RELIABILITY ANALYSIS AND OPTIMIZATION OF COMPLEX SYSTEMS

A Dissertation
Presented to

the Faculty of the Department of C'nemical Engineering University of Houston

In Partial Fulfillment

of the Requirements for the Degree Doctor of Philosophy in Chemical Engineering

by

I would like to express my gratitude to Dr. Ernest J. Hentey for his friendly guidance and encouragement throughout the course of this dissertation research, and to Dr. Koichi Inoue for his interest and many useful suggestions. A special debt of gratitude is due my parents, Mr. and Mrs. L. D. Gandhi, for their constant encouragement and support in my efforts to seek advanced studies. I would also like to thank Dr. R. L. Motard and the staff of the Engineering Systems Simulation Laboratory for their assistance in the use of the computer facilities. The financial support provided by the Office of Naval Research under ONR Contract N0014-68-A-0151 and the National Science Foundation Grant CK 34542 are gratefully acknowledged. Special thanks are due to Mrs. H. J. Stover for her expert typing of the manuscript. Lastly, I wish to thank my wife for her love and understanding during these times.

RELIABILITY ANALYSIS AND OPTIMIZATION OF COMPLEX SYSTEMS

An Abstract of a Dissertation Presented to
the Faculty of the Department of Chemical Engineering University of Houston

In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Chemical Engineering
by
Satish Loonkaran Gandhi

ABSTRACT

Most of the earlier literature on system reliability optimization consider only the simple series-parallel systems subject to one: or two constraints. Practical systems have complex rather than the simple series parallel configurations. With a view towards solving these complex system reliability optimization problems, an efficient computer algorithm based on the path enumeration method has been developed. An important feature of the method is the module representation of the reliability graph which considerably simplifies the calculation of reliability and sensitivity functions of complex systems. A modified integer gradient method is used for system optimization. Although the method does not insure a global optimum, it does find various near-optimum solutions. From a practical consideration, this could provide for a wider choice during the design phase.

In this research an effort has also been made to apply basic reliability concepts to process plants. A new formulation of the optimal reliability design of process plants which takes into account the quantitative aspects of systems throughput is proposed. It is based on the k-out-of-n configuration instead of the conventional parallel redundancy configuration. The problem is so formulated that determining the optimum configuration also determines the optimum capacity of units to be used at each stage of the system. A computer program based on a pseudo-Boolean algorithm is used to solve this non-linear integer progranming problem.
I. INTRODUCTION 1
II. RELIABILITY AND SENSITIVITY ANALYSIS OF COMPLEX SYSTEMS USING FLOW GRAPH METHODS 3
III. OPTIMAL DESIGN FOR RELIABILITY AND AVAILABILITY OF COMPLEX SYSTEMS 47
IV. OPTIMAL RELIABILITY DESIGN OF PROCESS SYSTEMS 72
V. CONCLUSIONS AND RECOMMENDATIONS. 93
BIBLIOGRAPHY 96
NOMENCLATURE 100
APPENDIX
A. NODULE RELIABILITY AND SENSITIVITY EXPRESSIONS 103
B. PATH FINDING ALGORITHM 111
C. PATH UNIONS. 116
D. MODIFIED INTEGER GRADIENT METHOD 123
E. SENSITIVITY EXPRESSIONS FOR SYSTEM AVAILABILITY AND SYSTEM PROFIT. 130
F. LAWLER AND BELL ALGORITHM. 134
G. COMPUTER PROGRAMS 139
Computer Listing for Computation Scheme I 150
System Reliability Optimization. 151
System Availability Optimization 180
System Profit Optimization 205
Computer Listing for Computation Scheme II. 230
System Reliability Optimization. 231

CHAPTER I

INTRODUCTION

Considerable literature has appeared in the last two decades in the area of system reliability analysis and optimization, particularly by researchers in electrical engineering and operations research. However, there are two areas where very little progress has been made.

Most of the earlier literature on system reliability optimization consider only the simple series-parallel systems subject to one or two constraints. The reason only this particular system has received so much attention is the separability and concavity of the reliability function. This makes it amenable to be solved using the techniques of dynamic programming [6,23,30,33,38,43,61], discrete maximum principle [19,55], integer programming [24,41,44,54,56], Lagrangaian multipliers [2,3,18,38,40], and the dominating sequence concept $[3,8,30,38,48$]. Practical systems have complex rather than the simple series-parallel configurations, and, therefore, require methods capabie of solving complex system optimization problems.

In the design of electrical, electronic, and safety systems, the flow of information is the most important factor, whereas in process systems the flow of materials and energy is also very important. Therefore, some innovations and modifications are required before the previous research in the area of reliability engineering can be effectively applied to chemical process systems. The vital role reliability plays in the operation of today's large, complex and expensive chemical plants has been widely recognized [10,17,26,35,58 ${ }^{2}$.

In this research an effort has been made to apply basic reliability concepts to process plants. In Chapter II a general computer algorithm based on path enumeration method has been developed to calculate the
reliability of complex systems. It also evaluates an important parameter; namely, the sensitivity of the system reliability to individual system units. The introduction of the module concept considerably simplifies the evaluation of the reliability and sensitivity functions. In Chpater III this algorithm is used in conjunction with a modified integer gradient method [50] for solving a large class of reliability and availability optimization problems. In Chapter IV an optimal reliability design of process systems is proposed which takes into account the quantitative aspects of systems throughput or capacity. The problem is so formulated that finding the optimum configuration, also determines the optimum capacity of units to be used at each stage of system.

All the procedures developed in this research have been programmed in FORTRAN IV. A number of illustrative examples are included in each chapter.

CHAPTER II

RELIABILITY AND SENSITIVITY ANALYSIS OF COMPLEX

SYSTEMS USING FLOW GRAPH METHODS

In this chapter a general computer algorithm has been developed to calculate the system reliability when given reliabilities of each unit in the system and relationships between the units in the form of a reliability graph. Besides giving the system reliability, the programs calculate the sensitivity of the system reliability to individual system units.

Reliability
Reliability has been defined in many ways. A widely accepted definition [5] reads: "Reliability is the probability of a device performing its purpose adequately for the period of time intended under the operating conditions encountered."

The mathematical derivation of the reliability function is treated in most reliability texts [5,25,49,59]. Here the general formula is given without proof

$$
\begin{equation*}
R(t)=\exp \left(-\int_{0}^{t} z(\tau) d \tau\right) \tag{2.1}
\end{equation*}
$$

where, the function $z(t)$ is called the failure rate function, hazard function, or hazard rate.

If the system has a failure time distribution with density function $f(t)$, then the failure time distribution function is given by

$$
\begin{equation*}
F(t)=\int_{0}^{t} f(\tau) d \tau \tag{2,2}
\end{equation*}
$$

called the unreliability of the system at time t. Thus, the system reliability is given by

$$
\begin{equation*}
R(t)=1-F(t)=\exp \left[-\int_{0}^{t} z(\tau) d \tau\right] \tag{2.3}
\end{equation*}
$$

From Equations (2.2) and (2.3) we obtain

$$
\begin{equation*}
z(t)=f(t) / R(t) \tag{2.4}
\end{equation*}
$$

Typical failure time density functions with their corresponding reliability and failure rate functions are:
(1) Exponential

$$
f(t)=\lambda e^{-\lambda t} \quad R(t)=e^{-\lambda t} \quad z(t)=\lambda
$$

(2) Weibull
$f(t)=\lambda \alpha t^{\alpha-1} e^{-\lambda t^{\alpha}} \quad R(t)=e^{-\lambda t^{\alpha}} \quad z(t)=\lambda \alpha t^{\alpha-1}$
(where $\alpha, \lambda>0$)
(3) Gamma
$f(t)=\frac{\lambda}{(r-1)!}(\lambda t)^{r-1} e^{-\lambda t} \quad R(t)=\sum_{j=0}^{r-1} \frac{(\lambda t)^{j} e^{-\lambda t}}{j!} \quad z(t)=\frac{\lambda^{r} t^{r-1}}{(r-1)!} \frac{e^{-\lambda t}}{R(t)}$ (r is a positive integer)

In the following it is assumed that individual units forming a system have exponential failure time density functions. The analysis, however, with other failure time density functions is an extention of the techniques presented in this thesis.

Methods for Computing Complex System Reliability

1. State Enumeration or Event-Space Method

In this method we first make a list of all possible mutually exclusive states of the system. A state is defined by listing the successful
and failed elements in the system. In general the total number of states will be given by 2^{n}, where n is the number of units or elements in the system. Next, we identify the states which result in successful system operation and determine the probability of occurrence of each successful state. Finally, we sum up all the successful state probabilities which gives the system reliability. Although the method is easily programmed [9] it is computationally not feasible for systems having large number of elements.
2. Network Reduction Method

In this method the series, parallel and series-parallel subsystems are combined until we end up with a non-series parallel system which cannot be further reduced. Reference [45] then suggests the use of a factoring theorem. A particular element x is selected, and the two networks are obtained and generated when x is replaced by a short circuit (perfect connection) and an open circuit. If these two networks are simple series-parallel, they can be reduced. Otherwise the next block, y, must be selected and the procedure repeated.

Suppose block x is selected and the two networks are generated. The system reliability is then [45]

$$
\begin{equation*}
R=\left.R_{x} * R\right|_{R_{x=1}}+\left.\left(1-R_{x}\right) * R\right|_{R_{x=0}} \tag{2.5}
\end{equation*}
$$

where R_{x} is the reliability of block x. The method is discussed in [$1,13,14,39,45$].
3. Path Enumeration and Cut Enumeration Methods

These methods can be used to determine the reliability of any system not containing dependent failures $[16,29,52]$. A path is a set of elements which form a connection between input and output when traversed
in a stated direction, A minimal path is one in which no node is traversed more than once in tracing the path.

Let $P_{i}(i=1,2, \ldots M)$ be the ith minimal path in the system. If any path is operable, the system performs adequately. Thus, the system reliability is

$$
R=P_{r}\left\{\begin{array}{cc}
M & \tag{2.6}\\
U & P_{i} \\
i=1 &
\end{array}\right\}
$$

where U denotes the union.
By use of the expansion rule for the probability of the union of M events [21], we have the formula

$$
\begin{align*}
R & =\sum_{i=1}^{M} P_{r}\left\{P_{i}\right\}-\sum_{i=1}^{M} \sum_{j>i}^{M} P_{r}\left\{P_{i} \cap P_{j}\right\} \\
& +\sum_{i=1}^{M} \sum_{j>i}^{M} \sum_{k>j}^{M} P_{r}\left\{P_{i} \cap P_{j} \cap P_{k}\right\}+\ldots+(-1)^{M-1} P_{r}\left\{\bigcap_{i=1}^{M} P_{i}\right\} \tag{2.7}
\end{align*}
$$

where \cap denotes the intersection.
A cut is defined as a set of elements that if they fail, the system will fail regardless of the condition of the other elements in the system. A minimal cut is one in which there is no proper subset of elements whose failure alone will cause the system to fail.

Let $C_{j}(j=1,2, \ldots M)$ be the minimal cuts in the system. If any cut is inoperable, the system fails. The system reliability is thus given by

$$
R=1-P_{r}\left\{\begin{array}{c}
M \tag{2.8}\\
j=1
\end{array} \bar{C}_{j}\right\}
$$

$$
\begin{align*}
=1-\sum_{j=1}^{M} \operatorname{Pr}\left\{\bar{c}_{j}\right\} & +\sum_{j=1}^{M} \sum_{k>j}^{M} \operatorname{Pr}\left\{\bar{c}_{j} n \bar{C}_{k}\right\}-\sum_{j=1}^{M} \sum_{k>j}^{M} \sum_{1>k}^{M} \operatorname{Pr}\left\{\bar{c}_{j} \cap \bar{c}_{k} n \bar{c}_{l}\right\} \\
& +\ldots+(-1)^{j} P_{r}\left\{\bigcap_{i=1}^{M} \bar{c}_{j}\right\} \tag{2.9}
\end{align*}
$$

where \bar{c}_{j} denotes the complement of the event c_{j}; i.e., \bar{c}_{j} denotes the failure of all elements of the cut C_{j}.

The algorithm developed in this chapter is based both on the network reduction and path enumeration methods. Advantages and disadvantages of this approach have been discussed and compared with typical aigorithms based on the state enumeration or event space methods.

Module Representation of Reliability Graphs
A reliability flow graph consists of nodes, branches, and modules with directed arrows between them. Consider the modules in the complexiy connected reliability flow graphs shown in Figures 2.1, 2.2, and 2.4. The reliability flow graph of Figure 2.1 represents a series-parallel-series system distinct from simple series, parallel or series-parallel system. The reliability flow graph of Figures 2.2 and 2.4 represent non-series-parallel systems. In the module representation of reliability graphs more than one module between any two arbitrary nodes is permitted. A module is defined to be a single unit or simply connected parallel units. A configuration permitted as a module is limited to either of the following:

1. Single Unit Module

A single unit module is one which consists of a single unit. The module reliability is the reliability of the unit itself.

Figure 2.1
Reliability Graph - Series-Parallel-Series System

Figure 2.2
Reliability Graph - Non-Series-Parallel System

2. Multi-Unit Module

A module which consists of multiple parallel units is either an active redundancy module or a standby redundancy module as shown in Figure 2.3. We distinguish between three standby redundancy modules. A unit is called a cold standby when the failure probability in standby is zero. When the failure probability is the same in standby as in the service, it is called a hot standby. Cases that lie in between these two extremes are called warm standby. Depending on the type of redundancy, we have different expressions for module reliability as shown in Appendix A.

The advantages of the module representation of a reliability graph will become clear in the next few sections.

Reliability Calculation

The system reliability is defined here as the probability of the successful functioning of all the modules in at least one minimal path. A minimal path is one which contains a minimum number of modules and no node is traversed more than once in tracing the path.

If $P_{i}(i=1,2, \ldots M)$ denotes the minimal paths in the system, the system reliability R is as shown in Equations (2.6) and (2.7).

The system reliability R is thus given in terms of module reliabilities by

$$
\begin{align*}
R & =\sum_{i=1}^{M}{\underset{l \varepsilon P_{i}}{I} R_{1}-\sum_{i=1}^{M} \sum_{j>i}^{M}{ }_{l \varepsilon P_{i} U P_{j}} R_{T}}^{+} \sum_{i=1}^{M} \sum_{j>i}^{M} \sum_{k>j}^{M} \sum_{1 \varepsilon P_{i} U P_{j} U P_{k}}^{M} R_{T}+\ldots+(-1)^{M-1}{\underset{1 \varepsilon U}{M} P_{i=1}^{M}}_{M}^{R_{T}} \tag{2.10}
\end{align*}
$$

Active Redundancy Module

Standby Redundancy Module

Figure 2.3
Multi-Unit Module
where the members of the ith path, the union of the ith and the j th paths, etc., are denoted by $1 \varepsilon P_{i}, 1 \varepsilon P_{i} U P_{j}$, etc.

The total number of terms Z involved in equation (2.10) is given by

$$
\begin{equation*}
Z=2^{M}-1 \tag{2.11}
\end{equation*}
$$

It should be noted in Equations (2.7) and (2.10) that if, for example, the path P_{1} has modules R_{1}, R_{2}, and R_{3}, and the path P_{2} has modules $R_{2}, R_{3} R_{4}$, and R_{5}, then $P_{r}\left\{P_{1} \cap P_{2}\right\}$ is given by $R_{1} R_{2} R_{3} R_{4} R_{5}$, not $R_{1} R_{2}^{2} R_{3}^{2} R_{4} R_{5}$.

Sensitivity Calculation

It is very interesting and important that the system reliability expression given by Equation (2.10) is a bilinear function of each module's reliability. By use of this property, the sensitivity of the system reliability to the module reliability R_{i} can be obtained by the simple rule

$$
\begin{equation*}
S_{R_{i}}=\partial R / \partial R_{i}=\left.R\right|_{R_{i}=1}-\left.R\right|_{R_{i}=0} \quad i=1,2, \ldots N \tag{2.12}
\end{equation*}
$$

where N is the total number of modules in the systern. We call $S_{R i}$ a module sensitivity.

Two types of sensitivities are of interest. The first is the sensitivity of the system reliability to a unit reliability. A module sensitivity is itself of this type if the module is a single-unit module. For a multiple-unit module, the sensitivity is given by

$$
\begin{equation*}
S_{r_{i j}}=\frac{\partial R}{\partial r_{i j}}=\frac{\partial R}{\partial R_{i}} * \frac{\partial R_{\mathbf{i}}}{\partial r_{i j}} \tag{2.13}
\end{equation*}
$$

where $r_{i j}$ is the reliability of the j th unit of the i th module. For an active redundancy module with different units, we have the following expression:

$$
\begin{equation*}
S_{r_{i j}}=S_{R_{i}}\left[\left.R_{i}\right|_{r_{i j}=1}-\left.R_{i}\right|_{r_{i j}=0}\right]=S_{R_{i}}^{\substack{\begin{subarray}{c}{j=1 \\
j \neq i} }}\end{subarray}} N_{i}\left(1-r_{i j}\right) \tag{2.14}
\end{equation*}
$$

where N_{i} is the number of units in the i th module.
The second type of sensitivity is the sensitivity of the system reliability to the number of units in a module. This type of sensitivity is defined for the active redundancy module or the standby redundancy module with identical units.

$$
\begin{equation*}
S_{N_{i}}=\frac{\partial R}{\partial N_{i}}=\frac{\partial R}{\partial R_{i}} * \frac{\partial R_{i}}{\partial N_{i}}=S_{R_{i}} * \frac{\partial R_{i}}{\partial N_{i}} \tag{2.15}
\end{equation*}
$$

The sensitivity for the active redundancy module with identical units is given by

$$
\begin{equation*}
S_{N_{i}}=S_{R_{i}}\left[-\left(1-r_{i}\right)^{N_{i}} \ln \left(1-r_{i}\right)\right] \tag{2.16}
\end{equation*}
$$

The sensitivity for the standby modules can be approximately calculated by

$$
\begin{equation*}
S_{N_{i}} \simeq S_{R_{i}}\left[R_{i}\left(N_{i}+1\right)-R_{i}\left(N_{i}\right)\right] \tag{2.17}
\end{equation*}
$$

A large sensitivity value means that we may increase the system reliability greatly by increasing the corresponding individual reliability or by increasing the number of units in the corresponding module. Sensitivity, therefore, is a measure of system reliability improvement and provides important information for maximizing the reliability of complex systems. Sensitivity expressions for multi-unit modules are presented in Appendix A.

Figure 2.4
Reliability Graph - Non-Series-Parallel System

Basic Algorithm

The total system reliability and sensitivities can be obtained by the following six-step procedure:

1. Find all minimal paths using the reliability graph;
2. Find all the required unions of the paths;
3. Give each path union a reliability expression in terms of module reliability;
4. Sum up all the reliability expressions obtained above according to Equation (2.10);
5. Evaluate the system reliability by substituting numerical values of each module reliability; and,
6. Evaluate the desired sensitivities from Equations (2.12) to (2.17).

A brief description of each step is given and illustrated by way of a non-series-parallel reliability graph in Figure 2.4.

Path Finding Algorithm

We require a path-finding routine which detects all of the minimal paths connecting input and output when given a system reliability graph. The path finding algorithm developed by Henley and Williams [27] is ideally suited for this purpose. Having been given the reliability graph of Figure 2.4, the routine detects three paths in the node form shown in Table (2.1). By the nature of the algorithm only minimal paths are detected. Due to the possibility that a branch may have more than one module and/or a module may be present in more than one branch, the path finding algorithm [27] was modified to trace the modules in each minimal path as shown in Table 2.1. This allows a unique representation of each

PATH	TRACE NODES	TRACE MODULES
P1	$1 \longrightarrow 2 \longrightarrow 4 \longrightarrow 5$	R1 $\longrightarrow \mathrm{R} 2 \longrightarrow \mathrm{R} 3$
P2	$1 \rightarrow 2 \longrightarrow 5$	R1 $\longrightarrow \mathrm{R} 4$
P3	$1 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5$	R5 $\longrightarrow \mathrm{R} 6 \longrightarrow \mathrm{R} 3$

Table 2.1

PATH DETECTION
path which in general is not possible when paths are traced in the node form. Details of the modified path finding algorithm are given in Appendix B.

Another path finding algorithm suitable for reliability calculation and its Fortran listing are available in the literature [4,46].

Algorithm to Find Path-Unions

Each detected path is converted into the binary form shown in Figure 2.5. The locations containing l's indicate the modules present in the path. N is the total number of modules in the system. Each path is given a positive sign. This is the sign of the first summation term in the reliability expression given by Equation (2.7) or (2.10).

The next step is to generate the binary representation of all the necessary unions of paths. This is easily done by using a bitwise logical OR operation in the order of ascending path number. That is, $\left(P_{1}\right)$ OR $\left(P_{2}\right)$, $\left(P_{1}\right)$ OR $\left(P_{3}\right), \ldots,\left(P_{1}\right)$ OR $\left(P_{M}\right),\left(P_{2}\right)$ OR $\left(P_{3}\right), \ldots,\left(P_{2}\right)$ OR $\left(P_{M}\right), \ldots$, $\left(P_{M-1}\right)$ OR $\left(P_{M}\right)$, which completes the 2-path unions. We then proceed to 3-path unions, $\left(\left(P_{1}\right)\right.$ OR $\left.\left(P_{2}\right)\right)$ OR $\left(P_{3}\right), \ldots,\left(\left(P_{1}\right)\right.$ OR $\left.\left(P_{2}\right)\right)$ OR $\left(P_{M}\right), \ldots$, $\left(\left(P_{M-2}\right)\right.$ OR $\left.\left(P_{M-1}\right)\right)$ OR $\left(P_{M}\right)$. Similar procedures continue until we reach M-path union, $\left(P_{1}\right)$ OR $\left(P_{2}\right) O R \ldots O R\left(P_{M-1}\right) O R\left(P_{M}\right)$. The sign changes with the generation of each higher order path union. Thus, it is negative for 2 -union paths, positive for 3 -union paths, \ldots, and (-1$)^{M-1}$ for M-union path. Details of the algorithm that generates all the necessary path unions are given in Appendix C.

The binary representation of the paths and path-unions for the reliability graph of Figure 2.4 are shown in Figure 2.6. Each path or path union corresponds to a term in Equation (2.10).

Figure 2.5
Binary Representation of a Path or a Path Union

Figure 2.6
Binary Representation of 3 Paths and Unions of Paths

System Reliability

We now pick up every module that has a 1 in the corresponding location and form the product expressions for each path and path union. The collection of all the terms with their proper signs gives the required system reliability function as given in Equation (2.10).

For example, the system reliability expression in Figure 2.6 is given as

$$
\begin{align*}
R & =\left(R_{1} R_{2} R_{3}+R_{1} R_{4}+R_{3} R_{5} R_{6}\right) \\
& -\left(R_{1} R_{2} R_{3} R_{4}+R_{1} R_{2} R_{3} R_{5} R_{6}+R_{1} R_{3} R_{4} R_{5} R_{6}\right) \tag{2.18}\\
& +R_{1} R_{2} R_{3} R_{4} R_{5} R_{6}
\end{align*}
$$

When given numerical values for the reliability of each module, we can obtain the system reliability. The module sensitivity $S_{R_{i}}$ can also be calculated from Equation (2.12) by evaluating the system reliability twice, once with $R_{i}=1$ and once with $R_{i}=0$. The other sensitivities can also be calculated through the module sensitivities by Equations (2.13) to (2.17).

A number of terms in the reliability expression given in Equation (2.10) and generated as indicated above are identical and have opposite signs. A significant number of such terms can be eliminated by modifying the algorithm that generates the path-unions. Details of this modification together with an example problem are discussed in Appendix C. This reduces the storage requirement and computation time considerably, especially during system optimization discussed in the next chapter.

Comparison with State Enumeration Algorithm
An alternate method of calculating system reliability is the method of state enumeration. The algorithm for the state enumeration can
be briefly stated as follows [9]:

1. Find all the possible combinations of the states of the units (up or down);
2. Find each combination which connects input and output; calculate the product of the unreliabilities of the down units and the reliabilities of the up units;
3. Sum up the products obtained in Step 2. This gives the system reliability expression.

The algorithm can be easily computerized by using Boolean algebra [9]. As an example, consider the reliability graph shown in Figure 2.7. The algorithm can be understood by referring to Table 2.2. From the table, the system reliability function is given by

$$
\begin{align*}
R & =\left(1-r_{1}\right)\left(1-r_{2}\right) r_{3}\left(1-r_{4}\right) r_{5}+\left(1-r_{1}\right)\left(1-r_{2}\right) r_{3} r_{4} r_{5} \\
& +\left(1-r_{1}\right) r_{2}\left(1-r_{3}\right) r_{4}\left(1-r_{5}\right)+\left(1-r_{1}\right) r_{2}\left(1-r_{3}\right) r_{4} r_{5} \\
& +\left(1-r_{1}\right) r_{2} r_{3}\left(1-r_{4}\right) r_{5}+\left(1-r_{1}\right) r_{2} r_{3} r_{4}\left(1-r_{5}\right) \\
& +\left(1-r_{1}\right) r_{2} r_{3} r_{4} r_{5}+r_{1}\left(1-r_{2}\right)\left(1-r_{3}\right) r_{4}\left(1-r_{5}\right) \tag{2.19}\\
& +r_{1}\left(1-r_{2}\right)\left(1-r_{3}\right) r_{4} r_{5}+r_{1}\left(1-r_{2}\right) r_{3}\left(1-r_{4}\right) r_{5} \\
& +r_{1}\left(1-r_{2}\right) r_{3} r_{4}\left(1-r_{5}\right)+r_{1}\left(1-r_{2}\right) r_{3} r_{4} r_{5} \\
& +r_{1} r_{2}\left(1-r_{3}\right) r_{4}\left(1-r_{5}\right)+r_{1} r_{2}\left(1-r_{3}\right) r_{4} r_{5} \\
& +r_{1} r_{2} r_{3}\left(1-r_{4}\right) r_{5}+r_{1} r_{2} r_{3} r_{4}\left(1-r_{5}\right)+r_{1} r_{2} r_{3} r_{4} r_{5}
\end{align*}
$$

Paths and path unions required in the path enumeration algorithm are listed in Table 2.3. From Table 2.3 the system reliability function is easily derived as

$$
\begin{equation*}
R=r_{1} r_{4}+r_{2} r_{4}+r_{3} r_{5}-\left(r_{1} r_{2} r_{4}+r_{1} r_{3} r_{4} r_{5}+r_{2} r_{3} r_{4} r_{5}\right)+r_{1} r_{2} r_{3} r_{4} r_{5} \tag{2.20}
\end{equation*}
$$

Figure 2.7
Reliability Graph

STATE NUMBER	BINARY NUMBER	
	$r_{1} r_{2} r_{3} r_{4} r_{5}$	GIVING A PATH?
0	00000	No
1	00001	No
2	00010	No
3	00011	No
4	00100	No
5	00101	Yes
6	00110	No
7	00111	Yes
8	01000	No
9	01001	No
10	01010	Yes
11	01011	Yes
12	01100	No
13	01101	Yes
14	01110	Yes
15	01111	Yes
16	10000	No
17	10001	No
18	10010	Yes
19	10011	Yes
20	10100	No
21	10101	Yes
22	10110	Yes
23	10111	Yes
24	11000	No
25	11001	No
26	11010	Yes
27	11011	Yes
28	11100	No
29	11101	Yes
30	11110	Yes
31	11111	Yes

Table 2.2 All combination of the states

PATHS AND PATH UNIONS	SIGN	MODULE				
		r_{1}	r_{2}	r_{3}	r_{4}	r_{5}
P1	+	1	0	0	1	0
P2	+	0	1	0	1	0
P3	+	0	0	1	0	1
P1 OR P2	-	1	1	0	1	0
P1 OR P3	-	1	0	1	1	1
P2 OR P3	-	0	1	1	1	1
(P1 OR P2) OR P3	+	1	1	1	1	1

Table 2.3

Paths and Path Unions

Although the two expressions given by Equations (2.19) and (2.20) are different in form, it can be easily verified that both are equivalent.

We can conclude from the above comparison and from more general consideration that the advantages of the path enumeration method are:

1. Steps to reach the system reliability function are much less if the number of paths is fairly small and is unaffected by the total number of modules in the system;
2. The number of terms in the system reliability function are fewer; and,
3. Any term in the system reliability function contains equal or fewer multipliers.

The module structure introduced earlier in the chapter brings about a further reduction in the number of paths. Thus, the units r_{1} and r_{2} are combined and treated as the active redundancy modules R_{1} as shown in Figure 2.8. The path enumeration algorithm then gives the path and path unions shown in Table 2.4. The system reliability is given by

$$
\begin{equation*}
R=R_{1} r_{4}+r_{3} r_{5}-R_{1} r_{3} r_{4} r_{5} \tag{2.21}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{1}=1-\left(1-r_{1}\right)\left(1-r_{2}\right)=r_{1}+r_{2}-r_{1} r_{2} \tag{2.22}
\end{equation*}
$$

In this way, the previously stated advantages of the path enumeration method are enhanced by introducing the module structure. Since it is customary to use parallel redundancy configurations to increase the reliability of a weak unit, the module concept significantly reduces the number of paths in the system thus reducing the computing time as shown by the following examples:

Figure 2.8
Module Representation of Figure 2.7

PATHS AND PATH UNION	MODULE				
		R_{1}	r_{3}	r_{4}	r_{5}
P2		1	0	1	0
P1 OR P2		0	1	0	1

Table 2.4

Paths and Path Union

Examples

At first, consider the fairly complicated reliability graph [46] shown in Figure 2.9. The reliability of each unit is given in Table 2.5. In this original graph, there are 16 units and 55 paths. The number of path and path unions required for calculating the system reliability, therefore, will be $2^{55}-1$ from Equation (2.11), which is far in excess of 10^{16}. The application of the path enumeration method to the original graph is impossible unless some approximations are introduced.

By using the module concept, the graph is automatically converted to Figure 2.1, where $R_{1}, R_{3}, R_{5}, R_{9}$, and R_{10} are actively connected multi-unit modules which consist of units $\left(r_{1}, r_{2}\right),\left(r_{4}, r_{5}\right),\left(r_{7}, r_{8}\right)$, $\left(r_{12}, r_{13}, r_{14}\right)$ and (r_{15}, r_{16}), respectively; $R_{2}, R_{4}, R_{6}, R_{7}$, and R_{8} are single unit modules consisting of units $r_{3}, r_{6}, r_{9}, r_{10}$, and r_{11}, respectively. The module representation of the reliability graph is shown in Table 2.6.

The converted graph has only six paths as shown in Table 2.7. The binary representation of the six paths is shown in Table 2.8. Since the number of paths is greatly reduced, the path enumeration algorithm discussed earlier can be applied easily and efficiently to produce the system reliability value of 0.97043 in a few seconds.

The sensitivities are listed in Table 2.9, where attention is focused on the first type of sensitivity, $\partial R / \partial_{r_{i j}}$ given by Equation (2.14). The table shows that the module R_{4}, that is, unit r_{6}, has the larger sensitivity value (0.085), and the first unit of module R_{10}, unit r_{15}, has the smallest. It is, therefore, more efficient to increase the unit reliability of r_{6} in order to increase the total reliability of the system.

Figure 2.9
Reliability Graph - 55 Paths Between Input and Output

UNIT	RELIABILITY
r_{1}	0.80
r_{2}	0.70
r_{3}	0.90
r_{4}	0.75
r_{5}	0.85
r_{6}	0.87
r_{7}	0.82
r_{8}	0.62
r_{9}	0.88
r_{10}	0.75
r_{11}	0.89
r_{12}	0.85
r_{13}	0.75
r_{14}	0.65
r_{16}	0.70

Table 2.5
Unit Reliabilities

MODULE	BRANCH			UNIT RELIABILITY	NUMBER OF UNITS
1	1	\longrightarrow	2	$\begin{aligned} & 0.800000 \\ & 0.700000 \end{aligned}$	2
2	1	\longrightarrow	3	0.900000	1
3	2	\longrightarrow	4	$\begin{aligned} & 0.750000 \\ & 0.850000 \end{aligned}$	2
4	3	\longrightarrow	4	0.870000	1
5	4	\longrightarrow	5	$\begin{aligned} & 0.820000 \\ & 0.620000 \end{aligned}$	2
6	4	\longrightarrow	6	0.880000	1
7	4	\longrightarrow	7	0.750000	1
8	5	\longrightarrow	6	0.890000	1
9	6	\longrightarrow	8	$\begin{aligned} & 0.850000 \\ & 0.750000 \\ & 0.650000 \end{aligned}$	3
10	7	\longrightarrow	8	$\begin{aligned} & 0.700000 \\ & 0.900000 \end{aligned}$	2

Table 2.6
Module Representation

PATH	TRACE NODES	TRACE MODULES
P1	$\stackrel{1 \rightarrow 2 \longrightarrow 4 \longrightarrow 6 \longrightarrow}{8 \longrightarrow}$	$1 \longrightarrow 3 \longrightarrow 6 \longrightarrow 9$
P2	$\underset{8 \rightarrow}{1 \rightarrow} 3 \longrightarrow 4 \longrightarrow 6 \longrightarrow$	$2 \longrightarrow 4 \longrightarrow 6 \longrightarrow 9$
P3	$\begin{aligned} & 1 \longrightarrow 2 \longrightarrow 4 \longrightarrow 5 \longrightarrow \\ & 6 \longrightarrow 8 \longrightarrow \end{aligned}$	$1 \longrightarrow 3 \rightarrow 5 \rightarrow 8 \longrightarrow 9$
P4	$\begin{aligned} & 1 \rightarrow 3 \rightarrow 4 \longrightarrow 5 \longrightarrow \\ & 6 \rightarrow 8 \rightarrow 4 \end{aligned}$	$2 \longrightarrow 4 \longrightarrow 5 \longrightarrow 8 \longrightarrow 9$
P5	$\begin{aligned} & 1 \longrightarrow 2 \longrightarrow 4 \longrightarrow 7 \longrightarrow \\ & 8 \longrightarrow \end{aligned}$	$1 \rightarrow 3 \rightarrow 7 \rightarrow 10$
P5	$\stackrel{1}{1 \longrightarrow 3 \longrightarrow 4 \longrightarrow 7 \longrightarrow}$	$2 \longrightarrow 4 \longrightarrow 7 \longrightarrow 10$

Table 2.7

Path Detection

PATH	MODULE									
	1	2	3			6	7		9	10
P1	1	0	1			1	0	0	1	0
P2	0	1	0			1	0	0	1	0
P3	1	0	1			0	0	1	1	0
P4	0	1	0			0	0	1	1	0
P5	1	0	1			0	1	0	0	1
P6	0	1	0			0			0	1

Table 2.8

Binary Representation of Paths

MODULE	MODULE RELIABILITY	MODULE SENSITIVITY $\partial R / \partial R_{i}$	$\begin{aligned} & \text { UNIT SENSITIVITY } \\ & \partial R_{i} / \partial r_{i j} \end{aligned}$	$\begin{aligned} & \text { SYSTEM SENSITIVITY } \\ & \partial R / \partial r_{i j} \end{aligned}$
1	0.940000	0.206964	$\begin{aligned} & 0.300000 \\ & 0.200000 \end{aligned}$	$\begin{aligned} & 0.620891 E-01 \\ & 0.413928 E-01 \end{aligned}$
2	0.900000	0.821141E-01	1.00000	0.821141E-01
3	0.962500	0.202126	$\begin{aligned} & 0.150000 \\ & 0.250000 \end{aligned}$	$\begin{aligned} & 0.303189 E-01 \\ & 0.505314 E-01 \end{aligned}$
4	0.870000	0.849457E-01	1.00000	0.849456E-01
5	0.931600	0.281274E-01	$\begin{aligned} & 0.380000 \\ & 0.180000 \end{aligned}$	$\begin{aligned} & 0.106884 E-01 \\ & 0.506293 E-02 \end{aligned}$
6	0.880000	0.450027E-01	1.00000	0.450027E-01
7	0.750000	0.316913E-01	1.00000	0.316913E-01
8	0.890000	0.294421E-01	1.00000	0.294421E-01
9	0.986875	0.261395	$\begin{aligned} & 0.875000 E-01 \\ & 0.525000 E-01 \\ & 0.375000 E-01 \end{aligned}$	$\begin{aligned} & 0.228721 E-01 \\ & 0.137233 E-01 \\ & 0.980232 E-02 \end{aligned}$
10	0.970000	0.245036E-01	$\begin{aligned} & 0.100000 \\ & 0.300000 \end{aligned}$	$\begin{aligned} & 0.245036 \mathrm{E}-02 \\ & 0.735107 \mathrm{E}-02 \end{aligned}$

Table 2.9
Sensitivities $\partial R / \partial r_{i j}$

Moreover, the sensitivity tells us that the increase in total reliability will amount to approximately 0.0085 when the increases in the unit reliability of r_{6} is 0.1 .

As the second example, we consider a safety system [53].
Figure 2.10 shows a boiler DDC safety system (pressure safety system). Reliabilities of each unit are listed in Table 2.10. The original graph has 26 paths. After being converted to a module configuration shown in Figure 2.11 and Table 2.11, the number of paths is reduced to only nine as shown in Tables 2.12 and 2.13.

The total reliability of the system is computed to be 0.99927 . The sensitivities are listed in Table 2.14. In this case, the sensitivities are evaluated with respect to the number of units in a module, that is, $\partial R / \partial N_{i}$ defined by Equation (2.16). The table shows that the module R_{4} has the largest sensitivity and the module R_{5} has the smallest sensitivity. Adding one more unit (Converter 1) to the module R_{5} is of no use, as the increase in the total reliability will only be 0.0000009 .

Advantages of Module Structure

It can be seen from the above examples and more general consideration that the introduction of module structure has the following advantages:

1. It considerably reduces the number of paths and, hence, provides a means for the efficient evaluation of the reliability of complex systems;
2. It greatly simplifies the evaluation of the sensitivity function, an important design parameter that will be used in system optimization;

Figure 2.10
Reliability Graph - Boiler DDC Safety System

	UNIT	RELIABILITY
P.D. 1: Pressure Detector 1	0.68	
P.D. 2: Pressure Detector 2	0.75	
P.D. 3: Pressure Detector 3	0.75	
C.1 : Converter 1	0.70	
C.2 : Converter 2	0.70	
C.3 : Converter 3	0.70	
C.4 : Converter 4	0.70	
C.5 : Converter 5	0.70	
COMP. : Computer	0.70	
BURN. : Burner	0.75	
RL.V. : Relief Valve	0.68	
E.L. 1: Emergency Line 1	0.75	
E.L. 2: Emergency Line 2	0.68	

Table 2.10

Figure 2.11
Module Representation of the Boiler DDC Safety System

MODULE		BRANCH		UNIT	RELIABILITY	NUMBER OF UNITS
1	1	\longrightarrow	2		0.680000	1
2	1	\longrightarrow	3		0.750000	1
3	1	\longrightarrow	4		0.750000	1
4	1	\longrightarrow	9		0.750000	4
5	2	\longrightarrow	5		0.700000	1
6	2	\longrightarrow	7		0.680000	4
7	2	\longrightarrow	8		0.680000	3
8	3	\longrightarrow	5		0.700000	1
9	4	\longrightarrow	5		0.700000	1
10	5	\longrightarrow	6		0.700000	1
11	6	\longrightarrow	7		0.700000	2
12	6	\longrightarrow	8		0.700000	1
13	7	\longrightarrow	9		0.750000	1
14	8	\longrightarrow	9		0.680000	2

Table 2.11

Module Representation

PATH	TRACE NODES	TRACE MODULES
P1	$1 \longrightarrow 9 \longrightarrow$	4
P2	$1 \longrightarrow 2 \longrightarrow 7 \longrightarrow 9 \longrightarrow$	$1 \longrightarrow 6 \longrightarrow 13$
P3	$\begin{aligned} & 1 \longrightarrow 2 \longrightarrow 5 \longrightarrow 6 \longrightarrow \\ & 7 \longrightarrow 9 \longrightarrow \end{aligned}$	$1 \longrightarrow 5 \longrightarrow 10 \longrightarrow 11 \longrightarrow 13$
P4	$\begin{aligned} & 1 \longrightarrow 3 \longrightarrow 5 \longrightarrow 6 \longrightarrow \\ & 7 \longrightarrow 9 \longrightarrow \end{aligned}$	$2 \longrightarrow 8 \longrightarrow 10 \longrightarrow 11 \longrightarrow 13$
P5	$\begin{aligned} & 1 \longrightarrow 4 \longrightarrow 5 \longrightarrow 6 \longrightarrow \\ & 7 \longrightarrow 9 \longrightarrow \end{aligned}$	$3 \longrightarrow 9 \longrightarrow 10 \longrightarrow 11 \longrightarrow 13$
P6	$1 \longrightarrow 2 \longrightarrow 8 \longrightarrow 9 \longrightarrow$	$1 \longrightarrow 7 \longrightarrow 14$
P7	$\begin{aligned} & 1 \longrightarrow 2 \longrightarrow 5 \longrightarrow 6 \longrightarrow \\ & 8 \longrightarrow 9 \longrightarrow \end{aligned}$	$1 \longrightarrow 5 \longrightarrow 10 \longrightarrow 12 \longrightarrow 14$
P8	$\begin{aligned} & 1 \longrightarrow 3 \longrightarrow 5 \longrightarrow 6 \longrightarrow \\ & 8 \longrightarrow 9 \longrightarrow \end{aligned}$	$2 \longrightarrow 8 \longrightarrow 10 \longrightarrow 12 \longrightarrow 14$
P9	$\begin{aligned} & 1 \longrightarrow 4 \longrightarrow 5 \longrightarrow 6 \longrightarrow \\ & 8 \longrightarrow 9 \longrightarrow \end{aligned}$	$3 \longrightarrow 9 \longrightarrow 10 \longrightarrow 12 \longrightarrow 14$

Table 2.12

Path Detection

PATH	MODULE													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
P1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
P2	1	0	0	0	0	1	0	0	0	0	0	0	1	0
P3	1	0	0	0	1	0	0	0	0	1	1	0	1	0
P4	0	1	0	0	0	0	0	1	0	1	1	0	1	0
P5	0	0	1	0	0	0	0	0	1	1	1	0	1	0
P6	1	0	0	0	0	0	1	0	0	0	0	0	0	1
P7	1	0	0	0	1	0	0	0	0	1	0	1	0	1
P8	0	1	0	0	0	0	0	1	0	1	0	1	0	1
P9	0	0	1	0	0	0	0	0	1	1	0	1	0	1

Table 2.13
Binary Representation of Paths

MODULE	MODULE RELIABILITY	$\begin{aligned} & \text { MODULE SENSITIVITY } \\ & \partial R / \partial R_{i} \end{aligned}$	$\begin{aligned} & \text { UNIT SENSITIVITY } \\ & \partial \mathrm{R}_{\boldsymbol{i}} / \partial N_{i} \end{aligned}$	SYSTEM SENSITIVITY $\partial R / \partial N_{i}$
1	0.680000	0.192148E-02	0.364619	0.700609E-03
2	0.750000	0.257737E-03	0.346574	0.893248E-04
3	0.750000	0.257737E-03	0.346574	0.893248E-04
4	0.996094	0.187413	0.541521E-02	0.101488E-02
5	0.700000	0.256121E-05	0.361192	0.925088E-06
6	0.989514	0.104235E-03	0.119478E-01	0.124538E-05
7	0.967232	0.330605E-03	0.373370E-01	0.123438E-04
8	0.700000	0.276147E-03	0.361192	0.997419E-04
9	0.700000	0.276147E-03	0.361192	0.997419E-04
10	0.700000	0.868859E-03	0.361192	0.313825E-03
11	0.910000	0.190398E-03	0.108357	0.206310E-04
12	0.700000	0.205885E-03	0.361192	0.743638E-04
13	0.750000	0.542155E-03	0.346574	0.187897E-03
14	0.897600	0.811069E-03	0.116678	0.946339E-04

Table 2.14
Sensitivities $\partial R / \partial N_{i}$
3. Although the module itself may be composed of multiple units subject to dependent failures, for example, a standby redundancy module, the module representation of the system has no dependent failures. In other words, failure of a module does not affect the operation of other modules in the system. This allows the path enumeration algorithm to be used for reliability calculation.

Extension to System MTBF Calculation

The most important parameter of the system reliability is the mean time between failures (MTBF). The system MTBF is defined as

$$
\begin{equation*}
\bar{M}=\int_{0}^{\infty} R(t) d t \tag{2.23}
\end{equation*}
$$

The sensitivity of the MTBF to the reliability $r_{i j}$ of the $j t h$ unit belonging to the ith module, and to the number of units in the ith module is given by

$$
\begin{equation*}
\frac{\partial \bar{M}}{\partial r_{i j}}=\int_{0}^{\infty} \frac{\partial R}{\partial R_{i}} \frac{\partial R_{i}}{\partial r_{i j}} d t \tag{2.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d \bar{M}}{\partial N_{i}}=\int_{0}^{\infty} \frac{\partial R}{\partial R_{i}} \frac{\partial R_{i}}{\partial N_{i}} d t \tag{2.25}
\end{equation*}
$$

Expressions for $\frac{\partial R_{\mathbf{i}}}{\partial r_{i j}}$ and $\frac{\partial R_{i}}{\partial N_{i}}$ are shown in Appendix A.
Therefore, by the addition of an integration routine to the reliability calculation program described earlier, the system MTBF and its sensitivities can be easily calculated. A computer program containing a numerical integration routine based on Simpson's rule has been developed.

The MTBF calculation routine developed here is more flexible and easier to apply to more complicated systems than the RELCOMP routine
of Fleming [22] which is only applicable to series-parallel configurations.

Approximations to System Reliability

Earlier, path and cut enumeration methods for system reliability calculation were discussed. The method adopted here was based on the path enumeration algorithm because an efficient path finding algorithm was readily available. The introduction of module structure allowed reliability evaluation of fairly complex networks.

If the number of paths is large (more than 10), the computation time increases rapidly. This is evident from Equation (2.11) which gives the total number of terms involved in the reliability expression as a function of total number of paths in the system. Same is true for reliability calculation based on the cut enumeration. To avoid this difficulty, some lower and upper bounds approximations to system reliability are presented below [4,28,34,37,46,52].

First we develop reliability approximations based on the path enumeration method. The series given by Equation (2.7) has the following properties [37,46,52]:

$$
\begin{gather*}
R \leq R_{U_{1}}=\sum_{i=1}^{M} P_{r}\left\{P_{i}\right\} \\
R \geq R_{L_{1}}=\sum_{i=1}^{M} P_{r}\left\{P_{i}\right\}-\sum_{i=1}^{M} \sum_{j>i}^{M} P_{r}\left\{P_{i} \cap P_{j}\right\} \tag{2.26}\\
R \leq R_{U_{2}}=\sum_{i=1}^{M} P_{r}\left\{P_{i}\right\}-\sum_{i=1}^{M} \sum_{j}^{M} P_{r}\left\{P_{i} \cap P_{j}\right\} \\
\\
+\sum_{i=1}^{M} \sum_{j>i}^{M} \sum_{k>j}^{M} P_{r}\left\{P_{i} \cap P_{j} \cap P_{k}\right\}
\end{gather*}
$$

and

$$
\begin{align*}
& R_{U_{1}} \geq R_{U_{2}} \geq \cdots \\
& R_{L_{1}} \leq R_{L_{2}} \leq \cdots \tag{2.27}
\end{align*}
$$

Therefore, $R_{U_{1}}, R_{U_{2}}$, ... can be used as successive upper bounds for R, and $R_{L_{1}}, R_{L_{2}}, \ldots$ can be used as lower bounds for R. This is the lower and upper bounds reliability approximation. These approximations are very close when element reliabilities are small. This is also called the low reliability region approximation.

In the analogous way, we can develop high reliability region approximation formulae from the cut enumeration method [$28,37,46,52$].

From Equation (2.9) we have

$$
\begin{gathered}
R \geq R_{L_{1}}=1-\sum_{j=1}^{M} P_{r}\left\{\bar{C}_{j}\right\} \\
R \leq R_{U_{1}}=1-\sum_{j=1}^{M} P_{r}\left\{\bar{C}_{j}\right\}+\sum_{j=1}^{M} \sum_{k>j}^{M} P_{r}\left\{\bar{C}_{j} \bar{C}_{k}\right\} \\
\vdots
\end{gathered}
$$

and

$$
\begin{align*}
& R_{U_{1}} \geq R_{U_{2}} \geq \cdots \\
& R_{L_{1}} \leq R_{L_{2}} \leq \cdots \tag{2.29}
\end{align*}
$$

From Equation (2.28) the number of terms in the lower and upper bound computations $R_{L_{1}}$ and $R_{U_{1}}$ are M and $M(M+1) / 2$, respectively. This is compared to $2^{M}-1$ terms obtained by expanding Equation (2.9).

In the system MTBF calculation both the approximations based on path enumeration and cut enumeration will play an important role because element reliabilities change from high reliability to low reliability region as time increases from 0 to ∞.

Conclusions

The proposed algorithm is more powerful and efficient for deriving and evaluating the total system reliability, the sensitivities, and the MTBF of complex systems than other algorithms based on state enumeration method, since systems are often complex enough to have many units, but not so complicated as to have many paths in the module representation.

The procedures presented above have been programmed in FORTAN IV and consist of eight basic subroutines. The nature of the MAIN program depends on the application and may call one or more of these subroutines. Appendix G contains a description of each subroutine, including a schematic diagram, and a listing of the corresponding FORTRAN program. In addition to these basic subroutines there are several others which are concerned with specific applications. These will be discussed in later chapters.

OPTIMAL DESIGN FOR RELIABILITY AND AVAILABILITY
OF COMPLEX SYSTEMS

Most of the earlier literature in the area of system reliability optimization consider only the series-parallel system [2,3,6,8,18-20,23, $24,30,31,33,36,38,40-44,48,51,54-56,61]$. Such a system is shown in Figure 3.1 where each module has several identical components in parallel to provide redundancy, and the system fails if all the components in a module fail. The reason that this particular system has received so much attention is the separability of the reliability function. For the configuration shown in Figure 3.1 the system reliability is

$$
\begin{align*}
R(\underline{n}, \underline{r}) & =\prod_{j=1}^{N} R_{j}\left(\dot{n}_{j}, r_{j}\right) \\
& =\prod_{j=1}^{N}\left(1-\left(1-r_{j}\right)^{n_{j}}\right) \tag{3.1}
\end{align*}
$$

where r_{j} is the reliability of a component in the j th module and n_{j} is the total number of identical components in the j th module. Taking logarithms of both sides of Equation (3.1)

$$
\begin{align*}
\ln R(\underline{n}, \underline{r}) & =\sum_{j=1}^{N} \ln R_{j}\left(n_{j}, r_{j}\right) \\
& =\sum_{j=1}^{N} \ln \left(1-\left(1-r_{j}\right)^{n_{j}}\right) \tag{3.2}
\end{align*}
$$

Since the natural logarithm is monotonic, maximization of the logarithm is equivalent to maximization of its argument. The form of Equation (3.2) for reliability maximization is more convenient to use since each term of the

Figure 3.1
Series-Parallel System
sum depends on a single variable. A separable function can be analyzed as a multistage process to which the methods of dynamic programming $[6,23,30,33$, $38,43,61]$ and discrete maximum principle [19,55] are applicable. The problem may also be transformed and solved as an integer programming problem [24,41,44,54,56] or by using the Lagrangian multipliers technique $[2,3,18,38,40]$. The concept of dominating sequence (or a family of undominated allocations) has also been used to solve the problem $[3,8,30$, $38,48]$.

Burton and Howard [11,12] consider the reliability optimization of a series-parallel-series system. They present a dynamic programming model. The notion of the generalized decomposition operator is used to develop a set of recursive relations. Terano et.al. [53] also consider a series-parallel-series system. They linearize the system at the nominal point and apply dynamic programming to find optimum redundancies. A non-series-parallel system is treated by Tillman et.al. [57]. They use the sequential unconstrained minimization technique to find optimum module reliabilities that maximize the system reliability.

In the previous chapter a general computer algorithm has been developed to calculate the reliability of a complex system having been given the reliability of each unit and the system configuration in the form of a reliability graph. The algorithm also calculates the sensitivity of the system reliability to individual system units.

In this chapter the sensitivity function is used for maximizing the reliability, availability or profit of a complex system (series-parallel-series or non-series-parallel) subject to linear or non-linear constraints. The optimum seeking algorithm which finds the optimum redundancies and preventive maintenance schedules is based on an integer gradient method of Reiter and

Rice ($R-R$) [50]. The proposed algorithm can be used to optimize a large class of reliability problems encountered in practice.

Three types of reliability optimization problems are formulated:

(1) Optimal Allocation of Redundancy

The problem is to find the optimal redundancy for each module (unit reliabilities are specified) so as to maximize the system reliability subject to linear or non-linear cost constraints and is stated as follows: Maximize the system reliability

$$
\begin{equation*}
R(\underline{n}, \underline{r}) \tag{3.3}
\end{equation*}
$$

where \underline{r} is specified.
Subject to linear or non-linear cost constraints

$$
\begin{equation*}
\sum_{i=1}^{N} g_{i j}\left(n_{j}, r_{i}\right) \leq G_{j} \quad j=1,2, \ldots m \tag{3.4}
\end{equation*}
$$

and non-negative and integer constraints

$$
\begin{array}{ll}
n_{i} \geq k_{i} \\
n_{i} & : \text { integer }
\end{array} \quad i=1,2, \ldots N
$$

where k_{i} is the minimum number of units in the i th module that must operate for the module to function successfully.

This constitutes a non-linear integer programming problem.
(2) Optimal Allocation of Unit-Reliability or Unit Maintenance Interval

The problem is to find the optimal unit reliabilities or the optimum maintenance interval for each unit (module redundancies are specified) so as to maximize the system reliability subject to linear or non-linear cost constraints.

Once the optimal unit reliabilities are known the optimal maintenance interval can be evaluated by the relationship

$$
\begin{equation*}
r_{i}=e^{-T} i /(\text { MTBF })_{i} \tag{3.6}
\end{equation*}
$$

where $T_{\boldsymbol{i}}$ is the maintenance interval of a unit belonging to the i th module, and (MTBF) $\boldsymbol{j}_{\mathfrak{j}}$ is the mean time between failure of a unit belonging to the ith module.

The optimization problem can be stated as follows
Maximize the system reliability

$$
\begin{equation*}
R(\underline{n}, \underline{r}) \tag{3.7}
\end{equation*}
$$

where \underline{n} is specified.
Subject to linear or non-linear cost constraints

$$
\begin{equation*}
\sum_{i=1}^{N} g_{i j}\left(n_{i}, r_{i}\right) \leq G_{j} \quad j=1,2, \ldots m \tag{3.8}
\end{equation*}
$$

and non-negative constraints.

$$
\begin{equation*}
I \geq r_{i} \geq 0 \quad i=1,2, \ldots N \tag{3.9}
\end{equation*}
$$

The problem can be extended to 1-out-of-n active redundancy module with dissimilar units.

The above problem constitutes a non-linear programming problem.

(3) Mixed Optimal Problem

A combination of problems (1) and (2) can be stated as follows:
Maximize the system reliability $R(\underline{n}, \underline{r})$ with respect to the number of redundant units (\underline{n}) and unit reliabilities (\underline{r}) subject to linear or non-1 inear cost constraints.

This is a non-linear mixed integer prograrming problem.

System Availability and System Profit
System availability can be improved by adding redundancy to the system and/or by performing preventive maintenance on the system according to some prescribed schedule $[5,49]$.

In the absence of scheduled preventive maintenace, the system availability A is

$$
A(\underline{n})=\frac{M T B F}{M T B F+M D T}=\frac{\int_{0}^{\infty} R(\underline{n}, t) d t}{\int_{0}^{\infty} R(\underline{n}, t) d t+M D T}
$$

where MTBF is the mean time to system failure, MDT is system mean downtime or mean repair time.

Now suppose preventive maintenance is performed on the system every "T" hours of continuing operation. If the system fails before "T" hours have elapsed, emergency maintenance is performed at that time. Preventive maintenance is then rescheduled. We assume that the system is as good as new after any type of maintenance, scheduled or emergency, and that the system either operates at full capacity or is down for maintenance. Let,
$f(\underline{n}, t)=$ system failure time probability density function
$T_{E} \quad=$ mean time to perform emergency maintenance on the system
$T_{S} \quad=$ mean time to perform scheduled maintenance on the system.
Thus, mean time between system maintenance is given by:

$$
\begin{align*}
\text { MTBM } & =T * R(\underline{n}, t)+\int_{0}^{T} t f(\underline{n}, t) d t \tag{3.11}\\
& =\int_{0}^{T} R(\underline{n}, t) d t
\end{align*}
$$

Also, assuming that T_{E} and T_{S} are independent of n and T, the mean down time for the system is:

$$
\begin{align*}
\text { MDT } & =T_{E}(1-R(\underline{n}, T))+T_{S} * R(\underline{n}, t) \tag{3.12}\\
& =T_{E}-\left(T_{E}-T_{S}\right) * R(\underline{n}, t)
\end{align*}
$$

System availability is then defined as

$$
\begin{equation*}
A(\underline{n}, T)=\frac{\int_{0}^{T} R(\underline{n}, t) d t}{\int_{0}^{T} R(\underline{n}, T) d t+T_{E}-\left(T_{E}-T_{S}\right) R(\underline{n}, t)} \tag{3.13}
\end{equation*}
$$

In many situations, system profit is closely related to system availability. To examine this relationship, we define the following terms:

$$
\begin{align*}
& T^{+}=\text {total life time of the system in hours } \\
& T_{u}=\text { total time during which the system is operating at full capacity } \\
& T_{u}=A(\underline{n}, T) * T^{+} \tag{3.14}\\
& T_{D}=\text { total time during which the system is down } \\
& T_{D}=(1-A(\underline{n}, T)) T^{+} \tag{3.15}\\
& T^{+}=T_{u}+T_{D} \tag{3.16}\\
& C_{F i}=f i x e d \text { capital cost of a unit in the ith module } \\
& C_{T F}=\text { total fixed capital investment } \\
& C_{T F}=\sum_{i=1}^{N} n_{i} C_{F i} \\
& C_{M}=\text { system maintenance cost per hour of system downtime. This can } \\
&
\end{align*}
$$

$$
\begin{align*}
C_{M} & =\left(\sum_{i=1}^{N} n_{i} C_{F i}\right) \frac{x}{100} \tag{3.1}\\
C_{T M} & =\text { total maintenance costs for a system 1ifetime of } T^{+} \text {hours } \\
C_{T M} & =C_{M} * T_{D} \tag{3.19}
\end{align*}
$$

$C_{I}=$ net income per hour; the difference between the selling price of the product and all expenses other than the maintenance costs and capital costs.
$C_{T I}=$ total net income during system lifetime of T^{+}hours.

$$
\begin{equation*}
c_{T I}=C_{I} * T_{u} \tag{3.20}
\end{equation*}
$$

We can now write a cash balance for the system lifetime period of T^{+}hours.

$$
\text { Profit }=\text { net income - capital cost - maintenance cost }
$$

or

$$
P=C_{T I}-C_{T F}-C_{T M}
$$

or

$$
P=C_{I} * T_{u}-\sum_{i=1}^{N} n_{i} C_{F i}-C_{M} * T_{D}
$$

or

$$
\begin{equation*}
P=C_{I} * A(\underline{n}, T) * T^{+}-\sum_{i=1}^{N} n_{i} C_{F i}-\left(\sum_{i=1}^{N} n_{i} C_{F i}\right) * \frac{x}{100}(1-A(\underline{n}, T)) T^{+} \tag{3.21}
\end{equation*}
$$

The equation (3.21) does not take into account the cost of capital, the time value of money, or any other of the widely used economic methods.

Two types of optimization problems based on system availability are now formulated:
(1) Availability Maximization

The problem can be stated as follows: Maximize the system availability

$$
\begin{equation*}
A(\underline{n}, T)=\frac{\cdots \int_{0}^{T} R(\underline{n}, t) d t}{\int_{0}^{T} R(\underline{n}, t) d t+T_{E}-\left(T_{E}-T_{S}\right) R(\underline{n}, T)} \tag{3.22}
\end{equation*}
$$

subject to the cost constraint

$$
C_{T F}+C_{T M} \leq C_{A O}
$$

or

$$
\begin{equation*}
\left(\sum_{i=1}^{N} n_{i} C_{F i}\right)\left(1+\frac{x}{100}\left(1-A(\underline{n}, T) T^{+}\right) \leq C_{A 0}\right. \tag{3.23}
\end{equation*}
$$

and non-negative and integer constraints

$$
\begin{align*}
& n_{\mathbf{i}} \geq k_{\mathbf{i}} \\
& n_{\mathbf{i}}: \text { integer } \tag{3.24}\\
& T \geq 0
\end{align*}
$$

Other constraints, if present, can also be included.
This is a non-linear mixed integer programming problem.
(2) Profit Maximization

This problem can be stated as follows:
Maximize the system profit over its lifetime of T^{+}hours

$$
\begin{equation*}
P=C_{I} * A(\underline{n}, T) * T^{+}-\left(\sum_{i=1}^{N} n_{i} C_{F i}\right)\left(1+(1-A(\underline{n}, T)) \frac{x}{100} * T^{+}\right) \tag{3.25}
\end{equation*}
$$

subject to the cost constraint

$$
C_{T F} \leq C_{P 0}
$$

or

$$
\begin{equation*}
\sum_{i=1}^{N} n_{i} C_{F i} \leq C_{P O} \tag{3.26}
\end{equation*}
$$

and non-negative and integer constraints

$$
\begin{array}{ll}
n_{i} \geq k_{i} & \mathbf{i}=1,2, \ldots N \\
n_{i} & : \text { integer } \tag{3.27}\\
T \geq 0 &
\end{array}
$$

This is also a non-1inear mixed integer programming problem.

Method of Solution

There are few existing methods that can solve non-linear integer and mixed integer programming problems. The two methods considred here are (1) a pseudo-Boolean programming method based on partial enumeration developed by Lawler and Bell [32]. The method is used to solve the non-linear integer programming problems formulated in Chapter IV. The details of the algorithm are discussed in Appendix F. (2) The other method proposed by Reiter and Rice (R-R) [50] is based on the modified integer gradients of the objective function. It can be extended to solve non-linear mixed integer programming problems. The method is effectively applicable to the problems formulated earlier since we can easily generate the gradients of the objective function or the sensitivities in our terminology.

The R-R algorithm is used to solve the system optimization problems formulated in this chapter. The solution procedure has three phases:

Phase 1: Setting up of an initial point X_{I} using uniformly distributed random numbers.

Phase 2: Searching for a feasible solution \underline{X}^{+}of the problem, starting with \underline{X}_{I}. A search by the method of weighted perpendicular is performed. If the feasible solution is not obtained in a given number of iterations, the search is terminated, and we go back to Phase 1 of the search algorithm.

Phase 3: Locating a point X_{p} which maximizes the objective function in the feasible region round \underline{X}^{+}. This involves calculating the modified gradients of the objective function which define the path on which we search for improved values of the objective function.
$\underline{X}_{I}, \underline{X}^{+}$, and \underline{X}_{p} denote vectors of variables, real and/or integer.
Details of the search algorithm are discussed in Appendix D. The module reliability and sensitivity expressions are given in Appendix A, and the sensitivity expressions for system availability and system profit are shown in Appendix E.

The R-R solution procedure provides locally maximal points. Repeated use of the algorithm, with judicious improvement in the lower and upper bounds on the system variables based on the previous results, gives better results, and, hopefully, the global optimum. The method is illustrated by the following examples:

Illustrative Examples

Solutions are now obtained for some of the optimization problems formulated earlier in this chapter. Two differeint module reliability graphs are considered. The module reliability graph of Figure 3.2 shows a series-parallel-series system and that of Figure 3.3 represents a non-seriesparallel system. Henceforth, these will be referred to as System 1 and System 2, respectively. For the sake of illustration it is assumed that
all modules have l-out-of $-n_{i}$ active redundancy in the following examples:
Example (1) Optimal allocation of redundancy to maximize the system reliability.

Tables 3.1 and 3.3 give the unit reliability, unit, cost, and maximum number of units (upper bound in n_{j}) for each module of System 1 and System 2, respectively. These upper bounds on n_{i} 's were obtained from an initial analysis of the problem. There is a linear cost constraint of the type

$$
\begin{equation*}
\sum_{i=1}^{N} c_{i} n_{i} \leq c \tag{3.28}
\end{equation*}
$$

where C is the total allowable cost. C_{i} is the cost per unit of the ith module. The allowable cost C is given in Table 3.1 and Table 3.3 for System 1 and System 2, respectively.

The problem then is to maximize the system reliability subject to the cost constraint of Equation (3.28).

Discussion of Results: Some of the locally optimal results obtained are tabulated in Tables 3.2 and 3.4 and correspond to System 1 and System 2, respectively. The problem was also solved for comparison purposes using the partial enumeration algorithm of Lawler and Bell which finds a unique optimal solution or the global optimum. It was observed that the R-R algorithm not only found locally maximal points but the best solution obtained, Result 10 in Tables 3.2 and 3.4, was also the global optimum.

Example (2) Optimal allocation of redundancy and maintenance interval to maximize the system availability or the system profit.

Consider the module reliability graph of System 1. Assume that units in each module have exponential failure pdf. Table 3.5 gives the capital cost, failure rate data, and upper bounds on n_{i} for identical units of each module.

Figure 3.2
Reliability Graph - System 1

Figure 3.3
Reliability Graph - System 2

MODULE i	$\underset{c_{i}}{\text { UNIT COST }}$	$\frac{\text { UNIT }}{\text { RELIABILITY }} \mathrm{r}_{\mathrm{i}}$	UPPER BOUND $n_{i(\max)}$
1	75.00	0.75	4
2	90.00	0.90	4
3	80.00	0.80	4
4	87.00	0.87	4
5	72.00	0.72	4
6	88.00	0.88	4
7	75.00	0.75	4
8	89.00	0.89	4
9	75.00	0.75	4
10	80.00	0.80	4

[^0]Table 3.1
Reliability Optimization Data - System 1

MODULE	Optimum Number of Units in Each Module									
	Result 1	Result 2	Result 3	Result 4	Result 5	Result 6	Result 7	Result 8	Result 9	Result 10
1	2	2	2	2	1	2	1	1	1	1
2	2	2	1	2	2	1	2	2	2	2
3	2	2	2	1	1	2	1	1	2	1
4	1	1	2	2	2	2	2	2	2	2
5	1	1	1	1	2	1	2	2	1	1
6	1	2	1	1	1	2	1	2	1	1
7	2	1	2	2	1	1	2	1	2	3
8	1	1	1	1	2	1	1	1	1	1
9	2	3	2	3	3	3	2	3	2	2
10	2	1	2	1	1	1	2	1	2	2
$\begin{gathered} \text { COST } \\ \text { UTILIZED } \end{gathered}$	1286.0	1294.0	1283.0	1288.0	1299.0	. 1291.0	1290.0	1298.0	1298.0	1293.0
MAXIMUM RELIABILITY	0.975982	0.977958	0.978306	0.978900	0.978938	0.980288	0.981123	0.982116	0.982301	0.983708

Table 3.2
Reliability Optimization - System 1

MODULE \mathbf{i}	UNIT COST C_{i}	UNIT RELIABILITY r_{i}	UPPER BOUND n_{i}
1	7000.	0.90	3
2	3000.	0.70	4
3	5000.	0.70	4
4	3000.	0.70	6
5	7000.	0.90	4

Allowable $\cos t=50,000.00$

Table 3.3
Reliability Optimization Data - System 2

MODULE	Optimum Number of Units in Each Module									
	Result 1	Result 2	Result 3	Result 4	Result 5	Result 6	Result 7	Result 8	Result 9	Result 10
1	2	1	1	1	1	1	1	1	2	2
2	2	3	3	3	1	2	2	3	1	3
3	1	2	3	1	3	2	3	2	2	1
4	3	1	4	5	6	4	5	3	5	5
5	2	3	1	2	1	2	1	2	1	1
$\begin{gathered} \text { COST } \\ \text { UTILIZED } \end{gathered}$	48,000	50,000	50,000	50,000	50,000	49,000	50,000	49,000	49,000	50,000
MAXIMUM RELIABILITY	0.998717	0.998792	0.998848	0.998856	0.998919	0.998966	0.999262	0.999340	0.999364	0.999364

Table 3.4
Reliability Optimization - System 2

Other data are:

$$
\begin{aligned}
C_{I} & =\$ 10.00 / \text { hour } \\
X & =0.02 \% \\
T^{+} & =80,000 \text { hours } \\
T_{E} & =400 \text { hours } \\
T_{S} & =100 \text { hours } \\
C_{A O} & =\$ 350,000 \\
C_{P 0} & =\$ 200,000
\end{aligned}
$$

Discussion of Results: The results of the ten randomly sampled points for the system availability maximization and the system profit maximization are tabulated in Tables 3.6 and 3.7, respectively. Also, the solutions obtained at each step in the optimization procedure are shown in Tables 3.8 and 3.9 for the Result 1 of each problem. The results show that in the case of system availability maximization the local optima are dependant on the starting point as far as n_{i} 's are concerned. This is due to the system availability being a monotonically increasing function with respect to the n_{i} 's, the gradient always points forward increasing n_{i} 's, and thus, the solution lies on or near the constraint boundary. The system profit maximization problem, on the other hand, gives fewer local optima and the solution does not necessarily lie on the constraint boundary. The method is thus seen to be more effective in the case of a problem with non-monotonically increasing objective function and/or the optimum solution being in the interior of the constraint boundary.

The computer time to find a single locally maximal point is about one minute on the IBM 360 and fifteen seconds on the UNIVAC 1108.

MODULE i	UPPER BOUND $n_{i(\text { max })}$	CAPITAL COST/UNIT $\left(C_{F i}\right) \$ / U N I T$	FAILURE RATE $\left(\lambda_{i}\right)$
1	6	5000.00	$3.0 * 10^{-4}$
2	6	15000.00	$1.0 * 10^{-4}$
3	6	10000.00	$2.2 * 10^{-4}$
4	6	15000.00	$1.2 * 10^{-4}$
5	6	5000.00	$3.2 * 10^{-4}$
6	6	15000.00	$1.1 * 10^{-4}$
7	6	5000.00	$3.0 * 10^{-4}$
8	6	15000.00	$1.0 * 10^{-4}$
9	12	5000.00	$3.0 * 10^{-4}$
10	6	10000.00	$2.2 * 10^{-4}$

Table 3.5

Availability or Profit Maximization Data - System 1

MODULE NUMBER	OPTIMUM			0 F		IN EACH MODULE				
	Result 1	Result 2	Result 3	Result 4	Result 5	Result 6	Result 7	Result 8	Result 9	Result 10
1	5	1	2	2	1	2	1	1	3	1
2	2	3	3	2	2	2	2	3	2	3
3	2	1	1	1	1	1	1	1	1	1
4	2	3	3	3	3	3	3	3	2	3
5	1	2	1	2	1	3	1	1	1	1
6	2	2	2	2	2	1	2	2	2	2
7	2	1	2	2	4	4	3	2	4	3
8	1	1	1	1	1	1	1	1	1	1
9	6	8	6	8	5	4	8	7	7	6
10	1	1	1	1	2	2	1	1	1	1
Fixed Capital Cost (\$)	205,000	215,000	210,000	210,000	205,000	200,000	205,000	210,000	200,000	210,000
Total Maintenance Cost (\$)	140,822	134,648	138,428	139,485	142,286	146,922	141,368	135,422	145,765	137,502
Optimum Maintenance Interval (Hours)	3,190	3,575	3,375	3,490	3,380	3,030	3,510	3,490	3,260	3,430
Optimized System Availability	0.957066	0.960858	0.958801	0.958487	0.956620	0.954087	0.956900	0.959696	0.954448	0.959077
System Profit (\$)	419,831	419,038	418,613	417,304	418,010	416,347	419,153	422,334	417,794	419,759

Table 3.6
AvaiTability Optimization - System 1

Table 3.7
Profit Optimization - System 1

MODULE NUMBER	1	2	3	4	5	6	7	8	9	10	MAINTENANCE INTERVAL (Hours)	$\begin{gathered} \text { COST } \\ \text { CONSTRAINT } \end{gathered}$ (\$)	SYSTEM AVAILABILITY (\$)
Initial Point (1)	5	2	6	6	1	3	2	3	10	4	2131	+338,723	--
$\begin{aligned} & \text { Feasible } \\ & \text { Point (2) } \end{aligned}$	5	1	1	2	1	1	1	1	2	1	2484	- 11,563	0.911412
(3)	5	1	1	2	1	1	1	1	3	1	2481	- 24,423	0.922165
(4)	5	1	1	2	1	2	1	1	3	1	2478	- 14,032	0.931263
(5)	5	2	1	2	1	2	1	1	3	1	2478	- 6,748	0.939910
(6)	5	2	1	2	1	2	1	1	4	1	2480	- 13,996	0.945832
(7)	5	2	2	2	1	2	1	1	4	1	2490	- 4,856	0.948966
(8)	5	2	2	2	1	2	1	1	5	1	2503	- 5,588	0.952112
(9)	5	2	2	2	1	2	1	1	6	1	2539	- 2,652	0.953954
(10)	5	2	2	2	1	2	1	1	6	1	2639	- 4,518	0.954537
(11)	5	2	2	2	1	2	2	1	6	1	2690	- 271	0.955875
(12)	5	2	2	2	1	2	2	1	6	1	2790	- 1,734	0.956321
(13)	5	2	2	2	1	2	2	1	6	1	2890	- 2,824	0.956654
(14)	5	2	2	2	1	2	2	1	6	1	2990	- 3,574	0.956882
(15)	5	2	2	2	1	2	2	1	6	1	3090	- 4,016	0.957017
Locally Optimum Point (16)	5	2	2	2	1	2	2	1	6	1	3190	- 4,178	0.957066

NUMBER MODULE	1	2	3	4	5	6	7	8	9	10	MAINTENANCE INTRRVAL (Hours)	COST CONSTRAINT $(\$)$	SYSTEM PROFIT

Table 3.9
Steps to Reach Locally Optimal Solution - Result 1 of Table 3.7

Conclusions

The efficient computer algorithm developed in Chapter II to calculate the reliability and the sensitivities of complex systems is used in conjunction with the R-R modified integer gradient method for system optimization. The proposed method is easily applicable to series-parallel-series or non-series-parallel systems and can handle multiple linear and/or non-linear constraints. Although this method does not insure a global optimum, it does find various near-optimum solutions. From a practical consideration, this could provide for a wider choice during the design phase.

The method presented above has been programmed in FORTRAN IV. In addition to the eight basic subroutines, there are seven others which are used during system optimization. Appendix G contains a description of each subroutine, including a listing of the corresponding FORTRAN program and a schematic diagram of the main program.

CHAPTER IV

OPTIMAL RELIABILITY DESIGN OF PROCESS SYSTEMS

In the design of electrical, electronic and safety systems, the flow of information is the most important factor, whereas in process systems, the flow of materials is also very important. In this chapter an optimal reliability design of process systems is proposed which takes into account the quantitative aspect of systems throughput or capacity. It is based on the k-out-of-n configuration instead of the conventional parallel l-out-of-n configuration. The problem is so formulated that determining the optimum k-out-of-n configuration also determines the optimum capacity of units in each stage of the system.

Basic Idea
Consider a pump system which must deliver at least L gallons per second. If we install one pump of capacity L and cost C_{L}, the reliability of the system is that of the single pump. If we appropriately install N pumps of capacity L in parallel, the reliability will increase but so will the cost which will go up by a factor of N as shown in Figure 4.1. If the allowed cost is more than C_{L} but less than $2 C_{L}$, the reliability cannot be increased by the conventional parallel redundancy configuration.

On the other hand, if we install three pumps each of capacity L/2, and assuming for the moment that the cost is proportional to capacity, this can be achieved at a cost of $1.5 \mathrm{C}_{\mathrm{L}}$ which is less than the allowed cost of ${ }^{2 C_{L}}$. The system can now operate if at least any two out of the three pumps function as shown in Figure 4.2. This gives rise to the well-known k-out-of-n configuration, and the system has a higher reliability compared to a single pump of capacity L. Here it is assumed that

Figure 4.1
Conventional Parallel Configuration

UNIT PUMP

Figure 4.2
2-Out-Of-3 Configuration
(1) the reliability of a unit is independent of its capacity; and,
(2) the pump system has perfect valving.

There are many system configurations of this type which cost less than $2 C_{L}$. As calculated from Equation (4.1) the reliabilities of some of these configurations are listed in Table 4.1. One can clearly see the possibility of increasing the system reliability by this means. It is important to note that changes in k affect both the reliability of the system and the capacity of units in the system.

Problem Formulation

Although the basic idea can be extended to complex systems, the attention is first restricted to the optimal design of a single stage. Consider a system which operates if at least k out of n units function. This system configuration is called a k-out-of-n configuration. The two types of configurations considered are: (1) an active k-out-of-n configuration, and (2) a standby k-out-of-n configuration.

1. Active k-out-of-n Configuration

All the n idential units in parallel are operating independent of each other. The probability that at least k-out-of-n units are operating is given by (see Appendix A):

$$
\begin{equation*}
R_{A}(n, k ; p)=\sum_{1=k}^{n}\binom{n}{1} p^{1}(1-p)^{n-1} \tag{4.1}
\end{equation*}
$$

where p is the reliability of a single unit.
2. Standby k-out-of-n Configuration

If k units are functioning while the other ($n-k$) units in standby have zero failure probability, the system is called a cold standby k-out-of-n configuration. Assuming that all units are identical and have exponential

		SYSTEM RELIABILITY (ACTIVE)				
Configuration		3-out-of-4	2-out-of-3	4-out-of-6	3-out-of-5	4-out-of-7
Cost		$1.33 \mathrm{C}_{\mathrm{L}}$	$1.5 \mathrm{C}_{\mathrm{L}}$	$1.5 \mathrm{C}_{\mathrm{L}}$	$1.67 \mathrm{C}_{\mathrm{L}}$	$1.75 \mathrm{C}_{\mathrm{L}}$
	0.95	0.9860	0.9928	0.9978	0.9988	0.9998
	0.85	0.8905	0.9392	0.9527	0.9734	0.9879
	0.75	0.7383	0.8438	0.8306	0.8965	0.9294

Cost is proportional to capcity; valving is perfect; reliability of a unit is independent of its capacity.

Table 4.1

System reliability comparison for several k-out-of-n configurations
failure probability density function, the reliability expression is (see Appendix A):

$$
\begin{equation*}
R_{C}(n, k ; p)=\sum_{j=0}^{n-k} p^{k} \frac{(-k \ln p)^{j}}{j!} \tag{4.2}
\end{equation*}
$$

where $\mathrm{p}=\mathrm{e}^{-\lambda t}$ is the probability of success in service of identical units with constant hazard rate λ for an operating time t.

If the units in standby have the same failure probability as those in service, it is called a hot standby system. The reliability expression for a hot standby k-out-of-n configuration is the same as Equation (4.1) of the active k-out-of-n configuration; that is,

$$
\begin{equation*}
R_{H}(n, k ; p)=R_{A}(n, k ; p) \tag{4.3}
\end{equation*}
$$

It is assumed that any one of the three configurations is allowed as a subsystem of the total system. The use of a particular configuration depends on the properties and the purpose of the subsystem.

System Cost

The assumption that the cost is proportional to the capacity is somewhat unrealistic. The cost-capacity relationship used here is given by

$$
\begin{equation*}
\text { cost }=K(\text { capacity })^{s} \tag{4.4}
\end{equation*}
$$

where K and s are positive constants and $0<s<1$.
If k units are necessary to support the minimum required capacity L, then one unit must support the capacity L / k. Therefore, the total cost of the systern which consists of such n units is:

$$
\begin{equation*}
\cos t=n \cdot k \cdot\left(\frac{L}{k}\right]^{s} \tag{4.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\cos t=n \cdot k_{c} \cdot k^{-5} \tag{4.6}
\end{equation*}
$$

where k_{c} is the cost of a unit with capacity L.
System Optimization
The two types of problems considered are (1) reliability maximization, and, (2) cost minimization.

1. Reliability Maximization

If the amount $1 \cdot k_{c}$ can be spent to improve the reliability of the system, the cost constraint is

$$
\begin{equation*}
n \cdot k_{c} \cdot k^{-s} \leq 1 \cdot k_{c} \tag{4.7}
\end{equation*}
$$

or

$$
\begin{equation*}
1-n \cdot k^{-s} \geq 0 \tag{4.8}
\end{equation*}
$$

where 1 is a positive real number greater than 1.
The optimization problem can then be stated as follows:
Select n and k to maximize the system reliability given in either Equation (4.1), (4.2) or (4.3) subject to the cost constraint given in Equation (4.8) and the inherent constraints

$$
\begin{gather*}
n-k \geq 0 \tag{4.9}\\
n \text { and } k: \quad \text { integers not less than } 1 \tag{4.10}
\end{gather*}
$$

This is a nonlinear integer programming problem with a nonlinear objective function and two constraints, a nonlinear and a linear.

2. Cost Minimization

When it is necessary to minimize the cost under the condition that the system reliability is not less than a preassigned value, say R^{*}, the optimization problem can then be stated as follows:

Select n and k to minimize the system cost given in Equation (4.6) subject to the constraint that the reliability given in either Equation (4.1), (4.2) or (4.3) is not less than a preassigned value R^{*} and also satisfies the inherent constraints given in Equations (4.9) and (4.10).

This is again a nonlinear integer programming problem with a nonlinear objective function and two constraints, a nonlinear and a linear.

In some cases in addition to the cost constraint in the reliability maximization problem or the reliability constraint in the cost minimization problem, nonlinear weight and/or volume constraints may be present. A weight constraint may be of the form

$$
\begin{equation*}
w=n \cdot k_{w} \cdot k^{-s} w \leq w^{*} \tag{4.11}
\end{equation*}
$$

and a volume constraint may be

$$
\begin{equation*}
v=n \cdot k_{v} \cdot k^{-s} v \leq v^{*} \tag{4.12}
\end{equation*}
$$

where k_{w} and k_{v} are constants corresponding to the standard weight and volume of a single unit of capacity $L . s_{W}$ and s_{v} are non-negative constants less than one. W^{*} and V^{*} are maximum allowable weight and volume, respectively.

A general problem of this type is, therefore, a nonlinear integer programming problem with a nonlinear objective function, several nonlinear constraints, and a linear constraint.

Extension to Series Parallel and Complex Systems

Consider a series-parallel system with N stages as shown in
Figure 4.3. The i th stage is assumed to be a k_{i}-out-of $-n_{i}$ configuration in either active, cold standby, or hot standby condition.

The total reliability of the sytem is expressed by

$$
\begin{equation*}
R_{T}(\underline{n}, \underline{k} ; \underline{p})={\underset{i=1}{N}}_{\left.R_{A}\left(n_{i}, k_{i} ; p_{i}\right), R_{C}\left(n_{i}, k_{i} ; p_{i}\right) \text { or } R_{H}\left(n_{i}, k_{i} ; p_{i}\right)\right]} \tag{4.13}
\end{equation*}
$$

where p_{i} is the unit reliability of the i th stage.
The total system cost is

$$
\begin{equation*}
\text { Total cost }=\sum_{i=1}^{N} n_{i} \cdot k_{c i} \cdot k_{i}^{-s_{i}} \tag{4.14}
\end{equation*}
$$

Similarly, the total weight and volume are

$$
\begin{equation*}
\text { Total weight }=\sum_{i=1}^{N} n_{i} \cdot k_{w i} \cdot k_{i}^{-s} w i \tag{4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { Total volume }=\sum_{i=1}^{N} n_{i} \cdot k_{v i} \cdot k_{i}^{-s}{ }_{v i} \tag{4.16}
\end{equation*}
$$

When the system to be considered is a complex system, as shown in Figure 4.4, and has several paths between input and output, the total reliability is (see Chapter II):

$$
\begin{align*}
& R_{T}(\underline{n}, \underline{k} ; \underline{p})=\sum_{i=1}^{M} \prod_{\ell \in P_{i}}^{\pi}\left(R_{A T}, R_{C T}, \text { or } R_{H T}\right) \\
& -\sum_{i=1}^{M} \sum_{j>i}^{M} \prod_{\varepsilon P_{i} U P_{i}}^{I}\left(R_{A l}, R_{C l}, \text { or } R_{H T}\right)+\ldots \tag{4.17}\\
& +(-1)^{M-1} \prod_{\substack{M}}^{M}\left(R_{A l}, R_{C l}, \text { or } R_{H 1}\right)
\end{align*}
$$

Figure 4.3
Series-Parallel System with N Stages

Figure 4.4
Example of a Complex System
where P_{i} is a path, M is the total number of paths, and U represents path unions.

In the case of Figure 4.4, we have

$$
\begin{gathered}
R_{T}(\underline{n}, \underline{k} ; \underline{p})=R_{A 1} \cdot R_{H 3}+R_{C 2} \cdot R_{H 3}+R_{A 4} R_{C 5} \\
-\left(R_{A 1} \cdot R_{C 2} \cdot R_{H 3}+R_{A 1} \cdot R_{H 3} \cdot R_{A 4} \cdot R_{C 5}+R_{C 2} \cdot R_{H 3} \cdot R_{A 4} \cdot R_{C 5}\right) \\
+R_{A 1} \cdot R_{C 2} \cdot R_{H 3} \cdot R_{A 4} \cdot R_{C 5}
\end{gathered}
$$

Since total cost, weight, and volume for the complex system can also be described by Equations (4.14), (4.15) and (4.16), respectively, it is easy to construct a reliability maximization or a cost minimization problem for a complex system. The computer algorithm which can calculate the reliability expression from a given reliability graph has been described in Chapter II.

Solution Method

Two methods have been considered for solving the non-linear integer programming problems. One is the integer gradient method proposed by Reiter and Rice [50] and used to solve the system optimization problems formulated in Chapter III. The other is the pseudo-Boolean programming method based on partial enumeration developed by Lawler and Bell (L-B) [32].

The L-B algorithm is used to solve the system optimization problem formulated in this chapter. It is applicable to any problem that can be put into the form

Minimize

$$
\begin{equation*}
g_{0}(\underline{x}) \tag{4.19}
\end{equation*}
$$

subject to

$$
\begin{equation*}
g_{i 1}(\underline{x})-g_{i 2}(\underline{x}) \geq 0 \quad i=1,2, \ldots m \tag{4.20}
\end{equation*}
$$

where

$$
\begin{equation*}
x=\left(x_{1}, x_{2}, \ldots x_{n}\right) \tag{4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{j}=0 \text { or } 1 \quad j=1,2, \ldots n \tag{4.22}
\end{equation*}
$$

and, where the restriction is applied, each of the functions $g_{0}, g_{i 1}, g_{\mathbf{i} 2}$ $(i=1,2, \ldots m)$ is monotone non-decreasing in each of the variables $x_{1}, x_{2}, \ldots x_{n}$.

Consider the single stage reliability maximization problem. It is noted from physical reasoning that the system reliability to be maximized, R_{A}, R_{H}, or R_{C}, is monotone increasing with respect to n and monotone decreasing with respect to k. Mathematical proof of this property is shown below for R_{A} or R_{H}. By use of the formula

$$
\begin{equation*}
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k} \quad k \leq n \tag{4.23}
\end{equation*}
$$

we have

$$
\begin{equation*}
R_{A}(n+1, k ; p)-R_{A}(n, k ; p)=\binom{n}{k-1} p^{k}(1-p)^{n+1-k} \geq 0 \tag{4.24}
\end{equation*}
$$

Also,

$$
\begin{equation*}
R_{A}(n, k+1 ; p)-R_{A}(n, k ; p)=-\binom{n}{k} p^{k}(1-p)^{n-k} \leq 0 \tag{4.25}
\end{equation*}
$$

The objective function to be minimized, $g_{0}=-R_{A},-R_{H}$, or $-R_{C}$, is thus monotone decreasing with respect to n and monotone nondecreasing with respect to k. By the simple transformation of variable, $n=n_{\max }-n^{\prime}$
or $n^{\prime}=n_{\max }-n$, where $n_{\max }$ is an upper bound on n, we can make $g_{0}\left(n^{\prime}, k\right)$ monotone nondecreasing in both n^{\prime} and k.

Non-negative integer variables can be transformed into binary variables by means of the substitution

$$
\begin{align*}
& n=1+x_{n 1}+2 x_{n 2}+2^{2} x_{n 3}+\ldots+2^{j-1} x_{n j} \tag{4.26}\\
& k=1+x_{k 1}+2 x_{k 2}+2^{2} x_{k 3}+\ldots+2^{j-1} x_{k j} \tag{4.27}
\end{align*}
$$

where $x_{n i}$ and $x_{k i}$ are binary variables and j is chosen to be sufficiently large for 2^{j} to be an upper bound on the value of n.

Applying the substitution

$$
\begin{equation*}
x_{n i}=1-x_{n i}^{\prime} \quad i=1,2, \ldots j \tag{4.28}
\end{equation*}
$$

where $x^{\prime}{ }_{n i}$ is a binary variable, we have

$$
n=1+\left(1-x_{n 1}^{\prime}\right)+2\left(1-x_{n 2}^{\prime}\right)+2^{2}\left(1-x_{n 3}^{\prime}\right)+\ldots+2^{j-1}\left(1-x_{n j}^{\prime}\right)
$$

or

$$
\begin{equation*}
n=2^{j}-x_{n 1}^{\prime}-2 x_{n 2}^{\prime}-2^{2} x_{n 3}^{\prime}-\ldots-2^{j-1} x_{n j}^{\prime} \tag{4.29}
\end{equation*}
$$

Using Equations (4.27) and (4.29), the objective function $g_{0}(n, k)$ can be expressed in terms of $x^{\prime}{ }_{n i}{ }^{\prime} s$ and $x_{k i}{ }^{\prime} s$, and it is obviously monotone decreasing in each of the variables $x^{\prime}{ }_{n i}$ and $x_{k i}(i=1,2, \ldots j)$.

The cost constraint of Equation (4.8) can then be rewritten as

$$
\begin{equation*}
1-\frac{2^{j}-x_{n 1}^{\prime}-2 x_{n 2}^{1}-2^{2} x_{n 3}^{\prime}-\ldots-2^{j-1} x_{n j}^{\prime}}{\left(1+x_{k 1}+2 x_{k 2}+2^{2} x_{k 3}+\ldots+2^{j-1} x_{k j}\right)^{s}} \geq 0 \tag{4.30}
\end{equation*}
$$

Comparing with Equation (4.20) we have

$$
\begin{equation*}
g_{11}(\underline{x})=1-\frac{2^{j}-x_{n 1}^{\prime}-2 x_{n 2}^{\prime}-2^{2} x_{n 3}^{\prime}-\cdots-2^{j-1} x_{n j}^{\prime}}{\left(1+x_{k 1}+2 x_{k 2}+2^{2} x_{k 3}+\ldots+2^{j-1} x_{k j}\right)^{s}} \tag{4.31}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{12}(\underline{x})=0 \tag{4.32}
\end{equation*}
$$

The volume and weight constraints can be converted into similar forms. The linear constraint of Equation (4.9) can be written as

$$
\begin{align*}
& \left(2^{j}-x_{n 1}^{\prime}-2 x_{n 2}^{\prime}-\ldots-2^{j-1} x_{n j}^{\prime}\right) \\
& -\left(1+x_{k 1}+2 x_{k 2}+\ldots+2^{j-1} x_{k j}\right) \geq 0 \tag{4.33}
\end{align*}
$$

Again comparing with Equation (4.20), we have

$$
\begin{equation*}
g_{21}(\underline{x})=0 \tag{4.34}
\end{equation*}
$$

and

$$
\begin{align*}
g_{22}(\underline{x}) & =\left(x_{n 1}^{\prime}+2 x_{n 2}^{\prime}+2^{2} x_{n 3}^{\prime}+\ldots+2^{j-1} x_{n j}^{\prime}-2^{j}\right) \\
& +\left(1+x_{k 1}+2 x_{k 2}+2^{2} x_{k 3}+\ldots+2^{j-1} x_{k j}\right) \tag{4.35}
\end{align*}
$$

Thus, the problem has been converted to a standard form to which the L-B algorithm is applicable. It is easily seen that the cost minimization problem can also be converted to the standard form. Similarly, complex multistage problems can be transformed and solved by the L-B algorithm.

The important features of the L-B algorithm are:
(1) the true optimum solution found;
(2) the extreme ease of programming;
(3) the almost complete absence of housekeeping operations (no lists, no pushdown storage routines);
(4) the very small amount of storage required; and,
(5) the wide applicability to fairly general nonlinear integer programming problems.

A major limitation of the L-B algorithm is the computational infeasibility when the number of binary variables is large, approximately more than 30. Details of the L-B algorithm are explained in Appendix F. Illustrative Examples

1. Single Stage Problem

The single stage reliability maximization problem is solved for optimum n and k using the values

$$
\begin{equation*}
1=1.8 \quad \text { and } \quad s=0.85 \tag{4.36}
\end{equation*}
$$

An upper bound on n is estimated by Equation (4.8), that is,

$$
\begin{equation*}
n \leq 7 k^{s} \underset{0<\bar{k} \leq n}{ } 7 k_{\max }^{s}=7 n_{1}^{s}=1.8 n^{0.85} \tag{4.37}
\end{equation*}
$$

This gives

$$
\begin{equation*}
n \leq 50 \tag{4:38}
\end{equation*}
$$

The results with p as a parameter are shown in Table 4.2.

Unit Reliability	ACTIVE OR HOT STANDBY			COLD STANDBY		
	OPTIMUM		Maximum Reliability	OPTIMUM		Maximum
	n	k		n	k	Reliability
0.95	7	5	0.9962	7	5	0.9977
0.85	3	2	0.9392	3	2	0.9573
0.75	3	2	0.8437	3	2	0.8861

$1=1.8$
$s=0.85$

Table 4.2
Optimum solutions for single-stage problem

2. Two Stage Problem

Consider a two-stage reliability maximization problem as shown in Figure 4.5. The first stage is a cold standby $k_{1}-$ out-of $-n_{1}$ configuration and the second stage is an active k_{2}-out-of- n_{2} configuration.

The problem is to find the optimum values of n_{1}, k_{1}, n_{2} and k_{2} that maximize the total system reliability expressed by

$$
\begin{align*}
& R_{T}\left(n_{1}, n_{2}, k_{1}, k_{2} ; p_{1}, p_{2}\right) \\
& =\left(\sum_{j=0}^{n_{1}-k_{1}} \frac{p_{1}^{k_{1}}}{j!}\left(-k_{1} l n p_{1}\right)^{j}\right)\left(\sum_{1=k_{2}}^{n_{2}}\left(n_{1}\right)^{n} p_{2}^{1}\left(1-p_{2}\right)^{n_{2}-1}\right) \tag{4.39}
\end{align*}
$$

subject to

$$
\begin{gathered}
n_{1} k_{c 1} k_{1}^{-s}+n_{2} k_{c 2} k_{2}^{-s} \leq c^{*} \\
n_{1}-k_{1} \geq 0 \\
n_{2}-k_{2} \geq 0 \\
n_{1}, n_{2}, k_{1}, k_{2}: \text { integers not less than one } \\
c^{*}: \text { the total allowable cost }
\end{gathered}
$$

In the case of multistage problems, there is no way to estimate appropriate upper bounds on the n 's, so we write an extra constraint

$$
\begin{equation*}
n_{1}, n_{2} \leq 16 \tag{4.44}
\end{equation*}
$$

The results with p_{1} and p_{2} as parameters are shown in Table 4.3. For the extreme case of $s_{1}=s_{2}=0$, the results correspond to the optimal

Figure 4.5
Two-Stage System

STAGE-1 (COLD STANDBY)					STAGE-2 (ACTIVE)					Cost	C*	R_{T}
P_{1}	${ }^{\text {C1 }}$	s_{1}	n_{1}	k_{1}	P_{2}	${ }^{\mathrm{k}} \mathrm{C} 2$	S_{2}	n_{2}	k_{2}			
0.90	200	0.80	3	2	0.80	100	0.80	2	1	545	570	0.9415
0.90	200	0	1	1	0.80	100	0	3	1	500		0.8928
0.80	200	0.80	2	1	0.90	100	0.80	4	3	566		0.9273
0.80	200	0	2	1	0.90	100	0	1	1	500		0.8807
0.90	200	0.75	2	1	0.80	100	0.75	10	5	699	700	0.9885
0.90	200	0	2	1	0.80	100	0	3	1	700		0.9869
0.80	200	0.75	4	2	0.90	100	0.75	5	3	695		0.9809
0.80	200	0	2.	1	0.90	100	0	3	1	700		0.9775

Table 4.3

Optimum solutions for two-stage problem
solutions for the conventional 1-out-of-n series-parallel configuration and are shown for comparison. The same results are obtained for a loosely guessed upper bounds on the n's.

$$
\begin{equation*}
n_{1}, n_{2} \leq 32 \tag{4.45}
\end{equation*}
$$

Therefore, the results shown in Table 4.3 are believed to be the optimal solutions without the extra constraint (4.44) or (4.45).

Conclusions

A new formulation of the optimal reliability design of process systems has been proposed, and is based on the k-out-of-n configuration. It is more suitable for reliability optimization of process systems than that based on the conventional 1-out-of-n parallel redundancy configuration.

An efficient computer program based on the Lawler and Bell [32] pseudo-Boolean algorithm has been developed to solve the above optimization problem. The program was written in FORTRAN IV. Appendix G contains a description of the program including a schematic diagram and a listing of the FORTRAN program.

CHAPTER V

 CONCLUSIONS AND RECOMMENDATIONSThis dissertation consists of two main parts. First, an efficient general computer algorithm based on the path enumeration method has been developed to calculate reliability and sensitivity functions of complex systems. An important feature of the method is the module representation of the reliability graph. A modified integer gradient method is used for system optimization, which in general is a non-linear mixed integer programming problem subject to multiple linear or non-linear constraints. Although the method does not ensure a global optimum, it does find various near-optimum solutions. From a practical consideration, this could provide for a wider choice during the design phase. A number of examples are included to illustrate the method.

Second, a new formulation of the optimal reliability design of process systems is proposed. It takes into account the quantitative aspects of systems throughout and is based on the k-out-of-n configuration instead of the conventional parallel redundancy configuration. The problem is so formulated that determining the optimum configuration also determines the optimum capacity of units to be used at each stage of the system. A computer program based on the pseudo-Boolean algorithm of Lawler and Bell [32] is used to solve this non-linear integer programming problem. Several examples are included to illustrate the method.

With regard to further research in this area, the following two related problems are suggested:

1. Development of an algorithm to calculate exact reliability of systems which cannot be handled by path finding algorithm. This will be the case for systems with approximately more than 10 paths. The proposed method will first use the network reduction technique to reduce the reliability network to a non-series-parallel system and then apply the path enumeration technique to calculate the system reliability.
2. In the type of reliability network considered here it is assumed that modules are composed of different type of units. In practice, however, a particular type of unit may appear at many different locations in the system and it is usually desired to find the optimum unit reliability of each type to maximize the system objective function. Such a system is shown in Figure 5.1. The development of reliability and sensitivity expressions for this system and finally its optimization will be an extension of the techniques presented in this dissertation.

Figure 5.1

1. Banerjee, S. K. and K. Rajamiani, "Parametric Representation of Probability in Two Dimension - A New Approach in System Reliability Evaluation," IEEE Trans. Rel., R-21, 56-60, 1972.
2. Banerjee, S. K. and K. Rajamani, "Optimization of System Reliability Using a Parametric Approach," IEEE Trans. Rel., R-22, 35-39, 1973.
3. Barlow, R. E., F. Proschan and L. C. Hunter, Mathematical Theory of Reliability, John Wiley \& Sons, Inc., 1965.
4. Batts, J. R., "Computer Program for Approximating System Reliability, Part II," IEEE Trans. Rel., R-20, 88-90, 1971.
5. Bazovsky, I., Reliability Theory and Practice, Prentice Hall, Inc., New Jersey, 1967.
6. Bellman, R. and S. Dreyfus, "Dynamic Programming and the Reliability of Multicomponent Devices," Operations Research, 6,200-206, 1958.
7. Benning, C. J., "Reliability Prediction Formulas for Standby Redundant Structures," IEEE Trans. Rel., (Lett.), R-16, 136-137, 1967.
8. Black, G. and F. Proschan, "On Optimal Redundancy," Operations Research, 7, 581-588, 1959.
9. Brown, D. B., "A Computerized Algorithm for Determining the Reliability of Redundant Configurations," IEEE Trans. Rel., R-20, 102-107, 1971.
10. Buffham, B. A., D. C. Freshwater and F. P. Lees, "Reliability Engineering," I. Chem. E. Symposium, London, No. 34, pp. 87, 1971.
11. Burton, R. M. and G. T. Howard, "Optimal System Reliability for a Mixed Series and Parallel Structure," J. of Math. Anal. Appl., 28, 370-382, 1969.
12. Burton, R. M. and G. T. Howard, "Optimal Design for System Reliability and Maintainability," IEEE Trans. Rel., R-20, 56-60, 1971.
13. Buzacott, J. A., "Network Approaches to Finding the Reliability of Repairable Systems," IEEE Trans. Rel., R-19, 140-146, 1970.
14. Buzacott, J. A., "Finding the MTBF of Repairable Systems by Reduction of the Reliability Block Diagram," Micro-electronics \& Reliability, 6, 105-112, 1967.
15. Chan, W. C., "A Generalized Reliability Function for Systems of Parallel Components," IEEE Trans. Rel., R-17, 199-201, 1968.
16. Chung, W., "Generalized Reliability Function for Systems of Arbitrary Configurations," IEEE Trans. Re1., R-20, 85-87, 1971.
17. Coulter, K. E. and V. S. Morello, "Improving on Stream Time in Process Plants," Chemical Engineering Process, 68, 56-59, 1972.
18. Everett, H., III, "Generalized Language Multiplier Method for Solving Problems of Optimum Allocation of Resources," Operations Research, 11, 399-417, 1963.
19. Fan, L. T., C. S. Wang, F. A. Tillman and C. L. Hwang, "Optimization of Systems Reliability, IEEE Trans. Rel., R-16, 81-86, 1967.
20. Federowicz, A. J. and M. Mazumdar, "Use of Geometric Programming to Maximize Reliability Achieved by Redundancy," Operations Research, 16, 949-954, 1968.
21. Feller, W., An Introduction to Probability Theory and Its Applications, Volume I, John Wiley \& Sons, New York, 1957.
22. Fleming, J. L., "Relcomp: A Computer Program for Calculating System Reliability and MTBF," IEEE Trans. Re1., R-20, 102-107, 1971.
23. Fyffe, D. E., W. W. Hines and N. K. Lee, "System Reliability Allocation and A Computational Algorithm," IEEE Trans. Rel., R-17, 64-69, 1968.
24. Ghare, P. M. and R. E. Taylor, "Optimal Redundancy for Reliability in Series Systems," Operations Research, 17, 838-847, 1969.
25. Gnedenko, B. V., Yu. K. Belyayev, and A. D. Solovyev, Mathematical Methods of Reliability Theory, Academic Press, New York, 1969.
26. Green, E. A. and A. J. Bourne, Reliability Technology, John Wiley \& Sons, New York, 1972.
27. Henley, E. J. and R. A. Willians, Graph Theory in Modern Engineering, Academic Press, New York, 1973.
28. Jensen, P. A. and M. Bellmore, "An Algorithm to Determine the Reliability of a Complex System," IEEE Trans. Re]., R-18, 1969-174, 1969.
29. Kim, Y. H., K. E. Case, and P. M. Ghare, "A Method for Computing Complex System Reliability," IEEE Trans. Rel., R-21, 215-219, 1972.
30. Kettelle, J. D., Jr., "Least-cost Allocation of Reliability Investment," Operations Research, 10, 249-265, 1962.
31. Lambert, K. B., A. G. Walvekar, and J. P. Hirmas, "Optimal Redundancy and Availability Allocation in Multistage Systems," IEEE Trans. Rel., R-20, 182-185, 1971.
32. Lawler, E. L. and M. D. Bell, "A Method for Solving Discrete Optimization Problems," Operations Research, 14, 1098-1112, 1966.
33. Liittschwager, J. M., "Dynamic Programming in the Solution of a Multistage Reliability Problem," J. Ind. Eng., 15, 168-175, 1964.
34. Locks, M. O., "The Maximurn Error in System Reliability Calculation by Using a Subset of the Minimal States," IEEE Trans. Rel., R-20, 231-234, 1971.
35. McFatter, W. E., "Reliability Experiences in a Large Refinery," Chemical Engineering Process, 68, 52-55, 1972.
36. McNichols, R. J. and Messer G. H., Jr., "A Cost-based Availability Allocation: A Tutorial Review," IEEE Trans. Rel., R-20, 1978-182, 1971.
37. Messinger, M. and M. L. Shooman, "Reliability Approximations for Complex Structures," Proc. IEEE Ann. Symposium on Reliability, 292-304, 1967.
38. Messinger, M. and M. L. Shooman, "Techniques for Optimum Spares Allocation: A Tutorial Review," IEEE Trans. Rel., R-19, 156-166, 1970.
39. Misra, K. B., "An Algorithm for the Reliability Evaluation of Redundant Networks," IEEE Trans. Rel., R-19, 146-151, 1970.
40. Misra, K. B., "Reliability Optimization of a Series Parallel System," IEEE Trans. on Rel., R-21, 230-238, 1972.
41. Misra, K. B., "A Method of Solving Redundancy Optimization Problems," IEEE Trans. on Rel.,' R-20, 117-120, 1971.
42. Misra, K. B., "A Simple Approach for Constrained Redundnacy Optimization Problem," IEEE Trans. Rel., R-21, 30-34, 1972.
43. Misra, K. B., "Dynamic Programming Formulation of the Redundancy Allocation Problem," Int. J. Math. Educ. Sci. Technology, 2, 207-215, 1971.
44. Mizukami, K., "Optimum Redundancy for Maximum System Reliability by the Method of Convex and Integer Programming," Operations Research, 16, 392-406, 1968.
45. Moscowitz, F., "The Analysis of Redundancy Networks," AIEE Trans. (Commun. Electron.), 77, 627-632, 1958.
46. Nelson, A. C., Jr., J. R. Batts, and R. L. Beadles, 'A Computer Program for Approximating System Reliability," IEEE Trans. Rel., R-19, 61-65, 1970.
47. Polovko, A. M., Fundamentals of Reliability Theory, Academic Press, New York, 1968.
48. Proschan, F. and T. A. Bray, "Optimal Redundancy Under Multiple Constraints," Operations Research, 13, 800-814, 1965.
49. Rau, J. G., Optimization and Probability in Systems Engineering, Van Nostrand Reinhold Company, New York, 1970.
50. Reiter, S. and D. B. Rice, "Discrete Optimizing Solution Procedures for Linear and Non-linear Programming Problems," Management Science, 12, 829-850, 1966.
51. Sharma, J. and K. V. Venkateswaran, "A Direct Method for Maximizing the System Reliability," IEEE Trans. Rel., R-20, 256-259, 1971.
52. Shooman, M. L., Probabilistic Reliability: An Engineering Approach, McGraw Hill, New York, 1968.
53. Terano, T., Y. Murayama, and K. Kurosu, "Optimum Design of Safety Systems," IFAC Kycto Symposium, August, 1970, Preprint pp. 52-57.
54. Tillman, F. A. and J. M. Liittschwager, "Integer Programming Formulation of Constrained Reliability Problems," Management Science, 13, 887-899, 1967.
55. Tillman, F. A., C. L. Hwang, L. T. Fan and S. A. Balbale, "Systems Reliability Subject to Multiple Non-linear Constraints," IEEE Trans. Rel., R-17, 153-157, 1963.
56. Tillman, F. A., "Optimization by Interger Programming of Constrained Reliability Problems with Several Modes of Failure," IEEE Trans. Rel., R-18, 47-53, 1969.
57. Tillman, F. A., C. L. Hwang, L. T. Fan and K. C. Lai, "Optimal Reliability of a Complex System," IEEE Trans. Rel., R-19, 95-100, 1970.
58. Ufford, P. S., "Equipment Reliability Analysis for Large Plants," Chemical Engineering Process, 68, 47-49, 1972.
59. Von Alven, W. H., Editor, Reliability Engineering, ARINC Res. Corp., Prentice Hall, 1964.
(60). Williams, R. A., Systematic Flow Graph Analysis and Applications, Ph.D. Thesis, University of Houston, 1971.
60. Woodhouse, C. F., "Optimal Redundancy Allocation by Dynamic Programming," IEEE Trans. Rel., R-21, 60-62, 1962.

A

- system availability
- complement of the event C_{j}
- constant, corresponds to the cost of a single unit of capacity L, see Equation (4-6)
k_{i}
- minimum number of units in the ith module that might function for the module to operate successfully

k_{v}	- constant, corresponds to the volume of a single unit of capacity L, see Equation (4-12)
$k_{\text {w }}$	- constant, corresponds to the weight of a single unit of capacity L, see Equation (4-11)
L	- system capacity
M	- system mean time between failure
MDT	- system mean downtime
MTBF	- system mean time between failure
${ }^{(M T B F)}{ }_{i}$	- meanitime between failure of a unit of the ith module
MTBM	- system mean time between maintenance
N	- total number of modules in the system
n_{i}	- number of units in the ith module
N_{i}	- number of units in the ith module
P	- system profit
P_{i}	- ith minimal path
p_{i}	- reliability of a unit belonging to the ith stage, see Equation (4-13)
R	- system reliability
$\mathrm{R}_{\text {A }}$	- reliability of active redundancy module
R_{c}	- reliability of cold standby redundancy module
R_{H}	- reliability of hot standby redundancy module
R_{i}	- ith module reliability
r_{i}	- reliability of a unit of the ith module
$r_{i j}$	\rightarrow reliability of jth unit of the ith module
R_{L}	- lower bound approximation for R
R_{U}	- upper bound approximation for R
s, s_{v}, s_{w}	- non-negative constants less than one
$S_{R_{i}}$	- sensitivity of system reliability to the ith module reliability

$S_{r_{i j}}$	- sensitivity of system reliability to the reliability of the j th unit of the ith module
T	- system maintenance interval
t	- variable of integration
T^{+}	- system lifetime
T_{D}	- total time during which the system is down
TE	- mean time for emergency maintenance on the system
T_{i}	- maintenance interval of a unit of the ith module
Ts	- mean time for scheduled maintenance on the system
T_{u}	- total time during which the system is operating
v*	- upper limit on system volume
W^{*}	- upper limit on system weight
x	- percent of fixed capital investment
x	- vector with elements $\mathrm{x}_{\mathrm{j}}=0$ or 1
$\underline{X}_{I}, X_{p}, X^{+}$	- denote vectors of variables, real and/or integer
${ }^{\text {j }}$	- jth binary variable
$x_{k j}, x_{n j}$	- jth binary variables belonging to the non-negative integer variables k and n, respectively, see Equations (4-26) and (4-27)
$x_{n j}^{\prime}$	- given by ($1-x_{n j}$), see Equation (4-28)
Z	- total number of terms involved in Equation (2-10)
λ	- exponential failure pdf parameter, also called the conditional failure rate
λ_{i}	- of the ith module
λ_{i}	- of the ith module in standby
λ_{i}^{0}	- of the ith module in service
z	- hazard rate

APPENDIX A

MODULE RELIABILITY AND SENSITIVITY EXPRESSIONS

APPENDIX A

MODULE RELIABILITY AND SENSITIVITY EXPRESSIONS

Module Reliability

Active Redundancy Module - All n units are actively connected in parallel. If we let r_{i} be the probability that each component in module \mathbf{i} functions for time t, then the probability that at least k_{j} out of n_{i} identical components function for time t is given by the binomial distribution [15]

$$
\begin{equation*}
R_{A i}\left(n_{i} ; k_{i} ; r_{i}\right)=\sum_{1=k_{i}}^{n_{i}}\binom{n_{i}}{1} r_{i}^{1}\left(1-r_{i}\right)^{n_{i}-1} \tag{A-1}
\end{equation*}
$$

The case $k_{i}=1$ leads to the familiar expression for the reliability of a parallel connection of n_{i} units

$$
\begin{equation*}
R_{A i}\left(n_{i}, 1 ; r_{i}\right)=1-\left(1-r_{i}\right)^{n_{i}} \tag{A-2}
\end{equation*}
$$

When any one component is sufficient for module operation but the various components are different, the reliability expression is [52]:

$$
\begin{equation*}
R_{A i}\left(n_{i}, 1 ; r_{i j}\right)=1-{ }_{j=1}^{\Pi_{1}}\left(1-r_{i j}\right) \tag{A-3}
\end{equation*}
$$

where $r_{i j}$ is reliability of the j th unit of module i.
When exponential failure probability density function (pdf) is assumed with parameter λ_{i} for identical components or $\lambda_{i j}$ for different components, we have

$$
\begin{align*}
& r_{i}=e^{-\lambda_{i} t} \tag{A-4}\\
& r_{i j}=e^{-\lambda_{i j} t}
\end{align*}
$$

Standby Redundancy Module - We distinguish between three standby redundancy modules.

1. Hot Standby Redundnacy Module

The units in hot standby have the same failure pdf as those in service. The module reliability expressions are identical to those in active redundancy module, Equations ($A-1$) to ($A-4$), that is,

$$
\begin{equation*}
R_{H i}\left(n_{i}, k_{i} ; r_{i}\right)=R_{A i}\left(n_{i}, k_{i} ; r_{i}\right) \tag{A-5}
\end{equation*}
$$

2. Cold Standby Redundancy Module

A component or unit whose failure probability in standby is zero is called a cold standby. If the exponential failure pdf is assumed, the probability that at: least k_{i} out of n_{i} identical components will function for time t is [7]:

$$
\begin{equation*}
R_{C i}\left(n_{i}, k_{i} ; t\right)=e^{-k_{i} \lambda_{i} t} \sum_{j=0}^{\left(n_{i}-k_{j}\right)} \frac{\left(k_{i} \lambda_{j} t\right)^{j}}{j!} \tag{A-6}
\end{equation*}
$$

A specific case of cold standby arises when $k_{i}=1$.

$$
\begin{equation*}
R_{C i}\left(n_{i}, 1 ; t\right)=e^{-\lambda_{i} t} \sum_{j=0}^{\left(n_{i}-1\right)} \frac{\left(\lambda_{i} t\right)^{j}}{j!} \tag{A-7}
\end{equation*}
$$

Although $R_{C i}$ cannot be obtained in a closed form for a general failure pdf, a recursive computational procedure can be used in the case $k_{i}=1$. to obtain an approximation to $R_{C i}$. Let $g_{i}(t)$ be the failure pdf for the components in module \boldsymbol{i}, and let $\mathrm{P}_{\boldsymbol{i}}\left(n_{i}, t\right)$ be the probability that n_{i} components are sufficient to operate module i for time t. Suppose that the components are used in the order $n_{i}, n_{i}-1, n_{i}-2, \ldots 2,1$, then we have

$$
\begin{gather*}
P_{i}(1, t) \equiv 1-\int_{0}^{t} g_{i}(\tau) d \tau \tag{A-8}\\
P_{i}(m, t) \equiv P_{i}(1, t)+\int_{0}^{t} P_{i}(m-1, t-\tau) g_{i}(\tau) d \tau \tag{A-9}\\
2 \leq m \leq n_{i}
\end{gather*}
$$

The recursive Equation ($\mathrm{A}-9$) gives the probability that m components are sufficient for module \mathbf{i} for time t. It is expressed as the probability that the mth component alone will function until time t plus the probability that the m th component will fail at τ and the remaining $m-1$ components will function from τ until t. A discrete approximation to Equation (A-9) can be used to compute recursively for each m, an approximation to $P_{i}(m, t)$, which provides a point on the $R_{C i}$ function.
3. Warm Standby Redundancy Module

If the exponential failure pdf is assumed with parameter $\lambda_{\dot{i}}^{0}$ in service and λ_{i}^{1} in standby for units in ith module, Polovko [47] gives the following expression for the module reliability of a 1 -out-of $-n_{i}$ system

$$
\begin{equation*}
R_{W i}\left(n_{i}, 1 ; t\right)=e^{-\lambda_{i} t}\left[1+\sum_{i=1}^{\left(n_{i}-1\right)} \frac{A_{1}}{1!}\left(1-e^{-\lambda_{i}^{1} t}\right)^{T}\right] \tag{A-10}
\end{equation*}
$$

whare

$$
\begin{equation*}
A_{1}=\prod_{j=0}^{1-1}\left(j+\frac{\lambda_{i}^{0}}{\lambda_{i}^{1}}\right) \tag{A-11}
\end{equation*}
$$

For a general failure pdf $g_{i}(t)$ for the components in module i, Polovko [47] gives a recursive relationship for a 1 -out-of- $\boldsymbol{n}_{\mathbf{i}}$ system

$$
\begin{equation*}
R_{W i}\left(n_{i}, 1 ; t\right)=R_{W i}\left(n_{i}-1,1 ; t\right)+\int_{0}^{t} p_{i}^{1}(\tau) p_{i}^{0}(t-\tau) g_{i}^{\left(n_{i}-1\right)}(\tau) d \tau \tag{A-12}
\end{equation*}
$$

where $p_{i}^{1}(\tau)$ is the probability of failure free operation of the standby component up to the instant of its connection at time $\tau ; p_{i}^{0}(t-\tau)$ is the probability of failure free operation of the standby component from the instant of its connection at time τ up to time $t ; g_{i}^{\left(n_{i}-1\right)}(\tau)$ is the failure pdf for a system with $\left(n_{i}-1\right)$ components.

Module Sensitivity

This is evaluated for a system in which individual units in a module have exponential failure pdf with parameter $\lambda_{\boldsymbol{i}}$.

Active Redundancy Module -

$$
\begin{equation*}
\frac{\partial R_{A i}\left(n_{i}, k_{i} ; r_{i}\right)}{\partial n_{i}}=R_{A i}\left(n_{i}, k_{i} ; r_{i}\right)-R_{A i}\left(n_{i}-1, k_{i} ; r_{i}\right) \tag{A-13}
\end{equation*}
$$

Using the formula

$$
\binom{n_{i}}{1}=\binom{n_{i}-1}{1-1}+\binom{n_{i}-1}{1} \quad 1 \geq 1
$$

we have from Equation (A-1)

$$
R_{A i}\left(n_{i}, k_{i} ; r_{i}\right)=\sum_{i=k_{i}}^{n_{i}}\left[\left(\left[\begin{array}{c}
n_{i}^{\prime}-1 \\
1-1
\end{array}\right)+\binom{n_{i}-1}{1}\right] r_{i}^{1}\left(1-r_{i}\right)^{n_{i}-1}\right.
$$

Expanding the summation, we obtain

$$
\begin{equation*}
R_{A i}\left(n_{i}, k_{i} ; r_{i}\right)=R_{A i}\left(n_{i}-1, k_{i} ; r_{i}\right)+\binom{n_{i}-1}{k_{i}-1} \quad r_{i}^{k_{i}}\left(1-r_{i}\right)^{n_{i}-k_{i}} \tag{A-14}
\end{equation*}
$$

Substituting in Equation (A-13)

$$
\begin{equation*}
\frac{\partial R_{A i}\left(n_{i}, k_{i} ; r_{i}\right)}{\partial n_{i}}=\binom{n_{i}-1}{k_{i}-1} r_{i}^{k_{i}}\left(1-r_{i}\right)^{n_{i}-k_{i}} \tag{A-15}
\end{equation*}
$$

when $k_{i}=1$, we have from Equation (A-15)

$$
\begin{equation*}
\frac{\partial R_{A_{i}}\left(n_{i}, 1 ; r_{i}\right)}{\partial n_{i}}=r_{i}\left(1-r_{i}\right)^{n_{i}-1} \tag{A-16}
\end{equation*}
$$

The above result also follows from Equation (A-2).
From Equation (A-3) we have

$$
\begin{equation*}
\frac{\partial R_{A i}\left(n_{i}, 1 ; r_{i j}\right)}{\partial r_{i j}}={\underset{\substack{i \\ j=1 \\ j \neq n_{i}}}{n_{i}}\left(1-r_{i j}\right), ~(1)} \tag{A-17}
\end{equation*}
$$

When $r_{i}=e^{-\lambda} i^{t}$, we have from Equation (A-1)

$$
\begin{equation*}
\frac{\partial R_{A i}\left(n_{i}, k_{i} ; t\right)}{\partial t}=\lambda_{i} \sum_{1=k_{j}}^{n_{i}}\binom{n_{i}}{1}\left\{\left(n_{i}-1\right)\left(e^{-\lambda_{i} t}\right)^{1+1}\left(1-e^{-\lambda_{i}^{t}}\right)^{n_{i}-1-1}-1\left(e^{-\lambda_{i} t^{l}}\right)\left(1-e^{-\lambda_{i} t}\right)^{n_{i}-1}\right. \tag{A-18}
\end{equation*}
$$

Expanding the summations, we obtain

$$
\begin{gather*}
\sum_{i=k_{i}}^{n_{i}}\binom{n_{i}}{1}\left(n_{i}-1\right)\left(e^{-\lambda_{i} t^{l+1}}\left(1-e^{-\lambda_{i}}\right)^{n_{i}-l-1}\right. \tag{A-19}\\
=n_{i}\left(e^{-\lambda_{i} t}\right) R_{A i}\left(n_{i}-1, k_{i} ; t\right)
\end{gather*}
$$

And

$$
\begin{gather*}
\sum_{1=k_{i}}^{n_{i}}\binom{n_{i}}{1} 1\left(e^{-\lambda \lambda_{i}^{t}}\right)^{1}\left(1-e^{-\lambda_{i} t}\right)^{n_{i}-1} \\
=n_{i}\left(e^{-\lambda_{i} t}\right) R_{A i}\left(n_{i}-1, k_{i}, t\right)+k_{i}\left(\begin{array}{l}
n_{i} \\
k_{i}
\end{array}\right\}\left(e^{-\lambda_{i} t}\right)^{k_{i}}\left(i-e^{-\lambda_{i} t}\right)^{n_{i}-k_{i}} \tag{A-20}
\end{gather*}
$$

Substituting Equations (A-19) and (A-20) in Equation (A-18)

$$
\begin{equation*}
\frac{\partial R_{A i}\left(n_{i}, k_{j} ; t\right)}{\partial t}=-k_{i} \lambda_{i}\binom{n_{i}}{k_{i}}\left(e^{-\lambda_{i} t}\right)^{k_{i}}\left(1-e^{-\lambda_{i} t}\right)^{n n_{i} k_{i}} \tag{A-21}
\end{equation*}
$$

Comparing Equations (A-15) and (A-21) we have

$$
\begin{equation*}
\frac{\partial R_{A i}\left(n_{i}, k_{i} ; t\right)}{\partial t}=-n_{i} \lambda_{i} \frac{\partial R_{A i}\left(n_{i}, k_{i} ; r_{i}\right)}{\partial n_{i}} \tag{A-22}
\end{equation*}
$$

Standby Redundancy Module - Two types of standby redundancy modules are considered

1. Hot Standby Redundancy Module

The sensitivity expressions are identical to those developed for active redundancy module.
2. Cold Standby Redundancy

$$
\begin{equation*}
\frac{\partial R_{C i}\left(n_{i}, k_{j} ; t\right)}{\partial n_{i}}=R_{C i}\left(n_{i}, k_{i} ; t\right)-R_{C i}\left(n_{i}-1, k_{i} ; t\right) \tag{A-23}
\end{equation*}
$$

From Equation (A-6)

$$
\begin{equation*}
\frac{\partial R_{C i}\left(n_{j}, k_{i} ; t\right)}{\partial n_{i}}=e^{-k_{j} \lambda_{i} t} \frac{\left(k_{i} \lambda_{i} t\right)^{n_{i}-k_{i}}}{\left(n_{i}-k_{i}\right)!} \tag{A-24}
\end{equation*}
$$

When $k_{i}=1$, we have from above

$$
\begin{equation*}
\frac{\partial R_{C i}\left(n_{i}, 1 ; t\right)}{\partial n_{i}}=e^{-\lambda_{i} t} \frac{\left(\lambda_{i} t\right)^{n_{i}-1}}{\left(n_{i}-1\right)!} \tag{A-25}
\end{equation*}
$$

Using Equation (A-6)

$$
\begin{equation*}
\frac{\partial R_{C i}\left(n_{i}, k_{j} ; t\right)}{\partial t}=-k_{i} \lambda_{i} e^{-k_{i} \lambda_{i} t} \frac{\left(k_{j} \lambda_{i} t\right)^{n_{i}-k_{i}}}{\left(n_{i}-k_{i}\right)!} \tag{A-26}
\end{equation*}
$$

Comparing Equations (A-24) and (A-26)

$$
\begin{equation*}
\frac{\partial R_{C i}\left(n_{i}, k_{j} ; t\right)}{\partial t}=-k_{i} \lambda_{i} \frac{\partial R_{C i}\left(n_{i}, k_{i} ; t\right)}{\partial n_{i}} \tag{A-27}
\end{equation*}
$$

APPENDIX B

PATH FINDING ALGORITHM

APPENDIX B

PATH FINDING ALGORITHM

The algorithm is a modified version of the path finding algorithm developed by Henley and Williams [27]. The main features of the algorithm are presented here. For a more detailed analysis please refer to the original work of Henley and Williams [27].

The reliability flow graph consists of a set of independent modules. These are inter-connected by an array of points called nodes and directed lines between nodes called edges or branches. Each module has an input node and one or more output nodes. The nodes are numbered such that the arrows point from a node with a lower address to a node with a higher address. Thus, the input node of the system has the lowest address and the output node of the system has the highest address.

The algorithm to generate all the paths between the input and the output nodes of the system is best explained with the help of an example. Consider the reliability flow graph shown in Figure B-1. All the edges together with the corresponding modules are first ordered in a list such that the edges with the lowest starting address appear highest in the list. This is shown in Table B.1. The following steps then generate all the paths connecting the input node and the output node of the system.

1. List all the edges which originate at the input node of the system. These are the edges which appear at the top of the list shown in Table B.1. These will be referred to as the input edges. The modules corresponding to the edges are listed in another column.

Figure B. 1

EDGE	MODULE
	$1-2$
$1-4$	R_{1}
$1-5$	R_{3}
$1-3$	R_{3}
$2-4$	R_{2}
$2-4$	R_{4}
$3-5$	R_{6}
$3-5$	R_{5}
$4-6$	R_{7}
$5-6$	R_{8}
	R_{9}

Table B. 1

System Configuration
2. Pick the first edge from the Table B. 1 which follows the input edges. This will be referred to as the output edge. Append the output edge to those input edges whose ending node match its starting node. The corresponding modules are also appended and listed in another column. The new combinations formed are listed in the order they are generated. Next pick the edge following the output edge considered earlier. This will be the new output edge. Again append this output edge to those input ediges and combinations formed earlier whose ending nodes match its starting node. The new combinations are listed in the order they are formed. This procedure continues until the last edge listed in Table B. 1 has been used to generate new combinations. These operations are shown in Table B.2. The combinations whose last node is the same as the output node of the system, are the system paths. As Table B. 2 illustrates, some of these paths have identical node configurations but are distinguishable by their different module configurations.

In the above discussion it is assumed that edges are numbered such that they point from a node with a lower address to a node with a higher address. These are called forward edges. The edges with nodes pointing from a higher address to a lower address are referred to as reverse edges. For a discussion of the path finding algorithm in the presence of reverse edges, please refer to the work of Williams [60].

Node Configuration
$1-2$
$1-4$
$1-5$
$1-3$
1-2-4
1-2-4
1-3-5
1-3-5
1-4-6
1-2-4-6
1-2-4-6
1-5-6
1-3-5-6
1-3-5-6

Module Configuration
R_{1}
R_{3}
R_{3}
R_{2}
$R_{1}-R_{4}$
$R_{1}-R_{6}$
$R_{2}-R_{5}$
$R_{2}-R_{7}$
Combinations
ending at the
output node "6".
giving the
system paths
$R_{3}-R_{8}$
$R_{7}-R_{4}-R_{8}$
$R_{1}-R_{6}-R_{8}$
$R_{3}-R_{9}$
$R_{2}-R_{5}-R_{9}$
$R_{2}-R_{7}-R_{9}$

Table B. 2

APPENDIX C

PATH UNIONS

APPENDIX C

PATH UNIONS

The procedures to generate all the necessary path unions are best illustrated with the help of an example. Consider the reliability network shown in Figure C.1. The path finding algorithm traces all the paths connecting the input and the output nodes of the system. These paths in their node and module configurations are listed in Table C.1.

The following steps then generate the path unions:

1. Transform each path into the binary form; i.e. the locations containing 1 's (0 's) indicate the modules present (absent) in the path.
2. Generate the path unions by using a bitwise logical 'OR' operation in order of ascending path number. The 2-path unions are generated from the single path unions (or paths) P-1 OR P-2, P-1 OR P-3,..., P-1 OR P-M, P-2 OR P-3,..., P-2 OR P-M.,.,. P-(M-1) OR P-M, where M represents the total number of paths in the system. For the above example, 2-path unions are from (5) to (10) in Table C.2. Then proceed to form all the 3-path unions from the 2-path unions obtained earlier. These are P-1 OR P-2 OR P-3,..., P-1 OR P-2 OR P-M,..., P-(M-2) OR P-(M-1) OR P-M. 3-path unions are from (11) to (14) in Table C.2. Similar procedures continue until we form the M-path union, P-1 OR P-2 OR ... OR P-(M-1) OR P-M. For the example, number (15) shows the 4 -path union. There is a sign bit attached to each path and path union and it changes sign with the generation of each higher order path union. Thus, it is positive for paths, negative for 2-path unions, positive for 3 -path unions, etc., and $(-1)^{M-1}$ for the M-path union.
3. Any path union generated as outlined in Step 2 that has I's in every location in its binary representation and whose end path in the path
union is not the Mth path is rejected. This is so because it generates identical path unions with equal number of positive and negative sign bits. In the example, the 3-path union numbered (11) i.e. P-1 OR P-2 OR P-3, generates the 4 -path union numbered (15), i.e. P-1 OR P-2 OR P-3 OR P-4. The two are identical and have opposite signs and hence cancel each other. These are excluded from the list of path and path unions. The reduction in number of terms may be larger for some other systems. The system shown in Figure 2.9 has six paths. The path enumeration technique predicts $2^{6}-1=63$. terms in the reliability expression. Introducing the above modification reduces the number of terms to 47 . The savings in computer time is significant.

Figure 0.1

Reliability Graph

Path	Node Configuration	Module Configuration
$P-1$	$1-2-4$	$R 1-R 4$
$P-2$	$1-2-4$	$R 3-R 4$
$P-3$	$1-3-4$	$R 2-R 5$
$P-4$	$1-3-4$	$R 3-R 5$

Table C. 2

Path Detection

No.	Path or Path Union	Sign	Module				
			R1	R2	R3	R4	R5
1	P-1	$+$	1	0	0	1	0
2	P-2	+	0	0	1	1	0
3	P-3	$+$	0	1	0	0	1
4	P-4	$+$	0	0	1	0	1
5	P-1 OR P-2	-	1	0	1	1	0
6	P-1 OR P-3	-	1	1	0	1	1
7	P-1 OR P-4	-	1	0	1	1	1
8	P-2 OR P-3	-	0	1	1	1	1
9	P-2 OR P-4	-	0	0	1	1	1
10	P-3 OR P-4	-	0	1	1	0	1
*11	P-1 OR P-2 OR P-3	$+$	1	1	1	1	1
12	P-1 OR P-2 OR P-4	+	1	0	1	1	1
13	P-1 OR P-3 OR F-4	+	1	1	1	1	1
14	P-2 OR P-3 OR P-4	$+$	0	1	1	1	1
*15	P-1 OR P-2 OR P-3 OR P-4	-	1	1	1	1	1

*Path unions (11) and (15) will not appear in the final list.

Table C. 2

Path and Path Unions

APPENDIX D

MODIFIED INTEGER GRADIENT METHOD

APPENDIX D
 MODIFIED INTEGER GRADIENT METHOD

The general nonlinear integer programming problem can be stated as follows:

Maximize the nonlinear objective function

$$
\begin{equation*}
f(\underline{x}) \tag{D-1}
\end{equation*}
$$

subject to several functional nonlinear (or linear) constraints

$$
\begin{equation*}
g_{i}(\underline{x}) \leq 0 \quad i=1,2 \ldots m \tag{D-2}
\end{equation*}
$$

non-negative constraints

$$
\begin{equation*}
\underline{x} \geq \underline{0} \tag{D-3}
\end{equation*}
$$

and finally the integer constraints

$$
\begin{equation*}
\underline{x}: \text { integral } \tag{D-4}
\end{equation*}
$$

where \underline{X} is an n vector.

Optimal Seeking Algorithm

The procedure described below is mainly due to Reiter and Rice [50]. The search algorithm has three phases.

Phase (1): Selection of an Initial Point
The simplest method of selecting initial point is a statistical method using uniform random numbers. Assume that independent upper 1 imits on \underline{X} also exist.

$$
\begin{equation*}
0 \leq x_{j} \leq u_{j} \quad j=1,2, \ldots n \tag{D-5}
\end{equation*}
$$

Equation (D-5) together with Equation (D-4) define a finite set of points enclosed by a hyperrectangle in n-space. So we sample with a uniform distribution from the set of integers in the interval $\left[0, u_{j}\right] j=1,2, \ldots n$. This results in a uniform sampling of lattice points in the hyperrectangle. If the selected initial point X_{I} is feasible, we go directly to Phase (3), otherwise, we go to Phase (2).

Phase (2): Search for a Feasible Solution \underline{X}^{+}
A search by the method of "weighted perpendiculars" (WP) may be the most general one. The quantity S_{i}

$$
\begin{equation*}
s_{i}=g_{i}\left(\underline{X}_{I}\right) \quad i=1,2, \ldots m \tag{D-6}
\end{equation*}
$$

is the amount by which the ith constraint is violated at $\underline{X}_{\mathrm{I}}$. We define

$$
\begin{equation*}
\underline{z}=\frac{-\left(\sum _ { i : S _ { i } > 0 } S _ { i } \left[\nabla_{i}\left(g_{i}(\underline{x})\right]\right.\right.}{\left.\underline{x}=\underline{x}_{I}\right)} ⿻ \sum_{i: S_{i}>0} S_{i} \tag{D-7}
\end{equation*}
$$

where ∇_{i} denotes the vector of partial derivatives of the i th constraint with respect to x_{i} 's. The vector $-\underline{z}$ is thus a positive linear combination of these perpendiculars, and, therefore, lies in the convex cone spanned by them, as shown in Figure D-1.

$$
\begin{gather*}
\text { Let } z_{j}^{\#}=\min \cdot z_{j \neq 0}\left|z_{j}\right| \tag{D-8}\\
\text { Define } z^{+}=\left(z_{1}^{+}, z_{2}^{+}, \ldots z_{n}^{+}\right)^{\top} \\
z_{j}^{+}=\left(\begin{array}{l}
{\left[\left(z_{j} / z_{j}^{\# \#}\right)+0.5\right], \text { if } z_{j} \geq 0} \\
{\left[\left(z_{j} / z_{j}^{\#}-0.5\right], \text { if } Z_{j} \leq 0\right.}
\end{array} \quad j=1,2, \ldots n\right. \tag{D-9}
\end{gather*}
$$

where [w] denotes the largest integer not exceeding w. The equation

$$
\begin{equation*}
\underline{y}_{b}=\underline{x}_{I}+b \underline{z}^{+} \tag{D-10}
\end{equation*}
$$

is the equation of a line passing through the point X_{I} and has possible direction towards feasible region, as shown in Figure D-1. Taking successively the values $b=1,2, \ldots$ we test the corresponding \underline{Y}_{b}, necessarily a lattice point, for feasibility; we eventually either locate a feasible point or viclate one or more of the lower or upper limits. If one or more of these limits is violated, we hold the corresponding coordinate of \underline{y}_{b} constant at those limits and continue to search by increasing b. Ultimately, we find a feasible point \underline{X}^{+}or all coordinates go outside of their limit. In the second case we abandon X_{I} and sample another starting point from the hyperrectangle as explained in Phase (1). In the case of linear constraints, another method called "permuted coordinates" (PC) may be better [50].

Phase (3): Search for the Locally Optimum Point X_{p}
Having located a feasible lattice point \underline{X}^{+}we start Phase (3), where we end up with a locally maximal point.

Let $\underline{h}(\underline{X})$ denote the gradient of the objective function

$$
\begin{align*}
& \text { i.e. } \underline{h}(\underline{X})=\nabla f(\underline{X}) \tag{D-11}\\
& \underline{Y}_{d}=X^{+}+d \cdot \underline{h}\left(\underline{x}^{+}\right) \tag{D-12}
\end{align*}
$$

Since, $\underline{h}\left(\underline{X}^{+}\right)$is not in general integer valued, we apply the procedure used in the WP method to obtain a normalized integer gradient vector \underline{h}^{+}, i.e.

Figure D-1 $\begin{aligned} & \text { Method of Weighted } \\ & \text { Perpendiculars (WP) }\end{aligned}$

$$
\begin{gather*}
h_{j}^{\#}=\min _{h_{j} \neq 0}\left|h_{j}\right| \tag{D-13}\\
h_{j}^{+}=\left(\begin{array}{l}
{\left[\left(h_{j} / h_{j}^{\#}\right)+0.5\right], \text { if } h_{j} \geq 0} \\
{\left[\left(h_{j} / h_{j}^{\#}\right)-0.5\right], \text { if } h_{j} \leq 0}
\end{array} \quad j=1,2, \ldots n\right. \tag{D-14}
\end{gather*}
$$

The vector \underline{h}^{+}is the modified gradient of the objective function $f(\underline{X})$ and

$$
\begin{equation*}
\underline{y}_{d}=\underline{x}^{+}+d \cdot \underline{h}^{+} \tag{D-15}
\end{equation*}
$$

defines the path on which we search for improved values of the objective function. We find that value of d for which $f\left(\underline{Y}_{d}\right)$ is a maximum over feasible \underline{Y}_{d} on this path. This may be done by letting $d=0,1,2, \ldots$ successively and finding the first value of d for which either Y_{-d+1} is infeasible or $f\left(\underline{Y}_{d+1}\right) \underline{x} f\left(Y_{d}\right)$. If the best value of d denoted by d^{*}, is not zero, we set $X^{+}=\underline{Y}_{d^{*}}$ and repeat the procedure. If $d^{*}=0$, we set the element of $h\left(x^{+}\right)$of the smallest non-zero absolute value equal to zero to obtain $\underline{h}^{1}\left(\underline{X}^{+}\right)$and proceed as before with $\underline{h}^{\frac{1}{2}}$ in place of \underline{h}. If \underline{h}^{1} leads to no improvement, set the element of \underline{h}^{1} of smallest non-zero absolute value equal to zero to obtain $\underline{h}^{2}\left(\underline{X}^{+}\right)$and proceed with \underline{h}^{2} in place of \underline{h}. This procedure is continued until \underline{h}^{\vee} is obtained with only one non-zero element. If using $\underline{h}^{\mathrm{V}}\left(\underline{X}^{+}\right)$results in no improvement, we try successively h^{v+1} to h^{v+k} where $k+1$ is the number of non-zero elements of h and h^{v+j} is a vector with 1 in the coordinate corresponding to the partial derivative in \underline{h} which ranks $(j+1)^{\text {th }}$ in absolute value, for $j \leq k$. If h^{v+k} results in no improvement then \underline{X}^{+}is a locally maximal point. If any \underline{h}^{j} leads to improvement, we set \underline{X}^{+}equal to the \underline{Y}_{d} * thus obtained and repeat the procedure.

Extension to Mixed Integer Problem

The solution procedure described above can be modified to apply to mixed integer problems.

To handle a mixed problem with $n^{\prime}<n$ variables required to be integer valued, the variables are renumbered so that the first n^{\prime} are the integer valued ones. Equations ($D-8$) and (D-9) for Z^{+}and R^{+}are replaced by

$$
\begin{align*}
& Z_{j}^{\frac{n}{n}}=\min \cdot\left\{\left|Z_{j}\right|: Z_{j} \neq 0,1 \leq j \leq n^{\prime}\right\} \tag{D-16}\\
& Z_{j}^{+}= \begin{cases}{\left[\left(Z_{j} / Z_{j}^{\# \#}\right)+0.5\right],} & \text { if } z_{j} \geq 0 \text { and } 1 \leq j \leq n^{\prime} \\
{\left[\left(Z_{j} / Z_{j}^{\# \#}\right)-0.5\right],} & \text { if } Z_{j \leq 0} \text { and } 1 \leq j \leq n^{\prime} \\
\left(Z_{j} / Z_{j}^{\# \#}\right), & \text { if } n^{\prime} \leq j \leq n\end{cases} \tag{D-17}
\end{align*}
$$

As long as the gradient $\underline{h}^{j}\left(\underline{X}^{+}\right)$has some non-zero values among its first n^{\prime} coordinates, the procedures described earlier, which restrict attention to integer values of the path parameters, apply directly. If all of the first n^{\prime} coordinates of $h^{j}\left(\underline{X}^{+}\right)$are zero, it is unnecessary to normalize and adjust to integers. A grid is superimposed on the modified gradient path and procedures described in Phase (3) are continued.

In the case of functions and constraints which are not differentiable, paths of positive ascent calculated by first differences can be used in place of the gradient.

It should be noted that the method is not well suited to dealing with equality constraints.

APPENDIX E

SENSITIVITY EXPRESSIONS FOR SYSTEM
AVAILABILITY AND SYSTEM PROFIT

APPENDIX E
SENSITIVITY EXPRESSIONS FOR SYSTEM
AVAILABILITY AND SYSTEM PROFIT

$$
\begin{equation*}
A(\underline{n}, T)=\frac{\int_{0}^{T} R(\underline{n}, t) d t}{\int_{0}^{T} R(\underline{n}, t) d t+T_{E}-\left(T_{E}-T_{S}\right) R(\underline{n}, T)} \tag{E-1}
\end{equation*}
$$

From Equation (E-1)

$$
\begin{align*}
& \frac{\partial A(\underline{n}, T)}{\partial n_{i}}= {\left[\frac{\partial}{\partial n_{i}} \int_{0}^{T} R(\underline{n}, t) d t\right)\left(T_{E}-\left(T_{E}-T_{S}\right) R(\underline{n}, T)\right] } \\
&+\int_{0}^{T} R(\underline{n}, t) d t\left(\left(T_{E}-T_{S}\right) \frac{\partial R(\underline{n}, t)}{\partial n_{i}}\right) \\
& {\left[\int_{0}^{T} R(\underline{n}, t) d t+T_{E}-\left(T_{E}-T_{S}\right) R(\underline{n}, T)\right]^{2} } \tag{E-2}\\
& \frac{i=1,2, \ldots N}{\partial A(\underline{n}, T)}=\frac{T_{E} \cdot R(\underline{n}, T)-\left(T_{E}-T_{S}\right) R^{2}(n, T)+\left(T_{E}-T_{S}\right)\left[\int_{0}^{T} R(\underline{n}, t) d t\right) \frac{\partial R(\underline{n}, T)}{\partial T}}{\left[\int_{0}^{T} R(\underline{n}, t) d t+T_{E}-\left(T_{E}-T_{S}\right) R(\underline{n}, T)\right]^{2}} \\
& P(\underline{n}, T)=C_{I} \cdot T^{+} \cdot A(\underline{n}, T)-\left(\sum_{i=1}^{N} n_{i} \cdot C_{F i}\right)\left(1+(1-A(\underline{n}, T)) \frac{x}{100} \cdot T^{+}\right] \tag{E-3}
\end{align*}
$$

$$
\begin{array}{r}
\frac{\partial P(\underline{n}, T)}{\partial n_{i}}=\left(C_{I}+\left(\sum_{i=1}^{N} n_{i} \cdot C_{F i}\right) \frac{x}{100}\right) T^{+} \cdot \frac{\partial A(\underline{n}, T)}{\partial n_{i}} \\
-C_{F i}\left(1+\left(1-A(\underline{n}, T) \frac{x}{100} \cdot T^{+}\right)\right. \\
i=1,2, \ldots N \\
\frac{\partial P(\underline{n}, T)}{\partial T}=\left(C_{I}+\left(\sum_{i=1}^{N} n_{i} \cdot C_{F i}\right) \frac{x}{100}\right) T^{+} \cdot \frac{\partial A(\underline{n}, T)}{\partial T} \tag{E-6}
\end{array}
$$

Solution of Equations ($E-1$) to ($E-6$) involves the evaluation of the following terms,

1. $R(\underline{n}, T)$ - The system reliability $R(\underline{n}, T)$ is calculated according to the general computer algorithm developed in Chapter II.
2. $\frac{\partial R(\underline{n}, T)}{\partial T}=\sum_{i=1}^{N} \frac{\partial R(\underline{n}, T)}{\partial R_{i}\left(n_{i}, T\right)} \cdot \frac{\partial R_{i}\left(n_{i}, T\right)}{\partial T}$

$$
\begin{equation*}
=\sum_{i=1}^{N}\left(\left.R\right|_{R_{i}=1}-\left.R\right|_{R_{i}=0}\right) \frac{\partial R_{i}\left(n_{i}, T\right)}{\partial T} \tag{E-7}
\end{equation*}
$$

where $\frac{\partial R_{i}\left(n_{i}, T\right)}{\partial T}$ is given by either Equations (A-21) or (A-26).
3. $\frac{\partial R(\underline{n}, T)}{\partial n_{i}}=\frac{\partial R(\underline{n}, T)}{\partial R_{i}\left(n_{i}, T\right)} \cdot \frac{\partial R_{i}\left(n_{i}, T\right)}{\partial n_{i}}$

$$
\begin{equation*}
=\left\{\left.R\right|_{R_{i}=1}-\left.R\right|_{R_{i}=0} \frac{\partial R_{i}\left(n_{i}, T\right)}{\partial n_{i}}\right. \tag{E-8}
\end{equation*}
$$

where $\frac{\partial R_{\mathbf{i}}\left(n_{\mathbf{i}}, T\right)}{\partial n_{i}}$ is given by either Equations (A-15) or (A-2A).
4. $\int_{0}^{T} R(\underline{n}, t) d t$ - This term is evaluated by numerical integration using Simpson's formula.

$$
\text { 5. } \begin{aligned}
\frac{\partial}{\partial n_{i}} & \int_{0}^{T} R(\underline{n}, t) d t=\int_{0}^{T} \frac{\partial R(\underline{n}, t)}{\partial n_{i}} d t \\
& =\int_{0}^{T}\left(\frac{\partial R(\underline{n}, t)}{\partial R_{i}\left(n_{i}, t\right)}\right)\left(\frac{\partial R_{\mathbf{i}}\left(n_{i}, t\right)}{\partial n_{i}}\right) d t \\
& =\int_{0}^{T}\left[\left.R\right|_{R_{i}=1}-\left.R\right|_{R_{i}=0}\right)\left(\frac{\partial R_{\mathbf{i}}\left(n_{i}, t\right)}{\partial n_{i}}\right) d t
\end{aligned}
$$

where $\frac{\partial R_{i}\left(n_{i}, t\right)}{\partial t}$ is given by either Equations (A-15) or (A-24) at any time t. Again the integral is evaluated by using Simpson's formula.

APPENDIX F

LAWLER AND BELL ALGORITHM

APPENDIX F

LAWLER AND BELL ALGORITHM

Lawler and Bell [32] describe a simple, easily programmed algorithm for solving discrete optimization problems with monotone objective functions and arbitrary constraints.

A brief review of the Lawler-Bell method is provided in this appendix. The type of problems that can be solved by this method may be put in the following form:

Minimize

$$
g_{0}(\underline{x})
$$

subject to m constraints of the form

$$
g_{i 1}(\underline{x})-g_{i 2}(\underline{x}) \geq 0 \quad i=1,2, \ldots m
$$

where

$$
\begin{equation*}
\underline{x}=\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right) \tag{F-1}
\end{equation*}
$$

and

$$
x_{j}=0 \text { or } 1, \quad j=1,2, \ldots n
$$

and where the restriction is applied that each of the functions $g_{0}, g_{i 1}$, $g_{i 2},(i=1,2, \ldots m)$ is monotone non-decreasing in each of the variables $x_{1}, x_{2}, \ldots x_{n}$. With some ingenuity, many problems can be put in this form.

Some preliminaries discussed below are essential for the description of the algorithm.

Vector \underline{x} is "binary" in the sense that each x_{j} is either 0 or 1 ; $\underline{x} \leq \underline{y}$ if and only if $x_{j} \leq y_{j}$ for $j=1,2, \ldots n$. This is the vector partial
ordering. There is also the lexicographic or numerical ordering of these vectors that is obtained by identifying with each vector \underline{x}, the integer value

$$
\begin{equation*}
N(\underline{x})=x_{1} 2^{n-1}+x_{2} 2^{n-2}+\ldots+x_{n} 2^{0} \tag{F-2}
\end{equation*}
$$

Numerical ordering is a refinement of the vector partial ordering; i.e. $\underline{x} \leq \underline{y}$ implies $N(\underline{x}) \leq N(\underline{y})$; however, $N(\underline{x}) \leq N(\underline{y})$ does not imply $\underline{x} \leq \underline{y}$. Suppose all binary n - vectors are listed in numerical-order; i.e.

$$
\begin{aligned}
& (0, \ldots, 0,0,0) \\
& (0, \ldots, 0,0,1), \\
& (0, \ldots, 0,1,0), \\
& (0, \ldots, 0,1,1), \\
& (0, \ldots, 1,0,0)
\end{aligned}
$$

etc.

Immediately following an arbitrary vector \underline{x}, there may (or may not) be a number of vectors \underline{x}^{\prime} with the property that $\underline{x} \leq x^{\prime}$. Roughly speaking these are vectors that differ from \underline{x} only in that they have I's in place of one or more of the "right most" 0 's of \underline{x}. For example, immediately following $\underline{x}=(0,1,0,0)$ are $(0,1,0,1),(0,1,1,0),(0,1,1,1)$, each of which is greater than \underline{x} in the vector partial ordering.

Let \underline{x}^{*} denote the first vector following \underline{x} in the numerical ordering that has the property that $\underline{x} \underline{\underline{x}} \underline{x}^{*}$. For any given \underline{x}, the vector \underline{x}^{*} is very easily calculated on the computer as follows:

Treat \underline{x} as a binary number:

1. Subtract 1 from \underline{x} to obtain $\underline{x}-1$,
2. Logically $O R \underline{x}$ and $\underline{x}-1$ to obtain $\underline{x}^{*}-1$,
3. Add 1 to obtain \underline{x}^{*}.

Note that $\underline{x}^{*}-1$ is greater than each of $\underline{x}, \underline{x}+1, \ldots, \underline{x}^{*}-2$ in the vector partial ordering.

The Lawler-Bell method is basically a search method, which starts with $\underline{x}=(0,0,,,, 0,0)$ and examines the 2^{n} solution vectors in the numerical ordering described above. Further, the labor of examination is considerably cut down by following certain rules. As the examination proceeds through the list of vectors, a record is kept of the least costly solution found to date. If $\underline{\hat{x}}$ denotes this solution having cost $g_{0}(\underline{\hat{x}})$ and \underline{x} is the vector being examined, then the following steps indicate the conditions under which certain vectors in the numerical ordering can be skipped over:

1. If $g_{0}(\underline{x}) \geq g_{0}(\underline{\hat{x}})$, skip to \underline{x}^{*} and repeat the operation; otherwise proceed to Step 2.

Justification: Because g_{0} is monotone non-decreasing, none of the vectors $\underline{x}+1, \underline{x}+2, \ldots, \underline{x}^{*}-1$ can be less costly than $\underline{\hat{x}}$.
2. If for any $i(i=1,2, \ldots m), g_{i 1}\left(\underline{x}^{*}-1\right)-g_{i 2}(\underline{x})<0$, skip to \underline{x}^{*} and go to Step 1; otherwise proceed to Step 3.

Justification: With respect to vectors in the interval ($\underline{x}, \underline{x}^{*}-1$), $\underline{x}^{*}-1$ maximizes $g_{i 1}$ and \underline{x} maximizes $-g_{i 2}$. Hence if it is the case that $g_{i 1}\left(\underline{x}^{*}-1\right)-g_{\mathbf{i} 2}(\underline{x})<0$, there can be no vector \underline{x}^{\prime} in the interval such that $g_{i 1}\left(\underline{x}^{\prime}\right)-g_{i 2}\left(\underline{x}^{\prime}\right) \geq 0$.
3. If $g_{i 1}(\underline{x})-g_{i 2}(\underline{x}) \geq 0,(i=1,2, \ldots, m)$, replace $\underline{\hat{x}}$ by \underline{x} and skip to x^{*}; otherwise change \underline{x} to $\underline{x}+1$. In either case further execution is transferred to Step 1.

Justification: Because g_{0} is monotone non-decreasing, none of the vectors $\underline{x}+1, \underline{x}+2, \ldots, \underline{x}^{*}-1$ can be less costly than \underline{x}.

Following the above steps, all the vectors are examined and scanning continues until a vector having maximum numerical order. Viz., ($1,1, \ldots, 1$) is found. In case one has skipped to a vector having numerical order higher than $(1,1, \ldots, 1)$, designate this state by "overflow" and terminate the procedure. The least "costly" vector recorded provides the optimum solution.

Problems involving non-negative integer variables can be transformed into problems involving binary variables by means of the substitution

$$
\begin{equation*}
x_{j}=x_{j 1}+2 x_{j 2}+2^{2} x_{j 3}+\ldots+2^{k-1} x_{j k} \tag{F-3}
\end{equation*}
$$

where $x_{j i}=0$ or $1(i=1,2, \ldots K) . K$ is chosen to be sufficiently large for $2^{K}-1$ to be an upper bound on the value of x_{j}.

The algorithm was seen to be most efficient if those variables that were roughly speaking "least significant" were assigned positions at the "right" end of the solution vector. The ordering of vector \underline{x} is shown below

$$
\begin{equation*}
\underline{x}=\left(x_{1 K}, x_{2 K}, \ldots, x_{n K}, x_{1(K-1)}, \ldots, x_{n 2}, x_{11}, x_{21}, \ldots, x_{n 1}\right) \tag{F-4}
\end{equation*}
$$

APPENDIX G

COMPUTER PROGRAMS

APPENDIX G

COMPUTER PROGRAMS

This appendix contains the documentation for two computational schemes which solve the system optimization problems in the text.

Each scheme is composed of subroutines. Most of the subroutines do not have calling arguments--the greater part of the communication between subroutines being handled through COMMON.

Computational Scheme I

Computational Scheme I is based on the modified integer gradient method. The details of the method are given in Appendix D. A schematic diagiam of the main program is shown in Figure G.2. The computation is composed of fifteen subroutines. Depending on the objective function and the constraints, the appropriate statements are modified in the various subroutines. A computer listing is provided for each of the three system optimization problems discussed in Chapter III of the text. Subroutines PATHS, PATHP, TRACE, and PATHC are identical for the three cases. A functional description of the various subroutines and a list of the major program variables is given below.

SUBROUTINES

DATAIN - Reads and echo checks data.
PATHS - Argument (INPUT). Finds all paths in the reliability flow graph which start at a specified INPUT node. See Appendix B for details.

PATHP - Argument (OUTPUT). Itemizes all paths starting at an INPUT node (defined by a call to subroutine PATHS) and ending at the OUTPUT node specified.

TRACE - Argument (I). Retrieves the nodes and the modules associated with the Ith entry in the P-array and prints them in sequence. Also converts each path in the binary form.

PATHC - Finds the binary representation of all the path combinations with appropriate signs. See Appendix C for details.

RANDU - Arguments (IX, IY, IFL). Generates uniformity distributed number between zero and one.

MODULE - Computes the module reliability and the sensitivity of the module reliability to the module redundancy for all the system modules. Only active redundancy modules or cold standby redundancy modules are considered. See Appendix A for details.

RELIAB - Computes the system reliability from the module reliabilities found earlier.

SENSE - Determines the sensitivity of the system reliability to the module redundancies.

AVLBTY - Determines the system availability, system profit, and the sensitivity of the system availability and the system profit to the module redundancies and to the maintenance interval. The integrals are evaluated by using Simpson's formula. See Appendix E for details.

CONSTR - Computes the system constraints.
FESIBL - Finds the feasible solution by the method of weighted perpendiculars. See Appendix D for details.

SORT - Sorts the system sensitivity vector in ascending order.
OPTIMZ - Finds a locally optimal solution from the feasible solution. The computation is based on the modified integer gradient method discussed in Appendix D.

OPTIM - Checks to see if the movement in the gradient direction gives an improved feasible solution.

PROGRAM VARIABLES

An explanation of the major program variables is given below.
INNOD - Input node.
OUTNOD - Output node.
FOR - Number of forward edges.
FREV - Row number of the first reverse edge appearing in the P-array.

LEND - Row number of the last entry in the P-array.
NE.DGES - Total number of edges or branches in the reliability graph.
NEDGS1 - NEDGES + 1.
NNODES - Total number of nodes.
NPATH - Total number of paths between the input and the output node.
PATHL - Row dimension of the PATH-array. Length of vector PSIGN.
PLENTH - Row dimension of the P-array.
PPL - Dimension of PP, PI4, NUNIT, NMAX, NMIN, MUNIT, RUNIT, WUNIT, LAMDA, G, AGRADN, RGRADN, PGRADN, RIGRDN, MTGRDN, COSTF, and NSORT vectors. Also the column dimension of PATH-array.

REV - Number of reverse edges.
STATUS - Flag which is set to zero if an attempt has been made to overflow the PATH-array or the P-array.

P - Array of dimension P (PLENTH,4) which contains the list structure shown in Figure G-1.

PP - Auxiliary vector.
PIS - Auxiliary vector.
PATH - Array of dimension (PATHL, PPL). Stores each path and path combinations in binary form.

NMOD - Total number of modules.
NMOD1 - NMOD + 1.
MPATH - Total number of paths and path combinations.
PSIGN - Vector. Stores the number +1 or -1 associated with each path and path combination.

NUNIT - Vector. Stores the module redundancies (number of redundant units in each module).

NMAX - Vector. Contains the upper limit of the module redundancies.
NMIN - Vector. Contains the lower limit of the module redundancies.
MUNIT - Vector. Stores the module redundancies necessary for successful operation of each module.

> Edges which constitute the graph

Figure G. 1

List Structure of P-Array
KODE - Vector. Stores the binary numbers zero or one. A "zero" identifies an active redundancy module. A "one" identifies a cold standby redundancy module.
ASYS - System availability.
RSYS - System reliability.
PSYS - System profit.
RUNIT - Vector. Stores unit reliabilities.
WUNIT - Vector. Stores unit weights.
LAMDA - Vector. Stores unit failure rates.
G - Vector. Contains module reliabilities.
AGRADN - Vector. Contains sensitivity of system availability to the module redundancies.
AGRADT - Sensitivity of system availability to the maintenance interval.
PGRADN - Vector. Contains sensitivity of system profit to the module redundancies.
PGRADT - Sensitivity of system profit to the maintenance interval.
RGRADN - Vector. Contains sensitivity of system reliability to the module redundancies.
RGRADT - Sensitivity of system reliability to the maintenance interval.
RIGRDN - Vector. Contains sensitivity of module reliability to its own redundancy.
MTGRDN - Vector. Stores sensitivity of MTBM to module redundancies.
COSTF - Vector. Stores unit costs.
CONSTR - Vector 10 locations in length. Stores values of the constraints.
MTBM - Mean time between maintenance.
MDT - Mean down time.
OBJFN - System objective function.
RLBTY - System reliability.
CMCOST - Upper limit on the value of cost constraint.
WEIGHT - Upper limit on the value of weight constraint.
INCOM - Net income per hour of system operation.

COSTMF - Maintenance cost as a per cent of system cost per hour of system down time.

T - Variable of integration.
TEM - Emergency maintenance interval.
TSC - Scheduled maintenance interval.
TLF - System life time.
TM - Maintenance interval.
TMAX - Upper limit on the value of TM.
TMIN - Lower limit on the value of TM.
INTVL - Interval of integration used in the Simpson's formula.
TSTEP - Constant to express maintenance interval in terms of (TM/TSTEP).

FCOST - System fixed capital cost.
MCOST - System maintenance cost.
KOUNT - Number of random sample points.
NONZRO - Number of nonzero elements in the system sensitivity vector.
NSORT - Vector. Stores the module numbers in ascending order of magnitude of the system sensitivity to module redundancies.

FLAG - It is either zero or one. When it is "one" only system availability and system profit are evaluated by subroutine AVLBTY. When it is "zero" sensitivity of system availability and system profit to module redundancies and maintenance interval are also evaluated.

INDEX - A value equal to NMOD1 indicates that a feasible point could not be located.

MOVE - As used in subroutine FESIBL - a value greater than 20 indicates that FESIBL point could not be located. As used in subroutines OPTIM and OPTIMZ - a value equal to zero indicates that an improved feasible solution is not possible for a particular gradient vector.

Figure G. 2
Schematic Diagram of Computation I
---- indicates communication between subroutines.

Computational Scheme II is based on the partial enumeration method of Lawler and Bell. Details of the method are given in the Appendix F and was used to solve the system reliability optimization problems discussed in Chapters III and IV of the text.

A schematic diagram of the main program is shown in Figure G-3. The computation is composed of seven subroutines. These include DATAIN, PATHS, PATHP, TRACE, PATHC, MODULE and RELIAB. A functional description of each has been presented with the first computational scheme discussed earlier in this appendix. Subroutines PATHS, PATHP, PATHC, TRACE are identical to the ones listed earlier.

PROGRAM VARIABLES

A list of major program variables and their explanations are given below:
RKODE(I) - Binary number zero or one. A "zero" identifies an active redundancy Ith module. A "one" identifjes a standby redundancy Ith module.

NKODE(I) - Number of binary variables associated with the number of units in the Ith module.

MKODE(I) - Number of binary variables associated with the number of units necessary for successful operation of the Ith module.

NTEST(I) - Number of units in the Ith module. Generated from the binary variables NXTEST (I, J).

NSTAR1(I)- Number of units in the Ith module. Generated from the binary variables NXSTR1 (I, J).

MTEST(I) - Number of units in the Ith module that must operate for its successful operation. Generated from the binary variables $\operatorname{MXTEST}(I, \mathrm{~J})$.

MSTARI(I)- Number of units in the Ith module that must operate for its successful operation. Generated from binary variable MXSTRI(I,J).

NXTEST(I, J) - jth binary variable associated with the variable NTEST(I). It is obtained from the vector XTEST.

MXTEST(I, J) - jth binary variable associated with the variable MTEST(I). It is obtained from the vector XTEST.

NXSTR1(I, J) - jth binary variable associated with the variable NSTAR1(I). It is obtained from the vector XSTR1.

MXSTR1(I, J) - jth binary variable associated with the variable MSTAR1(I). It is obtained from the vector XSTR1.

XTEST - Vector containing NVAR binary system variables.
XTEST1 - Vector obtained by the binary subtraction of (XTEST - XONE).
XONE \quad - Vector with the binary number 1 in the first position and zero in all other positions.

XSTR1 - Vector obtained by performing logical "OR" operation on XTEST and XTEST1.

XSTAR - Vector obtained by binary addition of (XSTR1 + XONE).
XHAT - Vector. Stores the previous best value of vector XTEST.
NHAT - Vector. Stores the previous best value of vector NTEST.
MHAT - Vector. Stores the previous best value of vector MTEST.
$R(I) \quad$ Unit reliability of the Ith module.
G(I) - Ith module reliability.
GHAT(I) - Previous best value of $G(I)$.
KINDEX(I) - Constant " k_{c} " associated with the unit cost of the Ith
SINDEX(I) - Constant "s" associated with the cost of the Ith module.
CONSTR(I) - Value of the Ith system constraint.
COST - Upper limit on the total system cost.
COSTHT - Total system cost corresponding to the system variables NHAT and MHAT.

RLBTY - System reliability.
OBJFN - Given by (1. - RLBTY).
OBJHAT - Previous best value of OBJFN.

NVAR - Total number of binary system variables.
TEST1 and TEST2 - Variables to see if all the solution vectors have been examined.

COUNT - Vector of dimension four. Used for counting the number of operations at various stages of the computation.

Figure G. 3

Schematic diagram of Computation II

SYSTEM RELIABILITY OPTIMIZATION

```
```

C. MAIN PROGRAM

```
```

C. MAIN PROGRAM
SYSTEM RELIABILITY OPTIMIZATION
SYSTEM RELIABILITY OPTIMIZATION
MAIN 20
MAIN 20
C MODIFIED INTEGER GRADIENT METHOD
C MODIFIED INTEGER GRADIENT METHOD
IMPLICIT INTEGER*4 (A-Z)
IMPLICIT INTEGER*4 (A-Z)
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSL,NNODES,
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSL,NNODES,
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
2 PATH(300,50),NMOD,MPATH.PSIGN(300)
2 PATH(300,50),NMOD,MPATH.PSIGN(300)
INTEGER*2 P,PP,PATH
INTEGER*2 P,PP,PATH
COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50),
COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50),
1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
COMMON/OPTM2/CONST(10),COSTF(50),G(50),RGRADN(50),RIGRON(50),
COMMON/OPTM2/CONST(10),COSTF(50),G(50),RGRADN(50),RIGRON(50),
1 RUNIT(50),WUNIT(50),CMCOST,OBJFN,RLBTY,WEIGHT
1 RUNIT(50),WUNIT(50),CMCOST,OBJFN,RLBTY,WEIGHT
REAL*4 CONST,COSTF,G,RGRADN,RIGRDN,RUNIT,WUNIT,CACOST,OBJFN,
REAL*4 CONST,COSTF,G,RGRADN,RIGRDN,RUNIT,WUNIT,CACOST,OBJFN,
1 RLBTY,WEIGHT
1 RLBTY,WEIGHT
REAL*4 YFL
REAL*4 YFL
C
C
PATHL = 300
PATHL = 300
PLENTH = 1000
PLENTH = 1000
PPL = 50
PPL = 50
10 CALL DATAIN
10 CALL DATAIN
UTNOD
UTNOD
CALL PATHS(INNOD)
CALL PATHS(INNOD)
IF(STATUS) 20,10,20
IF(STATUS) 20,10,20
20 CALL PATHP(DUTNOD)
20 CALL PATHP(DUTNOD)
WRITE (6,1100)
WRITE (6,1100)
OO 30 L=1,NPATH
OO 30 L=1,NPATH
WRITE(6,1200) L,(PATH(L,M),M=1,NMOD)
WRITE(6,1200) L,(PATH(L,M),M=1,NMOD)
30 CONTINUE
30 CONTINUE
CALL PATHC
CALL PATHC
WRITE(6.1001) NPATH.MPATH
WRITE(6.1001) NPATH.MPATH
WRITE(6,2600)
WRITE(6,2600)
DO 35 L=1,MPATH
DO 35 L=1,MPATH
WRITE(6,2700) L,PSIGN(L),(PATH(L,M),M=1,NMOD)
WRITE(6,2700) L,PSIGN(L),(PATH(L,M),M=1,NMOD)
35 CONTINUE
35 CONTINUE
KOUNT = 1
KOUNT = 1
MAIN }1
MAIN }1
MAIN }3
MAIN }3
MAIN }4
MAIN }4
MAIN }5
MAIN }5
MAIN }6
MAIN }6

```
                O
                0
MAIN }7
MAIN }7
MAIN }8
MAIN }8
MAIN }9
MAIN }9
MAIN 100
MAIN 100
MAIN 110
MAIN 110
MAIN I20
MAIN I20
MAIN 130
MAIN 130
MAIN 140
MAIN 140
MAIN 150
MAIN 150
MAIN 160
MAIN 160
MAIN 170
MAIN 170
MAIN 180
MAIN 180
MAIN 190
MAIN 190
MAIN 2CO
MAIN 2CO
MAIN 210
MAIN 210
MAIN 220
MAIN 220
MAIN 230
MAIN 230
MAIN 240
MAIN 240
MAIN 250
MAIN 250
MAIN 260
MAIN 260
MAIN 270
MAIN 270
MAIN 280
MAIN 280
MAIN 290
MAIN 290
MAIN 300
MAIN 300
MAIN 310
MAIN 310
MAIN 320
MAIN 320
MAIN 330
MAIN 330
NAIN 340
NAIN 340
MAIN 350
```

MAIN 350

```
```

 ISEED = 984376521
 IX = ISEED
 DO 45 I=1,NMOD
 45 NUNIT(I) = 1
 GO TO 55
 C GENERATING A UNIFORMLY DISTRIBUTED RANDON STARTING POINT
40 00 50 I=1,NMOD
CALL RANDU(IX,IY,YFL)
NUNIT(I) = YFL*(NMAX(I)- NMIN(I)+1) + NMIN(I)
IX = IY
50 CONTINUE
55 WRITE (6,1300) KDUNT
WRITE (6,2100)
WRITE(6,1400) (NUNIT(I),I=1,NMOD)
LOCATING A FEASIBLE POINT
WRITE (6,2200)
CALL FESIBL
WRITE(6,1410) MOVE,INDEX
IF IMOVE.GT. 20,OR. INDEX.EQ. NMODI, GO TO 9O
GO TO 60
60 WRITE (6,2400)
WRITE(6,14CO) (NUNIT(I),I=1,NMOD)
WRITE(6,1600) CONST(1),CONST(2)
C SEARCHING FOR LOCAL OPTIMUM
WRITE (6,2300)
65 CALL OPTIMZ
IF\MOVE .EQ. OI GO TO 70
GO TO }6
70 WRITE(6,2500)
WRITE(6,1400) (NUNIT(I),I=1,NMOD)
CALL MODULE
CALL RELIAB
CALL CONSTR
WRITE(6,1500) RLBTY
WRITE(6,1600) CONSTII),CONST(2)
90 KOUNT = KOUNT + 1

```
MAIN 360
MAIN 370
MAIN 380
MAIN 390
MAIN 400
MAIN 410
MAIN 420
MAIN 430
MAIN 440
MAIN 450
MAIN 460
MAIN 470
MAIN 480
MAIN 490
MAIN 500
MAIN 510
MAIN 520
MAIN 530
MAIN 540
MAIN 550
MAIN 560
MAIN 570
MAIN 580
MAIN 590
MAIN 600
MAIN 610
MAIN 620
MAIN 630
MAIN 640
MAIN 650
MAIN 660
MAIN 670
MAIN 680
MAIN 690
MAIN 700
MAIN 710

```

 SUBROUTINE DATAIN DATA
 C THIS SUBROUTINE READS AND ECHOCHECKS THE DATA DATA 20
IMPLICIT INTEGER*4 (A-Z) DATA 30
COMMON/MASON/FOR,FREV,LENU,NEDGES,NEDGS1,NNODES,
DATA
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(10C0,4),PP(50), DATA 50
2 PATH(300,50),NMOD,MPATH,PSIGN(300) DATA 60
INTEGER*2 P,PP,PATH
COMMON/OPTM1/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), DATA 80
DATA }7
1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
DATA 90
COMMON/OPTM2/CONST(10),COSTF(50),G(50),RGRADN(50),RIGRDN(50), DATA 100
l RUNIT(50),WUNIT(50),CMCOST,OBJFN,RLBTY,WEIGHT
REAL*4 CONST,COSTF,G,RGRADN,RIGRDN,RUNIT,WUNIT,CMCOST,OBJFN,
1 RLBTY,WEIGHT
DIMENSION TITLE(30)
READ(5,999,END=100)(TITLE(I),I=1,30)
READ(5,1000) NNODES,NMDO,CMCOST,WEIGHT
DO 10 I= 1,NMOD
DATA 110
DATA 120
DATA 130
DATA }14
DATA }15
DATA }16
CATA 170
10 READ(5,1007) KODE(I),NMAX(I),NMIN(I),MUNIT(I),COSTF(I),WUNIT(I),
1 RUNIT(I)
dATA }18
DATA 190
DATA }20
FOR=0
REV=0
DO 40 I = 1,1000
READ(5,1001)P(I,1),P(I,2),P(I,4)
IF(P(I,1)-P(I,2)) 20,50,30
20 FOR=FOR + 1
GO TO 40
30 REV=REV + 1
4 0 ~ C O N T I N U E ~
50 NEDGES=FOR + REV
NEDGSI=NEDGES + 1
FREV=FOR + 1
WRITE(6,1002) (TITLE(I).I=1,30)
WRITE(6,1003)
WRITE(6,1004)
DATA 210
DATA 220
dATA 230
DATA 240
DATA }25
DATA 260
DATA 270
DATA 280
DATA 290
DATA 300
DATA 310
DATA 320
DATA 330
DATA 340
DATA 350

```
```

WRITE(6,1003)
DO 60 [=1,NEDGES
WRITE(6,1005) I,P(I,1),P(I,2),P(I,4) DATA 380
WRITE(6,1003)
6O CONTINUE
WRITE (6,1008)
WRITE(6,1011)
WRITE(6,1009)
WRITE(6,1011)
DO 70 I=1,NMOD
WRITE(G,10IO) I,KODE(I),NMAX(I),NMIN(I),MUNIT(I),COSTF(I),
1 WUNIT(I),RUNIT(I)
WRITE(6:1011)
70 CONTINUE
WRITE(G,1006) CMCOST,WEIGHT
999 FORMAT(15A4)
1000 FORMAT (2I10,2F10.0)
1001 FORMAT (3I10)
1002 FORMAT(1HI,//, [10,30A4,//,T50,'INVENTORY OF BRANCHES',/)
1003 FORMAT (1H+,T38,44('_,))
1004 FORMAT (1H,T38,'| BRANCH |, ORIGIN |'," END |*:
I :MODULE 1.)
1005 FORMAT (1H,T38,4('|',4X,I2,4X),"|')
1006 FORMAT (IHO,T10,'CMCOST=',G13.6,/,T10,'WEIGHT=*,G13.6)
1007 FORMAT(4110,3F10.0)
1008 FORMAT\IHO,T50,'INVENTORY OF MODULES",/)
1009 FORMATIIH,T2O,'I MODULE I',' KODE I',* MAX-UNIT I',
1 'MIN-UNIT '','M DUT OF NI','UNIT COSTFI','UNIT WEGHTI',
1 * RELIABILITY (')
1010 FORMAT(1H ,T20.5(.|',4X,I2.4X),2('|',F10.3),'|',G13.6.'|')
1011 FORMAT(1H+,T20,91('_'))
RETURN
100 CALL EXIT
END
DATA 360
DATA 370
DATA 380
DATA 390
DATA 400
CATA 410
DATA 420
DATA 430
DATA 440
DATA }45
DATA 460
DATA 470
DATA 480
DATA 490
DATA }50
DATA 510
DATA 520
dATA 530
DATA 540
DATA }55
DATA }56
dATA }57
DATA 580
DATA 590
DATA 600
DATA }61
DATA }62
DATA 630
DATA }64
DATA }65
dATA }66
DATA 670
DATA 680
DATA 690

```
35:
```

 SURROUTINE PATHS(INPUT) PATH 10
 C THIS SUBROUTINE ACCEPTS AN INPUT NODE AND FINDS ALL PATHS PATH 20
C STARTING AT THIS NODE PATH 30
IMPLICIT INTEGER*4 (A-Z)
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES, PATH 50
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
2 PATH(300,50),NMOD,MPATH,PSIGN(300)
INTEGER*2 P,PP,PATH
C
DO 5 I=1,NNODES
5 PP(I)=0
PP(INPUT)=1
7 Al=NEDGSl
CYCLE=0
STATUS=1
MARK=0
NSTART=Al
10 CYCLE=CYCLE + 1
DO 100 I=1,NEDGES
IF((I.NE.I).AND.(I.NE.FREV)) GO TO 20
IFI MARK.LT.O, GO TO 120
I START=NSTART
NSTART=A1
MARK=-1
20 FIN=A1 - 1
IF((CYCLE.GT.I).OR.(I.GT.FOR)) GO TO 30
J=P(I,I)
IF(PP(J).EQ.O) GO TO 30
P(Al, 1)=P(I,1)
P(A1, 2)=P{I,2)
P(A1, 3)=A1
P(A1,4)=P(1,4)
Al=A1 + 1
MARK=0
30 A2=ISTART
PATH 30
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), PATH 60
PATH }9
PATH 100
PATH 50
PATH}7
PATH }8
PATH 110
PATH 120
PATH 130
PATH 140
PATH 150
PATH 160
PATH 170
PATH 180
PATH 190
PATH }20
PATH 210
PATH 220
PATH 230
PATH 240
PATH 250
PATH 260
PATH 270
PATH 280
PATH 290
PATH 300
PATH 310
PATH 320
PATH 330
PATH 340
PATH 350

```

36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
```

40 IF(A2.GT.FIN) GO TO 100
IF(P(A2,2).NE.P(I,1)) GO TO 90
IF(P(I,2)-P(A2,1)) 90,90,50
50 IF((CYCLE.EQ.1).AND.(I.LE.FOR) / GO TO }8
A 3=P(A2,3)
60IF(P(A3,2).EQ.P(I,2))GOTO 90
IFl A3.EQ.P(A3,3) 1 GO TO }8
A3=P(A3,3)
GO TO 60
80 MARK=0
P(A1,1)=P(A2,1)
P(A1,2)=P(I,2)
P(A1,3)=A2
P(A1,4)=P(I,4)
A1=A1 + 1
IF(Al.GT.PLENTH) GO TO 110
90 A2=A2 + 1
GO TO 40
100 CONTINUE
IF(REV) 120,120,10
110 WRITE{6,1000)
STATUS=0
120 LEND=Al - 1
RETURN
1000 FORMAT(IH1,35('*'),/,' DIAGNOSTIC - LONGER P ARRAY REQUIRED',
1/.' ",35("*')
ENO

```

PATH 360
PATH 370
PATH 380
PATH 390
PATH 400
PATH 410
PATH 420
PATH 430
PATH 440
PATH 450
PATH 460
PATH 470
PATH 480
PATH 490
PATH 500
PATH 510
PATH 520
PATH 530
PATH 540
PATH 550
PATH 560
PATH 570
PATH 580
PATH 590
PATH 600
PATH 610
PATH 620
```

SUBROUTINE PATHP{OUTPUTY PATH 1O
C THIS SUBROUTINE ITEMIZES ALL THE PATHS STARTING AT INPUT IDEFINED PATH 2O
C BY A CALL TO PATHSI AND ENOING AT THE OUTPUT NODE SPECIFIED. PATH 3O
IMPLICIT INTEGER*4 (A-Z) PATH 4O
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSI,NNODES, PATH 5O
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), PATH 60

```

```

 INTEGER*2 P,PP,PATH
 PATH }8
 C
WRITE(6,1001) P(NEOGS1,1),OUTPUT
WRITE(6,1002)
WRITE(6,1003)
WRITE(6,1002)
NPATH=O
DO 350 I=NEDGSI,LEND
IF((P(I, 2).EQ.OUTPUT) , GO TO 340
GO TO 350
340 CALL TRACE(I)
WRITE(6,1002)
350 CONTINUE
RETURN
PATH 210
1001 FORMAT('1',T35,'INVENTORY OF PATHS',//,T21,'THE FOLLOWING PATHS EXPATH 22O
IIST BETWEEN NODES',I3,'AND',I3,/1 PATH 230
1002 FORMAT{1Ht,T16,62(:)| PATH 240
1003 FORMAT\':T16,"| ROW OF P | TRACE --> NODES | TRACE -->PATH 25O
I MODULES |') PATH 260
END PATH 270

```
```

1:
1:
4:
5:
6:
7:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

```
```

C ThIS SUBROUTINE PRINTS THE ELEMENTS ASSOCIATED WITH THE

```
C ThIS SUBROUTINE PRINTS THE ELEMENTS ASSOCIATED WITH THE
C
C
    ITH ENTRY IN THE P-ARRAY.
    ITH ENTRY IN THE P-ARRAY.
    IMPLICIT INTEGER*4 (A-Z)
    IMPLICIT INTEGER*4 (A-Z)
    COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES,
    COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES,
    1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
    1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
    2 PATH(300,50),NMUD,MPATH,PSIGN(300)
    2 PATH(300,50),NMUD,MPATH,PSIGN(300)
        INTEGER*2 P,PP,PATH
        INTEGER*2 P,PP,PATH
        INTEGER*2 P[4(50)
        INTEGER*2 P[4(50)
C
C
    J=I
    J=I
    K=PPL
    K=PPL
10 PP(K)=P(J,2)
10 PP(K)=P(J,2)
    PI4(K)=P(J,4)
    PI4(K)=P(J,4)
    K=K - 1
    K=K - 1
    IF(P(J,3).EQ.J) GO TO 20
    IF(P(J,3).EQ.J) GO TO 20
    J=P(3,3)
    J=P(3,3)
    GO TO 10
    GO TO 10
20 PP(K)=P(J,1)
20 PP(K)=P(J,1)
    FL=K
    FL=K
30NN=PPL - FL + 1
30NN=PPL - FL + 1
    IF( NN.EQ.O ) GO TO 40
    IF( NN.EQ.O ) GO TO 40
    IFI NN.GT.4,NN=4
    IFI NN.GT.4,NN=4
    LL=FL + NN - L
    LL=FL + NN - L
    WRITE(6,1000)(PP(J),J=FL,LL )
    WRITE(6,1000)(PP(J),J=FL,LL )
    IF( FL.EQ.K ) GO TO 35
    IF( FL.EQ.K ) GO TO 35
    WRITE(6,1001) (PI4(J),J=FL,LL)
    WRITE(6,1001) (PI4(J),J=FL,LL)
    GO TO 45
    GO TO 45
    35 FLI=FL+1
    35 FLI=FL+1
    WRITE(6,1002) I
    WRITE(6,1002) I
    WRITE(6,1001) ( PI4!J),J=FLI,LL )
    WRITE(6,1001) ( PI4!J),J=FLI,LL )
    45 FL=LL+1
    45 FL=LL+1
    GO TO 30
    GO TO 30
    40 NPATH=NPATH+1
    40 NPATH=NPATH+1
    DO 50 J=1,NMOD
    DO 50 J=1,NMOD
```

SUBROUTINE TRACE{I)

```
```

SUBROUTINE TRACE{I)

```
TRAC 10
TRAC 10
TRAC 20
TRAC 30
TRAC 40
TRAC 50
TRAC 60
TRAC 70
TRAC 80
TRAC 90
TRAC 100
TRAC 110
TRAC 120
TRAC 130
TRAC 140
TRAC 150
TRAC 160
TRAC 170
TRAC 180
TRAC 190
TRAC 200
TRAC 210
TRAC 220
TRAC 230
TRAC 240
TRAC 250
TRAC 260
TRAC 270
TRAC 280
TRAC 290
TRAC 300
TRAC 310
TRAC 320
TRAC 330
TRAC 340
TRAC 350

36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
    50 PATH(NPATH.J) \(=0\)

TRAC 360
\(K 1=K+1 \quad\) TRAC 370 DO \(60 \mathrm{~J}=\mathrm{KI}, \mathrm{PPL}\) \(M M=P I 4(J)\)
60 PATH(NPATH,MM) \(=1\)
RETURN


TRAC 380
TRAC 390
TRAC 400

1002 FORMAT( \({ }^{\prime}+1\), T 20,14 )
END

TRAC 410
TRAC 420
TRAC 430
TRAC 440
TRAC 450
```

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35: 100NL=NL+1
PATH 10
THIS SUBROUTINE FINDS ALL THE PATH COMQINATIONS IN
C THEIR BINARY FORM
IMPLICIT INTEGER*4 (A-Z) PATH 40
PATH 30
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSI,NNODES, PATH 50
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), PATH 60

```

```

 INTEGER*2 P,PP,PATH PATH 80
 INTEGER*2 PTAIL(300) PATH 90
 PATH 100
 OO 10 I=1,NPATH
 PTAIL(I) = I
 PSIGN(I) = +1
 10 CONTINUE
 N1 = 1
 N2 = NPATH
 50 IF (PTAIL(NI) EQ. NPATH) GD TO 100
 Kl = PTAIL(NL) + I
 DO 20 I =KI,NPATH
 N2 = N2 + 1
 IF (N2 .GT. PATHL) GO TO 200
 PTAIL(N2) = I
 PSIGN(N2)=-PSIGN(NI)
 INDEX = 0
 OO 30 J=I,NMOD
 PATH(N2,J)=0
 IF(PATH(NI,J).EQ.I .OR. PATH(I.J).EQ.1) GO TO 40
 GO TO 30
 40 PATH(N2.J) = 1
 INDEX = INDEX + 1
 30 CONTINUE
 IF(I.EQ.NPATH) GO TO 20
 IF (INDEX .EQ. NMDD) N2 = N2-I
 20 CONTINUE
    ```

36:

IF (N1.EQ. N2) GO TO 500
GO TO 50
200 WRITE (6.1000)
STATUS \(=0\)
PATH 360

500 MPATH \(=\mathrm{N} 2\)
RETURN
1000 FORMAT(IHI, 39(**) //: DIAGONOSTIC-LONGER PATH ARRAY REQUIRED' \(/ \%\) 1 : * 39 (*)

ENO

PATH 370
PATH 380
PATH 390
PATH 400
PATH 410
PATH 420
PATH 430
PATH 440
```

SUBROUTINE MODULE MODU 10
C THIS SUBROUTINE COMPUTES THE MODULE RELIABILITY AND
C SENSITIVITY OF MODULE RELIABILITY TO THE MODULE REDUNDANCY. MODU
IMPLICIT INTEGER*4 (A-Z)
MODU }3
MODU 40
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES,
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
2 PATH(300,50),NMOO,MPATH,PSIGN(300)
INTEGER*2 P,PP,PATH
COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50),
1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
COMMON/OPTM2/CONST(10),COSTF(50),G(50),RGRADN(50),RIGRDN(50),
1 RUNIT(50), WUNIT(50),CMCCST,OBJFN,RLBTY,WEIGHT
REAL\#}4\mathrm{ CONST,COSTF,G,RGRADN,RIGRDN,RUNIT,WUNIT,CMCOST,OBJFN,
1 RLBTY,WEIGHT
REAL*4 DUMMY1,DUMMY2,DUMMY3
C
00 200 K=1,NMOD
IF(KDOE(K) .EQ. O) GO TO 100
DUMMYI = RUNIT(K)** MUNIT(K)
DUMMY3 = - MUNIT(K) * ALOG(RUNIT(K))
G(K) = 1.0
DUMMY2 = 1.0
NM = NUNIT(K) - MUNIT(K)
IF(NM.EQ. O) GO TO 2O
OO 10 I =1,NM
OUMMY2 = DUMMY2 * OUMMY3/I
G(K) = G(K) + OUMMY2
10 CONTINUE
20G(K)=G(K)* DUMMYI
RIGRDN(K)= DUMMY1 * DUMMY2 * DUMMY3/(NM+1)
GO TO 200
100 DUMMY1 = RUNIT(K)
DUMMY2 = DUMMYI**NUNIT(K)
G(K) = DUMMY2
NM = NUNIT(K) - MUNIT(K)
MODU 50
MOCU }6
MODU }7
MODU }8
MOCU 90
MODU }20
MODU 110
MOCU 120
MODU 130
MODU 140
MODU 150
MODU 160
MODU 170
MODU 180
MOCU }19
MODU 200
MODU 210
MODU 220
MODU 230
MODU 240
MODU 250
MODU 260
MODU 270
MODU 280
MODU 290
MODU 300
MODU 310
MOCU 320
MODU 330
MODU 340
MOCU 350

```
```

36:
37:
38:
39:
40:
41:
42:
43:
44:
IF(NM .EQ. O) GU TO 120
UO 110 I=1,NM
DUMMY2 = DUMMY2 * ((1.-DUMMY1)/DUMMY1) * (NUNIT(K)-1+1)/I
G(K) = G(K) + OUMMY2
110 cONTINUE
120 RIGRDN(K) = DUMMY2 * (1.-DUMMY1) * MUNIT(K)/(NM+1)
200 CONTINUE
RETURN
END

```
MOCU 360
MODU 370
MOCU 380
MOCU 390
MODU 400
MODU 410
MODU 420
MODU 430
MODU 440
10 CONTINUE RELI 250
```

SUBROUTINE RELIAB

```
SUBROUTINE RELIAB
C THIS SUBROUTINE CALCULATES THE SYSTEM RELIABILITY FROM THE RELI 20
C THIS SUBROUTINE CALCULATES THE SYSTEM RELIABILITY FROM THE RELI 20
C
C
        MODULE RELIABILITIES.
        MODULE RELIABILITIES.
        IMPLICIT INTEGER*4 (A-Z)
        IMPLICIT INTEGER*4 (A-Z)
            COMMON/MA SON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES,
            COMMON/MA SON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES,
        1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
        1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
        2 PATH(300,50),NMDD,MPATH,PSIGN(300)
        2 PATH(300,50),NMDD,MPATH,PSIGN(300)
INTEGER*2 P,PP,PATH RELI
INTEGER*2 P,PP,PATH RELI
COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), RELI 90
COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), RELI 90
1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
COMMON/OPTM2/CONST(10),COSTF(50),G(50),RGRADN(50),RIGRDN(50),
COMMON/OPTM2/CONST(10),COSTF(50),G(50),RGRADN(50),RIGRDN(50),
L RUNIT(50),WUNIT(50),CMCOST,OBJFN,RLBTY,WEIGHT
L RUNIT(50),WUNIT(50),CMCOST,OBJFN,RLBTY,WEIGHT
REAL*4 CONST,COSTF,G,RGRADN,RIGRDN,RUNIT,WUNIT,CMCOST,OBJFN,
REAL*4 CONST,COSTF,G,RGRADN,RIGRDN,RUNIT,WUNIT,CMCOST,OBJFN,
1 RLBTY,WEIGHT
1 RLBTY,WEIGHT
REAL*4 GPATH
REAL*4 GPATH
C
C
    RLBTY = 0.0
    RLBTY = 0.0
    DO 10 I= 1,MPATH
    DO 10 I= 1,MPATH
    GPATH=PSIGN(I)
    GPATH=PSIGN(I)
    DO 20 J=1,NMOD
    DO 20 J=1,NMOD
    IF (PATH(I,J) .EQ. 0) GO TO 20
    IF (PATH(I,J) .EQ. 0) GO TO 20
    GPATH = GPATH*G(J)
    GPATH = GPATH*G(J)
20 CONTINUE
20 CONTINUE
RLBTY = RLBTY + GPATH
RLBTY = RLBTY + GPATH
10 CONTINUE
10 CONTINUE
RETURN
RETURN
    END
    END
END REL
```

END REL

```
RELI
RELI
RELI
RELI
RELI 70
RELI 80
RELI 100
RELI 110
RELI 120
RELI 130
RELI 140
RELI 150
RELI 160
RELI 170
RELI 180
RELI 190
RELI 200
RELI 210
RELI 220
RELI 230
RELI 240
RELI 260
RELI 270
```

SUBROUTINE SENSE
C THIS SUBRQUTINE DETERMINES THE SENSITIVITY OF THE SYSTEM SENS 20
C RELIABILITY TO MODULE REDUNDANCIES. SENS 3O
IMPLICIT INTEGER*4 (A-Z)
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSI,NNODES
SENS 40
L NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), SENS 60
2 PATH(300,50),NMOD,MPATH,PSIGN(300) SENS 70
INTEGER*2 P,PP,PATH
COMMON/OPTM1/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50),
SENS }8
1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
COMMON/OPTM2/CONST(10),COSTF(50),G(50),RGRADN(50),RIGRDN(50),
1 RUNIT(50), WUNIT(50), CMCOST,OBJFN,RLBTY,WEIGHT
REAL*4 CONST,COSTF,G,RGRADN,RIGRON,RUNIT,WUNIT,CMCOST,OBJFN,
1 RLBTY,WEIGHT
REAL*4 DUMMY(50)
C
DO 10 [=1,NMOD
10 DUMMYII) = G(I)
DO 100 I=1,NMOD
DO 90 J=1.NMOD
90G(J)= DUMMY(J)
G(I) = 1.0
CALL RELIAB
RGRADN(I) = RLBTY
G!I) = 0.0
CALL RELIAB
RGRAON(I) = (RGRADN(I)-RLBTY) * RIGRDN(I)
100 CUNTINUE
DO 150 I= l,NMOD
150G(I) = DUMMY(I)
RETURN
END

```
- SUBROUTINE CONSTR

CONS
CONS
C THIS SUBROUTINE COMPUTES THE SYSTEM CONSTRAINTS.
CONS20
            IMPLICIT INTEGER*4 (A-Z)
            COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES,
                CONS
    1 NPATH,PATHL, PLENTH, PPL,REV,STATUS, P(1000,4),PP(50),
CONS 50
    2 PATH (300,50), NMOD, MPATH, PSIGN(300)
CONS 60
INTEGER*2 P,PP,PATH
CONS
    COMMON/OPTML/NUNIT(50), NMAX(50), MUNIT(50), KODE(50),NSORT(50), CONS 80
    1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
CONS 90
COMMON/OPTM2/CONST(10), COSTF(50),G(50), RGRADN(50), RIGRDN(50), CONS 100
    1 RUNIT(50), WUNIT(50), CMCOST,OBJFN,RLBTY,WEIGHT CONS 110
    REAL* 4 CONST, COSTF,G,RGRADN,RIGRDN,RUNIT, WUNIT, CMCOST, OBJFN,
    1 RLBTY,WEIGHT
C
    CONST(1) \(=0.0\)
    CONST(2) \(=0.0\)
    DO \(10 \quad \mathrm{I}=1\), NMOD
    CONST(1) \(=\operatorname{CONST}(1)+\operatorname{NUNIT(I)*COSTF(I)}\)
    CONST(2) \(=\) CONST(2) + NUNIT(I)*WUNIT(I)
10 CONTINUE
    CONST(1) \(=\) CONST(1) - CMCOST
    CONST(2) \(=\) CONST(2) - WEIGHT
    RETURN
    END
CONS 120
CONS 130
CONS 140
CONS 150
CONS 160
CONS 170
CONS 180
CONS 190
CONS 200
CONS 210
CONS 220
CONS 230
CONS 240
```

C THIS SUBROUTINE F

```
C THIS SUBROUTINE F
FESI
FESI
1 0
1 0
THIS SUBROUTINE FINDS THE FEASIBLE SOLUTION BY THE METHOD
THIS SUBROUTINE FINDS THE FEASIBLE SOLUTION BY THE METHOD
C OF WEIGHTED PERPENDICULARS. FESI 30
C OF WEIGHTED PERPENDICULARS. FESI 30
    IMPLICIT INTEGER*4 (A-Z) FESI 40
    IMPLICIT INTEGER*4 (A-Z) FESI 40
    COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSI,NNODES,
    COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSI,NNODES,
    1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), FESI 60
    1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), FESI 60
    2 PATH(300,50),NMOD,MPATH,PSIGN(300) FESI 70
    2 PATH(300,50),NMOD,MPATH,PSIGN(300) FESI 70
    INTEGER%2 P,PP,PATH FESI 80
    INTEGER%2 P,PP,PATH FESI 80
    COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), FESI 90
    COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), FESI 90
        1 NMIN(50),FLAG,INDEX,MOVE,NONZRO FESI 100
        1 NMIN(50),FLAG,INDEX,MOVE,NONZRO FESI 100
        COMMON/OPTM2/CONST(10),COSTF(50),G(50),RGRADN(50),RIGRDN(50), FESI 110
        COMMON/OPTM2/CONST(10),COSTF(50),G(50),RGRADN(50),RIGRDN(50), FESI 110
    i RUINIT(50),WUNIT(50),CMCOST,OBJFN,RLBTY,WEIGHT
    i RUINIT(50),WUNIT(50),CMCOST,OBJFN,RLBTY,WEIGHT
    REAL*4 CONST
    REAL*4 CONST
        REAL*4 Z(50),ZMIN,S,DUMMY 1,ZMAX
        REAL*4 Z(50),ZMIN,S,DUMMY 1,ZMAX
C
C
    MOVE = O
    MOVE = O
    INDEX = O
    INDEX = O
    5 \mp@code { C A L L ~ C O N S T R }
    5 \mp@code { C A L L ~ C O N S T R }
    WRITE (6,1400) (NUNIT(I), I=1,NMOD )
    WRITE (6,1400) (NUNIT(I), I=1,NMOD )
    WRITE(6,1600) CONST(1),CONST(2)
    WRITE(6,1600) CONST(1),CONST(2)
    IF(CONST(1).LE. 0.0 .AND. CONST(2).LE. O.0) GO TO 1000
    IF(CONST(1).LE. 0.0 .AND. CONST(2).LE. O.0) GO TO 1000
    IF(CONST!1).LE. 0.0) GO TO 30
    IF(CONST!1).LE. 0.0) GO TO 30
    S = CONST(I)
    S = CONST(I)
    DUMMYL = 0.0
    DUMMYL = 0.0
    00 10 I= 1,NMOD
    00 10 I= 1,NMOD
10 DUMMYI = DUMMYI + NUNIT(I)*COSTF(I)
10 DUMMYI = DUMMYI + NUNIT(I)*COSTF(I)
    DO 20 I=1,NMOD
    DO 20 I=1,NMOD
20 2(I)=-CONST(1) * COSTF(I)
20 2(I)=-CONST(1) * COSTF(I)
30 IF(CONST(2) LE. O.0) GO TO 50
30 IF(CONST(2) LE. O.0) GO TO 50
    S = S + CONST(2)
    S = S + CONST(2)
    DO 40 I=1,NMOD
    DO 40 I=1,NMOD
40 Z(I)= Z(I) - CONST(2) * WUNITII)
40 Z(I)= Z(I) - CONST(2) * WUNITII)
50 DO 60 I= L,NMOD
50 DO 60 I= L,NMOD
60Z(I)=+Z(I)/S
```

60Z(I)=+Z(I)/S

```
```

 ZMAX = ABS(Z(1))
 DO 7O J=2,NMOD
 IF (ZMAX .LT. ABS(Z(J))) ZMAX = ABS(Z(J))
 70 CONTINUE
 OO 80 [=1,NMOD
 IF(Z(I)) 90,80,100
 90 Z(I) = (Z(I)/ZMAX)*2. - 0.5
 Z(I) = AINT(Z(I))
 go TO 80
 100 Z(I) = (Z(I)/ZMAX)*2. * 0.5
Z(I) = AINT(Z(I))
80 CONTINUE
INDEX = 0
MOVE = MOVE + I
DO 120 I=1,NMOD
NUNIT(I) = NUNIT(I) + Z(I)
IF(NUNIT(I).LT. NMINII) .OR. NUNIT(I).GT.NMAX(I)) INDEX=INDEX+I
IF(NUNIT(I) .LT. NMIN(I)) NUNIT(I) = NMIN(I)
IF(NUNIT(I) .GT. NMAX(I)) NUNIT(I) = NMAX(I)
120 CONTINUE
IF (MOVE.GT. 20 .OR. INDEX.EQ. NMOD) GO TO 999
GO TO 5
999 WRITE (6,2500)
1000 RETURN
1400 FORMAT(1HO,1,10x, NUNIT(I) =' 20151
1600 FORMAT(IHO,/,30X,'CONSTRAINT(1)=',G13.6./1,30X,'CONSTRAINT(2) =',FESI 610
1 G13.6) FESI 620
2500 FORMAT(1HO,////,30X,'FESIBL POINT CAN NOT BE LOCATED',////) FESI 630
END
FESI }64

```
```

 SUBROUTINE SORT SORT
 SORT
 10
 C THIS SUBROUTINE ARRANGES THE GRADIENT VECTOR IN ASCENDING OREER. SORT 2O
IMPLICIT INTEGER*4 (A-Z) SORT
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES, SORT
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(5G), SORT
2 PATH(300,50),NMOD,MPATH,PSIGN(300) SORT
INTEGER*2 P,PP,PATH SORT
COMMON/OPTM1/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), SORT
SORT }8
1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
COMMON/OPTM2/CONST(10),COSTF(50),G(50),RGRADN(50),RIGRDN(50),
1 RUNIT(50),WUNIT(50),CMCOST,OBJFN,RLBTY,WEIGHT
REAL*4 CONST,COSTF,G,RGRADN,RIGRDN,RUNIT,WUNIT,CMCOST,OBJFN,
l RLBTY,WEIGHT
REAL*4 GRDMIN,DUMMY(50)
C
DO 5 I=1,NMOD
DUMMY(I) = RGRADN(I)
5 ~ C O N T I N U E ~
NONZRO = O
DO 10 I= 1,NMOD
IF(ABSIDUMMY(I)).LT. 1.E-15) GO TO 10
NONZRO = NONZRO + 1
10 CONTINUE
DO 20 1=1,NONZRO
GRDMIN = 1.E30
DO 30 J=1,NMOD
IF(ABS(DUMMY(J)) .LT. 1.E-15) GO TO 30
II=I-L
IF(I1 .EQ.O) GO TO 50
DO 40 K=1,11
IF(J .EQ. NSORT(K)) GO TO 30
40 CONTINUE
5 0 ~ I F (G R D M I N ~ . L E . ~ A B S (D U M M Y ~ (J))) ~ G O ~ T O ~ 3 0 ~
GRDM[N = ABS(DUMMY (J))
NSORT(I)= J
SORT 90
SORT 100
SORT 110
SORT 120
SORT 130
SORT 140
SORT 150
SORT 160
SORT 170
SORT 180
SORT 190
SORT 200
SORT 210
SORT 220
SORT 230
SORT 240
SORT 250
SORT 260
SORT 270
SORT 230
SORT 290
SORT 300
SORT 310
SORT 320
SORT 330
SORT 340
SORT 350

```

39: RETURN

SORT 370
END
```

1:
2:
*
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

```
```

SUBROUTINE OPTIM

```
SUBROUTINE OPTIM
THIS SUBROUTINE CHECKS FOR AN IMPROVED FEASIBLE SOLUTION. OPTI 20
THIS SUBROUTINE CHECKS FOR AN IMPROVED FEASIBLE SOLUTION. OPTI 20
        IMPLICIT INTEGER*4 (A-Z) OPTI
        IMPLICIT INTEGER*4 (A-Z) OPTI
        COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSI,NNDDES,
        COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSI,NNDDES,
THIS SUBROUTINE CHECKS FOR AN IMPROVED FEASIBLE SOLUTION. OPTI 20
THIS SUBROUTINE CHECKS FOR AN IMPROVED FEASIBLE SOLUTION. OPTI 20
        1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
        1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
        2 PATH(300,50),NMOD,MPATH,PSIGN(300)
        2 PATH(300,50),NMOD,MPATH,PSIGN(300)
        INTEGER*2 P,PP,PATH OPTI }7
        INTEGER*2 P,PP,PATH OPTI }7
        COMMON/OPTML/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), OPTI }8
        COMMON/OPTML/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), OPTI }8
        1 NMIN(50), FLAG,INDEX,MOVE,NONZRO
        1 NMIN(50), FLAG,INDEX,MOVE,NONZRO
        COMMON/OPTM2/CONST(10),COSTF(50),G(50),RGRADN(50),RIGRDN(50),
        COMMON/OPTM2/CONST(10),COSTF(50),G(50),RGRADN(50),RIGRDN(50),
        I RUNIT(50),WUNIT(50),CMCOST,OBJFN,RLBTY,WEIGHT
        I RUNIT(50),WUNIT(50),CMCOST,OBJFN,RLBTY,WEIGHT
        REAL*4 CONST,COSTF,G,RGRAON,RIGRDN,RUNIT,WUNIT,CMCOST,OBJFN,
        REAL*4 CONST,COSTF,G,RGRAON,RIGRDN,RUNIT,WUNIT,CMCOST,OBJFN,
        l RLBTY,WEIGHT
        l RLBTY,WEIGHT
        DIMENSION NUNITI(50)
        DIMENSION NUNITI(50)
C
C
    MOVE = 0
    MOVE = 0
        1 OO 10 I = 1,NMOO
        1 OO 10 I = 1,NMOO
        NUNITI(I) = NUNIT(I)
        NUNITI(I) = NUNIT(I)
    10NUNIT(I)=NUNIT(I) + RGRADN(I)
    10NUNIT(I)=NUNIT(I) + RGRADN(I)
        OO 20 I=1,NMOD
        OO 20 I=1,NMOD
        IF(NUNIT(I).LT.NMIN(I) .OR.NUNIT(I).GT.NMAX(I)) GO TO 100
        IF(NUNIT(I).LT.NMIN(I) .OR.NUNIT(I).GT.NMAX(I)) GO TO 100
    20 CONTINUE
    20 CONTINUE
        CALL CONSTR
        CALL CONSTR
        IF(CONST(1).GT. 0.0 .OR. CDNST(2).GT. O.O) GO TO 100
        IF(CONST(1).GT. 0.0 .OR. CDNST(2).GT. O.O) GO TO 100
        CALL MODULE
        CALL MODULE
    CALL RELIAB
    CALL RELIAB
    IF (RLBTY .LE. DBJFN) GO TO 100
    IF (RLBTY .LE. DBJFN) GO TO 100
    MOVE = MOVE + 1
    MOVE = MOVE + 1
    OBJFN = RLBTY
    OBJFN = RLBTY
        GO TO 999
        GO TO 999
100 DO 30 I=1,NMOD
100 DO 30 I=1,NMOD
    30 NUNIT(I) = NUNITI(I)
    30 NUNIT(I) = NUNITI(I)
999 RETURN
999 RETURN
END
END
    PATH(300,50),NMOD,MPATH,PSIGN(300) OPTI
```

 PATH(300,50),NMOD,MPATH,PSIGN(300) OPTI
    ```
OPTI 10
        30
    OPTI 30
OPT I40
OPTI 50
60
    OPTI 80
OPTI 100
OPTI 100
OPTI 110
OPTI 120
    OPTI 130
OPTI 140
OPTI 150
OPTI 160
OPTI 170
OPTI 180
OPTI 190
OPTI 200
OPTI 210
OPTI 220
OPTI 230
OPTI 230
OPTI 240
OPTI 250
OPTI 260
OPTI 270
OPTI 280
OPTI 290
OPTI 300
OPTI 310
OPTI 320
OPTI 330
OPTI 340
```

 SUSROUTINE OPTIML OPTI10
 C THIS SUBROUTINE FINDS A LOCALLY OPTIMAL SOLUTION. OPTI 2O
IMPLICIT INTEGER*4 (A-Z) OPTI 30
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSI,NNODES,
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), OPTI 50
2 PATH(300,50),NMOD,MPATH,PSIGN(300) OPTI 60
INTEGER*2 P,PP,PATH
OPTI }7
COMMON/OPTM1/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), OPTI 80
1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
OPTI }9
COMMON/OPTM2/CONST(10),COSTF(50),G(50),RGRADN(50),RIGRDN(50), OPTI IOO
l RUNIT(50),WUNIT(50),CMCOST,OBJFN,RLBTY,WEIGHT OPTI 11O
REAL*4 CONST,COSTF,G,RGRADN,RIGRDN,RUNIT,WUNIT,CMCOST,OBJFN, OPTI 120
1 RLBTY,WEIGHT
REAL*4 DUMMY(50)
C
CALL MODULE
CALL RELIAB
OBJFN = RLBTY
CALL SENSE
CALL SORT
CALL CONSTR
WRITE(6,1400) (NUNIT(I),I=1,NMOD)
WRITE(6,15CO) OBJFN
WRITE(6,1600) CONST(1),CONST(2)
DO 5 I=1,NMOD
5 \mp@code { D U M M Y (I) ~ = ~ R G R A D N (I) }
DO 200 I= 1,NONZRO
DO 110 J=1,NMOD
OPTI
OPTL 140
OPTI 150
OPTI 160
OPTI 170
OPTI 180
OPTI 190
OPTI 200
OPTI 210
OPTI }22
OPTI 230
OPTI 240
OPTI 250
OPTI 260
OPTI 270
OPTI 280
110 RGRADN(J)=0.0
II = NONZRO - I + I
K = NSORT(II)
RGRADN(K)= DUMMY(K)/ABS(DUMMY(K))
CALL OPTIM
IF(MOVE EG. O) GO TO 200
GO TO 1000
OPTI 250
OPTI 300
OPTI 310
OPTI 320
OPTI 330
OPTI 340
OPTI 350

```
```

36: 200 CONTINUE
37: 1000 RETURN
38: 1400 FORMAT(1HO,/,10X,'NUNIT(I) =',20I5)
39
39:
40:
41:
42:
OPTI 360
OPTI 370
1500 FORMAT (1HO,//.30X,'SYSTEM RELIABILITY =',G13.6) OPTI 390
1600 FORMAT(1HO,/,30X,'CONSTRAINT(1) =',G13.6,//,30X,'CONSTRAINT(2) =',OPTI 400
1 G13.6)
END
20

```

SYSTEM AVAILABILITY OPTIMIZATION
```

C
C
SYSTEM AVAILABILITY OPTIMIZATION MAIN 20
MAIN
10
C MODIFIED INTEGER GRADIENT METHOD
MAIN
30
IMPLICIT INTEGER*4 (A-Z) NAIN 40
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES, MAIN 50

```

```

 2 PATH(300,50),NMOD,NMOD1,MPATH,PSIGN(300) MAIN 70
 INTEGER*2 P,PP,PATH MAIN 80
 COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), MAIN GO
 1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
 MAIN 100
 COMMON/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50),LAMDA(50), MAIN 110
 1 MTGRDN(50),PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50),AGRADT, MAIN 120
 2 ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,CMCOST, MAIN 13O
 3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT NAIN 14O
 REAL*4 AGRADN,CONST,COSTF,G,LAMDA,MTGRON,PGRADN,RGRADN,RIGRDN, MAIN 150
 1 WUNIT,AGRADT,ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,MAIN 16O
 2 CMCUST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTMAIN 17O
 REAL*& YFL,FCOST,MCOST
 MAIN 180
 C
PATHL = 300
PLENTH = 1000
PPL = 50
10 CALL DATAIN
READ(5,1000) INNOD,OUTNOD
CALL PATHS(INNOD)
IF(STATUS) 20,10,20
20 CALL PATHP(OUTNOD)
260
WRITE (6,1100)
DO 30 L=1,NPATH
MAIN 290
WRITE(6,1200) L,(PATH(L,M),M=1,NMOD)
30 CONTINUE
CALL PATHC
WRITE (6,1001) NPATH,MPATH
WRITE (6,2600)
DO 35 L=1,MPATH MAIN 350

```
WRITE(6,2700) L,PSIGN(L), (PATHIL,M), M=1, NMOD)

MAIN 360
35 CONTINUE
KOUNT \(=1\)
ISEED \(=984376521\)
\(I X=\) ISEED
DO \(45 \mathrm{I}=\mathrm{L}\), NMOD
45 NUNIT(I) \(=1\)
\(T M=T M I N+(T M A X-T M I N) / 2\).
GO TO 55
generating a uniformly distributed random starting point

\section*{DO \(50 \quad 1=1\), NMOD}

CALL RANDU(IX,IY,YFL)
NUNIT(I) \(=\) YFL*(NMAX(I)-NMIN(I)+1) + NMIN(I)
\(I X=I Y\)
50 CUNTINUE
CALL RANDU(IX,IY,YFL)
\(T M=Y F L *(T M A X-T M I N)+T M I N\)
\(I X=I Y\)
\(55 \operatorname{WRITE}(6,1300)\) KOUNT
WRITE 6,2100\()\)
WRITE( \(6,14 C 0\) ) (NUNIT(I), I=1,NMOD)
WRITE(6,1450) TM
LOCATING A FEASIBLE POINT
WRITE (6, 2200 )
CALL FESIBL
WRITE(6,1410) MOVE,INDEX
IF (MOVE .GT. 20 .OR. INDEX .EQ. NMODI) GO TO 90
GO TO 60
\(60 \operatorname{WRITE}(6,2400)\)
WRITE(6,1400) (NUNIT(I),I=1,NMOD)
WRITE(6,1450) TM
WRITE(6,1600) CONST(1),CONST(2)
C SEARCHING FOR LOCAL OPTIMUM
WRITE 6,2300\()\)
65
CALL UPTIMZ
IF(MOVE.EQ. O) GO TO 70

MAIN 370
MAIN 380
MAIN 390
MAIN 400
MAIN 410
MAIN 420
MAIN 430
MAIN 440
MAIN 450
MAIN 460
MAIN 470
MAIN 480
MAIN 490
MAIN 500
MAIN 510
MAIN 520
MAIN 530
MAIN 540
MAIN 550
MAIN 560
MAIN 570
MAIN 580
MAIN 590
MAIN 600
MAIN 610
MAIN 620
NAIN 630
MAIN 640
MAIN 650
MAIN 660
MAIN 670
MAIN 680
MAIN 690
MAIN 700
MAIN 710


108:
109:
110:
111:

2500 FORMAT (1HO,////,50X, "THE OPTIMAL POINT IS')
MAIN1080
2600 FORMAT 1 IHD. \(/ /\), T2O, 'PATHS AND PATH COMBINATIONS IN BINARY CODE',/) MAINIO \(O 0\)
2700 FORMAT (1HO, T16, \({ }^{\circ}\) PATHC \(\left.{ }^{*}, 13 .{ }^{\circ}=1,12,4 \mathrm{X}, 5012\right)\)
MAIN1100
MAIN1110
```

C THIS SUBROUTINE READS AND ECHOCHECKS THE DATA DATA 20
IMPLICIT INTEGER*4 {A-Z} DATA 30
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSI,NNODES, DATA 40
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), DATA 50
2 PATH(300,50),NMOD,NMODL,MPATH,PSIGN(300) DATA 60
INTEGER*2 P,PP,PATH DATA 70
COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), DATA 80
I NMIN(50),FLAG,INDEX,MOVE,NONZRO DATA 90
COMMON/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50),LAMDA(50), DATA 100
I MTGRON(50),PGRADN(50),RGRADN(50),R[GRON(50),WUNIT(50),AGRADT, DATA 110
2 ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,CMCOST, DATA 120
3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT DATA 130
REAL*4 AGRADN,CONST,CDSTF,G,LAMDA,MTGRON,PGRADN,RGRADN,RIGRDN, DATA 140
1 WUNIT,AGRADT,ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,DATA I5O
2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTDATA 1GO
DIMENSION TITLE(30) DATA 170
C
READ(5,999,END=100)(TITLE(I),I=1,30)
READ(5,1000) NNODES,NMOD,CMCOST,WEIGHT,INCOM,COSTMF,TLF,TEM,
DATA 210
OO 10 I=1,NMOD
DATA 220
10 READ(5,1007) KODE(I),NMAX(I),NMIN(I),MUNIT(I),COSTF(I),WUNIT(I), DATA 230
1 LAMDO(I)
DATA 240
NMODDL =NMOD + 1 DATA 250
FOR=0
REV=0
DO 40 I=1,1000
READ(5,1001)P(I,1),P(I, 2),P(I,4)
IF(P(I,1)-P(I,2)) 20,50,30
20 FOR=FOR + 1
GO TO 40
30 REV=REV + 1
40 CONTINUE
5 0 ~ N E D G E S = F O R ~ + ~ R E V ~
DATA 10
DATA 180
DATA 190
DATA 200
I TSC,TMIN,TMAX,TSTEP,INTVL
DATA 260
DATA 270
DATA 280
DATA 290
DATA 300
DATA 310
DATA 320
DATA 330
DATA 340
DATA 350

```
```

 NEOGS1=NEDGES + 1 DATA 360
 FREV=FOR +1 DATA 370
 WRITE(6,1002) (TITLE([),I=1,30) DATA 380
 WRITE(6,1003)
 WRITE (6,1004)
 WRITE(6,1003)
 DO 60 I=1,NEDGES
 WRITE(6,1005) I,P(I,1),P(I,2),P(I,4)
 WRITE(6.1003)
 60 CONTINUE
WRITE (6,1008)
WRITE(6,1011)
WRITE(6,1009)
WRITE(6,1011)
DO 70 I=1,NMOD
WRITE(6,1010) I,KODE(I),NMAX(I),NMIN(I),MUNIT(I),COSTF(I),
l WUNIT(I),LAMDA(I)
WRITE(6,1011)
70 CONTINUE
WRITE(6,1006) CMCOST,WEIGHT,INCOM,COSTMF,TLF,TEM,TSC,TMIN,TMAX,
1 TSTEP,INTVL
999 FORMAT(15A4)
1000 FORMAT (2I10,5F10.0/6F10.0)
1001 FORMAT (3110)
1002 FORMAT(1H1,//,T1O,30A4,//,T50,"INVENTORY OF BRANCHES',/)
1003 FORMAT (1H+,T38.44(', '))
1004 FORMAT {IH,T38.'| BRANCH |",* ORIGIN |*,* END I',
1 'MODULE |')
1005 FORMAT (1H,T38,4(:1, 4X,I2,4X), 10)
1006 FORMAT (1HO,T10, 'CMCOST=, G13.6,/,T10,'WEIGHT=,,G13.6,/,T10,
1 INNCOM =, G13.6,/,TIO,'COSTMF=,,G13.6./,T1O,'TLF =, G13.6./,

```

```

 3 G13.6,/,T10,'TMAX = ,G13.6./,T10,'TSTEP =',G13.6./,T10,
 4 'INTVL =',G13.6)
 1007 FORMAT(4ILO,2F10.0,E20.0)
lOOQ FORMAT(1HO,T50,'INVENTORY OF MODULES*,1)
DATA 390
DATA 400
DATA 410
DATA 420
DATA }43
DATA 440
DATA 450
DATA 450
DATA 460
DATA 470
DATA }48
DATA 490
DATA 500
DATA 510
DATA 520
DATA 530
DATA 540
DATA 540
DATA 560
DATA 570
DATA 580
DATA 590
DATA 600
DATA 610
DATA 620
DATA 630
DATA 640
DATA 650
DATA 660
DATA 670
DATA 680
DATA }69
DATA }70
DATA }71

```

1 : MIN-UNIT \(\left.\right|^{\prime \prime}\), M OUT OF NI', 'UNIT COSTFI','UNIT WEGHTI'.
1 : FAILURE RATE |')
 1011 FORMAT(1H+,T20,921'_, )) RETURN
100 CALL EXIT
END

DATA 720
DATA 730
DATA 740
DATA 750
DATA 760
DATA 770
DATA 780
DATA 790


MODU 360
G(K) = DUMMY2
NM \(=\) NUNIT \((K)-\operatorname{MWNIT}(K)\)
MODU 370
MODU 380
IF(NM eEQ. O) GO :O 120
MODU 390
\(00110 \quad \mathrm{I}=1\), NM
DUMMYZ \(=\) DUMMYZ \(*((1 .-\) DUPMMY \() /\) DUMMYY \() *(\) NUNIT \((K)-I+I) / I\)
\(G(K)=G(K)+\) DUMMYZ
110 CGNTINUE
MOCU 400
MODU 410
MODU 420
MODU 430
120 RIGRDN(K) \(=\) DUMMY2 \(2(1 .-\) DUMMY1) * MUNIT(K)/(NM+1)
200 CONTINUE
RETURN
END
MODU 440
MODU 450
MODU 460
MODU 470

```

SUBROUTINE SENSE SENS 10
C THIS SUBROUTINE DETERMINES THE SENSITIVITY OF THE SYSTEM SENS 20
C RELIABILITY TO MODULE REOUNDANCIES.
IMPLICIT INTEGER*4 (A-Z) SENS
SENS 30
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSI,NNODES, SENS 50
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), SENS 60
2 PATH(300,50),NMOD,NMOD1,MPATH,PSIGN(300) SENS 70
INTEGER*2 P,PP,PATH SENS
COMMON/OPTM1/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), SENS 90
1 NMIN(50),FLAG,INDEX,MOVE,NONZRO SENS 100
COMMON/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50),LAMDA(50), SENS 110
1 MTGRDN(50),PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50),AGRADT,
2 ASYS,COSTMF,INGOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,CMCOST, SENS 130
3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT SENS 140
REAL*4 AGRADN,CONST,COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN, SENS 150
l WUNIT,AGRADT,ASYS,CUSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,SENS 160
2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTSENS 170
REAL*4 DUMMY(50) SENS 180
C
DO 10 I=1,NMOD SENS 200
SENS }19
OUMMY(I)=G(I) SENS 210
DO 100 I=I,NMOD SENS 220
DO 90 J=1,NMOD SENS 230
90 G(J) = DUMMY(J) SENS 240
G(I) = 1.0 SENS 250
CALL RELIAB SENS 260
RGRADN(I) = RLBTY SENS 270
G(I) =0.0 SENS 280
CALL RELIAB SENS 290
RGRADN(I) = (RGRADN(I)-RLBTY)*RIGRDN(I) SENS 300
100 CONTINUE
DO 150 I=1,NMOD
SENS 310
SENS 320
150 G(I) = DUMMY(I) SENS 330
RETURN SENS 340
END SENS 350

```
```

1:
O

```
C THIS SUBROUTINE DETERMINES SYSTEM AVAILABILITY, SYSTEM PROFIT,
```

C THIS SUBROUTINE DETERMINES SYSTEM AVAILABILITY, SYSTEM PROFIT,
C AND SENSITIVITY OF SYSTEM AVAILABILITY AND SYSTEM PROFIT TO EACH
C AND SENSITIVITY OF SYSTEM AVAILABILITY AND SYSTEM PROFIT TO EACH
C MODULE'S REOUNDANCY AND TO SYSTEM MAINTENANCE INTERVAL. A.VLB
C MODULE'S REOUNDANCY AND TO SYSTEM MAINTENANCE INTERVAL. A.VLB
IMPLICIT INTEGER*4 (A-Z) AVLB
IMPLICIT INTEGER*4 (A-Z) AVLB
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSI,NNODES, AVLB
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSI,NNODES, AVLB
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
2 PATH(300,50),NMOD,NMOD1,MPATH,PSIGN(300)
2 PATH(300,50),NMOD,NMOD1,MPATH,PSIGN(300)
INTEGER*2 P,PP,PATH
INTEGER*2 P,PP,PATH
COMMON/OPTM1/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50),
COMMON/OPTM1/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50),
1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
COMMUN/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50),LAMDA(50),
COMMUN/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50),LAMDA(50),
1 MTGRDN(50),PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50),AGRADT,
1 MTGRDN(50),PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50),AGRADT,
2 ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN, PGRADT, PSYS,CMCOST,
2 ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN, PGRADT, PSYS,CMCOST,
3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT
3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT
AVLB }14
AVLB }14
REAL*4 AGRADN,CONST,COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN, AVLB 160
REAL*4 AGRADN,CONST,COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN, AVLB 160
1 WUNIT,AGRADT,ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,AVLB 170
1 WUNIT,AGRADT,ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,AVLB 170
2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTAVLB 180
2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTAVLB 180
REAL*4 DELTA,DUMMY1
REAL*4 DELTA,DUMMY1
EVEN = IFIX((TM/INTVL) + 1.0)
EVEN = IFIX((TM/INTVL) + 1.0)
EVEN = (EVEN/2) * 2
EVEN = (EVEN/2) * 2
IF (EVEN.EQ. O) EVEN = 2
IF (EVEN.EQ. O) EVEN = 2
DELTA = TM/EVEN
DELTA = TM/EVEN
MTBM = 1.0
MTBM = 1.0
DO 10 J=1,NMOD
DO 10 J=1,NMOD
10 MTGRON(J)=0.0
10 MTGRON(J)=0.0
N = EVEN/2
N = EVEN/2
N1 = N-1
N1 = N-1
DO 50 I=1,N
DO 50 I=1,N
T = DELTA * (2*I-1)
T = DELTA * (2*I-1)
call mODULE
call mODULE
CALL RELIAB
CALL RELIAB
RSYS = RLBTY
RSYS = RLBTY
MTBM = MTBM + 4.0 * RSYS
MTBM = MTBM + 4.0 * RSYS
AVLB 190
AVLB 190
C
C
AVLB }20
AVLB }20
AVLB
AVLB
AVLB
AVLB
AVLB
AVLB
C MODULE'S REOUNDANCY AND TO SYSTEM MAINTENANCE INTERVAL. A.VLB
C MODULE'S REOUNDANCY AND TO SYSTEM MAINTENANCE INTERVAL. A.VLB
AVLB 40
AVLB 40
AVLB }5
AVLB }5
AVLB }6
AVLB }6

```
            SUBROUTINE AVLBTY
```

 SUBROUTINE AVLBTY
 0
 0
 AVLB }7
 AVLB }7
 AVLB }8
 AVLB }8
 AVLB }9
 AVLB }9
 AVLB 100
 AVLB 100
 AVLB 110
 AVLB 110
 AVLB 110
 AVLB 110
 AVLB 120
AVLB 120
AVLB 130
AVLB 130
AVLB 150
AVLB 150
AVLB 190
AVLB 190
AVLB 210
AVLB 210
AVLB }22
AVLB }22
AVLB }23
AVLB }23
AVLB 240
AVLB 240
AVLB }25
AVLB }25
AVLB 260
AVLB 260
AVLB }27
AVLB }27
AVLB }28
AVLB }28
AVLB }29
AVLB }29
AVLB 300
AVLB 300
AVLB }31
AVLB }31
AVLB }32
AVLB }32
AVLB }33
AVLB }33
AVLB }34
AVLB }34
AVLB }35

```
AVLB }35
```

```
36: 
```

```
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
```

```
GO TO 130
```

GO TO 130
AVLB 720
140 RGRADT = RGRADT - (LAMDA(I)*(NUNIT(I)-MUNIT(I)+1)// AVLB 730
140 RGRADT = RGRADT - (LAMDA(I)*(NUNIT(I)-MUNIT(I)+1)// AVLB 730
1 (1.-EXP(-LAMDA(I)*TM))) * RGRADN(I)
1 (1.-EXP(-LAMDA(I)*TM))) * RGRADN(I)
130 CONTINUE
130 CONTINUE
DO 150 I=1,NMOD
DO 150 I=1,NMOD
AGRADN(I) = (MDT*MTGRDN(I) + MTBM*(TEM-TSC)*RGRADN(I))/
AGRADN(I) = (MDT*MTGRDN(I) + MTBM*(TEM-TSC)*RGRADN(I))/
1 (MTBM+MDT)**2 AVLB 780
1 (MTBM+MDT)**2 AVLB 780
AVLB 740
AVLB }75
AVLB }76
AVLB }77
PGRADN(I) = INCOM*TLF*AGRADN(I) + DUMMYI*TLF*AGRADN(I)*COSTMF/100.AVLB 790
PGRADN(I) = INCOM*TLF*AGRADN(I) + DUMMYI*TLF*AGRADN(I)*COSTMF/100.AVLB 790
1-COSTF(I)*(1.+(1.-ASYS)*TLF*COSTMF/100.)
1-COSTF(I)*(1.+(1.-ASYS)*TLF*COSTMF/100.)
150 CONTINUE
150 CONTINUE
AGRADT = (MDT*RSYS + MTBM*(TEM-TSC)*RGRADT)/(MTBM+MDT)**2
AGRADT = (MDT*RSYS + MTBM*(TEM-TSC)*RGRADT)/(MTBM+MDT)**2
AGRADT = AGRADT * TSTEP
AGRADT = AGRADT * TSTEP
810
AVLB }82
AVLB 830
PGRADT = (INCOM + DUMMYL*COSTMF/100.) *TLF*AGRADT AVLB 840
PGRADT = (INCOM + DUMMYL*COSTMF/100.) *TLF*AGRADT AVLB 840
1000 RETURN
1000 RETURN
AVLB }85
END
END
AVLB }86

```

```

 SUBROUTINE FESIBL FESI
 THIS SUBROUTINE FINDS THE FEASIBLE SOLUTION BY THE METHOD FESI
 OF WEIGHTED PERPENDICULARS.
 IMPLICIT INTEGER*4 (A-Z)
 COMMUN/MASON/FOR,FREV,LEND,NEDGES,NEDGSL,NNODES,
 FESI
 1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
 2 PATH(300,50),NMOD,NMODI,MPATH,PSIGN(300)
 INTEGER*2 P,PP,PATH
 COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50),
 1 NMIN(50),FLAG,INOEX,MOVE,NONZRO
 COMMON/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50),LAMDA(50),
 1 MTGRON(50),PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50), AGRADT,
 2 ASYS,COSTMF,INCOM,INTVL,MTBM,MOT,OBJFN,PGRADT,PSYS,CMCOST,
 3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT
 REAL*4 AGRADN,CONST,COSTF,G,LAMOA,MTGRDN,PGRADN,RGRADN,RIGRDN,
 1 WUNIT,AGRAOT,ASYS,COSTMF,INCOM, INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,FESI 160
 2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTFESI 170
 REAL*4 Z(50),ZMIN,S,DUMMYL,LMAX
 FESI 180
 MOVE = 0
 INDEX = 0
 5 FLAG=0
 CALL AVLBTY
 CALL CONSTR
 WRITE(6,14OO) (NUNIT(I),I=1,NMOD)
 WRITE (6,1450) TM
 WRITE(6,16C0) CONST(1),CONST{2)
 IFICONST(1).LE. O.O .AND. CONST(2).LE. O.0) GO TO 1000
 IF(CONST(1) .LE. 0.0) GO TO 30
 S = CONST(1)
 DUMMY1 = 0.0
 DO 1O I= L,NMOO
 10 DUMMYI = DUMMYI + NUNIT(I)*COSTF(I)
UO 2J I=I,NMOD
20Z(I)=-CONST(I)* (COSTF(I)*(1.*(1.-ASYS)*TLF*COSTMF/100.)-
FESI 190
FESI 200
FESI 210
FESI 220
FESI 230
FESI 240
FESI 250
FESI 260
FESI 270
FESI 280
FESI 290
FESI 300
FESI 310
FESI 320
FESI 330
FESI 340
FESI 350

```
```

 1 DUMMYI*AGRADN(I)*TLF*COSTMF/100.)
 Z(NMODI)=-CONSTII)*(-DUMMYI*AGRADT*TLF*COSTMF/100.) FESI 370
 FESI 360
 30 IF(CONST(2) .LE. O.0) GO TO 50
 S = S + CONST(2)
 DO 40 I=1,NMOD
 40 Z(I) = Z(I) - CONST(2) * WUNIT(I)
 Z(NMOD1) = Z(NMODI) - CONST(2)*0.0
 50 DO 60 I=1,NMODI
 60 Z(I) = +Z(I)/S
 ZMAX = ABS(Z(1))
 DO 7O J=2,NMODI
 IF (ZMAX .LT. ABS(Z(J))) ZMAX = ABS(Z(J))
 70 cuntinue
DO }80\textrm{I}=1\mathrm{ ,NMOD
IF(Z(I)) 90,80,100
90Z(I)=(Z(I)/ZMAX)*2. - 0.5
Z(I) = AINT(Z(I))
GO TO 80
100Z(I)=(Z(I)/ZMAX)*2.+0.5
Z(I) = AINT(Z(I))
80 CONTINUE
Z(NMODI) = (Z(NMOD1)/ZMAX) * 2.
INDEX = 0
MOVE = MOVE + 1
DO 120 I=1,NMOD
NUNIT(I) = NUNIT(I) + Z(I)
IF(NUNIT(I).LT. NMIN(I) .OR. NUNIT(I).GT.NMAX(I)) INDEX=INDEX+1
IF(NUNIT(I) .LT. NMIN(I)) NUNIT(I) = NMIN(I)
IF(NUNIT(I).GT. NMAX(I)) NUNIT(I) = NMAX(I)
120 CONTINUE
TM = TM + Z(NMOD1) * TSTEP
IF(TM.LT.TMIN .OR. TM.GT.TMAX) INDEX = INDEX+1
IF(TM .LT. TMIN) TM = TMIN
IF(TM.GT. TMAX) TM = TMAX
IF IMOVE.GT. 20 .OR. INDEX .EQ. NMODI) GO TO 999
GO TO 5
FESI 370
FESI 380
FESI 390
FESI 400
FESI 410
FESI 420
FESI 430
FESI }44
FESI 450
FESI }46
FESI }47
FESI 480
FESI 490
FESI 500
FESI }51
FESI 520
FESI 530
FESI 540
FESI }55
FESI 560
FESI 570
FESI 580
FESI 590
FESI 600
FESI 610
FESI 620
FESI 630
FESI }64
FESI 650
FESI 660
FESI 670
FESI }68
FESI 690
FESI }70
FESI }71

```
```

72: 999 WRITE(6,2500)
FESI }72
73: 1000 RETURN
74: 1400 FORMAT(IHO,/,1OX,'NUNIT(I) =',20I5)
FESI 730
75: 1450 FORMAT (1H0,10X,'TM =',G13.5) FESI 750
76: 1600 FORMAT(1HO,/,30X,'CONSTRAINT(1) =',G13.6,1/,30X,'CONSTRAINT(2) =',FESI 760
77: 1 Gl3.6) FESI 770
78: 2500 FORMAT(1HO,////,30X,'FESIBL POINT CAN NOT BE LOCATED',////)
FESI }78
FESI }79

```
```

 SUBROUTINE SORT SORT10
 C THIS SUBRDUTINE ARRANGES THE GRADIENT VECTOR IN ASCENDING DRDER. SORT 20
IMPLICIT INTEGER*4 (A-Z) SORT
SORT 30
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSI,NNODES, SDRT 40
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), SORT 50
2 PATH(300,50),NMOD,NMODI,MPATH,PSIGN(300) SORT 60
INTEGER*2 P,PP,PATH SORT 70
COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), SORT 80
l NMIN(50),FLAG,INDEX,MOVE,NONZRD SORT 90
CDMMON/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50),LAMDA(50), SORT 100
1 MTGRDN(50),PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50),AGRADT, SORT 110
2 ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,CMCOST, SORT 120
3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT SORT 130
REAL*4 AGRADN,CONST,COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN, SORT 140
I WUNIT,AGRADT,ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,SORT 150
2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTSORT 160
REAL*4 GRDMIN,DUMMY(50)}\mathrm{ SORT 170
DO 5 I= 1,NMOD
DUMMY(I) = AGRADN(I) SORT 200
SORT 180
SORT 190
5 CONTINUE
DUMMY(NMODI 1 = AGRADT
NONZRO =0
DO 10 I=1,NMOD SORT 240
IF(ABS(DUMMY(I)) LT. I.E-15) GO TO 10 SORT 250
NONZRO = NONZRO + 1 SORT 260
IO CONTINUE
DO 20 I=I,NONZRO
GRDMIN = 1.E30
DO 30 J=1;NMOO
IF(ABS{DUMMY(J)) \&T. 1.E-15) GO TO 30
II = I - 1
IF(IL .EQ.OI GO TO 50
DO 40 K=1,Il
IF(J.EQ.NSORT(K)) GO TO }3
SORT 210
SORT 220
NONZRO = O SORT 230
SORT 260
SORT 270
SORT 280
SORT 300
SORT 320
SORT 330
SORT 340
SORT 350

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 36: & 40 & Cuntinue & & & SORT & 360 \\
\hline 37: & 50 & IFIGRDMIN & , LE. ABS(DUMMY & (J)) GO TO 30 & SORT & 370 \\
\hline 38: & & GRDMIN = & ABS(DUMMY (J)) & & SORT & 380 \\
\hline 39: & & NSORT(I) & \(=\mathrm{J}\) & & SORT & 390 \\
\hline 40: & 30 & continue & & & SORT & 400 \\
\hline 41: & 20 & CONTINUE & & & SORT & 410 \\
\hline 42: & & RETURN & & & SORT & 420 \\
\hline 43: & & END & & & SORT & 430 \\
\hline
\end{tabular}
```

SUBROUTINE OPTIM
C THIS SUBROUTINE CHECKS FOR AN IMPROVED FEASIBLE SOLUTION. OPTI
IMPLICIT INTEGER*4 (A-Z)
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES,
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
2 PATH(300,50),NMOD,NMOD1,MPATH,PSIGN(300) OPTI
OPTI 50
OPTI 60
INTEGER*2 P,PP,PATH OPTI
COMMON/OPTM1/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), OPTI 80
l NMIN(50),FLAG,INDEX,MOVE,NONZRO OPTI
90
COMMON/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50),LAMDA(50), OPTI 100
1 MTGRDN(50),PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50),AGRADT,
OPTI 110
ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,CMCOST,
3 RLETY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT OPTI 130
OPTI 120
REAL*4 AGRADN,CONST,COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN, OPTI 140
1 WUNIT,AGRADT,ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,OPTI 150
2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTOPTI 160
REAL*4 TMI
OPTI 170
DIMENSION NUNITI(50)
OPTI 180
C
MOVE = 0
1 DO 10 I = 1,NMOD
NUNITI(I) = NUNIT(I)
10 NUNIT(I) = NUNIT(I) + AGRADN(I)
TMl = TM
TM = TM + AGRAOT * TSTEP
DO 20 I=1,NMOD
IF(NUNIT(I).LT. NMIN(I) .OR. NUNIT(I).GT.NMAX(I)) GO TO 100
20 contINUE
IF(TM.LT.TMIN .OR. TM.GT.TMAXI GO TO 100
FLAG = 1
CALL AVLBTY
IF(ASYS .LE. OBJFN) GO TO 100
CALL CONSTR
IF(CONST(1).GT. 0.0 .OR. CONST(2).GT. 0.0) GO TO 100
MOVE = MOVE + I
OPTI 190
OPTI }20
IF(TM.LT.TMIN •OR. TM.GT.TMAXI GO TO 100
OP
OPTI 240
OPTI 240
OPTI 250
OPTI 260
OPTI 270
OPTI 280
OPTI }29
OPTI 300
OPTI 310
OPTI 320
OPTI 340
OPTI 350

```
21:
22:
23:
24:
25:
26:
27:

```

 THIS SUBROUTINE FINDS A LOCALLY OPTIMAL SOLUTION. OPTI 20
 IMPLICIT INTEGER*4 (A-Z) OPTI
 COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSI,NNODES, OPTI
 OPTI 40
 1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), OPTI 50
 2 PATH(300,50),NMOD,NMODI,MPATH,PSIGN(300) OPTI 60
 INTEGER*2 P,PP,PATH OPTI 70
 COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), OPTI 80
 1 NMIN(50),FLAG,INDEX,MOVE,NONZRO OPTI 90
 COMMON/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50),LAMDA(50),
 OPTI 100
 1 MTGRDN(50),PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50),AGRADT, OPTI 110
 2 ASYS,COSTMF,INCOM,INTVL,MTBM,MOT,OBJFN,PGRADT,PSYS,CMCOST,
 OPTI 120
 3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT
 OPTI 130
 REAL*4 AGRADN,CONST,COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN, OPTI 140
 1 WUNIT,AGRADT,ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,OPTI 150
 2 CMCOST,RLETY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTOPTI 16O
 REAL*4 DUMMY(50) OPTI 170
 C
FLAG=0
CALL AVLBTY
CALL SORT
CALL CONSTR
WRITE(6,14CO) (NUNIT(I),I=1,NMOD)
WRITE(6,1450) TM
WRITE(6,1500) ASYS,PSYS,RSYS OPTI 250
WRITE(6,1600) CONST(1),CONST(2) OPTI 260
OBJFN = ASYS
OO 5 I= 1,NMOD
5 DUMMY(I) = AGRADN(I)
DUMMY(NMODI) = AGRADT
DO 200 I=1, NONZRO

```

```

110 AGRADN(J) = 0.0
OPTI 330
II = NONZRO - I + I
OPTI 340
OPTI 350

```
```

36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
AGRADN(K) = DUMMY(K)/ABS(DUMMY(K))
OPTI 360
AGRADT = DUMMY(NMODI)/ABS(DUMMY(K)
OPTI 370
CALL OPTIM
OPTI 380
IF(MOVE .EQ. O) GO TO 200
GO TO 1000
OPTI 390
OPTI 400
200 CONTINUE
OPTI 410
DO 300 I =1,NMOD
OPTI 420
300 AGRADN(I) = 0.0
OPTI 430
AGRADT = (100./TSTEP) * DUMMY(NMOD1)/ABS(DUMMY(NMODI))
OPTI 440
CALL OPTIM
OPTI }45
1000 RETURN
OPTI 460
1400 FORMAT(1HO,/,10X,'NUNIT(I) =',20[5)
OPTI 470
1450 FORMAT (1HO,10X,'TM =',G13.5)
OPTI 480
1500 FORMAT (1HO,//,30X,'SYSTEM AVAILABILITY =',G13.6,//,30X,
OPTI 490
1 'SYSTEM PPOFIT =',G13.6,//,30X,'SYSTEM RELIABILITY =',G13.6) OPTI 500
1600 FORMAT(1HO,/,30X,'CONSTRAINT(1) =',G13.6,//,30X,'CONSTRAINT(2) =',OPTI 510
1 G13.6)
OPTI 520
OPTI }53

```

SYSTEM PROFIT OPTIMIZATION
```

C MAIN PROGRAM
SYSTEM PROFIT OPTIMIZATION MAIN
C
PATHL = 300
PLENTH = 1000
PPL = 50
10 CALL DATAIN
READ(5,1000) INNOD,OUTNOD
CALL PATHS(INNOD)
IF(STATUS) 20,10,20
20 CALL PATHP(OUTNOD)
WRITE (6,1100)
DO 30 L=1,NPATH
WRITE(6,1200) L,(PATH(L,M),M=1,NMOD)
30 CONTINUE
CALL PATHC
WRITE(6,1001) NPATH,MPATH
WRITE (6,2600)
DO 35 L=1,MPATH
MAIN 190
MAIN 200
MAIN }21
MAIN 220
MAIN 230
MAIN 240
MAIN 250
MAIN 260
MAIN 270
MAIN 280
MAIN 290
MAIN 300
MAIN 310

```10MODIFIED INTEGER GRADIENT METHODMAIN30
IMPLICIT INTEGER*4 (A-Z) MAIN ..... 40
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS 1,NNODES, ..... 50
1 MPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), MAIN ..... 60
2 PATH(300,50), NMOD,NMOD1, MPATH,PSIGN(300) ..... 70
INTEGER*2 P, PP, PATH ..... 80
COMMON/OPTM1/NUNIT(50), NMAX(50), MUNIT(50), KODE(50), NSORT(50), ..... 90
1 NMIN(50), FLAG, INDEX,MOVE,NONZRO ..... MAIN 100
COMMON/OPTM2/AGRADN(50), CONST(10), COSTF(50),G(50), LAMDA(50),1 MTGRDN(50), PGRADN(50), RGRADN(50), RIGRDN(50), WUNIT(50), AGRADT,MAIN 120
2 ASYS, COSTMF, INCOM, INTVL, MTBM, MDT, OBJFN, PGRADT, PSYS, CMCOST, ..... MAIN 1303 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT
140REAL* 4 AGRADN,CONST,COSTF,G, LAMDA, MTGRDN, PGRAON, RGRADN,RIGRDN,
1 WUNIT,AGRADT,ASYS,COSTMF,INCOM,INTVL, MTBM,MDT,OBJFN,PGRADT,PSYS,MAIN 160
2 CMCOST, RLBTY,RGRADT, RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTMAIN 170REAL* 4 YFL,FCOST, MCOSTMAIN 180

REAL*4 YFL,FCOST,MCOST AIN 190
PATHL \(=300\)
PLENTH \(=1000\)
\(P P L=50\)
READ (5,1000) INNOD,OUTNOD
CALL PATHS(INNOD)

CALL PATHP(OUTNOD)
WRITE \((6,1100)\)
DO \(30 L=1\), NPATH
WRITE(6,1200) L,(PATH(L,M),M=1,NMOD)
30 CONTINUE
CALL PATHC

WRITE \((6,2600)\)
DO \(35 L=1\), MPATH
32:
33:
34:
35:
```

```
    WRITE(6,2700) L,PSIGN(L),(PATH(L,M),M=1,NMOD) MAIN 360
```

```
    WRITE(6,2700) L,PSIGN(L),(PATH(L,M),M=1,NMOD) MAIN 360
    35 CONTINUE
    35 CONTINUE
    KOUNT = 1
    KOUNT = 1
    ISEED = 984376521
    ISEED = 984376521
    IX = ISEED
    IX = ISEED
    DO 45 I=1,NMOD
    DO 45 I=1,NMOD
    4 5 \text { NUNIT(I) = 1}
    4 5 \text { NUNIT(I) = 1}
    TM = TMIN + (TMAX-TMIN)/2.
    TM = TMIN + (TMAX-TMIN)/2.
    GO TO 55
    GO TO 55
C GENERATING A UNIFORMLY DISTRIBUTED RANDOM STARTING POINT
C GENERATING A UNIFORMLY DISTRIBUTED RANDOM STARTING POINT
    40 DO 50 I =1,NMOD
    40 DO 50 I =1,NMOD
    CALL RANDU(IX,IY,YFL)
    CALL RANDU(IX,IY,YFL)
    NUNIT(I) = YFL*(NMAX(I)-NMIN(I)+I) + NMIN(I)
    NUNIT(I) = YFL*(NMAX(I)-NMIN(I)+I) + NMIN(I)
    IX=IY
    IX=IY
    50 CONTINUE
    50 CONTINUE
        CALL RANDU(IX,IY,YFL)
        CALL RANDU(IX,IY,YFL)
        TM = YFL*(TMAX-TMIN) + TMIN
        TM = YFL*(TMAX-TMIN) + TMIN
    IX=IY
    IX=IY
    55 WRITE (6,1300) KOUNT
    55 WRITE (6,1300) KOUNT
    WRITE (6,2100)
    WRITE (6,2100)
    WRITE(6,1400) (NUNIT(I),I=1,NMOD)
    WRITE(6,1400) (NUNIT(I),I=1,NMOD)
    WRITE(6,1450) TM
    WRITE(6,1450) TM
C LOCATING A FEASIBLE POINT
C LOCATING A FEASIBLE POINT
    WRITE(6,2200)
    WRITE(6,2200)
    CALL FESIBL
    CALL FESIBL
    WRITE (6,1410) MOVE,INDEX
    WRITE (6,1410) MOVE,INDEX
    IF IMOVE.GT. 20 .OR. INDEX.EQ. NMOD1 I GO TO 90
    IF IMOVE.GT. 20 .OR. INDEX.EQ. NMOD1 I GO TO 90
    GO TO 60
    GO TO 60
    60 WRITE (6,2400)
    60 WRITE (6,2400)
    WRITE(6,1400) (NUNIT(I),I=1,NMOD )
    WRITE(6,1400) (NUNIT(I),I=1,NMOD )
    WRITE (6,1450) TM
    WRITE (6,1450) TM
    WRITE(6,1600) CONST(1),CONST(2)
    WRITE(6,1600) CONST(1),CONST(2)
C SEARCHING FOR LOCAL OPTIMUM
C SEARCHING FOR LOCAL OPTIMUM
    WRITE (6,2300)
    WRITE (6,2300)
    65 CALL OPTIMZ
    65 CALL OPTIMZ
    IF(MOVE.EQ. O) GOTO }7
```

 IF(MOVE.EQ. O) GOTO }7
    ```
```

 370
    ```
    370
    MAIN 380
    MAIN 380
    MAIN 390
    MAIN 390
    MAIN 400
    MAIN 400
    MAIN 410
    MAIN 410
    MAIN 420
    MAIN 420
    MAIN 430
    MAIN 430
    MAIN }44
    MAIN }44
    MAIN 450
    MAIN 450
    MAIN 460
    MAIN 460
    MAIN 470
    MAIN 470
    MAIN 480
    MAIN 480
    MAIN 490
    MAIN 490
    MAIN 500
    MAIN 500
    MAIN 510
    MAIN 510
    MAIN 520
    MAIN 520
    MAIN 530
    MAIN 530
    MAIN 540
    MAIN 540
    MAIN 550
    MAIN 550
    MAIN 560
    MAIN 560
    MAIN 570
    MAIN 570
    MAIN 580
    MAIN 580
    MAIN 590
    MAIN 590
    MAIN 600
    MAIN 600
    MAIN 610
    MAIN 610
    MAIN 620
    MAIN 620
    MAIN 630
    MAIN 630
    MAIN 640
    MAIN 640
    MAIN 650
    MAIN 650
    MAIN }66
    MAIN }66
    MAIN 670
    MAIN 670
    MAIN }68
    MAIN }68
    MAIN 690
    MAIN 690
    MAIN TCO
    MAIN TCO
    MAIN }71
```

 MAIN }71
    ```
```

72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104
105:
106
107:

```
```

89: 1001 FORMAT(IHO,//,30X,'NPATH = , I 3,//,30X,.NPATH = , , 15)

```
89: 1001 FORMAT(IHO,//,30X,'NPATH = , I 3,//,30X,.NPATH = , , 15)
90: 1100 FORMAT (1HO,//,T20,'PATHS IN BINARY CODE',/)
90: 1100 FORMAT (1HO,//,T20,'PATHS IN BINARY CODE',/)
91: 1200 FORMAT (1HO,T16,'PATH',I3,' = ',50I2)
91: 1200 FORMAT (1HO,T16,'PATH',I3,' = ',50I2)
92: 1300 FORMAT(1HI,40X,'KOUNT =',13,//)
92: 1300 FORMAT(1HI,40X,'KOUNT =',13,//)
93: 1400 FORMAT(1HO,/,10X,'NUNIT(I) =:,20I5)
93: 1400 FORMAT(1HO,/,10X,'NUNIT(I) =:,20I5)
94: 1410 FORMAT (1HO,/1,30X,'MOVE = ', I4,10X,'INDEX = ', I4)
94: 1410 FORMAT (1HO,/1,30X,'MOVE = ', I4,10X,'INDEX = ', I4)
```

 GO TO 65
    ```
    GO TO 65
    O WRITE(6,2500)
    O WRITE(6,2500)
    WRITE(6,1400) (NUNIT(I), I=1,NMOD )
    WRITE(6,1400) (NUNIT(I), I=1,NMOD )
    WRITE(6,1450) TM
    WRITE(6,1450) TM
    FLAG = 1
    FLAG = 1
    CALL AVLBTY
    CALL AVLBTY
    CALL CONSTR
    CALL CONSTR
    FCDST = CONST(1) + CMCOST
    FCDST = CONST(1) + CMCOST
    MCOST = FCOST * (1.-ASYS) * TLF * COSTMF/100.
    MCOST = FCOST * (1.-ASYS) * TLF * COSTMF/100.
    WRITE(6,1500) ASYS,PSYS,RSYS
    WRITE(6,1500) ASYS,PSYS,RSYS
    WRITE(6,1600) CONST(1),CONST(2)
    WRITE(6,1600) CONST(1),CONST(2)
    WRITE(6,1700) FCOST,MCOST
    WRITE(6,1700) FCOST,MCOST
    WRITE(6,1900) MTBM,MDT
    WRITE(6,1900) MTBM,MDT
    90 KOUNT = KOUNT + 1
    90 KOUNT = KOUNT + 1
    IF (KOUNT .GT. 251 GO TO 10
    IF (KOUNT .GT. 251 GO TO 10
    GO TO 40
    GO TO 40
1000 FORMAT (213)
1000 FORMAT (213)
1450 FORMAT (1HO,10X,'TM =',G13.5)
1450 FORMAT (1HO,10X,'TM =',G13.5)
1500 FORMAT (1HO,/1,30X,'SYSTEM AVAILLABILITY = ',G13.6.//1,30X,
1500 FORMAT (1HO,/1,30X,'SYSTEM AVAILLABILITY = ',G13.6.//1,30X,
    1 'SYSTEM PROFIT =',G13.6,//,30X,'SYSTEM REL[ABILITY =',G13.6)
    1 'SYSTEM PROFIT =',G13.6,//,30X,'SYSTEM REL[ABILITY =',G13.6)
1600 FORMAT(IHO,/,30X,'CONSTRAINT(1) =',G13.6,///,30X,'CONSTRAINT(2) =',MAIN 980
1600 FORMAT(IHO,/,30X,'CONSTRAINT(1) =',G13.6,///,30X,'CONSTRAINT(2) =',MAIN 980
    1 G13.6)
    1 G13.6)
1700 FORMAT(1HO,1,30X,'FCOST = ',G13.6,//,30X, 'MCOST = ', G13.6)
1700 FORMAT(1HO,1,30X,'FCOST = ',G13.6,//,30X, 'MCOST = ', G13.6)
1900 FORMAT(1HO,20X,'MTBM =',G13.6.20X,'MDT =',G13.6)
1900 FORMAT(1HO,20X,'MTBM =',G13.6.20X,'MDT =',G13.6)
2100 FORMAT(IHO,50X, 'THE INITIAL POINT IS')
2100 FORMAT(IHO,50X, 'THE INITIAL POINT IS')
2200 FORMAT(1HO,50X,'SEARCHING FOR THE FEASIBLE POINT')
2200 FORMAT(1HO,50X,'SEARCHING FOR THE FEASIBLE POINT')
    FORMAT(1HO,50X,'SEARCHING FOR THE LOCAL CPTIMUM POINT')
    FORMAT(1HO,50X,'SEARCHING FOR THE LOCAL CPTIMUM POINT')
    FORMAT(1HO,////,50X, 'THE FEASIBLE POINT IS')
    FORMAT(1HO,////,50X, 'THE FEASIBLE POINT IS')
2500 FORMAT(1HO,////,50X,'THE OPTIMAL POINT IS'), MAIN1O60
2500 FORMAT(1HO,////,50X,'THE OPTIMAL POINT IS'), MAIN1O60
2600 FORMATIIHO,//,T2O,'PATHS AND PATH COMBINATIONS IN BINARY CODE',/) MAINIOTO
```

2600 FORMATIIHO,//,T2O,'PATHS AND PATH COMBINATIONS IN BINARY CODE',/) MAINIOTO

```
```

 SUBROUTINE DATAIN DATA 10
 THIS SUBROUTINE READS AND ECHOCHECKS THE DATA
 IMPLICIT INTEGER*4 (A-Z)
 COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES,
 1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
 2 PATH(300,50),NMOD,NMODI,MPATH,PSIGN(300)
 INTEGER*2 P,PP,PATH
 COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50),
 1 NMIN(50),FLAG, INDEX,MOVE,NONZRO
 COMMON/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50), LAMOA(50),
 1 MTGRDN(50),PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50),AGRADT,
 2 ASYS,COSTMF,INCOM,INTVL,MTBM,MDT, OBJFN, PGRADT,PSYS,CMCOST,
 3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT
 REAL*4 AGRADN,CONST,COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN,
 1 WUNIT,AGRADT,ASYS,COSTMF,INCOM, INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,DATA 150
 2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTDATA 160
 DIMENSION TITLE(30)
 READ(5,999,END=100)(TITLE(I),I=1,30)
 READ(5,1000) NNODES,NMOD,CMCOST,WEIGHT, INCOM,COSTMF,TLF,TEM,
 1 TSC,TMIN,TMAX,TSTEP,INTVL
 DO 10 I =1,NMOD
 10 READ(5,1007) KODE(I),NMAX(I),NMIN(I),MUNIT(I),COSTF(I),WUNIT(I),
 1 LAMDA(I)
 NMOD1 = NMOD + 1
 FOR=0
 REV=0
 00 40 I=1,1000
 READ(5,1001)P(I,1),P(I,2),P(I,4)
 IF(P(I,1)-P(I,2)) 20,50,30
 20 FOR=FOR + 1
 GO TO 40
 30 REV=REV + 1
 4 0 ~ C O N T I N U E ~
 5 0 ~ N E D G E S = F O R ~ + ~ R E V ~
    ```
            NEDGSI=NEDGES + 1
DATA 360
FREV=FOR + 1
DATA 370
WRITE(6,1002) ( TITLE(I), I=1,30)
DATA 380
WRITE \((6,1003)\)
DATA 390
WRITE \((6,1004)\)
WRITE \((6,1003)\)
DATA 400
DO \(60 \quad \mathrm{I}=1\), NEDGES
DATA 410
WRITE(6,1005) I,P(I,1), P(I,2),P(I,4)
DATA 420
WRITE (6,1003)
60 CONTINUE
WRITE \((6,1008)\)
WRITE(6,1011)
WRITE(6,1009)
WRITE (6.1011)
DO \(70 \quad I=1\), NMOD
DATA 430
DATA 440
DATA 450
DATA 460
DATA 470
DATA 480
DATA 490
WRITE(6,1010) I, KODE(I), NMAX(I),NMIN(I), MUNIT(I), COSTF(I),
1 WUNIT(I),LAMDA(I)
DATA 500
WRITE(6,1011)
70 CONTINUE
data 520
DATA 520
DATA 530
DATA 540
WRITE(6,1006) CMCOST,WEIGHT,INCOM,COSTMF,TLF,TEM,TSC,TMIN,TMAX,
DATA 550
1 TSTEP,INTVL
DATA 560
999 FORMAT(15A4)
DATA 570
1000 FORMAT (2I10,5F10.0/6F10.0)
FORMAT (3110)
DATA 580
1002 FORMAT(IHI,//,T10,30A4,//,T50,'INVENTORY OF BRANCHES',/)
1003 FORMAT (1H+,T38,44('_') )
```



```
1 : MODULE 19
DATA 590
DATA 600
dATA 610
DATA 620
DATA 630
1005 FORMAT ( \(1 \mathrm{H}, \mathrm{T} 38,4(1 \mid \cdot, 4 \mathrm{X}, \mathrm{I} 2,4 \mathrm{X}), 11 \mathrm{l})\)
1006 FORMAT (1HO,TIU,'CMCOST=',G13.6./,T10, 'WEIGHT=',G13.6./,T10,
'INCOM \(=1, G 13.6,1, T 10, ' C O S T M F=', G 13.6, /, T 10, ' T L F=1, G 13.6,1\),
DATA 640
DATA 650
2 T10.'TEM =',G13.6,/.T10,'TSC =',G13.6./,T10,'TMIN =',
3 G13.6,/,T10,'TMAX =',G13.6,/,T10,'TSTEP =',G13.6,1.T10,
4 IINTVL \(=1\), Gl3.6)
1007 FORMAT(4I10,2F10.0,E20.0)
DATA 660
DATA 670
DATA 680
DATA 690
DATA 700
1008 FORMAT(1HO, T50,'INVENTORY OF MODULES',/)
DATA 710
```

72:
73:
74:
75:
76: 77:
78:
79:

```
1009 FORMATIIH,T2O,'! MODULE '',' KODE I',' MAX-UNIT |',
    1 ' MIN-UNIT '','M OUT OF N|','UNIT COSTFI','UNIT WEGHT|',
    1 ' FAILURE RATE |')
1010 FORMAT(IH,T20,5('|',4X,I2,4X),2('|',F10.3),'|',G14.5,'|')
1011 FORMAT(1H+,T20,92('_'))
        RETURN
100 CALL EXIT
END
```

DATA 720
DATA 730
DATA 740
DATA 750
dATA 760
DATA 770
dATA 780
DATA 790

```
```

 SUBROUTINE MODULE MODU
    ```
```

 SUBROUTINE MODULE MODU
 THIS SUBROUTINE COMPUTES THE MODULE RELIABILITY AND MOCU
 THIS SUBROUTINE COMPUTES THE MODULE RELIABILITY AND MOCU
 C THIS SUBROUTINE COMPUTES THE MODULE RELIABILITY AND MOSITIVITY OF MODULE RELIABILITY TO THE MODULE REDUNDANCY. 2O
C THIS SUBROUTINE COMPUTES THE MODULE RELIABILITY AND MOSITIVITY OF MODULE RELIABILITY TO THE MODULE REDUNDANCY. 2O
IMPLICIT INTEGER*4 (A-Z) MODU
IMPLICIT INTEGER*4 (A-Z) MODU
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEOGS1,NNODES, MODU
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEOGS1,NNODES, MODU
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
2 PATH(300,50),NMOD,NMOD1,MPATH,PSIGN(300)
2 PATH(300,50),NMOD,NMOD1,MPATH,PSIGN(300)
INTEGER*2 P,PP,PATH
INTEGER*2 P,PP,PATH
COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), MODU
COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), MODU
1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
COMMON/OPTM2/AGRADN(50), CUNST(10),COSTF(50),G(50), LAMDA(50),
COMMON/OPTM2/AGRADN(50), CUNST(10),COSTF(50),G(50), LAMDA(50),
1 MTGRDN(50),PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50),AGRADT,
1 MTGRDN(50),PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50),AGRADT,
2 ASYS,COSTMF,INCOM, INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,CMCOST,
2 ASYS,COSTMF,INCOM, INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,CMCOST,
3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT
3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT
REAL*4 AGRAON,CONST,COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN,
REAL*4 AGRAON,CONST,COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN,
1 WUNIT,AGRADT,ASYS, COSTMF,INCOM, INTVL,MTBM,MDT,O8JFN,PGRADT,PSYS,MODU 160
1 WUNIT,AGRADT,ASYS, COSTMF,INCOM, INTVL,MTBM,MDT,O8JFN,PGRADT,PSYS,MODU 160
2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTMODU 170
2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTMODU 170
REAL*4 DUMMY1,DUMMY2,DUMMY3
REAL*4 DUMMY1,DUMMY2,DUMMY3
MOCU 180
MOCU 180
C
C
DO 200 K=1,NMOD
DO 200 K=1,NMOD
IF(KODE(K).EQ. O) GO TO 100
IF(KODE(K).EQ. O) GO TO 100
DUMMY1 = EXP(-LAMDA(K)*T*MUNIT(K))
DUMMY1 = EXP(-LAMDA(K)*T*MUNIT(K))
DUMMY2 = 1.0
DUMMY2 = 1.0
DUMMY3 = LAMDA(K) * T * MUNIT(K)
DUMMY3 = LAMDA(K) * T * MUNIT(K)
G(K) = 1.0
G(K) = 1.0
NM = NUNIT(K) - MUNIT(K)
NM = NUNIT(K) - MUNIT(K)
IFINM .EQ. OI GO TO 20
IFINM .EQ. OI GO TO 20
OO 10 I=1,NM
OO 10 I=1,NM
DUMMY2 = DUMMY2 * DUMMY3/I
DUMMY2 = DUMMY2 * DUMMY3/I
G(K)=G(K) + DUMMY2
G(K)=G(K) + DUMMY2
10 CONTINUE
10 CONTINUE
20 G(K) = G(K) * DUMMY1
20 G(K) = G(K) * DUMMY1
RIGRON(K)= DUMMY1 * DUMMY2 * DUMMY3/(NM+1)
RIGRON(K)= DUMMY1 * DUMMY2 * DUMMY3/(NM+1)
GO TO 200
GO TO 200
1 0 0 DUMMY1 = EXP(-LAMDA(K)* *T)
1 0 0 DUMMY1 = EXP(-LAMDA(K)* *T)
MODU 190
MODU 190
C

```
C
```

```
10
```

10
20
20
MODU
MODU
MODU
MODU
MODU }8
MODU }8
MODU
MODU
90
90
MODU }10
MODU }10
MODU 110
MODU 110
MODU 120
MODU 120
MODU 130
MODU 130
MODU 140
MODU 140
MOCU }15
MOCU }15
MODU 200
MODU 200
MODU 210
MODU 210
MODU 220
MODU 220
MODU }23
MODU }23
MODU 240
MODU 240
MODU }25
MODU }25
MODU 260
MODU 260
MODU 270
MODU 270
MODU 270
MODU 270
MODU 290
MODU 290
MODU 300
MODU 300
MOCU 310
MOCU 310
MODU 330
MODU 330
100 DUMMY1 = EXP(-LAMDA(K)*T) MODU 350
100 DUMMY1 = EXP(-LAMDA(K)*T) MODU 350
MODU 350

```
MODU 350
```

4:
$5:$
6:
7 :
8:
9:
$10:$
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

```
36: DUMMY2 = DUMMYI**NUNIT(K)
```

```
MODU 360
G(K) = DUMMY2
NM = NUNIT(K) - MUNIT(K)
MODU 370
MODU 380
IF(NM EQ. O) GO TO 120
DO 110 I=1,NM
DUMMY2 = DUMMY2 * ({1.-DUMMY1)/DUMMY1) * (NUNIT(K)-I+1)/I
G(K) = G(K) + DUMMY2
110 CONTINUE
120 RIGRON(K) = DUMMY2 * (1.-DUMMY1)* MUNIT(K)/(NM+1)
200 CONTINUE
RETURN
MODU 390
MODU 400
MODU 410
MODU }42
MODU }43
MODU 430
MODU }45
MODU 460
MODU }47
```

```
SUBRDUTINE RELIAB
1 0
C THIS SUBROUTINE CALCULATES THE SYSTEM RELIABILITY FROM THE RELI 2O
C MODULE RELIABILITIES.
IMPLICIT INTEGER*4 (A-Z)
RELI }3
RELI 40
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES,
RELI 50
    l NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), RELI 60
    2 PATH(300,50),NMOD,NMODI,MPATH,PSIGN(300)
    RELI }7
    INTEGER*2 P,PP,PATH RELI RO
    COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), RELI 90
    1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
    RELI 90
    COMMON/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50),LAMDA(50),
    RELI 110
    1 MTGRDN(50),PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50),AGRAOT,
    RELI 120
    2 ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,CMCOST, RELI 130
    3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT RELI 140
    REAL*4 AGRADN,CONST,COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRON, RELI 150
    1 WUNIT,AGRADT,ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,RELI 160
    2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTRELI 170
    REAL*4 GPATH
RELI }18
RELI 190
    RLBTY = 0.0
    RELI 200
    DO 10 [=1,MPATH
    GPATH = PSIGN(I) 
    OO 20 J=1,NMOD
    IF (PATH(I,J).EQ. O) GO TO 20
    GPATH = GPATH * G(J)
    RELI 230
    RELI }24
    COATINUEPALH
    20 CONTINUE
    RLBTY = RLBTY + GPATH RELI 270
    RELI 260
    10 CONTINUE
    RELI }28
    RETURN
    RELI 290
    END
    RELI 300
```

```
C THIS SUBROUTINE DETERMINES THE SENSITIVITY OF THE SYSTEM SENS 20
C RELIABILITY TO MODULE REDUNDANCIES. SENS 30
        IMPLICIT INTEGER*4 (A-Z) SENS
        COMMON/MASON/FUR,FREV,LEND,NEDGES,NEDGS1,NNODES, SENS
    1 NPATH,PATHL, PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), SENS 60
    2 PATH(300,50),NMOD,NMODI,MPATH,PSIGN(300) SENS 70
        INTEGER*2 P,PP,PATH SENS 80
        COMMON/OPTM1/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), SENS SO
        1 NM[N(50),FLAG,INDEX,MOVE,NONZRO SENS 100
        COMMON/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50),LAMDA(50), SENS 110
    1 MTGRON(50),PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50),AGRADT, SENS 120
    2 ASYS,COSTMF,INCOM,INTVL,MTBM,MOT,OBJFN,PGRADT,PSYS,CMCOST, SENS 130
    3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT SENS 140
        REAL*4 AGRADN,CONST,COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN, SENS 150
    1 WUNIT,AGRAOT,ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,SENS 16O
        2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTSENS 17O
        REAL*4 DUMMY(50) SENS 180
        DO 10 I=1,NMOD
        10 DUMMY(I) = G(I)
        DO 100 I=1,NMOD
        DO }90\textrm{J}=1,NMO
    90G(J) = DUMMY(J)
    C(I) = L.O
    CALL RELIAB
    RGRADN(I) = RLBTY
    G(I) = 0.0
    CALL RELIAB SENS 290
    RGRADN(I) = (RGRADN(I)-RLBTY) * RIGRDN(I) SENS 300
    100 CONTINUE
    DO 150 I= = NMOD
    SENS 310
    RETURN
    END
    SENS 190
    SENS 200
    SENS 210
```

SUBROUTINE SENSE
SENS
SENS 20
THIS SUBROUTINE DETERMINES THE SENSITIVITY OF THE SYSTEM
SENS
SENS 40
SENS 50
1 NPATH,PATHL, PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), SENS 60
2 PATH(300,50),NMOD,NMODI,MPATH,PSIGN(300) SENS
SENS 80
SENS 90
1 NMIN(50), FLAG, INDEX, MOVE, NONZRO SENS 100
COMMON/OPTM2/AGRADN(50), CONST (10), COSTF (50),G(50), LAMDA(50), SENS 110
1 MTGRON(50), PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50),AGRADT, SENS 120
2 ASYS,COSTMF,INCOM, INTVL,MTBM,MOT,OBJFN,PGRADT,PSYS,CMCOST, SENS 130
REAL*4 AGRADN, CONST, COSTF,G, LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN, SENS 150
1 WUNIT, AGRADT,ASYS,COSTMF, INCOM, INTVL, MTBM,MDT,OBJFN,PGRADT,PSYS, SENS 160
,
SENS 180
C
DO $10 \mathrm{I}=1$, NMOD
SENS 200
DO $100 \mathrm{I}=1$, NMOD SENS 220
$90 \mathrm{G}(\mathrm{J})=\mathrm{DUMM} \operatorname{M}(\mathrm{J})$
$C(I)=2.0$
SENS 230

RGRADN(I) = RLBTY SENS 270
GII $=0.0 \quad$ SENS 280
CALL RELIAB \quad SENS 290

150 GO $150 \mathrm{I}=1$, NMOD
RETURN
END

SENS 310
SENS 320
SENS 330
SENS 340
SENS 350
22:
23:
27:
28:
30:
32:
34:

1:

3:
21:
22:
23:
24:
$25:$
26:
$27:$SUBROUTINE AVLBTYAVLB10
AVLB 20CTHIS SUBROUTINE DETERMINES SYSTEM AVAILABILITY, SYSTEM PROFIT, AVLB
AND SENSITIVITY OF SYSTEM AVAILABILITY AND SYSTEM PROFIT TO EACH AVLBAVLBMODULE'S REDUNDANCY AND TO SYSTEM MAINTENANCE INTERVAL.IMPLICIT INTEGER*4 (A-Z)AVLB
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS 1 , NNODES,

AVLB
AVLB2 PATH(300,50),NMOD,NMODI,MPATH,PSIGN(300)AVLB 80
INTEGER*2 P,PP,PATH AVLB90
COMMON/OP TMI/NUNIT(50), NMAX(50), MUNIT(50), KODE(50), NSORT(50), AVLB 100
1 NMIN(50), FLAG, INDEX, MOVE,NONZRO
COMMON/OPTM2/AGRADN(50), CONST (10), COSTF(50),G(50), LAMDA(50),
AVLB 110
1 MTCRDN (50), PGRADN(50), RGRADN(50), RIGRDN(50), WUNIT(50), AGRADT,
AVLB 120
AVLB 120
2 ASYS, COSTMF, INCOM, INTVL, MTBM, MOT, OBJFN, PGRADT, PSYS,CMCOST, AVLB 140
AVLB 130
3 RLBTY, RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT AVLB 150
REAL* 4 AGRADN,CONST,COSTF,G,LAMOA,MTGRDN,PGRADN,RGRADN,RIGRDN, AVLB 160
1 WUNIT, AGRADT, ASYS, COSTMF, INCOM, INTVL,MTBM,MDT,OBJFN, PGRADT,PSYS, AVLB 170
2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP, WEIGHTAVLB I 80
REAL*4 DELTA, DUMMY1 AVLB 190
EVEN $=$ IFIX((TM/INTVL) +1.0$)$
AVLB 200
EVEN $=(E V E N / 2) * 2$
IF (EVEN.EQ. O) EVEN = 2
OELTA = TM/EVEN
MTBM $=1.0$
DO $10 \mathrm{~J}=1, \mathrm{NMOD}$
$10 \operatorname{MTGRDN}(J)=0.0$
$N=E V E N / 2$
$N 1=N-1$
DO $50 \quad I=1, N$
$T=$ DELTA * $(2 * I-1)$
CALL MODULE
CALL RELIAB
RSYS $=$ RLBTY
MTBM $=$ MTBM $+4.0 *$ RSYS
C
AVLB 220
AVLB 230
AVLB 240
AVLB 250
AVLB 260
AVLB 270
AVLB 280
AVLB 290
AVLB 300
AVLB 310
AVLB 320
AVLB 330
AVLB 340
AVLB 350

```
    IF(FLAG .EQ. I) GO TO 50
CALL SENSE AVLB 370
    DO 30 J=1,NMOD
    30 MTGRDN(J)=MTGRDN(J) & 4.0: RGRADN(J)
    50 CONTINUE
    DO 100 I= 1,N1
    IF (NL.EQ. O) GOTO 100
    T = DELTA * 2*I
    CALL MODULE
    CALL RELIAB
    RSYS = RLBTY
    MTBM = MTBM + 2.* RSYS
    IF(FLAG .EQ. 1) GO TO 100
    CALL SENSE
    DO 70 J=1,NMOD
    70 MTGRDN(J)=MTGRDN(J) + 2.0* RGRADN(J)
100 CONTINUE
    T = TM
CALL mDDULE
CALL RELIAB
RSYS = RLBTY
MTBM = (MTBM+RSYS) * DELTA/3.
MDT = TEM * (1.-RSYS) + TSC * RSYS
ASYS = MTBM/(MTBM+MDT)
DUMMY1 =0.0
DO 115 I=1,NMDD
1 1 5 \text { DUMMYI = DUMMYI + NUNIT(I) * COSTF(I)}
PSYS = INCOM*TLF*ASYS - DUMMY1*(1.+(1.-ASYS)*TLF*COSTMF/100.1
IF(FLAG .EQ. 1) GO TO 1000
CALL SENSE
DO 120 I = 1,NMOD
120 MTGRDN(I) = (MTGRDN(I)+RGRADN(I))* DELTA/3.
RGRADT = 0.0
DO 130 I=1,NMOD
IF(KODE(I).EQ. O) GO TO 140
RGRADT = RGRADT - ((NUNIT(I)-MUNIT(I)+I)/TM)* RGRAON(I)
```

AVLB 360
AVLB 370
AVLB 380
AVLB 390
AVLB 400
AVLB 410
AVLB 420
AVLB 430
AVLB 440
AVLB 450
AVLB 460
AVLB 470
AVLB 480
AVLB 490
AVLB 500
AVLB 510
AVLB 520
AVLB 530
AVLB 540
AVLB 550
AVLB 560
AVLB 570
AVLB 580
AVLB 590
AVLB 600
AVLB 610
AVLB 620
AVLB 630
AVLB 640
AVLB 650
AVLB 660
AVLB 660
AVLB 680
AVLB 690
AVLB 700
AVLB 710

```
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
```

```
    GO TO 130
```

 GO TO 130
 AVLB 720
AVLB 720
140 RGRADT = RGRADT - (LAMDA(I)*(NUNIT(I)-MUNIT(I)+1)/
140 RGRADT = RGRADT - (LAMDA(I)*(NUNIT(I)-MUNIT(I)+1)/
1(1.-EXP(-LAMDA(I)*TM)))* RGRADN(I) AVLB 740
1(1.-EXP(-LAMDA(I)*TM)))* RGRADN(I) AVLB 740
130 CONTINUE
130 CONTINUE
DO 150 I= I,NMOD
DO 150 I= I,NMOD
AGRADN(I) = (MDT*MTGRDN(I) + MTBM*(TEM-TSC)*RGRADN(I))/
AGRADN(I) = (MDT*MTGRDN(I) + MTBM*(TEM-TSC)*RGRADN(I))/
1 (MTBM+MDT)**2
1 (MTBM+MDT)**2
PGRADN(I) (I)
PGRADN(I) (I)
PGRADN(I) = INCOM*TLF*AGRAON(I) + DUMMYI*TLF*AGRADN(I)*COSTMF/100.AVLB 790
PGRADN(I) = INCOM*TLF*AGRAON(I) + DUMMYI*TLF*AGRADN(I)*COSTMF/100.AVLB 790
1 - COSTF(I)*(1.+(1.-ASYS)*TLF*COSTMF/100.)
1 - COSTF(I)*(1.+(1.-ASYS)*TLF*COSTMF/100.)
AVLB }80
AVLB }80
150 CONTINUE
150 CONTINUE
AGRADT = (MDT*RSYS + MTBM*(TEM-TSC)*RGRADT)/(MTBM+MDT)**2 AVLB 820
AGRADT = (MDT*RSYS + MTBM*(TEM-TSC)*RGRADT)/(MTBM+MDT)**2 AVLB 820
AGRADT = AGRADT * TSTEP
AGRADT = AGRADT * TSTEP
PGRADT = (INCOM + DUMMYl*COSTMF/IOO.) *TLF*AGRADT
PGRADT = (INCOM + DUMMYl*COSTMF/IOO.) *TLF*AGRADT
1000 RETURN
1000 RETURN
END
END
AVLB }75
AVLB }75
AVLB }77
AVLB }77
AVLB }77
AVLB }77
AVLB }77
AVLB }77
AVLB }82
AVLB }82
AVLB 830
AVLB 830
AVLB }84
AVLB }84
AVLB }85
AVLB }85
AVLB }86

```
AVLB }86
```

$1:$
$2:$
$3:$
$4:$
$5:$
$6:$
$7:$
$8:$
$9:$
$10:$
$11:$
$12:$
$13:$
$14:$
$15:$
$16:$
$17:$
$18:$
$19:$
$20:$
$21:$
$22:$
$23:$
$24:$
$25:$
$26:$
$27:$

C
SUBROUTINE CONSTR
C THIS SUBROUTINE COMPUTES THE SYSTEM CONSTRAINTS.

IMPLICIT INTEGER*4 (A-Z)
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGSI, NNODES ;
1 NPATH,PATHL, PLENTH, PPL, REV,STATUS,P(1000,4),PP(50),
2 PATH(300.50),NMOD,NMOD1, MPATH,PSIGN(300)
INTEGER*2 P, PP, PATH
COMMON/OPTML/NUNIT(50), NMAX(50), MUNIT(50), KODE(50), NSORT(50),
1 NMIN(50), FLAG, INDEX, MOVE,NONZRO
COMMON/OPTM2/AGRADIN(50), CONST (10), COSTF(50), G(50), LAMDA(50),
1 MTGRDN(50), PGRADN(50), RGRADN(50), RIGRDN(50), WUNIT(50), AGRADT,
2 ASYS, COSTMF, INCOM, INTVL, MTBM, MOT, OBJFN, PGRADT, PSYS, CMCOST,
3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT
REAL; 4 AGRADN,CONST, COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN,
REAL*4
1 WUNIT, AGRADT, ASYS, COSTMF, INCOM, INTVL, MTBM,MDT,OBJFN,PGRADT,PSYS,CONS 150
C

2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTCONS
CONS 170
CONST $(1)=0.0$
CONST(2) $=0.0$
DO $10 \quad I=1$, NMOD
CONST(1) $=$ CONST(1) + NUNIT(I)*COSTF(I)
CONST(2) $=$ CONST(2) + NUNIT(I)*WUNIT(I)
10 CONTINUE
$\operatorname{CONST}(1)=\operatorname{CONST}(1)-\operatorname{CMCOST}$
CONST(2) $=$ CONST(2) - WEIGHT
RETURN
END
CONS
CONS
CONS
CONS
CONS
CONS 80
CONS 90
CONS 100
CONS 110
CONS 120
CONS 130
CONS 140

C

O

150CONS 170CONS 180
CONS 190
CONS 200
CONS 210
CONS 220
CONS 230
CONS 240
ONS 250
ONS 260
CONS 270

```
C THIS SUBROUTINE F
FES
    G THIS SUBROUTINE FINDS THE FEASIBLE SOLUTION BY THE METHOD FESI
10
C OF WEIGHTED PERPENDICULARS. FESI 30
IMPLICIT INTEGER*4 (A-Z) FESI
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES, FESI 50
    1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), FESI 60
    2 PATH(300,50),NMOD,NMOD1,MPATH,PSIGN(300) FESI 70
    INTEGER*2,P,PP,PATH
FESI
INTEGER*2 P,PP,PATH
COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50),
FESI 90
1 NMIN(50),FLAG,INDEX,MOVE,NONZRO
FESI
COMMON/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50),LAMDA(50),
FESI 110
    1 MTGRON(50),PGRADN(50),RGRADN(50),RIGRON(50),WUNIT(50),AGRADT,
FESI
    2 ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,CMCOST, FESI 130
    3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT
    FESI 140
REAL*4 AGRADN,CONST,COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN,
FESI 150
    1 WUNIT,AGRADT,ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,FESI 16O
    2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTFESI 170
    REAL*4 Z(50),ZMIN,S,DUMMY1,ZMAX
                            FESI 180
C
    MOVE = 0
    INDEX = 0
    5 ~ C A L L ~ C O N S T R ~
    WRITE(6,1400) (NUNIT(I),I=1,NEDGES;
    WRITE(6,1450) TM
    WRITE(6,1600) CONST(1),CONST(2)
    IF(CONST(1) .LE. 0.0 .AND. CONST(2).LE. 0.01 GOTO 1000
    IF(CONST(L) LE. 0.0) GO TO }3
    S = CONST(1)
    DO 20 I=1,NMOD
20 Z(I) = -CONST(I) * COSTF(I)
    Z(NMODI )= CONST(1)* 0.0
30 IF(CONST(2) LE. O.0) GO TO 50
    S=S + CONST(2)
    DO 40 I= 1,NMOD
FESI 190
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
```

```
    Z(NMODI) = Z(NMODI ) - CONST(2)*0.0 FESI 360
```

```
    Z(NMODI) = Z(NMODI ) - CONST(2)*0.0 FESI 360
    50 DO 60 I=1,NMOO1
    50 DO 60 I=1,NMOO1
    60 Z(I)=+Z(I)/S
    60 Z(I)=+Z(I)/S
    ZMAX = ABS(Z(1))
    ZMAX = ABS(Z(1))
    DO 70 J=2,NMOD 1
    DO 70 J=2,NMOD 1
    IF (ZMAX .LT. ABS(Z(J))) ZMAX = ABS(Z(J))
    IF (ZMAX .LT. ABS(Z(J))) ZMAX = ABS(Z(J))
    70 CONTINUE
    70 CONTINUE
    DO 80 I=1,NMOD
    DO 80 I=1,NMOD
    IF(Z(I)) 90,80,100
    IF(Z(I)) 90,80,100
    90Z(I)=(Z(I)/ZMAX)*2.-0.5
    90Z(I)=(Z(I)/ZMAX)*2.-0.5
    Z(I)=AINTIZ(I))
    Z(I)=AINTIZ(I))
    GO TO 80
    GO TO 80
100Z(I)=(Z(I)/ZMAX)*2. * 0.5
100Z(I)=(Z(I)/ZMAX)*2. * 0.5
    Z(I)=AINT(Z(I))
    Z(I)=AINT(Z(I))
    80 CONTINUE
    80 CONTINUE
    Z(NMOD1)=(Z(NMODI)/ZMAX)*2.
    Z(NMOD1)=(Z(NMODI)/ZMAX)*2.
    INDEX = 0
    INDEX = 0
    MOVE = MOVE + 1
    MOVE = MOVE + 1
    DO 120 I=1,NMOD
    DO 120 I=1,NMOD
    NUNIT(I) = NUNIT(I) + Z(I)
    NUNIT(I) = NUNIT(I) + Z(I)
    IF(NUNIT(I).LT. NMIN(I) .OR. NUNIT(I).GT.NMAX(I)) INDEX=INDEX+1
    IF(NUNIT(I).LT. NMIN(I) .OR. NUNIT(I).GT.NMAX(I)) INDEX=INDEX+1
    IF(NUNIT(I) .LT. NMIN(I)) NUNIT(I) = NMIN(I)
    IF(NUNIT(I) .LT. NMIN(I)) NUNIT(I) = NMIN(I)
    IF(NUNIT{I).GT. NMAX(I)) NUNIT(I)=NMAX(I)
    IF(NUNIT{I).GT. NMAX(I)) NUNIT(I)=NMAX(I)
120 CONTINUE
120 CONTINUE
    TM = TM + Z(NMOOL ) * TSTEP
    TM = TM + Z(NMOOL ) * TSTEP
    IF(TM.LT.TMIN .OR. TM.GT.TMAX) INDEX = INDEX+I
    IF(TM.LT.TMIN .OR. TM.GT.TMAX) INDEX = INDEX+I
    IF(TM.LT. TMIN) TM = TMIN
    IF(TM.LT. TMIN) TM = TMIN
    IF(TM .GT. TMAX) TM = TMAX
    IF(TM .GT. TMAX) TM = TMAX
    IF IMOVE.GT. 20 .OR. INDEX .EQ. NMOD1, GO TO 999
    IF IMOVE.GT. 20 .OR. INDEX .EQ. NMOD1, GO TO 999
    GO TO 5
    GO TO 5
    999 WRITE(6,2500)
    999 WRITE(6,2500)
1000 RETURN
1000 RETURN
1400 FORMAT(1HO,/,10X,*NUNIT(I) =*,20I5)
1400 FORMAT(1HO,/,10X,*NUNIT(I) =*,20I5)
1450 FORMAT (1HO,10X,'TM =',G13.5) FESI 690
1450 FORMAT (1HO,10X,'TM =',G13.5) FESI 690
1600 FORMAT (1HO,/,30X,'CONSTRAINT(1)=, G13.6,/1,30X,'CONSTRAINT(2) =',FESI 7OO
1600 FORMAT (1HO,/,30X,'CONSTRAINT(1)=, G13.6,/1,30X,'CONSTRAINT(2) =',FESI 7OO
    1 G13.6)
    1 G13.6)
FESI 370
```

FESI 370

```
```

 IF(NUNIT(I) LTMMN(I)) NUNIT(I) = NMIN(I)
    ```
    IF(NUNIT(I) LTMMN(I)) NUNIT(I) = NMIN(I)
FESI }71
```

FESI }71

```
```

C THIS SUBROUTINE ARRANGES THE GRADIENT VECTOR IN ASCENDING ORDER. SORT
IMPLICIT INTEGER*4 (A-Z) SORT
COMMON/MASON/FUR,FREV,LEND,NEOGES,NEDGSI,NNODES, SORT
l NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), SORT
2 PATH(300,50),NMOD,NMODI,MPATH,PSIGN(300) SORT
INTEGER*2 P,PP,PATH SORT
COMMON/OPTM1/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), SORT
l NMIN(50),FLAG,INDEX,MOVE,NONZRO SORT
COMMON/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50),LAMDA(50), SORT IOO
l MTGRDN(50), PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50),AGRADT,
2 ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,CMCOST,
3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT
SORT 110
REAL*4 AGRADN,CONST,COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN, SORT 140
1 WUNIT,AGRADT,ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,SORT 15O
2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTSORT 160
REAL*4 GRDMIN,DUMMY(50) SORT 170
C
DO 5 I=1,NMOD
DUMMY(I) = PGRADN(I)
5 \mp@code { C O N T I N U E }
DUMMY(NMODL) = PGRADT
NONZRO = 0
DO 10 I=1,NMOD
IF(ABS(DUMMY(I)) .LT. 1.E-15) GO TO 10
NONZRO = NONZRO + I
10 CONTINUE
DO 20 I=1,NONZRO SORT 280
GROMIN = I.E3O
DO 30 }j=1\mathrm{ l, IVEDGES
IF(ABS(DUMMY(J)) \<O 1.E-15) GO TO }3
I = I - I
IF(II .EQ.O) GO TO 50
DO 40 K=1,I1
IF(J.EQ. NSORT(K)) GO TO 30
SORT 180
SORT 190
SORT 200
SORT 210
SORT 220
SORT 230
SORT 240
SORT 250
SORT 260
SORT 270
SORT 280
SORT 290
SORT 300
SORT 310
SORT 320
SORT 330
SORT 340
SDRT 350

```
```

36: 40 CONTINUE
37: 50 [F(GRDMIN .LE. ABS(DUMMY (J))) GO TO 30
GRDMIN = ABS(DUMMY (J))
NSORT(I) = J
30 Continue
20 CONTINUE
RETURN
END
C

```
```

 SUBROUTINE OPTIM OPTI
    ```
```

 SUBROUTINE OPTIM OPTI
 OPTI
OPTI
IMPLICIT INTEGER*4 (A-Z) OPTI
IMPLICIT INTEGER*4 (A-Z) OPTI
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES,
COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES,
OPTI }4
OPTI }4
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(10C0,4),PP(50),
1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(10C0,4),PP(50),
2 PATH(300,50),NMOO,NMOD1,MPATH,PSIGN(300)
2 PATH(300,50),NMOO,NMOD1,MPATH,PSIGN(300)
OPTI 50
OPTI 50
OPTI 60
OPTI 60
INTEGER*2 P,PP,PATH
INTEGER*2 P,PP,PATH
OPTI 70
OPTI 70
COMMON/OPTM1/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), OPTI 80
COMMON/OPTM1/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50), OPTI 80
1 NMIN(50),FLAG, INDEX,MOVE,NONZRO OPTI SO
1 NMIN(50),FLAG, INDEX,MOVE,NONZRO OPTI SO
COMMON/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50),LAMDA(50), OPTI 100
COMMON/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50),LAMDA(50), OPTI 100
1 MTGRDN(50),PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50), AGRADT,
1 MTGRDN(50),PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50), AGRADT,
2 ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,CMCOST, OPTI 120
2 ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,CMCOST, OPTI 120
OPTI 110
OPTI 110
3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT OPTI 130
3 RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT OPTI 130
REAL*4 AGRADN,CONST,COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN,
REAL*4 AGRADN,CONST,COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN,
OPTI 140
OPTI 140
1 WUNIT,AGRADT,ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN, PGRADT,PSYS,OPTI 15O
1 WUNIT,AGRADT,ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN, PGRADT,PSYS,OPTI 15O
2 CMCOST,RLBTY,RGRAOT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTOPTI 160
2 CMCOST,RLBTY,RGRAOT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTOPTI 160
REAL*4 TML
REAL*4 TML
OPTI 170
OPTI 170
DIMENSION NUN[TI(50) OPTI 180
DIMENSION NUN[TI(50) OPTI 180
MOVE = O
MOVE = O
1 DO 10 1 = 1,NMOD
1 DO 10 1 = 1,NMOD
NUNITI(I) = NUNIT(I)
NUNITI(I) = NUNIT(I)
10 NUNIT(I) = NUNIT(I) + PGRADNII)
10 NUNIT(I) = NUNIT(I) + PGRADNII)
TM1 = TM
TM1 = TM
TM = TM + PGRADT * TSTEP
TM = TM + PGRADT * TSTEP
DO 20 I= 1,NMOO
DO 20 I= 1,NMOO
IF(NUNIT(I).LT.NMIN(I).OR.NUNIT(I).GT.NMAX(I)) GO TO 100
IF(NUNIT(I).LT.NMIN(I).OR.NUNIT(I).GT.NMAX(I)) GO TO 100
20 CONTINUE
20 CONTINUE
IF(TM.LT.TMIN .OR. TM.GT.TMAX) GO TO 100
IF(TM.LT.TMIN .OR. TM.GT.TMAX) GO TO 100
FLAG = 1
FLAG = 1
CALL AVLBTY
CALL AVLBTY
IF(PSYS .LE. OBJFN) GO TO 100
IF(PSYS .LE. OBJFN) GO TO 100
CALL CONSTR
CALL CONSTR
IF(CONST(1).GT. 0.0.OR. CONST(2).GT. 0.0) GO TO 100
IF(CONST(1).GT. 0.0.OR. CONST(2).GT. 0.0) GO TO 100
MOVE = MOVE + 1
MOVE = MOVE + 1
OPTI 190
OPTI 190
OPTI 200

```
OPTI 200
```

```
THIS SUBROUTINE CHECKS FOR AN IMPROVED FEASIBLE SOLUTION.
```

THIS SUBROUTINE CHECKS FOR AN IMPROVED FEASIBLE SOLUTION.
0
0
O
O
IMPLICIT INTEGER*4 (A-Z)

```
    IMPLICIT INTEGER*4 (A-Z)
```



```
OPTI 210
```

OPTI 210
OPTI 220
OPTI 220
10 NUNIT(I) = NUNIT(I) + PGRADNII)
10 NUNIT(I) = NUNIT(I) + PGRADNII)
OPTI 240
OPTI 240
OPTI 240
OPTI 240
OPTI 250
OPTI 250
OPTI 260
OPTI 260
OPTI 270
OPTI 270
OPTI 280
OPTI 280
OPTI 290
OPTI 290
OPTI 300
OPTI 300
OPTI 310
OPTI 310
OPTI 320
OPTI 320
OPTI 330
OPTI 330
OPTI 340
OPTI 340
OPTI 350

```
OPTI 350
```

20:
21:
22:
23:
24:
25:
11:
13:
14:
16:
17:
18:
19:

:
1:

3:

35:
C
OBJFN = PSYS

30 NUNIT(I) $=$ NUNITI(I)
$T M=T M I$
999 RETURN
OPTI 410
END

```
                    SUBROUTINE OPTIMZ
                    OPTI
                    OPTI
                THIS SUBROUTINE FINDS A LOCALLY OPTIMAL SOLUTION.
                IMPLICIT INTEGER*4 (A-Z)
            COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS 1,NNODES,
            l NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50),
            2 PATH(300,50),NMOD,NMODI,MPATH,PSIGN(300)
            [NTEGER*2 P,PP,PATH
            COMMON/OPTMI/NUNIT(50),NMAX(50),MUNIT(50),KODE(50),NSORT(50),
            l NMIN(50),FLAG,INDEX,MOVE,NONZRO
            COMMON/OPTM2/AGRADN(50),CONST(10),COSTF(50),G(50),LAMDA(50),
            MTGRDN(50), PGRADN(50),RGRADN(50),RIGRDN(50),WUNIT(50), AGRADT,
            2 ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,CMCOST,
            3 RLBTY,RGRAOT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHT
            REAL*4 AGRADN,CONST,COSTF,G,LAMDA,MTGRDN,PGRADN,RGRADN,RIGRDN, OPTI 140
                            OPTI 130
            1 WUNIT,AGRADT,ASYS,COSTMF,INCOM,INTVL,MTBM,MDT,OBJFN,PGRADT,PSYS,OPTI 15O
            2 CMCOST,RLBTY,RGRADT,RSYS,T,TEM,TLF,TM,TMIN,TMAX,TSC,TSTEP,WEIGHTOPTI 160
            REAL*& DUMMY(50)
            FLAG=0
            CALL AVLBTY
            CALL SORT
            CALL CONSTR
            WRITE(6,1400) (NUNIT(I), I=1,NMOD)
    WRITE(6,1450) TM
    WRITE(6,1500) ASYS,PSYS,RSYS
    WRITE(S,1600) CONST(1),CONST(2)
    OBJFN=PSYS
    OO }5\textrm{I}=1,NMO
    5 DUMMY(I)= PGRADN(I)
    DUMMY(NMOO1 ) = PGRADT
    DO 200 I= 1,NONZRO
    DO 110 J=1,NMOO
110 PGRADN(J)=0.0
    II = NONZRO - I + 1
    K = NSORT(II)
```

 \(\operatorname{PGRADN}(K)=\operatorname{DUMMY}(K) / A B S(D U M M Y(K))\)
 OPTI 360
 PGRADT = DUMMY(NMOD1)/ABS(DUMMY(K))
 CALL DPTIM
OPTI 380
IF (MOVE •EQ. O) GO TO 200
OPTI 390
GO TO 1000
OPTI 400
200 CONTINUE
DO $300 \quad I=1$, NMOD
OPTI 410
300 DO $300 \mathrm{I}=1$,NMCO
OPTI 420
300 PGRADN(I) $=0.0$
PGRADT $=(100 . / T S T E P) *$ DUMMY (NMOD1)/ABS(DUMMY(NMOD1))
OPTI 430
CALL OPTIM
OPTI 440

1000 RETURN
OPTI 450
1400 FORMAT(1HO, /,10X,'NUNITII) $=1,20151$
1450 FORMAT ($1 H 0,10 X$, 'TM $=1, G 13.5$)
OPTI 460
1500 FORMAT ($1 H 0, / /, 30 X,{ }^{\prime} S Y S T E M$ AVAILABILITY $=1, G 13.6, / /, 30 X$, OPTI 490
1 'SYSTEM PROFIT = ', G13.6, //, 30X,'SYSTEM RELIABILITY=:,G13.6) OPTI 500
1600 FORMAT $\left(1 H 0, /, 30 X,{ }^{\prime}\right.$ CONSTRAINT(1) $=1, G 13.6, / /, 30 X,{ }^{\circ}$ CONSTRAINT(2) $=1,0 P T I 510$
1 G13.6) OPTI 520
END OPTI
530

COMPUTER LISTING FOR COMPUTATION SCHEME II

SYSTEM RELIABILITY OPTIMIZATION
MAIN PROGRAMSYSTEM RELIABILITY OPTIMIZATION20
PARTIAL ENUMERATION METHOD MAIN 30
IMPLICIT INTEGER*4 (A-2) 40
INTEGER*2 XTEST(40), XTEST1(40), XONE (40), XSTAR(40),XSTR1(40), MAIN 50
1 NSTARI(40), MSTARI (40), XHAT(40), NHAT(40), MHAT(40), NXTEST(40,5), MAIN 60
2 MXTEST $(40,5), N X S T R 1(40,5), M X S T R 1(40,5)$ MAIN 70MAIN80
INTEGER*2 P,PP,PATH MAIN 90
COMMON/MASON/FOR,FREV,IEND,NEDGES, NEDGSI, NNODES,
MAIN 100
1 NPATH, PATHL, PLENTH, PPL,REV, STATUS, P(1000,4), PP(50),
2 PATH(300,50), NMOD, MPATH,PSIGN(300)
COMMON/OPTM1/RKODE (40), NKODE (40), MKODE (40), NTEST(40), MTEST(40)
COMMON/OPTM2/R(40), G(40), GHAT (40), KINDEX(40), SINDEX(40),
1 CONSTR (40), COST, COSTHT, RLBTY, OBJFN, OBJHAT
REAL*4 R,G,GHAT, KINDEX,SINDEX,CONSTR,COST,COSTHT,RLBTY, OBJFN,
1 OBJHAT
c
PLENTH $=1000$
PPL $=50$
PATHL $=300$
10 CALL DATAIN
READ (5,1000) INNOD,OUTNOD
CALL PATHS (INNOD)
IF (STATUS) $20,10,20$
20 CALL PATHP(OUTNOD)
WRITE $(6,1002)$
DO $30 \mathrm{~L}=1$, NPATH
MAIN 270
MAIN 290
30 CDNTINUE
CALL PATHC
WRITE (6,1COI) NPATH,NPATH
WRITE (6,1004)
DO $35 \mathrm{~L}=1$, MPATH
WRITE\{6,1005) L,PSIGN(L), (PATH(L,M), M=1, NMOD)
MAIN 110
MAIN 120
MAIN 130
MAIN 140
MAIN 150
MAIN 160
MAIN 170
MAIN 180
MAIN 190
MAIN 200
MAIN 210
MAIN 220
MAIN 230
MAIN 240
MAIN 250
MAIN 260
MAIN 280
MAIN 300
MAIN 310
MAIN 320
MAIN 330
MAIN 340
MAIN 350

```
    35 CONTINUE
        OBJHAT = 1.0
        DO 1 I = 1,4
        1 COUNT(I) = 0
C GENERATES TOTAL NUMBER OF YARIABLES IN TNE PROBLEM
        NVAR = O
        DO 40 I = 1,NMOD
        NVAR = NVAR + NKODE(I) + MKODE(I)
    40 CONTINUE
    GENERATES INITIAL VALUES OF XTEST(I)
        DO 50 I = I,NVAR
        XTEST(I) = 0
        XDNE(I) = 0
    50 CONTINUE
        XONE(1)=1
        XTEST(1) = 1
C GENERATE XSTAR
    100 GARRY = 0
        DO 140 I=1,NVAR
        XTESTI(I) = XTEST(I) + 1 + CARRY
        IF (XTESTI(I).LE.I) GO TO 150
        CARRY = 1
        XTESTI(I) = XTESTI(I) - 2
        GO TO 140
    150 CARRY = 0
    140 CONTINUE
        TESTI=0
        DO 200 I= 1,NVAR
        IF((XTEST(I).EQ.I) .OR. (XTESTI(I).EQ.I)) GO TO 210
        XSTRI\I) = 0
        GO TO 200
    210 XSTRI(I)=1
        TEST1 = TEST1 + XSTRI(I)
    200 CDNTINUE
        CARRY = 0
        DO 220 I=1,NVAR
    MAIN 360
    MAIN 370
    MAIN 380
    MAIN 390
    MAIN 400
    MAIN 410
    MAIN 420
    MAIN 430
    MAIN 440
    MAIN 450
    MAIN 460
    MAIN4}47
    MAIN 480
    MAIN 490
    MAIN 500
    MAIN 510
    MAIN 520
    MAIN 530
    MAIN 540
    MAIN 550
    MAIN }56
    MAIN 570
    MAIN 580
    NAIN }59
    MAIN }60
    MAIN 610
    MAIN 620
    MAIN 630
    MAIN 640
    MAIN 650
    MAIN }66
    MAIN 670
    MAIN 680
    MAIN 690
    MAIN }70
    MAIN }71
```

```
    XSTAR(I) = XSTRIII) + XONE(I) + CARRY
    IF(XSTAR(I).LE.I) GO TO 230
    CARRY = 1
    XSTAR(I) = XSTARII) - 2
    GO TO 220
230 CARRY = 0
220 CONTINUE
    GENERATE VALUES FOR NTEST(I),MTEST(I),NSTARI(I),AND MSTARI(I)
    K = l
    00 60 J = 1.5
    DO 70 I= 1,NMOD
    IF (J.GT.NKODE(I)) GO TO 70
    NXTEST(I,J) = XTEST(K)
    NXSTRI(I,J) = XSTRI(K)
    K=K+1
    IF (J.GT.MKODE(I)) GO TO 70
    MXTEST(I,J)= XTEST(K)
    MXSTRI(I,J) = XSTRI(K)
    K=K+1
70 CONTINUE
60 CONTINUE
    DO 80 I= 1,NMOD
    NTEST(I) = 1
    MTEST(I)=1
    NSTARI(I) = 1
    MSTARI(I)=1
    L = NKODE(I)
    IF (L.EQ. O) GO TU }9
    00 90 J=1,L
    NTEST(I) = NTEST(I) + (2**(J-1))*(I-NXTEST(I,J))
    NSTARI(I) = NSTARI(I) + (2**(J-1))*(1-NXSTRI(I,J))
90 CONTINUE
9 5 ~ L ~ = ~ M K O D E ( I ) ~
    IF (L .EQ. O) GO TO 80
    DO 110,J=1,L
    MTEST(I) = MTEST(I) + (2**(J-1))*MXTEST(I,J)
```

MAIN 720 MAIN 730
MAIN 740
MAIN 750
MAIN 760
MAIN 770
MAIN 780
MAIN 790
MAIN 800
MAIN 810
MAIN 820
MAIN 830
MAIN 840
MAIN 850
MAIN 860
MAIN 870
MAIN 880
MAIN 890
MAIN 900
MAIN 910
MAIN 920
MAIN 930
MAIN 940
MAIN 950
MAIN 960
MAIN 970
MAIN 980
MAIN 990 MAIN1000
MAIN1010
MAIN1020
MAIN1030
MAIN1040
MAIN1050
NAIN1060
MAIN1070

108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
$130:$
131 :
132:
133:
134 :
135:
136:
137:
138:
139:
140:
141:
142:
143:

```
MSTARI(I)= MSTAR1(I) + (2**(J-1))*MXSTR1(I,J)
    110 CONTINUE
    80 CONTINUE
    TEST FOR GII(X*-1) - GI2(X)
    COUNT(1)= COUNT(1) + 1
    DO 310 I= I,NMOD
    CONSTR(I) = NTEST(I) - MTEST(I)
    IF(CONSTR(I).GE.O.O) GO TO 310
    GO TO 400
    310 CONTINUE
        M = NMOD + 1
        CONSTR(M) = 0.0
        UO 320 I=1,NMOO
    320 CONSTR(M) = CONSTR(M) + NSTARI(I)*KINDEX(I)*(I./MSTARI(I))**
        ISINDEX(I)
            CONSTR(M) = COST - CONSTR(M)
            IF(CONSTR(M).GE.0.0) GO TO 330
            GO TO 400
    C TEST FOR GO(X) - GO(XHAT).
    330 COUNT (2) = COUNT (2) + 1
            CALL MODULE
            CALL RELIAB
            OBJFN = 1. - RLBTY
            IF(OBJFN.LT.OBJHAT) GO TO 250
    4 0 0 ~ I F \{ T E S T I . E Q . N V A R ) ~ G O ~ T O ~ 5 0 0 ~
            DO 260 I=1,NVAR
            XTEST(I) = XSTAR(I)
    260 CONTINUE
            GO TO 100
C TEST FOR GII(X)-GI2(X)
    250 COUNT(3) = COUNT(3) + 1
            M=NMOD + 1
            CONSTR(M) = 0.0
            DO 340 I=I,NMOD
    340 CONSTR(M) = CONSTR(M) + NTEST (I)*KINDEX(I)*(1./MTEST (I) )**
    1SINDEX(I)
```

MAIN1080

MAIN1090 MAINII 00 MAIN1110 MAIN1120
MAINII30
MAIN1140
MAINII50
MAIN1160
MAIN1170
MAIN1180
MAIN1190
MAIN1200
MAIN1210
MAINI220
MAIN1230
MAIN1240
MAINI 250
MAIN1260
MAIN1270
MAINI 280
MAIN1 290
MAIN1300
MAIN1310
MAIN1320
MAIN1330
MAIN1340
MAINI350
NAIN1360
MAIN1370
MAIN1380
NAIN1390
MAIN1400
MAIN1410
MAIN1420
MAINI430

```
144:
145:
146:
147:
148:
149:
150:
1ち1:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
CONSTR(M) = COST - CONSTR(M)
IF(CDNSTR(M),GE.O.O) GO TO 350
CARRY = 0
TEST2 = 0
DO 360 I= I,NVAR
TEST2 = TEST2 + XTEST(I)
XTEST(I) = XTEST(I) + XONE(I) + CARRY
IF(XTEST(I).LE.I) GO TO 370
CARRY = 1
XTEST(I) = XTEST(I) - 2
GO TO 360
370 CARRY = 0
360 CONTINUE
IF(TEST2.EQ.NVAR) GO TO }50
GO TO 100
350 COUNT(4)= COUNT(4) +1
DO 380 I=1,NVAR
380 XHAT(I) = XTEST(I)
    OBJHAT = OBJFN
    OO 390 I= 1,NMOD
    NHAT(I) = NTEST(I)
    MHAT(I) = MTEST(I)
    GHAT(I) = G(I)
390 CONTINUE
    M NMOD + N I
    COSTHT = COST - CONSTR(M)
    GO TO 400
500 RLBTY = 1. - OBJHAT
    WRITE (6,1006)
    WRITE (6,1007)
    WRITE (6,1008)
    WRITE(6.1007)
    DO 410 I =1,NMOD
    WRITE(6,1COS) I,NHAT(I),MHAT(I),GHAT(I)
    WRITE(6,1007)
410 CONTINUE
390 CONTINUE
```

MALN1440
MAIN1450
MAIN1460
MAIN1470
MAIN1480
MAIN1490
MAIN1500
MAIN1510
MAIN1520
MAIN1530
MAIN1540
MAIN1550
MAINI 560
MAIN1570
MAINL580
MAIN1590
MAIN1600
MAIN1610
MAIN1620
MAIN1630
MAIN1640
MAIN1650
MAIN1660

MALN1440
MAIN1450
MAIN1460
MAIN1470
MAIN1480
MAIN1490
NAIN1500
MAIN1510
NAIN1520
MAIN1530
MAIN1540
IN1550

MAIN1570
MAINL580
MAIN1590
MAIN1600
MAIN1610
MAIN1620
MAIN1630
MAIN1650
NAIN1660
MAIN1670
MAIN1680
MAIN1690
MAINITOO
MAIN1710
MAIN1720
MAIN1730
MAIN1740
MAIN1750
MAINI760
MAIN1770
MAIN1780
MAIN1790
WRITE (6, 1010) RLBTY, COSTHT, (J, COUNT(J), J=1,4)
MAIN1 800
GO TO 10
1000 FORMAT(213)
MAIN1820

MAIN1830
1002 FORMAT(1HO, //,T2O, PATHS IN BINARY CODE', /)
1003 FORMAT(1HO,T16,'PATH',13, $=$, 50121
MAIN1840
1004 FORMAT(1HO, $1 /$, T20,'PATHS AND PATH COMBINATIONS IN BINARY CODE', $/ 1$
MA IN 1850
MAIN1860
1005 FORMAT(1HO,T16,'PATHC', I3,' = ', I2,4X,50I2)
MAIN1870
1006 FORMAT(1HI,//,T40,'THE OPTIMAL POINT IS:,//)
MAIN1880
1007 FORMAT(1H+,T30,55('_'))

1 - MODULE RELIABILITY |')
MAIN1890
1009 FORMAT(1H, T30,31.1',4X,12,4X),'1', D20.10,'1')
MAIN1910
MAIN1920
1010 FORMAT (IHO, /, 30X, 'OPTIMIZED SYSTEM RELIABILITY $=$, D20. $10,1 /, 30 \mathrm{X}$,
MAIN1930
1 'SYSTEM COST $^{\prime}=1, G 13.5, / /,(30 \mathrm{X}$, COUNT', $13, \mathrm{C}=1,18, / / 1)$
MAIN1940
END

```
            SUBROUTINE DATAIN
DATA 10
C THIS SUBROUTINE READS AND ECHOCHECKS THE DATA DATA 20
            IMPLICIT INTEGER*4 (A-Z) DATA 30
            NTEGER*2 P,PP,PATH
            COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES, DATA 50
    l NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), DATA 60
```



```
    COMMON/OPTM1/RKODE(40),NKDDE(40),MKODE(40),NTEST(40),MTEST(40) DATA 80
    COMMON/OPTM2/R(40),G(40),GHAT(40),KINDEX(40),SINDEX(40), DATA 90
    1 CONSTR(4C),COST,COSTHT,RLBTY,OBJFN,OBJHAT DATA 100
    REAL>4 R,G,GHAT,KINDEX,SINDEX,CDNSTR,COST,COSTHT,RLBTY,OBJFN, DATA 1IO
    1 OBJHAT
        DIMENSION TITLE(30)
    READ(5.999,END=70) (TITLE(I),I=1,30)
    READ(5,1000)NNOOES,NMOD,COST
    DO 10 I=1.NMOD
10 READ(5,100G) RKDDE(I),NKODE(I),MKODE(I),SINDEX(I),KINDEX(I),R(I)
    FOR=0
    REV=0
    DO 40 I= 1,1000
    READ(5,1001) P(I,1),P(1,2),P(I,4)
    IFI P(I,1)-P(I,2) , 20,50,30
20 FOR=FOR + 1
    GO TO 40
30 REV=REV & 1
40 CONTINUE
5 0 ~ N E D G E S = F O R ~ + ~ R E V ~
    NEDGS1=NEDGES + 1
    FREV=FOR + 1
    WRITE(6,1002) ( TITLE(I),I=1,30)
    WRITE(6,1003)
    WRITE(6,1004)
    WRITE (6,1003)
    DO 60 I= 1,NEDGES
DATA 340
DATA 350
```

 WRITE(6,1005) I,P(I,1),P(1,2),P(I,4)
 DATA 360
WRITE $(6,1003)$
DATA 370
60 CONTINUE
DATA 380
WRITE $(6,1007)$ COST
DATA 390
WRITE (ópl008)
DATA 400
WRITE $(6,1009)$
WRITE 6,1010$)$
DATA 410
DATA 420
WRITE 6,1009$)$
DATA 430
DO $80 \quad I=1, N M O D$
DATA 440
WRITE (6,1011$) I, R K O D E(I), N K O D E(I), \operatorname{MKODE}(I), S I N D E X(I), K I N D E X(I), R(I) D A T A ~ 450$
WRITE 6,1009$)$ DATA 460
80 CGNTINUE
DATA 470
RETURN
DATA 480
70 CALL EXIT
999 FORMAT(15A4)
1000 FORMAT (2I10.F10.0)
FORMAT(3110)
1002 FORMAT(1HI, //,T10, $30 A 4, / /$, T50, 'INVENTORY OF BRANCHES', /)
DATA 490
DATA 500
DATA 510
DATA 520

1003 FORMAT(1H+,T38,44('_'))
CATA 530

DATA 540
1 ' MODULE ${ }^{\prime \prime}$
DATA 550
1005 FORMAT (1H, T38,41'1',4X, I2,4X), '1')
1006 FORMAT(3110,3F10.0)
DATA 560
DATA 570
1007 FORMAT $\left(1 H 0,1 /, T 40,{ }^{\circ}\right.$ COST CUNSTRAINT $\left.=1, F 15.3,1 /\right)$
1008 FORMAT (140, T50, 'INVENTORY OF MOOULES', 1)
1009 FORMAT(1H+,T20,83('_1))

END
DATA 580
DATA 590
DATA 600
DATA 610
DATA 620
DATA 630
DATA 640
DATA 650

```
C THIS SUBROUTINE COMPUTES THE MODULE RELIABILITY. MOCU IO
        IMPLICIT INTEGER*4 (A-Z) MODU
        30
        COMMON/MASCN/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES,
            MODU
        1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), MODU 50
        2 PATH(300,50),NMOD,MPATH,PSIGN{300)
            MODU60
            INTEGER*2 P,PP,PATH MODU }7
            COMMON/OPTMI/RKODE(40),NKODE(40),MKODE(40),NTEST(40),MTEST(40) MODU 80
            COMMON/OPTM2/R(40),G(40),GHAT (40),KINDEX(40),SINDEX(40),
            1 CONSTR(40), COST,COSTHT,RLBTY,OB JFN,OB JHAT
            REAL*4 R,G,GHAT,KINDEX,SINDEX,CONSTR,COST,COSTHT,RLBTY,OBJFN,
                    MODU 100
                    MODU 110
                    MODU 120
                    MODU 130
                    MODU 140
                    MODU 150
                    MOOU 160
                    MODU }17
                    MODU 180
                    MODU 190
                    MODU 200
                    MODU 210
                    MODU 220
                    MODU 230
                    MODU 240
                    MODU 250
MOOU 260
    10 CONTINUE
    20G(K)=G(K) % DUMMY1
                            MODU 270
MODU 280
100 DUMMY1 = R(K)
MODU 290
MODU 300
MODU 310
MODU 320
MODU 330
MODU 340
MODU 350
```

```
36: G(K)=G(K) + DUMMY2
```

MODU 360
110 CONTINUE
200 CONTINUE
MODU 370
37:
38:
39:
RETURN
MODU 380
END
MODU 390
MODU 400

```
SUBROUTINE RELIAB RELI 10
C THIS SUBROUTINE CALCULATES THE SYSTEM RELIABILITY FROM THE RELI 2O
C MODULE RELIABILITIES. RELI 30
    IMPLICIT INTEGER*4 (A-Z)
    COMMON/MASON/FOR,FREV,LEND,NEDGES,NEDGS1,NNODES. RELI }5
RELI 40
    1 NPATH,PATHL,PLENTH,PPL,REV,STATUS,P(1000,4),PP(50), RELI 60
    2 PATH(300,50),NMOD,MPATH,PSIGN(300) RELI 70
        INTEGER*2,P,PP,NATH,NPATH,PSIGN(300)
        COMMON/OPTMI/RKODE(40),NKODE(40), MKODE(40),NTEST(40),MTEST(40)
        COMMON/OPTM2/R(40),G(40),GHAT(40), KINDEX(40),SINDEX(40),
        1 CONSTR(40), COST,COSTHT,RLBTY,O8JFN,OBJHAT
        REAL#4 R,G,GHAT,KINOEX,SINDEX,CONSTR,COST,COSTHT,RLBTY,OBJFN,
        1 OBJHAT
        REAL*4 GPATH
C
    RLBTY = 0.0
    DO 10 I=1,MPATH
    GPATH= PSIGN(I)
    DO 20 J=1,NMOD
    IF (PATH(I,J) .EQ. O) GO TO 20
    GPATH=GPATH*G(J)
20 CONTINUE
RLBTY = RLBTY * GPATH
10 CONTINUE
RETURN
    END
RELI 80
RELI }9
RELI 100
RELI 110
RELI 120
RELI 130
RELI 140
RELI 150
RELI 160
RELI 170
RELI 180
RELI 190
RELI 200
RELI 210
RELI 210
RELI 230
RELI 240
RELI 250
RELI 260
```


[^0]: Allowable Cost $=1300.00$

