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ABSTRACT

Helicons and Gantmakher-Kaner oscillakions were
observed for the sodium metal., For a cylindrically
symmetric Fermi surface approximation for copper, we
observed the beating of ﬁwo Gantmakher-Kaner waves for
the {:1111 direction of copper and helicon propagation
for the [001] direction of copper., Using the true
Fermi surface of copper, we observelhelicon propagation
in the [001] direction. 1In all instances of helicon
propagation, we found that a relaxation time of 19710 sec,
produced smooth sinusoidal shaped helicon curves, whereas
a relaxation time of 10"9 gsec. produced a delta-~-function

shaped curve,
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INTRODUCTION

An electromagnetic wave striking a metal surface
is generally damped to 1/e of its initial amplitude
within a distance of § , the skin depth, However, if a
static magnetic field is present and the metal is pure,
it is possible under certain conditions for the wave to
propagate through the metal. This propagated wave is
called a helicon.

Given a slab of metal of thickness Q upon which
an electromagnetic wave of frequency w is incident in
the presence of a static magnetic field ﬁ, we calculate
in this paper the ratio of the transmitted to incident
electric fields, E¢/Ei. The expression Eg/Ecis a
comolex quantity, thus supplying an amplitude and a
phase factor.

The metals chosen for investigation were sodium
and copper. The calculation of Et/Ei requires the
knowledge of the Fermi surface of the metal, Whereas,
such calculations have been done for a spherical Fermi
surface which sodium possesses and for approximate Fermi
surfaces of copper, no calculation has yet been done
using the exact Fermi surface of copper. It is the main
purpose of this thesis to calculate E /El using the
correct_Fermi surface of copper and to-thus make data

available for comparison with experimental data recorded



previously by others., A second purpose of this paper
was an investigation of the effect of the relaxation

time T on the shape of the curve produced by a plot

of Ei/E; versus B.

The sodium metal was investigated because of the

simplification of the calculations brought about by its

spherical Fermi surface. After finding that the sodium
data was in good agreement with experimental data, we
advanced to a c¢ylindrically symmetric Fermi surface for
copper and, at last, to the true non-cylindrically

symmetric Fermi surface. The former Fermi surfaces

provide an accuracy check for the final coppner calculations,



THEORY

Let us first describe the condition for helicon
propagation. Suppose an electromagnetic wave with wave
number a and frequency w 1is propagating in a metal in
the presence of a static magnetic field'g. Suppose, also,
that a and'g are both parallel to the Z-axis, Now the
force E; on an electron in the metal with an average
velocity in the Z-direction, Vz , due to the B field is

found from

-~ £

?‘¢=c(VxB). (1)

The electron will move in a helix about an axis parallel
to the Z-axis due to the initial velocity of the electron,

Tne cyclotron frequency of the electron is given by

W, = (e8/(me) . (2)

Now, the electron sees the electromagnetic wave as having

the Doppler shifted frequency w, given by

We = W +<§Va . (3)

Let ¥ equal the relaxation time of the electron., If
weT >y1, then the electron makes many spirals of its
orbit before it has a collision., 1In this time, it would
be able to absorb energy from the electric field, if the

condition we=0W. is satisfied., This is called Doppler

shifted cyclotron resonance, Thus, we have two required



conditions for energy absorption,

We=e (4)

and

Let the maximum value of YV, of an electron in the metal
be denoted by Vauax + Thus, the maximum Doppler shifted

frequency seen by an electron is given by

Wemax = W+ %—\szrx . (6)

Now, for a given B field, w, is constant. Thus, if

We { Wenp, » then some electrons with a Va (V. will

ZMAX
be able to satisfy the condition w;-w,, and energy will
be absorbed from the electromagnetic wave or helicon. If

W.= Wemay » ONLY the electrons with V- would be

VEMAX
capable of absorbing energy. We call the condition
w, = Weupny the absorption edge. Now, if we increase
the value of B such that We>Weppy s then no electron could
absorb energy, and the helicon would propagate with no
—cyclotron damping effects.
For three~fold symmetry about the magnetic field
direction, we have the following expression for E_./E.

from Antoniewicz, et al.,l:

w .
Es - -l4w i 4 LaC (7)
E. “®c mﬂ‘) Lw Lmﬂf QW €4(0)




where
Q = thickness of metal slab,
C = speed of light,
K = ionic dielectric constant,
4 L. Txx V_;ua G-xz
U = conductivity tensor = Cyx  Tyy Tyz
Tzx Tita Uz
Sh= Uy "‘rx«& ’
and
mT\ - 4 mu
€ (T = Lol + X,
. o L4
Now, K¢ .‘.‘;_qu:‘_ y, and we ignore the term AW € (o

because of its negligible contribution, Thus, we have

_L4Q)Z: (4) — ,
Eb (=) 230 (2F)

¢7.

and

—

Et -'-'4“‘) Z L) (W4T
——— bd L -
E L [(BI + 23T ]+ =50 T

Now, let us denote the real and imaginary parts of Txx

and Txy @as follows:

Real T ANSRX ,

Imaginary Wxx = ANSIX ,

il

Real U—;ua ANSRY ’
and Imaginary W;a = ANSIY .

Then we have,

(8)

(9

(10)

(11)

(12)

(13)
(14)
(15)
(16)



£ . -c4w © (N .17
Eg Q_C—m.-., {(._'sr_)'- “ET[ANSIX- ANSRYJ$+1 3 [ANSRX*-AMS‘Y}E
Let S = f(mmy- <AF [ansix-Anseyli, (18)
and Vo= § efT [hasex +ANSIVIE . (19)

Thus, we have for the real and imaginary parts of E./EC

msd
4w & -1 \Y4

»

€ 4w L)V
RerL (55)= ac L TSR VR ’ (20)
and
&0 m 3l
£ _ 4w - S . (21)
TMacINARY (£5)= PoRVE

Now, we have stated that E,/E. gives the amplitude, \EtlEg\

?

and the phase 0 of the Eg¢/E{ ratio. Thus, we have

‘E""-/Eb [RQF\" ( _l Y_Ima.gma.rg Eu)]) (22)
and
taN 6 = Imaginary (ér_jf . (23)
Are B Renl (£

However, we are concerned only with Real E+/E; , since
this is the only part seen experimentally,
From the development of Mertschingz, we have the

following expressions:
+KMAX —t %

§ Y
= Jrree\ m clgb -———'—'—‘-’“‘——-—%‘_—_—-—-——-—‘——" ’ (24)
mxr(-%) a“&; SKHA: e ""L(._‘ ‘uJ—me
and
2T ) e..: - =
— -5, 43N @ -V 34 "
Vma = Serso'\J’..(wc RS y '““)J"(eabe , (25)
where
LA
¥~ = conductivity tensor, —
KMAX = maximum value of %, on the Fermi surface,



w = frequency of electromagnetic wave,

T = relaxation time,

4 = Planck's constant,

€ = charge of electron,

m, = cyclotron mass,

w, = cyclotron frequency

Q = thickness of metal slab,

4 = wave vector = "—%E m=0,%,2 ",
M = an integer,

a = indice for X, Y, or Z component,

b = indice for X, Y, or Z component,

'i/}e): a~component of electron velocity at Fermi surface,

and?l? = average electron velocity at Fermi surface,

In our calculation of E./E. , we need expressions
1 i3 J . >
for Ty and rx% . Thus, we have, assuming that % is in

tha Z-direction,

g (o i Vi Voo
Txx = m’igkx; dhe m:_m’}{«-\-i( "%E@—w-mwc) ! (26)
T}mx = #f(:vi(@ e'-—\;"‘;:gf[%ﬂ-{\lz(e')— VE?S ! mwc_l ‘Le”cLa , (27)
R e )
and V‘:,a = '5:%8:‘:’1(9) e”t‘.‘fﬂi[aé}ﬂ:{\l;(a")—vzg +mWel Ja:le  (29)



We have the following dispersion relation for a
circularly polarized electromagnetic wave in a metal, such

as a helicon:

q= T (TAAGINARY o -iReAL @) - (30)
Since
T, 7 (ANSRX +ANSIY) & (ANSIX -ANSRY) (31)
we have
77 TS (six- ANsrY) -t (ANSRX+ANSIVY (32)
We may express | \{Yl in polar form as:
Y2 )
cb, g(‘mw _ng T+\)+ (4“ ReaL U'Q} ) (33)
where
~Repl T _ CANSIX + ANSRY) (34)
©= m Im%-m\- ok, ( ANSRX FANSHY) ’
Let us call the roots of %z N ¢ and %z » Then we
have that
4 = é
97 T2 Tmg 3 (T2e0] 023} (S + £0in D), (35)
and

3(4“‘°1m T+ (U Renl T T (coa IS4 T] 4 {ncn [ 2 47]) o (36)

STt

An electromagnetic wave propagates as
Tmg T+ >> Real t,» then © 1is close to zero. This makes

% and 4 mostly real, and there is a negligible damping



factor. As the Real 93 increases, & approaches -T

which means that the imaginary part of % is increasing
which causes the damping factor to increase, At ©: ~%

we have

%‘:g(‘mu__[m\% G’]_\ cz 2 Renl .‘)3 (é’?"’{)%) , (37)

and

qe= {( 2 Iong, Q‘r)" (ZPReal )} TR r) (38)
The root %, is discarded because the imaginary part of % i
carries a minus sign giving rise to an exponzntially
increasing wave, Thus, 12 would be our solution.

Therefore, when helicon propagation exists, we
will expect the oondition'Ima¢;5>quG;, greater than
implying at least one order of magnitude.

It will be noticed that the expression for E,/E,
contains a sum going from one to infinity over the
variable m , The following explains the approach

taken to approximate this sum.

When cylindrical symmetry about the magnetic
field direction exists,'we have from Wood3 the following

expression for v, , for the local regime (%L;<<1>

. meclazed (30)

) (Q~¢J +1)

where L = the mean free path of the electron, and

UL



m = density of electrons per unit volume of real space.
When @, rvy>y 4 , this reduces to

- mec.

-—

[w’?’ T . (40)

Now we have the equations

Real & = 28= 2% (41)
and
1m¢5. - m‘g'c" . (42)

The real part of EL/E;, 1is largest when
T
4T
{2 - e Tmgnf=0 . (43)

Thus, solving for that M¥* which makes this expression

equal to zero, we obtain

q(wamec\
M¥ - —C—-("‘T‘r—é"ﬁ . (Lb)

With the assumption that our finite relaxation time still
gives a sufficiently large w ¥, we sum over a finite
number of mu's centered about M¥. The contribution to EL/EL
made by an mv decreases as its distance from M* increases.
From McGroddy, et. al,”, we have the following
expressions for the case of spherical symmetfy}

Renl T, = (3we/leVpg)(1- /X% x21

L
o xz1 '’ (45)

Tmg. T = ((wp /4T (we-w)) FOO ,  (46)
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\
where X= —3 (47)

w
we (- Pe ’

Fons - S B (18)
L,L)pz‘-‘- 4Tl'me?/m\,** ’ (49)
and : We = eB/m¥*¥qs , (50)

The effective mass of the electron at the Fermi surface
is denoted by mnf* and the velocity by Vg .

These expressions hold for an infinite value of
wT . Thus, we have that when  X<1 , helicons
propagate without attenuation, and when Xz 1 , the
helicons are damped so severely they disappear.

It should be noted that McGroddy's expressions
for U can not be substituted into our expression for
ey /E, for any meaningful results. This is brought about
because McGroddy lets the real part of ¢4 equal zero
during propagation. For a finite relaxation time, for
which Eg/E; is derived, we never have a zero real part
of & . Thus, we will always get a real part of E./E; .

If we do assume the real pért of 04 1is zero during

helicon propagation, then we have

Et - -c4Ww &) 1
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which gives us a zero real part of Ei/E; . Thus, we
would conclude that there is no helicon propagation, when
we know that according to McGroddy, there is helicon
provagation, In our calculations for copper and sodium,
it will be found that the real part of U, is smaller than
the imaginary part by at least one order of magnitude
during propagation., This nonzero real part is necessary
to exhibit Real EE;.

~ We now have a means of predicting at what approximate
value of magneétic field we should expect to see helicon
propagation start., Setting X=41 and using mm = M%*, we

find that

= py .

Y
B-(mf*?'vévwérmcf (52)

It was stated that the knowledge of the Fermi surface
is necessary for the calculation of E./E., . This is
because we must know the velocity of an electron on the
Fermi surface, If E(i@ is the equation of the Fermi surface,

then we can relate the Fermi velocity to this surface by

_ L (28R a&dh) AE®)

In addition to the helicons, we will encounter

Gantmakher-Kaner oscillations which are caused by electrons

—with an extremum in anVé along the magnetic field. The
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period of the oscillations is a constant and is defined

by the equation
— . el 6 .
[’m‘:\’i_]s[ amcC rTw—) ™ = amkeggu,  (54)
where the period (B/m) is measured in units of the

magnetic field,
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REAL E./E, FOR SUDIUM

Sodium has a spherical Fermi surface., Now we

have
+KMAR e, o s
z v
4 - e mw NV
U';,\' __'\.}J_S NY\QJJQEZ 7 L > 55
an ~KMAX - "F"‘b(%- g - w~mwc)
and
Pl L (O . "
- 58, (419,00 -V 3 +mw.1dO

V= ), Ve 4B . (56)

Now Gwm is an integral over the variable B and will
be calculated by numerical integration methods. We must
evaluate the integrand for a finite (preferably odd)
number of values in order to this integral numerically,
This means we must evaluate Vm at these particular b,
values also,

We will use a cylindrical co-ordinate system'where

)

2,0, and p correspond to by, 6, and b, where %_&(LF;L;)/}.
A spherical Fermi surface is drawn in such a co-ordinate

system below. 4

3, = 'Qir—: + hoey) y7'=/0
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A j-orbit will be designated as a path of intersection
of the Fermi surface with a plane %; = constant. If we
evaluate the integrand of %im at j* number of values
of &, , then we will have to deal with j* number of
j-orbvits. The expression ?&b involves an integration
over € around a j-orbit. To evaluate ?n s We would
again use numerical methods. Each j-orbit would be
divided into N intervals., The intezrand of ﬁh would be
evaluated at the N+1 points in the interval [0 ,27] .

For a spherical Fermi surface, however, it is
possible to simplify matters so that the Vi integrations
will not have to be done.

Knowing that for a Fermi sph=2re we have

£h) = ?‘:;(M%;»,L;) , (57)

and recalling Equation (53), we fini that Ve , the
velocity of an electron on the Fermi sphere, and the

£
wave vector, h. , are related by

Now for any j-orbit QmFiié)== Sopay = comstant., Thus, we
have 3
* . v 1.11';:' n ;ﬁ: 0
VFZS: Z'{Tgo‘,;: )leié(e)detz_\f;xso/k‘;aéde ) (59)
and

2TV

V;*g: Eﬁﬁ&f%LVFaég,de = Vp;é . (60)



Therefore, we have that

f\lz(e”) - vi} =0,

which simplifies V. to

- 5 Y-)
Nm = Zr'r\,, Vere  de .

Also, we have that

£, dbs
Me= 2w g Vi ’
PERIOD
where Y,
2
Vy = (VUge +Vq;)
and !
dk :"m‘\;‘\’.\.Ae °
Thus, ¥k
% 2 . __.L-
M ﬁ%o"%b N v),)fle
and
mMu = o
Hence, we also have
= £ ~e8 .
We cyclotron frequen@'ﬁ“‘c

In the evaluation of '\7,,\, , Wermte. that

era'(e\: Ve Weéoo@e

’

\/F,é{(@)':\]‘-;w@a'me ’

and Vezj (8) = e w0y .

Recalling that

_ T (m-m) ©
Q‘TSM\,N’\; - S‘, e GL;Q

we obtain

?

me,"; = (\JF M@a/l) [Sm,:\_ '\'Sm,- 1]

e’

m C

14

16

(61)

(64) -
(65)

(66)
(67)

(68)

(69)

(70)

(71)

(72)

(73)
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Vm%é: (VF A&Me,s/')-b) [Sm‘i— Sm,-:\._l ’ (7“’)

and VM Z:a = \IFCOO(%‘ SM,O . (75)

From this, we see that the only contribution to the sum

in Ei~ will be from the integers n=1 and n= -1,

Computing
Tyx and W'% , we getl
.3
Txx = _————-—-—-—chka% &WSJ@ ’ (76)
4T R o o't
and
" 1 .
. Sekem( Jrain'9dd (77)
W—Xj - 4R > at+
where 0 L= .
o= + gV —w
T (78)
and Xr = We L
Now T, = Txx :;.{,&r‘w3 . (79)
sO we obtain
™ .3
- -3 (80)
OCr = TR To So T4+ uT(Fw,-w +%VFO°°CP) *
where = me T/mo ., (81)
This integral can be evaluated as follows:
X= oo«:»(? » (82)
and Aon & = Q=x®)2 |
~ Such a substitution will give us
_ 3.T% N+l (83)
AU 4‘%\/ T{Q-& (JL 1) Q_A'B —ﬂ.*lyg , 3

where

= ((A)-w +ch_)/77 VE . (84)
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We now put @3 1into E,/E; and obtain

. o
B e ; (.%w.”?ww S (85)
and -
oot o ,,ffl%Tmé_dﬂ%gr e - (86)
Let
S- [(mE)- 2T Ty ] (87)
and.
Vo= Loq“- Real T . (88)
Then we have that o .
m‘H‘
Read ( B2)* %‘g e (89)

A computer program was run using the vi we have
just derived for two different cases. In one case, we
chose a B-field range of 1,000 gauss to 10,000 gauss,

w = Hf seéf and T'==15qsec. In the second case, we
chose the same B-field range and frequency but made
vz 16" sec.,

The sum in the expression REA\(Et/Eﬁ) which is over
m going from one to infinity was approximated by a sum

going from one to seventy-five, An attempt was made to

check the accuracy of this approximation in the following



way. We ran a computer program to check the rate of

convergence of

k4 X m+ L
MZ -1 vV
. 2
m = MI-y Sy

where X equals an arbitrary integer, The results are
given in Chart I. A sum was used over a finite number
of m's centered about M*. The B-field range was from
7,000 gauss to 8,200 gauss. The number of terms
included in each sum increased as B increased. However,
the sum over 9 terms was also noted for each B-field so
that a comparison could be made to a sum taken over more
terms ranging from 19 to 37. The difference in these
two sums was calculated, and for 7T =l§‘sec., there was a
1% difference or less while for T =15msec., there was a
difference as high as 115%, Thus, we could assume that
forT = liq sec,, there was rapid convergence while for
7‘==\5wsec., it was slow so that more terms than 9 would
have to be included.

Ve must remember that the M* which makes S zero
was defined only when w 7T was infinite. We see that for
T = 16 sec, w.T ®17 for B = 1,000 gauss and 170 for

10
B 10,000 gauss, For T =16 sec., wT % 1,7 for

B = 1,000 gauss and 17 for B = 10,000 gauss. Since our

values of w® are not particularly large, we may doubt
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CHART I

-9
FOR RELAXATION TIME T = \6 SEC.

Number of

20

Difference

B Sum Terms in in Final Sum and
Field of 9 Terms Final Sum Final Sum Sum of Nine Terms
7000 -.326-02 -.326-~02 19 0.0%
7100 -.223-02 ~.223-02 23 0.0%
7200 ~.178-03 ~.180-03 23 1.1%
7300 +.545-04 +.529-04 25 3.0%
7400 +.369-03 +,367-03 27 0.5%
7500 +,184-02 +,184-02 27 0.0%
7600 +,258-02 +,259-02 1 0.4%
7700 +,484-03 +.,486-03 31 0.4%
7800 +,103-03 +,104-03 31 1.0%
7900 -.792-04 -.776-04 33 2.1%
8000 -.365-03 ~.363-03 35 0.6%
8100 -.160-02 -.160-02 35 0.0%
8200 ~.263-02 -.263-02 37 0.0%
FOR RELAXATION TIME T= [0 SEC.
7000 -.943-04 -.705-04 19 33.7%
7100 -.514-04 -.747-04 23 30.6%
7200 -.206-04 - 43104 23 51,1%
7300 +.289-04 +.133-04 25 115.4%
7400 +,819-04 +,612-04 27 34.4%
7500 +,121-03 +,101-03 27 20.8%
7600 —+,961=04 +,117-03 31 12,0%
7700 +,746-04 +.,950-04 31 21,0%
7800 +,235-04 +,394-04 33 41.0%
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the validity of using M¥ in a meaningful way. For
B = 1,000 gauss, we have M¥ = 71, and for B = 10,000
gauss, we have M*¥ = 17, Thus, it might seem that w.7V
for the case of T = 16 sec. is not sufficiently large
to use M¥* as that m which gives the largest contribution,
thus leaving open the question as to what should be chosen
as a centering point for the summation. Since our graphs
of Renl (Ex/EL) versus B for ’("==l5q sec. produced smooth
regularly occuring waves, and a sum over an insufficient
number of terms gave jagged irregular graphs, it was
assumed that for the case of T = 16 sec., we were
summing over a sufficient number of terms if we got a
smooth curve for our graphs. Our choice of summing from
one to seventy-five gavs us the desired results,

Gravhs I through IV give the outout forT'==|5msec.
Graphs V through IX give the output for T = l5q sec,

Let us recall our predicted value of the magnétic-

field at which we expect to see helicon propagation start,

NETW A M
ﬁ:‘ m_:___féjﬂ_"?_———‘;— . (90)

From this definition we obtain B = 5,800 gauss. Thus,
if we plot &n\(EdE) versus B, we would expect to see
helicon propagation around 5,800 gauss. From our graphs

-4
for W = lo sec., we see that helicon propagation is
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definitely starting at about this point. In the case
of T = M"’sec., our graph shows helicon propagation
starting at about 6,200 gauss. This is not as close in
agreement with 5,800 gauss as the previous case. However,
as mentioned before, our w.T 1is also one order of
magnitude smaller than before, and thus we would not
expect a close agreement.

Let us describe the graphic results in more detail.
First we consider the graphs for T = lgbsec. On Graph I,
we see the initiation of helicon propagation at about
6,300 gauss. Graphs II, III, and IV show the helicons
increasing in amplitude and in distance between peaks.
The curve has a smooth sinusoidal nature.

Now let us look at the graphs for T ==|5q sec,
On Graph V we observe Gantmakher-Kaner oscillations.
They have a constant period of 375 gauss. Recalling
Equation (54), we find that a period of 375 gauss

2 .
20 gm-cm/sec, This,

+ =1
in turn, corresponds to a Ayer. of .88 X 10 3 cm

corresponds to [mVgl,, = 9.3 X 10~

This is extremely close in value to KMAX, which was taken
as .9 X 10° em™'. e also note that the amplitude of the
Gantmakher waves is smaller than the amplitude of the
helicons by a factor of 104.

Graph VI is_the same as Graph V with a slight



increase in amptitude. Graph VII shows the start

of helicon propagation. Graphs VIII and IX show the
helicons gaining in amplitude and increasing in period.
We notice that while the Gantmakher-Kaner oscillations
were sinusoidal in shape, the helicons are not. They
have more of a delta-function appearance about them.
Recalling that for the same magnetic field range, the
helicons for T=10 " sec. were sinusoidal ‘shaped, we
conclude that the larger relaxation time has definitely
caused a distinct change in curve snape.

Graphs X and XI are reproductions of experimental
data taken by WOod3 exhibiting these two distinct wave
shaves, Here also, we notice the increasing amplitude
and period of the helicons.

The relaxation time also affects the magnitude of
the amplitudes. Ve notice that the amplitudes for
= 15" sec. are two orders of magnitude smaller
than the amplitudes for 7T = "' sec. in the area of

helicon propagation.
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Now we will advance to a cylindrically symmetric

Fermi surface, which will include the spherical case.

For cylindrically symmetric surfaces we have

Vx: V_LCOQ)S >

Ve (0)- Vg ,
where VLS(V:+V§)& ’
and Hoy= mVve
Now again our equation for'ﬁm,simplifies to
(T CimB
Viux = ZTTSO VJ_u:oec" de ,
\/{NX = (V_L/’?-) (gm,i + gm‘-l> ¢
and \/m3 = (\}_\,/Zb)(gmll‘ Sm)_j_) .

Now we have

2 w2 E 3
=) +HiKMAY
—- e Nmxn \’l‘f\%
Uxx ~ 21115?3% e d% E
Lamak o v -"'l(ao\lz‘“)“*“Uc>

Mo .pR
Again using the equations
R B T
o= T+L%U%-—'UU~) R
and ~
/\r—wg
we have that

’

2 %
_ S5 (teax gt Ade
Cxx ¥ 47 Mg P ,
' ~KMAX

(-2

(91)

(92)

(93)

(94)
(95)

(96)

(97)

(98)

(99)

(100)
(101)

(102)
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and

FKMAX <
Ty = —5—2: g Qe s Iz (103)
37 47w, @ .
-KMa X
Now we have that
Q':; =T)(x_':' “—X‘a . (10“’)
Thus, we have
HKMAX 2
e by dbhz . (105)
U= 4“1"“68 14w (~we-w +4V2)
-KMAX

Now, as before, we have gotten around evaluating the
integral expression of 'GM, . However, while previously
we had derived an exact expression for ¢, , now it must
be evaluated numerically.

We mentioned earlier that sodium was investigated
mainly for the purpose of an accuracy check on our computer
programs for copper. The integral =xovression for oy was
used to evaluate Rea\ E,/E. OVer a masnetic field range of
8,800 gauss to 9,500 gauss. We then checked our results
with the data gathered for the closed expression of v o
This integral expression of o3 will later be used for
copper, and from this check, we will know how accurate

our results will be.

Now we rewrite our expression for «, as:

+ 2
‘9};" M (T bz (106)
413, Jempax T+iT (_w‘_w+%u2) .

0‘__;:

We are dealing with a spherical Fermi surface, Let us
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look at the drawing below.

\
\
o XA
/JW‘ bl :p R >ha
~
—KMAX | /%.2 WMAX
!
A
/
J-6RBIT

For a sphere, we have that KMAX equals the radius Xg .

We divide the ,%E -axis into 52 equally svaced intervals,

SO
in
53

is

for sodium KMAX = 0.9 X 10

we

we will be evaluating the integrand of T at 53 points
the interval [ -KMAX, +KMAX ] , Thus, we will have

Now (A )= Aj

We know that

j=orbits. A typical j-orbit is shown.

the cross-sectional area of a j-orbit.

8

em Thus, from the drawing

can see that

Aj= T(he-h)) . (107)

Also recalling that for a Fermil sphere, we have for any

j=orbit for which kg = constant,

£ hs

Vz= 7o . (108)

Thus, we can calculate all the data we need to evaluate

v, numerically.

We used this expression of v in our



CHART II

Comparison of Real Vi and Imaginary T
for Nine n~rv's Centered
About M*
+18

NOTE: In number notation, +18 means 10

B = 8,900 gauss M* = 23

Value of mm RBeal % Imaginary T+
19 .281+18 JA412+20
20 .285+18 A14+20
21 .288+18 JL16+20
22 .292+18 L17420
23 .296+18 L19+20
20 .301+18 421420
25 .306+18 Ja24+20
26 .311+18 426420
27 .317+18 428+20

B = 9,375 gauss M# = 23
19 .251+18 .390+20
20 .253+18 .391420
21 «256+18 «393+20
22 .259+18 . 394+20
23 .263+18 .396+20
2l .266+18 «398+20
25 .270+18 .399+20
26 .274+18 401420
27 .279+18 L403+20
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expression for Renl Ee/E; using a sum over m going

from 1 to 75. Chart Il shows a comparison of the real
and imaginary parts of g, . We know that for helicon
propagation I;ng_q;_>> Renl T . Chart II verifies
that this is so,

Graph XII shows a comparison of our data, written
with a solid line, with the data obtained by our previous
closed form expression of g7 , drawn in a dotted line.

We see from the graphs that the numerically
intezrated U3 gives a curve shape identical with that
which resulted from the closed form ;. , except that
the cufves are out of phase with one another by about
85 gauss. This phase difference is probably caused by
the fact that there is some error inherent in numerical
integration techniques. In conclusion, we see that our
numerical integrations are accurate enough to give us
the correct shape of the curve which is what we are most
concerned with.

We now advance to our most complicated fashion of
calculating Rep) E,./E; . This method will be the one
used to calculate E4/E, for copper using the true Fermi
surface of that metal, but we now wish to check the
accuracy of the computer program for the simpler case of

sodium. The complication lies in that we must now



b1

evaluate ﬁ;, by numerical integration methods.
As before, we divide the %, axis into fifty-two

equally spaced intervals so that we will be evaluating
v, at 53 points in the interval [ -KMAX, KMAX) . We
then calculate the values of the x, y, and z components
of the Fermi velocity at 45 different points equally
spaced around each j-orbit. Thus, we will have the

Vx » Vy , and Vz values for 45 points in the interval
Lo .,2m] . These Fermi velocity values were calculated

as follows and as demonstrated in the diagram below:

by Fermi Sphere
Showm% One J-oreiT

J-org\T



A’QLX

‘ 4 .
J-oRB8\T SEEN +2>£Wm'ha popN
frlana gE'AXI$ 9] Y
KAy D20
- Xz
>/¥ua
Thus, we have
Vep = ’wj‘ , (109)
- R 2 2\ Y,
Vxe = ;;(KP\AX-,%,E) “wnve (110)
and %, 2 v,
Vge = T (kurx_g, e | (111)
Now, let us recall that
Fatg _L/gg T o = 7"
- e 2] -\/ + W, d,e
Vo 2 7)Y e 0 O P16 -Tb o Lo (112)
We have that 21
Ve= 21l Velodde (113)

For eacn j-orbit, we must do a numerical integration

of V. . Let us store this value in an array called
AVGVZ(J)., Since we are going to do a numerical integration
of Vmx and Vmy » WE must evaluate the integrand at the
45 different values of © ., Let us denote these angles

by ©, s where n goes from 1 to 45, and ©,= 0 and 6E,= 2T .

4‘.
Also, let
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Vet Va3 = Xi(e) . (114)

We evaluate the expression
55,05 By, (87) - Va Y4 mwe Lo

Ca

c
in the following way. For © = e, , we have
L o, " ’” : i 6, » "

6.4‘89 X6") 4 mw J~e: e:»me.c 6,.30 X (e de ' (115)

For © = e, , we have
N O ,, ” . ¢ ©,
‘ﬁcgo X(B)-l-mw,_c*e - _vméey '6“50 X(@")de/l (116)

e - & c ,
or

- S ?" B -} -
-gSo Kot rmuwde”  _ing -L G X(ende” -5 (¥ (0)d6”

e e e cmsa,.’((e) (117)
and so forth. We evaluate the intersrals using the
Trapezoidal Bule., Now, let

Or
Ao = ) X(de” = ExeINGD) (118)
¢
Thus, we have
&g
Aas = EXPIN(S)= Se X(e"de" (119)
A‘

and also

ew
s Xledo = Aav A v oA = EXCINQITEXPING)- + EXPIN(Y ,
and

em-‘.\-
) X482 Ayt Agatt A = EXPING) 4 EXPIND. .. + EXPINGm-3) |

[s]
and so forth, Now let

- %. SUM m,

PARTP(m) = e (121)

(119)

(120)
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+55. SUMm
and PARTN(m)= € R (122)
where m
SUMm = Z3 EXPINGD (123)
If we now let
—Nem
CARTIM) = " , (124)

then at each of the 45 points, the value of the integrand

will be given by the expressions

Value of Integrand

(for Points on the
Positive %E AX1iS /mx
and

Value of Integrand
for Points on the
Negative,&i Axis /mx

= Vyel®) PARTNIM CART(m) . (126)

Now, let us recall Equations (73) and (74) which state

Vmyx = Vg MQQIZ [S”‘.:L+ Sm‘—l—l ,

and
Vg = Ve ain @3/20 L8081 ]

Thus, we have that

ReéaL Vix = Ve A;vﬂ@é/?_ Irma.%. Vix =0 | (127)
RemL N, ¢ = N Am@4/2 Imag. Vax*O , (128)
Real viy = O Tmog. Vay= Nesm@ /o,  (129)

and

ReaL Vay =0 Tmagy Vag® Ve sim @512, (130)



Now for sodium V¢ = 1.03 X,108 cm/sec, and for the

jsl-orbit, = T; . Thus, we should expect the following

values:
Beal VNix = .515 X 108 Imaginary V4 = 0.0
Real Vayx= .515 X 108 Imaginary V= 0.0
Real Vuy = 0.0 Imaginary v,, = -.515 X 108
Real V,y = 0.0 Imaginary v, = .515 X 10°

Using data from a computer run for B= 7,000 gauss
for the j=1 orbit or A, = 0.0, we obtain Chart III, Thus,
we have checked the accuracy of calculating the N, 's with
our program and found an error of 1.1%,

In calculatingi%/&, we approximate the sum over m
going to infinity with a sum of nine terms centered about
M*, since it was shown earlier in Chart I that for 7V =\6ﬁsec.,
we had very rapid convergence of Real Et/E. . Recalling that
during helicon propagation, ]}n¢801‘79em\c; , we note the
sample data given in Chart IV, The data given by our previous
program, where the Qfsbut'not the V,.s were calculated
numerically, is on the left. The data given by this last
program, where both Ty and N, are calculated numerically,
is given on the right. The value of the magnetic field is
8,850 gauss., Helicons are propagating in this region, and
we notice that Tme Gy RealG by a factor of 100, The close
values of the ¥, serve as another accuracy check of our last

progran,



NUMERICALLY INTEGRATED Vuy AND Vy
VALUES FOR SODIUM AT B=7,000 G.

CHART III

N Real Vax Imaginary Vax Real Vny Imaginary Vny
-5 +,2440+03 -.2083-02 -.3605+00 +.1656+01
-4 +,2428+03 -.6373-01 +,1024+01 +,6730+00
-3 +,2423+03 -.3705+00 -.5982-01 +.3839-01
-2 +.,2431+403 -.4984+00 -.1394+400 -.3860+00
-1 +,5209+08 +,2924+00 +.4569-02 +,5209+08

0 +,2427+03 +,0000 +,2924+00 .0000
+1 +,5209+08 -.2924+00 +,4569-02 +,3860+00
+2 +,24314+03 +,4984+00 -.1394+00 -.3839-01
+3 +,2423+03 +,3705+00 ~.5982-01 -.6730+00
+4 +,2428+03 -.6373-01 +,1024+01 ~.1656+01
+5 +,2440+03 +,2083-02 -.3605+00 +,1656+01



VALUES OF REAL U AND IMAGINARY o& FOR SODIUM 47

FOR B=8,850 GAUSS AND M-BANGE OF 18 TO 26

CHART 1IV
U+ Calculated Without 9%+ Calculated With
Numerically Integrated vVu's Numerically Integrated Vnls
Real o Imaginary o Real T Imaginary o
18 .2870+18 JA1l5+20 £ 202+18 J418+20
19 ,2907+18 H4162+20 .296+18 .420+20
20 ,2947+18 LL4180+20 .300+18 L22+20
21 ,2991+18 .4200+20 .310+18 L26+20
22 ,3038+18 221420 .316+18 JL29+20
23 ,3089+18 243420 . 322+18 431420
24 . 3144+18 4267420 .328+18 A434+20
25 .3205+18 4292+20 «335+18 JA437+20
256 ,3270+18 14319420 .352+18 LLh3+20
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The program used is included in the appendix.
We used a B-field range from 8,800 gauss to 9,450 gauss
in order to check our graphic results with Graph XII,
Qur data is plotted on Graph XIII, Graph XII is

superimposed on our data for comparison.
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Ey/E. TFor Copper

Summarizing our approach to sodium, we found
EL/E; Dby calculating U+ in three ways: (1) A closed
form T, (2) An integrated U~ with closed expressions for
the V.'s, and (3) An integrated O with numerically
integrated expressions of VM .

In the case of the true Fermi surface for copper,
we have as a good approximation
Nz(6) = Vz + a(kh,) e 48, (131)
\}x = quwe ’

and Xrijr(ypa_\ij’w) (132)
\l.3 - A 0B, (133)

"

for 9;,% parallel to the [001] direction (see Figure I ).

—t
Thus, our expression for Vm would be

Xy’ ar i -(..:1%);; defe me
Vg & 2T )y O e e do , (134)
and a

A o ~tZwe o 49 _ipe
VM%: :E'T?So e 8 @ < 48 . (135)

This is not a simple expression to evaluate, as in the
case of sodium where the Vmx and sz were evaluated as
delta functions. Therefore, methods (1) and (2) are
eliminated for use with the true Fermi surface of copper.
This leaves method (3) for use. However, as an accuracy

check we can use g cylindrically symmetric approximation
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of the copper Fermi surface with method (2). We have
already described method (2) in the previous section on

sodium. Our equation for Vi was given as
+KMAK

T S(fﬁjoﬁf Alvz

q: < — (136)
4T . R *qV ’
¢ ) 14T (mwe-w TV
which can be rewritten as
+ kMAR
. e Alkz) dbhz
- e T T 2im @
where KMAx m Z
Thys Aha), (138)
and _ ..jt Qli. '
Vg T TS 28, ’ (139)

wnere ,A(%;) is the cross-sectional area made by a plane
varnendicular to the JE% axis intersecting the Fermi surface.
We did computations for the directions [001)and [111].
From Wood, data for Alh;)and %E%; for these two directions
was available. The drawing below shows the orientation of

thekgjaxis with the Fermi surface for these two directions.

Figure I



Let us first examine the [l direction. A
T of 10—9 sec, was used, and two different frequencies
f = 395.2 X 103 cycles/sec, and f = 6 X 107 cycles/sec.
were investigated,
Graph XIV is experimental data obtained by Wood
for a frequency of 400.0 X 103 cycles/sec. and a B-field
range of 10 to 30 thousand gauss. We see Gantmakher-Kaner
oscillations with a B-field period of 600 gauss. However,
the graph displays beats, and thus there must be present
two Gantmakher-Kaner waves of slightly different frequencies.
Our frequencies are expressed in the units cycles per unit
gauss magnetic field,
If we have two waves expressed as
gy = A wy {avh t +8) (140)

and
Yo = A o (2 ft + 8.) , (141)
then, adding, we get
3-: ‘a“,‘-\é?—': AE%(?.TYAFI": i—-@,)-*-ww(?-'{f';;t +¢1—)] L4 (142)
Making use of the trigonometric identity

oot lr =2 lwnt@tP]Loete-2) | -~ (143)
we obtain
‘ﬂ— - 2 1 2
gz gAm[zw(&z—)h(‘b—'?—_“i‘)}m[m@%f)t%q%?-ﬂ . (144)

The composite wave may be regarded as having a frequency
equal to & (£ +%,), which is the average of the frequencies

of the original waves, The amplitude of the composite
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wave is given by the quantity in the first set of
brackets in Equation ( 144 ). The amplitude varies
with a frequency of é_(&.-sz), and the nﬁmber of beats
per second is given as ({} - §, ). The drawing below

is a typical representation of the presence of beats.

Gravhs XV and XVI show the results for a frequency
of 395.2 X 103 cycles/sec. for a B-field range of 2,000
to 14,000 gauss, Graph XVII displays the beats which
begin at 5,700 gauss and end at about 13,700 gauss. The
results for a frequency of 6 X 105 cycles/sec. are
shown in Graphs XVIII through XX for a B-field range of
100 to 20,000 gauss., Graph XXI displays the beats which
begin at 6,400 gauss and end at about 18,000 gauss.
In both cases, the envelope of the wave is irregular
in shape, but still displays the pericdic recurrence of
increasing and decreasing wave amplitudes. Since our
Gantmakher-Kaner oscillations do not have the simple
forms of Equations ( 140 ) and (141 ) and may not have

the same amplitude, we understand why our graphic results
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are not as symmetric as the above drawing. The
irregular envelope of the wave which we see would
probably result mathematically by summing the two
Gantmakher-Kaner waves expressed as Fourier series.
Because of the irregularity of the envelope, we are
unable to determine the beat frequency accurately from
the graph.

Charts V and VI show the calculation of the
period of *trez Gantmakher-Kaner waves, both cases of
frequency giving a period of about 600 gauss. This
agrees with the experimental data mentioned before.

Recall Equation (54) which states that

c® - - - 2A
(A B) a'ﬂ'c [m(\/z]ExT_ - —z'ji;.—an— ak% s
where A® = B/m = the period of the G-K wave.

Now, Graph A shows a plot of 9A/3Kz versusalbzl for
the [111] direction of copper. We see two extremal
values of the function 9A /9Kz which have been labeled
P, and P, . P, corresponds to 3aA/3Kz equaling

6.57 X 108 cm , and P, corresponds to JA/3Kz equaling
8.1 X 108 cm-l. Thus, there are two values of [mVa]exr.
which should give Gantmakher-Kaner waves, each having

a different period. For P, , we obtain AB = 538 gauss,

and for P, , we obtain AB = 664 gauss.



Calculation of Frequency of Waves

63

for the Liiut] Direction of Copper

for £ = 3452 X 16® cye/sec

CHART V
Period
Peak No. on Graph Value of E+/E, B-Field “in Gauss
1 64 x 10”0 5,700
_ 700
2 78 x 1070 6,400
_ 600
3 98 x 1070 7,000
_ 700
L 49 x 10710 7,700
_ 600
5 89 x 10™10 8,300
600
6 132 x 10710 8,900
10 600
7 122 x 10 9,500
_ 600
8 58 x 1070 10,100
9 91 x 10 10,700 g
10 600
10 117 x 10 11,300
11 55 x 10 11,900
_ 600
12 u6 x 10”0 12,500
_ 600
13 60 x 10710 13,100
_ 600
14 63 x 10 10 13,700



Calculation of Frequency of Waves

for the C1n1l

64

Direction of Copper
for ‘F = GX\OsCYC/SEC

CHART VI
Period
Peak No. on Graph Value of E+/E B-Field  in Gauss.
-10

1 123 x 10 6,400
-10 600

2 65 x 10 7,000
-10 700

3 119 x 10 7,700
-1 600

L 121 x 10 0 8,300
-10 700

5 107 x 10 9,000
~-10 600

6 135 x 10 9,600
-10 600

v 167 x 10 10,200
-10 600
8 107 x 10 10,800 '
-10 600

9 103 x 10 11,400
~10 700

10 108 x 10 12,100
-10 600

11 69 x 10 12,700
-10 600

12 75 x 10 13,300
-1 500

13 101 x 100 13,800
-10 700

14 70 x 10 14,500
. =10 600

- L8 x 10 15,100
-10 600

- 61 x 10 15,700
~-10 600

- 85 x 10 16,300
-10 600

- 55 x 10 16,900
-10 500

- 37 x 10 17,400
=10 600

- 55 x 10 18,000
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Now the frequency is related to the period by

£= A
(AR . (145)
Thus, we have that
) -1 -
fi= ‘/538 gauss = ,0018 gaussl,

1}

and f, = \/6b4 gauss‘1 .0015 gauss‘l.

Therefore, the frequency of the composite wave is
given by

f*= Y (,0018 + ,0015) gauss—-1
or f*= ,00165 gauss—1t

?

Now the A® from the graph was 600 gauss,
corresponding to a frequency of ,0016 gauss—-,
Thus, we have a perfect agreement with theory. That
is, the two frequencies of the Gantmakher-Kaner waves
making up the beats are .0015 gauss-! and ,0018 gauss-1,
We also note that the experimental value of the frequency
of the composite Gantmakher-Kaner wave corresponds to
a value of 3pN/oky of 7.6 X 108 em™t on Graph A, This

corresponds to a frequency of .0016 gauss"*. Thus, our

data agrees with experimental data as well.
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Let us now look at the results for the [pol ]
direction of copper. Graph XXXIIL is an experimental
curve obtained by Wood showing helicon propagation
starting at about 16,000 gauss.

We have computed data for a frequency of

| - -1
395&3X19hz. for T = 10 ? sec. and T = 10~ Ysec,

Graphs XXII through XXVII show the results forT= 10“9 sec.
for a B-field range of 8,000 to 19,000 gauss. Helicons
begin propagating at about 15,275 gauss as seen from
Graph XXV, The helicons have a delta function shape,
just as the helicons for sodium had at T = 1077 ssec.
Graphs XXII through XXV show waves which are not constant
in period nor increase in amplitude., These can be called
neither helicons nor Gantmakher-Kaner oscillations.
Their source is unknown to us,

Graph B is'a graph of 9A/al, versus ba for
the [ 001 ] direction of copper. We see an extremal
value of ahA /akb;z equal to 2.2 X 108 Om"i, which means
that we would expect a Gantmakher-Kaner wave contribution
from those electrons having a \z velocity corresponding
to this value of aP\ﬂmLz . However, experimentally, no

Gantmakher-Kaner oscillations are seen., Realizing that

experimental results would come from use of the true
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noncylindrically symmetric Fermi surface, one might
suspect that our assumption of a cylindrically symmetric
Fermi surface, which Graph B describes, causes the
Gantmakher-Kaner oscillations. This will be discussed
further in the data analyzation of the copper calculations
using the true Fermi surface values.

On Graph B we also note the value of \3A/QL;LmX,

which is responsible for the absorption edge. The value

-1
of (:&AlakajﬂAx is 9.4 X 108 cm ., Using the equation

We= €B/mec = We = W+ $Vz , (146)
we saw that the last group of electrons which can
experience Doppler - shifted cyclotron resonance are
thosehaving the velocity Vzmax . Now since tu(c%V% ’
we have

eB8Yme = ‘BVEMAX ’ (147)

or

BY= qVamax mcfe = gchGalbalare . (148)

Thus, B* is the value of B at which we would expect
4

-

8
helicons to start propagating. Using[@Ab&ﬂAf 9.4 X 10 ecm ,
M

we obtain that
8% = 15,700

where m = 41 for % = mT /@ . This value of m corresponds

to M#*, defined earlier as that value of m in i which
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gives the largest contribution to Renl E¢/E; .
Helicons are seen to start at about 15,275 gauss; however,
as usual, the exact point is impossible to locate,

Data was caloulated for T = 1070 sec, for a B-field
range of 13,250 to 17,500 gauss, Graphs XXVIII through XXX
show the data, Helicons are seen to begin propagating
at about 15,750 gauss, which is in good agreement with
the experimental data, We also note the smooth sinusoidal-
like shape ofithe helicons, differing from the delta shaped

peaks for the previous T . This result from the change of

7 is identical with that seen in sodium.
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We mnow conclude this ‘thesis with the results for
'the final case of copper in which we use the true Fermi
‘surface. Again we use the computer program 1ncluded in
the. appendix in which the V%‘ ‘and m3 ' ‘are evaluated
'by numerical integrations. The values of the» V‘ a 'V% »
and Va components of the velocity for an electron on |

;

theNFermi,surface were made available by WOod.,,Becalling

t

that V‘ (’.)EZL)
A ’
fand that

3 = Q{,:o.lﬁ E(s»fuw)im . (149)

we see that it is necessary to know the constant energy

surface tbﬁu -eway from the Fermi surface, In the-
calculation of the velocity by Wood, it was assumed that
: the constant energy surface Aiy away . from the Fermi surface
‘was concentric in shape with the Fermi surface. If thlS is
“hot a: valid assumption, then our velocity on the Fermi surface
.is not accurate at all points and a dlfference in.the data’
.results and the experimental curve might be expected |

The results are shown on Graphs XXXI and XXXIII
A frequency of 395 2 X 103 hertz: and a ’ﬁ 4 of 10 -9 sec,
iwas ‘used. ‘Graph XXXI diSplays a B-field range of 16 500
.gauss to 17 500 gauss, and Graph XXXIII shows a B-field



hedin d

3range of 11 100 to 11 900 gauss. The [ 001] direction
of copper was investigated- thus, we were able to. compare
our data with Graphs XXIII XXIV XXVI and XXVII which
;show the data for the cylindrically symmetric Ferml
surface approximation.‘ The amplitudes of the peaks of
Graphs XXXI .and XXXIII are smaller by two ‘orders of
-magnitude than the amplitudes of their respective peaks
on Graphs XXIII XXIV XXVI and XXVII. The numerical ;i
integration techniques used in the program cannot be
respons1b1e for the decrease since their accuracy was
checked in the case of sodium,. Becalling Graph XII, we
see an amplitude for a helicon calculated by our numerical
1ntegrations which is identical’ w1th that calculated by
the earlier two methods in which numerioal integrations
were not used. ' _ '

. Graph XXXI does,.however,'show the familiar delta

‘shape due to the relaiation time of 16-9

sec. and agrees

with the experlmental curve on Graph XXXII in that hellcons.

‘are propagating in this B-field region. Graph XXXIII does -

not agree with the experimental curve which shows nothing ”i

propagating in this region. Our only explanation of this is

that the ve1001ty on the Fermi surface is not accurate at all

points due to a non-concentric constant energy surface £>lu

away from the Fermi surface. Also, the loss of cylindrical



symmetry of the Ferl surface is believed to .be the cause of
the reduction in amplitude of the peaks by a factor of 10 -2
which was mentioned earlier. AS for the case of sodium,
211mited oomputer time fovoed.us to investigate only small

B-field ranges in this final. case.,
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APPENDIX

I

COMPUTER PROGRAM FOR THE CALCULATION OF

THE RATIC OF THE MAGNITUDE OF THE TRANSMITTED
ELECTRIC FIELD TO THE INCIDENT ELECTRIC

FIELD

The following are the variables contained in the program:

Q= thickness of metal slab (cm,)
AMXK= maximum value of the wave vector in the z-direction
W= frequency of incident electromagnetic wave
T= relaxation time
PE= electron density
KPS= the number of magnetic field values for which we
are evaluating E¢/Ej
BO= the lowest magnetic field value that we are using
SU= the step interval between consecutive magnetic field
values
I0= the number of integers which when added to IPED is
considered as a sufficient approximation to the infinite
sum in the expression for EL/E;
JS= number of orbits into. which the Fermi Surface has been
divided between k,=0.0 and Kp= AMXK
J= DO-LOOP index for orbits
N= number of Fermi surface data points for an orbit. N may
be even or odd, but the points are assumed as evenly
distributed in the interval
K== DC=-LOOP index for wave number.
F= wave number = K¥PI/Q
KS= integer which gives maximum wave number
NN= DO=-LOOP index for the sum contained in the expression
NNO= the sum in the expression which goes from plus to minus
infinity is replaced by a sufficiently approximate sum
going from plus to minus (NNO-1)/2
NT= I0 + 1

84



Values of Variables for Sodium

The values of the variables in the program for
sodium that were used are as follows:
Q = 0.1 cm
AMXK = 0.9 X 108 om™'
W = 106 hz.
PE = 2.5 X 10?2 electrons/cm3

10 = 5
Js = 27
N = b5
NNO = 11
NNT = 6



Values of Variables for Copper

The values of the variables in the program for

copper that were used are as follows:

Q = 0,084 cm
AMXK = 1.48 X 108 om=!
W= 10° hz.

PE = 8.5 X 10°% electrons/cm3

I0 b

JS = 27

N = variable
NNO = 9

NT = 5
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115

111

87
COMPUTER PROGRAM

DOUBLE PRECISION A, ANSRX, ANSRY, ANSIX, ANSIY, BETA, \
GAMMA, S, V, DET, DARTR, DARTI, ETEIR, ETEII

COMPLEX CART, CSUMA, CSUMB, CSUMC, CSUMD, PARTP, PARTN,

SUMAXN, SUMAYN, SUMBXN, SUMBYN, SUMCXN, SUMAXP, SUMAYP,

SUMBXP, SUMBYP, SUMCXP, SUMCYP, SUMCYN, DENOMP, DENOMN, .

DENM, DENP, VNXPP, VNYPP, VNXNN, VNYNN, VNXN, VNYN, VNYP,

VNXP, SAXX, SAXY, SBXXA, SBXXB, SBXYA, SBXYB, SIGXX, SIGXY,

CIA, CVYXX, CVYXY

DIMENSION DENP(NNO), DENM(NNO), VNXPP(NNO), VNYPP(NNO),
VNXNN(NNO) VNYNN(NNO), VX(NMAX), VY(NMAX), VZ(NMAX) EXPIN(NMAX)
PARTP(NMAXS PARTN (NMAX), CART(NMAX), NAN(JS) wc(Js$
ARRAY(JS), AVGVZ(JS), AHMC(JS) CVYXX(JT,KS) CVYXY(JT KS)
Q=

AMXK=

CIA= (0,0,1.0)

H= 1,0545E~27

TM= 9,11E-~28

B= 9,11E-28

W=

T=

E= 4,8E~10

PE=

PI= 3.1416

ST=(W*PE*E)/(PI*D)

A=( (E%#2)*AMXK) /( (H®%2)# (PI*%2)*((2%JS)=2))

REWIND 8

DO 1000 KP=1,KPS

B=(BO + SU*(KP-1))

PEB=(2.0%Q¥SQRT(ST) ) /SART(B)

IPEC=INT(PEB)

IPED=IPEC + I0

IPEG=IPEC - I0

DO 265 J=1,J5

READ(8) ABRAY( ), -NAN(J)

N=NAN(J)

READ(8) (VX(I),I=1,N)
READ(8) (vY(I),I N)
READ(8) (vZ(I),I=1,N)
CALCULATION OF THE ARRAY AVGVZ
IF(N-2%*(N/2)) 110,115,110

SUMA= VZ(1) + VZ(N-1)

SUMB=0,0

KN=N-2

DO 111 L=2,KN,2

SUMB=SUMB + VZ(L)

SUMC=0.,0

KN=N-3

DO 112 L=3,KN,2

L,
1,
1,
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112 SUMC=SUMC + VZ(L)
SUMD=(VZ(N=-1) + VZ(N))/(2.0%(N-1))
AVGVZ(J)=(SUMA + 4,0%SUMD + 2,0%SUMD)/(3.0%(N~1)) + SUMD
GO TO 120
110 SUMA=VZ(1) + VZ(N)
SUMB=0,0
KN=N-1
DO 116 L=2,KN,2
116 SUMB=SUMB + VZ(L)
SUMC=0.0
KN=N-2
DO 117 L=3,KN,2
117 SUMC=SUMC + VZ(L)
AVGVZ(J)=(SUMA + 4,0%SUMB + 2.0%SUMC)/(3,0%(N~1))
GO TO 120
120 CONTINUE
CALCULATION OF THE ARRAYS ARMC(J) AND WC(J)
ABMC(J)=1,37#R*(NAN(J)*1.0)/(NAN(1)*1,0)
WC(J)=(E*B)/(D*ARNC(J))
DO 600 K=IPEG, IPED
F= (K¥PI)/Q
EXPIN(1)=0,0
DO 125 M=2,N
125 EXPIN(M)=(VZ(M) + VZ(M-1)-2.0%AVGVZ(J))*F*PI/((N=-1))
SUM=0,0
DO 130 M=1,N
SUM=SUM + EXPIN(M)
PARTN(M)=CEXP(CIA*SUM/WC(J))
130 PARTP(M)=CEXP((-1.0¥CIA*SUM)/WC(J))
CART(1)=(1.0,0.0)
DO 12 NN=1,NNO
DO 135 M=2,N
135 CART(M)=CEXP(-2.0%CIA*(=-NNT + NNO)*PI*(M-1)/((N-1)%1.0)
IF (N-2%*(N/2)) 181,182,181
182 SUMAXP=VX(1)*PARTP{1)*CART(1) + VX(N~1)*PARTP(N-1)#*CART(N-1)
SUMAYEF=VY(1)*PARTP{1)*CART(1) + VY(N-1)*PARTP(N-1)*CART(N-1)
SUMAXN=VX(1)*PARTN(1)*CART(1) + VX(N-1)*PARTN(N-1)*CART(N~1)
SUMAYN=VY(1)%PARTN(1)#*CART(1) + VY(N~1)*PARTN(N-1)*CART(N-1)
SUMBXP=(0,0,0,0)
SUMBYP=(0,0,0.0)
SUMBXN=(0,0,0.0)
SUMBYN=(0.0,0.0)
KN=N-2
DO 146 L=2,KN,2
SUMBXP=SUMBXP + VX(L)*PARTP(L)*CART(L)
SUMBYP=SUMBYP + VY(L)*PARTP{L)*CART(L)
SUMBXN=SUMBXN + VX(L)#*PARTN(L)*CART(L)
146 SUMBYN=SUMBYN + VY(L)#*PARTN(L)*CART(L)
SUMCXP=(0.0,0.0)



147

181

141

142

SUMCYP=(0,0,0.0)

SUMCXN=(0,0,0.0)

SUMCYN=(0.0,0,0)

KN=N-3

DO 147 L=3,KN,2

SUMCXP=SUMCXP + VX(L)*PARTP(L)*CART(L)
SUMCYP=SUMCYP + VY(L)*PARTP(L)*CART(L)
SUMCXN=SUMCXN + VX(L)*¥PARTN(L)*CART(L)
SUMCYN=SUMCYN + VY(L)*PARTN(L)*CART(L)

SUMDXP=(VX(N~1)*PARTP(N-1)*CART(N-1)+VX(N)*PARTP(N)*CART(N))

/(2,0%(N-1))

SUMDYP=(VY(N~1)*PARTP(N~1)*CART(N~1)+VY(N)*PARTP(N)*CART(N))

/(2.0%(N=1))

SUMDXN=( VX(N-1)*PARTN(N-1)*CART(N-1)+VX(N)*PARTN (N)*CART(N))

/{2.0%(N-1))

SUMDYN=(VY(N~1)*PARTN(N~1)*CART(N-1)+VY(N)*PARTN(N)*CART(N))

/(2.0%(N-1))

UNXP=(SUMAXP + 4,0%SUMBXP +2,0*SUMCXP)/(3.0%(N=1))+{SUMDXP)
VNYP=(SUMAYP + L.0*SUMBYP +2.0%SUMC P)/(3 0%(N=-1))+(SUMCYP)
VNXN=(SUMAXN + 4,0%SUMBXN +2,0%SUMCXN)/(3.0%(N-1))+(SUNMDXN)
VNYN=(SUMAYN + 4,0%SUMBYN +2,0%SUMCYN)/(3,0%(N-1))+(SUMDYN)

GO TO 60

SUMAXP=VYX(1)*%PARTP(" )*CART(1) + VX(N)*PARTP(N)*CART(N)
SUMAYP=VY(1)%*PARTP(1)*CART(1) + VY(N)*PARTP(N)*CART(N)
SUMAXN=VX(1)*PARTN(1)¥*CART(1) + VX(N)*PARTN(N)*CART(N)
SUMAYN=VY(1)*PARTN(1)%CART(1) + VY(N)*PARTN(N)#*CART(N)
SUMBXP=(0,0,0.0)

SUMBYP=(0.0,0.0)

SUMBXN=(0. o 0.0)

SUMBYN=(0. 0, ,0.0)

KN=N-1

DO 141 L=2,KN,2

SUMBXP= SUMBXP + VX(L)¥PARTP(L)*CART(L)

SUMBYP= SUMBYP + VY(L)*PARTP(L)*CART(L)

SUMBXN= SUMBXN + VX{L)*PARTN(L)*CART(L)

SUMBYN= SUMBYN + VY(L)*PARTN(L)*CART(L)
SUMCXP=(0.0,0.0)

SUMCYP=(0. o 0.0)

SUMCXN=(0.0, o 0)

SUMCYN=(0.0,0.0)

KN=N-~2

DO 142 L=3,KN,2

SUMCXP=SUNGXP + VX(L)#*PARTP(L)*CART(L)

SUMCYP=SUMCYP + VY(L)*PARTP(L)*CART(L)

SUMCXN=SUMCXN + VX(L)*PARTN(L)*CART(L)

SUMCYN=SUMCYN + VY{L)*PARTN(L)#*CART(L)

UNXP=(SUMAXP + 4,0%SUMBXP + 2, O*SUMCXP)/(B.O (N-1))
VNYP=(SUMAYP + 4,0%SUMBYP + 2.0%SUMCYP /(3.0*(N 1))
VNXN=(SUMAXN + 4,0*SUMBXN + 2,0%SUMCXN)/(3.0%(N=1))
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VNYN=(SUMAYN + 4,0%SUMBYN + 2,0%*SUMCYN)/(3.0%(N-1))
EN=NN

DENOMP=(1,0/T)+CIA*(F*AVGVZ(J)=W=( ( =NNT*1,0+EN)*WC(J)))
DENOMN=(1.0/T)-CIA*(F*AVGVZ(J )+W+( ( -NNT*1,0+EN)*WC(J)))
VNXPP(NN)=VNXP

VNYPP(NN)=VNYP

VNXNN (NN ) =UNXN

VNYNN(NN)=VNYN

DENP (NN ) =DENOMP

DENM (NN ) =DENOMN

CALCULATION OF SUMS FOR SIGXX AND SIGXY
CSUMA=(0,0,0.0)

CSUMB=(0.0,0.0)

CSUMC=(0.0,0.0)

CSUMD=(0, o 0.0)

DO 10 NN=1,NNO

CSUMA=CSUMA + VNXNN(NN)*CONJG(VNXNN(NN))/DENM(NN)
CSUMB=CSUMB + VNXNN(NN)*CONJG(VNYNN(NN))/DENM(NN)
IF (J-1) 275,276,275

CSUNC=CSUMC + VNXPP(NN)* CONJG(VNXPP(NN))/DENP(NN)
CSUMD=CSUMD + VNXPP(NN)#*CONJG(VNYPP(NN))/DENP(NN)
CONTINUE

CONTINUE

CVYXX(JS+1=J ,K)=CSUMA

CVYXY(JS+1-J,K)=CSUMB

CVYXX(JS-1-J,K)=CSUMC

CVYXY(JS-1~J,K)=CSUMD

CONTINUE

CONTINUE

REWIND 8

DO 700 K=IPEG,IPED

F=(K*¥PI)/Q

SAXX=ARMC(JS)*CVYXX(1,K) + ARMC(JS)*CVY¥XX(2%JS-1,K)
SAXY=ARMC(JS)*CVYSY(1 K) + ARMC(JS)*CVYXY(2%JS~1 K)
SBXXB—ARMC(I)*CVYXX(JS K)

SBXYB=ARMC(1)*CVYXY(JS,K)

SBXXA=(0.0,0.0)

SBXYA=(0.0,0.0)

DO 285 L=2,JS5-1,2

SBXXA=SBXXA + ARMC(JS+1-L)*CVYXX(L,K)+ARMC(L)*CVYXX(JS-1+L,K
SBXYA=SBXYA + ARMC(JS+1-L)*CVYXY(L,K)+ARMC(L)*CVYXY(JS-1+L,K

DO 290 L=3,JS-2,2

SBXXB=SBXXB + ARMC(JS+1-L)*CVYXX(L,K)+ARMC(L)*CVYXX(JS~1+4L,K
SBXYB=SBXYB + ARMC(JS+1-L)#*CVYXY(L,K)+ARMC(L)*CVYSY(JS~1+L,K

SIGXX=(SAXX + 4,0%*SBXXA + 2.0%SBXXB) )/3.0
SIGXY=(SAXY + 4,0%*SBXYA + 2,0%*SBXYB)/3.0
ANSRX=REAL(SIGXX)*A
ANSRY=REAL(SIGXY)*A
ANSIX=AIMAG(SIGXX)*A
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ANSIY=ATMAG(SIGXY)*A

V=(4,0%PI*W*(ANSRX + ANSIY))/(D%%2)
S=(F#¥2)~((W*4,0%PI*(ANSIX-ANSRY))/(D*%2))

DET=(S#*#%2) + (V#*%2)

IF (K-2%(K/2)) 15,16,15
PNO=-1,0

G0 TO 500

PNO= 1,0
DARTR=PNO*V/DET
DARTI=PNO*S/DET

IF (K-IPEG) §801,800,801
BETA= 0.0

GAMMA= 0.0

BETA=BETA + DARTR
GAMMA=GAMMA + DARTI
CONTINUE
ETEII=(4,0%W*CAMMA)/(Q*D)
ETEIR=(4,0%W*BETA)/(Q*D)

WRITE(6,900) ETEIR, ETEII, B
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FORMAT(1X,6HETEIR=,D14,3,4X,6HETEII=,D14,3,4X, 2HB=,F10.,2)

CONTINUE
REWIND 8
END
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