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Abstract—Simultaneously information and power transfer in
mobile relay networks have recently emerged, where the relay can
harvest the radio frequency (RF) energy and then use this energy
for data forwarding and system operation. Most of the previous
works do not consider that the relay may have its own objectives,
such as using the harvested energy for its own transmission
instead of maximizing transmission of the network. Therefore, in
this paper, we propose a Nash bargaining approach to balancethe
information transmission efficiency of source-destination pairs
and the harvested energy of the relay in a wireless powered relay
network with multiple source-destination pairs and one relay. We
analyze and prove that the Nash bargaining problem has several
desirable properties such as the discreteness and quasi-concavity,
when it is decomposed into three sub-problems: the energy
transmission power optimization, the power control for data
transmission and the time division between energy transmission
and data transmission. Based on the theoretical analysis, we
propose an alternating power control and time division algorithm
to find a suboptimal solution. Simulation results clearly show and
demonstrate the properties of the problem and the convergence
of our algorithm.

Index Terms—RF Charging, Wireless Relay Network, Resource
Allocation, Game Theory

I. I NTRODUCTION

Harvesting energy from the natural resources such as solar
energy, wind energy and thermal energy has been proved to be
a promising method to prolong the lifetime for networks with-
out fixed power supply, such as wireless sensor networks [2].
However, uncertainty and uncontrollability of environment
usually result in that energy harvesting has less stable energy
supply and might sometimes insufficient causing the outage of
the equipments in the networks [3]. To overcome uncertainty
and randomness of energy harvesting from environment, the
technique of radio frequency (RF) energy transfer is adopted
recently and applied widely in wireless powered networks,
such as in wireless sensor networks [4], in wireless body area
networks [5] and in wireless charging systems [6]. With RF
energy transfer, wireless receivers can harvest energy through
converting received signals from wireless transmitters into
electricity and store it in batteries [7]. Since the information
can also be transmitted using radio frequency in wireless net-
works, the concept of simultaneous wireless information and
power transfer (SWIPT) has become a promising approach for
energy and information delivery in wireless networks [7] [8].

More recently, besides information and power transfer from
a wireless node to another, SWIPT has also been extended to

Part of the material in this paper has been accepted by IEEE International
Conference on Communications, Malaysia, May 2016. [1]

wireless relay networks [9]–[17]. It is known that relays can
expand the coverage of the wireless networks, where the relays
help forward the sources’ information to the destinations far
away. However, in reality, some relays, e.g., wireless sensors
and mobile phones, may have limited battery reserves and
need external energy supply to maintain the circuits system
activeness and help transmit the data [9]. With SWIPT, relays
can at first harvest energy from sources or other wireless
transmitters, and then forward information to destinations with
the harvested energy [10].

The difficulty in realizing SWIPT effectively in such wire-
less powered relay networks is that practical circuits on the
relays cannot harvest energy and extract data from wireless
signals at the same time [11] [12]. Therefore, one of the
key challenges is balancing the tradeoff between the quality
of information transmission and wireless energy transfer.For
example, more time or frequency resource allocated to source-
to-relay information transmission results in less time to harvest
energy by the relays, which might lead to relays’ turnoff or en-
ergy outage. To maximize the throughput and avoid the energy
outage of the relays, the time switching-based relaying (TSR)
protocol and power splitting-based relaying (PSR) protocol
were proposed in [10] and [12], respectively, deciding the
energy harvesting time ratio and power splitting ratio in the
one-source-one-relay network. To cope with the system that
multiple sources, authors in [13] designed different encode
and decode protocols for multiple source energy and data
transmission and compared their signal-to-error-ratios (SERs).
Moreover, TSR and PSR protocols were extended in [14] to
deal with the antenna selection problem for energy harvesting
and information transmission, when the relay was equipped
with a MIMO system. The relay selection problem was studied
in [15] when the networks include multiple relays, where
the authors maximized the capacity under an energy transfer
constraint. The concept of self-looping energy recycling was
proposed very recently with full-duplex relays. The capacity
was derived with the TSR protocol in [16] with full-duplex
relays and the average rate was optimized in [17] when in
combination of full-duplex relays and the MIMO system.

As mentioned above, most of the existing works considered
the information transmission and energy transfer tradeoffto
achieve a common objective such as maximizing the total
capacity of the system. This setting is suitable only when
all nodes belong to the same authority. However, similar to
the conventional wireless relay networks [18]–[20], in reality,
nodes in the wireless powered relay networks have their own
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selfish goals, which usually conflict with each other. As for
wireless powered relay networks, each source-destinationpair
cares about its information transmission efficiency, i.e. bits
successfully transmitted per Joule energy cost. As for the
relay, when the energy can be accumulated in the battery [21]–
[23], the relay cares mostly about its energy benefit, i.e., the
harvested energy left after helping sources transmit informa-
tion. The residual harvested energy can be used by the relay,
e.g., for its own data transmission or system operation. Thus,
source-destination pairs and the relay hold contradicted goals
where sources try to guarantee their transmitted energy to the
relay are used to transmit sources data as much as possible.
However, the relay wants to uses less harvested energy to
help sources and to keep more for the relay’s own uses. The
separated and contradicted individual objectives of source-
destination pairs and the relay require us to investigate how
they negotiate and bargain with each other. Thus, it is natural
to apply game theory to balance the objectives among different
nodes [24]–[27].

To balance the information transmission efficiency for
source-destination pairs and the residual harvested energy
for the relay, in this paper, we propose a Nash bargaining
approach to obtain the Nash bargaining solution [31], through
optimizing power control and time allocation. We prove the
non-convexity of the bargaining problem and simplify it
through decomposing the problem into three sub-problems:
the energy transmission power optimization, the power control
for information transmission and the time division between
information transmission and energy transmission. Based on
the theoretical analysis of the each problem, we design an
alternating power control and time division algorithm to reach
a suboptimal solution of the Nash bargaining solution.

The main contributions of this paper are as follows:
• We are the first to introduce a Nash bargaining approach

in wireless powered relay networks to balance the tradeoff
between the energy efficiency of information transmission
of source-destination pairs and the residual harvested
energy of the relay.

• The bargaining problem decomposition is not only physi-
cally meaningful but also mathematically tractable, where
the subproblem of energy harvesting power optimization
is proved to be discretizable. Moreover, the subproblems
of time division and information transmission are all
proved to be quasi-concave.

• Simulation results corroborate the properties or subprob-
lems and the convergence of our algorithm. In addition,
the utility imbalance in the Nash bargaining solution is
also illustrated through simulation.

The rest of this paper is organized as follows. The system
model and problem formulation are presented in Section II.
In Section III, we theoretically analyze and decompose the
problem. Based on the analysis, we present our algorithm
in Section IV. Section V includes the numerical simulation
results. Finally, we conclude this paper in Section VI.

II. SYSTEM MODEL

We consider a wireless powered communication system as
shown in Fig. 1. For simplicity, we suppose that the system
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Fig. 1. System model for wireless powered relay networks.

includes N source-destination pairs denoted by(S,D) =
{(s1, d1), (s2, d2), . . . , (sN , dN )} and an RF-powered coop-
erative relay, denoted byr. More complicated problems in
practical networks with multiple relays, such as relay selection,
interference control and spectrum resource allocation arenot
considered in this paper, which is left for the future work.
Sources transmit data to their destinations with the help of
this relay (which does not have its own data to transmit). In
this paper, the relay is RF-powered [8]. The half-duplex time-
switching relaying protocol (TSR) [10] is adopted to support
the relay’s energy harvesting from sources and data forward-
ing. Furthermore, the direct link is assumed to be ignored
between each source-destination pair [32]. More details on
the channel model, TSR protocol, utility of each node and
problem formulation are given as follows.

A. Channel Model

The channel between each pair of nodes is modeled as
a quasi-static flat fading channel [33], where the channel is
constant over a block timeT and independent from one block
to the next. Without loss of generality, the channel fading in
each block follows a Rayleigh distribution. The use of such
channels is motivated by prior research in the wireless powered
networks [11], [12], [34]. For simplicity, it is also assumed
that the channel state information is available at the relayand
destinations.

B. TSR Protocol

Fig. 2 describes the block structure in the TSR protocol for
energy harvesting and information forwarding at the relay.It
is a direct extension from the protocol in [10] and [12] in
support of the case where the relay is able to assist multiple
sources inside one time blockT . The relay first harvests the
energy from its assisting sources simultaneously. Then the
relay receives signals from sources and then decodes and
forwards (DF) the data to its assisting destinations sequentially
with the harvested energy [12], [28]–[30]. As shown in Fig. 2,
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Fig. 2. TSR protocol.

αT denotes the fraction of the block time where the relayr
harvests energy, which is determined by the energy transmis-
sion time of each of its assisting sourcesi, denoted byαiT .
We haveαT = max(si,di)∈(S,D) αiT , which indicates that the
relay does not begin transmitting data before accomplishing
energy harvesting from all its assisting sources.βiT is the
time for sourcesi to relay r data transmission, andγiT is
the time for information forwarding fromr to di. Thus, the
following constraint is naturally satisfied:

max
αi

(αiT ) +
∑

(si,di)∈(S,D)

(βi + γi)T = T. (1)

In this paper, we assume that the following constraint must
also be satisfied to guarantee the quality of service for data
transmission of each source-destination pair. Each source-
destination pair has at leastθ0T unit time for data transmission
in this system:

(βi + γi)T ≥ θ0T. (2)

C. Utility of Each Node

1) Source-Destination Pair Utility: For each source-
destination pair(si, di), we adopt thedata transmission ef-
ficiency[35] as its gain, which is defined as the total average
number of bits successfully transmitted fromsi to di per Joule
unit of energy consumed by sourcesi, in each block time.
Assuming that the relay The data transmission efficiencyUS

i

for (si, di) can be calculated as follows:















U
S
i =

Ci · T

P s1
i αiT + P s0

i βiT
=

Ci

P s1
i αi + P s0

i βi

,

Ci = min

{

βi log

(

1 +
P s0
i |hi|

2

σ2

)

, γi log

(

1 +
P r|gi|

2

σ2

)}

,

(3)
whereCi is the average capacity for sourcesi transmitting
data to di via relay r with the TSR protocol,P s0

i is the
transmission power of sourcesi for data transmission andP s1

i

is the transmission power of sourcesi for energy transmission,
which can be different fromP s0

i , P r is the transmission power
of relay r, hi is the channel gain fromsi to r, andgi denotes
the channel gain fromr to di. Since either in the energy
transmission, or in the data transmission, the transmission
power cannot exceed the physical power upper bound of each

equipment, we have the power constraints as follows:










0 ≤ P s1
i ≤ P s

0 ,

0 ≤ P s0
i ≤ P s

0 ,

0 ≤ P r ≤ P r
0 ,

(4)

where P s
0 is the maximum energy (or information) trans-

mission power for each source, andP r
0 is the maximum

transmission power for the relay.
2) Relay Utility: For relay noder, its utility is the residual

energy after energy harvesting and data forwarding, which can
be used to execute other applications for itself, e.g., sensing
or transmitting data in sensor networks. The harvested energy
at relayr per block time can be calculated as

E = η
∑

(si,di)∈(S,D)

αiTP
s1
i |hi|

2, (5)

where η ∈ (0, 1) is the energy conversion efficiency which
depends on the energy harvesting circuits [11]. The energy cost
in relay r per each block time can be calculated as follows:

ϕ =
∑

(si,di)∈(S,D)

(γiTP
r) + E0, (6)

where the first term is the energy cost for data transmission
andE0 is a constant, which denotes the energy cost for signal
decoding and recoding in the assistance of data forwarding.
Hence, the utility of relayr is denoted byUR, which is
calculated as follows:

UR = E − ϕ. (7)

D. Game Theoretic Problem Formulation

Both the source-destination pairs and the relay aim to
achieve the highest utility. However, the more available energy
at the relay requires more time for energy transmission (with
larger{αi}) and less time for data forwarding ( with smaller
{βi} and{γi}). This usually results in the lower utilities for
the source-destination pairs. Apart from the influence of time
division, the transmission power from sources (such asP s1

i

andP s0
i in (3) and (5)) and the transmission power from the

relay (such asP r in (3) and (5)) jointly affect the utilities of
source-destination pairs and the relay. Since the utilities of the
sources and the utility of the relay are obviously contradicted,
a Nash bargaining game [31] is adopted in this paper and the
Nash bargaining solution [31] is considered as a reasonable
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solution to balance the utilities of sources and the utilityof
the relay.

In the Nash-bargaining game, the source-destination pairs
and the relay are modeled asN + 1 players, where for
convenience the relay is denoted as the(N + 1)th player.
The strategy of each player (each source-destination pair and
the relay) consists of all the variables that may influence the
value of the player’s utility. Even though the utility of each
player does not directly contain all variables as in (3) and (7),
the constraint in (1) and the utility function in (3) make all
variables correlated. Therefore, each player needs to consider
all the variables in its strategy. That is to say, each player’s
strategy consists of the transmission power of sources{P s1

i },
{P s0

i }, the transmission of the relayP r, and the time division
variables{αi}, {βi}, and{γi}. The strategy of then’s player
is denoted byΥn, which is given below.

Υn =
{

{P s1
i }, {P s0

i }, P r, {αi}, {βi}, {γi}
}

n
. (8)

The objective function for a Nash bargaining game is defined
as a Nash bargaining solution, which can satisfy all the players
in the game. In a Nash bargaining solution, all players reacha
consensus of their strategies to maximize the product of util-
ities of all players [31]. Mathematically, the Nash bargaining
solution in this paper is defined as follows.

max
{P s0

i },{P s1
i },P r,{αi},{βi},{γi}

Φ =





∏

(si,di)

US
i



UR,

s.t. US
i > 0, UR > 0,

Υ1 = Υ2 = . . . = ΥN = ΥN+1

=
{

{P s1
i }, {P s0

i }, P r, {αi}, {βi}, {γi}
}

,

Constraints in(1), (2), (4),
(9)

whereUS
i andUR are given in (3) and (7), respectively.

We emphasize that the main concerning in this paper is
providing some static insights in a Nash bargaining solution in
the wireless powered relay networks instead of designing a dy-
namic distributed process. Therefore, we assume that through-
out this paper, the bargaining process is simulated in a cen-
tralized way on a randomly selected source. After the selected
source achieves the values of{P s0

i }, {P s1
i }, P r, {αi}, {βi}

and {γi} in a Nash bargaining solution, it sends the values
of P s0

i and P s1
i to each sourcesi through the relay to tell

si how to set the transmission power. In addition, the relay
also achieve the the values ofαi, βi, andγi from the selected
source and sends them to each sourcesi to tell si how to
allocate the time between the energy transmission and data
transmission.

III. PROBLEM ANALYSIS

In this section, we first highlight that the Nash bargaining
problem in this paper is not guaranteed to be a concave (con-
vex) problem, which is hard to obtain a strictly global optimal
solution. Therefore, to find a suboptimal solution, we de-
compose the problem into three parts: 1) energy transmission
power optimization, i.e., how to setP s1

i ; 2) data transmission
power optimization, i.e., how to setP s0

i andP r; and 3) time

division optimization, i.e., how to setαi, βi and γi. We
find this decomposition is not only traditionally meaningful,1

but also mathematically tractable that each problem holds its
specific properties which can help simplify the process of the
algorithm design to find a suboptimal result of the problem
in (9).

A. Non-Concavity of The Original Problem

In this subsection, we prove that the original problem is not
a concave (convex) problem (Property 1), which is hard to find
a strictly optimal solution [37].

Lemma 1: The objective function in (9) is maximized, if
and only if the following equation is satisfied for each source-
destination pair:

βi log

(

1 +
P s0
i |hi|

2

σ2

)

= γi log

(

1 +
P r|gi|

2

σ2

)

. (10)

That is to say, at the Nash bargaining solution, the relay
transmits all the data which it receives from its assisting
sources.

Proof: Whenβi log
(

1 +
P s0

i |hi|
2

σ2

)

< γi log
(

1 + P r |gi|
2

σ2

)

,
the relay can lower down its transmission timeγiT , inducing
a larger

(

η
∑

xi=1(αiTP
s1
i |hi|

2)− (
∑

xi=1 γiTP
r + E0)

)

in (7). On the other hand,
if βi log

(

1 +
P s0

i |hi|
2

σ2

)

> γi log
(

1 + P r |gi|
2

σ2

)

, the source
can lower down its transmission timeβiT , inducing a larger
1/(αiP

s1 + βiP
s0), which increases the objective function.

Overall, the objective function is maximized, if and only if
βi log

(

1 +
P s0

i |hi|
2

σ2

)

= γi log
(

1 + P r|gi|
2

σ2

)

is satisfied.
Property 1: The problem (9) is not guaranteed to

be a concave (convex) optimization problem with vari-
ables {αi}, {βi}, {γi}, {P

s0
i }, {P s0

i } andP r.
Proof: Based on Lemma 1 and the power constraintP r ≤

P r
0 as mentioned in Section II.C, we have the constraint set

as follows:

σ2

|gi|2





(

1 +
P s0
i |hi|

2

σ2

)

βi
γi

− 1



 ≤ P r
0 . (11)

It is not a convex set forP s0
i andβi. Hence, the problem in

(9) is not a strict concave (convex) optimization problem [37].

B. Dedicators and Enjoyers for Energy Transmission

In this subsection, we prove that at the Nash bargaining
solution, the sources can be divided into two groups as
dedicatorsandenjoyers. The definitions of the dedicator and
the enjoyer are given as follows:

Definition 1: Source si is defined as a dedicator
when sourcesi transmits energy with full transmission
power, i.e., P s1

i = P s
0 .

Definition 2: Source si is defined as anenjoyer when
sourcesi never transmits energy to the relayr, i.e.,P s1

i = 0.

1When the scenario is complicated, it is a traditional trend of thoughts
to decompose the time division and power control problem in dealing with
resource allocation problems in wireless communication.
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Then, we have the theorem as follows:
Theorem 1: The objective function in (9) is maximized if

and only ifP s1
i = P s

0 or P s1
i = 0 for each sourcesi. That is

to say, each source in the system is either adedicatoror an
enjoyer.

Proof: See Appendix A.
Then, we present Corollary 1 and Corollary 2, respectively,

to emphasize the energy transmission time property for the
dedicators and which sources become more likely to be
dedicators. These two corollaries can help simplify the process
to decide the energy transmission time and the dedicator
selection, which is shown in the algorithm in Section IV.

Corollary 1: For each dedicatorsi (with P s1
i = P s

0 ), its
energy transmission time isαiT = maxNj=1{αjT }. That is to
say, all dedicators spend the same time duration for energy
transmission.

Proof: According to Theorem 1, forP s1
i = P s

0 , func-
tion (19) is a monotonically increasing function forP s1

i . Under
this condition, it is a monotonically increasing function with
respect toαi. Thus, each sourcesi tends to maximizeαi in
maximizing the objective function (9). Hence, we haveαi =
maxNj=1{αj}.

Corollary 2: For each pair of sourcessi and sj , P s1
i ≥

P s1
j is satisfied if and only ifβiP

s0
i ≥ βjP

s0
j and |h1|

2 ≥
|h2|

2. That is to say, the source is more likely to do energy
transmission as a dedicator, when it has a better channel
condition (|hi|

2) to the relay and holds more time (βiT ) and
larger power (P s0

i ) for data transmission.
Proof: See Appendix B.

Corollary 2 can also help to design an incentive mechanism,
to encourage sources to be dedicators instead of receivers.
According to Corollary 2, in a certain time block, sources
who want to transmit more data (with a largerβiT ) are more
likely to be selected as dedicators. Therefore, assuming that
sources in the network have the similar amount of data in a
relatively long time (a number of time blocks), some sources
have more data in the first several time blocks are selected as
dedicators and the others are responsible to transmit energy
in the rest ones. In addition, the channel statement in the
wireless network usually changes with time. This indicates
that sources as enjoyers are eventually selected as dedicators
in the later time blocks, when their channel statements between
the relay become better. Even though Corollary 2 can avoid
the circumstance that some sources are always working as
dedicators and others are always selected as enjoyers, more
incentive mechanisms are needed to proactively encourage
sources to work as dedicators, which is left for the future
work.

C. Quasi-Concavity of Data Transmission Power Control

In this subsection, we prove that when the time division and
the group ofdedicatorsare fixed, the data transmission power
control is a quasi-concave optimization problem.

Theorem 2: Given fixed{P s1
i } and fixed{αi}, {βi}, {γi},

the problem in (9) is a quasi-concave optimization problem
with variables{P s0

i } andP r.
Proof: See Appendix C.

Algorithm 1: Alternating Power Control and Time Divi-
sion Algorithm

Input : k = 0, ({P s1
i })L,

({P s0
i })k,(P r)k,({αi}, {βi}, {γi})

k

, Output : maxΦ({P s1
i }, {P s0

i }, P r, {αi}, {βi}, {γi})
1) Enumerating possible conditions of dedicator
selection, at each condition with{P s1

i }L:
k=0;
while Arbitral stopping criterion is not satisfieddo

(a) Transmission power optimiza-
tion: ({P s0

i }, P r)k+1 = argmax({P s0
i },P r) Φ

k
1 ;

(b) Time division optimiza-
tion: ({αi}, {βi}, {γi})

k+1 =
argmax{αi},{βi},{γi} Φ

k
2 ;

end
ΦL = ΦL

(

{P s1
i }L, ({P s0

i }, P r, {αi}, {βi}, {γi})
k+1
)

;
2) Φ = maxL ΦL;
* (·)L is theLth condition to select dedicators,(·)k is
the value of thekth iteration.

D. Quasi-Concavity of Time Division

In this subsection, we prove that assuming the data trans-
mission power control and the group ofdedicatorsto be fixed,
the time division problem is a quasi-concave optimization
problem.

Theorem 3: Given fixed{P s1
i } and fixed{P s0

i } andP r,
the problem in (9) is a quasi-concave optimization problem
with variables{αi}, {βi}, {γi}.

Proof: See Appendix D.
We conclude this section as follows. The original prob-

lem in (9) is not a concave (convex) problem which can
not guarantee to obtain a globally optimal solution (Prop-
erty 1). However, when we decompose the problem into
three parts: 1) energy harvesting power optimization, 2) data
transmission power optimization, and 3) time division, we find
that the problem becomes simpler. The energy transmission
power optimization is a discrete optimization problem. In
particular, the sources can be divided intodedicatorsand
enjoyers (Theorem 1), which are relevant to the channel
conditions from the sources to the relay and the transmission
energy cost of the sources (Corollary 2). The data transmission
power optimization problem and time division problem are
both quasi-concave optimization problems (Theorem 2 and
Theorem 3). Therefore, there exist many optimization algo-
rithms to solve [36] [37], e.g. the gradient ascent algorithm.
The properties discussed in this section indicate that the
problem decomposition is not only traditionally meaningful,
but also reasonable from a mathematical perspective, which
can guide us to design an efficient algorithm in the next
section.

IV. A LTERNATING POWER CONTROL AND TIME DIVISION

ALGORITHM

In this section, we design an alternating algorithm to solve
the bargaining problem in (9). The analysis in Section III
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enlightens the decomposed algorithm design: 1) The outer loop
is optimizing the energy transmission power with enumerating
all the possible conditions to select dedicators (according to
Theorem 1). 2) Under each condition, we alternatively and
iteratively solve data transmission power optimization and time
division problems (according to Theorem 2 and Theorem 3).
We emphasize that since the original problem is not a concave
(convex) optimization problem (according to Property 1), this
kind of algorithm can only guarantee to reach a suboptimal
solution. Specifically, the alternating algorithm is shownin
Algorithm 1, whereΦk

1 andΦk
2 are given as follows:

{

Φk
1 = Φ({P s1

i }L, {P s0
i }, P r, {αi}

k, {βi}
k, {γi}

k),

Φk
2 = Φ({P s1

i }L, ({P s0
i }, P r)k+1, {αi}, {βi}, {γi}),

(12)
where (·)L denotes the value at theL’s condition of energy
transmission power optimization, and(·)k is the value at the
k’s iteration of data transmission power optimization and time
division.Φk

1 equals to the objectiveΦ in (9) when{P s1
i } and

{αi}, {βi}, {γi} are fixed.Φk
2 equals to the objectiveΦ when

{P s1
i }, {P s0

i }, P r are fixed.
More details on energy transmission power optimiza-

tion (dedicator selection) and the details on the alternating
the data transmission power optimization and time division
process are given as below. In addition, we also discuss
the convergence and the complexity of our algorithm in this
section.

A. Energy Transmission Power Optimization

In this subsection, we explain the dedicator selection in
Algorithm 1. According to Theorem 1, the energy transmission
power optimization is first transformed from a continuous
problem into a discrete problem. Thus, what we concern about
is to decide which sources are selected to transmit energy as
dedicators and which are not. According to Theorem 1 and
Corollary 1, we emphasize that the power and time for energy
transmission for all dedicators are identical. For convenience,
we define an indicator vectorΩ = {ω1, ω2, . . . , ωN} ∈ B,
whereωi = 1 when sourcesi is a dedicator. Otherwiseωi = 0
and sourcesi is an enjoyer.B is the set of the all the conditions
of dedicator selection, where|B| = 2N . We provide Remark 1
and Remark 2 as below to help us decide which sources are
more likely to be selected as dedicators.

Remark 1: Given any indexK, when
∑N

i=1 ωi = K is not
feasible for all elements inB, the conditions with

∑N
i=1 ωi <

K are not feasible as well.
Remark 1 indicates that the transmitted energy is not enough
with K dedicators, it is also not enough when the number
of dedicators is belowK. Thus, we enumerate the conditions
from N dedicators toN − 1, N − 2, . . . dedicators and stop
when the result is not feasible for all conditions withK
dedicators.

Remark 2: When
∑N

i=1 ωi = K, ω1 ≥ ω2 is possibly
satisfied when|hi|

2 ≥ |hj|
2.

According to Corollary 2, we have that the energy transmission
powerP s1

i ≥ P s1
j is satisfied if and only ifβiP

s0
i ≥ βjP

s0
j

and |h1|
2 ≥ |h2|

2. However,βi and P s0
i for each source

si cannot be determined before the alternating data trans-
mission power and time division process is accomplished in
Algorithm 1. Thus, we can only decideωi based on|hi|

2,
which results in that the operation in Remark 2 might miss the
optimal point. However, the operation can observably reduce
the enumeration time withK dedicators, from

(

N
K

)

to 1 (to
selectK sources as dedicators with the highest|hi|

2).

B. Data Transmission Power Optimization and Time Division

In this subsection, we propose the concave (convex) opti-
mization methods to deal with the data transmission power
optimization and time division, i.e., how to find the optimal
{P s0

i }, P r, {αi}, {βi}, and {γi}. We decompose the data
transmission power optimization and time division and alterna-
tively deal with the two problems, i.e., the inner iterationin Al-
gorithm 1, according to Property 1, Theorem 2 and Theorem 3.
The specific iteration of data transmission power optimization
and time division, and the arbitral stopping criterion are given
as follows.

• Data Transmission Power Optimization: When the
energy transmission power{P s1

i } and the time division
{αi}, {βi}, {γi} are fixed as the values obtained from
the latest iteration, the data transmission optimization
problem at thekth iteration is to maximizeΦk

1 in Al-
gorithm 1, which is given as follows:

max
Pr

Φk
1

=
N
∏

i=1

(

log(1 + Li
1P

r)

Li
3((1 + Li

1P
r)L

i
2 − 1) + Li

4

)

· (K1 −K2P
r) ,

s.t. 0 ≤ P
r ≤ [P r

0 ]
+
,

(13)

where[P r
0 ]

+ = min
{

P r
0 , {

σ2

|gi|2
(1 +

P s
0
|hi|

2

σ2 )
βi
γi − σ2

|gi|2
}
}

and Li
1 to Li

4 and K1 to K2 are given in (24) in
Appendix C. How to transfer the original problem in (9)
into the above form is also given in Appendix C. The
Lagrangian functionLk

1(P
r, ρ1, ρ2) is given as follows:

Lk
1(P

r
, ρ1, ρ2)

= −

N
∏

i=1

(

log(1 + Li
1P

r)

Li
3((1 + Li

1P
r)L

i
2 − 1) + Li

4

)

(K1 −K2P
r)

+ ρ1(0− P
r) + ρ2(P

r − [P r
0 ]

∗),
(14)

whereρ1 > 0 andρ2 > 0 are the Lagrange multipliers.
Then, Lk

1(P
r, ρ1, ρ2) is minimized through the typical

gradient ascent algorithm (Chapter 3 of [37]). The details
of the gradient ascent algorithm for data transmission
power optimization is given in Appendix E. We obtain
the optimal data transmission power of the relay as
(P r)⋆ and calculate the optimal data transmission power
of the sources as({(P s0

i )})⋆ based on (10). Finally,
we updateP r and {P s0

i } as (P r)k+1 = (P r)⋆ and
({P s0

i })k+1 = ({P s0
i })⋆.

• Time Division: When the energy transmission power
{P s1

i } are fixed and the data transmission powerP r and
{P s0

i } have already been updated at thekth iteration, the
time division problem at thekth iteration is to maximize
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Φk
2 in Algorithm 1, which is given as follows:

max
{αi},{γi}

Φk
2

=





∏

Ps1
i

=Ps
0

Di
1γi

Di
2α+Di

3γi



 · (F1α− F2 −

N
∑

i=1

D
i
4γi),

s.t. α+
N
∑

i=1

(γi +D
i
5γi) = 1,

(γi +D
i
5γi)T ≥ θ0T,

(15)
where D1 to D5 and F1 to F2 are given in (32) in
Appendix D. How to transform the original problem in
(9) into the above form is also given in Appendix D.
The Lagrangian functionLk

2(α, {γi}, ̺1, {̺
i
2}) is given

as follows:

Lk
2(α, {γi}, ̺1, {̺

i
2})

= −





∏

Ps1
i

=Ps
0

Di
1γi

Di
2α+Di

3γi



 · (F1α− F2 −
N
∑

i=1

D
i
4γi)

+ ̺1

(

α+
N
∑

i=1

(γi +D
i
5γi)− 1

)

+
N
∑

i=1

̺
i
2

(

θ0T − (γi +D
i
5γi)T

)

,

(16)
where ̺1 and {̺i2} are the Lagrange multipliers.
Similar to the data transmission power optimization,
Lk
2(α, {γi}, ̺1, {̺

i
2}) is minimized through the typical

gradient ascent algorithm (Chapter 3 of [37] and find the
optimal point asα⋆, ({γi})⋆ and ({βi})

⋆. More details
of the dual ascent algorithm for time division is given
in Appendix F. Finally we update the time division as
αk+1 = α⋆, {γi}k+1 = {γi}

⋆ and{βi}
k+1 = {βi}

⋆.
• Stopping Criterion: The stopping criterion in the opti-

mization methods is used to determine when the iteration
stops [37]. Specifically, in Algorithm 1 the stopping
criterion is the rule to evaluate when the alternating data
transmission power optimization and the time division
process should stop, which is given as follows,

max

{

|Φk+1
1 − Φk

1 |

Φk
1

,
|Φk+1

2 − Φk
2 |

Φk
2

}

< ε, (17)

whereε is a minor parameter to determine the conver-
gence.

C. Convergence and Complexity

In this part, we discuss the convergence and the complexity
of our proposed algorithm. Specifically, we at first prove that
the alternating data transmission power optimization and time
division process (the inner loop in Algorithm 1). Then, we
discuss the complexity of our algorithm, i.e., to discuss the
enumeration time of energy transmission power optimization
(the outer loop in Algorithm 1) and the iteration time of
alternating data transmission power optimization and time
division process (the inner loop in Algorithm 1).

We at first prove the convergence of this alternating data
transmission power optimization and time division process.

Theorem 4: The alternating data transmission power opti-
mization and time division process converges.

Proof: It is easy to test that the singularity of the objective
functionΦ in (9) exists, only when for any sourcesi, P s0

i = 0
and P s1

i = 0 simultaneously happen. However,P s0
i = 0

indicates thatsi does not transmit the data (βi = 0), which
contradicts the constraints in (2). Therefore,Φ has an upper
bound in the feasible zone. The Lagrangian methods in the
alternating data transmission power optimization and time
division process guarantee thatΦk

1 andΦk
2 are non-decreasing

at each iteration [37]. When the objective functionΦ keeps
increasing and has an upperbound, the stopping criterion will
finally become satisfied with the iteration execution [37],
which indicates that the iteration converges.

We then discuss the complexity (the total number of iter-
ations) of our algorithm. Based on Corollary 2, Remark 1
and Remark 2, the enumeration time of the outer loop is
prominently reduced from2N to N . Thus, the computation
complexity can be expressed asN × Tin, whereTin is the
average number of iterations for the inner loop. As for the
inner loop of our algorithm, either for the data transmission
power optimization or for the time division, the general gra-
dient ascent method usually guarantees a linear convergence
speed [38]. We useO(·) to represent the magnitude of iteration
time. Then, for the data transmission power optimization, the
iteration time can be expressed asO( 1

ε1
), where ε1 is the

parameter to constrain the accuracy of the data transmission
power optimization as given in (41) in Appendix E. For the
time division, the iteration time can be expressed asO( 1

ε2
),

where ε2 represents the accuracy of time division as given
in (43) in Appendix F. Thus, we can calculate the computation
complexity, denoted byT , as follows.

T = N × Tin = N ×Nal ×O(
1

ε1
+

1

ε2
), (18)

where Nal is the time of alternations between the data
transmission power optimization and the time division. We
emphasize that even though the alternating data transmission
power optimization and the time division process can be
proved to converge, the strict closed-form relation between
the Nal and the arbitral stopping criterion given in (17) is
complicated to derive. This is because the non-convexity (non-
concavity) of the original problem results in the distance
between the point after each step of data transmission power
optimization or time division and the final result is hardly to
calculate. Thus, we left the mathematical derivation for the
future work.

We conclude this section as follows. We design an alter-
nating power control and time division algorithm to solve the
bargaining problem in (9). The outer loop in the Algorithm 1
is the energy transmission power optimization. Propertiesin
Remark 1 and Remark 2 can help to reduce the time of
enumeration. The inner iteration in the Algorithm 1 is the
data transmission power optimization and time division. At
each iteration, we sequentially optimize the data transmission
power and deal with the time division, through the Lagrangian
optimization methods. The stopping criterion guarantees the
convergence of the inner iteration.
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Fig. 3. Convergence of the iteration for data transmission power optimization
and time division.

V. NUMERICAL RESULTS

In this section, we provide the numerical results to illustrate
the properties of the problem and our alternating algorithm.
We at first show the convergence of our algorithm in Fig. 3.
Then, we discuss the relation between objective in (9) and
the number of dedicators in Fig. 4. The sum capacity of all
source-destination pairs and the residual harvested energy in
the relay are illustrated in Fig. 5 and Fig. 6. The distribution of
the utilities among dedicators and enjoyers is shown in Fig.7,
which shows the necessity to design incentive mechanisms
in the future work. The simulation parameters are given in
Table I.

In Fig. 3, we illustrate the convergence of the alternating
data transmission power optimization and time division pre-
sented in Algorithm 1. To clearly show the process of the
algorithm, we assume that all the sources are dedicators. At
each iteration, the first part (fromt to t.5) is the updating of
the data transmission power (P r and{P s0

i }), and the second
part (from t.5 to t + 1) is the updating of the time division.
We can find that with the iteration of alternating algorithm,
the objectiveΦ keeps increasing and finally converges, even
though the original problem is neither strictly convex nor
strictly concave. In addition, it can be observed that the
data transmission power optimization and the time division
steps improve the objective function in the similar order of
magnitude. This indicates that it is hardly to say which step
has a stronger influence on the objective optimization.

In Fig. 4, we show the relation between the objective (Φ)
and the number of dedicators, when the energy for relay’s
decoding and recoding (E0) varies. With each fixedE0, we
show a good representative condition for intuitive illustration
according to Remark 1 and Remark 2. We can find that with
fixed E0, the objectiveΦ is infeasible when the number of
dedicators is small. This is because when the number of
dedicators is not enough, the transmitted energy is not enough
for the relay’s data transmission. However, when the number
of dedicators is sufficient, less dedicators leads to a larger
Φ, e.g., with 3 dedicators whenE0 equals0.12mW·T .
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Fig. 4. The relation between the objective and the number of dedicators.
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In Fig. 5, we show the relation between the sum capac-
ity (

∑N
i=1 Ci) of the source-destination pairs and the number

of dedicators, when the energy for relay’s decoding and
recoding (E0) varies. We can find that with more sources
acting as dedicators, the sum capacity keeps increasing. This is
because with more dedicators, the relay harvests more energy
with a shorter harvesting duration (αT ). Correspondingly, the
relay has a longer time (

∑N
i=1(βi + γi)T ) to forward data.

Thus, the sum capacity will be larger. This also illustrates
the TSR protocol in Fig. 2, where it is better that all sources
work as dedicators to take full use of the time resources (αT ),
when we tend to maximize the sum capacity from a centralized
perspective.

In Fig. 6, we show the relation between the residual har-
vested energy (Ur) in the relay and the number of dedicators.
The residual harvested energyUr equals to zero when number
of dedicators is not enough, which results in the harvested
energy in the relay is not enough for data forwarding. With
more sources as dedicators, the residual harvested energy is
not guaranteed to be increasing. This indicates that in the Nash
bargaining game, to balance the utilities among sources and
the relay, with more dedicators the sources require the relay to
forward more data where may result in less residual harvested
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TABLE I
SIMULATION PARAMETERS

Network Region Size (L×W ) Constant20m×20m
Compositions Number of Source-Destination Pairs (N ) Constant7

Distribution of Sources Uniform Distribution in Square Region
from (0, 0) to (0.5L, 0.5W )

Distribution of Destinations Uniform Distribution in Square Region
from (0.5L, 0.5W ) to (L,W )

Location of The Relay Constant(0.5L, 0.5W )
Data The Highest Transmission Power of Each Source (P s

0
) Constant 10mW

And The Highest Transmission Power of The Relay (P r
0

) Constant 10mW
Energy Noise Power (n2) Constant -95dBm
Transmission Channel Gain (γ) Average Passloss: Distance−2

Circuit Energy Cost Per Time Slot of The Relay (E0

T
) Variable from0 to 0.2mW

Energy Harvesting Efficiency of The Relay (η) Constant 0.5
Time Division Parameter (θ0) Constant 0.05

Algorithm Convergence Decision Parameter (ǫ) Constant10−4
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Fig. 6. The relation between the residual harvested energy in the relay and
the number of dedicators.
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Fig. 7. Utility distribution among source-destination pairs.

energy in the relay.
Fig. 7 illustrates the utility distribution among source-

destination pairs, with sources as dedicators and sources as
enjoyers. We observe that the dedicators’ utilities (10−1)
are dramatically lower than those of enjoyers (103). The
possible reasons are given as follows. To guarantee quality

of service of each source-destination pair’s data transmission,
it is reasonable to guarantee that each pair has a minimum
duration in data transmission (θ0T ) as shown in (2). However,
the constraints in (2) possibly result in the utility imbalance
among dedicators and enjoyers, where all sources tend to be
enjoyers instead of dedicators. This indicates that the Nash
bargaining solution can guarantee fairness only to a certain
extent in one time block. This fairness problem will subside
and diminish in the long term, since Corollary 2 and Remark 2
result in that the all sources tend to be dedicators alternatively
with their transmission channels changes. For example, when
sourcesi has a relatively larger|hi|

2, it will act as a dedicator.
On the contrary, sourcesj will be a dedicator when having
a relatively larger|hj |

2 in the next time block. That is to
say, enjoyers will eventually become dedicators accordingto
Corollary 2 and Remark 2. However, more effective incentive
mechanisms still need to be designed to guarantee fair utility
distribution for more general cases, such as when some sources
always act as dedicators if their channel conditions (|hi|

2) are
always better than others. These points are left for the future
work.

VI. CONCLUSION

In this paper, we have considered a wireless powered relay
network with one relay and multiple source-destination pairs
from a Nash bargaining game theoretical perspective. We have
found that the problem is not a strictly concave (convex) opti-
mization problem, which is hard to solve. However, the prob-
lem has been proved to be simplified when it is decomposed
into three parts: 1) energy transmission power optimization,
2) data transmission power optimization and 3) time division.
We have proved that with the Nash bargaining solution, the
sources can be divided into two groups as dedicators, who do
energy harvesting with the maximum power and enjoyers who
do not transmit energy to the relay at all. In addition, we have
proved the quasi-concavity of both transmission power control
problem and transmission power control problem. Based on
the analysis on the problem, we have designed an algorithm to
find a suboptimal Nash bargaining solution. The convergence
of the algorithm and the properties have been illustrated in
the simulation results. In the simulation results, we have
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also shown the imbalance of utilities between dedicators and
enjoyers at the Nash bargaining solution, which indicates that
more effective incentive mechanisms are needed.

APPENDIX A
PROOF OFTHEOREM 1

When we separately consider transmission power of energy
harvestingP s1

i for each sourcesi, the problem in (9) can be
rewritten as a fractional programming problem, which is given
as follows:

max
A4 +A5(αiP

s1
i )

A3(A1αiP s1
i +A2)

,

s.t. 0 ≤ P s1
i ≤ P s

0 ,

(19)

whereA1 to A5 are independent fromP s1
i , which is given as

follows:















































A1 = T,

A2 = P
s0
i βi,

A3 =

∏

k 6=i P
s1
k (P s1

k αkT + P s0
i βkT )

∏

1≤k≤N Ci

,

A4 = η
∑

k 6=i

P
s1
k αkT −E0.

A5 = T,

(20)

The objective function above is a monotonic function ofP s1
i .

WhenA4 < A2, the objective function is a monotonically in-
creasing function ofP s1

i . The objective function is maximized
only whenP s1

i = P s1
0 . On the other hand, whenA4 ≥ A2, the

objective function is a monotonically decreasing functionof
P s1
i . The objective function is maximized only whenP s1

i = 0.
Hence, we haveP s1

i equal to eitherP s
0 or 0 to maximize the

objective in (9). That is to say, the sources can be classified
into two groups: the group of dedicators withP s1

i = P s1
0 and

the group of enjoyers withP s1
i = 0.

APPENDIX B
PROOF OFCOROLLARY 2

When we setP s1
i = P s

0 and P s1
j = 0, the objective

function (9) can be written as follows:

Φi =
B2αi|hi|

2P s
0 +B1

βjP s0
j (αiP s

0 + βiP s0
i )

, (21)

where B2 > 0 and B2αi|hi|
2P s

0 + B1 > 0 according to
the constraints in (9). On the other hand, we can rewrite (9)
as Φj =

B2αj |hj|
2P s

0
+B1

βiP
s0
i (αjP

s
0
+βjP

s0
j )

when settingP s1
i = 0 and

P s1
j = P s1

0 . In addition, according to Corollary 1, we have
α = αi = αj . Then, whenβiP

s0
i ≥ βjP

s0
j and |hi|

2 ≥ |hj |
2,

we have the inequation as follows:

Φi −Φj

=
βiP

s0
i αP s

0 (B2|hi|
2P s

0 +B1)− βjP
s0
j αP s

0 (B2|hj |
2P s

0 +B1)

βiP s0
i βjP s0

j (αP s
0 + βjP s0

j )(αP s
0 + βiP s0

i )

−
βiP

s0
i βjP

s0
j αP s

0 (|hi|
2 − |hj |

2)

βiP s0
i βjP s0

j (αP s
0 + βjP s0

j )(αP s
0 + βiP s0

i )

≥
βiP

s0
i αP s

0 (B2|hi|
2P s

0 +B1)− βjP
s0
j αP s

0 (B2|hj |
2P s

0 +B1)

βiP s0
i βjP s0

j (αP s
0 + βjP s0

j )(αP s
0 + βiP s0

i )

≥
βjP

s0
j αP s

0 (B2|hi|
2P s

0 +B1)− βjP
s0
j αP s

0 (B2|hj |
2P s

0 +B1)

βiP s0
i βjP s0

j (αP s
0 + βjP s0

j )(αP s
0 + βiP s0

i )

=
βj(P

s0
j )2αP s

0B2(|hi|
2 − |hj |

2)

βiP s0
i βjP s0

j (αP s
0 + βjP s0

j )(αP s
0 + βiP s0

i )
≥ 0.

(22)
Therefore, we have the source be more likely to perform
energy transmission as a dedicator (assi to sj), when it
has better channel condition (|hi|

2) to the relay, holds more
time (βiT ) and larger power (P s0

i ) for data transmission.

APPENDIX C
PROOF OFTHEOREM 2

According to Lemma 1, we can rewrite the problem in (9)
with variableP r as follows:

max
Pr

Φ =

N
∏

i=1

(

log(1 + Li
1P

r)

Li
3((1 + Li

1P
r)L

i
2 − 1) + Li

4

)

(K1 −K2P
r) ,

s.t. 0 ≤ P
r ≤ min

{

P
r
0 , {

σ2

|gi|2
(1 +

P s
0 |hi|

2

σ2
)
βi
γi −

σ2

|gi|2
}

}

,

(23)
where for any1 ≤ i ≤ N , Li

1 to Li
4 andK1 to K2 are given

as follows:






















































































L
i
1 =

|gi|
2

σ2
≥ 0,

L
i
2 =

γi

βi

≥ 0,

L
i
3 = βiT

σ2

hi
2
≥ 0,

L
i
4 = αiTP

s
0 ≥ 0,

K1 = η

N
∑

i=1

αiP
s
0 T − E0 ≥ 0,

K2 =
N
∑

i=1

γiT ≥ 0,

(24)

Since Φ in (23) is a smooth function whenP r ≥ 0, we
prove the quasi-concavity of (23) throughStep 1to Step 2as
follows.

Step 1: The problem in (23) can be decomposed as follows:

max
i

log(Φ)

=
N
∑

i=1

log

(

log(1 + Li
1P

r
i )

Li
3((1 + Li

1P
r
i )

Li
2 − 1) + Li

4

)

+ log (K1 −K2P
r
1 ) ,

s.t. 0 ≤ P
r ≤ min

{

P
r
0 , {

σ2

|gi|2
(1 +

P s
0 |hi|

2

σ2
)
βi
γi −

σ2

|gi|2
}

}

,

P
r
i = P

r
1 .

(25)
Step 2: At this step, we prove the decomposed problem in

(25) to be a quasi-concave problem. The quasi-concavity of
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the normlog

(

log(1+Li
1
P r

i )

Li
3
((1+Li

1
P r

i )L
i
2−1)+Li

4

)

for variableP r
i is easy

to test wheni 6= 1. Wheni = 1, we prove the quasi-concavity
of the objectiveΦ for variableP r

1 through proving Lemma 2
and Lemma 3 as follows:

Lemma 2: ∇P r
1
Φ ≥ 0 whenP r

1 = 0 and∇P r
1
Φ ≤ 0 when

P r
1 = K1

K2
, where∇P r

1
Φ is the first-order derivative ofΦ for

variableP r
1 .

Proof: ∇P r
1
Φ is calculated as follows:

∇Pr
1
Φ = Φ·

(

L1
1

(1 + L1
1P

r) log(1 + L1
1P

r
1 )

−
L1

3L
1
2L

1
1(1 + L1

1P
r
1 )

L1

2

(L1
3((1 + L1

1P
r
1 )

L1
2 − 1) + L1

4)(1 + L1
1P

r
1 )

− Φ ·
K2

K1 −K2P r
1

)

(26)

It is easy to test that∇P r
1
Φ ≥ 0 whenP r = 0 and∇P r

1
Φ ≤ 0

whenP r = D1

D2

.
Lemma 3: There does not exist any local minimum inflec-

tion point ofΦ when0 < P r
1 ≤ K1

K2

. That is to say,∇2
P r

1

Φ ≥ 0

guarantees∇P r
1
Φ ≤ 0, where∇2

P r
2

Φ ≥ 0 is the second-order
derivative function ofΦ.

Proof: We rewrite∇P r
1
Φ as follows:



































∇Pr
1
Φ = Φ ·

(

ζ1 −
K2

K1 −K2P r
1

)

,

ζ1 =
L1

1

(1 + L1
1P

r) log(1 + L1
1P

r
1 )

−
L1

3L
1
2L

1
1(1 + L1

1P
r
1 )

L1

2

(L1
3((1 + L1

1P
r
1 )

L1
2 − 1) + L1

4)(1 + L1
1P

r
1 )

.

(27)

Thus, we calculate the∇2
P r

1

Φ as follows:

∇2
Pr
1
Φ =Φ ·

(

ζ1 −
K2

K1 −K2P r
1

)2

− Φ · ∇Pr
1

(

ζ1 −
K2

K1 −K2P r
1

)

=− Φ ·
L1

1

1 + L1
1P

r
1

ζ1

− 2Φ ·
L1

3L
1
2L

1
1(1 + L1

1P
r
1 )

L1

2

(L1
3((1 + L1

1P
r
1 )

L1
2 − 1) + L1

4)(1 + L1
1P

r
1 )

ζ1

− 2Φ ·
K2

K1 −K2P r
1

ζ1

− Φ ·
L1

3(L
1
2)

2(L1
1)

2(1 + L1
1P

r
1 )

L1

2

(L1
3((1 + L1

1P
r
1 )

L1
2 − 1) + L1

4)(1 + L1
1P

r
1 )

2

≤− Φ ·
L1

1

1 + L1
1P

r
1

ζ1

− 2Φ ·
L1

3L
1
2L

1
1(1 + L1

1P
r
1 )

L1

2

(L1
3((1 + L1

1P
r
1 )

L1
2 − 1) + L1

4)(1 + L1
1P

r
1 )

ζ1

− 2Φ ·
K2

K1 −K2P r
1

ζ1

=− Φ · ξ1 · ζ1,
(28)

whereξ1 > 0 is given as follows:

ξ1 =
L1

1

1 + L1
1P

r
1

ζ1 + 2 ·
L1

3L
1
2L

1
1(1 + L1

1P
r
1 )

L1

2

(L1
3((1 + L1

1P
r
1 )

L1
2 − 1) + L1

4)(1 + L1
1P

r
1 )

+ 2 ·
K2

K1 −K2P r
1

.

(29)
When∇2

P r
2

Φ ≥ 0, we have−Φ · ξ1 · ζ1 ≥ 0. SinceΦ > 0 and
ξ1 > 0, we haveζ1 ≤ 0. Therefore, we have the inequation
as follows:

∇P r
1
Φ = Φ · (ζ1 −

K2

K1 −K2P r
1

) ≤ Φ · ζ1 ≤ 0. (30)

Hence, we conclude that∇2
P r

2

Φ ≥ 0 guarantees∇P r
1
Φ ≤ 0.

According to the decomposition inStep 1, Lemma 2 and
Lemma 3 in Step 2 and the linear constraint in (23), we
conclude that the problem in (9) is a quasi-concave problem
with variables{P s0

i } andP r.

APPENDIX D
PROOF OFTHEOREM 3

According to Lemma 1 and Corollary 1, we can rewrite the
problem in (9) with variablesα and{γi} as follows:

max
{αi},{γi}

Φ =





∏

Ps1
i

=Ps
0

Di
1γi

Di
2α+Di

3γi



 · (F1α− F2 −

N
∑

i=1

D
i
4γi),

s.t. α+
N
∑

i=1

(γi +D
i
5γi) = 1,

(γi +D
i
5γi)T ≥ θ0T,

(31)
where{Di

1} to {Di
5} and F1 to F2 are positive, which are

given as follows:


















































































Di
1 = T log

(

1 + P r |gi|
2

σ2

)

,

Di
2 = P s1

i T,

Di
3 = P s0

i T
log(1 + P r|gi|

2/σ2)

log(1 + P s0
i |hi|2/σ2)

,

Di
4 = P rT,

Di
5 =

log(1 + P r|gi|
2/σ2)

log(1 + P s0
i |hi|2/σ2)

,

F1 = η
∑

P s1
i =P s

0

P s
0T |hi|

2,

F2 = E0,

(32)

whereDi
1 toDi

5 andF1 toF2 are independent fromα and{γi}
andβi = Di

5γi. Sinceγi is separable in (31), it is easy to test
thatΦ is a concave function for eachγi. Then, the constraint
in (31) are linear constraints. Thus, the problem in (31) is a
quasi-concave problem whenΦ is a quasi-concave function of
α, which we prove it in Lemma 4 as follows:

Lemma 4: ∇2
αΦ ≥ 0 guarantees∇1

αΦ < 0, where∇i
α is

the ith-order derivative with variableα. That is to say,Φ has
no local minimum inflection point ofα, which indicates that
the problem (31) is a quasi-concave problem ofα.



12

Proof: We can calculate∇2
αΦ and∇1

αΦ, respectively, as
follows:


















































∇1
αΦ =



−
∑

Ps1
i

=Ps
0

µi + ν



 · Φ,

∇2
αΦ =



−
∑

Ps1
i

=Ps
0

µi + ν





2

· Φ +





∑

Ps1
i

=Ps
0

(µi)
2 − ν

2



 · Φ,

µi =
Gi

1

Gi
1α+Gi

2

> 0, ν =
H1

H1α−H2

> 0,

(33)
where{Gi

1}, {Gi
2}, H1 andH2 are independent fromα, which

are given as follows:


















































Gi
1 = Di

2 = Di
2 = P s1

i T,

Gi
2 = D3γi = P s0

i γiT
log(1 + P s0

i |hi|
2/σ2)

log(1 + P r|gi|2/σ2)
,

H1 = F1 = η
∑

P s1
i =P s

0

P s
0 T |hi|

2,

H2 = F2 +

N
∑

k=1

Dk
4γk = E0 +

N
∑

k=1

Dk
4γk.

(34)

Therefore, when∇2
αΦ ≥ 0, we have the inequation as follows:

0 ≤ ∇2
αΦ

=









∑

Ps1
i

=Ps
0

µi





2

+
∑

Ps1
i

=Ps
0

(µi)
2 − 2





∑

Ps1
i

=Ps
0

µi



 ν



Φ

<



2





∑

Ps1
i

=Ps
0

µi





2

− 2





∑

Ps1
i

=Ps
0

µi



 ν



Φ

= −2





∑

Ps1
i

=Ps
0

µi



 · ∇1
αΦ ⇒ ∇1

αΦ < 0.

(35)
Thus, the problem in (31) is a quasi-concave problem ofα.
Therefore, the problem in (9) is a quasi-concave problem with
variablesα, {βi}, and{γi}.

APPENDIX E
GRADIENT ASCENT FORDATA TRANSMISSION POWER

OPTIMIZATION

The Lagrangian function for data transmission power opti-
mization problem is given as follows:

Lk
1(P

r
, ρ1, ρ2)

= −
N
∏

i=1

(

log(1 + Li
1P

r)

Li
3((1 + Li

1P
r)L

i
2 − 1) + Li

4

)

(K1 −K2P
r)

+ ρ1(0− P
r) + ρ2(P

r − [P r
0 ]

∗).

(36)

Thus ,the dual function is calculated as follows [37] [39]:

g
k
1 (ρ1, ρ2) = inf

Pr
Lk

1(P
r
, ρ1, ρ2)

=
N
∏

i=1

(

log(1 + Li
1[P

r]♯)

Li
3((1 + Li

1[P
r]♯)L

i
2 − 1) + Li

4

)

(

K1 −K2[P
r]♯
)

− ρ2[P
r
0 ]

∗
,

(37)

where[P r]♯ equals to−ρ2.2

The dual problem is as follows:

max
ρ1,ρ2

gk1 (ρ1, ρ2), (38)

with variablesρ1 andρ2. We can achieve a dual optimal point
{ρ∗1, ρ

∗
2} through solve the dual problem above. Since the data

transmission power optimization problem in (13) is a quasi-
concave optimization problem, instead of a strict concave
optimization problem, we can only ’possibly’ obtain a primal
optimal point(P r)∗ from a dual optimal point{ρ∗1, ρ

∗
2} as

(P r)∗ = argmin
P r

Lk
1(P

r, ρ∗1, ρ
∗
2). (39)

Since thegk1 is differentiable whenρ1 > 0 andρ2 > 0, we can
update the primal variableP r and the Lagrange multipliersρ1
andρ2 as follows [37]:















(P r)t+1 = argmin
P r

Lk
1(P

r, ρt1, ρ
t
2),

ρt+1
1 = ρt1 + ςt1

(

0− (P r)t+1
)

,

ρt+1
2 = ρt2 + ςt2

(

(P r)t+1 − [P r
0 ]

∗
)

,

(40)

where ςt1 > 0 and ςt2 > 0 are the step variables for thetth

step.
The iteration ends (the gradient ascent algorithm converges)

at tth1 iteration when the primal variableP r satisfies the linear
stopping criterion [37], which is given as follows:

|(P r)t1+1 − (P r)t1 | < ε1, (41)

whereε1 is a minor parameter to determine the convergence.
Finally, we obtain the optimal(P r)∗ in (39) as(P r)∗ =

(P r)t1+1. We emphasize that since the data transmission
power optimization problem is not strictly concave, we can
obtain a suboptimal solution with dual ascent method.

APPENDIX F
GRADIENT ASCENT FORTIME DIVISION

Similarly with the gradient ascent method in Appendix E,
we can update the time division variablesα, {γi} and the
corresponding Lagrange multipliers̺1 and {̺i2} in (16) as
follows:


























(α, {γi})
t+1 = arg min

α,{γi}
Lk
2(α, {γi}, ̺

t
1, ({̺

i
2})

t),

̺t+1
1 = ̺t1 + τ t1

(

αt+1 +
N
∑

i=1

(γt+1
i +Di

5γ
t+1
i )− 1

)

,

(̺i2)
t+1 = (̺i2)

t + (τ i2)
t ·
(

θ0T − (γt+1
i +Di

5γ
t+1
i )T

)

,
(42)

whereτ t1 > 0 and{(τ i2)
t > 0} are the step variables for thetth

step. Similar with the gradient ascent method in Appendix E,
we can set a primal stopping criterion when the time division
converges attth2 iteration, which is given as follows:

|αt2+1 − αt2 | < ε2, (43)

whereε2 is a minor parameter to determine the convergence.

2Since all variables and all parts in the Lagrangian functionare real, we
eliminate all the conjugate operations.



13

To avoid misleading the time division process, we obtain the
(α, {γi})

t+1 at eachtth iteration, through alternatively update
of α and{γi}, which is given as follows:
{

αϑ+1 = αϑ − (κ1)
ϑ∇αL

k
2(α, ({γi})

ϑ, ̺t1, ({̺
i
2})

t),

γϑ+1
i = γϑ

i − (κi
2)

ϑ∇γi
Lk
2(α

ϑ, ({γj})
ϑ
j 6=i, γi, ̺

t
1, ({̺

i
2})

t),
(44)

where (κ1)
ϑ > 0 and {(κi

2)
ϑ} > 0 are the step size. To

guarantee the constraints in (15) are always satisfied, the
following equation must be satisfied atϑth update:






























(κ1)
ϑ · ∇αL

k
2(α, ({γi})

ϑ
, ̺

t
1, ({̺

i
2})

t)

+

N
∑

i=1

(κi
2)

ϑ · ∇γiL
k
2(α

ϑ
, ({γj})

ϑ
j 6=i, γi, ̺

t
1, ({̺

i
2})

t) = 0,

γ
ϑ
i − (κi

2)
ϑ∇γiL

k
2(α

ϑ
, ({γj})

ϑ
j 6=i, γi, ̺

t
1, ({̺

i
2})

t) >
θ0

1 +Di
5

.

(45)
When the update ends atϑth

1 update, we have
{

αt+1 = αϑ1+1,

γt+1
i = γϑ1+1

i , ∀1 ≤ i ≤ N.
(46)

When the gradient ascent method converges attth2 iteration,
we can obtain the optimal values asα⋆ and ({γi})

⋆ for the
time division problem in (15), which is as follows:

{

α⋆ = αt2+1,

({γi})
⋆ = ({γi})

t2+1.
(47)
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