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ABSTRACT

We present a multitasked implementation of a 3D out-of-core seismic forward 

modeling on the CRAY XMP/416. The algorithm is based on the forward explicit 

high order finite difference method.

We give a brief theoretical overview of 3D forward modeling and the resolu­

tion of the 3D wave equation. We discuss the coefficient matrix generated by the 

above mentioned approach. An in-core and an out-of-core version of a reentrant 

subroutine were designed to perform any fraction of the matrix vector multiplica­

tion independently. The rest of the program takes advantage of the microtasking 

feature which enables the system to treat independent iterations of Do Loops as 

subtasks to be performed by any available processor.

The comparison of the measured speed-ups obtained of the multitasked pro­

grams (two, three, and four processors) versus the unitasked programs shows that 

the combination of the macrotasking and microtasking features enabled us to 

reach approximately 80 percent of the ideal speed-up.

The modeling results are significantly improved by using the absorbing 

boundaries. We tested the program to determine the number of points per wave­

length. We found that the number of grid points per wavelength is inversely 
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proportional to the order of the finite difference; and this led us to conclude that 

there is a significant reduction in memory requirements and in CPU time for using 

higher order. We discuss the effect of the elimination of a point from the high 

order configuration on the modeling result and the execution time. We show why 

the only acceptable result is when the outer point is eliminated. Finally the time 

sections of the SALFRH model collected at the plane Z = 3 are presented when 

we have a point source and a plane wave source in the model and for the exploding 

reflector model.

Due to the availability of the SSD (Solid State Storage Device) and its 1250 

Mbps dual channel, the I/O wait time was virtually close to zero.
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CHAPTER 1

INTRODUCTION

Forward modeling is a numerical method that synthesizes (generates) cross 

time sections of complex geological subsurface structures. Seismic interpretation 

attempts to obtain a picture of the subsurface from field data gathered by reflection 

seismology. If the results of forward modeling agree with the actual field data, 

chances are very good that the interpreted model is an accurate one.

In the last decade, wave theory was introduced into seismic data processing 

(see Claerbout, 1970). Wave theory methods are very demanding of computer 

resources and thus have been applied only after much data reduction has been 

performed using other, less expensive techniques.

The advent of supercomputers such as the CRAY has now made it possible 

to use wave equation methods prior to data reduction. Here, the 3D acoustic 

wave equation is the basis for 3D forward modeling. There are several techniques 

used for solving the second order partial differential equations, among them the 

finite element and the Fourier series method. The method we used in our program 

to perform 3D forward modeling is a high order finite difference method. This 

method is very sensitive to the number of grid points per wavelength and may 

cause what is called a grid dispersion which in turn leads to inaccurate results. 

For this reason, one has to be careful about choosing the order and the grid 
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size for a given model. The higher the order, the less the number of grid points 

per wavelength. As is pointed out in Alford et al., 1974, there is a general rule 

for second order methods that ten grid points are required to resolve a given 

wavelength.

There have been several successful implementations of 3D forward modeling 

on uniprocessor vector computers. One attempt has been made by Juang, (1985) 

to use multitasking to perform 3D forward modeling using FFT’s as a basis in the 

algorithm to solve the acoustic wave equation.

In this study, Chapter 2 introduces the 3D wave equation resolution algorithm 

based on the high order finite difference method. A brief overview of the CRAY 

X-MP/416 is presented in Chapter 3 followed by a description of the CRAY mul­

titasking features used to implement the program. The flowtrace analysis of the 

unitasked program shows that the matrix vector multiplication gets the largest 

share of CPU time (approximately 96 percent). Chapter 4 concentrates on how 

we optimize this operation starting from the full vectorization of the unitasked 

version to the work balancing of the multitasked version.

Two versions of the reentrant subroutine were designed. The first was an out- 

of-core version where the program segments that performed I/O were considered 

critical regions. The second was an in-core routine and its implementation was 

motivated by the latest update of the central memory size from 8 to 16 Mwords. 

This subroutine is a high granularity task that can be distributed to two, three, 
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or four processors.

A performance study is carried out in which a theoretical speed-up is derived 

taking into account the multitasking overhead.

Chapter 5 first discusses the results obtained when the multitasked imple­

mentations were run in a dedicated environment. The multitasked implementation 

provides satisfactory speed-ups. A better performance is achieved when we use the 

microtasking features for small granularity tasks such as DO loops. A comparison 

of the measured speed-up values with the theoretical ones is presented.

The program was tested for a triangular block to carry out the parameter 

study. The number of points per wavelength was tested by the program to be 

inversely proportional to the order of the finite difference. One is tempted to 

believe that the higher the order, the more CPU time and memory space are 

needed to perform 3D forward modeling. We show that this is not so; there is a 

reduction in CPU time and a significant saving in memory space requirements. 

The use of absorbing boundaries has enabled us to get better forward modeling 

results.

The program was designed to perform 3D forward modeling for a point source 

or a plane wave anywhere in the model as well as for the receivers, and for the 

exploding reflector scheme.

Simple models such as a horizontal layer and a triangular block were used to 

test the program for the point source and the plane wave modeling. We finally 
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present the 3D SALFRH model time sections using the exploding reflector model, 

the point source and the plane wave.

A user’s guide of the different versions of the 3D forward modeling multitasked 

program is given in Chapter 6.



CHAPTER 2

THEORY

In this chapter, we discuss the resolution of the 3D wave equation using a 

forward explicit high order finite difference method.

We derive all the formulas related to this approach. We also discuss the 

structure of the coefficient matrix generated by this technique. Based on this 

theoretical algorithm, we develop the 3D forward modeling programs and their 

multitasked versions.

2.1 HIGH ORDER FINITE DIFFERENCE OPERATORS

The basis for 3D forward modeling is the well known 3D acoustic wave equa­

tion:

a2P^x,y,z,t) d2P(a:,t/,2:,#) a2P(x, y, 2, =
9x2 + dy2 + dz2

j d2P(x,y,z,t) , t(_
V2(x,y,z) ^2 +/(a:,3/,2),

where P (x,y,z,t) is the pressure at each grid point (x,y,z) and at a given time t. 

V (x,y,z) is the velocity and f (x,y,z) is the source term at each grid point.

The high order finite difference operators are (see Davis, 1963):
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jf.2 pm _  pm—1 q pm । r>m+l
- rk,l,j - Zrk,l,j + ^k.lj ’

n n
= E CifT-lti + BP^j + £ c.PRy.j, 

t=l 1=1

»2«p”y = E cipr,w,i + BP”y + E

1=1 1=1

n n
= E c>p"i,i-« + Bpiy,i + E cipw+i- 

1=1 1=1

$2 p^,. = —L_$2pyi,. -i——4>2pr1, ■ h—— $2p^ • 
k,l,3 ^x2 k,l,3 ~ k,l,3 zi ,

NORD n = --------- ,2

where NORD is the order of the difference approximation and is always an even 

positive integer.

The next step is to determine the values of the coefficients Ci (i = l,...,n) 

and B in the previous high order central difference operators. A linear system of 

equations is needed to solve for the values of these coefficients.

Before we derive the general result of the linear system of equations, let us 

assume the fourth order scheme and let the pressure P be defined in the one 

dimensional domain.
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From the well known Taylor formula, we obtain the following:

P^t + At) = P(t) + P'^ + ip(2)(t)At2 + ^p(3)(t)At3 (2.1_2)

+ - ,pW(t)At4 + 
4! 5! 6!

P(l - Al) = F(t) - P'(t) + lp(2’(t)At2 - lp<3)(t)At3 (2.1_3)

+ lp<4’(t)At4 - lp<5>(t)Ai5 + lp<6>(t)At6 + 
4! 5! 6!

o2 o3
P(t + 2At) = P(t) + 2P'(t) + — P(2)(t)At2 + — P(3)(t)At3 (2.1_4)

n4 n5 96
+ ^-P(4)(t)At4 + ^-P(5)(t)At5 + ^-P^(t)At6 + ...,

4! 5! 6!

n2 98
P(t - 2At) = P(t) - 2P'(t) + —P(2)(t)At2 - —P(3)(t)At3 (2.1,5)

o4 o5 q6
+ ^-pW(t)At4 - =-P(5)(t)At5 + ̂ -P(6)(t)At6 + ...,

4! 5! 6!

P(t) = P(l) (2-1-6)
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By multiplying both sides of expressions (2.1_2) and (2.1_3) by Cy, multiplying 

both sides of expressions (2.1-4) and (2.1-5) by Ci, multiplying both sides of 

expression (2.1-6) by B and adding them, we get the following:

02?^ - 2AZ) + CyP^t - AZ) + BP(Z) + CyP^t + AZ) + C2P(Z + 2AZ)
2

= (2C! + 2C2 + B)P(Z) + -(Ci + 22C2)P(2)(Z)AZ2 
2

+ -(Cx + 24C'2)P(4)(Z)AZ4 + O(AZ6).

To get the fourth order finite difference formula

P(2)(Z) = ^2 + C1P(Z - AZ) + BP(Z) + CxP(Z + AZ) + C2P(Z + 2AZ)J,

we must let

( 2Cy + 2C2B =0 
J^(Cx+22C2) =1 
[ |i(C1+24C2) =0,

and so we get the following linear equation:

2Cy + 2C2B =0
Cx+22C2 =1
Cy + 24C2 =0,

(2.1-7)

by solving the linear system of equations (2.1-7), we get the values for Cx,C2, and

B easily, namely 16/12, -1/12, and 16.

In order to get the general linear system for any order we prove the theorem 

below (see Shen, 1986)
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Theorem: If the Ci (i=l,...n) and B satisfy:

+ B =0
=1

E"=1 •2tci =o k= 2 n.
then

1 n n

p(2) w - Xt5 £ CiP^ ~+ bp<a+E c^p^++ o(At2n+2) 
i=l t=l

Proof: According to Taylor’s formula, we have:

n+1 ;2k-l
p(t + zAt) = p(t) + 22 (^rijip(2fc“1)(z)Ai2fe_1 (2-1-8)

n -2k
+ E(^)7F(2'=)(i)At2t

;(2n+2)
+ (Z^)!P<2n+2,(,>A,2"+2 + --

n+1 ,-2fc-l
P(t - .Al) = F(f) - £ (^Tyf-P<2t"1,(')A'2t'1 (2.1-9)

n ’2A:
+ E (kj!P<2'=,(i)A‘2l:

•(2n+2)
+ 7-------- p(2n+2)(f)A#2n+2 +(2n + 2)! v 1 ’

i =

PM = PM, (2.1_10)

and if we multiply both sides of expressions (2.1_8) and (2.1_9) by Ci (i=l,...n), 

multiply both sides of expression (2.1-10) by B, and adding them, we obtain:
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ELi Cipkt + + Etn=1 CiPVt - + BP(i) =

h n -2 
(2 £ C, + B)P(<) + 2(£

1=1 i=l

n n
+2 Ci 52 7^)1p2fe W + O(Ai2n+2)

i = l k=2

n n -2
= (2^ C, + B)P(t) + 2( ‘yCilP^itlAt2 

1=1 1=1

n n .2k
+2 p £ (jjj! +o(a(2“+2)

so if Ci (i=l,...,n) and B satisfy:

f2Etn=1Q + P =0
2E"=1SC- =1
vn pk c —n( £i = l (2fc)!Ot —u

that is, Ci (i=l,...,n) and B satisfy

2Er=ic’t + 5 =° 
E?„ i'c, =i
E”,!-'21^ =o

it follows that

k= 2,...,n.

k= 2,...,n.

n n

P(2)(<) = \Y^CiP\t-iMVBP^ +52^^ + i'Ai)j + O(Ai2n+2 
t=l i=l
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2.2 FORWARD EXPLICIT

HIGH ORDER FINITE DIFFERENCE METHOD

The forward explicit high order finite difference method is (see Shen, 1986)

^2 pm _ 1 j.2 pm , rm

The equation is interpreted as follows. At time step m, and y1 are 

known for all values of k, 1, and j. We solve for P^j1 ■

The complete solution for the forward explicit high order finite difference 

method for all time steps (see Shen, 1986) can be written as follows:

(P1 =D~XF
J P2 =D-1(F-Q*P1)

P{ =D~\F-QiP^1 -DtP^ i =

where D is a diagonal matrix, whose elements are:

dk’l’j =

and F is the source vector. The matrix Q is a large banded matrix which has been
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compressed to look like the following:

/ 0 0 0 Mx Zu .. Zl,n

0 ^n,n—1 Zn,i Mn Zn,i Zn,n

2n+l,Ti . . . Zn+1,1 Mn+i Zn+1,1 Zn+l,n

Zlz — n,n . . . • Ziz_nil Miz_n Zlz-n.l
•

Zlz—n,n

V Ziz n

•

ZlzA Mlz 0 . 0 0 /

It is an (Lx * Ly * Lz, 3 * Nord+l)-matrix. The Z vectors are defined as 

follows:

r, Cj .

The internal matrices M are (Lx * Ly, 2*Nord+l)-matrices that can be writ­

ten as follows:

/ 0 0 0 Pi Kn • . ... Yi,n \

0 1 .. Yn,i Pn Yn,l • Y• • • • -i n,n

L^n + ljn . . . .. Vn+1,1 Pn+1 Yn+1,1 • • • • ^n+^n

—n,n
•

• ^Zy—n,l Ply—n Yly — n,l • • • • ^Zy—n,n

V . . . • YW 0 . 0 0/
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The Y vectors are defined as follows:

ci
Yi,j = i = j =

The internal matrices P are (Lx, Nord+l)-matrices that can be written as 

follows:

( 0 0 0 til Xu .. . ... X1)n A

0 1 .. xn)1 xn,i .. • • • • Xn^n

-Xn-|-ijn
•

Xn+1,1 an+1 Xn+1,1 . ... Yn-|-i)n

X],x — n,n

•

• Xix — n.,1 O-lx — n. Xlx — n,l • • • • • • Xlx — n,n

V . Xua alx 0 . 0 0 J

where the central column is defined as follows:

B B ( B 2 
ai ~ A$2 + a^2 + A^2 + V2Ai2’

and the X vectors are defined as follows:

- =_2l
1,3 Az2

At this point all the computation elements are defined therefore the pressure 

at each time step can be easily determined.



CHAPTER 3

CRAY X-MP FEATURES USED

The implementation of our algorithm is carried out on the CRAY X-MP sys­

tem using its multiprocessing capabilities. This section will give a brief overview 

of this machine’s multiprocessing architecture and multitasking features (see Cray 

mainframe reference manual and multitasking user guide, 1986).

3.1 AN OVERVIEW OF THE CRAY X-MP SYSTEM

The CRAY X-MP is a vector multiprocessor with an option of two to four 

identical processors, each an enhanced version of the CRAY-1 CPU. A combina­

tion of several architectural changes contribute to an improved performance in 

each processor over the CRAY-l’s. The clock period is reduced from 12.5 to 8.5 

ns, thereby shortening the time between two consecutive results.

The processors of the CRAY X-MP multiprocessor system as illustrated in 

Figure 1 share a central memory organized in interleaved memory banks that can 

be accessed independently and in parallel during each machine clock period. The 

number of memory ports per processor is increased from one in the CRAY-1 to 

four. This allows two memory reads, one memory write, and either an input or 

output call to proceed simultaneously in each processor. Thus each processor

14
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of a CRAY X-MP system has four times the memory bandwidth of a CRAY- 

1 system. The multiport memory has built-in conflict resolution hardware to 

minimize delays and maintain the integrity of simultaneous memory references 

to the same memory bank. Finally, the chaining mechanism which allows results 

of previous operations to enter the fixed chained slot time has been improved 

compared to its CRAY predecessors. Chains of operations may now include both 

memory read and write in addition to the arithmetic pipeline already available in 

the Cray predecessors.

Each CRAY X-MP processor offers very fast scalar processing with high speed 

processing of long and short vectors. Additionally, multiprocessor models enable 

users to exploit the extra dimension of multitasking. The scalar performance of 

each processor is attributed to its fast clock cycle, short memory access times, 

and large instruction buffers. Vector performance is supported by the fast clock, 

parallel memory ports, and flexible hardware chaining. These features allow simul­

taneous execution of memory fetches, arithmetic operations, and memory stores 

in a series of linked vector operations.

The mainframe communicates with the front end system and external data 

storage devices through the I/O subsystem. An optional Solid-State Storage De­

vice or SSD provides an internal second level store that has two channels of 1250 

Mbytes/s. The SSD allows the development of algorithms to solve larger and more 

sophisticated problems in science and engineering. In our implementation, it has 

been thoroughly used for all intermediate storage.
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Special hardware enables the efficient and coordinated application of multi­

ple processors to a single job. All processors assigned to a job share a unique 

set of binary semaphore and data registers. The semaphore registers allow each 

processor to signal the other processor that processing should begin, should wait, 

or has been completed. Semaphore deadlock, a programming error which causes 

each processor to wait for the other, is automatically detected by the hardware. 

Variable values and addresses may be passed quickly between processors using the 

data registers.

The Cray mainframe is designed for use with front-end computers in a com­

puter network. A front end computer system is self contained and executes under 

the control of its own operating system. Front-end computers provide service to 

the Cray mainframe in the following ways:

a. As a master operator station

b. As a local operator station

c. As a local batch entry station

d. As a data concentrator for multiplexing several other stations into a 

single Cray channel

e. As a remote batch entry station
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f. As an interactive communication station

This support allows the main frame to concentrate on performing high speed 

computations and data transfer between main and secondary memory.

3.2 MULTITASKING BASICS

Multitasking is a mode of operation that provides for the execution of two or 

more parts of a single program in parallel. A job efficiently multitasked requires 

less execution time, when measured from start to finish (wall clock time) on a 

dedicated multiprocessor system, than a job that is not multitasked.

Multitasking does not reduce the CPU cycles necessary to execute the pro­

gram. In fact, multitasking introduces an overhead which increases the cumulative 

CPU time. The best theoretical gain that can be achieved from multitasking is 

that a job running on a dedicated system in wall clock time, t, without being 

multitasked could run on a dedicated system in wall clock time t/n if modified 

to use n parallel tasks on a machine with n CPUs. On a CRAY X-MP, with n 

being four, the optimum wall clock speed-up due to multitasking can not exceed a 

factor of four. Several factors reduce this maximal speed-up for a given program:

a. Not all parts of a program can be divided into parallel tasks. Many 

algorithms do not have a parallel structure or have only a portion that 

can be parallelized.
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b. Those parts that can be multitasked may have dependencies on one 

another that result, at run time, in one or more tasks having to wait 

until others complete some operation. During this wait time, the waiting 

tasks do not contribute to parallelism.

c. Use of the multitasking features incurs a certain amount of overhead that 

is lost to the job. The more often these features are used, the greater 

may be the overhead.

Multitasking is nondeterministic with respect to time; however, tasks must 

be made deterministic with respect to results. The key to a successful multitasked 

program is to precisely define and add the necessary communication and synchro­

nization mechanisms between parallel tasks and to provide for the protection of 

the shared data.

3.2.1 PARALLELISM

Jobs, job steps, programs and subprograms are parallel if they are processed 

simultaneously rather than sequentially. Levels of parallelism are defined in terms 

of the types of software processes that are executed in parallel.

Level 1: Independent jobs, each job having a CPU.

Level 2: Job steps: related parts of the same job.

Level 3: Routines and subroutines.
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Level 4: Loops.

Level 5: Statements.

The higher the number of the level, the smaller the size or granularity of the 

tasks. Multitasking is a special case of multiprocessing defining a task to be a job 

step or a subprogram. Parallelism level 2 and level 3 are macrotasking modes of 

operation. Parallelism level 4 is also called microtasking.

3.2.2 TASK GRANULARITY

A task is a unit of computation that can be scheduled. The instructions 

in a task are processed in sequential order. A task is a uniquely named process 

that can have code and data areas in common with other tasks of the same job. 

Multitasking produces the best speed-up when applied to balanced tasks of sig­

nificant granularity. The granularity of parallel work must be sufficient to make 

multitasking worthwhile. For simple multitasking models, the following formula 

(see Multitasking User’s Guide, 1984) gives the size of unpartitioned work of the 

original task required to obtain a desired speed-up.

_SP * nCPU * OVERHEAD 
nCPU-SP

To gain a speed-up of SP on nCPU processors, with a multitasking overhead 

OVERHEAD (measured in clock periods), the original unpartitioned task must 
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be at least X clock periods in size, assuming equal partitions. This implies that 

parallelism should be exploited at the highest level possible in order to obtain the 

greatest speed-up.

3.2.3 SCOPE OF VARIABLES

When converting a program to multitasking one has to be careful about the 

scope of variables. The ability of processors to access a variable is determined 

by the variable’s scope. The scope of a variable is either global or local with 

respect to a subroutine. Global variables appear in COMMON blocks, SAVE 

statements, DATA statements, or in a subroutine’s argument list. The result of 

an operation performed on a global variable by one processor is known to all 

processors. The local variables can be referenced only within a subroutine. A 

separate and private storage location for each local variable exists on the stack for 

each processor entering a multitasked subroutine. Thus the result of an operation 

on a local variable is known only to the processor that performed it. It is not 

accessible to other processors.

3.2.4 FACTORS AFFECTING PERFORMANCE

Several factors influence the performance of multitasked code as compared to 

the original program. Some of these factors come from the computer system such 

as the library calls overhead and the parallelism ratio (amount of sequential code 

in the program). However, the user has influence over the following factors, which 
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frequently have a greater impact on performance:

a. Level (granularity) of parallelism exploited.

b. Frequency of calls to the multitasking library.

c. Partition of work and its distribution among processors.

d. Programming style in the choice of multitasking mechanims.

Of all the factors listed, the most important are granularity of task and bal­

anced workload distribution. Figure 2 shows how the performance is affected by 

the load balancing.

3.2.5 SOFTWARE SUPPORT

The initial implementation of multitasking is at the FORTRAN level, where 

the user can write CALL statements to ask the system and library software for 

multitasking functions. Beginning at the FORTRAN level allows flexibility of 

implementation, ease of use for the programmer, and transportability to other 

Cray mainframes including single processor configurations.

Enhancements have been made to previously existing Cray system software 

to support multitasking. The Cray Fortran compiler, CFT, has been modified 

to produce stack-based, reentrant object code. The local variables of subroutines 

belonging to a task reside on a memory stack for that task. Reentrancy is a 
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property of code which allows one copy of the instructions to be executed, without 

destructive interference, by more than one processor at the same time.

The Cray Operating System, COS, has been modified to handle tasks rather 

than job steps as the basic unit of work. It permits a user program the use of 

library routines to create additional tasks belonging to the job. The user interface 

to the multitasking facilities of the operating system and the hardware is a library 

of routines contained in the utilities library, UTLIB. The multitasking library 

takes primary responsibility for managing and scheduling tasks within a program.

The key concept in the COS interface to the library scheduler is that of the 

Logical CPU. A logical CPU is the entity scheduled by COS for execution on 

physical CPUs and is identified as an entry in the COS Task Execution Table. 

Initially, COS assigns a job one logical CPU. But the library scheduler can request 

additional logical CPUs for a particular job, thereby bringing about multitasking 

at the COS level. The job of the library scheduler, therefore, is to connect user 

tasks to logical CPUs in the most efficient manner. If a task must wait for a lock 

or event, that task is disconnected from its logical CPU. The logical CPU is then 

freed for use by another task in the job or possibly for return to the system.

The library scheduler manages several queues of tasks. Tasks are moved 

between queues as their states change through the use of the multitasking facilities. 

The queues are generally handled in first-in, first-out order. However, when a task 

calls any of the multitasking subroutines, it is placed at the front of the Waiting 
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for Logical CPU queue.

3.2.6 MACROTASKING

As previously mentioned, macrotasking is implemented at the subroutine 

level. There are several library routines provided by the system that enable the 

programmer to perform macrotasking. Below is a brief description of the most 

frequently used ones:

TSKSTART

TSKSTART builds a stack for the task. It copies initial information from the 

task control array into a task Information block in the base of the stack. The task 

is then placed in the Waiting for Logical CPU queue, and control passes to the 

library scheduler.

TSKWAIT

TSKWAIT checks the status of the specified task. If the task has completed 

execution, control returns to the calling task. If the task is active, the calling task 

is placed in a Suspended queue, the identifier of the task for which it is waiting is 

saved, and control passes to the library scheduler.

LOCKON

LOCKON checks the status of the lock variable. If the lock variable is un­

locked, the subroutine locks it and returns control. If the lock variable is locked, 
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the calling task is placed in a Suspended queue, the identifier of the lock for which 

the task is waiting is saved, and control passes to the library scheduler.

LOCKOFF

LOCKOFF changes the status of the lock variable to unlocked. LOCKOFF 

then removes the first task waiting for that lock from a Suspended queue and puts 

it in the Waiting for Logical CPU queue.

EVWAIT

EVWAIT checks the status of the event. If the status is posted, control 

returns to the calling task without further action. If the status is cleared, the task 

is put in a Suspended queue, the identifier of the event for which it is waiting is 

saved, and control passes to the library scheduler.

EVPOST

EVPOST changes the status of the event variable to posted. EVPOST then 

removes all tasks waiting for that event from a Suspended queue and puts them 

in the Waiting for Logical CPU queue. Control passes to the library scheduler.

EVCLEAR

EVCLEAR changes the status of the event variable to cleared, and control 

returns to the calling task.

The multitasking routines and library scheduler described above cause user 
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tasks to change from state to state over the course of a job. Figure 3 shows these 

transitions.

3.2.7 MICROTASKING

Microtasking has been introduced by Cray Research (see Booth, 1986) to 

allow programmers to take full advantage of the multiprocessing power when the 

task size or granularity may be small such as Do-loops.

Microtasking is specified by a small number of user supplied directives that 

appear as comment lines. A preprocessor, called PREMULT, interprets the di­

rectives and inserts the appropriate microtasking code. The processed program is 

then compiled and executed in the normal way. The addition of the microtask­

ing directives does not reduce the portability of the original program in a CRAY 

environment.

Because of its low overhead, microtasking is very efficient. In addition micro­

tasking works well when the number of processors available to a job is unknown 

or varies during the program’s execution.

The following briefly describes the main control structures or directives used 

to convert a conventional program for microtasking on the CRAY X-MP series:

CMICS GETCPUS (N)

This directive specifies the maximum number of processors, N, that can en­

ter a microtasked routine. It must be specified before the call statement to a
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microtasked subroutine.

CMIC$ RELCPUS (N)

This directive appears upon returning from the microtasked section to the 

calling program. The above pair normally bracket the call statement to the mi­

crotasked routine.

CMIC$ MICRO

This directive specifies a subroutine that is to be multitasked. The subroutine 

can then be entered by more than one processor. The return statement of the 

subroutine designates the end of the microtasked section.

CMIC$ DO GLOBAL

This directive is immediately followed by a Do loop. The iterations of this 

loop are to be independent and may be executed in parallel. The end of this 

directive is determined by the statement whose label is referred to by the DO 

loop.

CMIC$ PROCESS

This directive defines a process that is a segment of code within a microtasked 

section that is to be executed only once regardless of the number of processors 

that enter the microtasked section. A process may be scheduled for execution in 

parallel with other independent pieces of code.
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CMIC$ END PROCESS

This directive delineates the end of the segment of code that is started by the 

CMIC$ PROCESS directive.

CMIC$ ALSO PROCESS

Several processes may be enclosed within the single pair of directives CMICS 

PROCESS and CMIC$ END PROCESS. The directive CMICS ALSO PROCESS 

separates the individual processes.

CMICS GUARD

This directive protects the code following it from being entered by more than 

one processor at the same time. If several processors request at the same time to 

enter a guarded section of code, only one processor will be allowed to enter and 

the rest are made to wait for later scheduling one at a time.

CMICS END GUARD

This directive marks the end of a guarded section.

Note that all directives begin with the letter C in column 1; thus the regular 

FORTRAN compiler treats them as comments. In fact, the microtasking prepro­

cessor would also treat a directive as comment if there is any syntax error in the 

name of the directive; this can result in strange run time errors.



CHAPTER 4

DESIGN FEATURES OF THE PROGRAM

The objective of the program is to compute the pressure of every grid point 

of the model under study at each time step. Since the pressure at each time 

step depends on the earlier steps’ pressures it makes this program an iterative 

program. Figure 4 illustates the general algorithm used to perform 3D forward 

modeling. Part 1 generates the input data which in our case is the velocity cube. It 

subsequently computes the source cube, the diagonal cube, and the main column 

of the Q-matrix; finally it stores them in the Solid State Device (SSD). These 

operations are performed iteratively for every plane of the model by transfering 

data to the SSD as shown in Figure 5. The arrays F or source vector, D or diagonal 

vector, and A2 or Q-matrix main column vector all have the same dimension LX 

* LY. Part 2 starts by computing the matrix vector multiplication Q * P. This 

operation is the most time consuming and is discussed below. After the new 

pressure vector is computed for each time step the elements needed for the time 

sections and cross sections are written to output files.

4.1 MATRIX VECTOR MULTIPLICATION ROUTINE

The flowtrace analysis in Figure 6 shows that the matrix vector multiplication 

routine takes approximately 96 percent of program CPU time. The logical step 

28
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would be to try to optimize it and further macrotask it. We initially proceeded 

with optimizing the entire program by applying thoroughly the vectorizing rules 

found in the Cray optimization guide. The program mostly used the chaining 

rule by applying the distributive law in the expressions and the reordering of 

statements. It also used small outer loops with large inner loops and long vectors. 

The safest way before one attempts to implement the multitasked version is to 

predict the performance manually and consequently decide whether macrotasking 

can be effective. We designed two versions of the multiplication routine:

The first is an out-of-core version and includes I/O calls to transfer the data 

between memory and the SSD. The speed-up in this case, taking into account that 

96 percent of the original program is macrotasked and also assuming a balanced 

work distribution is written as follows:

Overhead + 0-96*Ti™ekVcPJil _|_ q.04 * Tzme(lcptz) 
TV

0.96 + 0.04 . N + ’

g T'zme(lcpu)
Overhead + Tzme(TVcpu) 

Time^lcpu}

(1)

where
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Overhead = TSKSTART Time

+ TSKWAIT Time

+ (LOCKON + LOCKOFF) Time

+ Memory contention delay and work load imbalance. (2)

If we substitute the actual routine times we obtain the following:

Overhead = (N - l^NTS - 2) * 2500 + 1,500,000)cp

+ (TV - 1)((7VTS - 2) * 200 + 1500)cp

+ ^NTS - 1) * LZ/N * (Nord + 2) * (1500 + 1500))cp

+ 0.01 * Time(lcpu),

where N is the number of processors used, NTS is the number of time steps, LZ 

is the number of grid points in the Z direction and cp is a clock period equal to 

8.5E-9 s.

The second version was motivated by the update of the CRAY X-MP memory 

size from 8 to 16 Mwords which has enabled us to store the 3 arrays used for the 

multiplication subroutine in central memory and eliminate all the I/O calls used in 

the first case. These arrays are the pressure vector at the previous time step, the 
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Q-matrix main column array and the multiplication result array. The theoretical 

performance is derived using the same assumptions as above with the exception 

that the overhead due to the critical region for I/O is not included. The new 

overhead is:

Overhead = TSKSTART Time

+ TSKWAIT Time

+ Memory contention delay and work load imbalance.

The theoretical speed-ups computed from the above formulae for the two 

versions and different numbers of processors proved satisfactory as shown in the 

following tables:

Number of Processors 2 3 4

Unitasked Fortran 1.82:1.88 2.61:2.70 3.34:3.45

Unitasked CAL opt 1.80:1.86 2.59:2.69 3.33:3.44

Table 1. Theoretical speed-ups (versionl:version2). (500 Time steps).
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Table 2. Theoretical speed-ups (versionl:version2) (1800 Time steps).

Number of Processors 2 3 4

Unitasked Fortran 1.83:1.90 2.62:2.71 3.35:3.46

Unitasked CAL opt 1.81:1.88 2.60:2.70 3.34:3.45

The multitasking can therefore be carried out efficiently. The task we selected 

for macrotasking is a large granularity task and this property predicts good speed- 

ups.

Figure 7 illustrates the three distinct parts of the Q-matrix. The uniform part 

U is the submatrix that contains only non-zero Z vectors and the two nonuniform 

parts N1 and N2 are the remaining submatrices that contain both zero and non­

zero Z vectors. In order to respect the load balancing rules, we scheduled the 

computation as shown in Figure 8. We have processor 1 take care of both nonuni­

form parts and a fraction of the uniform one. The rest of the work is equally 

divided among the remaining processors.

The main characteristic of this subroutine is to be able to compute any vec­

tor element resulting from the uniform part independently. This subroutine is 

designed to be reentrant because it is called by all processors at the same time. 

The three arrays used in this routine are made global and the rest of the variables 

is local.

The following illustrates the multitasking mechanism used in the matrix vec­
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tor multiplication routine.

MAIN PROGRAM

SUBROUTINE MODEL

CALL TSKSTART(UNIF)—P2

CALL TSKSTART(UNIF)—P3

CALL TSKSTART(UNIF)—P4

CALL UNIF—Pl

Compute the result elements from the nonuniform parts N1 and N2

CALL TSKSWAIT

Resume unitasked operations

UNIF is the name of the reentrant subroutine; MODEL is the name of the 

subroutine that makes the calls to the multitasking library to perform multitasking 

on the matrix vector multiplication.
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4.2 USE OF MICROTASKING

As mentioned in the previous chapter, microtasking is applied to fine granu­

larity tasks, particularly DO loops.

In our program, most of the subroutines contain one or more DO loops, 

each iteration of which is an independent task. This characteristic makes them 

compatible for microtasking. The following illustrates a typical unitasked DO 

loop:

N1=LX * LY

DO 100 J = 1 , N1

100 X(J)= - V(J) * V(J) * T1

a) Unitasked do loop

Its microtasked version as follows:
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N1 = LX * LY

CMIC$ MICRO

SUBROUTINE T

N2 = Nl/4

CMIC$ DO GLOBAL

DO 100 J = 1 ,4

K=(J - 1) * N2

DO 100 1= 1 , N2

100 X(K + I)= - V(K + I) * V(K + I) * T1

RETURN

END

b) Microtasked version of above do loop.

According to the previously mentioned flowtrace analysis, 96 percent of the 

code was used in macrotasking the multiplication routine. Microtasking can be 

applied to only half of the remaining sequential code which amounts to two per­

cent of the entire code. In this case, the decrease of the amount of sequential 

code has led to an increase of the parallelism ratio from 96 to 98 percent. The 

following graph illustrates how a speed-up is improved when the parallelism is 

slightly increased.
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Graph 1. Efficiency vs. parallelism ratio.

If we substitute the new value of the parallelism ratio in the above formulae 

we will get larger speed-up values than those previously shown in Tables 1 and 2. 

The following tables display the new obtained values.

Number of Processors 2 3 4

Unitasked Fortran 1.88:1.92 2.72:2.80 3.51:3.63

Unitasked CAL opt 1.84:1.91 2.69:2.78 3.47:3.62

Table 3. Theoretical speed-ups (versionl:version2). (500 Time steps).
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Table 4. Theoretical speed-ups (versionl:version2) (1800 Time steps).

Number of Processors 2 3 4

Unitasked Fortran 1.89:1.93 2.73:2.81 3.52:3.64

Unitasked CAL opt 1.85:1.92 2.70:2.79 3.48:3.63



CHAPTER 5

RESULTS AND DISCUSSION

We discuss two kinds of results. The first one deals with the performance 

comparison between the unitasked programs and their multitasked versions. The 

second result relates to the geophysical aspect of the 3D forward modeling pro­

gram.

5.1 PERFORMANCE RESULTS

An illustrative triangular block model was used to carry out the performance 

study. The model size used was 128 * 64 * 64 and the number of time steps 

considered were kept similar to the ones used in the theoretical performance (500 

and 1800 time steps).

The multitasked programs were run in a dedicated environment. Table 1 of 

Figure 9 shows the running time of the matrix vector multiplication subroutine 

for the Fortran and CAL unitasked versions versus the two multitasked Fortran 

versions. Table 2 of Figure 9 shows the speed-ups obtained for the matrix vector 

multiplication routine. Due to the large granularity of the reentrant subroutine 

used for the macrotasking part, the values obtained for the speed-up are close to 

the ideal speed-up, which is equal to the number of processors used. The speed- 

ups with respect to optimized CAL displayed smaller values because the unitasked 
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CAL subroutine is faster than its unitasked Fortran counterpart.

Table 1 of Figure 10 shows the experimental speed-up values for the entire 

program when run with macrotasking. The speed-ups obtained are lower than 

the ones in the previous table. The main reason in this case is the amount of 

sequential code with respect to the program. It has been shown in Baer (1980) 

that the speed-up is very sensitive to the ratio of parallelism. A slight decrease 

in the parallelism ratio particularly with an increasing number of processors can 

drastically reduce the speed-up of the multitasked program. For optimized CAL 

the amount of sequential code is greater than that in Fortran and this led to 

smaller speed-up values. The results of the previous table are improved in Table 2 

of Figure 10 when we added the microtasking feature to the already macrotasked 

program. The main cause of the improvement is the decrease of the amount of 

sequential code from 4 percent to approximately 2 percent of the total program. 

The optimized CAL speed-ups are almost similar to those for Fortran in the 

last table and this is due to the fact that the amount of sequential code after 

microtasking is virtually the same.

We noticed that the last speed-ups obtained exceed 80 percent of the ideal 

speed-up (the number of processors used). The reason for not getting the ideal 

performance is that the memory contention delay is unavoidable, a perfect work­

load distribution cannot be attained, and finally some parts of the program are 

purely sequential and cannot be multitasked.
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5.2 FORWARD MODELING RESULTS

5.2.1 CHOICE OF PARAMETERS

The use of high order finite differences may lead to numerical dispersion if 

the different parameters are not set accordingly. It has been mentioned in the 

introduction section that 10 points are required to solve a given wavelength for 

second order methods (see Alford et al., 1974).

The wavelength is obtained by the following formula: 

where V is the minimum model velocity and F is the maximum frequency of the 

source wave. In the exploding reflector model, the velocity used in the formula is 

half the minimum velocity of the model.

In the following, we consider the exploding reflector model on the triangular 

block model already introduced in the previous section to carry out the parameter 

study. Figure 11 gives the initial snapshot of this model.

We first tested the 4th order method for different number of points and found 

that for 5 points per wavelength the results obtained were satisfactory. Figures 

12 and 13 show the results for 5 points and 4 points per wavelength. The result 

for 4 points displayed unwanted noise which appeared as early reflections in the 

modeling result.
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The sixth order method displayed good results for a number of points greater 

or equal to four points per wavelength as shown in Figure 14.

Finally, we tested the eighth order method and the minimum number points 

needed to solve a given wavelength was at least 3 points. Figure 15 shows the 

result for the Sth order method with 3 points per wavelength. We conclude here 

that the higher the order used, the fewer number of points per wavelength are 

needed for the computation and vice versa. We notice that the results obtained 

for the different orders tried agree substantially. Consequently, for a particular 

model under study the number of grid points selected varies with respect to the 

order of the finite difference used. This introduces a trade off between the decrease 

of the number of grid points and the increase of the number of columns in the 

Q-matrix defined in Chapter 2.

To illustrate this trade off we calculated the number of floating point oper­

ations performed by the program in every time step; it is given by the following 

formula:

Nflop = (LX * LY * LZ} * (2 * DIM * NORD + 1)

where DIM is the dimension (three in our case) and the rest of the parameters 

has already been introduced in Chapter 2.

The following table gives the number of floating point operations with respect 

to the order of the finite difference method used for our triangular block model 

case at each time step:
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Finite Difference Order 4 6 8

Nflop (Mflop) 13.107 8.013 4.281

We conclude that the CPU time charged to perform 3D forward modeling on a 

given model is smaller the higher the order. In terms of memory requirements, 

since the number of grid points per wavelength decreases when the order increases 

then the overall number of grid points needed decreases. This translates into a 

saving in memory. The following table illustrates the memory requirements for 

different orders used on the triangular block model.

Finite Difference Order 4 6 8

Memory (Mwords) 2.7 1.13 0.33

The second parameter we dealt with was the temporal sampling rate. The 

basis for this study is the stability formula. There are many variations of the for­

mula depending on the dimension used and the order. A formula that is indicative 

of the practical performance was determined by Loewenthal et al. (1985); it works 

well for the fourth order program and is given by the following inequality:

K * DIST
T < -------- ;----Vmin

where T is the temporal sampling rate, DIST is the spacing distance between two 



43

grid points (or spacial sampling rate), Vmin is the minimum velocity, and K=0.61 

for the fourth order case.

In the case of higher order methods, after several test runs we fixed K to 0.4. 

The value obtained for the temporal sampling rate in the formula is the maximum 

value one can use in order to avoid instability.

We know that if the time step is significantly decreased the number of it­

erations is relatively increased and this leads to the domination of the round-off 

errors that can distort the results. Figure 16 illustrates the result after 800 time 

steps with a sampling rate of .0005 ms.

5.2.2 ABSORBING BOUNDARIES

Due to the nature of the 3D wave equation used in our problem that allows 

exploding waves to travel in both upcoming and downgoing directions we are con­

fronted with unwanted boundary reflections. In order to overcome this problem, 

it has been shown by Israeli and Orzag (1981) that an addition of a first deriva­

tive term to the wave equation can make the wave travel in one direction and 

dampen it in the opposite. This approach was tested successfully for 2D models 

by Dablain (see Dablain, 1986). This method is not thoroughly enough developed 

for 3D models to be applied in the program under discussion here; instead we 

used the absorbing boundaries method to overcome this reflection noise problem 

(see Loewenthal et al., 1985).
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The Loewenthal method is based on a tapering function which is applied to 

a certain number of outer grid points of the model. In our case we applied the 

following tapering function:

/(j) = .98>; j = V..,N

where N is the number of outer grid points where absorption is used. The pressure 

at the inner most grid point is absorbed by f(l) and the one at the outer point is 

absorbed by f(N).

We remark that a better result was obtained when we increased the number of 

significant digits in the function from .98 to .979999. This can be easily explained 

by the fact that the round-off errors are minimal when the number of significant 

figures is increased. Figure 17 shows the synthetic time section of the triangular 

block after we applied the absorbing boundaries for the 13 outer grid points of 

the cube that holds the triangular block.

5.2.3 POINT SOURCE WAVE MODELING

As opposed to the exploding reflector model, in point source modeling one 

can have the source anywhere in the model.

We first started by testing the program for a point source in the center of a 

homogeneous medium. The source wave used is the same as the one previously 

described. Figure 18 shows the snapshots at T — 35 samples for the xy, xz, yz 

planes. Figure 19 shows the snapshots at T = 85 samples and T = 155 samples.
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We notice reflections when the wave reaches the boundary.

We tested the program for a horizontal layer with a total number of grid 

points equal to 64 * 32 * 32. The point source was placed in the center of the first 

layer whose coordinates are (32, 17, 8). Figure 20 shows the time section recorded 

at Z = 3 after 420 ms of data (350 samples) and Figure 21 shows the snapshot 

obtained after 100 samples. We then changed the position of the point source to 

the positon (16, 17, 8) for the same model and obtained the time section shown 

in Figure 22.

5.2.4 PLANE WAVE MODELING

In this case, instead of a point source we have a plane wave source which can 

be placed anywhere in the model. Figure 23 shows the snapshot in the homoge­

neous medium at T = 35 samples for the xy, xz, yz planes. The plane location 

is easily determined from the figure. Figures 24 shows the snapshots at T = 85 

samples and T = 155 samples. Figure 25 and 26 respectively show the time section 

recorded at Z = 3 for the horizontal layer after 420 ms of data (350 samples) and 

the snapshot obtained at 100 samples.

5.2.5 EFFECT OF POINT ELIMINATION ON MODELING RESULTS

The objective of this study is to see if the elimination of one point in ev­

ery spacial dimension from the computation will still preserve the validity of the 

forward modeling result.
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The study was carried out for the sixth order case in which we have three 

points on every side of the considered point in every spacial dimension. Figure 27 

gives the configuration used in this study and the point numbering adopted for 

the rest of this section.

The elimination of one point will decrease the size of the Q-matrix by one 

column and consequently the number of computations involved in the matrix 

vector multiplication thoroughly discussed in the previous chapter.

First since there is a symmetry around the computed point in every spacial 

dimension, we found out that whether we eliminate the point from the right or its 

symmetrical on the left the effect on the result is basically the same. The results 

discussed in the following are for the points to be eliminated on the right.

We tested this method for the same triangular block considered in the pre­

vious section. We first eliminated the inner most point in each spacial dimension 

namely points 4, 10, 16 in Figure 27; the result obtained is meaningless, the main 

reason being that the decrease of the number of computations is so significant that 

valuable data is lost. The elimination of the second inner point in each spacial 

dimension (points 5, 11, 17) also affects the results and the reason is the same as 

for the inner most point although the number of computations saved in this case 

is less than the previous one.

We tried the elimination of one inner most point, one middle point, and one 

outer point (eg. points 4, 11, 18; points 6, 12, 17; etc...). We also tried the 
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elimination of two middle points and one outer point (eg. points 5, 11, 18; points 

6, 11, 17; and points 5, 12, 17). Finally, we tried the elimination of one middle 

point and two outer points (eg. points 5, 12, 18; points 6, 12, 17; and points 6, 

11, 18). None of the above combinations gave acceptable results.

The only meaningful result was obtained when we eliminated one outer point 

in every dimension from the computation (points 6, 12, 18). The reason is that the 

reduction of the amount of computations is less significant than for the previous 

cases. The number of computations saved in this case for each time step is given 

below:

Nsaved = 2 * ((LZ - NORD2^ * LY * LX + (LT - NORD2) * LX * LZ

+ (LX - N0RD2) * LY * LZ),

where N0RD2 is half the order of the finite difference used.

As an illustration for the triangular block with 128 * 64 * 64 grid points and 

N0RD2 = 2 the number of computations saved is equal to 3.062 Mflop. This 

saving is slightly less than 1/4 of the total amount of computations for each time 

step. Figure 28 and 29 respectively show the results obtained after the elimination 

of the outer point in every dimension for the triangular block model (exploding 

reflector) and the horizontal two-layer model (point source).

5.2.6 SALFRH RESULTS

After the program was first tested for the simple triangular block model using 
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128 * 64 * 64 points, we ran the program for the SALFRH model which is a fairly 

complicated model that has two domes and one fault. It is given in Figures 30 

and 31. The grid size selected was 256 * 256 * 128 grid points. The model has 

a grid spacing respectively of 5 meters and 6.66 meters in each of the spatial 

dimensions for the fourth order and sixth order method. Three different velocities 

and thicknesses are chosen:

Medium of incidence Scaled Velocity (m/s) Scaled Thickness (m)

water 3545 / 2 829.06

stycast 3180 6689 / 2 518.16

plexigas 6583 / 2 152.40

Figure 32 is a snapshot of the exploding reflector forward modeling at time T 

= 1 and for the plane defined by X = 90 plane which passes through the center of 

dome 1 and the fault. Figures 33 and 34 are the respective time sections generated 

by the fourth order program for 600 time steps of .00088 ms each and the sixth 

order program for 600 time steps of 0.00125 ms each .

Figure 35 is a snapshot of the exploding reflector forward modeling at time T 

= 1 and for the plane defined by X = 128 plane which passes through the center 

of dome 2. Figures 36 and 37 are the respective time sections generated by the 

fourth order program for 600 time steps of .00088 ms each and the sixth order 

program for 600 time steps of 0.00125 ms each .

Figure 38 is a snapshot of the exploding reflector forward modeling at time T 
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= 1 and for the plane defined by Y = 106 plane which passes through the center of 

dome 2 and the fault. Figures 39 and 40 are the respective time sections generated 

by the fourth order program for 600 time steps of .00088 ms each and the sixth 

order program for 600 time steps of 0.00125 ms each .

Figure 41 is a snapshot of the exploding reflector forward modeling at time T 

= 1 and for the plane defined by Y = 168 plane which passes through the center 

of dome 2. Figures 42 and 43 are the respective time sections generated by the 

fourth order program for 600 time steps of .00088 ms each and the sixth order 

program for 600 time steps of 0.00125 ms each .

Figure 44 is the time section generated along Z = 3 and X = 128 by the 

exploding reflector sixth order program for 600 time steps of 0.00125 ms each 

using absorbing boundaries. This time section is to be compared with the one in 

Figure 37.

We collected time sections for a point source located at a positon with co­

ordinates (128, 128, 20). This source is exactly where the two diagonals of the 

plane Z = 20 intersect. Figure 45 is the time section recorded along the receivers 

located along the line Z = 5 and X = 90.

We also collected time sections for a plane wave source located between planes 

Z = 20 and Z = 26, planes Y = 110 and 146, and planes X =125 and X = 131. 

Figure 46 shows the time section recorded along the receivers located along the 

line Z = 5 and X = 90.
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Finally, a time section was also collected when the outer point was eliminated 

from the computation of the sixth order exploding reflector program. Figure 47 

shows the time section recorded along the receivers located along the line Z = 5 

and X = 128 in this case and is to be compared with Figure 35.



CHAPTER 6

USER GUIDE TO THE PROGRAMS

The multitasked program developed to perform 3D forward modeling can be 

run with either of the two versions of the subroutine which carries out the matrix 

vector multiplication. The name of the program that uses the subroutine version 

1 is ’’MTF0RW1”. The other program is called ’’MTF0RW2’.

6.1 PARAMETERS

The program’s parameters are referenced in the PARAMETER statements 

and the DATA statements. The following describes the most important ones:

PLANE: The size of a Z = constant plane.

ORD: The order of the finite difference method.

COF: Array. The coefficients of the high order finite difference oper­

ators. Its size is equal to ORD/2.

B: The remaining coefficient of the high order finite difference op­

erators.

LX: Number of grid points in X direction.
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LY: Number of grid points in Y direction.

LZ: Number of grid points in Z direction or depth.

NT: Total number of time steps used.

PTPOSX: Position of the point to be eliminated in the X direction from 

the computation.

PTPOSY: Position of the point to be eliminated in the Y direction from 

the computation.

PTPOSZ: Position of the point to be eliminated in the Z direction from 

the computation.

DEX: Distance between two grid points along X direction.

DEY: Distance between two grid points along Y direction.

DEZ: Distance between two grid points along Z direction.

T: Time interval between two time steps.

F: Frequency of the exploding wave function used.

NS: Indicates at which time step to collect a particular cross section.
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NPS: Indicates whether point source is used

NPL: Indicates whether plane wave source is used

NEX: Indicates whether exploding reflector is used

NSX: Indicates the X position of the point source.

NSY: Indicates the Y position of the point source.

NSZ: Indicates the Z position of the point source.

NSX1: Indicates the first X position of the plane source.

NSY1: Indicates the first Y position of the plane source.

NSZ1: Indicates the first Z position of the plane source.

NSX2: Indicates the second X position of the plane source.

NSY2: Indicates the second Y position of the plane source.

NSZ2: Indicates the second Z position of the plane source.

ABSO: Indicates the number of grid points used for boundary absorp­

tion
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NVEL: The logical number of the first of four files which store the 

velocity vector

NDIA: The logical number of the first of four files which store the 

diagonal of the coefficient matrix

NSOU: The logical number of the first of four files which store the 

source vector

NRES: The logical number of the first of four files which store the 

residual vector (R[k-lj).

NBAS: The logical number of the first of eight files which store the 

pressure vector at time step equal to jt and at time step equal 

to jt-1.

6.2 INPUT TO THE PROGRAMS

The input data of the program is the velocity at every grid point. In order 

for the program to be applied to different models, a subroutine GENVEL is used 

to generate the velocity cube. This allows the user to rewrite the GENVEL sub­

routine for his particular model. We present the following example that generates 

the SALFRH model.
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C
C The subroutine GENVEL is used to calculate the velocity

C of every grid point. The user can change this subroutine to

0 generate a different model.
C
0 Input parameter:

C L: depth of Z direction.

C
0 Output parameter:

0 V: velocity at each grid point on L plane

0

SUBROUTINE VEL(V,L)

DIMENSION V(l)

COMMON /LEVEL/LX.LY.LZ

COMMON /LEVEL1/N1.N0RD2

IF(L.LE.7O) THEN

DO 100 J=1,N1
100 V(J)=1772.5

ENDIF
IF ((L.GE.44).AND.(L.LE.56)) THEN

Ll=L-44

L2=(L1*2O)/13

DO 200 K=50,148+L2

DO 200 I=58+K-L2,206
J=(K-1)*LX+I

200 V(J)=3344.5

DO 300 K=70,150
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DO 300 1=50,128
IF (((L-77.83)**2+(K-107.0)**2+(1-90.0)**2)

$ .LE.32.83**2) THEN

J=(K-1)*LX+I
V(J)=3344.5

ENDIF

CONTINUE
DO 400 K=130,206

DO 400 1=90,165
IF (((L-77.83)**2+(K-169.0)**2+(I-128.0)**2)

$ .LE.32.83**2) THEN

J=(K-1)*LX+I

V(J)=3344.5

ENDIF

CONTINUE

ENDIF
IF ((L.GE.57).AND.(L.LE.69)) THEN

Ll=((L-56)*4)/13

DO 500 K=50,206

DO 500 I=50+Ll,206

J=(K-1)*LX+I

V(J)=3344.5

ENDIF
IF (L.GE.70) THEN

DO 600 J=1,N1
V(J)=3291.5

ENDIF
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RETURN
END

6.3 OUTPUT FROM THE PROGRAMS

The programs output the time sections collected along one or several particu­

lar lines on a Z = constant plane. A subroutine named TIMESC takes care of the 

output of these time sections. The user is easily able to rewrite this subroutine to 

obtain the time sections he wishes to explore. The following shows the TIMESC 

subroutine:

C
C The Subroutine TIMESEC saves the time section at Z = NZP
C plane. This subroutine can be rewritten by the user

C according to a different model.

C
C

SUBROUTINE TIMESEC(LTIME1,LTIME2,LTIME3,LTIME4,V,JT) 

DIMENSION V(l)

COMMON /LEVEL/LX.LY.LZ
IF (JT .GT. 250)THEN

WRITE(LTIME1,500)(V(J),J=128,(LY-1)*LX+128,LX) 
ENDIF
WRITE(LTIME2.500)(V(J),J=90.(LY-1)*LX+90,LX)

WRITE(LTIME3,500)(V(106*LX+J).J=1.LX) 

WRITE(LTIME4.500)(V(168*LX+J),J=1,LX) 

WRITE(LTIME5,500)(V(I*LX+I-l),I=1.LY)



500 FORMAT(8E9.2)

RETURN
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END

This particular example collects the data of the time sections along the line 

Z = NZP and X = 128, along the line Z = NZP and X — 90, along the line Z = 

NZP and Y = 106, along the line Z = NZP and Y = 168, and finally along the 

diagonal for the SALFRH model.

The second output generated by the programs is any cross section of the 

model under study at any time step. A subroutine named CROSSC handles the 

output of these cross sections. The user can easily modify it to generate the 

desired cross sections. The subroutine CROSSC is shown in the following:

C
C The subroutine CROSSC writes the cross section at time

C step = NTS into the files. It can be rewritten by the

C user to get a different cross section.

C

C

SUBROUTINE CROSSC(XI.NTS,NUMBER)

COMMON /LEVEL/LX,LY,LZ
COMMON /FILENUM/NVEL,NDIA.NSOU.NRES,NBAS

LUNIT= NBAS + MOD(NTS-1,2) * 4

DO 700 L=1,LZ
NREC=MUMBER*(L-1)+1

CALL AREAD4(LUNIT,XI.NREC,NUMBER)
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CALL WAITE4(LUNIT)

WRITE(66,500)(XI(I*LX+I-1),1=1,LY)
WRITEC67,500)(XI(106*LX+J),J=1,LX)

WRITE(68,500)(XI(168*LX+J),J=1,LX)

WRITE(69,500)(XI(J),J=90,(LY-1)*LX+90,LX) 

WRITE(70,500)(Xl(J),J=128,(LY-1)*LX+128,LX)

500 FORMAT(8E9.2)
700 CONTINUE

ENDIF

RETURN

END

The above example generates the cross section diagonal plane, the cross sec­

tion planes Y = 106, Y = 168, X = 90 , and X = 128.

In order to use the program, the most critical parameter in the Job Control 

Statement is the time option. It is the amount of time that sets the priority of the 

job. Jobs that run longer than 2000 seconds have the lowest priority and those 

which execute in less than 5 seconds have the highest priority. Since the system is 

usually loaded during the day, the lowest priority programs usually run at night. 

A model with 128 * 64 * 64 grid points tested using a fourth order program for 

400 time steps has an execution time of approximately 11 seconds. A model with 

256 * 256 * 88 grid points tested for 600 time steps has an execution time of 

approximately 320 seconds. It is advisable to always test small models in order 

to be familiar with the programming environment and the program in particular.
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If one wants to run the job in dedicated mode one should add the option US 

= BNCHBCH right after the time option in the Job Control Statement. Also one 

should make sure that the program runs in less than 5 to 10 minutes in dedicated 

mode. The Cray system at Mendota Heights runs the dedicated programs between 

11 p.m and midnight.

The model parameters are set in the PARAMETER and DATA statements. 

First, the model size is to be assigned to the parameter PLANE and LX, LY, 

LZ; second, the order of the finite difference is to be assigned to the parameter 

NORD; finally, the coefficients C^s and B are to be stored in array COF and B 

respectively. These coefficients have to be determined by the user after solving 

the linear system of equations previously discussed in Chapter 2. For instance, a 

sixth order provides the following:

Ci = 1.5 , C2 = -0.15 , C3 = 0.0111 , and B=-2.7222 .

The spacial sampling rate along each dimension DETX, DETY, and DETZ 

have to be set according to the number of points per wavelength of the source 

used. The temporal sampling rate T has to be set to satisfy the stability formula 

discussed in the previous chapter. The rest of the parameters is set according to 

the kind of modeling results the user wishes to study.

If the user wants to run the program for a point source, the parameter NFS 

is to be set to 1 otherwise it is kept 0. The parameters NSX, NSY, NSZ have to 

be set to the values that determine the coordinates of the source in the model.
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For a plane wave source, the parameter NPL is to be set to 1 otherwise it is 

kept 0. The parameters NSX1, NSY1, NSZ1, NSX2, NSY2, NSZ2 have to be set 

to determine the location of the plane wave in the model.

The same is for the parameter NEX in the exploding reflector model. In 

this case the sources are the points where there is a velocity change and it is 

automatically handled by the subroutine MODEL.

If the program is to be tested for the point elimination case, the parameters 

PTPOSX, PTPOSY, PTPOSZ which are normally set to 0 are to be assigned a 

positive value. For instance a value of 1 assigned to the three parameters will 

eliminate the inner most or the closest points in every dimension to the computed 

point. These parameters cannot exceed a value equal to half the order of the finite 

difference used.

The output files from the CRAY system contain formatted data. In order 

to use them for plotting purposes the file has to be unformatted. The following 

program reads the formatted file and outputs its equivalent unformatted file:

PROGRAM HASPLOT
PARAMETER (NXMAX=256, NZMAX=2O48)

REAL A(NZMAX.NXMAX)

CHARACTER*8O, NAME, REC

TYPE*,'INPUT FILE NAME:’

ACCEPT 200, NAME

TYPE 200, NAME
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OPEN(UNIT=1, NAME=NAME, IOSTAT = IERR, TYPE = 'OLD’,
$ READONLY, FORM=’FORMATTED’)

TYPE*,*OUTPUT FILE NAME’

ACCEPT 200, NAME
0PEN(UNIT=2, NAME=NAME, IOSTAT = IERR, TYPE = ’NEW’,

$ ERR= 20, FORM=’UNFORMATTED’)

TYPE*,’NUMBER OF RECORDS TO SKIP:’

ACCEPT*, NSKIP

DO 1=1,NSKIP

READ(1,200) REC
WRITE(6,200) REC
END DO

TYPE*,'NO OF TRACES’

ACCEPT*, NX

TYPE*,’NO OF SAMPLES PER TRACE:’

ACCEPT*, NZ

DO IZ=1,NZ
READ(5,100)(A(IZ,IX),IX=1,NX)

END DO

DO 11=1,NX

TYPE*,’ TRACE = ’,11

WRITE(2) (A(IZ,II), IZ=1,NZ)

ENDDO

STOP

10 STOP ’INPUT ERROR’

20 STOP ’OUTPUT ERROR’

100 F0RMAT(8E9.2)
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200 FORMAT(A)

END

After the data file has been made unformatted it is ready to be plotted using 

the following program:

*JOB OMAR

*CALL GENRATE SHOT SEQNO 2000 1 256
KEYDEF 11011 METRIC

SINE 10.0 0.0 4000.0 0 0

*CALL READIT F.DAT
*CALL SECTION 64.0 3.0

SCALE PEAK

LABEL SEQNO 10 1000

TIMING 2 1 0

*END

Further information about the use of the above plot program is easily found 

in the DISCO manual.



CHAPTER 7

CONCLUSION

A 3D forward modeling program has been developed and run on a complicated 

structure. The amount of computations involved is significant. The high order 

finite difference method was used as the algorithmic basis for the model.

In this program, approximately 96 percent of the CPU time is devoted to 

computing the matrix vector multiplication. The macrotasking part of our multi­

tasked program concentrated on this large granularity routine to make it a reen­

trant subroutine that can be called by all processors in the system at the same 

time. The program took advantage of the microtasking feature to run fine gran­

ularity tasks such as DO loops in parallel. The final speed-up obtained from the 

multitasked program is in excess of 80 percent of the ideal speed-up. An even 

better performance is expected if the CAL optimized multiplication routine is 

multitasked.

The finite difference techniques have a major problem which is related to 

numerical dispersion. One has to be careful about choosing the number of grid 

points per wavelength. We found that the number of grid points per wavelength 

decreases when the order of the finite difference increases and this leads to a 

significant saving in memory requirements and CPU time. The temporal sampling 

rate selected for a particular computation has to satisfy a stability formula which 
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depends on the order used.

We applied the method of absorbing boundaries to smooth out the forward 

modeling result. We tested the effect of eliminating one point in every spacial 

dimension from the computation and found that the elimination of the outer 

points is the only one that provided acceptable results. This program can be 

tested for point sources and receivers located anywhere in the model as well as for 

plane wave sources and the exploding reflector model.
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ploding reflector model. (Compare with Figure 38)
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Figure 45. Synthetic time section recorded at Z = 5 for the point source 

wave case. Point source location: (128, 128, 20).
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ploding reflector sixth order program for the point elimination 

case. (Compare with Figure 34)
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Figure 1. CRAY X-MP system organization.
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Figure 2. Workload distribution cases.
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Figure 3. Transitions of user tasks.
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PARTI: INPUT GENERATION AND STORAGE
For each plane LZ 

begin
Generate the velocity vector : V 
Generate the source vector:F 
Compute the inverse diagonal vector D: -V*V*T*T 
Compute the main diagonal of Q matrix A2: 

Constant-2/D
Store the 3 vectors F.D.and A2 in SSD. 

end

PART2: MODELING
For each time step NTS

begin
For each plane LZ 

begin 
Fetch vectors F and D from SSD 
If NTS=1 Then Pl = D * F 
else Compute matrix-vector 

multiplication: M=Q*Pnts-l 
If NTS=2 Then P2 = D * (F - M) 
If NTS>2 Then Pnts= D*(F - M)-Pnts-2 

end
Write time section at LZ=O 
Optional:write cross section at a given time step.

end

Figure 4. Program general algorithm
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Figure 5. 3D datacube storage.
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FLOkTRACE — ALPFABEll ZED SUMPAFY

ROLTINE TIME EXECUTING CALLED
14 AREAC4 C.752 ( 0.18%) 170800

aOC226242A
2 AVF C.C17 ( 0.00%) 1
3 AWRI1E4 C.159 ( 0.04%) 32064

3OC22fc4C6A
8 DIAG C.C11 ( 0.00%) 32

15 DREAC 4.767 ( 1.12%) 6832CO
6 DWAI1 3.962 I 0.92%) 811456
4 DWRITE C.910 ( 0.21%) 128256
1 MAIN C.C73 ( 0.02%) 1

11 MODEL . 4.333 ( 1.02%) 500
16 SMMQ 409.022 ( 95.98%) 499
21 ST 1.326 ( 0.31%) 500

7 VEL 0.006 ( 0.00%) 33

5 WAITE4 0.810 ( 0.19%) 202864
aOO22€t44A

10 WAVE C.CC3 ( 0.00%) 5CO
♦ ♦ * TOTAL 426.169 2030706 TOTAL CALLS

0 W TRACE — CALLING TREE
1 PAIN CCCCC226A
2 AVF CC222416A
3 AWRITE4 CC226406A
4 DWRITE 00224430A
5 WAITE4 00226644A
6 DWAIT 00224510A
7 VEL C0227110A
8 DIAG C0224266A
9 hAITE4 00226644A(TREE AT 5)

10 WAVE C0222306A
11 MODEL CC221044A
12 AWRITE4 CC226406A(TREE AT 3)
13 WAITE4 C0226644A(TREE AT 5)
14 AREAD4 00226242A
15 DREAD 00224350A
16 SMMO 00227334A
17 AWRITE4. 002264C6A(TREE AT 3)
18 WAITE4 00226644A(TREE AT 5)
19 AREAD4 00226242A(TREE AT 14)
20 AREAD4 00226242A(TREE AT 14)
21 ST C0226724A

Figure 6. Flowtrace analysis.
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Table 1: Matrix Vector Multiplication Running Times (s).

Number of Processors 1 2 3 4

Unitasked Fortran .300517

Unitasked Cal opt. .226225

Multit. version 1 .153668 .101583 .07578

Multit. version 2 .152546 .100844 .075317

Table 2: Speed-ups Obtained for Matrix Multiplication.

Number of Processors 2 3 4

Unitasked Fortran 1.84:1.85 2.88:2.91 3.93:3.96

Unitasked Cal opt. 1.38:1.39 2.17:2.19 2.95:2.98

vers ion 1: version2

Figure 9. Running times and speed-ups.
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Table 1. Program Speed-ups Obtained from Macrotasking.

versionl: version2

Number of Processors 2 3 4

Unitasked Fortran 1.83:1.84 2.61:2.62 3.30:3.32

Unitasked Cal opt. 1.80:1.81 2.52:2.53 3.14:3.16

Table 2. Program Speed-ups Obtained from Macro and Microtasking.

Number of Processors 2 3 4

Unitasked Fortran 1.87:1.89 2.70:2.72 3.48:3.50

Unitasked Cal opt. 1.84:1.86 2.65:2.67 3.38:3.41

versionl: version2

Figure 10. Measured speed-ups.
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Figure 11.Snapshot of the triangular block at Time = 1 and Y = 32.

Figure 12. Synthetic time section of the triangular block using 
fourth order method with 5 points per wavelength.

Figure 13. Synthetic time section of the triangular block using 
fourth order method with 4 points per wavelength.
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Figure 14. Synthetic time section of the triangular block using 
sixth order method with 4 points per wavelength.

Figure 15. Synthetic time section of the triangular block using 
eigth order method with 3 points per wavelength.



88

Figure 16. Effect of roundoff errors due to a small time step 
on the synthetic time section of the triangular block.

Figure 17. Synthetic time section of the triangular block using 
absorbing boundaries.
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Figure 18. Snapshot of point source at 35 samples in planes XY, YZ, XZ.
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a) 85 samples 

b) 155 samples

Figure 19. Snapshot of point source at 85 and 155 samples in plane yz.
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Figure 20. Synthetic time section recorded using a point source wave 
located at (32, 17, 8) in the horizontal two-layer model for 400 ms 

of data (350 samples).

Figure 21. Snapshot of the horizontal two-layer at 100 samples 
for the point source case. (Relate to Figure 20)
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Figure 22. Synthetic time section recorded using a point source wave 
located at (16, 17, 8) in the horizontal two-layer model for 400 ms 

of data (350 samples).
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Figure 23. Snapshot of plane wave located between planes 
(Z = 5 and Z = 8, Y = 13 and Y = 19, and X = 32 and X = 35) 

at 35 samples in planes XY, YZ, XZ.
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b) 155 samples

Figure 24. Snapshot of plane wave at 85 and 155 samples in plane YZ.
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Figure 25. Synthetic time section recorded using a plane wave located 
between planes (Z = 5 and Z = 8, Y = 13 and Y = 19, and X = 32 and X = 35) 

in the horizontal two-layer model for 420 ms of data (350 samples).

Figure 26. Snapshot of the horizontal two-layer at 100 samples 
for the plane wave case. (Relate to Figure 25)



96

Figure 27. Point configuration and numbering used in the point 
elimination case



97

Figure 28. Synthetic time section of the triangular block model for the 
point elimination case. (Compare with Figure 14)

Figure 29. Synthetic time section of the horizontal two-layer model 
for the point elimination case. (Compare with Figure 20)
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Figure 30. ,FRH physical model. All sizes scaled.

Figure 31. Cross-section of FRH physical model.
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Figure 32. Snapshot of SALFRH at Time = 1 and X = 90.

Figure 33. Synthetic time section using fourth order method of the 
exploding reflector model. (Compare with Figure 32)

Figure 34. Synthetic time section using sixth order method of the 
exploding reflector model. (Compare with Figure 32)
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Figure 35. Snapshot of SALFRH at Time = 1 and X = 128.

Figure 36. Synthetic time section using fourth order method of the 
exploding reflector model. (Compare with Figure 35)

Figure 37. Synthetic time section using sixth order method of the 
exploding reflector model. (Compare with Figure 35)
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Figure 38. Snapshot of SALFRH at Time = 1 and Y = 106.

Figure 39. Synthetic time section using fourth order method of the 
exploding reflector model. (Compare with Figure 38)

Figure 40. Synthetic time section using sixth order method of the 
exploding reflector model. (Compare with Figure 38)
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Figure 41. Snapshot of SALFRH at Time = 1 and Y = 168.

Figure 42. Synthetic time section using fourth order method of the 
exploding reflector model. (Compare with Figure 41)

Figure 43. Synthetic time section using sixth order method of the 
exploding reflector model. (Compare with Figure 41)



Figure 44. Synthetic time section generated along X = 128 using the ex 
ploding reflector sixth order program for the absorbing bound 
aries case. (Compare with Figure 35)
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Figure 45. Synthetic time section recorded at Z = 5 for the point source 
wave case. Point source location: (128, 128, 20).
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Figure 46. Synthetic time section recorded at Z = 5 for the plane wave 
case. Plane wave located between the planes: X = 125 and X = 131;

Y = 122 and Y = 134; and Z = 17 and Z = 23.



Figure 47. Synthetic time section generated along X = 128 using the ex­
ploding reflector sixth order program for the point elimination 
case, (Compare with Figure 34)
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