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Abstract—Simultaneously information and power transfer in  wireless relay networks [9]=[17]. It is known that relaysica
mobile relay networks have recently emerged, where the refecan  expand the coverage of the wireless networks, where thgsrela
harvest the radio frequency (RF) energy and then use this engy  pa|, forward the sources’ information to the destinatioas f

for data forwarding and system operation. Most of the previais H . lit | irel
works do not consider that the relay may have its own objectigs, away. However, In reality, some refays, €.g., Wireless Gens

such as using the harvested energy for its own transmission @hd mobile phones, may have limited battery reserves and
instead of maximizing transmission of the network. Therefoe, in  need external energy supply to maintain the circuits system

this paper, we propose a Nash bargaining approach to balandbe  activeness and help transmit the data [9]. With SWIPT, slay
information transmission efficiency of source-destinatia pairs can at first harvest energy from sources or other wireless

and the harvested energy of the relay in a wireless powered &y . . . o
network with multiple source-destination pairs and one rehy. We transmitters, and then forward information to destinatioith

analyze and prove that the Nash bargaining problem has sevat the harvested energy [10].
desirable properties such as the discreteness and quasinmavity, The difficulty in realizing SWIPT effectively in such wire-

when it is decomposed into three sub-problems: the energy |ess powered relay networks is that practical circuits am th
transmission power optimization, the power control for da@ yq|ays cannot harvest energy and extract data from wireless

transmission and the time division between energy transmgon - .
and data transmission. Based on the theoretical analysis, ev signals at the same time [11] [12]. Therefore, one of the

propose an alternating power control and time division algaithm k€Y challenges is balancing the tradeoff between the gualit
to find a suboptimal solution. Simulation results clearly slow and ~ of information transmission and wireless energy trandgfer.

demonstrate the properties of the problem and the convergese example, more time or frequency resource allocated to seurc
of our algorithm. to-relay information transmission results in less timedoJest
Index Terms—RF Charging, Wireless Relay Network, Resource energy by the relays, which might lead to relays’ turnoff of e
Allocation, Game Theory ergy outage. To maximize the throughput and avoid the energy
outage of the relays, the time switching-based relayingR)TS
l. INTRODUCTION protocol and power splitting-based relaying (PSR) protoco
Harvesting energy from the natural resources such as sq)gire proposed in[[10] and [12], respectively, deciding the
energy, wind energy and thermal energy has been proved todyrgy harvesting time ratio and power splitting ratio ie th
a promising method to prolong the lifetime for networks withgne-source-one-relay network. To cope with the system that
out fixed power supply, such as wireless sensor networks [glyitiple sources, authors in [13] designed different ercod
However, uncertainty and uncontrollability of environmherngnd decode protocols for multiple source energy and data
usually result in that energy harvesting has less stableggnetransmission and compared their signal-to-error-raigRs).
supply and might sometimes insufficient causing the outégeioreover, TSR and PSR protocols were extended in [14] to
the equipments in the networks [3]. To overcome uncertaingga| with the antenna selection problem for energy hamgsti
and randomness of energy harvesting from environment, &g information transmission, when the relay was equipped
technique of radio frequency (RF) energy transfer is adbpt@ith a MIMO system. The relay selection problem was studied
recently and applied widely in wireless powered networkf, [15] when the networks include multiple relays, where
such as in wireless sensor networks [4], in wireless bodg afge authors maximized the capacity under an energy transfer
networks [5] and in wireless charging systerns [6]. With REgnstraint. The concept of self-looping energy recyclinasw
energy transfer, wireless receivers can harvest energudhr proposed very recently with full-duplex relays. The capaci
converting received signals from wireless transmittet® inyas derived with the TSR protocol i [16] with full-duplex
electricity and store it in batteries|[7]. Since the infotioa relays and the average rate was optimized[in [17] when in
can also be transmitted using radio frequency in wirele$s nggmbpination of full-duplex relays and the MIMO system.
works, the concept of simultaneous wireless informatiod an As mentioned above, most of the existing works considered
power transfer (SWIPT) has become a promising approach {ae information transmission and energy transfer trademff
energy and information delivery in wireless networks [7]. [8 chieve a common objective such as maximizing the total
More recently, besides information and power transfer froﬂhpacity of the system. This setting is suitable only when
a wireless node to another, SWIPT has also been extended|fonodes belong to the same authority. However, similar to

Part of the material in this paper has been accepted by |IEEEnktional the Convennon"_]‘l wireless relay networks [18]"[20]' |nlltga
Conference on Communications, Malaysia, May 2016. [1] nodes in the wireless powered relay networks have their own
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selfish goals, which usually conflict with each other. As for
wireless powered relay networks, each source-destinpan
cares about its information transmission efficiency, i.gs b
successfully transmitted per Joule energy cost. As for the
relay, when the energy can be accumulated in the battery [21]
[23], the relay cares mostly about its energy benefit, ik, t
harvested energy left after helping sources transmit mésr

tion. The residual harvested energy can be used by the relay,
e.g., for its own data transmission or system operationsThu
source-destination pairs and the relay hold contradictedsg
where sources try to guarantee their transmitted energyeto t
relay are used to transmit sources data as much as possible.
However, the relay wants to uses less harvested energy t
help sources and to keep more for the relay’s own uses. The s : Source 7 : Relay d : Destination
separated and contradicted individual objectives of smurc ——— Data Transmission  -------- > Energy Transmission
destination pairs and the relay require us to investigate ho
they negotiate and bargain with each other. Thus, it is aatur
to apply game theory to balance the objectives among difterd %
nodes [[24]-[27].

To balance the information transmission efficiency foﬁ‘\cludesN source-destination pairs denoted bg,D) —

source-destination pairs and the residual harvested }ener{gshdl),(&,dz),---,(SN,dN)} and an RF-powered coop-

for the relay, in this paper, we propose a Nash bargaini : . ;
approach to obtain the Nash bargaining solution [31], tgmue ative relay, denoted by. More complicated problems in

optimizing power control and time allocation. We prove thgractical networks with multiple relays, such as relay sie,
P 9p ' P .{nterference control and spectrum resource allocatiomate

non-convexity of the bargaining problem and simplify Ico_nsidered in this paper, which is left for the future work.

:E;Osggr defr(;r:spn?]ig% ;heoxg?kge?m:gzi;zr?ﬁesuo?l;zrrﬁi?gc')urces transmit data to their destinations with the help of
gy P P ' P this relay (which does not have its own data to transmit). In

for mformanon trar]smlssmn and the time d.'V'S.'OH betwee@]is paper, the relay is RF-powered [8]. The half-duplexetim
information transmission and energy transmission. Based

. ) . gwitching relaying protocol (TSR) [10] is adopted to sugpor
the thepre‘ucal analysis of thg each _p_roblem, we design e relay’s energy harvesting from sources and data forward
alternating power control and time division algorithm tack ing. Furthermore, the direct link is assumed to be ignored
a suboptimal solution of the Nash bargaining solution. : '

. o . between each source-destination pair| [32]. More details on
The main contributions of this paper are as follows: pairl [32]

] ) e the channel model, TSR protocol, utility of each node and
« We are the first to introduce a Nash bargaining approaﬁrbmem formulation are given as follows.

in wireless powered relay networks to balance the tradeoff

between the energy efficiency of information transmission

of source-destination pairs and the residual harvestéd Channel Model

energy of the relay. The channel between each pair of nodes is modeled as
« The bargaining problem decomposition is not only physi quasi-static flat fading channél [33], where the channel is

cally meaningful but also mathematically tractable, whergonstant over a block tim& and independent from one block

the subproblem of energy harvesting power optimizatias the next. Without loss of generality, the channel fading i

is proved to be discretizable. Moreover, the subproblemaach block follows a Rayleigh distribution. The use of such

of time division and information transmission are althannels is motivated by prior research in the wireless pesve

proved to be quasi-concave. networks [11], [12], [[34]. For simplicity, it is also assuthe

« Simulation results corroborate the properties or subprofprat the channel state information is available at the rafay
lems and the convergence of our algorithm. In additiogestinations.

the utility imbalance in the Nash bargaining solution is
also |Ilustra'Fed through 5|mulgt|on. B. TSR Protocol
The rest of this paper is organized as follows. The system ) )
model and problem formulation are presented in Section I1. Fig.[2 describes the block structure in the TSR protocol for
In Section Ill, we theoretically analyze and decompose tig&1€rgy harvesting and information forwarding at the refgy.
problem. Based on the analysis, we present our algoritdn@ direct extension from the protocol in [10] arid[12] in
in Section IV. Section V includes the numerical simulatiofuPPort of the case where the relay is able to assist multiple

&z
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1. System model for wireless powered relay networks.

energy from its assisting sources simultaneously. Then the
Il. SYSTEM MODEL relay receives signals from sources and then decodes and

We consider a wireless powered communication system faswards (DF) the data to its assisting destinations setiplBn
shown in Fig[d. For simplicity, we suppose that the systewith the harvested energy [12], [28]-[30]. As shown in Eig. 2
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Fig. 2. TSR protocol.

oT denotes the fraction of the block time where the retay equipment, we have the power constraints as follows:
harvests energy, which is determined by the energy trarsmis 0< psl < ps

sion time of each of its assisting sourgg denoted by, T'. - 180 - OS’
We haveaT = maxs, 4,)¢(s,p) @, which indicates that the 0< P <Fy, 4)
relay does not begin transmitting data before accomplishin 0< P" <Py,

energy harvesting from all its assisting sourcgsl’ is the
time for sources; to relay r data transmission, ang;T" is
the time for information forwarding from to d;. Thus, the
following constraint is naturally satisfied:

where P§ is the maximum energy (or information) trans-
mission power for each source, arf is the maximum
transmission power for the relay.
2) Relay Utility: For relay noder, its utility is the residual
energy after energy harvesting and data forwarding, whéch ¢
Z Bi +7)T =T. (1) pe used to execute other applications for itself, e.g.,isgns
(s:,d:)€(S,D) or transmitting data in sensor networks. The harvestedggner

In this paper, we assume that the following constraint mu%% relayr per block time can be calculated as

also be satisfied to guarantee the quality of service for data E=n Z OéiTPiSI|hi|2, (5)
transmission of each source-destination pair. Each seurce (s5,d1)E(S,D)

destination pair has at lea&tT" unit time for data transmission
in this system:

max (o;T) +

(677

wheren € (0,1) is the energy conversion efficiency which
depends on the energy harvesting circlits [11]. The enevrgly c

(Bi +7:)T > 6oT. (2) in relayr per each block time can be calculated as follows:
o= > (WP +Ey, (6)
C. Utility of Each Node (s:,d:)€(S,D)

L . I where the first term is the energy cost for data transmission
1) Source-Destination Pair Utility: For each source- 5n4 g s a constant, which denotes the energy cost for signal

destination pair(s;,d;), we adopt thedata transmission ef- jo.4ing and recoding in the assistance of data forwarding.
ficiency[35] as its gain, which is defined as the total averagance. the utility of relayr is denoted byUZ, which is
number of bits successfully transmitted fregto d; per Joule calcula{ted as follows: '

unit of energy consumed by soureg in each block time.
Assuming that the relay The data transmission efficieigy UR=E—¢. (7
for (s;,d;) can be calculated as follows:

C.T c, D. Game Theoretic Problem Formulation

Ploil + POBT  Plos + PO Both the source-destination pairs and the relay aim to

‘ PO Prlgil? achieve the highgst utility. H_owever, the more availgblgrgy _

Ci = min {/32‘ log (1 + T) ;i log (1 + —2>} » at the relay requires more time for energy transmissionh(wit
(3) larger{«;}) and less time for data forwarding ( with smaller

where C; is the average capacity for soureg transmitting {8;} and{~;}). This usually results in the lower utilities for

data tod; via relay » with the TSR protocol,Pf° is the the source-destination pairs. Apart from the influence rokti

transmission power of source for data transmission anfl’!  division, the transmission power from sources (suchPas

is the transmission power of souregfor energy transmission, and P:° in (3) and [($)) and the transmission power from the

which can be different fron®:°, P" is the transmission power relay (such as" in @) and [5)) jointly affect the utilities of

of relayr, h; is the channel gain froms; to r, andg; denotes source-destination pairs and the relay. Since the uslitithe

the channel gain fronr to d;. Since either in the energysources and the utility of the relay are obviously contreatic

transmission, or in the data transmission, the transmmissia Nash bargaining game [31] is adopted in this paper and the

power cannot exceed the physical power upper bound of ed¢ash bargaining solution_[31] is considered as a reasonable

Uf =

g



solution to balance the utilities of sources and the utitify division optimization, i.e., how to set;, 5; and ;. We
the relay. find this decomposition is not only traditionally meaninlgﬂu

In the Nash-bargaining game, the source-destination pdigt also mathematically tractable that each problem hatds i
and the relay are modeled a§ + 1 players, where for specific properties which can help simplify the process ef th
convenience the relay is denoted as € + 1)*" player. algorithm design to find a suboptimal result of the problem
The strategy of each player (each source-destination pdir an ().
the relay) consists of all the variables that may influenee th
value of the play_er’s utility. Eyen thoqgh the utility of éac 5 Non-Concavity of The Original Problem
player does not directly contain all variables as[ih (3) dfid ( _ ; . .
the constraint in[{1) and the utility function ifil(3) make all " this subsection, we prove that the original problem is not
variables correlated. Therefore, each player needs taidems & concave (convex) problem (Propefly 1), which is hard to find
all the variables in its strategy. That is to say, each playef Strictly optimal solution[[37]. , o ,
strategy consists of the transmission power of soufd@s }, Lemma 1: The objective function in[{9) is maximized, if
{ P}, the transmission of the relay”, and the time division and only if the following equation is satisfied for each seurc

variables{«;}, {#;}, and{v;}. The strategy of the's player destination pair:
is denoted byY,,, which is given below. PO\ h;|? Pr|g;|?
y g Bilog (1 + %) =, log (1 + 9. ) . (10)

2
Th = {{PiSI}v{PiSO}vPTv{ai}a{Bi}a{%}}n' (8) 7 7
That is to say, at the Nash bargaining solution, the relay

The objective function for a Nash bargaining game is deﬁn%%nsmits all the data which it receives from its assisting
as a Nash bargaining solution, which can satisfy all thegray Sources
: P Prlg?

in the game. In a.Nash bargammg so!ut!on, all players resach_ Proof: Whenj; log (1 n ;H|2 < ~ilog (1 + £lg )
consensus of their strategies to maximize the product bf Uttlh | | q i t(’ ission i . d” .
ities of all players[[31l]. Mathematically, the Nash bargain e relay can lower down its transmission timd’, inducing

. sl .2 _ A ia
solution in this paper is defined as follows. a larger (77 2iai=a (@ TP Rl*) = Oy =y wTPT + EO))
in (@. Y 9n the o2ther hand,
<\ ok if B;log (1 + PO_#) > yilog (14 Z0g0) | the source
(P50} {P_Q}I,?Ta?{(ai} (8:} {%}q) - H v | us, can lower down its transmission tim&7', inducing a larger
o o (si,i) 1/(a; P* 4 B;P%°), which increases the objective function.
s.t. Ul-S >0, UX >0, Overall, the oobjeg:tive function is maximized, if and only if
s r 2
Ti=To=...=Tyn =Ty Bilog (14 ZEl) — o log (1 4+ 22l is satisfied. m
+ o o
— {{p,ﬁl}’ {PY, P, {ai},{ﬁi},{%}}, Property 1: The problem [(B) is not guaranteed to
L be a concave (convex) optimization problem with vari-
Constraints in(D), @), @), i s N
. @. @ @ ables {ai}. (A}, (v} (P20}, {P:0} and P".
whereUS and U are given in[[B) and{7), respectively. Proof: Based on Lemmia 1 and the power constraifit<

We emphasize that the main concerning in this paper%‘ as mentioned in Section I.C, we have the constraint set
providing some static insights in a Nash bargaining sotutio &S follows:

the wireless powered relay networks instead of designinga d o2 PO |2 £
namic distributed process. Therefore, we assume thatghrou — <1 + %) -1]) <Fj. (11)
out this paper, the bargaining process is simulated in a cen- 19:] g

tralized way on a randomly selected source. After the sedec
source achieves the values 6P} {Ps1}, P™ {a;}, {58}
and {v;} in a Nash bargaining solution, it sends the valu
of P and P#! to each source; through the relay to tell
s; how to set the transmission power. In addition, the relay

also achieve the the values of, 3;, and~; from the selected B. Dedicators and Enjoyers for Energy Transmission

source and sends them to each sourcéo tell s; how t0 | this subsection, we prove that at the Nash bargaining
allocate the time between the energy transmission and dafution, the sources can be divided into two groups as
transmission. dedicatorsand enjoyers The definitions of the dedicator and
the enjoyer are given as follows:
Ill. PROBLEM ANALYSIS Definition 1: Source s; is defined as a dedicator
In this section, we first highlight that the Nash bargaininghén sources; transmits energy with full transmission
problem in this paper is not guaranteed to be a concave (cOWer. i.e., PPt =Fs. _ _
vex) problem, which is hard to obtain a strictly global oim ~ Definition 2: Source s; is defined as arenjoyer when
solution. Therefore, to find a suboptimal solution, we deSOUrces; never transmits energy to the relayi.e., P! = 0.
compose the problem into three parts: 1) energy transmissio, o _ . __
When the scenario is complicated, it is a traditional trefidchoughts

power optl_ml_zat!on, !'e-' how to Sé{is ) 2) data transm'§3|0n to decompose the time division and power control problemealidg with
power optimization, i.e., how to Séffo and P"; and 3) time resource allocation problems in wireless communication.

tIt is not a convex set foP?° and 3;. Hence, the problem in
e@) is not a strict concave (convex) optimization problérd][3
[ |



Then, we have the theorem as follows: Algorithm 1: Alternating Power Control and Time Divi-
Theorem 1: The objective function in[{9) is maximized if sion Algorithm
and only if P! = Ps or P! = 0 for each source;. That is Input: k =0, ({P:1})E

to say, each source in the system is eithefedicatoror an {POYF (P (i}, (B}, (v}
enjoyer _ , Output: max ®({ P}, { PO}, P, {a;}, {Bi}, {i})
Proof: See AppendiXA. u 1) Enumerating possible conditions of dedicator

Then, we present Corollafy 1 and Corollaty 2, respectively, selection, at each condition withPs!}2:
to emphasize the energy transmission time property for thekzo; !
dedicators and which sources become more likely to beynile Arbitral stopping criterion is not satisfiedo
dedicators. These two corollaries can help simplify theepss (a) Transmission power optimiza-
to decide the energy transmission time and the dedicator| tjon: ({P0}, pryktt = argmax(ps0y pr) Pk
selection, which is shown in the algorithm in Sectiod IV. !

Corollary 1: For each dedicatos; (with P! = Pg), its (b) Time division optimiza-
energy transmission time is;7" = max)_, {o;T'}. That is to tion: ({au}, {B:}, {v:H)*t! =
say, all dedicators spend the same time duration for energy ATEMAX{a,} (5} (r} Ph:

transmission. end

Proof: According to Theorenill, fo’s! = FBg, func- oL = oL ({PYE, ({PO}, P, {ai}, {Bi}, {7 })FH);
tion (19) is a monotonically increasing function f8f'. Under 2y ¢ — max; ®°;
this condition, it is a monotonically increasing functionitw ~ « ()L js the L*" condition to select dedicatoré)* is
respect toe;. Thus, each source; tends to maximizey; in the value of thekt" iteration.
maximizing the objective functioi9). Hence, we have=
max_, {a;}. [ |

Corollary 2: For each pair of sources; and s;, Pt > D. Quasi-Concavity of Time Division

Pyt is satisfied if and only ifg; P > 3;P;° and |h;|? _ . _
|h2|?. That is to say, the source is more iikely to do energ .In -th|s subsection, we prove that assuming the dgta trans-
transmission as a dedicator, when it has a better chan ?S'.On poyvgr_control and the group(dx.édmatorsto be -f|x§d,.
condition (h:[2) to the relay and holds more time,(") and the time division problem is a quasi-concave optimization
larger power P#9) for data transmission. problem. . ! .

gerp &) Theorem 3: Given fixed { P#'} and fixed{P;°} and P",

Proof: See AppendixB. the problem in[(P) is a quasi-concave optimization problem
Corollary[2 can also help to design an incentive mechanism P ! : quasi Ve optimization p

; : - with variables{«;}, {8:}, {vi}-
to encourage sources to be dedicators instead of receivers. Proof: See AppendiD. -

According to Corollany[R, in a certain time block, sources ; X -
. . We conclude this section as follows. The original prob-
who want to transmit more data (with a larggfl’) are more . . :
hem in (@) is not a concave (convex) problem which can

likely to be selected as dedicators. Therefore, assumiat tnot guarantee to obtain a globally optimal solution (Prop-

sources in the network have the similar amount of data in )
e?ty [1). However, when we decompose the problem into

relatively long time (a number of time blocks), some sources | " e 1) energy harvesting power optimization, 2 da
have more data in the first several time blocks are selected & ¢ Par > 9y gp P '

) , . transmission power optimization, and 3) time division, welfi
dedicators and the others are responsible to transmit gney . o
at the problem becomes simpler. The energy transmission

in the rest ones. In addition, the channel statement in the T . PR
: L L ower optimization is a discrete optimization problem. In
wireless network usually changes with time. This indicates . L . .
. ._Particular, the sources can be divided indedicatorsand
that sources as enjoyers are eventually selected as dmgicdf . .
. ; . enjoyers (Theorem[1), which are relevant to the channel
in the later time blocks, when their channel statements d&etw o .
cqnditions from the sources to the relay and the transnmissio
the relay become better. Even though Corollary 2 can avoi -
: . ‘energy cost of the sources (Corollaly 2). The data trangoniss
the circumstance that some sources are always working as o : L
. . ower optimization problem and time division problem are
dedicators and others are always selected as enjoyers, mor:

. : . . oteﬁ guasi-concave optimization problems (Theofdm 2 and
incentive mechanisms are needed to proactively encouralghe

sources to work as dedicators, which is left for the future eoremiB). Therfzfore, there exist many optimization _algo-
work. rithms to solve[[36][[3/7], e.g. the gradient ascent alganith

The properties discussed in this section indicate that the
problem decomposition is not only traditionally meanirigfu
C. Quasi-Concavity of Data Transmission Power Control but also reasonable from a mathematical perspective, which

In this subsection, we prove that when the time division arf@n guide us to design an efficient algorithm in the next
the group ofdedicatorsare fixed, the data transmission powef€ction.
control is a quasi-concave optimization problem.
Theorem 2: Given fixed{ P!} and fixed{a;}, {8}, {7}, IV. ALTERNATING POWER CONTROL AND TIME DIVISION
the problem in[(B) is a quasi-concave optimization problem ALGORITHM
with variables{ P/} and P". In this section, we design an alternating algorithm to solve
Proof: See AppendiX . B the bargaining problem in(9). The analysis in Section Il

\%



enlightens the decomposed algorithm design: 1) The ouber los; cannot be determined before the alternating data trans-
is optimizing the energy transmission power with enumagati mission power and time division process is accomplished in
all the possible conditions to select dedicators (accgrdin Algorithm [1. Thus, we can only decide; based on|h;|?,
Theorem[ll). 2) Under each condition, we alternatively anghich results in that the operation in Rematk 2 might miss the
iteratively solve data transmission power optimizatiod atme optimal point. However, the operation can observably reduc
division problems (according to Theordh 2 and Theokém 3he enumeration time witli' dedicators, from(%) tol (to

We emphasize that since the original problem is not a concasaect K’ sources as dedicators with the highgst?).

(convex) optimization problem (according to Propérty hjst
kind of algorithm can only guarantee to reach a suboptim

solution. Specifically, the alternating algorithm is showm S Data Transmission Power Optimization and Time Division

Algorithm[1, where®% and ®% are given as follows: In this subsection, we propose the concave (convex) opti-
L SV L hs01 o . . . mization methods to deal with the data transmission power
oy = ({F7 AR P {8 "), optimization and time division, i.e., how to find the optimal
®5 = (P, (B}, PR {aih {81 (), {P°}h P, {ai}, {Bi}, and {7;}. We decompose the data
(12) transmission power optimization and time division andrake

where (-)¥ denotes the value at the's condition of energy tively deal with the two problems, i.e., the inner iteratiomI-
transmission power optimization, arfg” is the value at the gorithm[1, according to Propeifty 1, TheorEm 2 and Thediem 3.
k's iteration of data transmission power optimization amdeti The specific iteration of data transmission power optinizat
division. ®% equals to the objectivé in (@) when{P#'} and and time division, and the arbitral stopping criterion aieeg
{a;}, {Bi}, {r:} are fixed.®4 equals to the objectivé when as follows.

{P1}{P*}, P are fixed. o .« Data Transmission Power Optimization: When the
More details on energy transmission power Optlmlza— energy transmission powérpfl} and the time division
tion (dedicator selection) and the details on the altengati {a;}, {B;}, {n:} are fixed as the values obtained from

the data transmission power optimization and time division the |atest iteration, the data transmission optimization
process are given as below. In addition, we also discuss problem at thek iteration is to maximized” in Al-

the convergence and the complexity of our algorithm in this  gorithm[31, which is given as follows:
section.

maX<I>1
A. Energy Transmission Power Optimization < log( 1+LZ P > (K1 — K2P")
) : 1 — 2 3
In this subsection, we explain the dedicator selection in i \L5((1+ LiPr)* — 1) + Lj
Algorithm[d. According to Theorefd 1, the energy transmissio P" <[P,
power optimization is first transformed from a continuous (13)

problem into a discrete problem. Thus, what we concern about where[Pj]™ = min {Po Ao |2 1+ 'h ‘ )% - |ng2 }}
is to decide which sources are selected to transmit energy as and L} to L} and K; to K, are glven in [24) in
dedicators and which are not. According to Theofdm 1 and AppendixC. How to transfer the original problem [d (9)
Corollary[d, we emphasize that the power and time for energy into the above form is also given in Appendix C. The

transmission for all dedicators are identical. For coneroe, Lagrangian functiorﬁ’f(Pr, p1, p2) is given as follows:

we define an indicator vectd? = {wq,ws,...,wn} € B, i

wherew; = 1 when source; is a dedicator. Otherwise; = 0 L1 (Pr,phpg)

and source; is an enjoyerB is the set of the all the conditions log(1 4 LiP") .

of dedicator selection, whei@| = 2. We provide Remarkl1 - H Li(L+ LiP)% —1) 1 Lt (Ko = Ko PT)

and Remark]2 as below to help us decide which sources are

more likely to be selected as dgdicators +p1(0 — P+ pa(PT B, (14)
Remark 1: Given any indexk’, when>Y | w; = K is not wherep; > 0 andp, > 0 are the Lagrange multipliers.

feasible for all elements i, the conditions Wlchf-V:1 w; < Then, £¥(P", p1, p2) is minimized through the typical

K are not feasible as well. gradient ascent algorithm (Chapter 3[of][37]). The details

Remark1 indicates that the transmitted energy is not enough of the gradient ascent algorithm for data transmission
with K dedicators, it is also not enough when the number power optimization is given in Appendix] E. We obtain
of dedicators is belows. Thus, we enumerate the conditions  the optimal data transmission power of the relay as

from N dedicators toN — 1, N — 2,... dedicators and stop (P")* and calculate the optimal data transmission power

when the result is not feasible for all conditions wifki of the sources ag{(P:°)})* based on[{J0). Finally,

dedicators. we updateP" and {P°} as (P")*! = (P")* and
Remark 2: When SN w; = K, w, > w, is possibly ({PsO})k+1 = ({PsO})*

satisfied whenh;|? > |h;|*. « Time Division: When the energy transmission power

According to Corollar{R2, we have that the energy transmissi {Ps1} are fixed and the data transmission povrand

power P! > Pl is satisfied if and only if3; P > 3; P:° {P:°} have already been updated at #i& iteration, the

and |hy]? > |h2|2 However, 8; and P:9 for each source time division problem at thé'" iteration is to maximize



®% in Algorithm[1, which is given as follows: Theorem 4: The alternating data transmission power opti-
mization and time division process converges.

k
{ar ot} P2 Proof: It is easy to test that the singularity of the objective
Din, N function® in (@) exists, only when for any soureg, P° = 0
= II Dia+ Diy “(Fia—F>—>» Div), and Pst = 0 simultaneously happen. HoweveP:® = 0
Pel=py ° ’ i=1 indicates thats; does not transmit the dat#;(= 0), which
N . contradicts the constraints i)( Therefore,® has an upper
s:t. ‘“’Z(%’ +Dsyi) =1, bound in the feasible zone. The Lagrangian methods in the

alternating data transmission power optimization and time
division process guarantee thbf and®% are non-decreasing
at each iteration [37]. When the objective functidnkeeps
increasing and has an upperbound, the stopping criteriin wi
finally become satisfied with the iteration executian|[37],
which indicates that the iteration converges. ]
We then discuss the complexity (the total number of iter-
A _ ; ations) of our algorithm. Based on Corolldty 2, Rematk 1
La( {7}, 01, {e2}) and RemarK 12, the enumeration time of the outer loop is
_ Di~; (Fra— Fs — ﬁ:Di ) prominently reduced fron2" to N. Thus, the computation
- A1 Dia+ Dy, ! 2 " 4 complexity can be expressed a& x Tj,, whereT, is the
Fi=rs ' average number of iterations for the inner loop. As for the
+or ( al 1) inner loop of our algorithm, either for the data transmissio

i + Divi) — L . o
ot ;(7 + D) power optimization or for the time division, the general-gra

(vi + Diyi)T > 00T,
(15)

where D; to D5 and F; to F, are given in [[(3R) in
Appendix[D. How to transform the original problem in
(@) into the above form is also given in Appendix D
The Lagrangian functiorC} (a, {7}, 01, {05}) is given
as follows:

N dient ascent method usually guarantees a linear convexgenc
+ Z 05 (aoT — (v + Dé’yi)T) , speed([3B]. We us@(-) to represent the magnitude of iteration
i=1 (16) time. Then, for the data transmission power optimizatibme, t
‘ . . . 1 .
where o, and {¢}} are the Lagrange multipliers. iteration time can be_ expressed @$8]), wheree; is the_ _
L . L rParameter to constrain the accuracy of the data transmissio
Similar to the data transmission power optimizatio

£k, {vi}, 01, {0b}) is minimized through the typical power optimization as given if_(#1) in AppendiX E. For the

gradient ascent algorithm (Chapter 3 of[37] and find tha e division, the iteration time can be expressecﬂis;g),

optimal point asa*, ({v})* and ({3:})*. More details where e; represents the accuracy of time division as given

of the dual ascent algorithm for time division is give n (@3) in AppenditF. Thus, we can calculate the computation

in Appendix[F. Finally we update the time division ascomplexny, denoted bf’, as follows.

ot = o, {7} = {7} and {i}" = {5} T=NxTm=Nx Na x O(= + 1) (18)
« Stopping Criterion: The stopping criterion in the opti- N e o g1 &2

mization methods.i.s used_to determine when the iter?“?vqwere N, is the time of alternations between the data

stgps_ [3.7]' Specifically, in Algorithni]1 the Stc,)ppmgtransmission power optimization and the time division. We

criterion is the rule to ev_aIl_Jate_ when the altc_ernaur_]g_ qagf'nphasize that even though the alternating data trangmissi

transmission power optl_mlzgtlorj and the time dIVISI()Bower optimization and the time division process can be

process should stop, which is given as follows, proved to converge, the strict closed-form relation betwee
max{ |PFTT — ok |obT! — o the N,; and the arbitral stopping criterion given ih {17) is

ok ’ ok } <& (17) complicated to derive. This is because the non-convexap{n
. _ ! 2 . concavity) of the original problem results in the distance
wheree is a minor parameter to determine the convepetween the point after each step of data transmission power

gence. optimization or time division and the final result is harddy t
calculate. Thus, we left the mathematical derivation fa¥ th
C. Convergence and Complexity future work.

In this part, we discuss the convergence and the complexityWe conclude this section as follows. We design an alter-
of our proposed algorithm. Specifically, we at first provet thaating power control and time division algorithm to solve th
the alternating data transmission power optimization @me t bargaining problem in{9). The outer loop in the Algorithin 1
division process (the inner loop in Algorithid 1). Then, wés the energy transmission power optimization. Propeities
discuss the complexity of our algorithm, i.e., to discuss ttRemark[1l and Remarkl 2 can help to reduce the time of
enumeration time of energy transmission power optimirati@numeration. The inner iteration in the Algoritith 1 is the
(the outer loop in Algorithn{]1) and the iteration time ofdata transmission power optimization and time division. At
alternating data transmission power optimization and tineach iteration, we sequentially optimize the data transions
division process (the inner loop in Algorithimh 1). power and deal with the time division, through the Lagrangia

We at first prove the convergence of this alternating datgptimization methods. The stopping criterion guarantées t
transmission power optimization and time division process convergence of the inner iteration.
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V. NUMERICAL RESULTS

In this section, we provide the numerical results to illatr
the properties of the problem and our alternating algorithr
We at first show the convergence of our algorithm in Fig. :
Then, we discuss the relation between objective[in (9) al
the number of dedicators in Figl 4. The sum capacity of ¢

®

Sum Capcity of Source-Destination Pairs (bps)

source-destination pairs and the residual harvested grierg o J ,!‘
the relay are illustrated in Figl 5 and Fig. 6. The distribotof Al 7 /

the utilities among dedicators and enjoyers is shown in[Eig. ; ;] J
which shows the necessity to design incentive mechanis o4 2: A » : )

in the future work. The simulation parameters are given
Tablefl.

In Fig.[3, we illustrate the convergence of the alternatingg. 5. The relation between the sum capacity and the nunftuedicators.
data transmission power optimization and time division-pre
sented in Algorithm[l. To clearly show the process of the
algorithm, we assume that all the sources are dedicators. Atn Fig. [3, we show the relation between the sum capac-
each iteration, the first part (fromto ¢.5) is the updating of ity (Zf;l C;) of the source-destination pairs and the number
the data transmission poweP{ and { P:°}), and the second of dedicators, when the energy for relay’s decoding and
part (fromt.5 to ¢t + 1) is the updating of the time division. recoding E,) varies. We can find that with more sources
We can find that with the iteration of alternating algorithmacting as dedicators, the sum capacity keeps increasingisTh
the objective® keeps increasing and finally converges, evamecause with more dedicators, the relay harvests moreyenerg
though the original problem is neither strictly convex nowith a shorter harvesting duration]’). Correspondingly, the
strictly concave. In addition, it can be observed that thelay has a longer timexfil(ﬂi + v;)T) to forward data.
data transmission power optimization and the time divisiofhus, the sum capacity will be larger. This also illustrates
steps improve the objective function in the similar order dhe TSR protocol in Fid.]2, where it is better that all sources
magnitude. This indicates that it is hardly to say which stapork as dedicators to take full use of the time resouredd){
has a stronger influence on the objective optimization. when we tend to maximize the sum capacity from a centralized

In Fig.[4, we show the relation between the objecti®g ( perspective.
and the number of dedicators, when the energy for relay’sin Fig.[d, we show the relation between the residual har-
decoding and recodingfy) varies. With each fixedz,, we vested energyl(,) in the relay and the number of dedicators.
show a good representative condition for intuitive illaston The residual harvested enerfy equals to zero when number
according to Remarkl 1 and Remaik 2. We can find that witf dedicators is not enough, which results in the harvested
fixed Ey, the objectived is infeasible when the number ofenergy in the relay is not enough for data forwarding. With
dedicators is small. This is because when the number mbre sources as dedicators, the residual harvested ergergy i
dedicators is not enough, the transmitted energy is notg@nouwnot guaranteed to be increasing. This indicates that in @shN
for the relay’s data transmission. However, when the numbeargaining game, to balance the utilities among sources and
of dedicators is sufficient, less dedicators leads to a targbe relay, with more dedicators the sources require thg tela
®, e.g., with 3 dedicators wheh, equals0.12mW-T. forward more data where may result in less residual hardeste

3
Number of Dedicators



TABLE |
SIMULATION PARAMETERS

Network Region Size [ x W) Constant20mx20m
Compositions | Number of Source-Destination Paird’) Constant?
Distribution of Sources Uniform Distribution in Square Region
from (0, 0) to (0.5L, 0.5W)
Distribution of Destinations Uniform Distribution in Square Region
from (0.5L,0.5W) to (L, W)
Location of The Relay Constant(0.5L, 0.5W)
Data The Highest Transmission Power of Each SourBg)( | Constant 10mW
And The Highest Transmission Power of The Reldj} Constant 10mwW
Energy Noise Power $2) Constant -95dBm

Transmission

Channel Gain+)
Circuit Energy Cost Per Time Slot of The Rela%‘{)
Energy Harvesting Efficiency of The Relay)(

Average Passloss: Distance
Variable from0 to 0.2mW
Constant 0.5

Time Division Parameterd() Constant 0.05

0.02 extent in one time block. This fairness problem will subside

and diminish in the long term, since Corollady 2 and Rerhark 2
result in that the all sources tend to be dedicators altieiat
with their transmission channels changes. For examplenwhe
sources; has a relatively large; |?, it will act as a dedicator.
On the contrary, source; will be a dedicator when having

a relatively larger|h;|? in the next time block. That is to
say, enjoyers will eventually become dedicators accordling
Corollary[2 and Remarkl 2. However, more effective incentive
mechanisms still need to be designed to guarantee faityutili
5 distribution for more general cases, such as when someesurc

0.015

0.01

Algorithm Convergence Decision Paramete) ( Constant10—*
Parameter
S oos of service of each source-destination pair's data trarsons
E sousl —e—E/T=01mW it is reasonable to guarantee that each pair has a minimum
g | ow BfT=0.12mW duration in data transmissiofig’) as shown in[{R). However,
- =0- ET=0.14mW the constraints in[{2) possibly result in the utility imbade
0.035 = . .
g —v—E/T=0.16mW among dedicators and enjoyers, where all sources tend to be
o 00 (e EJT=0.18mW enjoyers instead of dedicators. This indicates that thehNas
g 0025 S bargaining solution can guarantee fairness only to a certai
[
g
I
©
p=}
=]
[}
Q
@

0.005

R

Number of Dedicators

Fig. 6. The relation between the residual harvested enerdlye relay and
the number of dedicators.

10

- + Utility of Source-Destination Pair always act as dedicators if their channel conditighs|t) are

7wty TP always better than others. These points are left for therdutu

§ ol ey e ] work.

é w0 Enjoyers i VI. CONCLUSION

fTﬁ 10" 5 In this paper, we have considered a wireless powered relay

g ol Dedicators 1 network with one relay and multiple source-destinatiorrgai

& R IEE from a Nash bargaining game theoretical perspective. We hav

i3 107 ‘_ro ¢ ¢ * 3 found that the problem is not a strictly concave (convex)-opt

% Wb e ] mization problem, which is hard to solve. However, the prob-

lem has been proved to be simplified when it is decomposed

10°; 1 2 : 4 5 o = 8 into three parts: 1) energy transmission power optimizatio

3
Number of Sources 2) data transmission power optimization and 3) time divisio

We have proved that with the Nash bargaining solution, the
sources can be divided into two groups as dedicators, who do
energy harvesting with the maximum power and enjoyers who
do not transmit energy to the relay at all. In addition, weehav
energy in the relay. proved the quasi-concavity of both transmission powerrobnt
Fig. [@ illustrates the utility distribution among sourceproblem and transmission power control problem. Based on
destination pairs, with sources as dedicators and souceshee analysis on the problem, we have designed an algorithm to
enjoyers. We observe that the dedicators’ utilitid®)(*) find a suboptimal Nash bargaining solution. The convergence
are dramatically lower than those of enjoyer)¥). The of the algorithm and the properties have been illustrated in
possible reasons are given as follows. To guarantee quatig simulation results. In the simulation results, we have

Fig. 7. Utility distribution among source-destination nsai
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also shown the imbalance of utilities between dedicatots awe have the inequation as follows:
enjoyers at the Nash bargaining solution, which indicates t

L. . . O, — D
more effective incentive mechanisms are needed. ' ’

_ BiPaP§ (Ba|hi|*Ps + B1) — B; P aPs (Bz|h;[* Ps + B1)
BinO,BijSO(an + BjP;O)(aPOs + BiPiSO)
Bi P B Pl (|hil* — |hy|*)
APPENDIXA T BP9 P50 (aPs + B P0)(aP; + BiP0)
PROOF OFTHEOREM[] ﬂLPéoaPO(Bﬂh 2P + B1) — B; P°aP§ (Balhy[2PS + By)
- Bi P08, PiO(aPs + B P;°) (s + BiPP)
When we separately consider transmission power of energy B, PP (Balhi|*P§ + By) — ; PRaPs (Balhi|*F§ + B)

sl >
harvestingP;! for each source;, the problem in[(9) can be = B: P03, PO (aPs + B; P0) (aFs + BiP)
rewritten as a fractional programming problem, which isegiv S0N2 s 9 5
as follows: _ Bi (P;")"als Bz (lhil” — |h;[7) >0
Aat Asl ; BiPOB; P (aPs + B; P°)(aPs + Bi PP°) — 2)
4+ As(a; P}
Ag(AlaZpﬂ T Ay)’ (19) Therefore, we have the source be more likely to perform

energy transmission as a dedicator @sto s;), when it
has better channel conditiof(|?) to the relay, holds more

time (3;7) and larger powerR;:°) for data transmission.
where A4; to A5 are independent fron?!, which is given as

st.0< Pt < P,

follows: APPENDIXC
A =T PROOF OFTHEOREMI[Z
Ay — P;o 3., According to Lemmall, we can rewrite the problem[ih (9)
0 with variable P" as follows:
sy = i (P ouT + FOAT) N i pr
| H1gkg1\r Ci ' (20) max ® = < _ log(.l + IL/}P ) , ) (K1 — KoP"),
A4:nZPI§1akT_E0‘ " A S +|Ll| 2
k#i . P§lh o
P st.0<P <m1n{P0,{| |(14— p )z W}}’
(23)
o ) ) ) ) where for anyl <i < N, L{ to L} and K; to K, are given
The objective function above is a monotonic function/f. < follows:
When A, < A,, the objective function is a monotonically in- )
creasing function of’*!. The objective function is maximized Li = |922| >0,
only whenP;t = Pgl On the other hand, whes, > A, the ; 7‘:
objective functlon is a monotonically decreasing functain Ly = B; 20,
P#l. The objective function is maximized only whéif! = 0. e
Hence, we havePs! equal to either; or 0 to maximize the =BT = 20,
objective in [9). That is to say, the sources can be classified L= a,LTPO >0, (24)
into two groups: the group of dedicators wiitf! = Ps! and N
the group of enjoyers Wit[Pfl =0. K, = anPST — Eo >0,
=1
N
K> =3 vT >0,
APPENDIX B i=1
PROOF OFCOROLLARY [2 Since ® in @3) is a smooth function whe®” > 0, we

prove the gquasi-concavity di (23) throu§tep 1to Step 2as
When we setPs! = P; and Pi' = 0, the objective follows.
function [9) can be written as foIIows Step 1: The problem in[(213) can be decomposed as follows:

max log(®)
Bsai|hi|* P 4 By ik
—Zl < 10g(1+L1P‘) .>+10g(K1—K2P1T)7

(I)'L' = )
B, Pro(0i Py + BiP0)

(21)

L(1+ LiP)Es — 1) + Li

where B, > 0 and Baoy|hs|?P§ + B; > 0 according to  s.t. ogP"gmin{PO,{| |2(1+ P°|h| ) i o |2}}
a2 i

the constraints |n[]9) On the other hand, we can rewfite (9)

Booy b2 PE+B P =Pl
ﬁ;“zlhl‘)sfﬁ po; Wwhen setting P = 0 and ! (25)

PS1 Pgt. In addition, according to Corollarfyl 1, we have Step 2: At this step, we prove the decomposed problem in
o = a; = ;. Then, whens; P?° > 8, P and|h,|* > |h,|*>, (28) to be a quasi-concave problem. The quasi-concavity of

as ¢; =



log(1+ L P)
Li((+LiPr)e—1)+ Lk

the normlog
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for variable P! is easy where&; > 0 is given as follows:

to test when # 1. Wheni = 1, we prove the quasi-concavity , L P L3L5Li(1+ L%P{)Lé
of the objectived for variable P through proving LemmA]2 S=7 + LiPr Gz (LA + LYPr)E2 — 1) + L) (1 4+ LA PY)
and LemmaDB as follows: 5 Ko

Lemma2 Vpr® > 0whenP] =0andVpr® <0 when Ky — K> P

Pl -
variabIeP1
Proof: Vpr® is calculated as follows:

x5, WhereVpr @ is the first-order derlvatlve ob for

Lj
(14 LiPr)log(1l + LIPY)
LALALY(1 + LIPD)"2

- 1 (26)
(L3 + LiPy)*2 = 1)+ Ly)(1 4+ Ly PY)

Ko
& —KQP{>

It is easy to test thal pr® > 0 whenP" = 0 andVp, ® < 0
when P" = g—;. [ ]

Vplv‘q) = <I>~<

Lemma 3: There does not exist any local minimum inflec-

tion point of ® when0 < Pj < Kl . That is to sayV2 >0

guarantee§/ p;y® < 0, WhereVQPMIJ > 0 is the second order

derivative functlon ofd.
Proof: We rewrite Vpr @ as follows:

Ko
Ki—K.Py )’
Li
(14 LiPr)log(1l + L1PY)
- L3LYLI(1 + LiPP)"
(L3((1+ LiPD)E2 = 1) + L) (1 + LiP])

Vpr®=2a- (Cl—

G = (27)

Thus, we calculate th@QP{CIJ as follows:

K
K1 — Ko PF

o K
K1 — Ko P!
_ L
-— 1+L1PTC1
LYLALI(1 + LIPp)Ee
(LA((1 + LYPT)E2 — 1) + L})(1 + LI Py)
Ko
— 2. mﬁ
LY (L) (LH)(1 + LY Py~
(LY((1+ LYPr)*2 — 1) + L) (1 + L} P)?
Ll
¢

< —
s-e 1+ Lipr
1
Y LsLyLi(1 + LiPP)" a
1 .
(L3((1+ LiPr)*2 — 1) + L) (1 + L1 PY)
K>
K1 — Ko P G

:—q)'£1'<17

Vird=0- <<1 -

—®-Vpr (Cl

— 20

G

(28)

(29)
WhenV%@ > 0, we have—® - &, - (; > 0. Since® > 0 and
& >0, we have(; < 0. Therefore, we have the inequation
as follows:

K,
Vpr®d=0- - <P <0.
P; (G e P{) <P < (30)
Hence, we conclude thﬁQPZMD > 0 guarantee$/pr ® < 0.
|

According to the decomposition iStep 1, Lemmal[2 and
Lemmal[3 inStep 2 and the linear constraint ifi_(23), we
conclude that the problem ifl(9) is a quasi-concave problem
with variables{ Pf°} and P".

APPENDIXD
PROOF OFTHEOREM[3|

According to Lemm&]1l and Corollaky 1, we can rewrite the
problem in [[9) with variables: and {+;} as follows:

J N
D1y
max &= - Fioa—F, — D ;
{aib v} ( H Dia + D L) (F1 2 E 1Y)

i=1

i=1
(i + D5vi)T > 60T,
_ _ (31)
where {D}} to {D.} and F; to F, are positive, which are
given as follows:

Di = Tlog (1 L prlol ) ,
Dé = Pz‘SIT7
log(1 + P"|gi|*/0?)
© T log(1 + POJh|2/0?)
D} =P'T,
pi = los(1+ P"lgi|*/0)
° log(1+ POlhif? /o)
Fr=n Y  PBThi,
Psl=P;
= Ep,

Dj =

(32)

I

whereD? to D andF; to F; are independent from and{~; }
andB; = Di~,. Sincew; is separable if(31), it is easy to test
that ® is a concave function for each. Then, the constraint
in (31) are linear constraints. Thus, the problem[in (31) is a
guasi-concave problem whdnis a quasi-concave function of
a, which we prove it in Lemmal4 as follows:

Lemma 4: V2® > ( guarantee&/’.® < 0, whereV?, is
the i*"-order derivative with variable.. That is to say® has
no local minimum inflection point ofr, which indicates that
the problem[(31) is a quasi-concave problemof
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Proof: We can calculat&/?2 ® and V. ®, respectively, as where[P"]* equals to—pQE

follows: The dual problem is as follows:
(- S witv]-o max gy 1 (p1,p2), (38)
Pil=F§

) with variablesp; andp,. We can achieve a dual optimal point
Z N . Z w0 o {p%, p§}_~ through solve the QUqI problem above. Sinpe the da_ta
pav pi) —v ’ transmission power optimization problem [n}13) is a quasi-

sl_ps . . . . .
Pi=F concave optimization problem, instead of a strict concave

1
Pyl=pg

i = = Gi 50, v= H, >0, opt?mizatio_n problem, we can only _’possibl_y’ obtain a prima
Gia+ Gy Hia — H2 (33) optimal point(P")* from a dual optimal poinf o}, p3} as
where{G%}, {G4}, Hy andH, are independent from, which (P")* = argmin LE(PT, pt. p3). (39)
are given as follows: P
Gi = Di = D = P'T, Since theg¥ is differentiable whem; > 0 andp, > 0, we can
sO17 122 update the primal variablB™ and the Lagrange multiplieys,
GY = Dsvy; = P-S%-Tlog(1 + B hil*/ o) and p, as follows [37]:
2T T dog(1 4 Prlgi?/o®) i .
T 1 : k T
Hi=F=n Y PTh? (34) (PT)" = argmin Ly(P", pi, pb),
PiT=Fg A= o+ o (0 (P, (40)
N N 1t t r\t+1 r1%
= P — [P,
H2:F2+ZDZ’7/€:EO+ZD§7/€ P2 p2+§2(( ) [O])v
k=1 k=1 wherec! > 0 andc} > 0 are the step variables for thé"
Therefore, whervV2® > 0, we have the inequation as follows:step.

The iteration ends (the gradient ascent algorithm congrge
att{" iteration when the primal variablB" satisfies the linear

stopping criterion[[3]7], which is given as follows:

0< Vi

psl=pg Psl=Pg Psl=pg [(PT) T — (P < e, (41)
2
) ) o wheree; is a minor parameter to determine the convergence.
< lz: L I lz: pi | ¥ Finally, we obtain the optimal{P")* in 39) as(P")* =
Psl=pg Psl=pg

(PT)titl. We emphasize that since the data transmission
ower optimization problem is not strictly concave, we can
——2( Z ui>.v;q>:»v;q><o. P P P y

: obtain a suboptimal solution with dual ascent method.
Pil=Pj

(39)
Thus, the problem in[(31) is a quasi-concave problenaof
Therefore, the problem ifi{9) is a quasi-concave problerh wit
variablesa, {3;}, and{v;}. Similarly with the gradient ascent method in Appendix E,
m we can update the time division variables {~;} and the
corresponding Lagrange multiplieis and {¢%} in (18) as

APPENDIXF
GRADIENT ASCENT FORTIME DIVISION

APPENDIXE follows:

GRADIENT ASCENT FORDATA TRANSMISSION POWER t+1 _
a,{v; =ar Inln L i ,

SORDATA TR (o {7:}) g min L(a, {7}, of, (b)),
The Lagrangian function for data transmission power opti- J , .
o . . +1 _ ¢t t t4+1 t+1 =

mization problem is given as follows: o ot e+ Z(% +Dgy) -1,
k r . . .

Ly(P 7P17P2) (gg)tﬂ — (Qé)t + (T;)t . (90T ( t+1 —i—DZ t“)T) ,

log(1 + LiP") . } (42)
- H (LZ 14 Li PT)L; —1)+ L1> (K1 — K2P") (36) wherer} > 0 and{(4)* > 0} are the step variables for thé
+p (0 P+ pa(P" — [P]) step. Similar with the gradient ascent method in Appehdix E,
1\U— — 4o .

we can set a primal stopping criterion when the time division
Thus ,the dual function is calculated as follows![37]/[39]: converges at" iteration, which is given as follows:

gt (p1, p2) = infﬁlf(PT}phpz) a2t~ af2| < gy 43)

= H log(1 + L [P ) _ (Kl - KQ[P*]”) wheree, is a minor parameter to determine the convergence.
Li((14 Li[PT)8)t2 — 1) + LY

— p2| P51, 2Since all variables and all parts in the Lagrangian functoa real, we
(37) eliminate all the conjugate operations.
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To avoid misleading the time division process, we obtain the] A. A. Nasir, X. Zhou, S. Durrani, and R. A. Kennedy, “Thughput

(o, {7:})t*+! at eachtt” iteration, through alternatively update

of a and {~v;}, which is given as follows:

o’ = a? — (r1)"VaL(a, ({3})7, o, ({0 )),

VT = — (K)o, L5, ({9 1) i i 0 ({Qé}();)A:)

where (k1)? > 0 and {(x%)”} > 0 are the step size. To

and ergodic capacity of wireless energy harvesting baseddkfying
network,” IEEE International Conference on Communications (ICG14)
pp. 4066-4071, Sydney, Australia, Jun. 2014.
[13] P. Liu, S. Gazor, I. Kim, and D. I. Kim, “Noncoherent rgiag
in energy harvesting communication systemdgEE Transactions on
Wireless Communicationsol. 14, no. 12, pp. 6940 - 6954, Dec. 2015.
[14] Z.Zhou, M. Peng, Z. Zhao, and Y. Li, “Joint power spiitji and antenna
selection in energy harvesting relay channelgEE Signal Processing
Letters vol. 22, no. 7, pp. 823 - 827, Jul. 2015.

guarantee the constraints ih[15) are always satisfied, th@ D.S.Michalopoulos, H. A. Suraweera, and R. Schobeeldi selection

following equation must be satisfied 4t" update:

(k1)” - VaLi(a, ({7})", 01, ({03})")

N
+ 3 (k)" Vo, L3 (@7, (£33 1) vis 01, ({05 1)) = 0,
=1
7 = ()" Vi L5 (0, ({3100 w0 (021)) > 757
(45)
When the update ends 4t" update, we have
atJrl — aﬁl+1
’ (46)

WH = VI<i <N,

When the gradient ascent method converge4'ateration,
we can obtain the optimal values a$ and ({v;})* for the
time division problem in[(1l5), which is as follows:

a* _ at2+17

() = () *7)
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