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Teaser: Our goal was the design and analysis of effective numeri-
cal schemes for training deep neuronal networks (DNNs) based on
optimal control formulations.

In the present work we explore numerical methods inspired by optimal
control theory to train image classifiers [1]. In a first step, we con-
sider a prototypical formulation of a variational optimization problem
governed by an elliptic dynamical system [2]. We will discuss the
numerical treatment and study some of the mathematical operators.
Subsequently, we present the optimal control formulation for train-
ing DNNs and derive some expressions for the associated optimality
conditions. In our future work, we plan to extend these optimality
conditions and device a numerical scheme for the DNN training prob-
lem, similar to the scheme developed for the prototypical problem.

Optimal Control Problems
In the present work we study numerical methods for solving problems
of the general form [3]

minimize
u ∈U , w ∈W

dist(upred, y
δ) + reg(w) subject to C(w, u) = 0.

Here, u ∈ U is the state variable, w ∈ W is the control variable, and
c : W × U → Q, C(w, u) := A(w)u − q is a dynamical system,
i.e., a partial differential equation (PDE). The functional dist mea-
sures the discrepancy between the predicted state upred := A−1(w)q
and the observable (data) y δ, with parameter-to-obervation map
F(w) := A−1(w)q. The functional reg is a Tikhonov regulariza-
tion model introduced to alleviate issues with the ill-posedness of the
optimization problem stated above [4].

Prototypical Example
We consider the following PDE-constrained optimization problem [2]

minimize
u ∈U , w ∈W

1

2

∫
Ω

(u − y δ)2dx +
α

2
‖w‖2

W

subject to C(w, u) = ∇ · w∇u − q = 0

subject to Dirichlet boundary conditions u = 0, with gradient opera-
tor ∇, divergence operator ∇·, and regularization parameter α > 0.
We consider q(x) = 1 if x1 ∈ (0.4, 0.6), x2 ∈ (0.4.0.6) and
q(x) = 0 otherwise, the parameter function wtrue(x) = 2.2 +
2 sin(πx1) sin(πx2), and y δ = A(wtrue)−1q (see Figure 1).
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Figure 1: Visualization of the problem data. From left to right: The right

hand side q, the parameter function wtrue, and the solution of the forward

problem for this input data y δ.

We discretize the functions u, w , and q on a cell-centered grid of
size n1 × n2. We consider a finite-volume discretization and arrange
all variables in lexicographical ordering to obtain vectors u ∈ Rn,
w ∈ Rn, q ∈ Rn, with n = n1n2. The discrete optimization problem
is given by

minimize
u∈Rn,w∈Rn

h

2
‖u− yδ‖2

2 +
αh

2
‖Lw‖2

2 subject to c(u,w) = 0

Here, L ∈ Rn×n denotes the regularization operator and c(u,w) =
DSG u− q, DSG = DIV S GRAD ∈ Rn,n, where

GRAD =

[
I2 ⊗D1

D2 ⊗ I1

]
∈ Rm,n

is the discretized gradient operator with m = (n1 + 1)n2 +n1(n2 + 1).
The matrix S = diag(s) ∈ Rm,m, s = em � (A(en � w)) ∈ Rm,

en =
[

1 . . . 1
]T ∈ Rn, � : Rn → Rn, represents the discretization

of w via harmonic averaging, and

A =

[
I2 ⊗ A1

A2 ⊗ I1

]
∈ Rm,n

with Ai ∈ Rni+1,ni, I i = diag(1 . . . 1) ∈ Rni ,ni, i = 1, 2. The matrix

DIV =
[
I2 ⊗D1 D2 ⊗ I1

]
Rn,m (1)

represents the divergence operator with I i as defined above and
Di ∈ Rni+1,ni is the one-dimensional derivative operator along the
coordinate direction xi , i = 1, 2. The sensitivity J(w) and its adjoint
are given by

J := J(w) = −QC−1
u Cw and JT := J(w)T = −CT

wC
−T
u Q

T,

respectively, with derivative matrices Cw := dwc(u,w) ∈ Rn,n and
Cu := duc(u,m) ∈ Rn,n (see Figures 2 & 3). Given the PDE
constraint c(u,w) = 0 and a candidate model w , we can solve
u = u(w). With this, we can eliminate the constraint from the op-
timization problem and reformulate the equality constrained problem
as an unconstrained problem of the form

minimize
u∈Rn

{
f (w) :=

h

2
‖u(w)− y δ‖2

2 +
αh

2
‖Lw‖2

2

}
.

A necessary condition for a minimizer of this problem is given by the
non-linear system dw f (w ?) = hJT(u(w ?)− y δ) + αhLTLw ? = 0.

Numerical Optimization

We have developed a matrix-free Newton–Krylov method for its so-
lution. We use an iterative line search scheme of the form

w k+1 = w k − µkBkdw f (w k), k = 1, 2, . . .

Here, k ∈ N is the iteration index and µk ∈ (0, 1] is deter-
mined using a backtracking line search [5]. The search direction
is given by sk := −Bkdw f (w k). We consider Newton’s method with
Bk = H−1, H := dww f (w) = hJ(w)TJ(w)+dw(J(w)Tr)+αhLTL,
where r := u(w)−y δ is constant. We invert the Hessian matrix using
a matrix-free, conjugate gradient method with a superlinear forcing
sequence. As a stopping criterion, we consider the relative reduction
of the norm of the gradient.
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Figure 2: Left: Sparsity pattern of the Jacobians Cu (1210 non-zero en-

tries) and Cu (1220 non-zero entries) for d = 2, ni = 16. Middle: Sparsity

pattern (for d = 2, ni = 16) and visualization of the entries (for d = 2,

ni = 8) of the inverse of Cu (65 500 non-zero entries; the matrix is dense).

Right: Visualization of the entries of the sensitivities J and JTJ for d = 2,

ni = 8.
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Figure 3: Singular value decomposition J = UΣV T of the sensitivity matrix

J of the size 1020× 1020. Left: Singular values of the operator J. Right:

Singular vectors corresponding to the singular values si of Σ = diag(si) for

i ∈ {1, 2, 4, 32, 64, 128}.

Optimal Control Formulation for DNNs
The optimal control formulation for training a deep neural network
is given by [1]

minimize
Φ

dist(Cpred,C) + α reg(W,µ, {K i}ni=1, {bi}ni=1)

subject to Y j+1 = Y j + hσ(Y jK j + bj),
(2)

j = 0, 1, · · · , n − 1. Here, dist : Rs,m × Rs,m → R measures
the discrepancy between the predicted classification Cpred ∈ Rs,m
and the labels (data) C ∈ {0, 1}s,m. The unknowns Φ of the op-
timization problem (2) are the weights K i ∈ Rn,n and biases bi
of the ‘’ResNET‘’ forward propagation and the weights W ∈ Rn,m
and biases µ ∈ Rm that parameterize the classifier. Consequently,
Φ := {W,µ, {K i}ni=1, {bi}ni=1}. The prediction Cpred is computed ac-
cording to Cpred = g(YnW +es⊗µ), where Yn is the final state com-
puted by solving the forward propagation, es := (1, . . . , 1)T ∈ Rs,
and g : Rs,m → Rs,m is the so called hypothesis function. The par-
tial derivatives of the loss function ‖g(YnW + es ⊗ µ)− C‖2

F/s are
given by dW‖g(YnW )−C‖2

F = 2Y T
n (g′(YnW )�(g(YnW )−C))/s and

dY ‖g(YnW )−C‖2
F = 2(g′(YnW )�(g(YnW )−C))W T/s . If we con-

sider the regularization operators reg(K) = ‖K‖2
F/2 = tr(KKT)/h

and reg(b) = ‖b‖2
2/h we obtain the derivatives dK = K and db = b,

respectively. The derivatives of the dynamical system (derivation of
the sensitivities) is more complicated and forms the basis of our cur-
rent work.

Conclusions
We have explored the implementation of an optimization framework
for optimal control problems governed by PDEs. We have devel-
oped a matrix-free, Newton–Krylov method globalized by an Armijo
linesearch for numerical optimization. We have started to derive op-
timality conditions for the optimal control problem for training DNNs
described in [1]. The derivation of the sensitivities for this problem
forms the basis of our current work.
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