be rated as “less likely to visit in near future”.

ASSUMPTION #3. The shortest distance rule implies that people often visit

the comparatively closer building if other external conditions are similar.

By combining the above assumptions, for each building in G, each agent considers

its rating as a linear blending of the following three terms.

• The vision condition, denoted by V = [V0, V1, · · · , Vn].

• The visiting history, denoted by H = [H0, H1, · · · , Hn].

• The distance, denoted by D = [D0, D1, · · · , Dn].

In this way, the rating of the i-th building for the jth agent can be described as

follows:

Rj(i) = αVi + βHi + γDi (3.10)

The ratings of all the goal candidates for the jth agent is denoted as

Rj = [Rj(0), Rj(1), · · · , Rj(n)]. After normalization, we have a 1D discrete proba-

bility density R
′
j for candidates:

R
′

j = Normalize(Rj) (3.11)

The discrete cumulative distribution function of R
′
j is described as follows:

Lj(i) =
∑

0<k<i

R
′

j(k) (3.12)

17

Intuitively, we first generate a random value r in [0, 1], and then a temporal

Lagrangian goal UL(j) for the jth agent can be determined as follows:

UL(j) =

0 if Lj(0) ≤r< Lj(1)

1 if Lj(1) ≤r< Lj(2)

...

k if Lj(k) ≤r< Lj(k + 1)

...

n− 1 if Lj(n− 1) ≤r

(3.13)

After the temporal Lagrangian goal is determined (its uncertainty is denoted as

r), the j-th agent starts to move towards UL(j). Before the agent arrives at UL(j),

no new decision needs to be made for an updated Lagrangian goal, U
′
L(j). A typical

situation can be illustrated in Fig. 3.3.

The agent advection scheme in our approach is a local planner based on the above

analysis. Specifically, we extend the spatial colonization scheme [1] by plugging

our Lagrangian goal UL(j) for non-goal directed agents into its framework (see the

equation below).

gt(j) = G(i)|i = UL(j) (3.14)

18

Lagrangian
Goal

Selection
Advection

Visiting

Browsing
Counter > 0

Not Reaching
Goal

Browsing Counter = 0,
Updating Visiting History

Figure 3.3: The state transition diagram for non-goal directed agents with La-
grangian uncertainty

3.6 Sub-domain Navigation Field

Both global and local planners, or even hybrid planners, are not able to effectively

simulate certain informal cultural conventions such as walking on one side of the

path. Instead, inspired by the demonstrated effectiveness of user-guided navigation

fields (e.g., the work of Patil et al. [28]), we provide a new perspective for this

problem and introduce a sub-domain navigation field with the following assumption:

Only a portion of the entire scene needs people to follow cultural conventions and

hence resolving congestion, therefore only those places need a navigation field to guide

people. Note that our navigation field is not goal-directed since we have our own

global planner for such a task.

To highlight the region with the navigation field out of the entire 2D grid, we

19

Figure 3.4: An example of the sub-domain mask map in our approach

define a sub-domain mask map that looks like an axis-aligned bounding box of high-

traffic regions with few padding grid cells (refer to Fig. 3.4).

In the highlighted regions in the sub-domain mask map, we employ a navigation

field to ensure agents walk on the right side of their path. This would alleviate the

potential macroscopic congestion in the scene. We use the following two hypotheses

to design the right model for our navigation field: (a) Each agent next to obsta-

cle right-hand is considered to be on the ideal track, and he or she should walk

along the boundary of obstacle; and (b) each agent away from obstacle right-hand

should adjust his or her heading direction towards the ideal track as soon as possible.

Based on these hypotheses, we can intuitively construct a corresponding sub-domain

navigation field, as illustrated in Fig. 3.5.

Main computation procedure could be seen as a series of propagation passes like

Fast Marching Method [28]) and described as follows.

20

(a)

(b)

Figure 3.5: Example of sub-domain navigation field: (a) positive y-axis direction ,
and (b) negative y-axis direction. Note that solid line with different color indicates
the navigating direction calculated by different pass.

21

Pass 1, navigating direction of cell adjacent to obstacle (ideal track) highlighted by

red color is initialized as Fig. 3.4(a),(b), being consistent with boundary direction of

obstacle (counter-clock-wise in right-side advection).

Pass 2, navigating direction of cell next to ideal track highlighted by blue color is

computed by different cases.

Case with one neighboring cell visited: we add an offset vector to impel the

agents towards the ideal track as shown in following equation.

N(i, j) =

(1, 0) + N(i+ 1, j) iff N(i+ 1, j)exists

(0, 1) + N(i, j + 1) iff N(i, j + 1)exists

(−1, 0) + N(i− 1, j) iff N(i− 1, j)exists

(0,−1) + N(i, j − 1) iff N(i, j − 1)exists

(3.15)

Nav(i, j) = Normalize(N(i, j)) (3.16)

Case with two neighboring cell visited: we simply average them together since

usually it occurred where turning corner existed.

We use the same way to calculate the navigating direction of rest cells pass by pass

until all of them are visited.

22

3.7 Hybrid Crowd Dynamics

As described above, we use a global path planner as well as a local path plan-

ner to incorporate the Eulerian uncertainty and the Lagrangian uncertainty to our

crowd simulation system, respectively. In addition, we also need to incorporate the

sub-domain navigation field into the entire crowd dynamics pipeline. Before the sim-

ulation loop starts, the Eulerian uncertainty field and sub-domain navigation field

are pre-computed. And, they need to be re-computed only when the environment is

changed.

The following procedure summarizes the major steps involved in one simulation

loop (also refer to Fig. 3.1). Note that before the simulation starts, we assume

the initial positions, directions, and other attributes of all the agents are given or

specified by users.

1. The positions, directions and other attributes of all the agents are utilized to

compute the discrete Voronoi diagram, density field, cost field, potential field,

etc.

2. Global planning is performed on goal-directed agents, while local planning is

performed on Lagrangian agents by following the state transition diagram (refer

to Fig. 3.3).

3. If there exists an Eulerian uncertainty field where agents stand by, the velocities

and directions of these agents will be affected by the Eulerian uncertainty.

4. If agents step into the region with a specified sub-domain navigation field, the

23

velocities and directions of these agents will be dominated by the navigation

field.

5. Finally, local collision avoidance algorithm is performed to update agent posi-

tions and make corrections if collision occurs.

3.8 Collision Avoidance

As described in the work of [43], the continuum crowd framework can only simulate

dynamics up to the resolution of the used grid; collisions could occur within indi-

vidual grids. It uses a pair-wise check mechanism to eliminate potential collisions in

individual grids. However, this pair-wise check algorithm for collision avoidance is

not GPU-friendly. In our approach, we introduce a new, efficient and GPU-friendly

collision avoidance algorithm.

Inspired by the work of [1], we compute a discrete Voronoi diagram at each time

step and then exploit the geometric properties of the Voronoi diagram and convex

sets. Basically, if at each time step every agent’s new position is located within its

previous Voronoi cell, then no collision will occur. The major performance bottleneck

here is to compute the distances from the location of every agent to all the edges

of Voronoi cell. Therefore, the original method [1] is severely limited by the large

number of agents.

We significantly improve the performance of the above model [1] by borrowing

the concept of Poisson disc sampling (refer to Fig. 3.6), commonly seen in GPU

24

rendering techniques [36, 24]. Tap positions on the filter kernel are determined by

using stochastic methods according to a Poisson disc distribution. 13 samples (12

outer samples + the center sample, yellow-colored in Fig. 3.6) are used in image-space

post-processing [36, 24]. In our approach, we add four more samples (purple-colored

in Fig. 3.6) at both ends of two local orthonormal bases.

In our scenario, the updated position A
′

at current time step is aligned with the

center tap, and the outer taps are sampled from the Voronoi diagram based on their

offset and scaled according to the agent’s radius R. One intuitive way to detect

collisions is to see whether all the outer samples have the same Voronoi cell ID as

the center tap. If so, then we can assume that the agent is not penetrating into

the neighboring Voronoi cells containing other agents. The example illustrated in

Fig. 3.6 shows the opposite situation, where the sample with green color steps into

other Voronoi cell. Besides we also want to compute the extent of penetration if

occurs. To detect collision and compute penetration in one pass, we re-order all the

sample taps along the y-axis (the numbers in Fig. 3.6 denote their orders). Collision

detection starts from the 0th sample, then the 1th sample, and so on. Once a collision

is detected, the approximate extent of penetration can be quantified as a vector C

in Fig. 3.6. Then, the adjusted motion vector M
′

is offset by Vector C as follows.

M
′
= M − C (3.17)

25

𝑪

𝑴

𝑹

𝑪

𝑴′

𝑪𝟎

𝑪𝟏

𝑨′

𝑨

𝟎

𝟏
𝟐

𝟑
𝟒

𝟓
𝟔

𝟕 𝟖

𝟗 𝟏𝟎

𝟏𝟏
𝟏𝟐

𝟏𝟑

𝟏𝟒

𝟏𝟓

Figure 3.6: Illustration of Poisson disc sampling for collision avoidance in our ap-
proach

𝑋

𝑌

𝐴

𝐵

𝐴′

𝐵′

𝐶

𝐷

𝑁𝑜𝑟𝑚𝑎𝑙 𝐶𝑎𝑠𝑒:
𝐶 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐷

𝑆𝑝𝑒𝑐𝑖𝑎𝑙 𝐶𝑎𝑠𝑒:
𝐴 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐵

(a)

𝑋

𝑌

𝐴

𝐵

𝐴′

𝐵′

𝐶

𝐷

𝑁𝑜𝑟𝑚𝑎𝑙 𝐶𝑎𝑠𝑒:
𝐶 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐷

𝑆𝑝𝑒𝑐𝑖𝑎𝑙 𝐶𝑎𝑠𝑒:
𝐴 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐵

(b)

Figure 3.7: Predictive Binning with Lagrangian uncertainty : (a) predictive binning,
(b) collision resolving with lagrangian uncertainty.

26

3.9 Collision Avoidance with Lagrangian Uncer-

tainty

Collision avoidance in area of crowd simulation usually is composed of two stages:

collision detection and thereafter the agents separation. Our contribution is to add

Lagrangian uncertainty to separate the agents while handling the predictable colli-

sion.

3.9.1 Collision Detection

Regarding the collision detection, our work inherited the same method: Binning in

works [40], [39]. Our method differs from those methods in that We splattered the

each agent’s position few steps ahead, and Binning is operated upon this predictive

agent’s position as Fig. 3.7(a). There are two possible cased illustrated in the above

Figure.

1. Two agents: A and B have the tendency to collide each other face to face. Our

Lagrangian uncertainty is specifically handling this situation. We will set a

threshold angle close to 180 degree in program.

2. Two agents: C and D are about to collide by the side. We follow the regular

way to separate both agents in this scenario.

27

3.9.2 Resolve Collision

Illustrated in Fig. 3.7(b), face to face collision between two agents A and B, in

real-world scenario, might not be avoid right away. In the next step, two people

might choose the same offset direction to avoid each other. Regular agent separation

method might be enough to simulate this scenario. We designed the Lagrangian

uncertainty to determine the offset direction between [0, π]. Therefore, agent A and

B might be or not be collided with each after one step adjustment. This is the

break-through out of the regular solution.

28

Chapter 4

Global Planner

This chapter will review two state-of-art global planner: Continuum Crowd and Nav-

igation Field first. And afterwards details on how to use our Eulerian and Lagrangian

uncertainty model upon these two global planners will be explained.

4.1 Continuum Crowd

The main pipeline of continuum crowd is ordered by:

• Construct smooth density and velocity field.

• Calculate anisotropic speed field based on local crowd density.

• Evaluate anisotropic cost field based on uniform cost function.

• Propagate potential field outwards originated from the goal destinations.

29

density: 0 density: 1

(a)

Splattered Velocity Visualized by Yellow Arrow

(b)

Figure 4.1: Example of density and velocity splatter: (a) density splatter , and (b)
velocity splatter.

• Deduct changing gradient of above potential field to direct agents.

All these major steps need recalculated every simulation step.

4.1.1 Density and Velocity Splatter

Splattering each agent’s attributes: density and velocity, in this thesis, into adjacent

grid cells is the first step of the entire pipeline. The major intention of this step is to

provide the smooth scalar and vector field over the discrete 2D grids as Fig. 4.1(a),(b).

A typical implementation for attributes splatter is by using additive alpha blending

with following texture with alpha transparency as Fig. 4.2.

Following by the same rule, we can also easily implement predictable discomfort by

splattering density a few motion step ahead.

30

Figure 4.2: Cone texture for additive alpha blending

4.1.2 Anisotropic Speed

Flow Speed is to be utilized to describe if the agent within a certain grid cell can

move by its maximal speed or move with the surrounding flow. The speed field is

anisotropic along with the four directions: North, West, South and East, correspond-

ing to each cell face. The amount of speed is proportional with the density situation

as in following equation. Value of maximal and minimum density as well as maximal

speed should go with the specific application. The anisotropic flow speed is calculated

by dot product between neighboring velocity with neighboring cell directions.

Speeda(i, j) =

flowspeed Densitya(i, j) > DensityMax

lerp(flowspeed,maxspeed) Densitya(i, j) ⊆ [DensityMin,DensityMax]

maxspeed Densitya(i, j) < DensityMin

(4.1)

31

Cost(P) = α

∫
P

1ds+ β

∫
P

1dt+ γ

∫
P

gdt (4.2)

4.1.3 Cost Field

From the viewpoint of continuum crowd method, cost field of each grid cell is defined

against its four neighboring cells, quite similar as the previous speed calculation.

Three hypothesis based on observation formed up the ultimate cost function, in

continuum form as follows. Path length, travelling time and discomfort are the

three major terms in the equation, representing the three hypothesis respectively.

Weighting coefficient: α, β and γ should be adjusted by the specific applications.

The cost function in continuous form can be rewritten into 2D discrete form

Costa(i, j) =
Speeda(i, j) ∗ α + β + γ ∗Discomforta(i, j)

Speeda(i, j)
(4.3)

Here, term indicated as Discomforta(i, j) is composed by environment map plus

predictable discomfort previously introduced as Fig. 4.3(a),(b).

4.1.4 Potential Field

Potential field is a scalar field that evaluate the accumulative cost between each 2D

grid cell to goal destination. It has several characteristics: Firstly, the computation

is originated in goal destination and propagated outwards. Secondly, potential field

needs to be recomputed in each time-step and for each common goal areas. There-

fore, potential calculation is the most expensive computation step within the whole

32

Building 0

Building 1

Building 2

Building 3

Building 4

Building 5

(a)

Cost (North) intensity

Cost (East) intensity

Cost (South) intensity

Cost (West) intensity
Cost (Multi-directions)

(b)

Figure 4.3: Anisotropic cost field: (a) simulation environment map , and (b) calcu-
lated cost field.

pipeline. Mathematically, eikonal equation highly abstracted this problem.

‖∇Potential(P)‖ = Cost(P,D) (4.4)

Here, P indicates the position at simulation domain. Gradient of potential at P is

dependent upon the anisotropic cost at P . The higher the cost attached to specific

location P , the faster the potential will get increased. Started from goal cells, poten-

tial of which is zero, high cost grid cells would be propagated later than lower-cost

grid cells. Original paper computed the potential field by using Fast Match Method

(FMM) in CPU. It is very slow if considering the dense grid resolution as well as

increased group numbers. This thesis we implemented it in GPU computing pipeline.

For more details, you can refer to paper [16], [17] and [15].

As pointed out in [43], each group is sharing a common goal and each goal des-

tination need propagating a entire 2D potential field. Performance of CPU-based

33

potential: 0 potential: 1

(a)

potential: 0 potential: 1

(b)

potential: 0 potential: 1

(c)

potential: 0 potential: 1

(d)

Figure 4.4: Potential fields for four groups: (a) potential fields propagated from
up-left corner (goal area), (b) potential fields propagated from bottom-right corner
(goal area), (c) potential fields propagated from bottom-left corner (goal area) and
(d) potential fields propagated from up-right corner (goal area)

implementation is quite impacted by the increasing number of goals. A good GPG-

PU implementation can dramatically decrease the iteration numbers and moreover

make full use of hardware-accelerated 4-tuple vector computing to boost the entire

performance. The following four potential fields (Fig. 4.4), goals of which are accord-

ingly located at position of four extreme corners, are well suited for vector packing

in GPU computing.

34

(a) (b)

(c) (d)

Group 0

Group 1

Group 2

Group 3

Figure 4.5: Gradient fields for directing four groups: (a) directing gradient field
towards up-left corner (goal area), (b) directing gradient field towards bottom-right
corner (goal area), (c) directing gradient field towards bottom-left corner (goal area)
and (d) directing gradient field towards up-right corner (goal area)

4.1.5 Gradient Field

Once we get the potential field in previous step, we can easily calculate the gradient

field by taking the potential difference along upwinding directions.

The gradient field will be utilized to navigate the agent’s motion. (Fig. 4.5)

Direction(P) = −normalize(gradient(P)) (4.5)

V elocity(P) = Direction(P) ∗ Speed(P) (4.6)

35

Motion(P) = V elocity(P) ∗ 4(T) (4.7)

4.2 Navigation Field

Navigation field differs from Continuum crowds in:

1. Firstly, usually it needs a user-specified guidance field.

2. Secondly, only needs to be recalculated at beginning or guidance has been

changed.

4.2.1 User Guidance

A few techniques can provide user guidance: user sketchy interface and movie footage.

In this thesis, we only use the user sketchy interface. (Fig. 4.6(a))

4.2.2 Anisotropic Cost Field

The quality of continuum crowd is largely dependent on the resolution of simulation

grids. As an extension of continuum crowd, navigation field method can allow agent’s

move to any places between neighboring cells when it comes to compute the cost field.

Therefore, it will be beneficial to overcome the blocky ”path” due to the limited set

of transition, only four possible directions in continuum crowd. Fig. 4.7 illustrated

this possible unlimited set of traversal path in detail.

36

Building0

Building1

Building2

Building3

Building4

Building5

Building6

Building7

Building8

Building9

Building10

Building11 Building13 Building15 Building17 Building19

Building14 Building12 Building16 Building18 Building20

(a) (b)

(c)

potential: 0 potential: 1

(d)

Figure 4.6: Goal-oriented navigation field with user guidance: (a) user sketchy in-
terface to draw guidance field, (b) propagated guidance field based on (a), (c) goal-
oriented navigation field and (d) grey-scale potential field

37

𝐴 = 𝜋𝑟2

𝑃 = (0, 0) 𝑃𝑒 = (1, 0)

𝑃𝑛 = (0, 1)

𝑃𝑎 = 𝑙𝑒𝑟𝑝(𝑃𝑛, 𝑃𝑒)

Figure 4.7: Unlimited possible set of traversal path

Mathematically, due to the introducing of speed function correlate to the direc-

tion, the previous eikonel equation will be escalated into Static Hamiltion-Jocobi-

Bellman equation:

max(−∇Potential(P) ·D)S(P,D) = 1 (4.8)

‖sa−P‖ = 1 (4.9)

s(P, a) = a ·G(P) +
√

(a ·G(P))2 −G(P) ·G(P) + 1 (4.10)

C(P, a) = αC(Pe) + (1− α)C(Pn) + 1/s(P, a) (4.11)

dC(P, a)

dα
= 0 (4.12)

N(P) = a = (α, 1− α) (4.13)

38

Compared with normal eikonel equation, it has a new term as S(P,D) and a dot

product with direction D. More specifically, D represents the any possible direction

out of unlimited set of transition between P to its four neighboring cells. Direction-

dependent speed termed as S(P,D) indicated that the cost function right here only

consider the time factor. This model proposed in original paper only calculate for

once and rule out the factor like density and flow speeds. If we replaced the term

S(P,D) with Cost(P,D), then we can need to update the calculation each time-step.

But it will be easily incorporated into our current computation pipeline.

4.3 Continuum Crowd with Eulerian Uncertainty

In the previous sections, we introduced our two-level uncertainty model. And after

that, we reviewed the two major global planner a little bit. In this section, we will

introduce how we can embed the uncertainty model into continuum crowd method.

To use our Eulerian Uncertainty in continuum crowd, we first need to make some

adjustment on the original continuum crowd as follows.

1 Extend the goal area from non-object area to unlimited any place in the sim-

ulation domain.

2 Arrays of Cost field needs to be computed for every possible goal places. This

quite differed from the original method.

3 Potential field and Gradient field need to be accordingly computed as with the

costs.

39

The entire computation task appears to be increased multiple times with the

modification of the model here. But actually a well-designed GPU implementation

can succeed to avoid that.

1 When calculating the potential field and gradient field, packing the data accord-

ing to the group and take advantage of the 4-tuple vector processing capability

in modern GPU.

2 Only calculate when it is needed, which is according to the specific application.

Eulerian uncertainty can be utilized to change the agent’s goal at some specific

time, such as there has a emergency event somehow. Eulerian uncertainty can also

be utilized to stop agent’s advection to simulate ”browsing effect”. Both of them can

be thought of as a ”distance-field”, which is sourced from some Region-of-Interest

(ROI), propagated and decayed with distance away from the source region. Again,

add some slight modification on typical splattering can calculate it fast enough in

GPU. Remember that the source area is a 2D region rather than a single 2D point.

As we introduced our Eulerian model in Section3.4, all the distance-field here should

be calculated based on the distance to the boundaries of source region. Fig. 4.8

illustrated it in detail.

40

𝑈𝑉 𝑚𝑎𝑝𝑝𝑖𝑛𝑔

𝑈

𝑉

𝑆𝑜𝑢𝑟𝑐𝑒 𝑅𝑒𝑖𝑔𝑖𝑜𝑛

𝑆𝑝𝑙𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

Figure 4.8: Splatter Eulerian uncertainty radiant from source

4.4 Navigation Field with Lagrangian Uncertain-

ty

Navigation field only computed once at initialization stage or external guidance field

has been changed. Navigation field is also goal-directed and its traversal cost is prop-

agated outwards from the flagged goal area. In order to affiliate Eulerian uncertainty

with the normal navigation field framework, we need to create a group of navigation

fields, each of which have different goal destinations, and let the agent to follow them

based on time-varying uncertainty. Here is the major steps needed to be done before

launching the simulation.

• User manually specified all goal areas, time-varying or non-time-varying.

• For different goal area, global discomfort/obstacles should have little variance

as Fig. 4.9(a),(b),(c) and (d).

41

Discomfort

Goal

(a)

Discomfort

(b)

Discomfort

Goal

(c)

Goal

Discomfort

(d)

Figure 4.9: Group of four global discomfort for the same environment: (a) group 0,
(b) group 1, (c) group 2 and (d) group 3.

.

• User can optionally draw preferred guidance field on each navigation field as

Fig. 4.10(a),(b),(c) and (d).(Navigation field deteriorated to shortest path nav-

igation if no guidance)

• Generate all the navigation fields in the group as Fig. 4.11(a),(b),(c) and (d).

During the simulation runtime, each agents individually evaluate all the possible

destinations followed by Section 3.5. Once it picked up one goal based on lagrangian

uncertainty, agent move with the corresponding navigation field.

42

User Sketched Guidance

(a)

User Sketched
Guidance

(b)

User Sketched
Guidance

(c)

User Sketched
Guidance

(d)

Figure 4.10: Group of four user guidance fields for four major destinations : (a)
group 0, (b) group 1, (c) group 2 and (d) group 3.

43

Goal-directed
Navigation Field

(a)

Goal-directed
Navigation Field

(b)

Goal-directed
Navigation Field

(c)

User Sketched
Guidance

(d)

Figure 4.11: Group of four user computed navigation fields accordingly : (a) group
0, (b) group 1, (c) group 2 and (d) group 3.

44

Chapter 5

Implementation

This chapter will highlight some implementation tricks during this work. There are

two major parts: 2D simulation and 3D Rendering. We use both GPGPU and

GPU graphics pipeline to carry out the 2D simulation. Most steps we described in

previous chapter need recomputing every time-step. As for the 3D Rendering part,

we use GPU graphics pipeline to implement the skinning animation with instancing

techniques as well.

5.1 GPU Computing Pipeline

Our approach was implemented using OpenGL 4.3 and GLSL on GPUs. The major

steps in our GPU-based implementation are illustrated in Fig. 5.1, where the numbers

in circles denote the orders of these steps. Before the simulation loop starts, we

compute the following items once and recompute them if necessary.

45

Scene Map

Eularian Map

Mask Map

Agent Voronoi

Agents

Markers

Marker-
Agent Map

Velocity Field

Average
Velocity

Speed Future
Discomfort

Cost

Potential

Gradient

Local Collision
Avoidance

Density Field
3

1

3

3

4

4
5

6

6

7

8

Eularian Uncertainty

Navigation Field

Global Planner

Lagrangian Uncertainty

Navigation Field

Local Planner

0

0

0

2 2

2

0
9 9

Final Agent Advection

: Computing Pass

: Rendering Pass

: Non-goal-oriented

: Goal-oriented

: GPU Buffer Object

: GPU Image Object

10

Figure 5.1: The overall pipeline of the full GPU implementation of our approach

• Layout randomized markers across the entire simulation grids using GPU Voronoi

diagram and extract the centroid point of each cell;

• Render the scene environment to bake the Eularian map on the fly;

• Render the sub-domain mask map;

• Use GPGPU (Computer Shader) to compute the navigation field; and

• Use computer shader to compute the Eularian uncertainty field.

At step 1, render the GPU Voronoi diagram of all the agents by following the

standard graphics rendering pipeline. Each agent’s unique ID is encoded as a RGBA8

color.

At step 2, based on the Eularian map and the agent-Voronoi map, a marker-

agent map is constructed using simple texel fetch in Fragment Shader. In practice,

46

we round the markers’ positions and turn off hardware linear filtering.

At step 3, we splat all the agents’ positions and velocities to compute the s-

moothed density field and velocity field using additive alpha blending. We also

implement a future discomfort model by splatting each agent to its predictive grid

cell given a certain amount of time steps. The Multi-Render-Target (MRT) capa-

bility provided in modern GPUs is utilized here to simultaneously render multiple

textures in one pass.

From step 4 to step 8, a fast and efficient GPU implementation of the Continuum

Crowd approach [43] is done using GPGPU technique as follows. At step 4, the

average velocity of each grid (computed in computer shader using multiple outputs

from step 3) is rendered to texture. At step 5, the velocity field is computed in

computer shader using the output from step 4 and rendered to velocity texture.

At step 6, based on the optimization function in [43], the cost field is built using

the outputs from previous steps (Eularian map, predictive discomfort map, velocity

field, density field, etc). At step 7, Eikonel equation is solved in computer shader to

compute the scalar potential field. In practice, we optimize the computation using

group shared memory resources, tuple packing, and MRT offered in modern GPU

hardware. At step 8, a gradient vector field is computed by simply using the potential

field.

At step 9, hybrid crowd dynamics are implemented again in computer shader. In

this pass, we first select either global planning or local planning based on an agent’s

attributes. If the agent’s type is goal-directed and affiliated with a group, it will

be advected based on the gradient vector field from step 8, and corrected if it steps

47

into hot-spot with the navigation field. On the other hand, if the agent is non-goal

directed, it will be advected by the local planner purely based on local available

markers. Agents of both types are affected by the Eularian uncertainty field, and a

corresponding state-machine will activated when needed. Another state machine for

modeling the Lagrangian uncertainty only affects the decisions of non-goal directed

agents.

At step 10, a final collision avoidance pass is imposed on the preliminary advection

outcome. After collision detection, If a zero-advection goal-directed agent is given

a new motion vector based on local marker situation, likely the deducted motion

vector will slightly deviate from the result of the original continuum crowd model.

However, in our experiments we found that it is a very effective way to solve the

decision deadlock between two or three agents within the same grid cell.

5.2 3D Rendering

3D Rendering pipeline has two major components: skinning animation for characters

and instancing technique for performance boost.

5.2.1 Skinning Animation

We use linear-blending skinning (LBS) for skinning animation in this thesis. Specifi-

cally, each vertex of the mesh model will be influenced by few number of bones, such

as four bones and eight bones. A usual data structure for vertex attributes object

48

Position

Texture Coords

Normal

BoneID0 | Weight0

BoneID i | Weight i

BoneID m| Weight m

Figure 5.2: Data structure for VAO layout

(VAO):

Each frame, matrix for all bones will be linear interpolated in CPU between two

keyframes and packed as buffer in the form shown in fig. 5.2. To animate the skinning

character and make it walk like the same pace as its actual speed, we need to scale up

the speed of linear interpolated by different magnitude and reorganized the packing

scheme. (fig. 5.4). Each frame, CPU will pass down the packed bone matrix to GPU

and also the speed. When executing the LBS in vertex shader, the corresponding

group of bone matrix will be fetched from the right offset.

One experience that we obtained from our experiment is not overuse the number

of different speed levels especially for the dense bone model. It will copy too much

49

Matrix: Bone 0 Matrix: Bone 1 Matrix: Bone 2 ……………….. Matrix: Bone m

Matrix: Bone 0 Matrix: Bone 1 Matrix: Bone 2 ……………….. Matrix: Bone m

t1:

t1 + 1:

Matrix: Bone 0 Matrix: Bone 1 Matrix: Bone 2 ……………….. Matrix: Bone m

lerp:

Figure 5.3: Bone matrix interpolation and packing

Matrix: Bone 0 Matrix: Bone 1 Matrix: Bone 2 ……………….. Matrix: Bone m

(Scale: 1.0) lerp t1: keyframe i

Matrix: Bone 0 Matrix: Bone 1 Matrix: Bone 2 ……………….. Matrix: Bone m

(Scale: 0.6) lerp t1: keyframe j

(Scale: 0.2) lerp t1: keyframe k

Matrix: Bone 0 Matrix: Bone 1 Matrix: Bone 2 ……………….. Matrix: Bone m

Matrix: Bone 0
Scale: 1.0

Repacking:

Matrix: Bone 0
Scale: 0.6

Matrix: Bone 0
Scale: 0.2

Matrix: Bone 1
Scale: 1.0

……………
Matrix: Bone m

Scale: 0.2

Figure 5.4: Bone matrix interpolation and packing

50

data from CPU to GPU and drop down the performance.

5.2.2 Instancing

Another technique we use in our 3D animation is to use instancing. Basically, we

use the same skinning character for the entire group of agents. This will alleviate

the overall computation burden deeply. The only difference between the agents

within one group is the transformation matrix. Transformation matrix of all agents

are packed into another separate buffer and fetched with the frequency of once a

character.

51

Chapter 6

Results

In this section, we report the quality and performance of the proposed Crowd Sim-

ulation framework on several different scenarios. We experimented different ways of

combination between global planner and uncertainty model.

6.1 Simulations of Separate Component

6.1.1 Eulerian Uncertainty only

A shop browsing effects, Figure.6.1was simulated by adding the Eulerian uncertainty

only. We propagated the Eulerian uncertainty field the way as we discussed and

people are attracted or distracted depending on their attributes as well as proba-

bility.Eulerian fields with user-sketchy was also experimented and it can offer many

interesting behavior patterns such as ”alphabetical” lingering, ”geometrical shape”

52

(a) (b)

Figure 6.1: User-sketched Eulerian Field:(a)English Alphabetical (b) Result

lingering(Fig.6.1) as an add-on effects to existing simulation pipeline.

6.1.2 Cultural Convention

Tunnel Crossings: Fig.6.2 shows the simulation of combining continuum crowd

and sub-domain navigation field. Thousands of agents belonging to four different

groups are walking through the narrow tunnel area during their way towards to their

goal. Relying on continuum crowd and collision avoidance only cannot solve this

problem as Figure.6.2. A much better simulation result was attained by using the

hybrid method.

53

Group : 1 Group : 1 Group : 2 Group : 3

Congestion

(a)

Group : 1 Group : 1 Group : 2 Group : 3

Convention

Group : 5

(b)

Figure 6.2: Sub-domain Navigation Field:(a)Congestion in bad crowd traffic area (b)
No congestion and follow cultural convention

6.1.3 Lagrangian and Eulerian Uncertainty

We simulated a small portion of non-goal-oriented agents behaving using Lagrangian

Uncertainty with different combinations of evaluation function for goal candidates

and updating frequency. In summary, non-goal-oriented agents are more behaving

like moving obstacles by using density-based evaluation function than not. Besides,

if the updating frequency increased, agents pattern appears to be more irregular

and add a lot of randomness to others. If many agents are arriving the same ROI

simultaneously, arc or sphere surrounding effects can be observed.

54

Group : 1 Group : 1 Group : 2 Group : 3

Lagrangian Group

Lagrangian
Uncertainty

Figure 6.3: Lagrangian Uncertainty simulation result

6.2 Continuum crowd with Eulerian uncertainty

First showcase is to illustrate how Eulerian uncertainty can work with continuum

crowd pipeline to simulate a few interesting crowd behaviors.

6.2.1 Continuum crowd

Four corners: four groups of agents are walking crossway inwards started from

the four corners of the entire 2D simulation grids. This scenario presented a few

emergent effects in crowd as in Fig. 6.4.

Fig. 6.4(a),(b),(c) and (d) display the lane formation and vortex effect in middle

of the scene with increasing number of agents.

55

Group : 0 Group : 1 Group : 2 Group : 3

Goal 0

Goal 1 Goal 3

Goal 4

(a)

Group : 0 Group : 1 Group : 2 Group : 3

Goal 0

Goal 1 Goal 3

Goal 4

(b)

Group : 0 Group : 1 Group : 2 Group : 3

Goal 0

Goal 1 Goal 3

Goal 4

(c)

Group : 0 Group : 1 Group : 2 Group : 3

Goal 0

Goal 1 Goal 3

Goal 4

(d)

Figure 6.4: Multi-scale four corner continuum crowd with obstacles : (a) 300 agents,
(b) 600 agents, (c) 1200 agents and (d) 2400 agents.

56

6.2.2 Two-level Eulerian Uncertainties

Some realistic crowd behavior cannot be simulated simply relying on Continuum

crowd model. One of the example is emergent event, which should draw people’s

attention and thereafter temporarily change their goal-directed behavior. Two Eu-

lerian uncertainties are used in our simulation: (see visualization in Fig. 6.5)

1. Eulerian uncertainty radiant from source of the emergent event to attract a-

gents within a certain scope based on probability.

2. Second Eulerian uncertainty to affect agents stop walking and start watching

adjacent to source of the event.

6.3 3D Rendering Result

In this section, a few 3D rendering results with character animations are presented

as follows. (Fig. 6.6 and Fig. 6.7)

6.4 Performance of Simulation

We measured the rendering performance of the four demo scenarios in terms of frame

rate. All simulations ran on a Intel Core I7-3820 3.6GHz with a SLI NVidia Geforce

GTX 770 graphics card. Both the 2D simulation and 3D rendering are implemented

purely in GPU, hence you can assume there is no frequent data transfer back from

57

Emergent Source

(a)

Emergent Source

(b)

Emergent Source

(c)

Emergent Source

Agents Affected

(d)

Emergent Source

Agents in browsing

Group 1

Group 2

Group 3

Group 4

(e)

Emergent Source

Agents in browsing

Group 1

Group 2

Group 3

Group 4

(f)

Figure 6.5: Simulation of Eulerian uncertainty with continuum crowd: (a) Two
Sources having emergent event, (b) Goal attraction uncertainty, (c) Stop browsing
uncertainty, (d) agents’s goal affected if closer to source, (e) uncertainty stop agents
and start browsing and (f) agents go back to normal behavior after ending browsing.

58

(a) (b)

Figure 6.6: 3D Animation and Rendering for continuum crowd only: (a) Scene layout
before launching the simulation, (b) Simulation in crowd traffic region

(a) (b)

(c)

Figure 6.7: 3D Animation and Rendering for Eulerian uncertainty: (a) scene layout
with a show event (girl dancing) in middle, (b) two-level uncertainty draw agents
closer and stop to browse, (c) agents walk away when finish watching.

59

Table 6.1: Performance comparison

Scene Agents Potentials Global Planner Average FPS

Four Corners (FC) 100 4 Continuum crowd 52.5

FC 100 8 Continuum crowd 49.5

FC + Eulerian 100 6 Continuum crowd 48.5

Four Corners 400 4 Continuum crowd 40.2

FC + Eulerian 400 8 Continuum crowd 36.7

Four Corners 800 4 Continuum crowd 25.5

FC + Eulerian 800 6 Continuum crowd 21.8

Four Corners 1200 4 Continuum crowd 18.9

Four Corners 2400 4 Continuum crowd 9.8

Four Corners 4000 4 Continuum crowd 5.75

GPU to CPU. The screen resolution is 1920∗1080.

We illustrate the performance testing result in Table 6.1, differed in number of agents

and major computation steps.From this table, we can see performance mainly de-

pends on number of potential field needed recomputing each time-step as well as total

number of agents. Since we use GPU vector packing for computing, performance only

differed after number of potential fields quadrupled. Eulerian uncertainty required

more layer of potential field than regular pipeline. Performance is dropped down

a little bit. Overally, our simulation system can support thousands of agents with

multiple groups.

60

Chapter 7

Conclusion

In this paper we presented a novel hybrid crowd-simulation framework to simulate

Heterogeneous Crowd Behaviors. More specifically, we develop the Eulerian uncer-

tainty field to overcome the goal-driven limitation from the original continuum crowd

model. Adaptive use of local planner in our framework also can compensate for the

lack of individual variety of the original model. Local planner played the call as

people are tightly packed and therefore get stuck while still respecting the inertia,

which is also missing from the original model. We further proposed a simple non-

goal-directed navigation field to apply only certain part of the whole domain. We

have successfully demonstrated that this special design, despite simple, yet quite

effective to resolve congestion. Since navigation field is only applied to sub-domain,

our approach avoid the limitation that navigation field is not suited for dense sce-

nario. In our framework, we simulated random walkers through combination of local

planner and Lagrangian Uncertainty. Uncertainty of different granularity is unified

61

into our hybrid crowd simulation framework.

Our paper also provided a improved Voronoi-based collision avoidance method suit-

able for GPU-acceleration based on paper [13], which we assume it can theoretically

guarantee collision-free for all agents under different scale of simulation. Another ad-

vantage of our collision avoidance method is to beat the agent-sized grid limitation

of effective continuum crowd implementation.

As for the implementation, we use fully GPU implementation(graphics pipeline

plus computing pipeline) to handle the computation overhead. Specifically, a well-

designed GPU implementation can overcome the performance bottleneck caused by

large number of groups. Compared to [43] and [28], we are not decoupling the sim-

ulation and visualization.

Our user-guidance along with simple navigation field can be very hard to apply for

very complicated shape of narrow geometries. However, it might be possible to com-

bine the following behavior technique [23] with our approach to handle the narrow

passage with special shape. Our approach can simulate medium-sized crowds, might

not be well suited for simulating hundreds of thousands of agents. This limitation

is caused by using the GPU discrete voronoi diagram, but it might be overcame by

using super-resolution render targets. Also, the quality of our collision detection

scheme will be deteriorated if too less markers are used due to performance concern.

Even though our approach can simulate some typical social behaviors, it current-

ly may not be robust enough to have all kinds of real-word crowd behaviors. The

performance will be impacted with the increase of group numbers and number of

non-goal-orientated agents.

62

There are several possible improvements for this work in the future. To generate

more smooth advection path, we can incorporate anisotropic costs as in [28] and [4].

Then we can decrease the grid resolution for performance gains while still maintain

the same quality of path smoothness. More complicated social group behavior like

gathering in transitional stop can be simulated by improved Eulerian Uncertainty

field. Our model also can be adapted to simulate emergency gathering by extending

the state-machine for Lagrangian Uncertainty. Our framework is also open for us-

ing other global planner except the continuum crowd as well as other local collision

avoidance method if only the method has high potential for being parallelized.

63

Bibliography

[1] A. d. L. Bicho, R. A. Rodrigues, S. R. Musse, C. R. Jung, M. Paravisi, and
L. P. Magalhães. Simulating crowds based on a space colonization algorithm.
Computers & Graphics, 36(2):70–79, 2012.

[2] A. Braun, S. R. Musse, L. P. L. de Oliveira, and B. E. Bodmann. Modeling
individual behaviors in crowd simulation. In Computer Animation and Social
Agents, 2003. 16th International Conference on, pages 143–148. IEEE, 2003.

[3] O. C. Cordeiro, A. Braun, C. Silveria, S. Musse, and G. Cavalheiro. Concurrency
on social forces simulation model. In First International Workshop on Crowd
Simulation, volume 46, 2005.

[4] D. Ferguson and A. Stentz. Field d*: An interpolation-based path planner and
replanner. In Robotics Research, pages 239–253. Springer, 2007.

[5] R. Gayle, W. Moss, M. C. Lin, and D. Manocha. Multi-robot coordination using
generalized social potential fields. In Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on, pages 106–113. IEEE, 2009.

[6] A. Golas, R. Narain, and M. Lin. Hybrid long-range collision avoidance for crowd
simulation. In Proceedings of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, pages 29–36. ACM, 2013.

[7] Q. Gu and Z. Deng. Context-aware motion diversification for crowd simulation.
Computer Graphics and Applications, IEEE, 31(5):54–65, 2011.

[8] Q. Gu and Z. Deng. Formation sketching: an approach to stylize groups in crowd
simulation. In Proceedings of Graphics Interface 2011, pages 1–8. Canadian
Human-Computer Communications Society, 2011.

[9] Q. Gu and Z. Deng. Generating freestyle group formations in agent-based crowd
simulations. IEEE Comput. Graph. Appl., 33(1):20–31, Jan. 2013.

64

[10] D. Helbing, L. Buzna, A. Johansson, and T. Werner. Self-organized pedestrian
crowd dynamics: Experiments, simulations, and design solutions. Transporta-
tion science, 39(1):1–24, 2005.

[11] D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of escape
panic. Nature, 407(6803):487–490, 2000.

[12] D. Helbing and P. Molnar. Social force model for pedestrian dynamics. Physical
review E, 51(5):4282, 1995.

[13] K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, and T. Culver. Fast computation
of generalized voronoi diagrams using graphics hardware. In Proceedings of the
26th annual conference on Computer graphics and interactive techniques, pages
277–286. ACM Press/Addison-Wesley Publishing Co., 1999.

[14] R. L. Hughes. The flow of human crowds. Annual review of fluid mechanics,
35(1):169–182, 2003.

[15] W.-K. Jeong, P. T. Fletcher, R. Tao, and R. T. Whitaker. Interactive visualiza-
tion of volumetric white matter connectivity in dt-mri using a parallel-hardware
hamilton-jacobi solver. Visualization and Computer Graphics, IEEE Transac-
tions on, 13(6):1480–1487, 2007.

[16] W.-k. Jeong and R. Whitaker. A fast eikonal equation solver for parallel systems.
In SIAM conference on Computational Science and Engineering, 2007.

[17] W.-K. Jeong and R. T. Whitaker. A fast iterative method for eikonal equations.
SIAM Journal on Scientific Computing, 30(5):2512–2534, 2008.

[18] A. Kirchner, K. Nishinari, and A. Schadschneider. Friction effects and clogging
in a cellular automaton model for pedestrian dynamics. Physical review E,
67(5):056122, 2003.

[19] A. Kirchner and A. Schadschneider. Simulation of evacuation processes using a
bionics-inspired cellular automaton model for pedestrian dynamics. Physica A:
Statistical Mechanics and its Applications, 312(1):260–276, 2002.

[20] T. I. Lakoba, D. J. Kaup, and N. M. Finkelstein. Modifications of the helbing-
molnar-farkas-vicsek social force model for pedestrian evolution. Simulation,
81(5):339–352, 2005.

[21] F. Lamarche and S. Donikian. Crowd of virtual humans: a new approach for
real time navigation in complex and structured environments. In Computer
Graphics Forum, volume 23, pages 509–518. Wiley Online Library, 2004.

65

[22] K. H. Lee, M. G. Choi, Q. Hong, and J. Lee. Group behavior from video: a
data-driven approach to crowd simulation. In Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages 109–118.
Eurographics Association, 2007.

[23] S. Lemercier, A. Jelic, R. Kulpa, J. Hua, J. Fehrenbach, P. Degond, C. Appert-
Rolland, S. Donikian, and J. Pettré. Realistic following behaviors for crowd
simulation. In Computer Graphics Forum, volume 31, pages 489–498. Wiley
Online Library, 2012.

[24] J. L. Mitchell. Poisson shadow blur. ShaderX3: Advanced Rendering with
DirectX and OpenGL, pages 403–410, 2005.

[25] S. R. Musse and D. Thalmann. A model of human crowd behavior: Group
inter-relationship and collision detection analysis. In Computer Animation and
Simulation97, pages 39–51. Springer, 1997.

[26] R. Narain, A. Golas, S. Curtis, and M. C. Lin. Aggregate dynamics for dense
crowd simulation. In ACM Transactions on Graphics (TOG), volume 28, page
122. ACM, 2009.

[27] J. Ondřej, J. Pettré, A.-H. Olivier, and S. Donikian. A synthetic-vision based
steering approach for crowd simulation. ACM Trans. Graph., 29(4):123:1–123:9,
July 2010.

[28] S. Patil, J. Van Den Berg, S. Curtis, M. C. Lin, and D. Manocha. Directing
crowd simulations using navigation fields. Visualization and Computer Graphics,
IEEE Transactions on, 17(2):244–254, 2011.

[29] N. Pelechano, J. M. Allbeck, and N. I. Badler. Controlling individual a-
gents in high-density crowd simulation. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 99–108. Eu-
rographics Association, 2007.

[30] N. Pelechano, J. M. Allbeck, and N. I. Badler. Virtual crowds: Methods, simu-
lation, and control. Synthesis Lectures on Computer Graphics and Animation,
3(1):1–176, 2008.

[31] N. Pelechano, K. O’Brien, B. Silverman, and N. Badler. Crowd simulation
incorporating agent psychological models, roles and communication. Technical
report, DTIC Document, 2005.

66

[32] J. Pettré, P. d. H. Ciechomski, J. Mäım, B. Yersin, J.-P. Laumond, and D. Thal-
mann. Real-time navigating crowds: scalable simulation and rendering. Com-
puter Animation and Virtual Worlds, 17(3-4):445–455, 2006.

[33] J. Pettre, J.-P. Laumond, and D. Thalmann. A navigation graph for real-time
crowd animation on multilayered and uneven terrain. In First International
Workshop on Crowd Simulation, volume 43, page 194. Citeseer, 2005.

[34] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In
ACM SIGGRAPH Computer Graphics, volume 21, pages 25–34. ACM, 1987.

[35] C. W. Reynolds. Steering behaviors for autonomous characters. In Game de-
velopers conference, volume 1999, pages 763–782, 1999.

[36] G. Riguer, N. Tatarchuk, and J. Isidoro. Real-time depth of field simulation.
ShaderX2: Shader Programming Tips and Tricks with DirectX, 9:529–556, 2003.

[37] T. Sakuma, T. Mukai, and S. Kuriyama. Psychological model for animating
crowded pedestrians. Computer Animation and Virtual Worlds, 16(3-4):343–
351, 2005.

[38] W. Shao and D. Terzopoulos. Autonomous pedestrians. In Proceedings of
the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation,
pages 19–28. ACM, 2005.

[39] J. Shopf, J. Barczak, C. Oat, and N. Tatarchuk. March of the froblins: simula-
tion and rendering massive crowds of intelligent and detailed creatures on gpu.
In ACM SIGGRAPH 2008 Games, pages 52–101. ACM, 2008.

[40] J. Shopf, C. Oat, and J. Barczak. Gpu crowd simulation. ACM Transactions
on Graphics, Siggraph Asia, 27(2008):0, 2008.

[41] A. Sud, R. Gayle, E. Andersen, S. Guy, M. Lin, and D. Manocha. Real-time
navigation of independent agents using adaptive roadmaps. In Proceedings of the
2007 ACM symposium on Virtual reality software and technology, pages 99–106.
ACM, 2007.

[42] F. Tecchia, C. Loscos, R. Conroy-Dalton, and Y. Chrysanthou. Agent behaviour
simulator (abs): A platform for urban behaviour development. 2001.

[43] A. Treuille, S. Cooper, and Z. Popović. Continuum crowds. In ACM Transac-
tions on Graphics (TOG), volume 25, pages 1160–1168. ACM, 2006.

67

[44] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha. Reciprocal n-body
collision avoidance. In Robotics Research, pages 3–19. Springer, 2011.

[45] J. van den Berg, S. J. Guy, J. Snape, M. C. Lin, and D. Manocha. Rvo2 library:
Reciprocal collision avoidance for real-time multi-agent simulation, 2011.

[46] J. Van den Berg, M. Lin, and D. Manocha. Reciprocal velocity obstacles for real-
time multi-agent navigation. In Robotics and Automation, 2008. ICRA 2008.
IEEE International Conference on, pages 1928–1935. IEEE, 2008.

[47] J. van den Berg, S. Patil, J. Sewall, D. Manocha, and M. Lin. Interactive
navigation of multiple agents in crowded environments. In Proceedings of the
2008 symposium on Interactive 3D graphics and games, pages 139–147. ACM,
2008.

68

