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Teaser: Our goal was the design and analysis of effective numeri-
cal schemes for training deep neuronal networks (DNNs) based on
optimal control formulations.

n the present work we explore numerical methods inspired by optima
control theory to train image classifiers [1]. In a first step, we con-
sider a prototypical formulation of a variational optimization problem
governed by an elliptic dynamical system [2]. We will discuss the
numerical treatment and study some of the mathematical operators.
Subsequently, we present the optimal control formulation for train-
iIng DNNs and derive some expressions for the associated optimality
conditions. In our future work, we plan to extend these optimality
conditions and device a numerical scheme for the DNN training prob-
lem, similar to the scheme developed for the prototypical problem.

Optimal Control Problems
In the present work we study numerical methods for solving problems
of the general form [3]

minimize  dist(tyeq, y°) + reg(w)  subject to C(w, u) = 0.
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Here, u € U I1s the state variable, w € W is the control variable, and
c . WxU — Q, C(w,u) = Aw)u — q is a dynamical system,
.e., a partial differential equation (PDE). The functional dist mea-
sures the discrepancy between the predicted state upeq == A (w)q
and the observable (data) y°, with parameter-to-obervation map
F(w) = A Yw)q. The functional reg is a Tikhonov regulariza-
tion model introduced to alleviate 1ssues with the ill-posedness of the
optimization problem stated above [4].

Prototypical Example
We consider the following PDE-constrained optimization problem [2]

_ _ dx + —
umeln’lmwlezsv /(u y°) dx 2HWHW

subject to C(w,u) =V -wVu—-qg=0

subject to Dirichlet boundary conditions u = 0, with gradient opera-
tor V, divergence operator V-, and regularization parameter o > O.
We consider g(x) = 1 if x; € (04,0.6),x € (0.4.0.6) and
g(x) = 0 otherwise, the parameter function Wiw(x) = 2.2 +
2sin(7x;) sin(mxz), and y° = A(Wire) " 1q (see Figure 1).

Figure 1: Visualization of the problem data. From left to right: The right
hand side q, the parameter function ws,e, and the solution of the forward
problem for this input data y°.

We discretize the functions u, w, and g on a cell-centered grid of
size n1 X ny,. We consider a finite-volume discretization and arrange
all vanables In lexicographical ordering to obtain vectors u € R”,
w e R" qe€R" wth n= nyn,. The discrete optimization problem
IS given by
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Here, L € R"*" denotes the regularization operator and c(u, w) =
DSGu — q, DSG = DIV S GRAD € R™", where
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is the discretized gradient operator with m = (ni+1)no+ny(no+1).
The matrix S = diag(s) € R™™, s = e,, © (A(e, ® w)) € R”,

e, = [1 L 1}T c R" @ : R" — R" represents the discretization
of w via harmonic averaging, and
1, A
A= R™"
Aol ©

with A; € R4 = diag(1 ... 1) € R™" j=1,2. The matrix
DIV = [I2® Dy Dy @ I1] R (1)

represents the divergence operator with I, as defined above and
D, € R"*1M is the one-dimensional derivative operator along the
coordinate direction x;, 1 = 1, 2. The sensitivity J(w) and its adjoint
are given by

J=Jw)=-QC,'C,, and J =Jw) =-CIC;'Q",

respectively, with derivative matrices C,, .= d,c(u, w) € R"" and
C, = d,c(u,m) € R"" (see Figures 2 & 3). Given the PDE
constraint c(u, w) = 0 and a candidate model w, we can solve
u = u(w). With this, we can eliminate the constraint from the op-
timization problem and reformulate the equality constrained problem
as an unconstrained problem of the form

{Fw) = Jllatw) - ¥'I
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A necessary condition for a minimizer of this problem is given by the
non-linear system d,, f(w*) = hJ"(u(w*) — y°) + ahL ' Lw* = 0.

Numerical Optimization

We have developed a matrix-free Newton—Krylov method for Its so-
lution. We use an rterative line search scheme of the form

Wigi1 = Wk—,u,kBdef(Wk), /(:1,2,...

Here, k € N is the iteration index and u, € (0,1] is deter-
mined using a backtracking line search [5]. The search direction
s given by s, .= —Bd,, f(wg). We consider Newton's method with
B,=H"' H=d,,f(w)=hd(w)"J(w)+d,(J(w)"r)+ahL'L,
where r .= u(w)—y? is constant. We invert the Hessian matrix using
a matrix-free, conjugate gradient method with a superlinear forcing
sequence. As a stopping criterion, we consider the relative reduction
of the norm of the gradient.

Figure 2: Left: Sparsity pattern of the Jacobians C, (1210 non-zero en-
tries) and C, (1220 non-zero entries) for d = 2, n, = 16. Middle: Sparsity
pattern (for d = 2, nj = 16) and visualization of the entries (for d = 2,
n; = 8) of the inverse of C, (65500 non-zero entries; the matrix is dense).
Right: Visualization of the entries of the sensitivities J and JVJ ford =2,
n, = 8.
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Figure 3: Singular value decomposition J = U V' ofthe sensitivity matrix
J of the size 1020 x 1020. Left: Singular values of the operator J. Right:
Singular vectors corresponding to the singular values s; of > = diag(s;) for
1 €{1,2,4,32, 64,6 128}.

Optimal Control Formulation for DNNs
The optimal control formulation for training a deep neural network
is given by [1]

miniqr)nize dist(Cpred, C) + areg(W, u, { K }iL1, {bi}i4 (2)
subject to Y1 =Y+ ho(Y;K; + b)),

J =0,1,---,n—1. Here, dist : R>" x R>" — R measures
the discrepancy between the predicted classification Cpeq € R>™
and the labels (data) C € {0,1}>™. The unknowns @® of the op-
timization problem (2) are the weights K; € R™" and biases b;
of the "ResNET"" forward propagation and the weights W & R"™"
and biases u € R that parameterize the classifier. Consequently,
O = {W,u {K}"_,, {bi}"_;}. Theprediction Cp.qis computed ac-
cording to Cpreq = g(Y W +es@ ), where Y;, is the final state com-
puted by solving the forward propagation, es = (1, ..., D' e RS,
and g : R>" — R>" s the so called hypothesis function. The par-
tial derivatives of the loss function ||g(Y,W + es ® u) — C||%/s are
given by dy || g(Y,W)—C||z = 2V, (¢'(Y.W) o (9(Y.W)—-C))/s and
dy |lg(YoW)—C||2 = 2(g' (Y. W) O (g(Y,.W)—C))W'/s. If we con-
sider the regularization operators reg(K) = ||K||%/2 = tr(KK")/h
and reg(b) = ||bl|5/h we obtain the derivatives dx = K and d, = b,
respectively. The derivatives of the dynamical system (derivation of
the sensitivities) is more complicated and forms the basis of our cur-
rent work.

Conclusions

We have explored the implementation of an optimization framework
for optimal control problems governed by PDEs. We have devel-
oped a matrix-free, Newton—Krylov method globalized by an Armijo
linesearch for numerical optimization. We have started to derive op-
timality conditions for the optimal control problem for training DNNs
described in [1]. The derivation of the sensitivities for this problem
forms the basis of our current work.
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