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ABSTRACT

Helicons and Gantmakher-Kaner oscillations were 

observed for the sodium metal. For a cylindrically 

symmetric Fermi surface approximation for copper, we 

observed the beating of two Gantmakher-Kaner waves for 
the [1113 direction of copper and helicon propagation 

for the [0013 direction of copper. Using the true 

Fermi surface of copper, we observe!helicon propagation 
in the [ 001} direction. In all instances of helicon 

-10 propagation, we found that a relaxation time of 10 sec. 

produced smooth sinusoidal shaped helicon curves, whereas 

a relaxation time of 10 sec. produced a delta-function 

shaped curve.
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INTRODUCTION

An electromagnetic wave striking a metal surface 

is generally damped, to 1/e of its initial amplitude 

within a distance of 8 , the skin depth. However, if a 

static magnetic field is present and the metal is pure, 

it is possible under certain conditions for the wave to 

propagate through the metal. This propagated wave is 

called a helicon.

Given a slab of metal of thickness Q upon which 

an electromagnetic wave of frequency u) is incident in 

the presence of a static magnetic field B, we calculate 

in this paper the ratio of the transmitted to incident 

electric fields, . The expression Et-/£2 is a 

Comdex quantity, thus supplying an amplitude and a 

phase factor.

The metals chosen for investigation were sodium 
and copper. The calculation of £t/E2 requires the 

knowledge of the Fermi surface of the metal. Whereas, 

"such calculations have been done for a spherical Fermi 

surface which sodium possesses and for approximate Fermi 

surfaces of copper, no calculation has yet been done 

using the exact Fermi surface of copper. It is the main 
purpose of this thesis to calculate Et/E2. using the 

correct—Fermi, surface of copper and to-thus make data 

available for comparison with experimental data recorded 
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previously by others. A second purpose of this paper 

was an investigation of the effect of the relaxation 
time T on the shape of the curve produced by a plot 
of E-fc/Ec versus B.

The sodium metal was investigated because of the 

.simplification of the calculations brought about by its 

spherical Fermi surface. After finding that the sodium 

data was in good agreement with experimental data, we 

advanced to a cylindrically symmetric Fermi surface for 

copper and, at last, to the true non-cylindrically 

symmetric Fermi surface. The former Fermi surfaces 

provide an accuracy check for the final copper calculations.
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THEORY

Let us first describe the condition for helicon 

propagation. Suppose an electromagnetic wave with wave 

number q and frequency u> is propagating in a metal in 
the presence of a static magnetic field 1B. Suppose, also, 

that q and B are both parallel to the Z-axis. Now the 

force fk on an electron in the metal with an average 

velocity in the Z-direction, , due to the B field is 

found from

- e ( V x B) . (1)

The electron will move in a helix about an axis parallel 

to the Z-axis due to the initial velocity of the electron. 

The cyclotron frequency of the electron is given by

Ldc - ( e. B")/( /yn o') . ( 2)

Now, the electron sees the electromagnetic wave as having 

the Doppler shifted frequency u)e given by

- GJ + Vgr ( 3J

Let T equal the relaxation time of the electron. If 

u>cT»l.» then the electron makes many spirals of its 

orbit before it has a collision. In this time, it would 

be able to absorb energy from the electric field, if the 

condition We=cOc is satisfied. This is called Doppler 

shifted cyclotron resonance. Thus, we have two required



conditions for energy absorption,

LDe-lbc , (4)

and.

u)c T » 1_ .

Let the maximum value of Vg. of an electron in the metal 

be denoted, by . Thus, the maximum Doppler shifted

frequency seen by an electron is given by

Now, for a given B field, ujc is constant. Thus, if
ujc<u)eMAx , then some electrons with a "\/^<VaMA-xwill 

be able to satisfy the condition iuc:uje, and energy will 

be absorbed from the electromagnetic wave or helicon. If 

udc- uceMAx > only the electrons with VeHAx vzould be 
capable of absorbing energy. We call the condition

wc = the absorption edge. Now, if we increase

the value of B such that u), >U)e„. , then no electron could 

absorb energy, and the helicon would propagate with no 

cyclotron damping effects.

For three-fold symmetry about the magnetic field 

direction, we have the following expression for E^/EZ
I from Antoniewicz, et al. : 

o° rpM
Et _ — v4u> X-1 I-') । , (7)
tc C!C fc1, 6iu,e-tt0)
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where

Q = thickness of metal slab,

G = speed of light,

K = ionic dielectric constant,

and

O" = conductivity tensor

a+= b ,

/^xx

= ( °“^x

\^x
(TTji

'I22.y

, (8)

(9)

Now, |(Z< , and we ignore the term L4C

(10)

QUJ €4.(0)

because of its negligible contribution. Thus, we have 
cP mv

_ -c4io y1 _______(-0 ___________
£i." <SC La ■

and
E-t - y7 _____  1-L) ------ ——
ec QC ZJ r(^^4.wdiLr 1+^ir<rxX

U AXC.I Lx Gt 1 c1- XaJ Cl

Now, let us denote the real and imaginary parts of
and as follows:

Real Q-Xx = ANSRX ,

Imaginary = ANSIX ,

(13)

(U)

Real v-Klj = ANSRY , (15)

and Imaginary <rxy = ANSIY . (16)

Then we have,



_ - C4UJ _________ V\\ _ ________________ ___ -J- , (17)
£C QC Z_A p^^5^A^ix7ANSRl]J^^CA^SRX*AA)SWJj

Let S = y^CMsiX-AMSRXll , <18)

and V = [ [aa)SR.X + AbJSlVjJ •

Thus, vie have for the real and imaginary parts of £^/^u , 
»o /rn-tl xt
2/ '^'s^+V2- * (2°)
Ml- I

and *1* 4-*. „ „ , £t\ _ w. V' t-0 S. (21)
( E.c) qc 2_j s'2*-). Vx

Now, we have stated that E^/Ec gives the amplitude, ,
and the phase G of the E^/Ec ratio. Thus, we have

I ^/£i I - ([R«| ( [Tm.3,„arS , ( 22 )

and
6 = . (23)

Ke AI C-^-)

However, we are concerned only with Real E-t/E; , since 

this is the only part seen experimentally.
From the development of Mertsching2, we have the 

following expressions:
,+KHfrt 0°^ __t *

^.><■1) = 27lT.zV'Tr , ,'T" ’ (15 ,-MAX ^67^ T +ul%. V-U)-/«UJ^)

and
Tf - -A- (ZTI\J - vJ+m^Us". /or..
Vm«, ' air)o \/«u(a) e c J>0 , (25)

where 

0" = conductivity tensor, ---

KMAX = maximum value of on the Fermi surface.



u-> = frequency of electromagnetic wave,

T = relaxation time,

= Planck's constant,

<S = charge of electron,

= cyclotron mass,

uJc = cyclotron frequency

Q = thickness of metal slab,

= wave vector = wv = o 2. • • • )

'tv = an integer,

cu = indice for X, Y, or Z component,

= indice for X, Y, or Z component,
V^e)= a-component of electron velocity at Fermi surface, 

and V = average electron velocity at Fermi surface.

In our calculation of E^/E; , we need expressions 

for cr;x and » Thus, we have, assuming that is in 

the Z-direction,
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We have the following dispersion relation for a 

circularly polarized electromagnetic wave in a metal, such 
as a helicon:

p q-+ -6REM r+) • (30)

Since 

(MSR^+MSlV)t i -MSRY) , (31)

we have
V ^£lMStX-AblSti)-UMSRX4|\NSl'rtl . (32)

We may express in polar form as:

(^SRealT^} V"9 , (33)

where 
_ A. - Real - JL (-AMSIX 4-A^SR.Y1_ e ()

Let us call the roots of and- • Then we

have that

^,= vr+x)}^(coQ'f’ "t" i 4^ir) , (35)

and
C^ReA.lr+ffXc^ET-+Til^Zzu^[<-+Tfl) . (36)

C ( <5 • y — ujt) An electromagnetic wave propagates as e ’ . If

T-f » Rca-I > then e is close to zero. This makes 
an<^ 'I)’- mostly real, and there is a negligible damping
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factor. As the Rca) increases, 0 approaches - z 

which means that the imaginary part of is increasing 

which causes the damping factor to increase. At 0= ,

we have

and
(^Rca-I -t-u 5=) . (38)

The root is discarded because the imaginary part of i 

carries a minus sign giving rise to an exponentially 

increasing vzave. Thus, would be our solution.

Therefore, when helicon propagation exists, we 

will expect the condition , greater than

implying at least one order of magnitude.

It will be noticed that the expression for 

contains a sum going from one to infinity over the 

variable /vn, . The following explains the approach 

taken to approximate this sum.

When cylindrical symmetry about the magnetic 
field direction exists, we have from Wood3 the following 
expression for IT*. , for the local regime (<i(_ «1) :

where L = the mean free path of the electron, and 



tfb = density of electrons per unit volume of real space.

VJhen• » this re<iuces to

0"^ ^[LvrtcJ . (2^o)

Nov/ we have the equations

R«ol Tt = , (M)

and
Ivnoj. 0+ - —g ■ • (4-2)

The real part of E^/E; is largest when

• (^3)

Thus, solving for that M* which makes this expression 

equal to zero, we obtain
s, Q ( wec.Vi-

t -£-\ ire. y • (^)

With the assumption that our finite relaxation time still 

gives a sufficiently large , we sum over a finite 
number ofnmj’s centered about M*. The contribution to E^/E 

made by an wu decreases as its distance from M* increases.
From McGroddy, et. al.\ we have the following 

expressions for the case of spherical symmetry:

ReaI x^l. (Zj,5)
O X z 1.

1/VAg. - ( WpT/4Tr (u)c-cuV) PCX') , (^6)
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where X =

I A -r- "*" / ■*'*'co p - 4-IT /vi e. / fyrv, ,

and ujc - e €>/rod* * c •

The effective mass of the electron at 
*#

is denoted by cm» and the velocity by VF

These expressions hold for an infinite value of 

(jD/r • Thus, we have that when X<JL , helicons 

propagate without attenuation, and when X 1 , the

helicons are damped so severely they disappear.

It should be noted that McGroddy’s expressions 

for 0"^. can not be substituted into our expression for 

E-t/EL for any meaningful results. This is brought about 

because McGroddy lets the real part of 0"+- equal zero 

during propagation. For a finite relaxation time, for 

which Et/E2 is derived, we never have a zero real part 

of . Thus, we will always get a real part of E^/E; .

If we do assume the real part of cr+ is zero during 

helicon propagation, then we have 
oO 21 < /^-rrv^^TT J Z7 , (51)

(47)

(48)

(49)

(50)

Fermi surface
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vrhich gives us a zero real part of . Thus, we

would, conclude that there is no helicon propagation, when 

we know that according to McGroddy, there is helicon 

propagation. In our calculations for copper and sodium, 

it will be found that the real part of is smaller than 

the imaginary part by at least one order of magnitude 

during propagation. This nonzero real part is necessary 
to exhibit Reftl EV^u-

Vie now have a means of predicting at what approximate 

value of magnetic field we should expect to see helicon 

propagation start. Setting X= 1 and using zyyu = M*, we 

find that
y

_ / rfru*'^' Vp TTU)4’/yLC^ (2)

It was stated that the knowledge of the Fermi surface 

is necessary for the calculation of Et/^u • This is 

because we .must know the velocity of an electron on the 

Fermi surface. If ECX.) is the equation of the Fermi surface, 

then we can relate the Fermi velocity to this surface by

"a^r) • (53)
In addition to the helicons, we will encounter 

Gantmakher-Kaner oscillations which are caused by electrons 

"with an extremum in /nt.c'Jg. along the magnetic field. The
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period, of the oscillations is a constant and. is defined.

by the equation
et? / 
airc \ 'wu =. IaJul^u , (5U-)

where the period (G/onru) is measured in units of the 

magnetic field.



u

BEAL E^/E^ FOR SODIUM

Sodium has a spherical Fermi surface. Now we

have
+ KMAX

r \ --------
u x *-—-i >iv~ + u . v ■* u) mu^c J

M - -o® Q

and

-

ITT 
2^rL V(6) ■wtSo

e je

(55)

(56)

Now ^r«* is an integral over the variable and will 

be calculated by numerical integration methods. We must 

evaluate the integrand for a finite (preferably odd) 

number of values in order to this integral numerically.

This means we must evaluate at these particular 

values also.

We will use a cylindrical co-ordinate system where
y

2- , 6 > and- p correspond to ^5- » ® , and v/here

A spherical Fermi surface is drawn in such a co-ordinate 

system below.
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A j-orbit will be designated, as a path of intersection 

of the Fermi surface with, a plane = constant. If we 

evaluate the integrand, of at j* number of values 

of , then we will have to deal with j* number of 

j-orbits. The expression V/h. involves an integration 

over © around a j-orbit. To evaluate , we would 

again use numerical methods. Each j-orbit would be
-4 

divided into M intervals. The integrand of would be 

evaluated at the N+l points in the interval [o ,2t3 .

For a spherical Fermi surface, however, it is 

possible to simplify matters so that the Vw, integrations 

will not have to be done.

Knowing that for a Fermi siehere we have
= "5^1 , (57)

and recalling Equation (53)> we find that , the

velocity of an electron on the Fermi sphere, and the 
-t

wave vector, , are related by

rrruVp — • (58)

Now for any j-orbit = constant. Thus,
have 

and

vFzj ' -fir > (59)

M • - 51— \1 ( । ~ \i
9"nwv -3R, VF-Z.^)od&- •

(60)

we
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Therefore, we have that
^^2.(6") -V4} =O , 

which simplifies v^, to

_L s -ume , zAvceie As .

Also, we have that

^T) 
PeRioDwhere y

Vj_= CMxF +\/^f) 
and *

rS

Thus, ° 4v

o^c= vx(

and
ZVYVC - ZY<U e

Hence, we also have

In the

•*>, = cyclotron frequen<y=-s^ - 
c. C, /TA s-i

evaluation of \/^ , we rote that

Vfx j - Vp ttuvs, cc/^> ©

'-/py -j Axn Q ,

and VF2,^ (&) = \JF co^Oj .

Recalling that
rtTr i <rn\-/v\l & 

OdlSwTijrtv - )o e Jjd t

we obtain
Vrnx^ - ( XI F tiVA.^/x) t S m >

(61)

(62)

(63)

(62|)

(65)

(66)

(6?)

(68)

(69)

(70)

(7D

(72)

(73)
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= \Jp COO ($>j S/Vt.,0 • (75)

From this, we see that the only contribution to the sum

Computingin will be from the integers n=l and. n= -1.

and rx^ , we get

> (76)
1 a ft ( u

rr - y xx - --- r-—---- \^1? X1" )»
<<- <9

cl?" + Sr1"

and
___  _ e VF/$a.p/wu( Sr (77)

a-?" 4-

where

and
A-

> = uio .
(78)

Nov; ^4. - ^XX -+ (79)
so we obtain

s _ r71" ___________ (80)'-t u»)„ a. + lt(-u)6 -LU coocp) >

where o^> = /ne'T7/vvo , (81)

This integral can be evaluated, as follows:
(82) 

and <5? - ( i-x^VL .
Such a substitution will give us

n- :-^T [aA-(^-1) , (83)

(81>)

where
-fl ( ( /q-') - cj -t-tq?)/Vp
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We now put uq. into E^/E^ and. obtain

E-b . - 
el t^v <n (85)

and. //yv

£t _ „ uicO 71 - ---------5—^---------------- ;---------------------------------
e l " Cctt) - b" Rca

Let
C- r f K. K>4T -y (87)
5> - [_ "E?7^ ■L 3" J ’

and

—Keft-I T+- . (88)

Then we have that

RcaA (. EJ" ^C- S^ + V2- • (89)

A computer program was run using the xrq. we have

just derived, for two different cases. In one case, we

chose a B-field range of 1,000 gauss to 10,000 gauss, 
fe -xU) = lo sec, and " = lc> sec. In the second case, we 

chose the same B-field range and frequency but made
-toT- lo seco
The sum in the expression (E-t/Ej which is over 

m going from one to infinity was approximated by a sum 

going from one to seventy-five. An attempt was made to 

check the accuracy of this approximation in the following
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way. We ran a computer program to check the rate of 

convergence of 
c-i) v, 

'’TA -
where X equals an 

given in Chart I. 

of m‘s centered, about M*. The B-field range was from 

7,000 gauss to 8,200 gauss. The number of terms 

included in each sum increased as B increased. However, 

the sum over 9 terms was also noted for each B-field so 

that a comparison could be made to a sum taken over more 

terms ranging from 19 to 37• The difference in these 

two sums was calculated, and for T = io sec., there was a 
-i°1% difference or less while for T = io sec., there was a 

difference as high as H5^« Thus, we could assume that 

for T = Io sec., there was rapid convergence while for 
-lO

T = 10 sec., it was slow so that more terms than 9 would 

have to be included.

We must remember that the M* which makes S zero 

was defined only when was infinite. We see that for 
T = io sec, co/f 17 for B = 1,000 gauss and 170 for 
B = 10,000 gauss. For T = Io* sec., ~ 1.7 for 

B = 1,000 gauss and 17 for B = 10,000 gauss. Since our 

values of are not particularly large, we may doubt

z S V V 
arbitrary integer. The results are

A sum was used over a finite number
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CHART I

FOR RELAXATION TIME T = io'1 SEC.

B
Field

Sum 
of 9 Terms Final Sum

Number of
Terms in
Final Sum

Difference 
in Final Sum and 
Sum of Nine Terms

7000 -..326-02 -.326-02 19 0.0%

?100 -.223-02 -.223-02 23 0.0%

7200 -.178-03 -.180-03 23 1.1%

7300 +.545-04 +.529-04 25 3.0%

7^00 +.369-03 +.367-03 27 0.5%

7500 +.184-02 +.184-02 27 0.0%

7600 +.258-02 +.259-02 31 oM

7700 +.484-03 +.486-03 31 oA%>

7800 +.103-03 +.104-03 31 1.0%

7900 -.792-04 -.776-04 33 2.1%o

8000 -.365-03 -.363-03 35 0.6%

8100 -.160-02 -.160-02 35 0.0%

8200 -.263-02 -.263-02 37 0.0%

FOR RELAXATION TIME
-10 

T= |0 SEC.

7000 -.943-04 -.705-04 19 33.7%

7100 -.514-04 -.747-04 23 30.6%

7200 -.206-04 -.431-04 23 51.1%

7300 +.289-04 +.133-04 25 115.4%

7400 +.819-04 +.612-04 27 34.4%

7500 +.121-03 +.101-03 27 20.8/%

7600 —+.961—04 +.117-03 31 12.0%

7700 +.746-04 +.950-04 31 21.0%

7800 +.235-04 +.394-04 33 41.0%
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the validity of using M* in a meaningful way. For

B = 1,000 gauss, we have M* = ?1, and. for B = 10,000

gauss, we have M* = 1?. Thus, it might seem that
.40

for the case of t = lo sec. is not sufficiently large

to use M* .as that m which gives the largest contribution, 

thus leaving open the question as to what should, be chosen 

as a centering point for the summation. Since our graphs 

of ReM (£t/Eu) versus B for T = io sec. produced, smooth 

regularly occuring waves, and a sum over an insufficient 

number of terms gave jagged irregular graphs, it was
-lO

assumed that for the case of T = lo sec., we were 

summing over a sufficient number of terms if we got a 

smooth curve for our graphs. Our choice of summing from 

one to seventy-five gave us the desired results.
_|OGraphs I through IV give the output forT = io sec.

.q
Graphs V through IX give the output for T = lo sec.

Let us recall our predicted, value of the magnetic* 

field at which we expect to see helicon propagation start,

e (90)

From this definition we obtain B = 5,800 gauss. Thus, 
if we plot Real (E-t/E;) versus B, we would expect to see 

helicon propagation around 5,800 gauss. From our graphs 

for 'Y = lo sec., we see that helicon propagation is
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definitely starting at about this point. In the case 
of T = lolosec., our graph shows helicon propagation 

starting at about 6,200 gauss. This is not as close in 

agreement with 5>800 gauss as the previous case. However, 

as mentioned before, our is also one order of

magnitude smaller than before, and thus we would not 

expect a close agreement.

Let us describe the graphic results in more detail. 

First we consider the graphs for T = io sec. On Graph I, 

we see the initiation of helicon propagation at about 

6,300 gauss. Graphs II, III, and IV show the helicons 

increasing in amplitude and in distance between peaks. 

The curve has a smooth sinusoidal nature.

Now let us look at the graphs for T =10 sec. 

On Graph V we observe Gantmakher-Kaner oscillations. 

They have a constant period of 375 gauss. Recalling 

Equation (54), we find that a period of 375 gauss 
corresponds to CnrVz3£xT = 9.3 10"’"' gm-cm/sec. This,

4-9 —1in turn, corresponds to a of .88 X 10 cm

This is extremely close in value to KMAX, which was taken 
8 -1as .9 X 10 cm . We also note thab the amplitude of the 

Gantmakher waves is smaller than the amplitude of the 
4 helicons by a factor of 10 .

Graph VI is_±he same as Graph V with a slight 



-increase in amplitude. Graph VTI shows the start 

of helicon propagation. Graphs VIII and IX show the 

helicons gaining in amplitude and increasing in period. 

We notice that while the Gantmakher-Kaner oscillations 

were sinusoidal in shape, the helicons are not. They 

have more of a delta-function appearance about them. 

Recalling that for the same magnetic field range, the 
helicons for T— lo 10 sec. were sinusoidal shaped, we 

conclude that the larger relaxation time has definitely 

caused a distinct change in curve shape.

Graphs X and XI are reproductions of experimental 
data taken by Wood? exhibiting these two distinct wave 

shaoes. Here also, we notice the increasing amplitude 

and period of the helicons.

The relaxation time also affects the magnitude of 

the amplitudes. We notice that the amplitudes for
-I oT - io sec. are two orders of magnitude smaller 

than the amplitudes for T - |o sec. in the area of 

helicon propagation.
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Now we will advance to a cylindrically symmetric

Fermi surface, which will include the spherical case.

For cylindrically symmetric surfaces we have

Vx= Vj. co^e , (91)

- Vj. , (92)

Mi O') - , (93)

where (9^)
and (95)
Nov/ again our equation for \jw simplifies to

1 rZTrX/ _ \ x, -UN\BV^x - air )o cooee # (96)

= ( V.L./2') ( i F t (97)

and ~ X.! 8^,-1, - e (98)

Now we have
S2" z+KMAit ^7 . . vi*

- —r£z \ 1 t\ \ M w x v fA.x________ — (99)2Tt ) /vnc ctJb.2 / , j_ , . „ , , \

Again using the equations
CU- qr+ t (100)

and >= UJa , (101)
we 1have that

■
. f+KMAX

(102)411 ^c.) >



and.
' -eZ
XV 4TTx/yn

4KMA* -i. .
r __
) CU 4-^r
-Krth-X

(103)

New we have that
=STXx-u . (10^)

Thus, we have
eT ( Ka- —— e (105)

'J+' 411^0 ) 1+L'f'l-Wc-uJ

Now, as before, we have gotten around, evaluating the 

integral expression of . However, while previously 

we had. derived, an exact expression for t notv it must 

be evaluated numerically.

We mentioned earlier that sodium was investigated 

mainly for the purpose of an accuracy check on our computer 

programs for copper. The integral expression for trj. was 

used to evaluate Reft\ Et/£2 over a magnetic field range of 

8,800 gauss to 9,500 gauss. We then checked our results 

with the data gathered for the closed expression of . 

This integral expression of u^. will later be used for 

copper, and from this check, we will know how accurate 

our results will be.

Now we rewrite our expression for as:

r ---- (106)

We are dealing with a spherical Fermi surface. Let us 
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look at the drawing below.

For a sphere, we have that KMAX equals the radius .

V/e divide the -axis into 52 equally spaced intervals, 

so we will be evaluating the integrand of at 53 points 
in the interval ^-KMAX, +KMAx3 . Thus, we will have 

53 j-orbits. A typical j-orbit is shovm. Nov;

is the cross-sectional area of a j-orbit. We know that 
8 -1for sodium KMAX =0.9X10 cm , Thus, from the drawing 

we can see that
Aj = TT( . (10?)

Also recalling that for a Fermi sphere, we have for any 

j-orbit for which = constant,
W . <108)

Thus, we can calculate all the data we need to evaluate 

xri numerically. We used this expression of in our



CHART II
38

Comparison of Real and. Imaginary TJ. 
for Nine wu 1 s Centered.

About M*
+18

NOTE: In number notation, +18 means 10

B = 8,900 gauss = 23

Value of rm Real 'TJ. Imaginary T+

19 .281+18 .^-12+20

20 .285+18 .414+20

21 .288+18 .416+20

22 .292+18 .417+20

23 .296+18 .419+20

Zb- .301+18 .421+20

25 .306+18 .424+20

26 .311+18 .426+20

2? .317+18

B = 9,375 gauss

.428+20

M* = 23

19 .251+18 .390+20

20 .253+18 .391+20

21 .256+18 .393+20

22 .259+18 .394+20

23 .263+18 .396+20

2U- .266+18 .398+20

25 .270+18 .399+20
26 .27^+18 .401+20

27 .279+18 .403+20



______Sodium

T= io**1 sec -S-- io<e> c^g/sec

■o
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expression for Reni £t/E; using a sum over m going 

from 1 to 75* Chart II shows a comparison of the real 

and. imaginary parts of qr+ . We know that for helicon 

propagation Tmcj. T"+» Reft I • Chart II verifies 

that this is so.

Graph XII shows a comparison of our data, written 

with a solid, line, with the data obtained by our previous 

closed form expression of > dravm in a dotted line.

We see from the graphs that the numerically 

integrated gives a curve shape identical with that 

which resulted from the closed form , except that 

the curves are out of phase with one another by about 

85 gauss. This phase difference is probably caused by 

the fact that there is some error inherent in numerical 

integration techniques. In conclusion, we see that our 

numerical integrations are accurate enough to give us 

the correct shape of the curve which is what we are most 

concerned with.

We now advance to our most complicated fashion of 

calculating Refrl E^/Eu • This method will be the one 

used to calculate E-t /£b for copper using the true Fermi 

surface of that metal, but we now wish to check the 

accuracy of the computer program for the simpler case of 

sodium. The complication lies in that we must now 
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evaluate V<n, by numerical integration methods.

As before, we divide the axis into fifty-two 

equally spaced intervals so that we will be evaluating 
T.,. at 53 points in the interval [_-KMAX, KMAX^ . We 

then calculate the values of the x, y, and z components 

of the Fermi velocity at 45 different points equally 

spaced around each j-orbit. Thus, we will have the 

vx , Vy , and values for 45 points in the interval 

Co , . These Fermi velocity values were calculated

as follows and as demonstrated in the diagram below:



v*p " , (HO)

and. > . 2. _^/x
A^e . (ii1)

Now, let us recall that

v Q 2 V® । (112)

We have that
V^.* 211^0 . (113)

For each j-orbit, we must do a numerical integration 

of vfc . Let us store this value in an array called 

AVGVZ(J). Since we are going to do a numerical integration 

of Vmx and \iM^ , we must evaluate the integrand at the 

45 different values of © . Let us denote these angles 

by , where n goes from 1 to 45» and 6^=0 and = 21T .

Also, let



^3

^{v^(e") -Vi} Xl©"} .

vie evaluate the expression
e- \o Vile") - ve} cLe"

in the following way. For © = , we have
Xfe") JL6" -^e, -kSolX^''')<le>,, 

e- = e- C.

For y = 6>z , we have
- k^6"X(e") + Ad" _
e - e. e 

(11^)

(115)

(116)

or
f I fl • 6V^AS (n7)

and so forth. Me evaluate the integrals using the

Trapezoidal Rule. Now, let
©r

A„=S X(eU“=E<nM(r) . (n8;
®e

Thus, we have
®5

/A415 - EXPIA)C5^= ( X(©'WZ , (n9)

and also

So X(e'*)cl& - Atjt+ At/1 + - • • + EXflM(z) + EXflrJ(3)+ - + EXPlNl(m,) , (119)
and

) Xle")J.6^ A^^A^-' + A - EX?lM(2) + EXPlM(3')+....4-EXPIM(m-l>) , (120)

and so forth. Now let

PARTPU^ (121)



and. PARTM(^> e , (122)
where av

5UM^-- . (123)
If we now let

. -bH9m
CART(m-) - e. , (124-)

then at each of the 4-5 points, the value of the integrand, 

will be given by the expressions

(
Value of Integrand^
for Points on the I = Vx(6m?) PARTPlm") CART(/n^ , (125)
Positive -^2 Axis /mX

and.

(
Value of Integrand.^
for Points on the = Vx(e^ . (126)
Negative Axis Znx

Now, let us recall Equations (73) sad. (7^) vrhich state

Vmx - Vp E^w,i.+ ,

and

Thus, we have that

and

RfcAL = Vp Vix , (127)

(<e Al V_1/K--o , (128)

^caL ImnOL^. ‘"'^F » (129)

Real v-^ - ° X wa.^. ~ Vp &aaa <3^/2 . (130)



g
Now for sodium \/F = 1.03 X-10 cm/sec, and for the 

j=l~orbit, ^-=51 • Thus, we should expect the following 

values:
Real = .515 X 10® Imaginary = 0.0

Real V_li)( = .515 X 10^ Imaginary V_lx= 0,0

Real = 0.0 Imaginary = -.515 X 10®
Real = 0.0 Imaginary = .515 X 10®

Using data from a computer run for B= 7,000 gauss 

for the j=l orbit or = 0.0, we obtain Chart III. Thus, 

we have checked the accuracy of calculating the Vm, ’s with 
our program and found an error of 1.1%.

In calculating E^/Ec, we approximate the sum over m 

going to infinity with a sum of nine terms centered about 

M*, since it was shown earlier in Chart I that for T = lo sec., 
we had very rapid convergence of Real ^-t/EL . Recalling that 

during helicon propagation, , we note the

sample data given in Chart IV. The data given by our previous 

program, where the s but' not the V^'s were calculated 

numerically, is on the left. The data given by this last 

program, where both and \/w are calculated numerically, 

is given on the right. The value of the magnetic field is 

8,850 gauss. Helicons are propagating in this region, and 

we notice that by a factor of 100. The close

values of the serve as another accuracy check of our last

program



NUMERICALLY INTEGRATED VN> AND 
VALUES FOR SODIUM AT 3=7,000 G.

CHART III

N Real Vnx Imaginary Vm* Real VnY Imaginary. _VNf

-5 4-, 2^04-03 -.2083-02 -.3605+00 +.1656+01
-A 4-. 24284-03 -.6373-01 +.1024+01 +.6730+00

-3 4-, 2423+03 -.3705+00 -.5982-01 +.3839-01

-2 4-.2431+03 -.4984+00 -.1394+00 -.3860+00

4-.5209+08 +.2924+00 +.4569-02 +.5209+08

0 +.2427+03 +.0000 +.2924+00 .0000

4-1 +.5209+08 -.2924+00 +.4569-02 +.3860+00

4-2 +.2431+03 +.4984+00 -.1394+00 -.3839-01

+3 +.2423+03 +.3705+00 -.5982-01 -.6730+00

4-A +.2428+03 -.6373-01 +.1024+01 -.1656+01

+5 +.2440+03 +.2083-02 -.3605+00 +.1656+01



VALUES OF REAL o; AND IMAGINARY FOR SODIUM 
FOR 8=8,850 GAUSS AND M-RANGE OF 18 TO 26

^7

CHART IV

Calculated Without Calculated. With
Numerically Integrated. Vm’sM Numerically Integrated. Vn’s

Real tv Imaginary <rv Real tv Imaginary av-
18 .2870+18 .^1^5+20 .292+18 .4-18+20

19 .2907+18 .4-162+20 .296+18 .4-20+20
20 .29U-7+18 .-4-180+20 .300+18 .4-22+20
21 .2991+18 .4-200+20 .310+18 .4-26+20

22 .3038+18 .4-221+20 .316+18 .11-29+20

23 .3089+18 .4-24-3+20 .322+18 .4-31+20

2U- .31^+18 .4-267+20 .328+18 .4-34-+2O

25 .3205+18 .4-292+20 .335+18 .4-37+20
26 .3270+18 .4-319+20 .352+18 .4-4-3+20
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The program used, is included, in the appendix.

We used a B-field range from 8,800 gauss to 9,450 gauss 

in order to check our graphic results with Graph XII. 

Our data is plotted on Graph XIII. Graph XII is 

superimposed on our data for comparison.
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u For Copper

Summarizing our approach to sodium, we found 

EtVEc by calculating o'* in three ways: (1) A closed 

form V", (2) An integrated T" with closed expressions for 

the and (3) An integrated T" with numerically

integrated expressions of V^. .

In the case of the true Fermi surface for copper, 

we have as a good approximation

Cjcvq> 4© , (131)

am ^x^A^e,

\|^ = - coo6 , (133)

f°r parallel to the fOOl] direction (see Figure I ).

Thus, our expression for would be

V/rxx r 2.TT Jo e e > (13^)

and
-A- ~Cn\6Vwv£- ■21T Jo Gcyo @ e <2 cl9 . (135)

This is not a simple expression to evaluate, as in the 

case of sodium where the Vmx and- were evaluated as 
delta functions. Therefore, methods (1) and (2) are 

eliminated for use with the true Fermi surface of copper. 

This leaves method (3) for use. However, as an accuracy 

check we can use a cylindrically symmetric approximation 
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of the copper Fermi surface with method (2). VJe have 

already described method (2) in the previous section on 

sodium. Our equation for 'T*. was given as

— . e’T (nW XLa . _ _ 
+ 4"narrr\c ) -ul ’

which can be rewritten as

where

exV ( A(A^\ _____ _______

IT " A »
and

/ya. V.

where Attj.'j is ^he cross-sectional area made by a plane 

(137)

(138)

(139)

perpendicular to the axis intersecting the Fermi surface.
We did computations for the directions (OOl^and £111Q.

From Wood, data for and "5^ for these two directions

was available. The drawing below shows the orientation of
the X-axis with the Fermi surface for these two directions.



Let us first examine the t ml direction. A
-9

T of 10 sec. was used, and two different frequencies 
f = 395-2 X 10-^ cycles/sec. and f = 6 X 10^ cycles/sec. 

were investigated.

Graph XIV is experimental data obtained by Wood 
for a frequency of 4-00.0 X 10^ cycles/sec. and a B-field 

range of 10 to 30 thousand gauss, vie see Gantmakher-Kaner 

oscillations with a B-field period of 600 gauss. However, 

the graph displays beats, and thus there must be present 

two Gantmakher-Kaner waves of slightly different frequencies. 

Our frequencies are expressed in the units cycles per unit 

gauss magnetic field.

If we have two waves expressed as
y! = A I zirf 11 + ^i) , (14-0)

and .
A 06^ (zirfz.'t + , (14-1)

then, adding, we get
A[ce^, kz>,) 4-co^C-zirV 4-^7.) 2 . (14-2)

Making use of the trigonometric identity
CeO 0l> 4- Sr - 2- C cork (ix-tSri"] LOtya- i"f (14-3)

we obtain
+ . (ito)

The composite wave may be regarded as having a frequency 
equal to -4. (-f, + ^2), which is the average of the frequencies 

of the original waves. The amplitude of the composite 



wave is given by the quantity in the first set of 

brackets in Equation ( 1^14 ). The amplitude varies 
with a frequency of (-V.-'Vz), and the number of beats 

uer second is given as ( -f, - Vj. ). The drawing below 

is a typical representation of the presence of beats.

Graphs XV and XVI show the results for a frequency 
3

of 395.2 X 10 cycles/sec. for a B-field range of 2,000 

to 14,000 gauss. Graph XVII displays the beats which 

begin at 5>700 gauss and end at about 13,700 gauss. The 
results for a frequency of 6 X 10^ cycles/sec. are 

sho’-vn in Graphs XVIII through XX for a B-field range of 

100 to 20,000 gauss. Graph XXI displays the beats which 

begin at 6,400 gauss and end at about 18,000 gauss. 

In both cases, the envelope of the wave is irregular 

in shape, but still displays the periodic recurrence of 

increasing and decreasing wave amplitudes. Since our 

Gantmakher-Kaner oscillations do not have the simple 
forms of Equations ( 14-0 ) and ( 141 ). and may not have 

the same amplitude, we understand why our graphic results
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are not as symmetric as the above drawing. The 

irregular envelope of the wave which we see would 

probably result mathematically by summing the two 

Gantmakher-Kaner waves expressed as Fourier series. 

Because of the irregularity of the envelope, we are 

unable to determine the beat frequency accurately from 

the graph.

Charts V and VI show the calculation of the 

period of the Gantmakher-Kaner waves, both cases of 

frequency giving a period of about 600 gauss. This 

agrees with the experimental data mentioned before.

Recall Equation (5^) which states that

where A6> = = the period of the G-K viave.
Mow, Graph A shows a plot of OA/aKx versus for 
the [lllj direction of copper. We see two extremal 

values of the function 9A/3k,z which have been labeled 

Pt and P2 . P, corresponds to aPs/SKe equaling
8 -1

6.57 X 10 cm , and Px corresponds to^A/aK? equaling 
8 -1 8.1 X 10 cm . Thus, there are two values of C/m V^J ei<T. 

which should give Gantmakher-Kaner waves, each having

a different period. For Pi , we obtain A.B = 538 gauss.
and for Px , we obtain && = 66U- gauss



Calculation of Frequency of Waves ^3
for the Liu"] Direction of Copper

for 4- = 31S.2. K \63 c'fc/sec
CHART V

Period.
Peak No. on Granh Value of Et/£L B-Fiell ■ in Gauss

1 64- 1 A-10 x 10 5,700
-1 0 700

2 78 x 10 u 
x 10”10

6,400
600

3 98 7,000
-1 0 700

4 1^9 x 10 1U 7,700

5 89 x 10"10 8,300
600

6 132 x IO"10 8,900
600

7 122 x 10”10 9,500
600

8 58 x 10~10 10,100
600

-10 600
9 91 x 10 10,700

117 - -10 600
10 x 10 11,300

-10 600
11 55 x 10

1 A-10 x 10

11,900
600

12 46 12,500

13 60 x IO""10 13,100
600

x 10-10 600
14- 63 13,700



Calculation of Frequency of Waves 6U-
for the Cl Hl Direction of Copper 

for 4- = x ior cyc/s€c

CHART VI

Peak No. on Graph Value of Et/Eu B-Field
Period 

in,. Gauss .
1 -10123 x 10 6,400
2 65 x 10"10 7,000

600

3 119 x 10“10 7,700
700

h- 121 x 10“10 8,300
600

5 107 x io“10 9,000
700

6 135 x IO"10 9,600
600

7 167 x 10"10 10,200
600

8 107 x IO-10 10,800
600

9 -10103 x 10 11,400
600

10 0 -10108 x 10 12,100
700

11 . -10o9 x 10 12,700
600

12 -1075 x 10 13,300
600

13 -10101 x 10 13,800
500

U 70 x io“10 14,500
700

_ 48 x 10"10 15,100
600

— 61 x 10 "'1° 15,700
600

85 x 10“10 16,300
600

■» 55 X 10 "10 16,900
600

37 x 10 -10 17,400
500

— 55 x 10 "10 18,000
600
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Now the frequency is related to the period by 
r  -A—

. (145)

Thus, we have that
f i = '/538 gauss-'1" = .0018 gauss1, 

and ft= \/G(<A gauss-1 = .0015 gauss-1.

Therefore, the frequency of the composite wave is 

given by
f*= yx(.OO18 + .0015) gauss-1 , 

or f*= .00165 gauss-1

Now the from the graph was 600 gauss, 
corresponding to a frequency of .0016 gauss-1. 

Thus, we have a perfect agreement with theory. That 

is, the two frequencies of the Gantmakher-Kaner waves 
making up the beats are .0015 gauss-1 and .0018 gauss-1. 

We also note that the experimental value of the frequency 

of the composite Gantmakher-Kaner wave corresponds to 
a value of ak/O&z of 7.6 X 10 cm- on Graph A. This 

corresponds to a frequency of .0016 gauss--1. Thus, our 

data agrees with experimental data as well.



Let us now look at the results for the Cool-'J 

direction of copper. Graph XXXIEis an experimental 

curve obtained by Wood showing helicon propagation 

starting at about 16,000 gauss.

We have computed data for a frequency of 
395,2 Xl(?hz. for T* = 10~^ sec. and Y = 10~10sec.

-9Graphs XXII through XXVII show the results fori= j-0 sec. 

for a B-field range of 8,000 to 19,000 gauss. Helicons 

begin propagating at about 15,275 gauss as seen from

Graph XXV. The helicons have a delta function shape, 
, _g just as the helicons for sodium had at T =10 sec.

Graphs XXII through XXV show waves which are not constant 

in period nor increase in amplitude. These can be called 

neither helicons nor Gantmakher-Kaner oscillations. 

Their source is unknown to us.

Graph B is-a graph of versus for

the [_ 001 J direction of copper. We see an extremal 
8 1value of 3h equal to 2.2 X 10 cm-xf which means

that we would expect a Gantmakher-Kaner wave contribution 

from those electrons having a velocity corresponding 

to this value of . However, experimentally, no

Gantmakher-Kaner oscillations are seen. Realizing that 

experimental results would come from use of the true
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noncylindrically symmetric Fermi surface, one might 

suspect that our assumption of a cylindrically symmetric 

Fermi surface, which Graph B describes,, causes the 

Gantmakher-Kaner oscillations. This will be discussed 

further in the data analyzation of the copper calculations 

using the true Fermi surface values.

On Graph B we also note the value of 

which is responsible for the absorption edge. The value 
8 -1of ^2:3rtAx 9.^ X 10 cm , Using the equation

Gl>o- eB/ffnc = LDjO - cu -v t (1^-6) 

we saw that the last group of electrons which can 

experience Doppler - shifted cyclotron resonance are 

those-having the velocity VzmAiX * Now since 

we have

efiV/MC - Vi max i ()

or
Sb M At x x ^c^u^A/a^Va-xre. .. (iz^s)

Thus, B* is the value of B at which we would expect 
helicons to start propagating. Using {bMlJ A= 9A X 10 

.1
cm

we obtain that
6* = vsaoo , 

where m = 41 for = m IT /Q . This value of m corresponds

to M*, defined earlier as that value of m in "a which
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gives the largest contribution to ReaI £t/£<: .

Helicons are seen to start at about 15,275 gauss; however, 

as usual, the exact point is impossible to locate.

Data was calculated for T = sec. for a B-field

range of 13,250 to 17,500 gauss. Graphs XXVIII through XXX 

show the data. Helicons are seen to begin propagating 

at about 15,750 gauss, which is in good agreement with 

the experimental data. We also note the smooth sinusoidal- 

like shape of'the helicons, differing from the delta shaped 

peaks for the previous T . This result from the change of 

T is identical with that seen in sodium.
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We now conclude this thesis with the results for 

the final case of copper in which we use the true Fermi 

surface. Again, we use the computer program included in 

the . appendix in which the Vm< and are evaluated
by numerical. integrations, The valu.es of the V< . , ,

and Vi components of the velocity for an electron on 

the Fermi surface were made available by Wood. Recalling

v SJh- ) •

-- feA t (U9)

that

and that

we see that it is necessary to know the constant energy 
surface zsJL ..away from the Fermi surface. In the 

calculation of the velocity by Wood, it was assumed that 

the constant energy surface away from the Fermi surface 

was concentric in shape with the Fermi surface. If this is 

not a valid assumption, then our velocity on the Fermi surface 

is not accurate at all.points and a difference in the data 

results and the experimental curve might be expected.

The results are shown on Graphs XXXI and XXXIII.
A frequency of 395.2 X. 10^.. hertz and. a" T of 10”^ sec. 

was used. .Graph XXXI/displays a B-field range of 16,500 

gauss to 17,5Q0 gauss, and,GraphXXXIII shows a B-field



range of H,100 to.H,900 gauss. The £0013 .direction 
' ■ ' . f ' ' ' . I •

of copper ;was investigated; thtis/^we were able to. compare 

our data with Graphs XXIII, XXIV, XXVI, and XXVII which 
show the data for the oylindrioally, symmetric Fermi 

surface approximation. The amplitudes of the peaks of 

Graphs XXXI and XXXIII are smaller by two orders of 

magnitude than the amplitudes of their respective peaks 
on Graphs XXIII, XXIV, XXVI, and XXVII. The numerical .

I " ■
integration techniques used in the program cannot be 

responsible for the decrease since their accuracy was 
checked in the case of sodium. Recalling Graph XII, we 

see ah amplitude for a helicon calculated by our numerical 

integrations which is identical with that calculated by 

the earlier two methods in which numerical integrations 

were not used.
Graph XXXI doe^, however, show the familiar delta

-9shape due to the relaxation time of 10 sec. and agrees 

with the experimental curve on Graph XXXII in that helicons 

are propagating' in this B-field region. Graph XXXIII does 
not agree with the experimental curve which shows nothing 

propagating in this region. Our only explanation of this is 

that the velocity on the Fermi surface is not accurate at all 
points, due to a non-concentric constant energy surface Zsiv 

away from the Fermi surface. Also, the loss of cylindrical 



symmetry of the Fermi surface is believed, to.be the cause of
' ' ■ ■ -2

the reduction in amplitude of the peak;s by a factor of 10

which wag mentioned earlier. As;for the case of sodium, 

limited computer time forced us to investigate only small 

B-field ranges in this final.case. . ,
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APPENDIX 8^

COMPUTES PROGRAM FOR THE CALCULATION OF 
THE RATIO OF THE MAGNITUDE OF THE TRANSMITTED 
ELECTRIC FIELD TO THE INCIDENT ELECTRIC 
FIELD

The following are the variables contained, in the program:

0= thickness of metal slab (cm.)
AMXK= maximum value of the wave vector in the z-direction
W= frequency of incident electromagnetic wave
T= relaxation time
PE= electron density
KPS= the number of magnetic field values for which we 

are evaluating E^/E^
B0= the lowest magnetic field value that we are using
SU= the step interval between consecutive magnetic field 

values
10= the number of integers which when added to IPED is 

considered as a sufficient approximation to the infinite 
sum in the expression for EV^

JS= number of orbits into which the Fermi Surface has been 
divided between kz=0.0 and kz= AMXK

J= DO-LOOP index for orbits
N= number of Fermi surface data points for an orbit. N may 

be even or odd, but the points are assumed as evenly 
distributed in the interval

K= DO-LOOP index for wave number.
F= wave number = K*PI/Q
KS= integer which gives maximum wave number
NN= DO-LOOP index for the sum contained in the expression
NNO= the sum in the expression which goes from plus to minus 

infinity is replaced by a sufficiently approximate sum 
going from plus to minus (NN0-l)/2

NT= 10 + 1
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The values of the variables in the program for 

sodium that were used are as follows:

Q = 0.1 cm
AMXK = 0.9 X 108 cm"1
W = 106 hz.

PE = 2.5 X 10^2 electrons/cm3

io = 5

JS = 2?

N =

NNO = 11

NNT = 6



Values of Variables for Copper
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The values of the variables in the program for 

copper that were used, are as follows:

Q = 0.08^ cm
AMXK = l.W X 108 cm”1
W = io6 hz.

PE = 8.5 X electrons/cnP

TO =

JS = 2?

N = variable

NNO = 9

NT = 5



COMPUTER PROGRAM
87

DOUBLE PRECISION A, ANSRX, ANSRY, ANSIX, ANSIY, BETA, 
GAMMA, S, V, DET, DARTR, DARTI, ETEIR, ETEII 
COMPLEX CART, CSUMA, CSUMB, CSUMC, CSUMD, PARTP, PARTN, 
SUMAXN, SUMAYN, SUMBXN, SUMBYN, SUMCXN, SUMAXP, SUMAYP, 
SUMBXP, SUMBYP, SUMCXP, SUMCYP, SUMCYN, DENOMP, DENOMN, . . 
DENM, DENP, VNXPP, VNYPP, VNXNN, VNYNN, VNXN, VNYN, VNYP, 
VNXP, SAXX, SAXY, SBXXA, SBXXB, SBXYA, SBXYB, SIGXX, SIGXY, 
CIA CVYXX CVYXYDIMENSION ’DENP(NNO), DENM(NNO), VNXPP(NNO), VNYPP(NNO),
VNXNN(NNO). VNYNN(NNO), VX(NMAX), VY(NMAX), VZ(NMAX).EXPIN(NMAX), 
PARTP(NMAX), PARTN(NMAX), CART(NMAX), NAN(JS), WC(JS), 
ARRAY(JS), AVGVZ(JS), ARMC(JS), CVYXX(JT,KS), CVYXY(JT,KS) 
Q=
AMXK=
CIA= (0.0,1.0)
H= 1.05^5E-27
TM= 9.11E-28
R= 9.HE-.28
W=
T=
D= 2.99E+10
E= ^.8E-10
PE=
PI= 3.1-4-16
ST=(W*PE*E)/(PI*D)
A=((E**2)*AMXK)/((H**2)*(PI**2)*((2*JS)~2))
REWIND 8
DO 1000 KP=1,KPS
B=(BO + SU*(KP-1))
PEB=(2.0*Q*SQRT(ST))/SQRT(B)
IPEC=INT(PEB)
IPED=IPEC + IO
IPEG=IPEC - IO
DO 265 J=1,JS
READ(8) ARRAY(J), ..l^AN(J)
N=NAN(J)
READ(8) (VX(I),I=1,N)
READ(8) (VY(I),I=1,N)
READ(8) (VZ(I),I=1,N)

C CALCULATION OF THE ARRAY AVGVZ
IF(N-2*(N/2)) 110,115,110

115 SUMA= VZ(1) + VZ(N-l)
SUMB=0.0
KN=N~2
DO 111 L=2,KN,2

111 SUMB=SUMB + VZ(L)
SUMC=0.0
KN=N-3
DO 112 L=3,KN,2
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112 SUMC=SUMC + VZ(L)
SUMD=(VZ(N-1) 4- VZ(N))/(2.0*(N-l)) 
AVGVZ(J)=(SUMA + ^.O*SUMD + 2.O*SUMD)/(3.O*(N-1)) + SUMD 
GO TO 120

110 SUMA=VZ(1) + VZ(N)
SUMB=0.0 
KN=N-1 
DO 116 L=2,KN,2

116 SUMB=SUMB + VZ(L)
SUMC=0.0 
KN=N-2 
DO 11? L=3,KN,2

117 SUMC-SUMC + VZ(L)
AVGVZ(J)=(SUMA + 4.0«SUMB + 2.O*SUMC)/(3.O*(N-1)) 
GO TO 120

120 CONTINUE
CALCULATION OF THE ARRAYS ARMC(J) AND WC(J) 
ARMC(J)=1.37*R*(NAN(J)*1.0)/(NAN(l)*1.0) 
WC(J)=(E*B)/(D*ARMC(J)) 
DO 600 K=IPEG, IPED 
F= (K*PI)/Q 
EXPIN(l)=0.0 
DO 125 M=2,N

125 EXPIN(M) = (VZ(M) + VZ(I4-1)-2.O*AVGVZ(J))*F*PI/((N-1)) 
SUM=0.0 
DO 130 M=1,N 
SUM=SUM + EXPIN(M) 
PARTN(M)=CEXP(CIA*SUM/WC(J))

130 T>ARTP(M)=CEXP((-1.0*CIA*SUM)/V/C(J) ) 
CART(l)=(1.0,0.0) 
DO 12 NN=1,NNO 
DO 135 M=2,N

135 CART(M)=CEXP(-2.0*CIA*(-.NNT + NNO)*PI*(M-1)/((N-l )*1.0) 
IF (N-2*(N/2)) 181,182,181

182 SUMAXP.-=VX(1)*PARTP(1)*CART(1) + VX(N-1 )*PARTP(N-1 )*CART(N-1) 
SUMAYP=VY(1)*PARTP(1)*CART(1) + VY(N-1)*PARTP(N-1)*CART(N-1) 
SUMAXN=VX(1)»PABTN(1)*CART(1) + VX(N-1)*PARTN(N-1)*CART(N-1) 
SUMAYN=VY(1)*PARTN(1)*CART(1) + VY(N-1)*PARTN(N-1)*CART(N-1 ) 
SUMBXP=(0,0,0.0) 
SUMBYP=(0.0,0.0) 
SUMBXN=(0.0,0.0) 
SUMBYN=(0.0,0.0) 
KN=N-2 
DO 146 L=2,KN,2 
SUMBXP=SUMBXP + VX(L)*PARTP(L)*CART(L) 
SUMBYP=SUMBYP + VY(L)»PARTP(L)*CART(L) 
SUMBXN=SUMBXN + VX(L)*PARTN(L)*CART(L)

146 SUMBYN=SUMBYN + VY(L)*PARTN(L)*CART(L) 
SUMCXP=(0.0,0.0)
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SUMGYP=(O.O,O.O) 
SUMCXN=(O.O,O.O) 
SUMCYN=(O.O,O.O) 
KN=N-3 
DO 14? L=3,KN,2 
SUMCXP=SUMGXP + VX(L)*PARTP(L)*CABT(L) 
SUMCYP=SUMCYP + VY(L)*PARTP(L)*GABT(L) 
SUMCXN=SUMCXN + VX(L)*PABTN(L)*CABT(L) 

14? SUMCYN=SUMCYN + VY(L)*PABTN(L)*CABT(L)
SUMDXP=(VX(N-l)*PABTP(N-l)*CABT(N-l)+VX(N)*PABTP(N)*GABT(N)) 
/(2.0*(N-l))
SUMDYP=(VY(N-l)*PARTP(N-l)*CART(N-1)+VY(N)*PARTP(N)*CART(N)) 
/(2.0*(N-l))
SUMDXN=(VX(N-l)*PABTN(N-l)*CART(N-l)+VX(N)*PARTN(N)*CART(N)) 
/(2.0*(N-l))
SUMDYN=(VY(N-l)*PARTN(N-l)*GART(N-l)+VY(N)*PARTN(N)*CART(N)) 
/(2.0*(N-l))
VNXP=(SUMAXP + 4.0*SUMBXP +2.0*SUMCXP)/(3.O*(N-1))+(SUMDXP) 
VNYP=(SUMAYP + 4.0*SUMBYP +2.0*SUMGYP)/(3.0*(N-l))+(SUMGYP) 
VNXN=(SUMAXN + 4.0*SUMBXN +2.0*SUMGXN)/(3.O*(N-1))+(SUMDXN) 
VNYN=(SUMAYN + 4.0*SUMBYN +2.0*SUMCYN)/(3.0*(N-l))+(SUMDYN) 
GO TO 60

181 SUMAXP=VX(1)*PABTP(1)*CABT(1) + VX(N)*PARTP(N)*CART(N) 
SUMAYP=VY(1)*PARTP(1)*CART(1) + VY(N)*PARTP(N)*CABT(N) 
SUMAXN=VX(1)*PARTN(1)*GART(1) + VX(N)*PARTN(N)*GART(N) 
SUMAYN=VY(1)*PARTN(1)* CART(1) + VY(N)*PARTN(N)*GART(N) 
SUMBXP=(0.0,0.0) 
SUMBYP=(0.0,0.0) 
SUMBXN=(0.0,0.0) 
SUMBYN=(0.0,0.0) 
KN=N-1 
DO 141 L=2,KN,2 
SUMBXP= SUMBXP + VX(L)*PARTP(L)*CART(L) 
SUMBYP= SUMBYP + VY(L)*PARTP(L)*CART(L) 
SUMBXN= SUMBXN + VX(L)*PARTN(L)*CART(L)

141 SUMBYN= SUMBYN + VY(L)*PARTN(L)*CART(L)
S(JMGXP=(O.O,O.O)
SUMCYP=(0.0,0.0) 
SUMGXN=(0.0,0.0) 
SUMCYN=(0.0,0.0) 
KN=N-2 
DO 142 L=3,KN,2 
SUMCXP=SUMCXP + VX(L)*PARTP(L)*GART(L) 
SUMGYP=SUMGYP + VY(L)*PARTP(L)*GART(L) 
SUMCXN=SUMCXN + VX(L)*PARTN(L)*CART(L)

142 SUMGYN=SUMCYN + VY(L)*PARTN(L)*GART(L) 
VNXP=(SUMAXP + 4.0*SUMBXP + 2.0*SUMGXP)/(3.0*(N-l)) 
VNYP=(SUMAYP + 4.0*SUMBYP + 2.0*SUMCYP)/(3.0*(N-l) ) 
VNXN=(SUMAXN + 4.0*SUMBXN + 2.0*SUMCXN)/(3.0*(N-l))
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VNYN=(SUMAYN + ^.0*SUMBYN + 2.0*SUMCYN)/(3.0*(N-l))
60 EN=NN

DENOMP=(1.0/T)+CIA*(F*AVGVZ(J)-W-((-NNT*1.0+EN)*WC(J))) 
DENOMN=(1.0/T)-CIA*(F*AVGVZ(j)+W4-(  (-NNT*1.0+EN)*WC (J)) ) 
VMXPP(NN)=VNXP
VNYPP(NN)=VNYP
VNXNN(NN)=VNXN
VNYNN(NN)=VNYN
DENP(NN)=DEN0MP

12 DENM(NN)=DENOMN
CALCULATION OF SUMS FOB SIGXX AND SIGXY
CSUMA=(0.0,0.0)
CSUMB=(0.0,0.0)
CSUMC=(O.O,O.O)
CSUMD=(0.0,0.0)
DO 10 NN=1,NNO
CSUMA=CSUMA + VNXNN(NN)*CONJG(VNXNN(NN))/DENM(NN) 
CSUMB=CSUMB + VNXNN(NN)*CONJG(VNYNN(NN))/DENM(NN) 
IF (J-l) 275,276,275

275 CSUMC=CSUMC + VNXPP(NN)*CONJG(VNXPP(NN))/DENP(NN) 
CSUMD=CSUMD + VNXPP(NN)*CONJG(VNYPP(NN))/DENP(NN)

276 CONTINUE
10 CONTINUE

CVYXX(JS+1-J,K)=CSUMA
CVYXY(JS+l-J,K)=CSUMB
CVYXX(JS-1-J,K)=CSUMC
CVYXY(JS-1-J,K)=CSUMD

600 CONTINUE
265 CONTINUE

REWIND '8
DO 700 K=IPEG,IPED
F=(K*PI)/Q
SAXX=ARMC(JS)*CVYXX(1,K) + ARMC(JS)*CVYXX(2*JS-1,K)
SAXY=ARMC(JS)*CVYSY(1,K) + ARMC(JS)*CVYXY(2*JS-1,K)
SBXXB=ARMC(1)*CVYXX(JS,K)
SBXYB=AHMC(1)*CVYXY(JS,K)
SBXXA=( 0.0,0,0)-
SBXYA=(0.0,0.0)
DO 285 L=2,JS~1,2
SBXXA=SBXXA + AHMC(JS+1-L)*CVYXX(L,K)+ARMC(L)*CVYXX(JS-1+L,K) 

285 SBXYA=SBXYA + ARMC(JS+l-L)*CVYXY(L,K)+ARMC(L)*CVYXY(JS-1+L,K) 
DO 290 L=3,JS~2,2
SBXXB=SBXXB + ARMC( JS+1-L)*CVYXX(L,K)4-ARMC(L)»CVYXX(  JS-1+L,K) 

290 SBXYB=SBXYB + ARMC( JS+1-L)*CVYXY(L,K)+ARMC(L)*CVYSY( JS-1+L.,K)
SIGXX=(SAXX + ^.0*SBXXA + 2.0*SBXXB)/3.0
SIGXY=(SAXY + ^.0*SBXYA + 2.0*SBXYB)/3.0
ANSRX=REAL(SIGXX)*A
ANSRY=REAL(SIGXY)*A
ANSIX=AIMAG(SIGXX)*A
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ANSIY=AIMAG(SIGXY)*A
V=(^.O*PI*W*(ANSRX + ANSIY))/(D**2)
S=(F»*2)-((WH.0*PI*(ANSIX-ANSRY))/(D»*2))
DET=(S**2) + (V**2)
IF (K-2*(K/2)) 15,16,15

16 PNO=-1.0
GO TO 500

15 PNO= 1.0
500 DARTR=PNO*V/DET

DARTI=PNO*S/DET
IF (K-IPEG) £01,800,801

800 BETA= 0.0
GAMMA= 0.0

801 BETA=BETA + DARTR
GAMMA=GAMMA + DARTI

700 CONTINUE
ETEII=(4.0*W*GAMMA)/(Q*D)
ETE IR=(U-. 0*W*BETA) / ( Q»D)
WRITE(6,900) ETEIR, ETEII, B

900 FORMAT(1X,6HETEIR=,D1^.3,4X,6HETEII=,D1^.3,4X,2HB=,F10.2)
1000 CONTINUE 

REWIND 8 
END
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