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Abstract 

Knowledge of the frequency and fitness effects of mutations is essential for 

understanding a diversity of issues in evolution; thus, many efforts have gone into 

elucidating the mutational process. However, our understanding of mutation is far from 

complete, largely due to the fact that mutations are rare and frequently eliminated by 

natural selection. This renders studies of the mutational process inherently difficult. The 

ciliate Tetrahymena thermophila provides a unique opportunity to overcome these 

difficulties by allowing the accumulation of mutations over many generations in the 

absence of selection on the germline genome. Estimates of the rate and fitness effect of 

mutations, the first from the eukaryotic supergroup Chromalveolata, are within the range 

of those of previously studied eukaryotes. Mutations are partially recessive on average 

and the rate of lethal mutations is substantially lower than the deleterious mutation rate.  

Germline mutation accumulation in T. thermophila used the reproductive 

idiosyncrasy that the germline genome only gets expressed during sexual reproductions; 

thus, germline mutations could be hidden from selection during asexual transfers. There 

might be other useful reproduction strategies for evolutionary genetics, so as a start, 

another marine free-living ciliate Glauconema trihymene was explored and shown to 

have diverse asexual reproductive strategies. Selfing was also observed with peculiar 

macronuclear events in G. trihymene.  
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Chapter 1 Introduction 

 

1.1 What are mutations and mutational parameters? 

The term “mutation” was coined by the Dutch botanist and geneticist Hugo de Vries in 

the late 19th century. It referred to the sudden origin of new morphological forms of the 

plant evening primroses (Oenothera lamarckiana) (DE VRIES 1905), though those new 

forms could also be from other genetic processes (EMERSON 1935), e.g., meiotic 

recombination. The current view on mutation is DNA sequence change (RNA sequence 

change in the case of RNA based organisms). Such change varies from a nucleotide to a 

whole genome (reviewed in GRAUR in press). Mutations causing harmful effects are 

called deleterious mutations, those increasing fitness of the individuals carrying them are 

called beneficial mutations, while others with no effects are called neutral mutations 

(reviewed in GRAUR in press). 

Major mutational parameters involved in this study are: genomic mutation rate, 

mutational effect, and dominance coefficient. The genomic mutation rate refers to the 

frequency of mutations occurring in one genome and is essential in evolutionary models 

and predictions. For example, the observation that the deleterious mutation rate is less 

than 1 per genome per generation in several organisms suggests that selection against 

deleterious mutations is not sufficient to explain the widespread maintenance of sexual 

reproduction (HALLIGAN and KEIGHTLEY 2009; KONDRASHOV 1988). There are two units 

for the mutation rate in this study: mutational events with fitness effects per haploid 
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genome per generation from the Bateman-Mukai estimates (assuming equal and additive 

mutational effects) and nucleotide changes per nucleotide site per generation from 

genome sequencing. Mutational effect is the consequence of a spontaneous mutation and 

it is usually deleterious (harmful) (EYRE-WALKER and KEIGHTLEY 2007; FISHER 1930; 

SILANDER et al. 2007). The distribution of fitness effects is one important evolutionary 

topic (see section 1.2 for details) (reviewed by EYRE-WALKER and KEIGHTLEY 2007). 

Dominance coefficient or degree of dominance describes the effect of a mutation on a 

heterozygote carrier. It is measured as the fitness difference between the non-mutated 

homozygote and the heterozygote genotypes, relative to the fitness difference between 

the non-mutated homozygote and the homozygote mutant genotypes. Current research 

shows that mutations are generally incompletely recessive (reviewed in CHARLESWORTH 

2009; HALLIGAN and KEIGHTLEY 2009).   

1.2 Why study mutations and use T. thermophila as the experimental subject? 

Mutations create genetic variation and cause many human diseases like cancers, and can 

lead to senescence (HALLIGAN and KEIGHTLEY 2009; LYNCH 2010; LYNCH et al. 1999). 

They are crucial in understanding evolutionary topics like the maintenance of sex (OTTO 

and LENORMAND 2002), genetic variation at the molecular level (CHARLESWORTH et al. 

1995) and persistence of small populations (LANDE 1994). Intensive research has been 

conducted on mutations; however, our understanding of mutation is far from complete 

largely due to the fact that mutations are inherently difficult to study as they are rare and 

frequently eliminated by natural selection. Among eukaryotes, mutational parameters 

have only been estimated in Opisthokonta (which includes animals and fungi). The first 
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human mutation rate (for hemophilia) was measured early by J.B.S. Haldane (HALDANE 

1935; HALDANE 1946; HALDANE 1949); however, the mutation rates of the majority of 

eukaryotic groups are still unexamined (reviewed in HALLIGAN and KEIGHTLEY 2009).   

 As the only ciliate that could be cultured in chemically defined medium and easily 

frozen in liquid nitrogen, and which has the most diverse genetic tools, the ciliate T. 

thermophila also has one transcriptionally active macronucleus (containing the somatic 

genome) and one inert micronucleus (containing the germline genome) like most ciliates. 

It is not unusual for T. thermophila to become incapable of producing viable progeny 

from sexual reproduction after thousands of generations of asexual reproductions 

(NANNEY 1974). This was assumed by NANNEY (1974) to be related to the accumulation 

of deleterious mutations in the germline micronucleus. The dimorphic nuclear apparatus 

of T. thermophila thus provides a unique model to study the germline mutation 

accumulation in the absence of selection. 

1.3 How to study mutations? 

There are many ways to study mutation rate (reviewed in LYNCH 2010); however, the 

major way to study genomic mutation rate, fitness effects of mutations, as well as 

dominance coefficient is through mutation accumulation (MA) experiments (EYRE-

WALKER and KEIGHTLEY 2007; HALLIGAN and KEIGHTLEY 2009).  

MA experiments were pioneered by Hermann Joseph Muller using Drosophila (MULLER 

1927; MULLER 1928). MUKAI (1964) estimated genomic mutational parameters using 

such experiments, which were recently conducted in other model organisms like 
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Arabidopsis (SCHOEN 2005; SHAW et al. 2000), Caenorhabditis elegans (KEIGHTLEY and 

CABALLERO 1997; VASSILIEVA et al. 2000), Escherichia coli (KIBOTA and LYNCH 1996), 

Saccharomyces cerevisiae (ZEYL and DEVISSER 2001), and Φ6 virus (BURCH et al. 2007).  

 

Figure 1.1 Experimental protocol for mutation accumulation transfers. Starting from a single T. 

thermophila SB210 cell, 50 independent lines were grown for 1000 generations. Every 20 generations (~3 

days), a single cell was transferred from early log-phase culture and every ~200 generations the lines were 

cryopreserved. Colored dots indicate the independent accumulation of mutations in the germline and 

somatic genomes. Picture courtesy of Rebecca A. Zufall.  

 

In a typical MA study, mutation accumulation lines originating from the same 

ancestor line are cultured over many generations through inbreeding and population 

bottle-necking. Selection is greatly reduced in these experiments, so that drift dominates 

over selection (reviewed in HALLIGAN and KEIGHTLEY 2009). Because most mutations 

with fitness effects are deleterious, the fitness of cell lines in an MA experiment would 

decrease compared with the ancestor fitness; different MA lines usually accumulate 

different mutations, so the among-line variance of fitness increases. The fitness decrease 

(∆M) and among-line variance increase (∆V) thus become signs of MA and these values 

http://en.wikipedia.org/wiki/Caenorhabditis_elegans
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can be used to calculate the Bateman-Mukai estimates of mutational parameters 

(BATEMAN 1959; MUKAI 1964) (see details in section 2.2.3, chapter 2).  

Fitness, either relative or absolute, is usually determined with competition assays 

or fitness assays on fitness metrics, usually the growth rate in microbes. Different fitness 

metrics can result in large variation in mutational estimates (VASSILIEVA et al. 2000). The 

mutational effect and genomic mutation rate could then be estimated based on the fitness 

change ∆M and among-line variance change ∆V between the ancestor and the final 

evolved lines, using the Bateman-Mukai method (BATEMAN 1959; MUKAI 1964). There 

are also recent methods based on maximum likelihood analyses (KEIGHTLEY 2000; SHAW 

et al. 2002), which could even include fitness from lines at multiple generations. The 

dominance coefficient could be estimated by fitness assays on parental lines and on 

progeny from the crossing of the ancestor and the final evolved individuals in the same 

lineage. Long-term storage, e.g., cryopreservation, is thus needed for ideal ancestor 

controls, which are feasible in microbes and some multicellular organisms, while not easy 

in Drosophila. 

MA experiments are not the only experimental tools used especially for the 

genomic mutation rate estimation. With the advent of the next-generation genome 

sequencing, the genomic mutation rate has been shown to be underestimated in MA 

experimental studies, in which only mutations with fitness effects above a certain level 

could be detected; thus, estimating genomic mutation rate can also be done using 

genome-sequencing (LYNCH et al. 2008). However, distribution of fitness 
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effects/dominance coefficient estimations require fitness assays on MA to be conducted, 

and these parameters are far from being understood (HALLIGAN and KEIGHTLEY 2009). 

1.4 Why study mutations on morphological traits? 

Morphological species identification has been based on morphological traits for centuries; 

however, the variation of those traits within one population has rarely been empirically 

tested. This is one reason why the morphological species diversity of ciliates was 

challenged (CARON 2009; FINLAY and CLARKE 1999). In addition, phylogenetic trees 

based on morphological traits and those based on marker genes were not consistent with 

each other (WIENS 2004), studying the mutational effects on morphological traits might 

give insight on such inconsistency. Morphological traits have also been shown to be 

useful in estimating mutational parameters (AZEVEDO et al. 2002).  

1.5 Why study reproductive strategies of ciliates? 

As shown by the genetic tools used in the above mutation accumulation experiments, the 

unique nuclear structure and reproductive strategies helped overcome difficulties posed in 

other model organisms, e.g., mutations were silent in the germline genome during asexual 

transfers and got expressed by a special sexual reproduction process. Nonetheless, T. 

thermophila is known to be a ciliate with relatively simple life history/reproductive 

strategies; thus, exploring the life history traits like reproductive strategies of other non-

model ciliates might provide more perspective into ciliate evolution or genetics, despite 

that they are rarely studied (LYNN 2008). 
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1.6 The study systems, Tetrahymena thermophila and Glauconema trihymene 

The unusual nuclear architecture, diverse genetic tools, and short generation time of the 

ciliated unicellular eukaryote Tetrahymena thermophila (Chromalveolata) makes it 

particularly suitable for MA experiments. T. thermophila, like most ciliates, maintains 

two types of nuclear genomes: a transcriptionally active somatic genome in the 

macronucleus, and a sequestered, largely transcriptionally inert germline genome in the 

micronucleus. Because the germline genome can remain silent throughout many rounds 

of asexual reproduction, mutations that occur in that genome are hidden from selection 

until they get expressed after conjugation. Thus, all mutations, regardless of fitness effect, 

have an equal probability of fixing in the germline genome. Genetic tools like genomic 

exclusion also make this ciliate particularly suited for the purpose of mutation 

accumulation (BRUNS and CASSIDY-HANLEY 1999). Accumulation of deleterious 

mutations in the germline genome of lab cultures of Tetrahymena was first observed over 

50 years ago (NANNEY 1959). Remarkably, strains with deteriorated, or even absent, 

germline genomes are nonetheless capable of vigorous asexual reproduction (ALLEN et al. 

1984; NANNEY 1974). 

  Free-living ciliates are known to exhibit diversity in modes of reproduction 

(LYNN 2008) and these reproduction modes provide unique tools for genetic studies, like 

the type of conjugation (genomic exclusion, see section 2.4 in chapter 2 for details) used 

in the MA studies of T. thermophila. Glauconema trihymene is a free-living cosmopolitan 

scuticociliate, which belongs to the class Oligohymenophorea including Tetrahymena. It 

is widely distributed in warm coastal waters, while extremely understudied (LONG and 
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ZUFALL 2010). Several reproductive strategies that have been previously unknown in the 

free-living ciliate G. trihymene were discovered and might provide potential tools for 

evolutionary genetic studies of ciliates. 

1.7 Dissertation outline 

This dissertation is aimed at conquering the difficulties unavoidable in most other 

mutation accumulation systems using the idiosyncratic nuclear genomes and reproductive 

strategies of the ciliate T. thermophila, finding morphological traits variation after long-

term mutation accumulation, as well as exploring the peculiar reproductive strategies of 

another marine ciliate G. trihymene. I addressed the following questions: (1) What are the 

genomic mutation rate, fitness effects, and dominance coefficient in the germline genome 

without being affected by selection in T. thermophila (Chapter 2)? Are the mutational 

parameters of the somatic and the germline genomes identical within one species 

(Chapter 2)? (2) Do morphological traits, which are used in ciliate taxonomy, change 

after germline mutations get expressed after long term asexual divisions (Chapter 3)? (3) 

What are the reproductive strategies in the non-model ciliate G. trihymene (Chapter 4)? 

 In chapter 2, I conducted one large MA experiment on T. thermophila, using 

single-cell transfers, fitness assays, and genetic tools by manipulating its unique sexual 

reproductive strategies, as well as individual-based simulations (simulations done by 

collaborators Tiago Paixão (TP) and Ricardo B. R. Azevedo (RBRA)) to understand the 

mutational dynamics in the somatic and the germline genomes. I show that mutations 

were successfully accumulated in the germline genome and mutational estimates are 
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within the range of other studied organisms. The somatic genome had very different 

mutational dynamics, which needs further study, from those of the germline genome. 

 In chapter 3, morphology of cells bearing germline mutations and somatic 

mutations are compared with that of the ancestors. Four morphological traits: numbers of 

somatic kineties (No. SK) and post-oral kineties (No. PK), macronucleus (Ma), and cell 

sizes, as well as the fitness were observed and analyzed. My results showed No. PK had 

no variability (thus good for ciliates’ taxonomy), but not the macronucleus and cell size, 

which showed a drop from the ancestor. The cell size drop also showed positive 

correlation with that of the fitness, which is known to be affected by mutations, indicating 

that cell size is not an ideal trait for morphological species identification/definition.  

 In chapter 4, reproductive strategies of another free-living but non-model ciliate G. 

trihymene were explored. This species was shown to be the one known with the most 

diverse asexual reproduction modes among all free-living ciliates: fission, reproductive 

cysts, and asymmetric division. The selfing in this species also showed peculiar nuclear 

events. 
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Chapter 2 Mutation accumulation in T. thermophila 

 

Due to its central role in both evolutionary change and human disease, mutation has been 

the focus of intensive research. The probability that a spontaneous mutation will occur 

and its impact on fitness are parameters of central importance for making predictions in 

evolutionary biology; however, estimates of these parameters are difficult to make and 

exist only for a few taxonomically-restricted eukaryotic species. Here we introduce a new 

experimental system for elucidating these and other mutational parameters, the microbial 

eukaryote T. thermophila. The nuclear structure of this species allows for the 

accumulation of mutations of all fitness effects, including strongly deleterious and lethal 

mutations, which are usually eliminated by selection in similar experiments. Despite the 

unusual genome structure and the wide evolutionary distance from previously studied 

species, the estimated mutational parameters in T. thermophila do not differ substantially 

from those of other species. 

2.1 Introduction 

Mutations are the ultimate source of all variation responsible for evolutionary change. 

Thus, knowledge of the rates and fitness consequences of spontaneous mutations are 

essential to understanding evolution (CHARLESWORTH 1996). These parameters have 

been estimated in a handful of systems and have provided many important insights into 

the evolutionary process (reviewed in HALLIGAN and KEIGHTLEY 2009; LYNCH 2010; 

LYNCH et al. 1999). For example, the observation that the deleterious mutation rate is less 
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than 1 per genome per generation in several organisms suggests that selection against 

deleterious mutations is not sufficient to explain the widespread maintenance of sexual 

reproduction (HALLIGAN and KEIGHTLEY 2009; KONDRASHOV 1988); however, among 

eukaryotes, mutational parameters have only been estimated in Opisthokonta (which 

includes animals and fungi) and Archaeplastida (comprising red and green algae and land 

plants), leaving the majority of eukaryotic diversity unexamined.  

Mutation accumulation (MA) is the principal experimental tool available to study 

mutation rates and fitness effects. Typically, MA experiments consist of allowing the 

accumulation of spontaneous mutations in replicate populations over many generations. 

Small populations are used in order to allow new mutations to drift to fixation regardless 

of their impact on fitness. The efficacy of an MA experiment in estimating mutational 

parameters is constrained by the biology of the organism used. Organisms with long 

generation times accumulate mutations slowly (e.g., one MA study on Arabidopsis 

thaliana (SHAW et al. 2000), which has a generation time of ~10 weeks, only lasted 17 

generations), leading to imprecise estimates; however, in organisms with short generation 

times, mutations with stronger deleterious effects are more likely to be eliminated by 

selection—especially if populations are allowed to expand between transfers (KIBOTA 

and LYNCH 1996)—, leading to biased estimates.  

The unusual nuclear architecture and short generation time of the ciliated 

unicellular eukaryote T. thermophila (Chromalveolata) makes it particularly suitable for 

MA experiments. T. thermophila, like most ciliates, maintains two types of nuclear 

genomes: a transcriptionally-active somatic genome in the macronucleus, and a 
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sequestered, largely transcriptionally-inert germline genome in the micronucleus. 

Because the germline genome can remain silent throughout many rounds of asexual 

reproduction, mutations that occur in that genome are hidden from selection until they get 

expressed after conjugation; thus, all mutations, regardless of fitness effects, have an 

equal probability of fixing in the germline genome. Accumulation of deleterious 

mutations in the germline genome of lab cultures of Tetrahymena was first observed over 

50 years ago (NANNEY 1959). Remarkably, strains with deteriorated, or even absent, 

germline genomes are nonetheless capable of vigorous asexual reproduction (ALLEN et al. 

1984; NANNEY 1974). 

An MA experiment was conducted to determine the mutation rate and fitness 

effects of mutations in the germline and somatic genomes of T. thermophila. Mutations in 

the germline genome caused a substantial decline in mean fitness and an increase in the 

variance in fitness among MA lines. In contrast to a previous study (Brito et al. 2010), no 

evidence was found for the accumulation of deleterious mutations in the somatic genome 

over 1,000 generations. The deleterious mutation rate and fitness effects of mutations in 

the germline genome are consistent with estimates of these parameters from MA 

experiments in other eukaryotes. The results of backcrossing and genomic exclusion 

experiments suggest that most germline mutations are mildly recessive when expressed in 

the somatic genome, and that lethal mutations are rare. 
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2.2 Results 

2.2.1 The germline genome accumulated deleterious mutations 

To measure the fitness consequences of mutation accumulation in the germline genome, 

The maximum population growth rate (rmax) of 25 MA lines after genomic exclusion (GE) 

to express germline mutations at different time points during evolution was measured 

(Supplemental Information Figure S1; see S2 for results on lag time). After 1000 

generations of MA, the mean rmax of 19 MA lines was 40.6% lower than that of the 

ancestral line (95% credible interval (CI): 31.6%, 48.4%). When additional data from 

generations 200 and 800 were taken into account, we (all data analyses were in 

collaboration with RBRA & TP) estimated that mean ln(rmax) declined by ∆M = –0.0509% 

per generation (95% CI: –0.0649%, –0.0368%; Figure 2.1A). 

In parallel, the among-line variance in fitness also changed over time. The best 

fitting linear mixed model assumed that the among-line variance components differed 

between generations (Table 2.1). The among-line variance component in ln(rmax) 

increased at a rate of ∆V = 0.00552% per generation (95% CI: 0.00227%, 0.01279%; 

Figure 2.1C).  
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Figure 2.1 Accumulation of spontaneous mutations in T. thermophila over 1000 generations. 
Gradual accumulation of deleterious mutations in the germline genome causes mean fitness to decrease (A) 

and among-line variance in fitness to increase (C). In contrast, neither the mean nor the among-line 

variance in somatic fitness changes significantly over the course of the experiment (B, D). Our fitness 

measure is the maximum population growth rate (rmax) relative to the ancestral population. Means and 

among-line variance components were estimated through linear mixed models. Error bars are 68.3% 

credible intervals (CIs), based on the posterior distribution of the mixed model. In (C), the upper CI for 

t = 800 generations (0.508) is truncated to improve visualization (the wide CI is caused by an outlier). Solid 

gray lines are weighted least-squares regression fits where the mean or among-line variance at each time 

was weighted by the inverse of the sampling variance calculated from the posterior distribution; the dotted 

lines show the 68.3% CIs on the fits calculated from the posterior distribution.  
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Table 2.1. DIC (Deviance Information Criterion) analysis of among-line variance components 

in the MA experiment. Three linear mixed models were fit by making different assumptions on the 

among-line variance components at different generations: (1) equal to zero, (2) equal to each other, and (3) 

different from each other. Generation was treated as a fixed effect and MA line and Plate were treated as 

random effects. The germline and somatic fitness data were analyzed separately. Values are the DIC 

corresponding to each model. Lower values of DIC indicate a better fit (SPIEGELHALTER et al. 2002). A 

difference in the DIC of five is considered substantial, and a difference of 10 rules out the model with the 

larger DIC (BARNETT et al. 2010). Values in bold indicate the simplest adequate model. 

Model Germline    Soma 

V0 = V200 = … = V1000 = 0     92.32 –246.59 

V0 = V200 = … = V1000 > 0   –78.07 –294.06 

V0 ≠ V200 ≠ … ≠ V1000 > 0 –178.45 –294.42 

 

2.2.2 The somatic genome did not accumulate deleterious mutations 

To measure the fitness consequences of mutation accumulation in the somatic genome, 

the rmax of 42 MA lines (without GE) was measured at different times during evolution 

(see Supplemental Information Figure S2 for results on lag time). Mean ln(rmax) 

increased slightly by ∆M = 0.00240% per generation, and the 68.3% CI overlapped with 

zero (–0.00117%, 0.00595%; Figure 2.1B). Similarly, although there was evidence that 

the among-line variance component was greater than zero, there was little support for the 

hypothesis that it changed over time (Table 2.1; Figure 2.1D). 

 2.2.3 Estimating the deleterious mutation rate and the average mutational effect 

The expected number of new germline deleterious mutations per MA line per generation 

is 2UNe, where U is the deleterious mutation rate per haploid germline genome per 
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generation, and Ne is the effective population size. Since the germline nucleus divides 

mitotically and these mutations are neutral (hidden from selection), the probability of 

fixation of a diploid genotype containing a new mutation in a heterozygous state is 1/Ne; 

thus, the rate of deleterious germline mutation accumulation per line per generation is 2U. 

After t generations, the expected number of deleterious germline mutations per MA line 

is k = 2Ut. All these mutations are expected to be in a heterozygous (or heteroallelic) 

state.  

To assay the fitness of the germline of an MA line, a GE line was constructed. If 

an MA line has k mutations in a heterozygous state, a GE line derived from it will have a 

subset of, on average, k/2 mutations in a homozygous state; different GE lines will have 

different combinations of the original k mutations. We (in collaboration with RBRA) 

assume that the fitness of a genotype containing a deleterious mutation in the 

homozygous state is 1 − s and that all mutations have equal effects; then, following the 

approach of Bateman (1959) and Mukai (1964), the expected decline per generation in 

the mean fitness of MA lines after GE relative to the ancestral line is given by ∆M = –Us; 

the expected increase per generation in the among-line variance in fitness is given by 

∆V = Us
2
 (Table 2.2), which lead to the Bateman-Mukai estimators for the mutational 

parameters in the experiments shown in Table 2.2 (MA column). Applying these 

estimators to the rmax data we got a deleterious mutation rate per haploid germline 

genome per generation of U = 0.00470 (95% CI: 0.00154, 0.01249) and a deleterious 

effect of a mutation of s = 0.109 (95% CI: 0.0437, 0.272).  
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Individual-based simulations by TP and RBRA confirmed that these estimates 

were consistent with the germline fitness data (Figures 2.2A, C, S4; see Figure S3 for 

results on lag time). Although the MA lines were propagated by single-cell bottlenecks, 

in the simulations, an effective population size Ne = 10 was assumed to take population 

expansion between transfers into account, obtained by taking the harmonic mean of 

successive doublings from population size of 1 until the final population size is reached. 

This value is consistent with cell counts at transfer during the first half of the experiment 

(WAHL and GERRISH 2001).  

Assuming Ne > 1 has no effect on the trends in ∆M and ∆V for germline fitness. 

However, it does have an effect on the accumulation of deleterious mutations in the soma: 

it allows purging of deleterious mutations by selection during clonal expansion. 

Simulations (by TP and RBRA) under U = 0.0045 and s = 0.11 lead to the following 

somatic trends: ∆M = –0.0133% and ∆V = 0.000942%. Our somatic fitness data were 

consistent with the expectation for the among-line variance (∆V = 0.0000160%; 95% CI: 

–0.00187%, 0.00127%), but not the mean (∆M = 0.00240%; 95% CI: –0.00486%, 

0.00962%) (Figure 2.2B, 2.2D). Introducing a fixed proportion of beneficial mutations in 

addition to the deleterious ones, was not sufficient to resolve this discrepancy (Figure 

2.3). Further research would reveal whether the two nuclear genomes in T. thermophila 

have different mutational parameters. 
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Table 2.2 Expected values of experimental and mutational parameters for the three types of 

experiments used in this study. MA, mutation accumulation experiment followed by a single genomic 

exclusion per line; GE, multiple genomic exclusions per mutation accumulation line; BX, multiple genomic 

exclusions per mutation accumulation line followed by backcrossing to the ancestral line. From these 

experiments we measured the following two quantities directly: ∆M, change in the mean fitness of the lines 

per generation; ∆V, change in the among-line variance per generation. (In the MA experiments these 

quantities were measured across MA lines; in the GE and BX experiments they were measured among 

replicate genomic exclusions, within a single MA line.) From these quantities we estimated the mutational 

parameters: U, deleterious mutation rate per haploid germline genome per generation; s, deleterious effect 

of a mutation when in a homozygous state; h, dominance coefficient of a mutation. (The fitness of a 

genotype containing a mutation in the homozygous state is 1 − s; that of a genotype containing the same 

mutation in the heterozygous state is 1 − hs; ∆MBX = 1 − MBX, ∆MGE = 1 − MGE.) The expressions assume 

that all mutations have equal effects, following the approach pioneered by Bateman and Mukai (BATEMAN 

1959; MUKAI 1964). The estimators for the MA experiment were validated by individual-based simulations 

(Figure S4). 

Parameters MA GE BX 

∆M –Us –Us –Uhs 

∆V Us
2 

Us
2
 / 2 U(hs)

2
 / 2 

U (∆M)
2
 / ∆V (∆M)

2
 / (2∆V) (∆M)

2
 / (2∆V) 

S –∆V / ∆M –2∆V / ∆M –2∆V / (h∆M) 

H  ∆MBX / ∆MGE 

 

2.2.4 Dominance  

Four MA lines were taken (Figure S1) and multiple (16–27) viable GE lines were 

generated from each. Then each GE line was backcrossed (BX) against the ancestor and 

7–12 BX lines were generated for each MA line (BX was unsuccessful for some GE 

lines). As explained above, a GE line derived from an MA line that has accumulated 

k mutations for t generations, is expected to have k/2 deleterious mutations in a 

homozygous state. A BX line derived from this MA line is expected to have the same 
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deleterious mutations but in a heterozygous state. Therefore, the mean and variance in 

fitness across the GE or BX lines generated from a given MA line can also be used to 

estimate mutational parameters (Table 2.2, GE and BX columns). Furthermore, by 

combining the data from both types of lines, we (through collaboration with RBRA & TP) 

can estimate the dominance coefficient of a mutation (h), such that the fitness of a 

genotype containing a mutation in the heterozygous state is 1 − hs.   

 

Figure 2.2 Comparison between experimental and simulated data. The slopes of the regressions 

shown in Figure 2.1 are compared to those obtained from individual-based simulations of mutation 

accumulation under a broad range of values of the deleterious mutation rate per haploid germline genome 

per generation (U) and the deleterious effect of a mutation when in a homozygous state (s). Each simulated 

MA line was allowed to evolve for 1000 generations with a constant population size of N = 10 (see Figure 

S4 for more details). Colors indicate absolute differences between the slopes, such that low values (red) 

denote better fits and higher values (blue) worse fits. The cross marks the estimate of the mutational 

parameters based on the estimators in Table 2.2 (MA); the black line marks the 68.3% credible region 

based on the posterior distribution of the mixed model described in Figure 2.1. 
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Figure 2.3 Adding beneficial mutations does not resolve the discrepancy between the germline 

and somatic responses. The solid circles and black lines mark the median and 95% credible regions for the 

responses in the germline (left) and somatic (right) mean (∆M) and variance (∆V) in fitness estimated from 

the MA experiment (the confidence region for the germline is truncated to improve visualization). The 

open triangles show values of ∆M and ∆V for germline and soma from simulations assuming that beneficial 

mutations occur with different proportions (fB) and effects (sB). Simulations were conducted as described in 

Figure S4. In all simulations, we assumed that deleterious mutations occurred at rate U = 0.0045 and had an 

effect of s = 0.11. The proportion of beneficial mutations is defined as: fB = UB / (UB + U), where UB is the 

beneficial mutation rate. Increasing both fB and sB substantially fails to generate somatic ∆M and ∆V 

consistent with those observed in our experiment. 

 

Applying these estimators to the GE data we (in collaboration with RBRA) got a 

deleterious mutation rate per haploid germline genome per generation of U = 0.0205 (95% 

CI: 0.00583, 0.101) and a deleterious effect of a mutation of s = 0.0198 (95% CI: 0.00423, 

0.0558); similarly, we got the following estimates from the BX data U = 0.00155 (95% 

CI: 0.0000359, 0.0134), h = 0.257 (95% CI: –0.0221, 0.622), and s = 0.258 (95% CI: 

0.0277, 1). Differences among MA lines were small (Table 3) so they were ignored. The 

estimate of the dominance coefficient suggests that most of the mutations in these lines 
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are incompletely recessive (Figure 2.4). The lower credibility of the BX estimates result 

from the fact that they depend on h, which is itself estimated with uncertainty.  

 

Figure 2.4 Most mutations are incompletely recessive. (A) Results of multiple genomic exclusions 

per mutation accumulation line (GE) followed by backcrossing to the ancestral line (BX). Line means were 

estimated from a linear mixed model; error bars are 68.3% CIs. (B) Estimates of the dominance coefficient 

based on the data in A (see Table 2.2). 
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2.2.5 Mutations with effects on viability 

The previous estimates assume that a GE generates an unbiased sample of the mutations 

present in an MA line; however, this will not be the case if some of those mutations are 

lethal. If an MA line contains kL unlinked lethal mutations, then a GE line derived from it 

will only be free of lethal mutations with probability 1/2
k

L. To test this possibility, 

multiple, independent GEs were conducted and the viability of each GE germline genome 

was estimated.  

Table 2.3 DIC analysis of variation among MA lines in the GE and BX experiments. Three 

linear mixed models were fit making different assumptions about the fixed effect MA line (4, 40, 44 or 50, 

see Figure 2.4). Treatment (GE or BX) was also treated as a fixed effect and Replicate line and Plate were 

treated as random effects. Values are the Deviance Information Criterion (DIC) corresponding to each 

model. Values in bold indicate the simplest adequate model. See legend of Table 2.1 for more details. 

Model    DIC 

Treatment –246.97 

Treatment + MA line –248.64 

Treatment + MA line + Treatment:MA line –248.47 

 

During the first round of GE, cells pair and the MA strain donates a haploid 

pronucleus to the “star” strain, but a new somatic genome does not develop. During the 

second round of GE, germline mutations become expressed in the soma. For each of the 

four MA lines, a large number of independent first round GE crosses (144-288 mating 

pairs were isolated per MA line) were conducted. 91–181 independent surviving first 

round GE pairs per MA line were obtained, each containing a different germline genome. 

16 to 30 first round independent GE mating pair cultures later succeeded in the second 
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round GE crossing. Then each independent mating pair culture was used to set up 48 

independent second round GE crosses. Each of these 48 replicates contains identical 

germline nuclei, so if none of them survived, it would be strong evidence that the GE had 

“picked up” a lethal mutation. 

Only 3 out of 84 independent GE from the four MA lines displayed 0/48 = 0% 

viability in GE round II, all in the same MA line (44), which had 30 independent GE 

trials. If that MA line contained a lethal mutation and only that mutation could influence 

GE line viability; then the probability that only 3/30 or fewer independent GE lines show 

0% viability is P = 4.2  10
–6

, suggesting that this MA line does not carry any lethal 

mutations; the equivalent probabilities for each of the other three MA lines are all 

P < 1.5  10
–5

. A lethal mutation rate of UL = 0.000374 per haploid genome per 

generation would imply a probability of P = 0.05 of not finding a lethal mutation in four 

MA lines after t = 1000 generations. 

Although the four MA lines do not show any evidence for lethal mutations, their 

average viability is 0.204 (95% CI: 0.174, 0.238), whereas that of the ancestor is 0.845 

(95% CI: 0.775, 0.897). These results suggest that the MA lines are carrying mutations 

that reduce GE line viability. In collaboration with RBRA, we estimated the number of 

mutations k per line and their deleterious effect s using approximate Bayesian 

computation (ABC). We estimated that the original MA lines contain k  6–12 mutations 

with effects s  0.2–0.6 (Figure 2.5). Based on the estimate of U in the MA experiment, 

we would have expected to find approximately the same number of mutations, but of 
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smaller effect (Figure 2.5). These results suggest that the estimates of mutational 

parameters based on “viable” GE lines could be biased towards smaller mutational effects, 

although the discrepancy might also reflect differences between the two traits. 

 

Figure 2.5 Number of mutations and their effects on viability in four MA lines. Solid circles are 

estimates and 68.3% CIs from an ABC analysis of the GE viability data. Numbers indicate the MA line 

used. The black line marks the 68.3% credible region shown in Figure 2.2 (obtained by setting k = 2Ut).   

 

2.3 Discussion 

Despite the unusual genetic features that make T. thermophila a useful system in which to 

study spontaneous mutation, the deleterious mutation rate (U = 0.0047 per haploid 

germline genome per generation) and average fitness effect (s = 0.11) do not differ 

substantially from those estimated for other eukaryotes (Figure 2.6; HALLIGAN and 

KEIGHTLEY 2009). For example, U and s are similar between T. thermophila and C. 

elegans (U = 0.0053, s = 0.16, median of estimates based on six fitness metrics 
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VASSILIEVA et al. 2000). The haploid genome sizes (~104 Mb and ~100 Mb for T. 

thermophila and C. elegans respectively) and number of genes (~27,000 and ~20,000) in 

these two species are also remarkably similar (EISEN et al. 2006; HILLER et al. 2005). 

Likewise, our estimates of dominance coefficients of new mutations (h = 0.257) are 

consistent with previous estimates from other species (HALLIGAN and KEIGHTLEY 2009), 

e.g., h = 0.12, average of five traits, in D. melanogaster (HOULE et al. 1997). However, 

there is also large variation across species and experiments in these estimates (HALLIGAN 

and KEIGHTLEY 2009).  

The estimates of mutational parameters could be biased if GE progeny were lost 

due to lethal mutations; however, the observation that four MA lines failed to accumulate 

any germline lethal mutations indicates that lethal mutations are unlikely to bias the 

results. It also suggests that the lethal mutation rate in T. thermophila is less than 10% of 

the deleterious mutation rate. Previous studies in yeast estimate the lethal mutation rate to 

be ~0.00007 (HALL and JOSEPH 2010) and 0.00031 (WLOCH et al. 2001), which make up 

12–30% of total mutations with fitness effects. There are few estimates of lethal mutation 

rate because in most experiments, unlike in T. thermophila, mutations are exposed to 

selection throughout the course of MA (but see SIMMONS and CROW 1977). The tests for 

lethal mutations also allowed us to consider an additional fitness component: viability. 

Estimates of mutation rate and fitness effects based on viability correspond reasonably 

well with those based on growth rate (Figure 2.5). 
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Figure 2.6 Mutational parameters of Tetrahymena thermophila in the context of those of other 

eukaryotes. Solid circles and elliptical shapes indicate the estimates and 68.3% credible regions, 

respectively, based on the MA, GE and BX experiments (see Table 2.2 for details). The data from other 

eukaryotes were taken from Table 1 of (HALLIGAN 2009). Note that both axes are log-transformed. 

 

In addition to examining different fitness components, we (in collaboration with 

RBRA) used multiple approaches to estimate mutational parameters. The resulting 

estimates were not always entirely consistent with each other (Figure 2.6), highlighting 

the need for statistical methods that can combine the different types of experiments 

(Table 2.2) to generate more robust estimates. One possible reason for the variation 

among estimates is that the assumption that different mutations do not interact 

epistatically may not be met in this system. Crosses between BX lines derived from 

different MA lines could be used to test for directional epistasis among mutations 

(DEVISSER et al. 1997; DEVISSER et al. 1996; WEST et al. 1998). 



 29 

 

In an earlier MA study in T. thermophila, Brito et al. (BRITO et al. 2010) used the 

rate of clonal extinction as a measure of fitness. They found that ~1.25 MA lines went 

extinct per bottleneck and interpreted this as evidence for the rapid accumulation of 

deleterious mutations in the somatic genome. They speculated that their lines may have 

experienced gains and/or losses of chromosomes during amitosis, a phenomenon that, 

although common in ciliates (BLACKBURN and KARRER 1986), has never been observed 

in T. thermophila as a result of a copy number control mechanism (LARSON et al. 1991). 

In contrast, no evidence was found that MA lines accumulated any deleterious somatic 

mutations over the course of 1,000 generations. A high rate of clonal extinction, or rather 

transfer failure, was observed during our experiment, but it did not change throughout the 

experiment. The use of multiple single-cell transfer cultures at each bottleneck event 

completely suppressed line loss during the experiment. Transfer failure might be caused 

by the dependency of T. thermophila survival, growth and proliferation on cell-cell 

interactions (reviewed in CHRISTENSEN et al. 1995).  

The comparison of mutational parameters from somatic and germline genomes 

suggests these genomes may experience different rates and average fitness effects of 

mutations. This result is consistent with previous estimates of germline and somatic 

mutation parameters from multicellular organisms (reviewed in LYNCH 2010). While it is 

unclear what results in these different rates in multicellular organisms, it is possible that 

in T. thermophila the different parameters may reflect different polymerase or DNA 

repair machinery operating in the different genomes. Resolving the molecular basis of 

mutation in the two genomes may help answer this question. 
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2.4 Materials and Methods 

Strains and media 

T. thermophila strains SB210 and B*VII were acquired from the Tetrahymena Stock 

Center (Cornell University). SB210, the strain that was used for MA, is highly inbred and 

a heterokaryon (EISEN et al. 2006). B*VII has a dysfunctional germline nucleus and 

carries mating type VII. SSP medium was used during MA: 2% proteose peptone (EMD 

Chemicals, New York, USA), 0.2% glucose, 0.1% yeast extract (BD, Spark, Maryland, 

USA), and 0.003% Fe-EDTA (Acros Organics, New Jersey, USA) (GOROVSKY et al. 

1975). Tris buffer (10mM Tris-HCl pH 7.5) was used to starve cells in preparation for 

conjugation (BRUNS and BRUSSARD 1974). 2% proteose peptone was used for mating pair 

re-feeding during conjugation (BRUNS and CASSIDY-HANLEY 1999). 

Mutation accumulation 

Fifty mutation accumulation (MA) lines were established from single-cell isolates of 

strain SB210. Each line was grown to log-phase in 3ml of fresh SSP medium in a 

borosilicate glass test tube (Corning, New York, USA) on a shaker at 200rpm and 30˚C. 

When cultures reached log phase, usually 3–4 days from the last transfer, MA lines were 

bottlenecked by single cell transfer. 4–8 replicates were prepared for each line in order to 

prevent the accidental loss of MA lines. The transfer success rate for each MA line was 

defined as the ratio of successfully established replicate cultures out of the first four 

replicates. The average transfer success rate was 51% (s.d. = 29%) and did not change 
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significantly over the course of the experiment (one-way ANOVA for generations 0, 500 

and 1,000: F2,144 = 0.89, P = 0.4).  

Prior to each transfer, the optical density at 650nm (OD650) of the log phase 

culture was measured on a Versamax™ microplate reader (Molecular Devices, 

Sunnyvale, CA, USA). The OD650 was used to calculate the number of cell divisions 

between two transfers using a standard curve plotted based on five cell densities (1X, 3X, 

9X, 27X, and 81X; 3 replicates each) of the ancestor SB210 culture. Cell size was 

monitored to assure consistency of these measurements (Supplementary Text). When an 

MA line took longer than seven days to reach a measureable OD650 (0.01 in our system), 

cell density was determined by C-Chip haemocytometer (Incyto, SKC, Korea). Single-

cell transfers were repeated until each line had undergone ~1,000 asexual generations. 

This took 256 days for the slowest growing lines. 

Rarely, none of the replicate single-cell transfers survived. In that case, the MA 

line was reinitiated using a starvation backup culture. The backups were created by 

adding 200l of the log-phase culture to 800l Tris buffer and centrifuging (1100g for 3 

min). The supernatant was removed and replaced with 500l Tris-HCl pH 7.5; this 

culture was kept at 30˚C and 200 rpm. To reinitiate a line, starved cells were washed four 

times in 100l drops of Tris supplemented with 1X Penicillin, Streptomycin, and 

Amphotericin B (PSA; final concentration; Amresco, Solon, OH, USA). Single cells 

were then transferred to the growth medium in 16 replicates. As a result of these 

procedures only one cell line was lost due to fungal contamination.  
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Cells from each MA line were cryopreserved in liquid N2 (BRUNS et al. 1999) 

every 200 generations. 3ml of log-phase cultures were centrifuged (1100g, 3 min), the 

supernatant removed and 100l of the remaining cells were transferred to 500l Tris 

buffer, with at least two replicates. These starvation cultures were incubated at 30˚C and 

200rpm. After 2 days, cells were centrifuged and supernatant removed, as above, and 

moved to cryogenic vials with DMSO (Sigma-Aldrich; final concentration 8%). Cells 

were then frozen using "Mr. Frosty" –1˚C cryogenic freezing containers (Nalgene) and 

stored in liquid N2. 

Somatic fitness assays 

After completion of 1,000 generations of mutation accumulation, frozen MA lines were 

thawed in a 42˚C water bath and transferred to pre-warmed SSP medium, following 

(BRUNS et al. 1999). Some cultures could not be recovered from frozen stocks, due to 

cells either having entered the late-log phase or being at too low density when frozen. 

Successfully thawed cultures from all time points were analyzed together. Fitness 

changes associated with mutations that accumulated in the somatic genome were assayed 

directly from the thawed cultures. 10 cells from each culture were counted and inoculated 

into 180l SSP supplemented with 1X PSA in a well on a 96 well plate. After 14 hours of 

pre-incubation at 30˚C, the cultures were loaded onto a microplate reader at 30˚C where 

OD650 was read every 5 minutes for 60 hours (Figure S5). Location of cultures on a plate 

was randomized in each of 3–5 of replicates in different blocks. Maximum population 

growth rate (rmax) and lag time were calculated using the methods modified from (WANG 

et al. 2012). The fitness effects of mutations were determined in the somatic genome in 4 
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lines from the initial culture, 16 lines after 200 generations of MA, 6 lines after 400 

generations, 10 after 600 generations, 13 after 800 generations, and 38 after 1000 

generations.  

Germline fitness assays 

In order to measure the fitness effects of mutations accumulated in the germline genome 

over the course of MA, those mutations were expressed by allowing the cells to undergo 

conjugation and development. Conjugation was performed using genomic exclusion (GE) 

cross procedures (BRUNS and CASSIDY-HANLEY 1999) (Fig. 2.7). GE involves 

conjugation with the mating partner B*VII with a dysfunctional germline nucleus and, 

after two rounds of crosses, results in genetically identical progeny that are homozygous 

in both somatic and germline genomes for ~1/2 of all mutations that have accumulated in 

the germline during MA. Mitochondria, however, are parentally inherited, so half of the 

progeny contain mitochondria from B*VII and half from the MA lines. These two 

mitochondrial types were not distinguished in the experiments; thus, fitness assays 

contained approximately one half of each. 

In round I crosses of GE, cells from MA lines and B*VII were cultured in 5.5ml 

SSP until they reached a density of ~ 2 × 10
5
 / ml at which time they were centrifuged 

and starved for 1–3 days (24–36 hours’ starvation time was optimal for matings) in Tris 

buffer. 1ml starved MA culture was mixed with 1ml starved B*VII and incubated in a 

well on a 6-well plate in a wet chamber at 30˚C. After 6–8 hours, mating pairs were re-

fed with 2% proteose peptone (final concentration 1%). 2 hours after re-feeding, 16–48 
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Figure 2.7 Nuclear events during the two rounds of mating in genomic exclusion. Modified from 

(BRUNS and CASSIDY-HANLEY 1999) 

 

 (for round I) single mating pairs were isolated and inoculated into 800l SSP in wells of 

a 48-well plate. All single pair isolation was carried out using a 0.1–2µl pipette. Round I 

offspring viability was defined as the fraction of mating pairs producing viable progeny 

after 72 hours. Viability was additionally confirmed after one week. After round I, the 

germline nucleus of progeny is the homozygous product of the diploidization of the 

pronucleus from the MA line; the somatic nucleus is retained from the parent. 

The round II cross of GE was performed by culturing and starvation (as above) of 

the successful round I cultures. 2ml of starved cultures were allowed to mate and 24–96 

single mating pairs were isolated as above. Round II offspring viability was determined 
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as for round I. Progeny cells from round II were tested with 2-Deoxy-D-galactose (2-dgal; 

Sigma-Aldrich; COLE and BRUNS 1992). The allele conferring resistance to 2-dgal is 

carried only in the germline genome of SB210, in homozygous state; thus, only cells that 

have successfully undergone both rounds of crosses will be resistant to the drug. Drug 

effects were checked 96 hours after 2-dgal was added to the culture. Progeny cells with 

resistance to 2-dgal were then used in fitness assays as described in the previous section. 

Fitness effects of germline mutations were assessed for one GE line per MA line (except 

for the ancestral lines, also see next section). GE crosses were repeated independently at 

least twice in the cases where there was no mating, no viable progeny, or no progeny with 

drug resistance. GE crosses were successful for 25 MA lines at one or more of 

generations t = 200, 800 or 1000 (Figure S1).  

Multiple genomic exclusions and backcrosses  

Multiple independent GE crosses were conducted on four lines at generation t = 1000 

(Figure S1, “*” labeled lines), following the above procedures, with 48 mating pairs 

isolated in each round of the GE crossings. Viability of mating pairs in round I and round 

II was also recorded.  

Fitness of the multiple GE lines was determined by assaying progeny cells from 

the successful multiple GE crossings as above, with only one cell inoculated into one 

well of a 96-well plate, instead of 10. These multiple GE lines were then backcrossed 

(BX) with an ancestral (control) GE line (4-0-AI1). The fitness of 4-0-AI1 was also 

assayed in each assay of GE lines before and after BX. 7–12 GE lines resulted in 
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successful BX for each of the four MA lines at generation 1000. Fitness after BX was 

determined as before BX, except that mating pairs were inoculated into the wells on a 96-

well plate and then  incubated less than 48 hours at 30˚C to avoid phenotypic assortment, 

which would cause loss of heterozygosity during amitosis of the somatic nucleus 

(DOERDER et al. 1992).  

Statistical analyses 

Mutation accumulation. The fitness was defined as the maximum population growth 

rate (rmax) divided by that of the ancestral strain. Values were natural log-transformed to 

increase normality and homogeneity of variances. We (in collaboration with RBRA) used 

a Bayesian approach, fitting linear mixed models separately for the germline and somatic 

fitness data using Markov Chain Monte Carlo with the MCMCglmm 2.15 package 

(HADFIELD 2010) in R 2.13.0 (R DEVELOPMENT CORE TEAM 2011). Generation was 

treated as a fixed effect and MA line and Plate were treated as random effects. Separate 

among-MA line variance components were fit for each Generation using the ‘idh’ 

variance function. The default uninformative proper priors was used—normally 

distributed with mean µ = 0 and large variance 
2
 = 10

8
 for the fixed effect, and inverse 

Wishart distributed with parameters V = 1 and = 0.002 for the random effects. We 

allowed the Markov chain to run for a burn-in period of 10
6
 iterations after which we ran 

1.1  10
7
 iterations and sampled from the posterior distribution every 50 iterations, 

resulting in 2  10
5
 stored values. The autocorrelation function between consecutive 

parameter values of the Markov chain at successive iterations indicates that sampling 
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every ~20 iterations is sufficient to achieve independence. Applying the method of 

(GELMAN and RUBIN 1992) (implemented in R through the coda 0.14-4 package 

PLUMMER et al. 2006) to three parallel Markov chains suggests that convergence was 

achieved within ~2  10
5
 iterations.  

The linear mixed model directly estimates the among-line variance component, Vt, 

at each generation t. We (in collaboration with RBRA) used the estimates of the fixed 

effects to calculate the mean fitness of the lines, Mt, at each generation. To estimate the 

change in mean fitness (∆M) and the change in the among-line variance in fitness (∆V) 

we used weighted least-squares regression of Mt and Vt, respectively, against t, where 

each value is weighted by the inverse of its sampling variance calculated from the 

posterior distribution. To estimate the germline haploid deleterious mutation rate (U) and 

the deleterious effect of a mutation (s) we used the formulas listed under MA in Table 2.2 

for the germline fitness data. Unless otherwise stated, we reported the posterior median 

and 68.3% credible intervals (corresponding to ±1 standard deviation for a normal 

distribution) for Mt, Vt, ∆M, ∆V, U, and s.  

We (in collaboration with RBRA) evaluated the estimates of Mt, ∆M, and ∆V, by 

the extent to which their posterior distribution overlaps with zero. This approach is not 

appropriate for the estimates of Vt because their prior specification implies that they must 

be positive; instead we compared different models using the Deviance Information 

Criterion, DIC (BARNETT et al. 2010; SPIEGELHALTER et al. 2002; WILSON et al. 2010). 
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Multiple genomic exclusions and backcrosses. A linear mixed model to the GE and BX 

experiments was fitted as described above for the MA experiment. Treatment (GE or BX) 

and MA line were treated as crossed fixed effects and Replicate line and Plate were 

treated as random effects. Separate among-replicate line variance components were fit for 

each treatment using the ‘idh’ variance function. The same priors, number of iterations, 

sampling frequency, and burn-in period were used as described for the MA experiment. 

The convergence and autocorrelation patterns for the Markov chains were similar to those 

described for the MA experiment. 

The linear mixed model directly estimates the among-line variance components, 

V1000, at generation t = 1000. We (in collaboration with RBRA & TP) used the estimates 

of the fixed effects to calculate the mean fitness of the lines M1000 in each treatment. In 

each treatment, we estimated the change in mean fitness and the change in the among-

line variance in fitness as ∆M = (M1000 – M0) / 1000 and ∆V = V1000 / 1000, respectively. 

To estimate the mutational parameters U, s and h we used the formulas listed under GE 

and BX in Table 2.2. Unless otherwise stated, we reported the posterior median and 68.3% 

credible intervals for U, s and h.  

Viability. We (in collaboration with RBRA & TP) estimated mutational parameters for 

the viability data using Approximate Bayesian Computation (ABC) (BEAUMONT et al. 

2002). The ABC modeling process involved simulating our viability data under a simple 

model of GE. We assume that an MA line carries k mutations that are capable of 

influencing viability in a heterozygous state. GE samples each of these mutations with 

probability P = 0.5 and makes them homozygous. The viability of a GE genotype with 
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kGE mutations is w = w0(1–s)
kGE, where s is the effect of a mutation and w0 is the viability 

of a genotype with no mutations. We assume that mutations act multiplicatively, which is 

appropriate if s can be large. We then simulate an experiment involving n second round 

GE crosses as a binomial process with probability of “success” (i.e., survival) w.  

For each MA line tested (t = 0 ancestor, and t = 1000 MA lines 5, 40, 44 and 50) 

4  10
6
 simulated data sets were generated by RBRA and TP involving N independent 

GEs (e.g., n = 48 and N = 20 for MA line 40). Values for the number of mutations were 

drawn at random from a uniform prior of k ~ [0, 30], and those for the mutational effect 

were drawn at random from a uniform prior of s ~ [0, 1], independently from k. Values 

for the logit of baseline viability, ln[w0 / (1 – w0)], were drawn from a normal distribution 

with mean 1.6977 (corresponding to w0 = 0.845) and s.d. = 0.2364, estimated from the 

GE viability data for the ancestor using a generalized linear model with logit link and 

quasibinomial errors. 

RBRA and TP compared the results from the simulated data to the empirical data 

using the following 4 summary statistics on the proportion of viable second round GE 

crosses: mean, standard deviation, skewness and kurtosis. From a set of 

4  10
6
 simulations, they retained the 10

4
 simulations (i.e., 0.25% of the pooled set) with 

the lowest Euclidian distance to the summary statistics using the R package abc 1.4 

(CSILLÉRY et al. 2012). To estimate the posterior distribution of the parameters k and s 

from the accepted simulations, they corrected for the discrepancy between the accepted 

and the observed summary statistics using the local linear regression method with log-

transformed parameters (BEAUMONT et al. 2002). Unless otherwise stated, the posterior 
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median and 68.3% credible intervals of k and s were reported. All the estimates using 

posterior predictive checks were validated.  

Individual-based simulations 

This part was done by collaborators TP and RBRA. Individuals consist of a diploid 

germline genome and a 45-ploid somatic genome each with L = 100 loci and reproduce 

asexually. Each allele at each locus in both genomes can irreversibly mutate to a 

deleterious form. Each somatic locus i contributes equally and additively to fitness, in 

proportion to the number of mutated copies at that locus ki. Thus, the fitness of a 

genotype is given by:  

     
  
  

 

 

  

where s is the deleterious effect of a mutation present in k = 45 copies. The germline 

genome does not contribute to fitness. There is concern that the assumption of additive 

mutational effects in this simulation might not be perfectly met in the mutation 

accumulation process if there is some dominance between mutant and wild-type alleles. 

That is to say, with respect to one locus, one individual might have high fitness even if 

half of its macronuclear alleles are mutants (mutants’ effects are masked by the other 

wild-type alleles). In such a case, a much lower rate of fitness decline than the model 

used here might be expected. TP and RBRA are now including the dominance effects 

into new versions of simulations, and the results would be shown in one coming article 

based on this chapter. 
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Asexual reproduction proceeds by generating an individual with a germline 

genome identical to its progenitor (mitosis); the somatic genome of a daughter cell is 

obtained by duplicating and sampling without replacement each of the progenitor’s 

somatic loci until 45-ploidy is reached (amitosis); thus, mutations at intermediate copy 

number (0 < k < 45) in the somatic genome will increase or decrease stochastically in 

copy number within individuals from generation to generation, until they ultimately fix or 

disappear, as occurs in phenotypic assortment (DOERDER et al. 1992). This is not true in 

the germline genome, where all the descendants of an individual carrying a germline 

mutation will also contain that mutation. At reproduction, each allele at each locus in 

each genome mutates at a rate µ; the germline haploid deleterious mutation rate is 

U = Lµ. 

Evolution follows a Wright-Fisher scheme (EWENS 2004) of reproduction-

mutation-selection of a population of constant size N. In order to advance the population 

one generation, individuals are sampled randomly, copied, mutated, and allowed to “live” 

with a probability proportional to their somatic fitness until the population size N is 

reached. In the simulations reported here we set N = 10, the estimated effective 

population size in the MA experiment (WAHL and GERRISH 2001).  

In order to “assay” the germline fitness of an individual, a single GE for each MA 

line was simulated. A homozygous version of the individual was generated by randomly 

picking one of the copies at every locus and copying it to the other locus. This fully 

homozygous germline genome was then allowed to generate a new 45-ploid somatic 

genome and fitness was assayed as described above. 
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2.5 Supplementary Information 

Supplementary Text 

Cell size did not change throughout the transfers To ensure that cell size differences did not bias our 

estimates of number of cell divisions between transfers, we measured the cell sizes of 4 MA lines at 

generations 0 and 1,000. Micrographs were taken of cells from each culture in late log-phase. Length (L) 

and width (W) of 100 cells per culture were measured using calibrated scale bars. To calculate the volume 

of a cell we assume that it is a prolate spheroid (HELLUNG-LARSEN and ANDERSON 1989): 

V = (/6) · L · W
2
. Cell size did not change significantly between the beginning and end of the experiment 

in the 4 MA lines (Welch’s two sample t-test on line means: t=0.31, df=5.7, p=0.76); thus, the use of OD650 

to determine number of generations elapsed between transfers was consistent throughout the course of the 

experiment. 

 
Figure S1 Evolutionary history of the MA lines assayed for germline fitness. Lines marked with 

an asterisk were also assayed in the GE and BX experiments (see Table 2.2 for details). 
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Figure S2 Results for lag time. See the legend of Figure 2.1 for more details.   
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Figure S3 Comparison between the slopes of the regressions shown in Figure S2 and those 

obtained from individual-based simulations of mutation accumulation under a broad range of 

mutational parameters. See the legend of Figure 2.2 for more details.   
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Figure S4 Our estimators of mutational parameters in the MA experiment (Table 2.2) predict 

the results of individual-based simulations. Each panel summarizes the results of the 400 individual-

based simulations for different values of the deleterious mutation rate per haploid germline genome per 

generation (U) and the deleterious effect of a mutation when in a homozygous state (s) used to generate 

Figure 2.2. In each simulation, 1000 MA lines were evolved for 1000 generations. Estimates of germline 

fitness are based on a single genomic exclusion of a random individual sampled from each MA line. (Top) 

The change in mean fitness (∆M) and the change in among-line variance in fitness (∆V) were estimated by 

linear regression based on time-series data from every 10 generations (these estimates are used in Figure 

2.2) and compared to their expected values obtained using the formulas in Table 2.2 (MA column). 

(Bottom) The mutational parameters U and s estimated from the observed values of ∆M and ∆V using the 

formulas in Table 2.2 (MA column) are compared to the actual values used in the simulations.  
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Figure S5 Fitness assay example using one MA line started with 10 cells. Division of cells from one 

cell line was monitored by measuring OD650 every 5 minutes for continuously 60 hours. Maximum 

population growth rate (rmax) was estimated by the slope of the curve in log phase (red line).  
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Chapter 3 Mutations on morphological traits of T. thermophila 

 

Morphological traits are widely and popularly used in ciliates taxonomy; however, 

whether these traits are stable enough to be used for distinguishing species relies on 

taxonomists judgment, without being quantitatively tested. The study here shows how to 

test the stability of morphological traits to mutations using the T. thermophila mutation 

accumulation system we recently developed (collaborators: TP, RBRA, RAZ). The 

number of post-oral kineties never changed either in cell lines with or without mutations 

accumulated, so it should be given more weight as a species-distinguishing trait, 

supporting what taxonomists have long observed and been doing on the genus 

Tetrahymena; however, cell size of T. thermophila decreased as mutations accumulated 

in the germline genome for 1000 generations, consistent with findings in other unicellular 

or multicellular organisms. This indicates that cell size should be treated cautiously, 

although it is widely used in species distinguishment or definition. It was also shown here 

that cell size and fitness (maximum population growth rate as the fitness metric) both 

decreased after long-term mutation accumulation.  

3.1 Introduction 

Mutations can result in changes in a variety of life history or morphological traits, for 

example, spontaneous mutations could decrease longevity, survival rate, and body size of 

C. elegans over dozens to hundreds of generations (AZEVEDO et al. 2002; KEIGHTLEY and 

OHNISHI 1998; VASSILIEVA and LYNCH 1999). In addition, change in a morphological 
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trait may also be coupled with fitness change, e.g., larger individuals having shorter 

generation time is not uncommon in unicellular organisms (MOLENAAR et al. 2009; 

MONGOLD and LENSKI 1996); however, this has never been reported in ciliates.  

As for ciliates, mutations affecting morphological traits are especially important 

for taxonomy, which is mostly based on morphological traits in this group (LYNN 2008). 

Dozens of new morphological species are being reported every year, due to the wide 

application of silver-staining methods and improved microscopy. Morphological traits, 

like the number of post-oral kineties (No. PK, ciliary rows posterior to the oral region, 

also called post-oral meridians, POM) (Fig. 3.1), which is used as a species 

distinguishing trait in the genus Tetrahymena (CORLISS 1973), have never been tested 

with evolutionary genetic techniques to determine whether they are really stable to 

environmental or genetic influences to provide precise morphological species 

identification. Resolving such uncertainty in morphological traits might contribute to our 

understanding of the true protist species diversity which is under debate between 

ecologists and taxonomists (CARON 2009; FENCHEL and FINLAY 2004; FOISSNER et al. 

2008; WEISSE and RAMMER 2006).  

Four morphological traits, which are widely used in ciliate taxonomy and 

morphometric studies, were measured in this study (Fig. 3.1) (AGATHA and TSAI 2008; 

FAN et al. 2011; FOISSNER and STOECK 2011; JUNG et al. 2012; MCMANUS et al. 2010; 

TOKIWA et al. 2010; TSAI et al. 2010). Two types of cell lines were analyzed using 

mutation accumulation and morphological techniques. The two types of cell lines were: 

mutation accumulation (MA) lines, the cell lines experienced approximately 1000 
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generations’ mutation accumulation; genomic exclusion (GE) lines, the cell lines bear 

homozygous mutations expressed from the germline genome of MA lines and are 

described in Chapter 2 (Table 3.1). I assessed whether the four morphological traits are 

stable to mutations and thus suitable for precise morphological taxonomy. 

 

Figure 3.1 Protargol-stained T. thermophila cells (A from the GE line 4-0-A, B from GE line 51-

1000-A). Arrowheads in A show all the somatic kineties (SK, including the two post-oral kineties) of the 

cell, arrowheads in B show the post-oral kineties (PK). The dark regions in the center in both pictures are 

the macronucleus (Ma). Both scale bars are 4.5 µm.  
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3.2 Results 

The patterns of the four morphological traits (No. SK, No. PK, macronuclear size, and 

cell size) and fitness showing changes from the ancestor to the evolved MA and GE lines 

were as shown in Fig. 3.2A&B. In the evolved GE lines, macronuclear (Ma) size, cell 

size, and fitness of GE lines all decreased from those of the ancestral GE lines (decrease 

of 26%, 23%, and 26% separately for standardized macronuclear size, cell size, and 

fitness) (Fig. 3.2B, Ma Size, Cell Size, Fitness; Table 3.1). Though only marginal p-

values from t-tests on cell size, fitness, and macronuclear size of ancestral and evolved 

GE lines were detected (Table 3.2), for the purpose of this discussion I will consider the 

differences as if they are significant. Since only 6 evolved GE lines were used, even the 

difference in fitness was not significant here, but fitness was significant in Chapter 2 

using a much larger sample N=19). In contrast, the number of somatic kineties (No. SK) 

of the evolved lines showed an increase from the ancestral GE lines (12% for 

standardized No. SK) (Fig. 3.2B, No. SK; Tables 3.1&3.2; p=0.07). The among-line 

variance of Ma size, cell size, fitness, and No. SK in the evolved GE lines all increased. 

The number of post-oral kineties remained constantly two in all the ancestral and the 

evolved MA lines and GE lines. 
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Table 3.1 Morphological traits (before standardization) and fitness of the cell lines in this 

study. Cell line names with two hyphens indicate GE lines, with one hyphen refer to MA lines, 0 and 1000 

after the first hyphen indicate generation numbers. No. SK: number of somatic kineties; No. PK: number of 

post-oral kineties; Ma: macronuclear size, both cell and macronuclear sizes are in µm
3
; Cell: cell size; Sd: 

standard deviation; n: number of specimens observed, n* means the number of replicates in the fitness 

assay. 

Lines  No. SK(Sd)(n) No. PK(Sd)(n) Ma (Sd)(n)  Cell (Sd)(n) Fitness(Sd)(n*) 

4-0  19.45(1.17)(20) 2(0)(24)  633(345)(110) 4519(1136)(60) 0.93(0.04)(3) 

27-0  19.88(1.05)(26) 2(0)(32)  1194(458)(98) 8179(2461)(60) 0.99(0.14)(2) 

60-0  18.96(0.79)(24) 2(0)(23)  844(324)(97) 5256(1951)(60) 1.08(0.17)(6) 

Averages  19.43  2  890  5984.81  1 

5-1000  19.27(0.82)(15) 2(0)(16)  980(384)(72) 6340(1897)(60) 0.75(0.11)(6) 

32-1000  20.21(1.57)(28) 2(0)(28)  591(243)(108) 6769(1985)(94) 1.16(0.17)(4) 

40-1000  18.68(1.63)(25) 2(0)(25)  801(330)(133) 5445(2196)(60) 0.84(0.07)(2) 

50-1000  17.5(0.80)(12) 2(0)(12)  955(460)(95) 5091(1343)(72) 1.03(0.33)(4) 

51-1000  18.43(1.92)(40) 2(0)(40)  687(250)(105) 6285(1727)(80) 0.98(0.15)(5) 

62-1000  18.62(1.9)(34) 2(0)(34)  604(220)(114) 6553(1389)(86) 0.99(0.21)(3) 

Averages  18.79  2  770  6080  0.96  

4-0-A  18.22(1.27)(27) 2(0)(41)  814(429)(88) 5900(1694)(60) 0.85(0.09)(3) 

27-0-X  17.77(1.04)(22) 2(0)(13)  1233(754)(97) 7714(1675)(60) 0.93(0.03)(4) 

60-0-A  17(0.83)(10) 2(0)(10)  791(383)(102) 6470(1511)(60) 1.22(0.29)(6) 

Averages  17.66  2  946  6695  1 

5-1000-3U1 18.09(0.88)(11) 2(0)(10)  577(249)(78) 4617(1048)(60) 0.69(0.05)(7) 

32-1000-A  21.54(1.47)(24) 2(0)(24)  709(352)(110) 5376(1694)(85) 0.68(0.16)(3) 

40-1000-AM1 16.5(0.63)(14) 2(0)(10)  755(336)(49) 3849(1025)(60) 0.62(0.09)(6) 

50-1000-3W3 19.17(1.1)(12) 2(0)(16)  568(233)(71) 4693(1098)(72) 0.64(0.05)(6) 

51-1000-A  22.1(2.11)(39) 2(0)(39)  694(240)(117) 6755(2046)(95) 0.83(0.13)(6) 

62-1000-B  21.73(1.87)(15) 2(0)(15)  854(366)(113) 5584(1296)(84) 0.94(0.12)(8) 

Averages  19.86  2  693  5146  0.73 

 

In contrast, in the MA lines, none of the mean values of the morphological traits 

or fitness changed significantly, not even close to the cutoff p-value (Fig. 3.2A; Table 

3.2). 



 55 

 

 

Figure 3.2 Morphological traits and fitness from ancestor (blank bars, generation 0) and 

evolved (filled bars, generation 1000) MA lines (A) and GE lines (B). Note each trait or fitness was 

standardized by dividing the observed values with the ancestral mean. Error bars are 95% confidence 

intervals. 

 

Linear regression analysis on the cell size and the fitness of GE lines showed they 

were significantly and positively correlated (Fig. 3.3D; r=0.47, p<0.05; Table 3.2). This 

is an indication of cell size and fitness both being affected by accumulated mutations, but 

whether there is mutational pleiotropy needs further study. None of the other 

morphological traits of GE lines (Fig. 3.3A-C) nor all the morphological traits of the MA 

lines (Fig. 3.4) had a significant correlation with fitness, though the macronuclear size 

regression with fitness did show very similar trend with that of the cell size vs. fitness 

regression (Figs. 3.3C). 

Table 3.2 p-values from two sided Student t-tests on the ancestral and the evolved cell lines. 

GE, genomic exclusion lines with germline mutations in the MA lines expressed; MA, mutation 

accumulation lines without germline mutations expressed; Ma, macronuclear. 

Cell lines No. SK  No. PK  Ma size  Cell size  Fitness 

MA  0.21  N/A  0.55  0.94  0.60 

GE  0.07  N/A  0.23  0.08  0.12 
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Figure 3.3 Linear regressions between morphological traits and fitness of GE lines. Blue dots 

show the ancestor and black dots show the evolved lines. No. SK: number of somatic kineties; No. PK: 

number of post-oral kineties. Error bars are 95% confidence intervals. 
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Figure 3.4 Linear regressions between morphological traits and fitness of MA lines. Blue dot 

shows the ancestor and black dots show the evolved lines. No. SK: number of somatic kineties; No. PK: 

number of post-oral kineties. Error bars are 95% confidence intervals. Note the three ancestral MA lines 

had identical genotypes and thus combined into one blue dot here.  

 

3.3 Discussion 

The cell size and fitness in the GE lines are positively correlated (Fig. 3.3D). In fact, such 

positive correlation between growth rate and cell size is not unprecedented, but rather 
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widespread (MONGOLD and LENSKI 1996; STEARNS 1992). Mongold and Lenski proposed 

that larger cells have more reserves for growth and that this is the cause of the correlation 

between growth rate and cell size; however, since the cell size was measured on starved 

cells here, the observed size differences are not likely indicative of different reserves 

from the log phase before starvation; thus, not supporting this hypothesis (MONGOLD and 

LENSKI 1996).  

In addition, cell size decreased only when mutations were shielded from selection 

(cell size decreased in GE lines, but not in MA lines, see Fig. 3.2A,B, Cell Size). This 

suggests that mutations that decrease cell size are selected against in MA lines, highly 

similar to what happened to fitness of MA lines (See Section 2.2.1 in chapter 2). In nature, 

the selection against cell size decrease might also occur due to the avoidance of size-

selective predators (e.g., copepods, amoebae), which are extremely abundant in the 

freshwater habitats of T. thermophila and known to induce morphological change in 

ciliates (KUSCH 1993).  

Finally, whether such correlation was a reflection of mutational pleiotropy on 

both fitness and cell size remains uncertain, and it is already known that many life history, 

behavioral and morphological traits are positively correlated (KEITHLEY and OHNISHI 

1998). One cause of such uncertainty was the uncertain and probably different number of 

mutations in each GE line involved in this study. Multiple genomic exclusions on each 

MA line and further assays on fitness or cell size could be used to find out an accurate 

number of mutations affecting fitness or cell size in each MA line. If the numbers of 

mutations causing fitness or cell size to change are similar, this would be one sign of 
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mutational pleiotropy, viz. one mutation could have multiple effects on both fitness and 

cell size. Since mutational effects are also affected by other complicating factors like 

dominance coefficient and epistasis of new mutations, sorting out mutational pleiotropy 

effects would need taking these factors into account, as in (CABALLERO and KEIGHTLEY 

1994). 

Table 3.3 Three morphological traits of 10 Tetrahymena species. Length and width in µm; 
+
 

normal dimensions of T. thermophila; 
a
 trophont life stage data; 

b
 free-living phase data; 

c
 cell length; 

d 

microstome life stage data. 

Species  Length×Width No. SK  No. PK  References 

T. thermophila
+
 50×20  18–21  2  (NANNEY and SIMON 1999) 

T. setifera 40×25   22–26  1–3  (CORLISS 1973) 

T. chironomi 40×23  23–28  2  (CORLISS 1973) 

T. rostrata
a
 20–80

c
  27–35  1–4  (CORLISS 1973) 

T. limacis
b
 40–45

c
  24–32  1–4  (CORLISS 1973) 

T. corlissi 47×31  25–31  2  (CORLISS 1973) 

T. stegomyiae 60–100
c
  25–30  2  (CORLISS 1973) 

T. patula
d
 45×28  32–41  3–5  (CORLISS 1973) 

T. vorax
d
 31–115

c
  18–23  2  (CORLISS 1973) 

T. paravorax
d
 70–90

c
  22–30  2  (CORLISS 1973) 

 

Similar to the number of post-oral kineties, cell size is also one of the most widely 

recorded traits in ciliate morphological taxonomy; however, in contrast to the limited 

variability of the number of post-oral kineties even across the whole Tetrahymena genus 

(Table 3.3), cell size being affected by spontaneous mutations accumulated in the 

germline genome in this research raises question on whether this trait should be used for 
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distinguishing or defining different species, especially in sexual species like T. 

thermophila. Morphological traits changing before and after sex in sexual ciliates, which 

experienced long-term asexual reproduction, would cause confusion in morphological 

species identification. Though many species in the Tetrahymena genus did take cell size 

as one of the species’ features (Table 3.3), my results indicate that the cell size should be 

treated cautiously, especially in defining species. For example, the cell length×width (in 

µm) of the GE lines’ cells decreased from the ancestral 35.34×18.86 µm to the evolved 

(at generation 1000) 34.80×16.58 µm, further deviated from previously reported T. 

thermophila size (in length×width; Table 3.3). Mutational variability of more quantitative 

morphological traits should also be tested following this evolutionary genetic case study, 

to provide solid data support for current ciliate morphological taxonomy. Morphological 

traits, like the number of post-oral kineties which are robust to the test, should be put 

more weight in species identification. Fortunately, morphological taxonomists have long 

noticed the stability of such traits and did give them more weight in species 

distinguishment, for example, the 3–5 (mostly 4) post-oral kineties is the species-unique 

trait of Tetrahymena patula (Table 3.3).  

3.4 Materials and Methods 

Cell lines and media 

See section 2.4-Strains and media, chapter 2 for details. Nine mutation accumulation 

(MA) lines (three ancestral lines and six evolved lines about 1000 cell divisions in time 

apart from the ancestor) and another nine genomic exclusion (GE) lines derived from 
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these MA lines (one GE line for each MA line, see “genomic exclusion” in section 2.4, 

chapter 2 for detailed procedures) in this research were from a previous mutation 

accumulation experiment and frozen in liquid nitrogen (section 2.4, chapter 2; Table 3.1; 

the cell lines were evenly sampled from all the MA lines in section 2.4, chapter 2, with 

reference to the fitness of the GE lines).  

Morphological traits 

All cell lines were thawed from liquid nitrogen following (BRUNS et al. 1999): cryovials 

from a liquid nitrogen tank were quickly transferred to 42°C water bath, thawed cells 

were then transferred to 4ml SSP medium supplemented with 1X Penicillin, 

Streptomycin, and Amphotericin B (PSA; final concentration; Amresco, Solon, OH, USA) 

in wells of a 6-well plate, pre-warmed in a 30°C incubator. For each line, the plate with 

thawed cells was incubated in the 30°C incubator for 48 hours; then, 100µl culture from 

each well was transferred to 12.5ml SSP supplemented with 1X PSA in a 125ml glass 

flask. Future morphological analysis should use more batch cultures for each thawed line 

to disentangle the mutational and the environmental variance of morphological traits. 

Another 24 hours later, 100µl cells in log phase from each flask were stained with 

protargol (WILBERT 1975): cells were fixed with Bouins’ fluid/saturated HgCl2 mixture 

(volume ratio 1:1) for 1 min; then fixatives were removed and fixed cells were rinsed 

with DI water at least six times, after this, cells were bleached with sodium hypochlorite 

solution (NaClO) 1:600 diluted from the stock solution (CAS Number 7681-52-9, Sigma-

Aldrich Co. LLC.), this procedure should be finished within 2 min to avoid over-

bleaching. Bleached cells were then immerged with 1% protargol solution (protargol S™ 

http://www.sigmaaldrich.com/catalog/search?term=7681-52-9&interface=CAS%20No.&lang=en&region=US&focus=product
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from Polysciences Inc., Warrington, PA, Cat No.: 01070) in an embryo dish and heated at 

60°C for 1 hour before silver developing and fixing. Numbers of somatic kineties and 

post-oral kineties of protargol stained specimens were recorded using a compound 

Olympus microscope. The length and width of macronuclei were measured by first taking 

photomicrographs using digital camera connected to an Olympus inverted microscope; 

then the photomicrographs were analyzed for macronuclear length and width in Image J 

(1.46r, NIH, USA). Scale bars in the photomicrograph program were calibrated with a 

stage micrometer. Macronuclear size was then calculated based on the length and width 

measurements, by assuming a prolate spheroid shape of the macronucleus, using the 

formula from (HELLUNG-LARSEN and ANDERSON 1989):  

 V = (π/6) × L× W
2
 

where V is the macronuclear volume (size), L is the macronuclear length, and W is the 

macronuclear width. 

To get the size of synchronized cells, cells in log-phase from the above thawing 

cultures in one 125ml flask were also centrifuged in a 50ml conical tube. Supernatant in 

the conical tube was removed and cells were re-suspended with 12.5ml Tris buffer and 

transferred to a clean 125ml flask and starved for 24 hours. Starved cells were then 

transferred to a 6-well plate and photomicrographs were taken on them on an Olympus 

inverted microscope. Cell length and width were acquired from the photomicrographs 

analyzed in Image J (1.46r, NIH, USA). Similar to macronuclear size, cell size was then 

calculated based on the length and width measurements, by assuming a prolate spheroid-

shape of the cell, using the above formula from (HELLUNG-LARSEN and ANDERSON 1989). 
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Morphological traits for each line were listed in Table 3.1. Each trait was standardized by 

dividing the corresponding mean ancestor values. 

Plotting and statistical analyses 

Plots, linear regression and statistical tests were all done in R (2.15.0) (IHAKA and 

GENTLEMAN 1996).  
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Chapter 4 Reproductive strategies in the marine free-living ciliate 

Glauconema trihymene 

 

The previous chapters 2 & 3 used genetic tools (e.g., genomic exclusion) developed from 

ciliates’ sexual reproduction (conjugation). I also explored whether other types of 

reproduction could be used for evolutionary genetic studies in another ciliate G. 

trihymene. Most free-living ciliates reproduce by equal fission or budding during 

vegetative growth. In certain ciliates, reproduction occurs inside the cyst wall, viz. 

reproductive cysts, but more complex reproductive strategies have generally been thought 

to be confined to parasitic or symbiotic species, e.g., Radiophrya spp. 

4.1 Introduction 

Ciliates are a diverse group of unicellular eukaryotes characterized by two kinds of nuclei 

in each cell: a germline micronucleus and a somatic macronucleus. Free-living ciliates 

are known to exhibit diversity in modes of reproduction (FOISSNER 1996; FOISSNER et al. 

2008; LYNN 2008). Most of these reproductive modes include equal fission or budding. 

In certain ciliates, including Tetrahymena patula and Colpoda inflata, reproduction can 

also occur inside the cyst wall, viz., reproductive cysts (CORLISS 2001; LYNN 2008). 

Symbiotic ciliates like the astomatid ciliates, e.g., Radiophrya spp., and certain 

apostomatid ciliates, e.g., Polyspira spp., reproduce by forming cell chains, also called 

catenoid colonies, which are usually brought about by repeated asymmetric division 

without separation of the resulting filial products (CHATTON and LWOFF 1935; LYNN 
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2008). Some Tetrahymena, such as temperature-sensitive cytokinesis-arrest mutants of T. 

thermophila- strain cdaC, and T. pyriformis also showed similar cell chains at high 

temperature (FRANKEL 1964; FRANKEL 1977), and similar morphotypes were also 

recently reported in the non-reproductive artificial lethal mutants of T. thermophila 

(THAZHATH et al. 2002). Certain free-living flagellates are also known to conduct 

repeated nuclear replication without cytokinesis and then releasing daughter cells, when 

prey cells are abundant (CHANTANGSI and LEANDER 2010). However, no free-living 

ciliates have been reported to form cell chains in response to food (bacteria) 

concentration. 

During early and late phases of equal fission, most ciliates share certain features, 

such as common positioning of the macronucleus and micronucleus, synchronization of 

macronuclear amitosis and fission furrow, and a specific and well defined dividing size 

(ADL and BERGER 1996; COHEN and BEISSON 1980; LYNN and TUCKER 1976). It is 

generally assumed that if food density meets requirements of both cell development and 

division, the daughter cells will be identical, so after division, the two daughter cells 

could not be differentiated from each other (FENCHEL 1990; JAWORSKA et al. 1996; 

ORIAS 1976). 

However, ciliates from the same single cell isolate were reported to have high 

diversity in physiological states, such as cell size and volume, growth rate, feeding, and 

digestion (DOLAN and COATS 2008; HATZIS et al. 1994; LYNN 1975; WEISSE and 

RAMMER 2006), and certain ciliates even develop highly unique physiological strategies 

to maximally adapt to their habitats. For example, after feeding on the cryptomonad 
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Geminigera cryophila, the mixotrophic red-tide-causing ciliate Myrionecta rubra retains 

the prey organelles, which continue to function in the ciliate for up to 30 days (JOHNSON 

et al. 2007; TAYLOR et al. 1969). Comprehensive analysis of physiological state changes 

of ciliates usually requires monitoring of individuals for a relatively long period and 

therefore is rarely conducted (DOLAN and COATS 2008). Most ciliates are currently un-

culturable or swim too fast for microscopic observation, further hindering such analyses. 

In this study, I described a series of reproductive strategies that have been 

previously unknown in free-living ciliates. These types of reproduction occurred in all 

newly established cultures of Glauconema trihymene, a free-living scuticociliate 

belonging to the class Oligohymenophorea, which also includes Tetrahymena and 

Paramecium. The division processes and the relationship between persistence time of 

asymmetric divisions and bacteria concentrations are described, and an updated life cycle 

and phylogenetic position of G. trihymene are presented.  

4.2 Results 

4.2.1 Natural history of G. trihymene  

The G. trihymene isolate described here, collected in Hong Kong, is free-living and 

bacterivorous. It has a polyphenic life cycle that includes the following three previously 

described stages (MA et al. 2006; THOMPSON 1966): trophont, reniform, the feeding, and 

division stage, mostly 35×20 μm in vivo (Fig. 4.1A, B); tomite, the dispersion, and 
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Figure 4.1 G. trihymene morphotypes. A, C, E were from living cells; B, D, F- H were from 

protargol impregnated specimens. A, B. Lateral and ventral view of trophonts. C. A well-fed trophont. D. 

One probable asymmetric divider. Arrow marks the smaller macronucleus. The white square frame marks 

the micronucleus from a different plane of focus. The smaller macronucleus differs from the micronucleus 

by having many nucleoli. E, F. Ventral view of tomites. G. One asymmetric divider with two displaced 

macronuclei. H. One long asymmetric divider, probably releasing one trophont (arrow). Scale bars: A-H: 

25 μm. 

 

fast-swimming stage in response to starvation, with a spindle-shaped cell, mostly 30×15 

μm in vivo (Fig. 4.1E, F); resting cyst, mostly rounded, dormant stage during trophic 

depletion, about 20 μm in diameter. Like other free-living ciliates, G. trihymene has a 

transcriptionally-active macronucleus and a germline micronucleus. The infraciliature 

and buccal apparatus are the same as in previous reports; however, I found the life cycle 

was much more complicated and included two reproductive modes new to scuticociliates, 

asymmetric division and reproductive cysts.  
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4.2.2 Processes of asymmetric division in young cultures  

Many slowly moving, well-fed trophonts (Fig. 4.1C) appeared within 24 hours after 

inoculation with tomites in cultures of wheat grain medium. In all of the cultures, a 

trophont underwent a cell division, but cytokinesis was arrested prior to completion, 

creating a unit consisting of two cells, now called “subcells” because of their failure to 

separate. Typically, each of the two connected subcells later underwent a second 

transverse division, resulting in a chain of four subcells, each with a macronucleus, an 

oral apparatus, and a contractile vacuole (Figs. 4.1H; 4.2A). I define these chains of 

subcells as asymmetric dividers. Asymmetric dividers vary in sizes from 30×15 μm to 

180×30 μm in vivo, have diverse shapes consisting of chains of 2–4 subcells (Figs. 4.1G, 

H; 4.2A, J, O) and give rise to two filial cells that could be morphologically differentiated 

from each other after each division.  

Similar asymmetric dividers were also repeatedly found in different cultures, 

though the sizes varied with media type. Up to four macronuclei were found in the 

cytoplasm of each asymmetric divider (Fig. 4.1H). Most un-disturbed asymmetric 

dividers attached to the bottom of Petri dishes, moved very slowly or stayed immobile 

and had two or more rounded contractile vacuoles, pulsating with different frequencies 

(arrows in Fig. 4.2C). The number of asymmetric dividers in the cultures increased with 

time from appearance of the first asymmetric divider. 
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Several asymmetric dividers were continuously followed on inverted microscopes. 

Two typical division processes of asymmetric dividers in young cultures (the 3
rd

 or 4
th

 

day after inoculation) are described in detail (Fig. 4.2A–M): 
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Figure 4.2 Division processes of two G. trihymene asymmetric dividers in young cultures (A–I, 

J–M), other asymmetric dividers in young (N) and old cultures (O, S), and reproductive cysts (P–R). 

A. One four-subcell asymmetric divider. B. The first asymmetric division. Arrowhead marks the trophont 

to be released. C-E. The new asymmetric divider gradually became highly deformed and many cleavage 

furrows appeared (arrows in E). Note the three contractile vacuoles in C (arrows). F. The arrowhead, 

double-arrowheads and arrow show the sites of the second, third and fourth cleavage furrows respectively. 

G. The second asymmetric division is completed at the arrowhead. The double arrowheads show the furrow 

that will shortly be broken in the third asymmetric division. H. The trophont resulting from the completion 

of the third asymmetric division has swum out of the field of view. The fourth asymmetric division has just 

been completed near the arrow, at a site corresponding to the furrow indicated by the arrow in F. I. Three 

new asymmetric dividers (arrowheads) and one trophont (arrow) were present by the end of the fourth 

asymmetric division. J. One two-subcell asymmetric divider. K, L. After elongation, the first asymmetric 

division produced one trophont (arrow in L) and one asymmetric divider (arrowhead in L). M. The second 

asymmetric division, producing one trophont (arrowhead) and another asymmetric divider (arrow). N. 

Arrowheads mark oral apparatuses (after protargol). O. One asymmetric divider releasing a tomite (arrow). 

P, Q. The division process of reproductive cysts. R. Another asymmetric divider forming a cyst wall. S. An 

asymmetric divider resembling a dividing tomite. Scale bars: A–H: 50 μm; I: 100 μm; J–M, O–S: 25 μm.).  

 

The first division of one long asymmetric divider (Fig. 4.2A) occurred about two 

hours after it was found. During this first division, the cell’s most anterior part was 

released (the anterior and posterior ends were judged from the moving direction and 

posterior position of the contractile vacuoles) as a trophont and quickly swam away (Fig. 

4.2B, arrowhead). The larger posterior part became a new asymmetric divider (Fig. 4.2C), 

which then deformed so much that no clear body axis could be determined (Fig. 4.2D, E). 

The division types (transverse or longitudinal) were thus not easily categorized and many 

cleavage furrows appeared (Fig. 4.2E, arrows). The second asymmetric division occurred 

through disjuncture or fission at the most mature cleavage furrow (Fig. 4.2F, G, 

arrowheads). Then after about  three minutes, the other two furrows broke (Fig. 4.2F-H, 

double-arrowheads, arrows). And finally three new asymmetric dividers, which were also 

slowly moving or immobile and continued dividing highly unequally (Fig. 4.2I, 

arrowheads), and one trophont (Fig. 4.2I, arrow) were produced. The entire process 

described above occurred over the course of 22 hours. 
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The most common asymmetric dividers in young cultures had two subcells (Fig. 

4.2J), which divided over the course of 6 hours. The division process (Fig. 4.2K–M) was 

similar to the one described above in that the first division yielded one active trophont 

(Fig. 4.2L, arrow) and one new asymmetric divider (Fig. 4.2L, arrowhead). After that, 

however, the newly formed asymmetric divider divided into one trophont (Fig. 4.2M, 

arrowhead) and one new asymmetric divider (Fig. 4.2M, arrow), which became deformed 

and continued dividing highly unequally. During each division, the asymmetric dividers 

either produced one trophont and one new asymmetric divider (as shown in Fig. 4.2B, L, 

M) or two new asymmetric dividers (Fig. 4.2G, H).  

4.2.3 Asymmetric dividers and reproductive cysts in old cultures 

When bacteria were depleted, most trophonts transformed into tomites and the cultures 

were termed “old”. In the soil extract medium with various bacteria concentrations, this 

usually occurred between 141 and 175 hours after inoculation (Table 4.1). In old cultures, 

asymmetric division continued, but produced tomites instead of trophonts (Fig. 4.2O, 

arrow). Small asymmetric dividers producing tomites sometimes looked like dividing 

tomites (Fig. 4.2S). Some asymmetric dividers were also found to die and were observed 

with a large central vacuole. Reproductive cysts were also found: some asymmetric 

dividers developed transparent cyst walls and continued to divide unequally one or two 

times inside the cyst walls (Fig. 4.2P–R). 
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Table 4.1 Average first appearance time of tomites in three different concentrations of 

bacteria in soil extract medium (four replicates for each concentration). 

Bacterial concentrations   Tomite first appearance time  

of cultures    (hours after inoculation)  

0.01X     141.5 

0.1X     168.1 

1X     174.9 

 

4.2.4 Is asymmetric division a cultural artifact? 

Actively dividing asymmetric dividers were found in all wheat grain medium cultures 

and cultures with bacterial suspensions in the soil extract medium, as well as cultures 

started with single cells as inocula. Even though the seawater for cultures was changed 

twice (natural seawater from coastal areas of Galveston TX, USA), asymmetric dividers 

were found in all cultures under study. Asymmetric dividers also showed up in early 

cultures of another seven G. trihymene isolates collected from coastal areas of Galveston, 

TX, USA (Table 4.2). The regularity with which asymmetric dividers appear and their 

consistent response to bacterial concentrations (Table 4.1) suggest that these asymmetric 

dividers are not cultural artifacts. The phylogenetic relationship based on the ITS marker 

between isolates was also shown in Fig. 4.3. 
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Figure 4.3 Phylogenetic relationship of seven G. trihymene isolates (in bold) and eight other 

oligohymenophorean ciliates. Bootstrap values (in %) are shown above selected nodes (with bootstrap 

support >50%). Scale bar: 9 substitutions per 100 nucleotide positions. PI14: isolate PI108294; PI13: isolate 
PI108293. 

 

4.2.5 Somatic and nuclear characteristics of asymmetric dividers after protargol 

impregnation 

Some asymmetric dividers had similar body shape to trophonts, except having two highly 

unequal macronuclei (Fig. 4.1D). Macronuclear divisions could also happen several times 

before the completion of cytokinesis, producing up to 4 macronuclei in the same 

cytoplasm (Fig. 4.1H). The positioning of macronuclei was highly variable even if the 

cleavage furrows were clearly formed (Figs 4.1G, H; 4.2N). Usually more than two 

buccal apparatuses were present in bigger asymmetric dividers (Fig. 4.2N, arrowheads). 

4.2.6 Relationship between asymmetric dividers and food abundance 

All asymmetric dividers first appeared on the 3
rd

 to 4
th

 day (51-93 hours) (Fig. 4.4, 

hollow bars) after inoculation of tomites into three bacterial concentrations. The earliest 
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asymmetric dividers appeared in the cultures with the highest bacterial concentration 

(P<0.05, One-way ANOVA; Fig. 4.4, hollow bar B), on average 54 hours after 

inoculation. There was no significant difference between the time of first appearance of 

asymmetric dividers in the other cultures (P>0.05, One-way ANOVA; Fig. 4.4, hollow 

bars A).  

After the first asymmetric dividers appeared in each culture, they were checked 

every 12 hours until no asymmetric dividers remained. The time interval between first 

appearance of asymmetric dividers and the time when no asymmetric divider could be 

found was recorded for each culture (Fig. 4.4, filled bars). The time during which no 

asymmetric divider could be found was probably the stationary phase, when cells had run 

out of food so that they could not divide at all. This time interval, reflecting the total time 

of asymmetric divisions in each culture, was found to increase with bacterial 

concentration (Fig. 4.4, filled bars, a-c; One-way ANOVA, P<0.05).  

4.2.7 Phylogenetic position of G. trihymene 

Maximum likelihood, maximum parsimony and Bayesian trees, inferred from 18S SSU 

rDNA sequences, all show that G. trihymene (Hong Kong isolate) groups with typical 

scuticociliates, like Anophryoides haemophila and Miamiensis avidus (Fig. 4.5). The 

Hong Kong isolate shares 81.2% DNA pair-wise identity with a previously submitted G. 

trihymene sequence [GenBank Accession No.: AY169274].  
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Table 4.2 Collection efforts of G. trihymene, based on previous and current studies. 

Isolates  Collection sites & Time  Temperature & Habitats Data Sources  

G. trihymene Cedar Island VA, US, -  -   (THOMPSON 1966) 

U. tortum* Mie Prefecture, Japan, 09/1995 -, sea lettuce  (PEREZ-UZ and GUINEA 2001) 

G. trihymene Qingdao, China, 09/2000  -, coastal water  (MA et al. 2006) 

PRA-270  Hong Kong, 08/20/2007  26ºC, Rinsing/crab  (LONG and ZUFALL 2010) 

PB508151 Port Bolivar, TX US, 08/15/2009 31 ºC, sea lettuce  (LONG and ZUFALL 2010) 

PB508152 Port Bolivar, TX US, 08/15/2009 31 ºC, sea lettuce  (LONG and ZUFALL 2010) 

PB508291 Port Bolivar, TX US, 08/29/2009 31.2 ºC, sea lettuce  Current 

PB508292 Port Bolivar, TX US, 08/29/2009 31.2 ºC, sea lettuce  Current 

PB508293 Port Bolivar, TX US, 08/29/2009 31.2 ºC, sea lettuce   (LONG and ZUFALL 2010) 

PB508294 Port Bolivar, TX US, 08/29/2009 31.2 ºC, sea lettuce  Current 

PB508295 Port Bolivar, TX US, 08/29/2009 31.2 ºC, sea lettuce  Current 

PI108291  Pelican Island, TX US, 08/29/2009 31 ºC, sea lettuce  Current 

PI108292  Pelican Island, TX US, 08/29/2009 31 ºC, sea lettuce  Current 

PI108293  Pelican Island, TX US, 08/29/2009 31 ºC, sea lettuce  (LONG and ZUFALL 2010) 

PI108294  Pelican Island, TX US, 08/29/2009 31 ºC, sea lettuce  (LONG and ZUFALL 2010) 

PI408291  Pelican Island, TX US, 08/29/2009 31 ºC, sea lettuce  Current 

PI408292  Pelican Island, TX US, 08/29/2009 31 ºC, sea lettuce  Current 

PI408293  Pelican Island, TX US, 08/29/2009 31 ºC, sea lettuce  Current 

PI508291  Pelican Island, TX US, 08/29/2009 30.8 ºC, sea lettuce  Current 

PI508291  Pelican Island, TX US, 08/29/2009 30.8 ºC, sea lettuce  Current 

PI608291  Pelican Island, TX US, 08/29/2009 30.8 ºC, sea lettuce  (LONG and ZUFALL 2010) 

QP72  Free Port, TX US, 10/24/2009 23 ºC, sea lettuce  Current 

QP76  Free Port, TX US, 10/24/2009 23 ºC, sea lettuce  (LONG and ZUFALL 2010) 

†  Vancouver, BC Canada, 09/15/2009  15 ºC, sea lettuce  Current 

†  Mt Pearl, NF Canada, 9/29/2009 13 ºC, sea lettuce  Current 

*Synonym of G. trihymene 

† Failed collection endeavors 
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Figure 4.4 First appearance time and duration of persistence of asymmetric divisions. The time 

of appearance of the first asymmetric divider in the newly inoculated cultures (hollow bars) and the 

duration of persistence of asymmetric divisions after the appearance of the first asymmetric divider (filled 

bars) were noted for cells maintained in the Erd-Schreiber soil extract cultures with one of three different 

bacterial concentrations. Appearance time of first asymmetric dividers and persistence time of asymmetric 

divisions were analyzed independently. Error bars: standard error. Levels not connected by the same letter 

are significantly different (P < 0.05). 

 

 

Figure 4.5 Phylogenetic position of G. trihymene. Maximum likelihood tree topology and branch 

lengths, rooted with species marked with **. Support for clades is indicated by ML bootstrap/MP 

bootstrap/MB posterior probabilities. N indicates that this clade was not found in the given analysis and 

asterisks indicate clades with support of less than 50%. Nodes with <50% support in all methods are shown 

as a polytomy. Scale bar: 5 substitutions per 100 nucleotide positions. 
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4.3 Discussion 

The updated life cycle of G. trihymene during vegetative growth 

The life cycle during vegetative growth of G. trihymene is generalized in Fig. 4.6, based 

on previous and current studies (MA et al. 2006) (THOMPSON 1966). The life cycle has 

multiple stages, as is typical in polyphenic ciliates. These life stages could be highly 

diverse and complex, depending on the total number of asymmetric divider morphotypes 

and food concentration. For simplification and clarity, most intermediate asymmetric 

dividers are not shown in Fig. 4.6. 

Some free-living ciliates, for example, Tetrahymena pyriformis, produce maximal 

progeny cells by shifting their physiological states during starvation (CAMERON 1973). 

Similarly, G. trihymene produces progeny cells by combining three reproductive modes: 

asymmetric division, reproductive cysts and equal fission. In addition, this is the first 

report of reproductive cysts in scuticociliates, though they are not uncommonly found in 

certain ciliate genera, like Colpoda and Tetrahymena (CORLISS 2001). If each 

morphotype of asymmetric dividers could be deemed as one life stage, which could 

probably be the case as many similar or continuous morphotypes were repeatedly found 

in cultures with different “age” or media (Fig. 4.1G, H); then the updated life cycle of G. 

trihymene might rival most known life cycles of free-living ciliates in complexity (Fig. 

4.6). G. trihymene thus provides a special opportunity for studying ciliate polyphenism. 
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Figure 4.6 Updated life cycle of G. trihymene in vegetative growth. This is generalized from 

continuous microscopy and observation of specimens after protargol impregnation. Note the first 

asymmetric dividers (probably more than three morphotypes) with different sizes and shapes in early 

cultures developed through the arrest of cytokinesis in some trophonts. Drawings are not strictly to scale. 

Information on micronuclei is not available. 

 

Although G. trihymene was first discovered early in 1966, it was believed to 

reproduce only by equal fission, during vegetative growth (MA et al. 2006; THOMPSON 

1966). One reason for the persistence of this narrow view of G. trihymene reproduction is 

that, to date, few studies have been conducted on G. trihymene and they have mainly 

focused on morphology or systematics rather than reproduction dynamics (MA et al. 2006) 
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(THOMPSON 1966). Secondly, some of the reproduction forms appear only under 

particular food conditions, for example, in the Hong Kong isolate, asymmetric dividers 

appeared on the 3
rd

 or 4
th

 day after inoculation, when bacterial supply was high and 

disappeared soon after the appearance of tomites. The disappearance of asymmetric 

dividers was probably associated with the transition from exponential culture growth to 

the stationary phase. Third, the relative immobility and irregular body shapes of most 

asymmetric dividers (Figs 4.1G, H; 4.2E, N), could cause them to be mistaken as cultural 

artifacts or debris. Lastly, some asymmetric dividers are easily mistaken as conjugating 

cells or equal binary dividers, if observed on low magnifications (<100×) (Fig. 4.2J). 

Thus, it is no wonder that these usually large, irregularly shaped asymmetric dividers 

were unreported until this study. 

The class Oligohymenophorea, to which all scuticociliates and the well-known 

Tetrahymena and Paramecium belong, contains highly diverse species (LYNN 1996), but 

only a few model species, such as Tetrahymena thermophila and Paramecium tetraurelia, 

are under intensive biological study. Most members of Oligohymenophorea, especially 

the marine species, are limited to taxonomic and systematic studies or are un-described 

(FOISSNER et al. 2008; YI et al. 2009). I predict that as life histories of more species are 

closely examined, much more diversity in reproductive strategies will be discovered 

among free-living protists. 
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Proposed ecological roles of various life cycle stages 

The high feeding efficiency, slow movement, and arrested cytokinesis observed in G. 

trihymene asymmetric dividers might be advantageous. Based on the results of our 

culturing experiments, I conclude that asymmetric dividers are innate physiological states 

of G. trihymene, which can be induced to occur in bacteria-sufficient media. Cells with 

asymmetric divisions may ingest more food than those without-most asymmetric dividers 

had many oral apparatuses with oral membranes beating quickly. They may be able to 

consume as many bacteria as several trophonts in the same period of time (Fig. 4.2N, 

arrowheads). In addition, the relative immobility of these asymmetric dividers may 

minimize their energy consumption (FENCHEL 1987). The arrested cytokinesis should 

also save energy for asymmetric dividers, compared with equal dividers.  

I propose the following ecological scenario that comes about as G. trihymene with 

a capacity for asymmetric divisions explores its surrounding environment. Suppose one G. 

trihymene trophont finds a food patch with plenty of bacteria, but also with many other 

bacteria-feeding protists. To avoid being a loser in this resource exploitation competition, 

for 2-3 days G. trihymene vigorously feeds on bacteria and divides equally. While plenty 

of bacteria remain, some trophonts asymmetrically divide, producing trophonts and more 

asymmetric dividers. When the food patch is nearly exhausted, most trophonts transform 

into tomites, and the asymmetric dividers instead of producing trophonts, produce tomites. 

After most of the bacteria are consumed, most tomites become resting cysts. Asymmetric 

dividers secrete a cyst wall and continue dividing inside, producing reproductive cysts, 

which ultimately become resting cysts. Some tomites transformed from trophonts or 
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released by asymmetric dividers swim rapidly to seek more food patches, transforming 

back into trophonts when they find new food patches and repeating the above processes. 

The quickly dispersing tomites, the tolerating resting cysts, and the diverse reproductive 

strategy may enable G. trihymene to identify and dominate enough food patches and 

survive in the coastal water community. 

Frequent collection of 'rare' species 

Along with all previous collection information, it is clear that G. trihymene has a world-

wide distribution and preferably inhabits surfaces of sea lettuces (Ulva spp.) in warm 

seawater (≥23 ºC) (Table 3.2). Prior to this study, I suspected that G. trihymene was a 

rare species, given that there had only been a few reports of it in the past 44 years (LONG 

and ZUFALL 2010; MA et al. 2006; PEREZ-UZ and GUINEA 2001; THOMPSON 1966); 

however, my frequent collection success suggests that this “rare species” may be far more 

abundant than would have been predicted based on traditional sampling protocols. 

Sampling methods relying on artificial enrichment substrates, like glass slides in frames 

and PFU (polyurethane foam unit), neglect most habitat information (YONGUE and 

CAIRNS 1973). Likewise, environmental sampling for microbial metagenomic studies 

often relies on samples from the water column, and does not include all possible habitat 

niches, such as plant or animal surfaces. My sampling results suggest that in order to 

understand microbial distribution and abundance at a locale, specific habitat information 

is crucial. As more and more habitat information is gathered, these habitats will 

eventually become another stock center for ciliates, especially those that cannot currently 



 83 

 

be cultured or cryopreserved. Further, many “rare species” may become common species 

in certain habitats, such as G. trihymene. 

Phylogenetic position of G. trihymene, and asymmetric division 

G. trihymene groups with typical scuticociliates with high bootstrap support and posterior 

probability, though the precise relationships within the clades remain unresolved (Fig. 

4.5). In addition, G. trihymene has high SSU rDNA pair-wise identity with Anophryoides 

haemophila (96%), the scuticociliate causing the “Bumper car disease” of American 

lobsters and Miamiensis avidus (96%), a polyphenic, parasitic ciliate, which causes 

diseases in fish (CAWTHORN et al. 1996; GOMEZ-SALADIN and SMALL 1993). My result 

supports the monophyly of scuticociliatia, despite what was found in earlier studies 

utilizing a previously reported G. trihymene SSU rDNA sequence [GenBank Accession 

No.: AY169274] (DUNTHORN et al. 2008; UTZ and EIZIRIK 2007) which I believe to be 

erroneous. In line with my interpretation, the most recent study on morphology and 

morphogenesis of G. trihymene (performed by the same group that submitted the 

previous G. trihymene SSU rDNA sequence) showed that it is indeed a typical 

scuticociliate (MA et al. 2006). 

Asymmetric divisions, similar to those in G. trihymene, occur in certain 

apostomic and many astomic ciliates (see phylogenetic position in Fig. 4.5), though the 

details of division had never been studied using continuous microscopy (CHATTON and 

LWOFF 1935). Such asymmetric dividers were called catenoid colonies in these host-

dependent ciliates. Asymmetric dividers were so named in the present study to emphasize 
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the difference between the two filial cells. As in the asymmetric division of G. trihymene 

in Fig. 4.2A, long cell chains in the parasitic and commensal astome and apostome 

ciliates are formed by repeated incomplete divisions without separation of the resulting 

filial products, after which some subcells are fully or partially pinched off. These subcells 

require subsequent metamorphosis to regain the form typical of the normal trophont stage 

of the life cycle (CHATTON and LWOFF 1935; LYNN 2008).  

The results of the phylogenetic analysis suggest that complex life cycles including 

asymmetric division are either 1) an ancestral feature of these three groups that has been 

modified, lost, or not yet discovered in other free-living species, or 2) a convergent trait 

that has arisen multiple times independently in these closely related taxa. 

I found no obvious morphological differences between any of the isolates during 

asexual growth and division; all isolates have similar lifecycles, as described in (LONG 

and ZUFALL 2010); however, unlike in other isolates, conjugation occurred frequently in 

repeated single-cell isolations of the PB508151 lineage, which has the greatest genetic 

distance from the other isolates (DNA pairwise identity at ITS locus from 85.8% to 

87.1%; Table 4.2). Such selfing was observed frequently in 2-3 day old cultures (Fig. 4.7). 

No selfing was observed in cultures of other isolates, nor could it be induced by 

starvation (a common cue for conjugation in ciliates). There has been no previous report 

of selfing of G. trihymene.  
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Figure 4.7 Selfing pairs after protargol staining from G. trihymene isolate PB508151. (A) 
Condensation of micronuclear chromatin (arrows). (B) Completion of meiosis I, arrows mark the 

micronuclei. (C) Completion of meiosis II, arrowheads indicate the pronuclei. (D) Mitosis of the 

micronucleus, arrow marks the condensed chromosomes in metaphase. (E-G) Macronuclear contact 

between two conjugants, arrows mark the contacting sites. Ma-macronucleus; Mi-micronucleus. 

 

Nuclear events during selfing 

Nuclear events were observed over the course of conjugation in this self-

compatible strain using protargol staining. The only selfing strain PB508151 diverged 

from all other isolates with high bootstrap support (Fig. 4.3). Some typical nuclear 

activities were observed in the selfing pairs of PB508151, including condensation of 

chromosomes (Fig. 4.7A, arrows) and meiosis I (Fig. 4.7B), II (Fig. 4.7C) and prezygotic 

mitosis (Fig. 4.7D) of the micronucleus; however, I also observed previously unreported 

nuclear processes: macronuclear streaming and direct contact between macronuclei of the 

conjugants (Fig. 4.7E-G, arrows). The macronucleus from each conjugant elongated and 

then came in direct contact with the elongated macronucleus of the other conjugant. This 
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usually occurred around the connected region of the two conjugants (Fig. 4.7E-G). 

Macronuclear contact lasted until the two conjugants separated. Because I was unable to 

induce conjugation between isolates, I cannot determine whether macronuclear contact is 

a general property of conjugation in G. trihymeme, or is unique to selfing. Whether there 

is any macronuclear genetic exchange between the two exconjugants or selfing could be 

involved in sympatric speciation (Fig. 4.3) needs further exploration. 

Asymmetric division: one clue to multicellularity? 

The colonial flagellate hypothesis, claiming that flagellated protists living as colonies 

evolved into the first animals, has inspired extensive productive exploration on the origin 

of multicellularity (CARR et al. 2008; HYMAN 1940; KING et al. 2008; ROKAS 2008). The 

asymmetric division of G. trihymene serves as an alternative mechanism through which 

protists may have led to a multicellular form: a multicellular form could arise by a ciliate 

with one single-macronucleus and micronucleus subdividing itself as a result of growth 

followed by arrested cytokinesis. It should be noted, however, that such asymmetric 

division does not result in different developmental fates akin to truly multicellular ciliate 

species, such as Zoothamnium alternans (FAURÉ-FREMIET 1930; SUMMERS 1938). 

As is shown in this study, asymmetric dividers produce new asymmetric dividers 

and trophonts by successive asymmetric divisions, in favorable conditions, and the more 

available food, the longer the asymmetric divisions persisted (Fig. 4.4, filled bars). If 

asymmetric dividers lived in consistently bacteria-rich environments for a long time, they 

might retain the multicellular form, but lose the ability to produce trophonts or tomites. 
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Bacteria-rich environments were common in the ancient ocean, which had very different 

chemistry from that of today’s (CROWE et al. 2008; ZERKLE et al. 2005). Thus, it is 

possible that some multicellular organisms, which have not yet been discovered or have 

since gone extinct, originated from certain asymmetric dividers of ciliates.  

To test whether the asymmetric dividers are adaptive, I tried to find out if they are 

advantageous in fitness over the normal binary dividers. The fitness metric I measured 

was doubling time, which was the time for one single asymmetric divider or one normal 

binary divider to produce one progeny cell, using direct time-lapse microscopy; however, 

the asymmetric dividers budded off not only asymmetric dividers, but also normal cells, 

which later underwent normal binary division; thus, such preliminary fitness 

measurement is not accurate for finding whether fitness advantage of asymmetric 

dividers and needs improvement. If future accurate fitness measurement shows there is 

no fitness difference between asymmetric and normal dividers, considering the low 

frequency of the asymmetric dividers in newly collected isolates, the possibility that 

asymmetric dividers are just one transient physiological state could not be excluded. 

4.4 Materials and Methods 

Sampling and identifying G. trihymene 

G. trihymene was isolated with a fine pipette from a seawater rinse of a newly dead crab 

(species unknown) collected from a sand beach near the pier of Hong Kong University of 

Science and Technology, Clear Water Bay, Hong Kong (22° 20’ N; 114° 17’ E) on 

August 20, 2007. The salinity was about 33‰, temperature 26ºC, and pH 8.1. The 
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cultures used in this study were derived from a single G. trihymene cell of the Hong 

Kong isolate. Seven other isolates were collected from Texas coastal areas (Table 4.2). 

The salinity was about 33‰ and temperature ranged from 23 to 31ºC. Trophonts and 

tomites of G. trihymene were observed in vivo first using a stereomicroscope and then an 

epi-fluorescence microscope at 100-1000X. The nuclear apparatuses and infraciliature 

were revealed by the protargol impregnation method (WILBERT 1975). The protargol S
TM

 

was manufactured by Polysciences Inc., Warrington, PA (Cat No.: 01070). Drawings 

were based on free-hand sketches. One subculture of the isolate in this study was 

deposited in ATCC (American Type Culture Collection; Reg. No.: PRA-270).  

Monitoring individual asymmetric dividers with continuous microscopy 

For continuous microscopy of G. trihymene reproductions, 50 cultures were established 

in wheat grain medium (100×15mm plastic Petri dishes each with 3 autoclaved wheat 

grains in 30ml autoclaved seawater, 0.2g/grain, and with about 50 tomites in 100μl stock 

culture medium as inoculum). The salinity was about 31‰, pH 8.0. All cultures were 

maintained at room temperature, about 23ºC. Most asymmetric dividers, which were first 

observed under a stereomicroscope, were immobile or slowly moving on bottoms of Petri 

dishes, and their position was marked on the Petri dish bottom. The asymmetric dividers 

were then observed and followed under an inverted microscope (100–400X; Olympus 

IX71). To minimize disturbance to asymmetric dividers during continuous multi-day 

observation, low light intensity and low magnification were used. Asymmetric dividers 

from 3–7 day-old cultures were continuously isolated with fine pipettes and impregnated 
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with protargol, in order to check the nuclei and infraciliature characters during 

asymmetric divisions. 

Effect of bacterial concentration on asymmetric division 

The Erd-Schreiber soil extract medium added with bacterial suspension has recently been 

shown to be efficient for culturing G. trihymene (PEREZ-UZ and GUINEA 2001; TOMPKINS 

et al. 1995) (I believe Urocryptum tortum in PEREZ-UZ and GUINEA 2001 is a junior 

synonym of G. trihymene, because of their great similarity in living morphology, 

infraciliature, and habitat, as well as the life cycle characteristics). To prepare bacterial 

suspension, 10μl stock culture medium without cells was inoculated into 3ml autoclaved 

seawater LB medium in test tubes (seawater LB recipe: 12.5g LB broth in 500ml 

autoclaved filtered natural seawater) and cultured at 30ºC, 200rpm, overnight, to maximal 

growth. The bacteria were harvested by centrifugation at 7378g in 1.5ml eppendorf tubes 

with a microcentrifuge and the supernatant was removed. Then 1ml sterile Erd-Schreiber 

soil extract medium was added to wash the bacteria pellets, at 7378g. This washing 

procedure was repeated twice. Each pellet was finally re-suspended with 1ml soil extract 

medium and combined in a sterile 50ml polypropylene conical tube (BD Flacon
TM

). 

Bacterial suspensions of 3ml, 0.3ml, and 0.03ml were added separately into 3 

Petri dishes with sterile soil extract medium to reach a final volume of 30ml (marked as 

1X, 0.1X and 0.01X for each concentration, respectively). It should be noted that the Erd-

Schreiber soil extract medium was not a rich medium supporting growth of a large 

number of bacteria. Four replicates were prepared for each concentration. After each 
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culture was inoculated with about 50 tomites in 100μl stock culture medium, all 12 

cultures were placed on a rocking platform at 3rpm. Each culture was checked every 12 

hours for asymmetric dividers, until 50 hours after the inoculation (preliminary 

experiments showed that the earliest appearance of asymmetric dividers occurred at 50
th

 

hour after inoculation with tomites). After the 50
th

 hour, all cultures were checked for 

appearance of asymmetric dividers every two hours until they were first observed in each 

culture. The first appearance time of asymmetric dividers and tomites was recorded for 

each culture. Subsequently, all cultures were checked for the presence of asymmetric 

dividers every 12 hours, until all of them disappeared from each culture. The 

disappearance time of asymmetric dividers for each culture was also recorded. 

Amplifying, cloning, and sequencing of SSU rDNA 

Cells from the stock culture were harvested in one 1.5ml eppendorf tube with a micro-

centrifuge, at 1844g. Supernatant was removed and the pellet was re-suspended with 20μl 

autoclaved seawater. The cell suspension was directly used as DNA template for 

amplifying the SSU rDNA. Universal eukaryotic primers for SSU rRNA were used: 

forward 5’-AACCTGGTTGATCCTGCCAGT-3’, reverse 5’-

TGATCCTTCTGCAGGTTCACCTAC-3’ (MEDLIN et al. 1988). PCR programs were 

performed using the iProof
TM

 High-Fidelity PCR kit (Bio-Rad, CA): 1 cycle (98ºC, 2min); 

30 cycles (98ºC, 10s; 70ºC, 30s; 72ºC, 50s); 1 cycle (72ºC, 7min). The PCR products 

were then purified with the QIAquick gel extraction kit (QIAGEN Sciences, MD) and 

cloned with the Zero Blunt TOPO kit (Invitrogen, CA). The plasmid DNA was isolated 

from transformant colonies using the QIAprep spin miniprep kit (Qiagen, CA) and four 
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clones were sequenced with the BigDye terminator kit (Applied Biosystems, CA) on an 

automated ABI 3130 XL sequencer in the Department of Microbiology and Molecular 

Genetics, University of Texas Health Sciences Center at Houston. 

SSU rDNA sequence availability and phylogenetic tree reconstruction  

The SSU rDNA sequence of G. trihymene was deposited in GenBank [GenBank: 

GQ214552]. The accession numbers of the additional SSU rDNA sequences used in this 

study were as follows: Anophryoides haemophila [GenBank:U51554], Anoplophrya 

marylandensis [GenBank:AY547546], Cardiostomatella vermiforme 

[GenBank:AY881632], Cohnilembus verminus [GenBank:Z22878], Colpoda inflata 

[GenBank:M97908], Cyclidium glaucoma [GenBank:EU032356], Entorhipidium pilatum 

[GenBank:AY541689], Gymnodinioides pitelkae [GenBank:EU503534], Histiobalantium 

natans viridis [GenBank:AB450957], Hyalophysa chattoni [GenBank:EU503536], 

Metanophrys similes [GenBank:AY314803], Miamiensis avidus [GenBank:AY550080], 

Pleuronema coronatum [GenBank:AY103188], Pseudocohnilembus hargisi 

[GenBank:AY833087], Schizocalyptra aeschtae [GenBank:DQ777744], Schizocaryum 

dogieli [GenBank:AF527756], Uronema marinum [GenBank:AY551905], 

Vampyrophrya pelagica [GenBank:EU503539].  

Amplifying, cloning, and sequencing of ITS sequence 

Cells from each isolate were directly used as DNA templates for amplifying the ITS1-

5.8S rDNA-ITS2 locus, using the degenerative primers designed by (SNOEYENBOS-WEST 

et al. 2004). PCR was performed using the iProof
TM

 High-Fidelity PCR kit (Bio-Rad, 
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CA): 1 cycle (98ºC, 2 min); 36 cycles (98ºC, 10s; 63ºC, 30s; 72ºC, 50s); 1 cycle (72ºC, 

7min). The PCR products were then run on 2% low melting agarose gel for about 6 hours 

to separate the target products from contaminating bacterial products (usually about 20bp 

longer than the target products). Target PCR products were purified with the QIAquick 

gel extraction kit (QIAGEN Sciences, MD) and cloned with the Zero Blunt TOPO kit 

(Invitrogen, CA). The plasmid DNA was isolated from transformant colonies using the 

QIAprep spin miniprep kit (Qiagen, CA) and clones were then sequenced on an 

automated sequencer (ABI 3730xl) at Eton Bioscience Inc., Houston Texas, USA.  

The ITS1-5.8S rDNA-ITS2 sequences of 7 G. trihymene isolates were deposited 

in GenBank (see accession numbers in Table 4.1). The GenBank accession numbers of 

the additional sequences used in this study were as follows: Anophryoides haemophila 

(AF107779), Homalogastra setosa (EF158845), Ichthyphthirius multifiliis (DQ270015), 

Mesanophrys chesapeakensis (AF107778), Orchitophrya stellarum (AF107776), 

Pseudocohnilembus persalinus (EU262622), Tetrahymena americanis (AY833381), 

Uronema elegans (AY513760).  

Selfing in the isolate PB508151 usually occurred 2–3 days after cultures were 

established in the wheat grain medium. Nuclear apparatus activities were revealed by 

continuously isolating and staining selfing pairs with protargol after the first selfing pair 

was observed. Photomicrographs were then taken on a compound microscope at 600X. 

Sequences were aligned in ClustalW (LARKIN et al. 2007) (executed as a plug-in in 

Geneious Pro 4.0.4 (DRUMMOND et al. 2008)) and adjusted by hand. 1707 nucleotides 
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(positions) were used in the analysis. Maximum likelihood (ML) and parsimony (MP) 

phylogenetic analyses were performed in PAUP* (SWOFFORD 2003) and Bayesian 

analyses (MB) in Mr. Bayes (RONQUIST and HUELSENBECK 2003) (both executed in 

Geneious Pro 4.0.4) using the best fit model as determined by ModelTest (POSADA and 

CRANDALL 1998) (GTR+I+G). Support was determined based on 100 bootstrap replicates 

(ML and MP) or the posterior probability after one million generations, with an initial 10% 

burn-in (MB). 

Statistical analysis 

One-way ANOVA analysis (Tukey HSD Test, α=0.05, JMP 7 software package) was 

conducted to check the differences among first appearance time and persistence time of 

asymmetric dividers in cultures with three different concentrations of bacterial 

suspension (data was log-transformed into normal distribution). 
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Chapter 5 Discussion 

“The capacity to blunder slightly is the real marvel of DNA. Without this special attribute, 

we would still be anaerobic bacteria and there would be no music” - Lewis Thomas 1979, 

The Medusa and the Snail 

 

In previous chapters, I have addressed how to accumulate and estimate mutational 

parameters using the somatic and germline genomes of T. thermophila, by measuring the 

changes in fitness, how morphological traits change due to mutations, as well as the 

diverse modes of reproduction strategies in the marine free-living ciliate G. trihymene. In 

this chapter, I will summarize the previous chapters and discuss other potential uses of 

the currently established mutation accumulation system in exploring other evolutionary 

genetic topics, the application of mutation accumulation techniques in current 

morphological taxonomy, the need to explore life history strategies of free-living ciliates, 

as well as some potential problems with the studies in each chapter. 

5.1 Findings and potential problems of the mutation accumulation system  

5.1.1 Findings in mutation accumulation study using T. thermophila 

The dimorphic nuclear system is the unique feature of ciliates among eukaryotes, which 

provides opportunity for exploring evolutionary topics in an idiosyncratic way that could 

not be easily realized in most other model organisms. For example, selection against 
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deleterious mutations is unavoidable in counterpart unicellular organisms with only one 

nuclear genome or it takes too long to accumulate mutations in multicellular organisms. 

In chapter 2, I showed that the mutation accumulation system using the model ciliate T. 

thermophila worked successfully. This species is the only ciliate growing in sterile well-

defined medium and has the most diverse genetic tools. The diverse fitness metrics, like 

maximum population growth rate, lag-time, viability, as well as the statistical and genetic 

tools used, all demonstrate the power of this system in studying broad aspects of 

evolutionary genetics, even lethal mutation rate and dominance coefficient of new 

mutations, which are important but rarely available. In the future, this system could also 

be used to estimate directional epistasis, viz. the interaction between new mutations, by 

manipulating the germline genomes through genomic exclusion and backcrossing 

(DEVISSER et al. 1997; WEST et al. 1998). 

5.1.2 Potential problems in the mutation accumulation system using T. thermophila 

There are actually also some potential problems with the mutation accumulation 

system currently established. First of all, as most mutation accumulation experiments, 

there are some limitations: the sensitivity of the fitness assay may cause small effects 

mutations undetected (KEIGHTLEY and EYRE-WALKER 1999); thus, causing the 

mutational estimates biased to large effects mutations; using competition assays might 

improve on this. Also, the true distribution of fitness effects (DFE) in mutation 

accumulation experiments is always difficult to infer from mutation accumulation 

experiments, because the fitness effects and the genomic mutation rate have usually un-



 99 

 

avoidable sampling covariance. Disentangling the DFE needs usually very high sample 

size and complicated algorithms (EYRE-WALKER and KEIGHTLEY 2007).  

Second, epigenetic influence of soma mutations on germline genome expressed 

into the somatic genomes in the genomic exclusion progeny. In T. thermophila, an 

epigenetic process is regulating sequence elimination during development from the 

zygotic nucleus to a new somatic nucleus. Small RNAs “compare” the parental somatic 

genome to the developing one and signal the elimination of any sequences that are not 

present in the parent (reviewed in CHALKER 2008; DUHARCOURT et al. 2009). Thus, 

though the germline genome is not affected by somatic mutations, how the germline 

genome gets expressed after development is indeed affected. Particularly, deletion 

mutations in a somatic genome may result in subsequent elimination of that deleted 

sequence from the new somatic genome after conjugation. The experimental design for 

both measuring germline fitness and sequencing the germline genome (see below), would 

be confounded by any such events. Although we will not be able to correct such effects in 

the fitness assays, they will be revealed in the sequence data as a shared deletion in 

somatic and germline genomes from a single MA line. In any such case, the germline 

deletion could be detected as developmental by sequencing developmentally eliminated 

sequences from the germline.  

Third, preliminary SNP analysis (by Reed Cartwright) on germline mutations of 

four MA lines at generation 1000 and the ancestor lines after next-generation whole-

genome sequencing found 5, 92, 19, and 13 point-mutation candidates (32 point 

mutations per MA line on average). Considering that the point mutation candidates need 
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further Sanger sequencing confirmation, the genomic mutation rate 3.08e-10 point 

mutation candidates per generation is probably an over-estimate, and the true genomic 

mutation rate may be similar to the estimate from another model ciliate Paramecium 

tetraurelia (SUNG et al. 2012b). The point-mutation rate per site per generation in both 

ciliates are lower than most other eukaryotic organisms, this is probably due to T. 

thermophila and P. tetraurelia having similarly large effective population size and high 

fidelity DNA polymerases (SUNG et al. 2012a; SUNG et al. 2012b).  

Finally, there is a potential complication of genome sequencing when the somatic 

genome is sequenced in the future. Somatic genome sequences might be contaminated by 

germline sequences during next-generation whole genome deep sequencing. Because the 

somatic genome has many more copies (usually 45×) than the germline genome (2×), 

most sequence data recovered will be from the somatic genome; however, some 

contaminating sequences from the germline genome are expected (EISEN et al. 2006). 

Any sequences that do not map to the reference genome are likely from contaminating, 

developmentally eliminated sequences. In sequencing the somatic genome, mapped 

sequences with apparent heterozygosity may be due to either incomplete phenotypic 

assortment or germline contamination. These possibilities will be distinguished by 

comparison with the sequenced germline genome from that line. This will not be a 

problem when sequencing the germline genome, since after GE the germline and soma 

will be identical, with the exception of developmentally eliminated sequences. 
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5.2 Insights and improvements of mutations on ciliates morphology  

5.2.1 Insights from mutations influencing morphology 

Four morphological traits of ciliates, viz. numbers of somatic and post-oral kineties, 

macronucleus, and cell sizes were used in chapter 3 for exploring morphological 

variation from germline mutations after long term asexual reproduction in T. thermophila. 

Cell size change from cells bearing germline mutations was also positively correlated 

with fitness change. In addition, morphological traits’ change due to mutations after 1000 

generations established a case study of testing the genetic variability of morphological 

traits used for species identification, using mutation accumulation techniques. Consistent 

with previous observations by taxonomists, the number of post-oral kineties, which has 

been given more weight in species identification (CORLISS 1973), never changed in cell 

lines with or without mutations accumulated, but the cell size did decrease in cell lines 

with germline mutations expressed. In the future, such tests on morphological traits could 

be further explored by including sexual reproductions and different populations. 

5.2.2 Improving the current research 

There are also some potential problems with this part using morphological traits to 

estimate mutational parameters: first, the sample size was small. Due to time limitation (I 

was still working on the experiment several weeks before the thesis submission deadline), 

only six MA lines and six GE lines derived from them were evenly sub-sampled with 

reference to the 19 GE lines’ fitness from the 19 MA lines with successful genomic 
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exclusion. A large sample size including more MA and GE lines would give more 

credibility to the mutation accumulation tests on morphological traits variability. Besides, 

checking finer structures or applying automatic assays could improve the morphological 

traits measurement. The four morphological traits chosen in this study are common ones 

used in morphological taxonomy; however, there might be better resolution for detecting 

mutations if finer morphological structures were used. For example, the number of 

kinetosomes in a certain somatic kinety might provide more information than the number 

of somatic kineties on a whole cell. All the morphological traits here were measured by 

observing living or stained cells on microscopes. At least cell size was known to be 

measured automatically by flow cytometry (TZUR et al. 2011). Using automatic 

measurement would definitely decrease the systematic errors and increase within line 

replicates and be more accurate. 

5.3 Discovery of diverse asexual reproductions and future research on the ciliate 

G. trihymene 

5.3.1 Discovery of the diverse asexual reproduction modes in G. trihymene 

The last chapter focused on reproductive strategies, using a different ciliate species G. 

trihymene. This topic is not directly related with mutation accumulation, but could be 

potentially used for evolutionary genetic studies on marine ciliates. For example, the 

reproductive cysts might be a life stage conveniently used as equivalence with liquid 

nitrogen frozen ancestor cells, since most marine ciliates could not be frozen in liquid 

nitrogen.  Also, this part of research showed that a ciliate species previously thought to be 
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“rare” is not actually rare but rather due to that the original habitats and seasonality were 

unknown. In the future, this ciliate with diverse reproductive strategies could be a model 

for studying marine ciliates speciation, as indicated in chapter 4 that frequent selfing 

might have caused sympatric speciation by expressing germline mutations into a new 

somatic genome soon after mutations’ appearance; then, the individuals with the 

expressed mutations soon got selected against or for. Other lineages without selfing could 

diverge from this selfing lineage, for example, accumulating mutations in the germline 

genome due to long term no sex, which would even slightly change conservative genes 

since germline mutations can accumulate for many generations without selection. 

Exploration on mating systems and population structures of G. trihymene would be a start 

on this sympatric speciation topic. 

5.3.2 Future research on the reproduction strategies of G. trihymene 

There are also some potential problems with this part exploring reproductive strategies: 

sexual reproductive strategies should have been investigated more thoroughly. Except for 

selfing, all reproductive strategies explored in this study were asexual and mostly 

equivalent to fission. Though mating tests were tried using the limited number of strains 

collected mostly from Texas, no successful conjugation except selfing was found. More 

strains should have been collected from a broader geographical range. Besides, starvation 

was used to induce mating, which is regular operation on model freshwater ciliates, but 

since the ocean environment is relatively homogeneous and disturbing compared with the 

heterogeneous and static freshwater habitats, there might be alternative triggers for 



 104 

 

mating other than starvation, for example, higher salinity. Furthermore, species 

identification could be more explored, in addition to morphology and genetic markers. 

All the collected strains were identified by morphology and the ITS gene marker, which 

were mainstream identifying methodology in marine ciliates taxonomy; however, mating 

test must be done to make sure they are the same biology species in order to establish it 

as an evolutionary genetic studying subject or to explore speciation. Finally, genetics of 

G. trihymene was never explored. Including chapter 4 study,  the genetics of G. trihymene 

remains blank. Even the nuclear activities during conjugation were derived from other 

studied model ciliates, though such derivation seems to be reasonable as most studied 

ciliates fit the nuclear developmental patterns from model ciliates. Such blank genetic 

background is actually not bad news, since most people working on marine ciliates are 

obsessed with morphology and phylogeny with conservative markers, exploring genetics 

of this marine ciliate would teach us a lesson on more conceptually grounded thinking 

and moving on from the years when the microscope was shortly invented.  
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