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ABSTRACT 

In this study electrically characterizing the changes in wood (organic) and smart cement 

(inorganic) due to moisture changes was investigated using 2-probe method. Also, Ultrasonic 

Pulse Velocity was used to investigate the changes in the compressive wave speed with changes 

in moisture content. 

Smart cement was modified by adding UH-biosurfactant and characterized the changes in 

the initial resistivity, curing characteristics and the piezoresistive behavior. Also, smart cement 

was exposed to different water levels (external) and changes in the resistivity were correlated 

with moisture content. The experimental results were correlated with Vicat Appartus tests and 

were modeled using Vipulanandan models and Artificial Neural Network (ANN) models.  

Wood, one of the most commonly used natural materials was studied for variable 

moisture saturation conditions and electrical measurements were then recorded to monitor and 

characterize the changes. Also, Ultrasonic Pulse Velocity test, one of the most established and 

widely used non-destructive test (NDT) was used to correlate with the moisture changes and 

resistivity in the wood. 
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CHAPTER 1    INTRODUCTION 

1.1 General 

Cement composites are the most durable construction materials, which are mainly 

composed of cement, aggregates, water, polymers and different additives (Bastos et al., 2016). 

The industry of the second most consumed substance in the world behind water is worth over $37 

billion, and it employs more than 2 million employees in the United States. It is estimated that 

around 4.3 million tons of cement were consumed in 2015 worldwide, with a turnover of 

$335,000 million (Statista, 2017).  

Water is a landscape element and a chemically active mobile substance; it is always on 

continuous move through the surface and subsurface. Frequent handlings of polluting substances 

on ground surface involve interventions with water quality. Once caught by the moving 

groundwater, pollutants therefore tend to move along with groundwater, unless chemical reactions 

influence the mobility of the pollutant (Akankpo and Igboekwe, 2011). With only 3% of the 

Earth’s water as fresh and 2.5% of the earth's fresh water is unavailable; locked up in glaciers, 

polar ice caps, atmosphere, and soil; highly polluted; or lies too far under the earth's surface to be 

extracted at an affordable cost only 0.5% of the earth's water is available fresh water. Added to 

this is the increasing tendency of building activity along the seaside areas. In seaside areas, the 

problems of the availability of satisfactory freshwater have led to active consideration of the use 

of seawater. This practice also cuts down the transportation costs (Thomas and Lisk, 1970).  

The cement matrix, which primarily determines the properties of this multi-phase 

material, consists in a three-dimensional lattice composed of hydrated cement phases (Lea, 2004) 

and, since the matrix is the continuous phase, it is the one that confers resistance to stresses. The 

properties of a composite derive both from those of its constituents and form their synergetic 

interactions (Brandt, 2009).   
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Mixing conditions including mixing water quality for cement slurries are of great importance. 

It is not very surprising to see some key cement properties to be impacted by the condition of 

mixed water. Strength and durability of cement can be reduced due to the presence of chemical 

impurities in water. Furthermore, cement strength is impacted by the formation of C-S-H 

(Calcium Silicate Hydrate) gel during cement hydration. Changes in the water chemistry can 

impact the whole hydration process (Saleh et al., 2018). Hence, monitoring the behavior of 

cementitious composite with saline water is critical during the construction and entire service life 

in order to certify the safety of the composite.  

Vipulanandan et al., (2014) developed Chemo-piezo sensitive cement with an improvised 

electrical method to monitor the cement behavior. Electrical Resistivity of cementitious materials 

is used as a sensing property to quantify changes due to contaminations for quality control 

throughout its construction and service life.  

Until this century wood was the single greatest material aid and comfort in every century of 

our ancestors lives. The first everything; including the first submarine and airplane; were first 

made of wood. Wood was being shaped into homes: windbreaks were erected before the 

entrances of caves, cooking and eating utensils were fashioned. The importance of wood in the 

lives of our ancestors is outweighed by no other single material. Wood is the most important 

material contact we have with the entire body of our ancestry. It has been paramount in aiding, 

comforting and paving the road to civilization (Kramer, 2006). Wood is still essential to human 

life, but it has evolved over the ages from a simple, readily available material to a modern 

industrial and engineering material (Youngs). Our present use of wood is restricted to fast growth 

softwoods and a few hardwoods for trim and decoration. The cost of wood is steadily rising, and 

supplies are growing smaller. If we survive the lack of air a lack of trees will provide; there will 

still be no wood for new work; the age of wood will have finally passed from the epoch of 
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civilization. What little then remains will be the very last (Kramer, 2006). It is critical for us to 

use our wood resources efficiently.  

Along with deforestation, wood decay and degradation are the primary reasons for the limited 

supplies of wood. Hence there is a need to detect the changes occurring in the wood due to 

external factors such as moistures; as they are primarily responsible for wood degradation.  

Nondestructive measurements such as electrical measurements and ultrasonic pulse velocity 

are used to detect the changes in the wood configuration due to changes in the moisture content.  

1.2 Problem Statement 

One of the major probelm in the construction indutry is real time monitoring of cementitious 

composites, starting from its construction throughout its service life. This could very well be 

answered by the application of Smart Cement; a chemo-piezo sensitive material. But there is an 

emergnig challenge to verify the applicability of smart cement due to various modifications. 

Characterizing the smart cement material sensitive to contaminations, stresses, variable external 

conditions such as mositure infiltration; helps us to widen the appliaction of smart cement. Hence 

it is necessary to perform a systematic characterization of smart cement composites to monitor the 

changes in the material during its hydration.  

There is a growing worry about the increasing demand of wood along with its scarcity 

due to wood decay and degradation. Moisture attack is one of the primary reasons of wood decay.  

Hence it is important to characterize the wooden configuration through various moisture changes.   

1.3 Objectives 

The overall objective was to develop and characterize smart cement and wood using the 

electrical measurements under application of variable moisture conditions. The specific 

objectives are as follows:   
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1. Characterize the Curing and Piezoresistive behavior of Smart Cement composite with 

additives under the effect of stress and variable moisture conditions. 

2. Characterize the configuration of wood along with its changes in moisture 

content 

1.4 Organization 

This study is organized into five main chapters. Chapter 1 is the introduction of this research, 

which leads to a problem statement  and the detailed objective of this study.  Chapter 2 provides 

the literature review related to smart cement, electrical measurement techniques for cementitios 

materials and wood, bosurfactants and the artificial neural network. Chapter 3 discusses the 

materials used for the preparation of smart cement composites and the experimental techniques 

followed in this study. Chapter 4 provides the complete characterization of smart cement. It 

discusses the test results of additive modification on the resistive and piezoresistive properties of 

smart cement composites. Experimental results have been modelled using Vipulanandan and 

ANN models.  Chapter 5 specifies the alterations tree cover across United States. Also, results of 

the nondestructive testing with moisture changes in wood have been discussed. Finally,  the 

conclusions of this research and recommendations for further work have been  summarized in 

chapter 6. 
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 

2.1 Introduction 

This chapter provides a brief description on the related topics to the field of study. It 

summarizes the literature review conducted on methods for measuring the electrical resistivity, 

hydration monitoring techniques for cement and electrical methods to monitor the health of wood 

2.2 Smart Cement 

Monitoring of structures by embedded or attached sensors has been gaining increasing 

interest and is more effective to guarantee the structural safety in service. However, smart 

cement which can sense its own damage is more attractive due to its strong mechanical 

properties and self-monitoring characteristics. Smart cement with conductive filler has 

been systematically developed (Vipulanandan, et al. 2004-2013). In this technology, 

cement itself is a sensor. Therefore, there is no need to embed strain gauges, optical fibers 

or other sensors in the cement.  

Advantages of Smart Cement:  

1. Facilitates the real time monitoring of cementitious materials during and after 

construction. 

2.  Monitors stresses in the cement and notifies about the risk of possible damage to 

provide the opportunity for repair and reconstruction. 

3. Advises about the extent of setting time of cement; thereby allowing safe 

construction process. 

4. Monitors the quality of cement using electrical resistivity measurements. 
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Figure – 2.1 Typical Stress Strain Behavior of Cement Composite 
(Data from Praveen, 2014) 

The smart cement technology can monitor the changes in the cement at very high magnification 

of about 2500 times after one day curing. The main property of interest is piezoresistivity, the 

change in the resistivity of the cement with the application of the stress. (Vipulanandan et al., 

2014).      

 

Figure – 2.2 Typical Piezoresistive behavior of cement composite 
(Data from: Vipulanandan et al., 2014) 
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The work of many researchers on the electrical resistance and resistivity applications for 

cementitious materials has been investigated in detail. 
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Table 2-1:Summary of Electrical Characterization of Cementitious Materials 

Reference Materials Water 
Cement 
Ratio 

Fibers Used Measurement 
Techniques 

Parameters Studied Remarks 

 
 
Banthia, et al.  
(1992) 

 
 
Silica Fume / 
Cement = 0.2 

 
 

0.3 

 
Carbon fibers  and 
steel fibers (5% by 
volume) 

 
 
AC, 2 probe, 
copper electrode 

 
 
Resistance, Electrical 
Resistivity 

 
Effect of fiber type, inter-
electrode spacing and age of 
specimen on Electrical 
Resistivity  
 

 
Han, et al. 
(2009) 

 
 
Portland Cement 

 
 

N/A 

 
Carbon nanotube 
(0.1% by wt. of 
cement) 

 
 
2 probe method 

 
Resistance, Change in 
Resistance, Vehicle speed 
 

 

1) Response of electrical 
resistance to compressive 
loading 
2) Self-sensing CNT 
composite has a potential for 
traffic monitoring  

 
Han, et al. 
(2009) 

 
 Portland Cement, 
silica fume (15% 
by wt. of cement 
) 

 
 

N/A 

 
 

Nickel Powder 

 
DC 4 probe 
method, 1.5 V 

 
Electrical Resistivity, 
Compressive stress, 
Compressive strain 

Relationship between     
Change in Electrical 
Resistivity and Compressive 
stress and Compressive 
strain 

 
 
Topcu, et al 
(2011) 

Ordinary Portland 
Cement, Fly-ash, 
silica fume, blast 
furnace slag 

 
 

0.4-0.55 

 
 
N/A 

 
AC, 2 robe, 
copper plate 

 
Setting time, Electrical 
conductivity. Compressive 
strength 

(1). Relationship between 
conductivity and time. 
(2) Effect of additives on 
conductivity. 
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Table  2-1:Summary of Electrical Characterization of Cementitious Materials (continued) 

Reference Materials Water 
Cement 
Ratio 

Fibers Used Measurement 
Techniques 

Parameters Studied Remarks 

 
 
Xiao, et al. (2011) 

 
 
Portland Cement 
(Type I) 

 
 

0.3 – 055 

 
 

N/A 

Non-contact 
Electrical 
Resistivity 
measurement 

Electrical Resistivity (ER), 
Compressive strength 

1) Relation between ER and 
W/C 
2) Correlation between 
compressive strength and 
ER. 
  

 
 
Spragg, et al. 
(2013) 

 
 
 
Portland Cement 
(Type I) 

 
 
 
 

0.42 

 
 
 
 

N/A 

 
 
2 probe (plate 
electrodes and 
embedded 
electrode rods), 4 
probe method 

 
 
Specimen Geometry, 
specimen temperature, 
sample storage, Electrical 
Resistivity 

1) Influence of specimen 
geometry, temperature and 
storage condition on 
resistivity.  
2) Impedance response 
for different specimen 
geometry with 
frequency. 

 
Hambach, et al. 
(2015) 

 
 
Portland cement 

 
 

0.35 

 
Carbon fiber (1% - 
4% by volume) 

 
2 Probe Method 

Flexural strength, 
Electrical heating test 
 

Applicability of in-situ 
heating of carbon fiber based 
cement based flooring 
 

 
 
 
Sun, et al. (2015) 

 
 
 
Portland cement 

 
 
 

0.41 – 0.55 

 
 
Carbon fiber mat 
(0% - 1.2% by 
volume) 

 
 
4 probe method 

 
 
Resistivity, 
Compressive strength 

1) Variation in resistivity 
with curing period and 
carbon fiber content 
2) Effect of carbon fiber 
content on compressive 
strength 
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Table  2-1:Summary of Electrical Characterization of Cementitious Materials (continued) 

Reference Materials Water 
Cement 
Ratio 

Fibers Used Measurement 
Techniques 

Parameters Studied Remarks 

 
 

Wang, et al. (2016) 

Portland cement 
(TypeI), 
superplasticizer 
(0% - 0.8% by 
solid wt.) 

 
 

0.3 

 
 

N/A 

 
Non-contact 
Electrical 
Resistivity 
Apparatus 

 
Electrical Resistivity 
Setting time, 
Compressive strength, 
Heat evolution. 

1) Variation in 
Electrical Resistivity 
with time. 
2) Rate of heat 
evolution with time 
 
  

Tiexeria, et al. 
(2015) 

 
Portland cement 
(Type 1) 

 
0.5 

 
TiO2 (0.8% - 5% 
by wt. of cement) 

 
DC, 2 Probe metal 
electrodes 

Electrical Resistivity 
(ER), Compressive 
strength, Porosity 
 

1) AC – 2 probe method. 
2) Electrical Resistivity, 
fiber content, Compressive 
stress.  

 
 
Remarks 

 
 
Portland cement 

 
 

0.3 – 0.55 

 
Carbon fibers 

 
AC – 2 probe 

Electrical Resistivity, 
Compressive strength 

1) AC-2probe method. 
2) Electrical Resistivity, 
fiber content, 
Compressive stress 
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2.3 Wood  

Significant efforts have been made to develop robust, non-destructive technologies 

(NDT) capable of predicting the intrinsic wood properties of individual living trees and 

assessing wood quality by stand and forest. In addition, non-destructive technologies including 

(mini) rhizotrons and ground-penetrating radar have been recently proposed to assess plant 

rooting distribution and growth (Sanesi et al. 2013, Marziliano et al. 2015). The use of such 

technologies not only leads to greater profitability for the forest industry but can also help 

foresters to make economic and environmental management decisions for treatment of 

individual trees and forest stands, improve thinning and harvesting operations, and efficiently 

allocate timber resources for optimal utilization (Wang et al. 2007a, Proto et al. 2014).  

Acoustic technologies have become well established as material evaluation tools, and 

their use has become widely accepted for quality control by the wood industry (Wang et al. 

2007b). With the development of portable and simple-to-use, time-of-flight and resonance-based 

tools, the use of acoustics in the forestry sector has increased, particularly in countries such as 

New Zealand (Walker & Nakada 1999, Tseheye et al. 2000, Chauhan & Walker 2006), 

Australia, USA (Wang et al. 2001, 2004), Hungary (Brashaw et al. 2009, Divos 2010) and the 

United Kingdom (Searles & Moore 2009).  

Researchers have also started to consider detection based on electrical resistivity of 

wood owing to the advantages offered by this method in detecting the quality or service life as 

an indicator of fluid transport properties of the sample. Wood is an extremely complex organic 

matter with the characteristics of porosity, hygroscopicity and anisotropy. Hence electrical 

resistance is affected by the moisture content in the sample, temperature of the sample, 

direction of the flow of current (parallel or perpendicular to fibers), species and density of wood 

and extent of specimen beyond the electrode. 



12 
 

 

Following table demonstrates the literature review on the Non-Destructive Testing 

conducted on wood. 
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Table – 2.2 Summary of Electrical Measurement Techniques for Wood  

 
REFERENCE 

 
APPARATUS 

 
FREQUENCY 

 
PARAMETERS 
EVALUATED 

 
MODEL 
EQUATION 

 
CONCLUSION 

 
REMARKS 

 
 
Stamm (1927) 

 
 
Megger 
Insulation tester 

 
 

N/A 

Electrical Resistance 
(ER), Moisture 
content, Density, 
Direction of flow of 
current, temperature 

 ER changes with 
moisture content 
but within narrow 
limits.  

ER is largely 
affected by the 
directions of 
wooden wood 
grains 

 
 
Kumar, et al. 
(1993) 

 
 
Digital 
Multimeter 

 
 

N/A 

 
Electrical 

Resistivity, 
carbonization 
temperature 

 Resistivity 
decreased with 
increase in 
carbonization 
temperature 

Cellulose and 
Legnin affect the 
ER. Acia is higher 
in cellulose than 
Eucalyptus  

 
 
 
Sahin, et al. 
(2004) 

 
 
 
Standing wave 
ratio meter 

 
 
 

9.8GHz and 
2.45GHz 

 
 

Dielectric 
properties, 
directional 
properties 

 dielectric 
properties increase 
with rising 
moisture content 

Dielectric 
constant of water 
is about 2500 
times higher than 
wood, so there’s 
increase in 
dielectric constant 
of wood 

 
 
 
Hasenstab, et al. 
(2006) 

 
 
 
A flash tube 
XR200 

 
 

Longitudnal wave - 
100kHz 
Transverse wave – 
55kHz 

 

 
 
 
Time of flight 

 Ultrasound 
technique is 
sensitive to cracks 
parallel to surface  
and X-Ray 
technique for 
perpendicular to 
surface. 

Longitudinal 
waves are more 
sensible to cracks 
than transverse 
waves 



14 
 

 

 
REFERENCE 

 
APPARATUS 

 
FREQUENCY 

 
PARAMETERS 
EVALUATED 

 
MODEL 
EQUATION 

 
CONCLUSION 

 
REMARKS 

 
 
Husein, et al. 
(2014) 

 
3532-50 
LCR HiTESTER 
(Hioki) 

 
10, 100, 103, 104, 2 
x104, 4 x 104, 6 x 
104, 8 x 104 and 105 

Hz 
 

 
Electrical 
conductivity, 
Impedance, 
directional property 

 Semiconductor 
when conductivity 
is in the range of 
10-3 to 103 S/cm 
(103 – 0.001 Ωm) 

Effect of wood 
species on ER is 
marked upto the 
carbonization 
temperature of 
800  °C 

 
 
Yue, et al. 
(2018) 

The PICUS Tree 
Tronic Tree 
Electrical 
Resistance 
Tomography 

 
 

N/A 

 
Electrical resistance, 
moisture content, 
temperature. 

Sound trees: 
Log R = -0.5(T) -
0.02(MC) +6.34 
Decayed trees: 
LogR = -0.44(T) 
-0.01 (MC) 
+5.93 

Application of 
ERT can separate 
sound and decay 
trees 

ER is largely 
affected by 
temperature hence 
there is a need to 
calibrate the effect 
of temperature 

Yue, et al. 
(2019) 

PICUS Tree 
Tronic Electrical 
Resistance 
Tomography and 
Arbotom Stress 
Wave 
Tomography 

 
 

N/A 

Electrical resistance, 
degree of decay by 
ERT(De), 
degree of decay by 
SWT (Ds), 
mass loss of sample 
due to decay (Dt) 

De = 0.6659 Dt 
+11.852, 
 
Ds = 0.9993 Dt 
+7.5369 

Electric resistance 
tomography 
showed better 
results than stress 
wave tomography 

Correlations can 
be made between 
the severity of 
decay and 
detected by ERT 
and true severity 
of decay  

REMARKS Nondestructive 
methods 

104 for measuring 
ER 

Electrical 
Impedance, 
Electrical 
Resistivity. 

Equations used 
for correlation 
needs accuracy. 

Electrical 
properties very 
sensitive to wood 
configuration   

Ability to detect 
changes in the 
wood composition 

 

 

Table – 2.2 Summary of Electrical Measurement Techniques for Wood (continued) 

 



15 
 

 

 Table – 2.3 Electrical Resistivity of different materials  

Material 
 

Resistivity, ρ (Ω.m)   
at 20 °C 

Silver 1.59×10−8 

Copper 1.68×10−8 

Gold 2.44×10−8 

Aluminum 2.82×10−8 

Calcium 3.36×10−8 

Tungsten 5.60×10−8 

Zinc 5.90×10−8 

Nickel 6.99×10−8 

Lithium 9.28×10−8 

Iron 1.0×10−7 

Platinum 1.06×10−7 

Tin 1.09×10−7 

Carbon steel 1010 

Lead 2.2×10−7 

Titanium 4.20×10−7 

Stainless steel 6.9×10−7 

Mercury 9.8×10−7 
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2.4 Bio-Surfactants 

 Biosurfactant usually refers to surfactants of microbial origin (Mulligan, 2005). They are 

expected to become known as multifunctional materials of the twenty first century as they have 

applications in different industrial processes as well as potential novel future uses (Marchant and 

Banat, 2012) mostly due to their diverse structures. The composition and yield of biosurfactants 

Carbon (diamond) 1×1012 

Sea water 2×10−1 

Drinking water 2×101 to 2×103 

Silicon 6.40×102 

Deionized water 1.8×105 

Glass 10×1010 to 10×10 14 

Hard rubber 1×1013 

Wood (oven dry) 1×1014 to1016 

Sulfur 1×1015 

Air 1.3×1016 to 3.3×1016 

Paraffin wax 1×1017 

Fused quartz 7.5×1017 

PET 10×1020 

Teflon 10×1022 to 10×1024 

Table – 2.3 Electrical Resistivity of different materials (continued) 
 

https://en.wikipedia.org/wiki/Surfactant
https://www.frontiersin.org/articles/10.3389/fmicb.2016.01718/full#B59
https://www.frontiersin.org/articles/10.3389/fmicb.2016.01718/full#B59
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depends on bioreactor characteristics, pH of the medium, nutrient composition, agitation, oxygen 

availability, and temperature (Costa et al., 2018) 

The biosurfactant is produced from waste oil with acclimated bacteria in continuously 

stirred batch reactor (Harendra et al., 2008; Vipulanandan et al., 2000). It is water soluble. 

2.5 Artificial Intelligence 

 
Figure – 2.3 Artificial Intelligence 

Artificial Intelligence (AI), otherwise known as machine learning or computational 

intelligence, is the science and engineering aimed at creating intelligent tools, devices and 

machines. Its application in solving complex problems and case-based complications in various 

field applications has become more and more popular and acceptable over time (Opeyemi et al., 

2016). 

2.5.1 Artificial Neural Networks 

An artificial neural network (ANN) is a computational numerical model which is based 

on, at some level, brain like learning as opposed to traditional computing which is based on 

programming. Artificial neural networks are one of the main tools used in machine learning. As 

the “neural” part of their name suggests, they are brain-inspired systems which are intended to 

replicate the way that we humans learn. Neural networks consist of input and output layers, as 

well as (in most cases) a hidden layer consisting of units that transform the input into something 

https://www.sciencedirect.com/topics/chemical-engineering/biochemical-reactor
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that the output layer can use. They are excellent tools for finding patterns which are far too 

complex or numerous for a human programmer to extract and teach the machine to recognize 

(Dormehl, 2019). While neural networks (also called “perceptrons”) have been around since the 

1940s, it is only in the last several decades where they have become a major part of artificial 

intelligence. Warren S. McCulloch and Walter H. Pitt’s 1943 paper, ‘‘A Logical Calculus of the 

Ideas Immanent in Nervous Activity,’’ is often cited as the starting point in neural network 

research. 

The artificial neural network is a numerical model. It consists of many artificial neurons 

interconnected where each of them gives a single output (Y) induced from all inputs (Xi) 

(Hammoudi et al., 2019). The predictive capability of artificial neural networks comes from the 

ability to learn and adapt to new situations in which additional data becomes available. The first 

layer (input layer) consists of neurons representing the independent variables (inputs Xi), the 

second one is the hidden layer (Hi, f(Hi)), and the last one is the ANN responses (output layer, 

representing AI). The number of neurons required in the hidden layer is determined in a way to 

minimize both prediction error and number of neurons. The general forms of the equations are as 

                                                 Hj = ∑WijXi + bj                                               (2.1) 

where Xi represent the inputs (Figure 2-4, neurons I) and subscript i represents the inputs (I and 

summation 1 to n). The Wij is the weighing matrix for each input term Xi connecting it to the 

hidden term Hj, the bj is the bias input function. 

2.5.2 How do neural networks work? 

Let us take the example of the price of a property and to start with we have different 

factors assembled in a single row of data: Area, Bedrooms, and Distance to city and Age. 

https://www.digitaltrends.com/cool-tech/history-of-ai-milestones/
https://www.digitaltrends.com/cool-tech/history-of-ai-milestones/
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Figure – 2.4 An illustration of a neural network 

The input values go through the weighted synapses straight over to the output layer. Now 

in the above figure, all 4 variables are connected to neurons. They will either have a 0 value or 

non-0 value. 

Here, the non-0 value → indicates the importance and 0 value → they will be discarded. 

Let's take the example of Area and Distance to City is non-zero for the first neuron, 

which means they are weighted and matter to the first neuron. The other two 

variables, Bedrooms and Age aren’t weighted and so are not considered by the first neuron. 

You may wonder why that first neuron is only considering two of the four variables. In 

this case, it is common on the property market that larger homes become cheaper the further they 

are from the city. That’s a basic fact. So what this neuron may be doing is looking specifically for 

properties that are large but are not so far from the city. 

Now, this is where the power of neural networks comes from. There are many of these 

neurons, each doing similar calculations with different combinations of these variables. Once this 

criterion has been met, the neuron does its calculations. The next neuron down may have 

weighted synapses of Distance to the city and, Bedrooms. 

This way the neurons work and interact in a very flexible way allowing it to look for 

specific things and therefore make a comprehensive search for whatever it is trained for. 
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2.5.3 How do neural networks learn? 

Learning in a neural network is closely related to how we learn in our regular lives and 

activities we perform an action and are either accepted or corrected by a trainer or coach to 

understand how to get better at a certain task. Similarly, neural networks require a trainer in order 

to describe what should have been produced as a response to the input. Based on the difference 

between the actual value and the predicted value, an error value also called Cost Function is 

computed and sent back through the system. 

For each layer of the network, the cost function is analyzed and used to adjust the 

threshold and weights for the next input. Our aim is to minimize the cost function. The lower the 

cost function, the closer the actual value to the predicted value. In this way, the error keeps 

becoming marginally lesser in each run as the network learns how to analyze values. 

We feed the resulting data back through the entire neural network. The weighted synapses 

connecting input variables to the neuron are the only thing we have control over. 

As long as there exists a disparity between the actual value and the predicted value, we 

need to adjust those weights. Once we tweak them a little and run the neural network again, a new 

Cost function will be produced, hopefully, smaller than the last. We need to repeat this process 

until we scrub the cost function down to as small as possible. 

The procedure described above is known as Back-propagation and is applied 

continuously through a network until the error value is kept at a minimum. 
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Figure – 2.5 Backward Propagation of Neural Networks 

2.6 Summary 

Based on the literature review conducted on measurement techniques to monitor 

cementitious materials and wood, Artificial Intelligence and Bio-surfactants; following can be 

summarized: 

1. Various conductive fillers have been used to enhance the pressure sensing capability of 

cementitious materials. 

2. Use of electrical resistivity as a monitoring tool for monitoring the behavior of cementitious 

composites is well established. Very few researchers have tried the two probe method using 

Alternating Current. 

3. Neural networks are a new concept whose potential we have just scratched the surface of. By 

properly minimizing the error, these multi-layered systems may be able to one day learn and 

conceptualize ideas alone, without human correction. 

4. The potential applications of Bio-surfactants include such as herbicides and pesticides 

formulations in agricultural industry, detergents, healthcare and cosmetics, textiles, ceramic 

processing and food industries with Oil industry being the largest market. 
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CHAPTER 3 MATERIALS AND METHODS 

Introduction 

In this chapter, a brief description of the different types of materials used and the testing 

methods adopted have been summarized. Materials of interest, equipment used, sample 

preparation, compression test and electrical resistivity measurements are discussed. 

3.1 Materials 

3.1.1 Cement  

For the entire extent of this study, commercially available Class H type of cement was 

used. 

3.1.2 Smart Cement  

Commercially available Class H cement was modified by adding conductive fillers 

(0.04% by weight of cement) for w/c 0.4, thereby developing a piezoresistive material.  

3.1.3 UH – Biosurfactant 

The biosurfactant is produced from waste oil with acclimated bacteria in continuously 

stirred batch reactor (Harendra et al., 2008; Vipulanandan et al., 2000). The biosurfactant is water 

soluble and based on Fourier Transform Infra Read (FTIR) spectroscopy analyses both carboxyl 

(COO-) and hydroxide (OH-) groups were identified in the biosurfactant. 

3.1.4 Wood 

Commercially available softwood used for this study has density in the range of 0.49 to 

0.51gm/cm3.  

3.1.5 Water 

Tap water has been used for this study. Although, for the some part of this study; 

commercially available salt has been added to tap water; to form salty water. 
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3.2 Equipment 

LCR Meter 

Commercially available Keysight Precision LCR Meter (Figure – 3.1) is used to measure 

the Resistance (R) of specimens at different frequencies. Measured resistance is then converted to 

Resistivity (ρ) using the formula ρ = R*(A/L). The frequency range for measuring the resistance 

is from 20 Hz to 300 kHz.   

Conductivity Probe 

Commercially available Oakton COND 6+ conductivity probe (Figure – 3.2) was used to 

measure the resistivity of different samples. The range for measuring conductivity is from 

0.1µS/cm to 1000mS/cm. Conductivity meter was first calibrated using standard solution with a 

known value of conductivity. After calibration, the device was double checked with another 

standard solution for consistency. The conductivity probe was calibrated using standard solution  

of sodium chloride (NaCl). 

                 

Figure – 3.1 LCR Meter  Figure – 3.2 Conductivity probe  

Vernier Caliper 

For this study, commercially available Westward Digital Vernier Caliper was used to 

measure the dimensions of different specimen and samples. The caliper is made of carbon fiber 

composite and has an accuracy of 0.01”. 
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Compression Testing Machine 

 Compression tests were performed on the cylindrical specimen using a Hydraulic 

compression machine. 

3.3 Testing Methods 

Electrical Resistivity 

After numerous studies by Vipulanandan et al., (2004, 2013 and 2014), electrical 

resistivity (ρ) was selected as the sensing property for cement-based materials. Resistivity and 

change in resistivity were used to quantify the sensing properties of the cement. 

Electrical Resistivity can be expressed as  

           ( 3.1 ) 

Conductivity meter was used to measure the Resistivity of cement slurry. But measuring 

the resistivity of hardened cement paste was a challenge due to the limitation of devices. Also, 

correlating the resistivity with other parameters was impracticable due to the uncertainty in the 

actual path of current in the specimen. Hence, Electrical Resistance is measured by LCR device 

throughout its curing duration. Using Resistance and the k-factor (from eqn 1), resistivity can be 

determined for cement paste in hardened state.  

Piezoresistivity 

Piezoresistivity describes the change in the electrical resistivity of a material when 

subjected to stress. In this study hardened cement paste will be tested and characterized. During 

the compression test, electrical resistance was measured in the direction of the applied stress. To 

eliminate the polarization effect, AC resistance measurements were made using an LCR meter at 

frequency of 300 kHz (Vipulanandan et al., 2013). 

 

 

 

𝜌𝜌 =  
𝑅𝑅

𝐾𝐾 + 𝐺𝐺𝑅𝑅
 . 
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Shrinkage 

 Loss of moisture during hydration period is the main reason for shrinkage. Shrinkage 

studies were conducted on the hardened specimen, using a vernier caliper. To measure shrinkage, 

change in dimensions was measured (vertically and radially) over the period of curing duration. 

Volumetric Shrinkage can be calculated by:   ∆v = [ V(t) – V(0)  ] / V0               ( 3.2 )                                      

where, V(t) = volume at any time and V(0) = initial  volume. 

Density 

Density of Smart Cement specimen was calculated and monitored throughout the curing 

duration. Density is a material property and hence can be useful for detecting the changes in 

specimen due to external factors.  

Vicat Apparatus 

 Setting Time is an important parameter in the quality control. The initial and final setting 

time is determined by vicat apparatus that has been standardized in ASTM C191-19. Vicat 

apparatus is a device for determining the normal consistency and time of setting of cement that 

consists of a rod weighing 300 grams, having a needle in each end, and supported in a frame 

with a graduated scale to measure the distance to which the needle penetrates the cement. 

Ultrasonic Pulse Velocity 

Ultrasonic Pulse Velocity was used to investigate the changes in the compressive wave 

speed of wood due to changes in its moisture content. Measurements were conducted using 150 

kHz transducers which were kept in complete contact with the wooden specimen.  

3.4 Cement Mixing Procedure 

Smart Cement prepared with w/c 0.4, is used in this study. Firstly, all the required 

materials were weighed and collected in separate containers. Conductive fillers were hand mixed 

in water, part by part, till the fillers were properly dispersed in water and no clusters were formed. 

Cement, was then gradually added to this and hand-mixed for about 15 minutes, to obtain a 
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uniform consistency of the slurry (Figure – 3.3). Mixing was done in the laboratory at room 

temperature of about of 23±2 °C. 

 

 

 

 

 

 

 

 

 

 

 

Figure – 3.3 Standard Mixing Method for Smart Cement Samples 

The prepared slurry was poured into cylindrical molds of 4” height and 2” diameter. Four 

conductive wires were placed in the mold for electrical measurements (Figure 3.4). Specimens 

were demolded after 24 hours. Continuous monitoring of the samples was done for 28 days.  

 

 

 

 

 

Figure – 3.4 Cylindrical mold for Smart Cement Specimen  

In the tests where saline water was used to prepare smart cement specimen, required 

amount of salt was first added to water and then conductive fillers was added, followed by the 

standard mixing method of smart cement specimen. 

Weigh all the 

materials as 

specified 

Add cement into the water in 

small quantities and keep mixing 

till c.f. are completely dispersed 

in cement matrix 

Pour cement slurry into the 

prepared mold 

Mix the 

conductive 

filler in water 

  

 

2” 

4” 

1 

2 

3 

4 
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3.5 Modelling 

Modelling is important as it is a simplified representation that enables predictions to be 

developed and tested by experiments. In this section, different models used in this study have 

been discussed.  

3.5.1 Impedance Model 

In this study, different electrical circuits are studied to find an appropriate curcuit to 

represent the behavior of the material under study.  

Case 1: General Bulk Material – Capacitance and  Resistance  

Case 1 explains about the general bulk materials that involves resistor and capacitor

 
Figure – 3.5 Equivalent Circuit for Case 1  

Here contacts are connected in series whereas the contacts and bulk material are 

connected in parallel using a capacitor and resistor. Both contacts are represented by same 

resistance (Rc) and capacitance (Cc) because they are identical. Rb and Cb are the resistance and 

capacitance of the bulk material respectively, and Rc and Cc are the resistance and capacitance of 

the contacts, respectively. 

The total impedance of the equivalent circuit for case 1 (Z1) at any applied stress (σ) can be 

represented as follows: [Vipulanandan and Prashanth (2013)] 

Rb                    2 Rc               2ω Rc2 Cc         ωRb
2Cb                .                       

1 + ω2 Rb
2 Cb

2     1 + ω 2 Rc2Cc2          1 +  ω2 Rc2 Cc2    1 +  ω2Rb
2Cb

2  

when the frequency of the applied signal is very low, ω → 0, Z1 = Rb + 2Rc, and when it is very 

high,      ω → ∞, Z1 = 0 (See Figure 3.7). 

 

+ - j  { + } Z1 = ( 3.3 ) 
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Case 2: Special Bulk Material - Resistance Only 

Case 2 is a special case of case 1. It explains about special bulk material represented by a 

resistor (Rb) whereas the capacitance of the bulk material (Cb) is assumed to be negligible. 

Contacts (wires) are represented by resistor (Rc) and capacitor (Cc) in parallel. Contacts are 

connected to bulk in series. 

Figure – 3.6 Equivalent Circuit for Case 2 

  The total impedance of the equivalent circuit for case 2 (Z2) can be represented as 

follows: [Vipulanandan and Prashanth (2013)] 

             2 Rc                 2 ω Rc2Cc  .                    
                   1 + ω 2 Rc2Cc2         1 + ω 2 Rc2Cc2 
  
when frequency of applied signal is low i.e. f → 0, ω =2π f → 0, Z2 = Rb + 2Rc and when the 

frequency is very high i.e. f → ∞, ω =2π f→ ∞, Z = Rb (See figure figure 3.7) 

 

Figure - 3.7 Comparisons of Typical Responses of Equivalent Circuits for Case 1 and Case 2 

The shape of the curves shown in figure 3.7 is very much influenced by material response 

and the two probe instruments used for monitoring. Testing of smart cement indicated that Case 2 

Z2 = Rb - + j 

( 3.4 ) 
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represented their behavior and hence the bulk material properties can be represented by resistivity 

and characterized at a frequency of 300 kHz using the two probes. 

3.5.2 Electrical Resistivity Model 

To characterize the resistivity of the hardened cement, p-q model (Vipulanandan and 

Paul, 1990) can be used, which is defined as 

                                                                                                                   

 

where ρ (t) is electrical resistivity that changes with the curing time (t), ρmin is the minimum 

electrical resistivity, tmin is time corresponding to minimum electrical resistivity, p(t) and q(t) are 

time dependent model parameters.  ρmin, tmin and t0 are time independent model parameters that 

will explain the changes occurred due to the addition of the materials to the cement slurry. 

3.5.3 Piezoresistivity Model 

Piezoresistivity shall be modeled using p-q model (Vipulanandan and Paul, 1990) which 

can be used as     

                                                     
                                                                                                             ,                            ( 3. 6 ) 

                                                                                                                       
 

 

where 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum stress at failure, (∆𝜌𝜌/𝜌𝜌)0 is the piezoresistivity of the hardened 

cement under the maximum stress, (Δρ/ρ) is the piezoresistivity at any stress σ and p2 and q2 are 

experimentally fit parameters.  

3.5.4 Artificial Neural Network Model 

 ANN is a multilayer perceptron (MLP) including three layers. The first layer (input 

layer), the second one is the hidden layer, and the last is the ANN response (output layer). The 

1
𝜌𝜌(𝑡𝑡)

= (
1

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚
) 

�𝑡𝑡 + 𝑡𝑡0
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

�

𝑞𝑞1 + (1 − 𝑝𝑝1 − 𝑞𝑞1) ∗ �𝑡𝑡 + 𝑡𝑡0
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

� + 𝑝𝑝 ∗ �𝑡𝑡 + 𝑡𝑡0
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑞𝑞1+𝑝𝑝1
𝑝𝑝1

  
   (3.5) 

𝜎𝜎 =

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 × �
�∆𝜌𝜌𝜌𝜌 �

�∆𝜌𝜌𝜌𝜌 �0

�
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number of neurons required in the hidden layer is determined in a way to minimize both 

prediction error and number of neurons.  

The following function is used for ANN prediction: 

Sigmoid function:                                      ( 3.7 ) 

3.6 Summary   

The summary of experimental study is as follows.   

1. For measuring the electrical resistance, AC measurements were performed from 20 Hz to 

300 kHz using LCR meter and the behavior of material was characterized based on the 

impendence response.  

2. Standard conductivity meter was used to determine the resistivity of different modified 

cement specimens in slurry state.  

3. Tinius Olsen, a hydraulic testing machine was used to test smart cement specimens under 

compression in room temperature and pressure conditions.  

4. Electrical impedance was also measured while loading the specimen. Piezoresistive based 

sensitivity of various samples were evaluated based on test results. 

5. Based on the modeling of the behavior, the proposed p-q model predicted the piezoresistive 

and curing behavior of behavior of both modified and unmodified smart cement. 

6. The artificial intelligence models will be used to predict the experimental results. 

 

 

 

  

𝑓𝑓(𝑥𝑥) =  1 (1 + 𝑒𝑒−𝑚𝑚)⁄  . 
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CHAPTER 4 SMART CEMENT 

4.1 Introduction 

This section involves laboratory characterization of smart cement in both slurry and 

hardened state for a period of 28 days. The smart cement is characterized using electrical 

resistivity, electrical impedance, compressive strength and piezoresistivity. 

Effect of various additives has been investigated on the Sensitivity of Smart cement. This 

chapter has been subdivided into three sub sections to highlight the effect of additive on smart 

cement. Although similar tests and procedures have been followed for quantifying the effect of 

additives, the materials, research methodology implemented, and models used has been included 

inside each sub chapter separately. The following subchapters under this subsection are as 

follows. 

1) Standard Smart Cement Mix used as a baseline for further tests. 

2) Effect of Salt contamination on the Electrical properties, Compressive strength and 

Piezoresistive behavior of Smart Cement.  

3)  Effect of Salt contamination on the Electrical properties, Compressive strength and 

Piezoresistive behavior of Smart Cement.  

4) Moisture Detection Sensitivity of Smart Cement.  

Commercially available oil well cement (Class H cement) was modified with conductive 

fillers to make it a piezoresistive material. The Cement was modified by adding about 0.04% of 

conductive filler (CF), by weight of cement, and the water to cement ratio was 0.4.  

4.2 k Value Characterization 

In slurry state, the Resistance and Resistivity values were measured using an LCR and 

Conductivity probe respectively, for upto 220 mins.  Relation between Resistance, Resistivity and 

k value is given by:         ( 4.1 ) 𝜌𝜌 =  
𝑅𝑅

𝐾𝐾 + 𝐺𝐺𝑅𝑅
 . 
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Figure – 4.1 Electrical Resistance vs Electrical Resistivity Plot for Smart Cement 

Electrical resistance and electrical resistivity have a linear relationship for smart cement 

(Figure – 4.1). Electrical resistance and electrical resistivity increase with time when cured under 

room temperature whereas k value remains constant (Figure – 4.2). The average value of k is 

44.98/m

 

Figure – 4.2(a) Variation of k with time 
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Figure – 4.2(b) Electrical Resistance/Electrical Resistivity (R/ρ) vs Electrical Resistance 

        for Smart Cement. 
 

4.3 Impedance vs Frequency Curves 

Electrical Impedance is calculated using the following equation:  

Z = [(R2 + X2) ½]          ( 4.2 ) 

Here, R and X are noted from an LCR at different frequencies. 

Following are the Impedance curves for Smart Cement at 1 and 28 days of curing. 

 
Figure – 4.3 Electrical Impedance curve for Smart Cement at 1day of curing 
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Figure – 4.4 Electrical Impedance curve for Smart Cement at 28days of curing 

Table – 4.1 Resistance and Capacitance for Smart Cement at 1 and 28 days of curing 

DAYS 

OF 

CURING 

Rc1  

(Ω) 

Cc1 

(F) 

Rc2  

(Ω) 

Cc 2 

(F) 

Rb 

(Ω) 

R2 RMSE  

(Ω) 

1 7.75E+02 2.49E-06 5.60E+02 7.50E-07 242 0.95 1.07E+02 

28 1.56E+03 2.53E-06 1.15E+03 6.00E-07 907 0.96 1.84E+02 

Rc1 and Rc2 represent contact resistances, Rb represents bulk resistance, Cc1 and Cc 2 

represent contact capacitances. Here, impedance versus frequency relationship shows that the 

smart cement sample follows case 2 behavior (Figure – 3.7), indicating that the bulk material can 

be represented by resistance at high frequency impedance measurement. 

4.4 Electrical Resistivity 

After the cement mix was poured into the mold, initial resistivity (ρo = 0.96 Ω m) 

was noted. Resistance values were taken by LCR meter for up to 240 minutes. Resistivity 

dipped initially indicating the formation of large amounts of hydration products in cement 

matrix. Change in the electrical resistivity with respect to minimum resistivity quantifies 
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the formation of hydration products, which leads to shrinkage and development of 

cement strength. Thereby by monitoring the change in resistivity of the cement slurry, a 

clear understanding of the hydration process and strength development can be obtained. 

(Vipulanandan & Mohammed, 2015). 

Electrical Resistivity is used as a parameter used to monitor and characterize the curing 

process of cement. As the cement cures, resistivity changes with time. During the curing process, 

parameters such as initial resistivity (ρo), minimum resistivity (ρmin), time required to reach 

minimum resistivity (tmin), are monitored.     

4.4.1 Smart Cement prepared with tap water 

It is observed that, after the cement is mixed, resistivity first decreases to reach minimum 

resistivity and then gradually increases with time (Figure – 4.5). Time required to reach minimum 

resistivity can be used as an indicator to monitor the setting time of cement. The formation of 

hydration products obstructs the flow of current, and hence the resistivity increases with time. 

The electrical resistivity was modeled using Vipulanandan electrical resistivity model (Eqn. 3.5)  

1 Day Curing 

The normal trend of the resistivity during the curing of cement is that the resistivity 

decreases up to a certain time (tmin) to reach the minimum resistivity (ρmin) and then increases with 

time. The value of initial resistivity of smart cement was 0.96 Ω.m. immediately after mixing, 

which can be used as a quality control measure in the field. The value of minimum resistivity was 

0.89 Ω.m. and the time for minimum resistivity was 130 minutes after mixing. The resistivity 

after 1 day of curing was 3.38 Ωm (Table – 4.8).  

For training the AI models with one, two, three and four layers of ANN were used with 

the GRNN approach. Based on the training results, four layer AI model was selected to predict 

the smart cement curing trend using the AI model and compare it to the Vipulanandan Curing 

Model.  
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Figure – 4.5 Electrical Resistivity of Smart Cement for 1 day of curing 

Vipulandan Model parameters; p1 and q1 are 0.03 and 0.09 respectively, the coefficient 

of determination (R2) is 0.99 and the RMSE (root mean square error) is 0.07 Ωm (Table – 4.2). 

Also, AI model prediction is compared to the experimental data (Figure – 4.5), the coefficient of 

determination (R2) was 0.98 and the RMSE (root mean square error) was 0.2 Ωm (Table – 4.3).  

28 Day Curing 

 
Figure – 4.6 Electrical Resistivity of Smart Cement for 28 days of curing 
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Resistivity after 28 days of curing is 15.64 Ωm (Figure – 4.6), which is 1529% higher 

than initial resistivity (ρo) and 362% higher than resistivity at 1 day of curing. This shows the 

sensitivity of smart cement to curing behavior. 

Vipulandan Model parameters; p1 and q1 are 0.59 and 0.4 respectively, the coefficient of 

determination (R2) is 0.99 and the RMSE (root mean square error) is 0.97 Ωm (Table – 4.2). Also,  

AI model prediction is compared to the experimental data (Figure – 4.6), the coefficient of 

determination (R2) was 0.94 and the RMSE (root mean square error) was 0.98 Ωm (Table – 4.3).  

Table – 4.2 Electrical Resistivity Model parameters for smart cement 

CURING DAYS p1 q1 R2 RMSE  
(Ω m) 

1 0.03 0.09 0.99 0.07 

28 0.59 0.4 0.99 0.97 

 

Table – 4.3 Comparison of Vipulanandan Resistivity Model and ANN Model for Smart 
    Cement 

CURING 
DAYS 

CURING MODEL ANN MODEL 

 R2 RMSE 
(Ω m) R2 RMSE 

(Ω m) 

1 0.99 0.07 0.98 0.2 

28 0.99 0.97 0.94 0.98 

4.4.2 Smart Cement prepared with salty water 

The objective was to monitor and understand the electrical and piezoresistive properties 

of salt contaminated smart cement in slurry and hardened state and to differentiate them with that 

of standard cement grout. Smart cement was prepared from salt water (Salinity 35gm/L).   
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1 Day Curing 

 
Figure – 4.7 Electrical Resistivity of Smart Cement with salt water for 1 day of curing 

It was observed that salt contamination reduces the initial resistivity (ρo) to 0.487Ω m 

from 0.96 Ωm (Table – 4.8) for standard smart cement grout thereby also accelerating the 

hydration time from 130 mins to 80mins. 

Vipulandan Model parameters; p1 and q1 are 0.57 and 0.42 respectively, the coefficient 

of determination (R2) is 0.99 and the RMSE (root mean square error) is 0.05 Ωm (Table – 4.4). 

Also,  AI model prediction is compared to the experimental data (Figure – 4.7), the coefficient of 

determination (R2) was 0.97 and the RMSE (root mean square error) was 0.02 Ωm (Table – 4.5).  

28 Day Curing 

Resistivity after 28 days (ρ28) of curing is 2.36 Ωm (Table – 4.8), which is 384% higher 

than initial resistivity (ρo) and 124% higher than resistivity at 1 day of curing. 
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Figure – 4.8 Electrical Resistivity of Smart Cement with salt water for 28 days of curing 

Vipulandan Model parameters; p1 and q1 are 0.71 and 0.28 respectively, the coefficient 

of determination (R2) is 0.99 and the RMSE (root mean square error) is 0.09 Ωm (Table – 4.4). 

Also, AI model prediction is compared to the experimental data (Figure – 4.8), the coefficient of 

determination (R2) was 0.91 and the RMSE (root mean square error) was 0.11 Ωm (Table – 4.5).  

Table – 4.4 Electrical Resistivity Model parameters for smart cement with salt water 

CURING DAYS p1 q1 R2 RMSE  
(Ω m) 

1 0.57 0.42 0.99 0.05 

28 0.71 0.28 0.99 0.09 
 

Table – 4.5 Comparison of Vipulanandan Resistivity Model and ANN Model for Smart  
      Cement with salt water 

CURING 
DAYS 

CURING MODEL ANN MODEL 

 R2 RMSE 
(Ω m) R2 RMSE 

(Ω m) 
1 0.99 0.05 0.94 0.82 
28 0.99 0.09 0.91 0.11 
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4.4.3 Smart Cement prepared with UH-Biosurfactant (UH-BS) 

The objective was to monitor the effect of UH-BS on the electrical and piezoresistive 

properties of smart cement for upto 28 days of curing by adding 1.25% of UH-BS by weight of 

cement (bwoc). Smart cement specimen was prepared with w/c = 0.35. 

1 Day Curing 

 

Figure – 4.9 Electrical Resistivity of Smart Cement with UH-BS for 1 day of curing 
It was observed that addition of Bio-surfactant increase the initial resistivity (ρo) to 

0.1.17Ω m from 0.96 Ωm (Table – 4.7) for standard smart cement grout thereby also increasing 

the hydration time from 130 minutes to 155 minutes. 

Vipulandan Model parameters; p1 and q1 are 0.1 and 0.21 respectively, the coefficient of 

determination (R2) is 0.99 and the RMSE (root mean square error) is 0.01 Ωm (Table – 4.6). Also,  

AI model prediction is compared to the experimental data (Figure – 4.9), the coefficient of 

determination (R2) was 0.95 and the RMSE (root mean square error) was 0.16 Ωm (Table – 4.7).  

28 Day Curing 

 Resistivity after 28 days (ρ28) of curing is 34.36 Ωm (Table – 4.8), which is 124% 

higher than resistivity at 1 day of curing. 
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Figure – 4.10 Electrical Resistivity of Smart Cement with UH-BS for 28 days of curing 

Vipulandan Model parameters; p1 and q1 are 0.0.53 and 0.46 respectively, the coefficient 

of determination (R2) is 0.99 and the RMSE (root mean square error) is 0.85 Ωm (Table – 4.6). 

Also,  AI model prediction is compared to the experimental data (Figure – 4.10), the coefficient 

of determination (R2) was 0.91 and the RMSE (root mean square error) was 0.51 Ωm (Table – 

4.7).  

Table – 4.6 Electrical Resistivity Model parameters for smart cement with UH- 
    Biosurfactant 

CURING DAYS p1 q1 R2 RMSE  
(Ω m) 

1 0.1 0.21 0.99 0.01 

28 0.53 0.46 0.99 0.85 
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Table – 4.7 Comparisons of Vipulanandan Resistivity Model and ANN Model for Smart  
     Cement with UH-BS 

CURING DAYS CURING MODEL ANN MODEL 
 

R2 RMSE 
(Ω m) R2 RMSE 

(Ω m) 

1 0.99 0.01 0.94 0.16 

28 0.99 0.85 0.91 0.51 
 

Comparison of Electrical properties 

Table – 4.8 Comparisons of Electrical Resistivity parameters for smart cement with 
additives 

SMART 
CEMENT 

Initial 
Resistivity 

ρo (Ωm) 

Minimum 
Resistivity 
ρmin (Ωm) 

tmin  
(min) 

ρ1 
 (Ωm) 

ρ28 
 (Ωm) 

Tap water 0.96 + 0.03 0.89 + 0.01 130 + 5 3.38 + 0.02 15.64 + 0.04 

Salt water 0.487 + 0.04 0.45 + 0.01 55 + 5 1.05 + 0.04 2.36 + 0.06 

UH-BS 1.17 + 0.02 1.03 + 0.01 155 + 5 4.17 + 0.03 34.36 + 0.04 

 

For Standard Smart Cement grout (prepared with tap water); initial resistivity (ρo) and 

minimum resistivity (ρmin) was 0.96 Ωm and 0.89 Ωm respectively (Table – 4.8). 

For Smart Cement prepared with salt water; Initial Resistivity (ρo) and Minimum 

Resistivity (ρmin) was 0.487 Ωm and 0.45 Ωm respectively. Addition of salt decreases the initial 

resistivity by 97% and minimum resistivity by 93% as compared to Smart Cement prepared with 

tap water (Table – 4.8). Similar trend was observed for 1 day resistivity and 28 day resistivity. 1 

day resistivity decreased to 1.05 Ωm (decrease of about 221%) and 28 day resistivity to 15.64 Ωm 

(decrease of about 562%) as compared to those of smart cement with tap water (Table – 4.8). 

Also, the time required to reach minimum resistivity decreased from 130 minutes to 55 minutes 

(Table – 4.8), thereby indicating that there has been acceleration in the setting time of cement due 

to the addition of salt.  
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Figure – 4.11 Comparison of Electrical Resistivity of Smart Cement with additives 

For Smart Cement prepared with UH-BS; initial resistivity (ρo) and minimum resistivity 

(ρmin) was 1.17 Ωm and 1.03 Ωm respectively (Table – 4.8). Addition of UH-BS increases the 

initial resistivity by 22% and minimum resistivity by 16% as compared to Smart Cement prepared 

with tap water (Table – 4.8). Similar trend was observed for 1 day resistivity and 28 day 

resistivity. 1 day resistivity increased to 4.17 Ωm (increase of about 23%) and 28 day resistivity 

to 34.36 Ωm (increase of about 120%) as compared to those of smart cement with tap water 

(Table – 4.8). Also, the time required to reach minimum resistivity increased from 130 minutes to 

155 minutes (Table – 4.8), thereby indicating that there has been retardation in the setting time of 

cement due to the addition of UH-BS.  
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Shrinkage 

 
Figure – 4.12 Shrinkage of Smart Cement with and without additives 

 Smart Cement specimens prepared with tap water undergo volumetric shrinkage of about 

3.18% in 28 days of curing. Salt and UH-BS addition help to reduce the shrinkage to 2% and 

2.9% respectively. 

4.5 Piezoresistivity 

 To quantify the piezoresistive behavior of hardened smart cement, specimens were 

demolded after 24 hours and cured in room temperature for 28 days. Specimens were then tested 

under compressive stress and the change in resistivity was recorded. Change in resistivity due to 

application of stress is called as the Piezoresistive behavior of smart cement. 

4.5.1Smart Cement prepared with tap water 

The piezoresistive strain for smart cement sample was 201 % at a peak compressive 

stress of 9.3 MPa (1550 psi) after 1 day of curing. Hence, the piezoresistivity per unit stress was 

0.13%/psi in the lab samples after 1 day of curing. The piezoresistive strain for smart cement 

sample was 205 % at a peak compressive stress of 21.24 MPa (3200 psi) after 28 days of curing. 
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Hence, the piezoresistivity per unit stress was 0.058%/psi in the lab samples after 28 days of 

curing. 

 
Figure – 4.13 Piezoresistive Behavior of Smart Cement for 28 days of curing. 

Table – 4.9 Comparisons of Piezoresistivity Model and ANN Model for Smart Cement with  
   tap water 

CURING DAYS PIEZORESISTIVITY MODEL ANN MODEL 
 R2 RMSE  (MPa) R2 RMSE(MPa) 

1 0.99 0.34 0.99 0.65 

28 0.99 0.5 0.98 0.44 

Short term (1 day) and long term (28 days) piezoresistive behavior was predicted very 

well by the piezoresistive model and the ANN model.  

For 1 day of curing the coefficient of determination (R2) was 0.99 for both the models 

whereas root mean square (RMSE) values were 0.34 Mpa and 0.25 Mpa for piezoresistivity and 

ANN model respectively. For 28 days of curing the coefficient of determination (R2) was 0.99 

and 0.98 for piezoresistivity model and ANN model respectively whereas the root mean square 
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(RMSE) values were 0.5 Mpa and 0.44 Mpa for piezoresistivity model and ANN model 

respectively (Table – 4.9). 

4.5.2 Smart Cement prepared with salty water 

The piezoresistive strain for smart cement sample was 164 % at a peak compressive 

stress of 13.50 Mpa (2250 psi) after 1 day of curing. Hence, the piezoresistivity per unit stress 

was 0.07%/psi in the lab samples after 1 day of curing. The piezoresistive strain for smart cement 

sample was 97 % at a peak compressive stress of 22.2 Mpa (3700 psi) after 28 days of curing. 

Hence, the piezoresistivity per unit stress was 0.026%/psi in the lab samples after 28 days of 

curing. 

 

Figure – 4.14 Piezoresistive Behavior of Smart Cement with salt water for 28 days of curing. 
Table – 4.10 Comparison of Piezoresistivity Model and ANN Model for Smart Cement with  

      salt water 

CURING DAYS PIEZORESISTIVITY MODEL ANN MODEL 
 R2 RMSE (MPa) R2 RMSE (MPa) 
1 0.99 0.53 0.97 0.37 

28 0.99 0.82 0.99 0.42 

For 1 day of curing the coefficient of determination (R2) was 0.99 and 0.97 whereas root 

mean square (RMSE) values were 0.53 Mpa and 0.37 Mpa for piezoresistivity and ANN model 
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respectively. For 28 days of curing the coefficient of determination (R2) was 0.99 for both, 

piezoresistivity model and ANN model whereas the root mean square (RMSE) values were 0.82 

Mpa and 0.42 Mpa for piezoresistivity model and ANN model respectively (Table 4-10). 

4.5.3 Smart Cement prepared with UH-BS 

 
Figure – 4.15 Piezoresistive Behavior of Smart Cement with UH-BS for 28 days of  

          curing. 

The piezoresistive strain for smart cement sample was 158 % at a peak compressive 

stress of 8.16 Mpa (1360 psi)  after 1 day of curing. Hence, the piezoresistivity per unit stress was 

0.11%/psi in the lab samples after 1 day of curing. The piezoresistive strain for smart cement 

sample was 111 % at a peak compressive stress of 21 Mpa (3500 psi) after 28 days of curing. 

Hence, the piezoresistivity per unit stress was 0.03%/psi in the lab samples after 28 days of 

curing. 
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Table – 4.11 Comparisons of Piezoresistivity Model and ANN Model for Smart Cement with  
     UH-BS 

CURING DAYS PIEZORESISTIVITY MODEL ANN MODEL 
 R2 RMSE (MPa) R2 RMSE (MPa) 

1 0.99 0.31 0.98 0.42 

28 0.98 0.39 0.97 0.28 

For 1 day of curing the coefficient of determination (R2) was 0.99 and 0.98 whereas root 

mean square (RMSE) values were 0.31 Mpa and 0.11Mpa for piezoresistivity and ANN model 

respectively. For 28 days of curing the coefficient of determination (R2) was 0.99 and 0.97 

whereas the root mean square (RMSE) values were 0.39 Mpa and 0.28 Mpa for piezoresistivity 

model and ANN model respectively (Table 4-11). 

Table – 4.12 Piezpresistivity Model parameters for smart cement with and without additives 

 1 DAY 28 DAYS 
 p2 q2 R2 RMSE  p2 q2 R2 RMSE  

TAP 
WATER 

0.19 0.8 0.99 0.34 0.2 0.9 0.99 0.5 

SALT 
WATER 

0.22 0.77 0.98 0.53 0.16 0.64 0.99 0.82 

UH-BS 0.65 0.08 0.99 0.31 0.1 0.50 0.98 0.39 
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Figure – 4.16 Variation of Compressive Strength of Smart Cement with and without  
additives for 28 days of curing. 

Addition of Salt has increased the short term (1 day) and long term (28 days) 

compressive strength of smart cement specimen by about 45% and 9% respectively (Figure – 

4.16) as compared to that of Smart Cement with tap water. Whereas, addition of UH-BS 

decreases the short term compressive strength by about 12% whereas the long term compressive 

strength remains almost the same as Smart Cement with tap water (Figure – 4.16). 

4.6 Moisture Detection Sensitivity of Smart Cement 

The objective was to monitor and understand the changes in electrical properties of smart 

cement specimen due to the penetration of tap water and saline water. In this study, smart cement 

samples were prepared with water to cement ratio of 0.4 and 0.05% of conductive filler. Initially 

samples were immersed upto 0.5” depth (Figure – 4.17(a)) and changes in the electrical properties 

were noted; followed by raising the water level to 2” depth (Figure – 4.17(b)). Similar tests were 

conducted for different specimens immersed in tap water and saline water (Salinity 35gm/L). 
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Figure – 4.17 (a) sample immersed upto 0.5”   (b) sample immersed upto 2” 

Figure – 4.18 Variation in Resistivity and weight with time for specimen dipped in tap  
  water 

It can be seen that (Figure – 4.18 and 4.19), due to submergence of smart cement sample 

in the water, electrical resistivity decreases whereas the weight of specimen increases. Though 

electrical resistivity decreases in all directions but the rate of change varies.  

For the first 240 minutes, the water level was below combination 2-4, so resistivity of 

horizontal combination (combination 1-3) did not change considerably as compared to resistivity 

of vertical (combination 1-2) and diagonal (combination 1-4) combinations (Figure – 4.18).   
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Figure – 4.19 Variation in Resistivity and weight with time for specimen dipped in salty  

water 
 

Table – 4.13 Change in properties of smart cement due to different submergence conditions. 

Water After 240 minutes After 480 minutes 

 

Vertical 
Resistivity 

(%) 

Horizontal 
Resistivity 

(%) 

Diagonal 
Resistivity 

(%) 

Weight 
(%) 

Vertical 
Resistivity 

(%) 

Horizontal 
Resistivity 

(%) 

Diagonal 
Resistivity 

(%) 

Weight 
(%) 

Tap 

water -4 -0.27 -5 2 -9 -3 -8 3 

Salt 

water -58 -25 -49 7 -82 -53 -80 14 

Table – 4.13 represents the change in the directional electrical resistivity and weight of 

the smart cement specimen when immersed in tap water and salty water.  Due to infiltration of 

water in the specimen, electrical resistivity decreases whereas weight of the sample increases.  

For the specimen immersed in tap water, intial resistivity of vertical, horizontal and 

diagonal combinations was 15.34 Ωm, 19.46 Ωm and14.37 Ωm respectively (Figure – 4.18). 
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After 480 minutes of submergence, resistivity of vertical, horizontal and diagonal combinations 

reduced by 9%, 3% and 8% respectively, along with 3% increase in the weight of specimen 

(Table – 4.18). For the specimen immersed in salty water, intial resistivity of vertical, horizontal 

and diagonal combinations was 14.5 Ωm, 13.36 Ωm and 13.44Ωm respectively (Figure – 4.19). 

After 480 minutes of submergence, resistivity of vertical, horizontal and diagonal combinations 

reduced by 82%, 53% and 80% respectively, along with 14% increase in the weight of specimen 

(Table – 4.19). 

Moisture content could be determined on the basis of electrical resistivity of Smart 

Cement specimen (Figure – 4.20). Also there is a considerable difference in the resistivity due to 

the addition of salt as compared to that of tap water. 

Changes in Resistivity could be due to the diffusion of liquids due to concentration 

gradient or due to capillary rise of water. Salt infusion could also cause chemical reactions 

thereby leading to considerable decrease in resistivity.  

 
Figure – 4.20 (a) Variations in Moisture Content with Electrical Resistivity  

(For specimen immersed in tap water)  
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Figure – 4.20 (b) Variations in Moisture Content with Electrical Resistivity  
(For specimen immersed in salt water)  

4.7 Summary 

1. Addition of additives affects the initial resistivity, minimum resistivity, time required to 

reach minimum resistivity and the resistivity development through its hydration period. 

2. Salt contamination decreases the initial resistivity by 97%, minimum resistivity by 93% 

whereas Biosurfactant contamination increases the initial resistivity by 22% and 

minimum resistivity by 16% as compared to Smart Cement prepared with tap water. 

3. As compared to Smart Cement with tap water, 1 day resistivity decreases by 221% and 

28 day resistivity by 562% due to salt contamination; whereas biosurfactant addition 

increased 1 day resistivity by 23% and 28 day resistivity by 120%.  

4. Salt accelerates the setting time of cement whereas biosurfactant retards the setting time 

of cement.   

5. Piezoresistive properties and the compressive strength of the specimen are also modified 

due to additive modification. 

6. Salt contamination increases the short term (1 day) compressive strength by 45% while 

Biosurfactant addition decreases the short term (1 day) compressive strength by 14% 
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7. Long term compressive strength of smart cement specimen with UH-BS decreases by 5% 

is as compared to smart cement with tap water. This shows that, UH-BS could be used as 

a Water Reducing Admixture (WRA).  

8. Short term (1 day) piezoresistive sensitivity decreases by 23% and 27% whereas long 

term (28 days) piezoresistive sensitivity decreases by 111% and 85% due to salt and 

biosurfactant contamination respectively. 

9. Both, the Resistivity model and AI model predict the curing behavior very well. Though 

the AI model was not as effective as the resistivity model for short term curing. 

10. AI model and Piezoresistivity model both were effective to predict the smart cement 

piezoresistive behavior for laboratory made samples. 

11. Moisture detection is an advantageous and beneficial application of Smart Cement.  

12. Resistivity decreased by 5% and 57% in 4 hours, upon the first contact with tap water and 

sea water respectively.  

13. Also, moisture penetration can be differentiated between tap water and sea water on the 

basis of electrical resistivity values. 
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CHAPTER 5 WOOD 

5.1 Introduction 

Assessing the quality of wood has become an important procedure in forest operations, as 

forestry and wood processing industries are under increasing economic pressure to maximize 

extracted value (Wang et al. 2007a). For this reason, the estimation of timber species, quantity, 

and quality is critical for quantifying the productive value of a forest (Marziliano et al. 2012, 

Proto et al. 2014). The worldwide shift in the wood supply from old-growth forests resources to 

intensively managed plantations increases the need of evaluating tree quality prior to harvest 

(Wang & Ross 2008). The overall objective of this study was to experimentally verify the 

applicability of electrical method to monitor the moisture changes in wood. 

5.2 Forest Distribution 

The importance of forests and green lands in the development of human race needs no 

evidence; due to their ecological, social and economic benefits. About 33.9% of total land area of 

United States is forest land. However, the distribution of tree cover varies across all the states in 

United States. The purpose of this study is to provide an overview on the current status of 

America’s forests.  

Some historians say that when Europeans first came to America, the forests were so 

dense and lush that a squirrel could have travelled from Atlantic coast to Mississippi without ever 

touching the ground. But since then these once-lush forests have thinned out due to various 

natural calamities and man-made activities (Yin 2007). Besides providing aesthetic view, forests 

provide a range of essential benefits such as improved air and water quality, diverse wildlife 

habitat, prevents soil erosion and aid noise pollution. The importance of forests extends well 

beyond the cities and towns where they are located (Yin 2007). As per the statistics of Food and 

Agricultural Organization, in a period of last ten years, percent of land area covered with forests 
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had increased from 33.2% to 33.93%. However, there’s also a formidable trend in deforestation 

such that United States has experienced a tree cover loss of about 8 million hectares in last ten 

years (Seymor 2018).  

The care and management of these forests are complicated due to natural and social 

factors such as: wildfires, natural catastrophic events, climate change, lack of adequate 

management etc. As urbanization continues, these challenges are likely to increase, and new ones 

might emerge (Nowak 2010). Researchers are now focused on new metric named “forest attrition 

distance”; this reflects on removal of isolated forest patches. When these patches are lost, 

adjacent forest become farther apart, potentially affecting bio-diversity, local climate and many 

other ecological conditions. Between 1992 and 2001, the average distance between forests 

increased by about one-third of a mile (Yang and Mountrakis 2017). 

Data regarding tree cover area of all the states in United States was collected since 2011 

till 2018. States having the biggest gain and biggest losses in tree cover were then analyzed on 

percentage basis with respect to the total land area of respective state. 

Tree cover loss in United States  

Tree cover is defined as all vegetation taller than 5 meters in height as of 2000. 

From 2001 to 2019, United States lost 40.3Mha of relative tree cover, 10% of the global total. 

Brazil suffered the maximum tree cover loss of 56.5 Mha followed by 42.9 Mha tree cover loss in 

Canada.  
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Figure – 5.1 Annual tree cover loss by dominant driver in United States 

     Source: Global Forest Watch 

Figure – 5.1 shows the area of tree cover loss associated with the dominant driver from 2001-

2018.  

The five drivers are defined as follows: 

1. Wildfires: Temporary loss, does not include fire clearing for agriculture. 

2. Urbanization: Deforestation for expansion of urban centers. 

3. Commodity driven deforestation: Large-scale deforestation linked primarily to 

commercial agricultural expansion 

4. Forestry: Temporary loss from plantation and natural forest harvesting, with some 

deforestation of primary forests. 

5. Shifting agriculture: Temporary loss or permanent deforestation due to small- and 

medium-scale agriculture 

The commodity-driven deforestation and urbanization categories represent permanent 

deforestation, while tree cover affected by the other categories often regrows.  

           Wildfire                        Commodity driven Deforestaion  

            Urbanization       Forestry      Shifting Agriculture 
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As per the statistics provided by Global Forest Watch (GFW), tree cover since 2011 has 

increased in 41 states with most increment being observed in states of Florida and Mississippi of 

about 4.06% and 3.41% respectively. However, biggest losses were observed in state of Texas 

and Wyoming by about 4.34% and 3.7% respectively. All these losses can be attributed to the 

factors including urbanization, natural ageing and other natural calamities. For instance; 

Hurricane Katrina knocked out about one third of tree shade in New Orleans whereas nearly a 

thousand trees were killed due to insect damage in Detroit – a city located in the Midwestern part 

of Michigan. 

Based on the study, we can say that tree cover preservation is a major concern since; most of 

the current forest cover is a result of reforestation instead of preserving the old forests. 

Figure 5.1 (b) represent the changes in the forest area across all the states in United States 

from 2016 to 2019. Figure 5.1 (c) represent the percent change in forest area over this period. 

Percent change has been calculated with respect to state area. From the following figures it can be 

seen that, Alaska and Missouri had the highest increase in forest cover of about 0.14% whereas 

New York had the highest decrease in forest cover of about 0.6% from 2016 to 2019. 

Following plots have been plotted based on the data collected according to the statistics 

reported by the Forest Inventory and Analysis (FIA) Program of the U.S. Department of 

Agriculture Forest Service. 

Following plots have been plotted based on the data collected according to the statistics reported 

by the Forest Inventory and Analysis (FIA) Program of the U.S. Department of Agriculture Forest 

Service. 

 

 

 

 



59 
 

 

 

Figure – 5.1(b) Change in Forest Area across US 
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Figure – 5.1(c) Percent change in forest area across US 
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5.3 Impedance vs Frequency  

Using an LCR, R and X were noted for different combinations and Electrical Impedance 

was calculated. Electrical Impedance is calculated using the following equation:  

Z = [(R2 + X2) ½]         ( 5.1 ) 

Here, R and X are noted from an LCR at different frequencies. 

 

 

 

     Plan View 
Figure – 5.2 Plan view of the wooden specimen with connections 

Points 1 – 7 are the points located on the sample to measure the Resistance values in 

different directions. Points 1 and 2 are on the same face of the sample parallel to the direction of 

fibers whereas 1 and 7 are on the opposite of sample. LCR meter was used to measure the 

Resistance of the wooden sample. Wood was tested for different connection: 

5.3.1 Clamped Connection: Contacts (wires) were clamped to the specimen 

 

Figure – 5.3 Variation of Impedance with frequency for clamped connection  
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5.3.2 Screwed Connection: Screws were used as contacts.  

 
 

Figure – 5.4(a) Variation of Impedance with frequency for screwed connection 

Visual analysis during experiments indicated that Resistance values for screwed 

connection were stable than those for clamped connection. Hence, screwed connection was 

adopted for this study. 

 
Figure – 5.4 (b) Variation of Impedance with frequency for screwed connection 
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Figure 5.4 (b) represents the variation of impedance with frequency for screwed 

connection. The similarity in the impedance trends for screwed connection can be observed 

(Figure – 5.4 (a) and (b)). 

5.4 Moisture Variations  

Figure – 5.5 represents the changes in weight of wood specimen when exposed to different 

conditions. Initially, weight of the wood was measured in unsaturated condition and then oven 

dried (30 minutes @45oC). Wood specimens were then submerged in tap water and salty water 

for a period of 24 hours; electrical properties and weight of the specimen were recorded.  

Weight of the specimen in unsaturated condition was 288.9 grams which reduced by 0.2% 

after oven drying. Weight of the specimen increased by 8%, 11% 13% and 14% on immersing the 

specimen in tap water for 1, 6, 12 and 24 hours respectively (Figure 5.5). Similar test was 

conducted for another specimen immersed in salty water (Salinity 35gm/L). Weight of the 

specimen increased by 11%, 13% 14% and 16% on immersing the specimen in salty water for 1, 

6, 12 and 24 hours respectively (Figure – 5.5). 

 

 Figure – 5.5 Variations in weight of wood immersed in tap water and salty water. 
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Electrical Resistance was noted for the wooden specimen in different conditions at 

different frequencies. Table – 5.1 (a) to (d) represent the directional resistance and change in 

resistance (∆R/Ro) of wood for different conditions. It can be seen that on immersion of wood in 

water, electrical resistance of the specimen decreases. This could be due to the reason that water 

gets into the specimen and fills the air voids and as resistance of water is less than that of air, 

resistance decreases. Also, electrical resistance goes negative from 150 kHz and the change in 

resistance (∆R/Ro) values are positive only for 100 kHz. Hence, 100 kHz can be used for 

measurements of electrical properties of wood. 
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Table – 5.1(a) Variation in Resistance of wood for combination 1-2 in different conditions 

COMBINATION 1-2 

FREQUENCY UNSATURATED 
OVEN 
DRIED ∆R/Rο 1hr ∆R/Rο 6hrs ∆R/Ro 12hrs ∆R/Ro 24hrs ∆R/Ro 

  (A) (B) 
((B-

A)/A)*100 ( C) 
((C-

A)/A)*100 (D) 
((D-

A)/A)*100 ( E) 
((E-

A)/A)*100 (F) 
((F-

A)/A)*100 

  (Ro)   (%)   (%)   (%)   (%)   (%) 

20 5000000000 4000000000 -25.00 400000 -99.99 85000 99.99 100000 -99.99 81000 -99.99 

100 3000000000 980000000 -206.12 440000 -99.98 369000 -99.98 155000 -99.99 147200 
-

2037943.48 

1000 8000000 5000000 -60.00 278000 -2777.70 224000 -3471.43 120000 -6566.67 115000 -6856.52 

10000 270000 100000 -170.00 234000 -15.38 175000 -54.29 98000 -175.51 89200 -202.69 

100000 5000 7000 28.57 204000 97.55 120000 95.83 970000 99.48 85000 94.12 

150000 -17000 -1000 -1600.00 195000 108.72 97000 117.53 81000 120.99 77000 122.08 

200000 -44000 -21000 -109.52 160000 127.50 77000 157.14 60000 173.33 53000 183.02 

300000 -64000 -36000 -77.78 169000 137.87 1100000 105.82 77000 183.12 66000 196.97 
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Table – 5.1(b) Variation in Resistance of wood for combination 3-4 in different conditions 

COMBINATION 3-4 

FREQUENCY UNSATURATED 
OVEN 
DRIED ∆R/Rο 1hr ∆R/Rο 6hrs ∆R/Rο 12hrs ∆R/Rο 24hrs ∆R/Rο 

  (A) (B) 
((B-

A)/A)*100 ( C) 
((C-

A)/A)*100 (D) 
((D-

A)/A)*100 ( E) 
((E-

A)/A)*100 (F) 
((F-

A)/A)*100 

  (Ro)   (%)   (%)   (%)   (%)   (%) 

20 12000000000 8800000000 -36.36 469000 
-

2558535.39 254000 
-

4724309.45 87000 
-

13793003.45 79000 -15189x103 

100 1000000000  1000000000 0 333000 -570 200000 -1.89 x 1010 73000 -2601 72000 #-2637 

1000 50000000 6000000 -733.33 254000 -19585.04 178000 -27989.89 110000 -45354.55 80000 -62400.00 

10000 1000000 104000 -861.54 190000 -426.32 160000 -525.00 35000 -2757.14 30000 -3233.33 

100000 1000 3000 66.67 178000 99.44 135000 99.26 31000 96.77 29750 96.64 

150000 36000 -4500 900.00 104000 65.38 85000 57.65 30000 -20.00 29750 -21.01 

200000 -121000 -11000 -1000.00 47000 357.45 46000 363.04 29000 517.24 25400 576.38 

300000 -200000 -50000 -300.00 81000 346.91 78000 356.41 44000 554.55 25400 887.40 
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Table – 5.1(c) Variation in Resistance of wood for combination 5-6 in different conditions 

COMBINATION 5-6 

FREQUENCY UNSATURATED 
OVEN 
DRIED ∆R/Rο 1hr ∆R/Rο 6hrs ∆R/Rο 12hrs ∆R/Rο 24hrs ∆R/Rο 

  (A) (B) 
((B-

A)/A)*100 ( C) 
((C-

A)/A)*100 (D) 
((D-

A)/A)*100 ( E) 
((E-

A)/A)*100 (F) 
((F-

A)/A)*100 

  (Ro)   (%)   (%)   (%)   (%)   (%) 

20 13000000000 5000000000 -160.00 365000 
-

3561543.84 263000 
-

4942865.78 137000 
-

9488951.09 144000 
-

9027677.78 

100 1000000000 1000000000 0.00 320000 -312400.00 196000 -510104.08 136000 -735194.12 125100 -799260.51 

1000 300000000 2000000 -14900.00 299000 -100234.45 146000 -205379.45 98000 -306022.45 84000 -357042.86 

10000 10000000 43000 -23155.81 265000 -3673.58 133500 -7390.64 72100 -13769.63 91000 -10889.01 

100000 260000 11000 -2263.64 247000 -5.26 120000 -116.67 100000 -160.00 87000 -198.85 

150000 67000 -1100 6190.91 227000 70.48 114000 41.23 960000 93.02 81100 17.39 

200000 -11000 -74000 85.14 190000 105.79 83000 113.25 820000 101.34 61000 118.03 

300000 720000 -100000 820.00 269000 -167.66 1250000 42.40 120000 -500.00 63000 -1042.86 
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Table – 5.1(d) Variation in Resistance of wood for combination 1-7 in different conditions 

COMBINATION 1-7 

FREQUENCY UNSATURATED 
OVEN 
DRIED ∆R/Rο 1hr ∆R/Rο 6hrs ∆R/Rο 12hrs ∆R/Rο 24hrs ∆R/Rο 

  (A) (B) 
((B-

A)/A)*100 ( C) 
((C-

A)/A)*100 (D) 
((D-

A)/A)*100 ( E) 
((E-

A)/A)*100 (F) 
((F-

A)/A)*100 

  (Ro)   (%)   (%)   (%)   (%)   (%) 

20 2000000000 8000000000 75.00 781000 -255981.95 232500 -860115.05 77000 
-

2597302.60 740000 -270170.27 

100 11000000000 2000000000 -450.00 560000 
-

1964185.71 199000 
-

5527538.19 173000 
-

6358281.50 152000 
-

7236742.11 

1000 44000000 710000000 93.80 325000 -13438.46 169250 -25897.05 100000 -43900.00 99000 -44344.44 

10000 1500000 78000 -1823.08 191000 -685.34 156000 -861.54 87000 -1624.14 84000 -1685.71 

100000 45000 6750 -566.67 185000 75.68 120000 62.50 56000 19.64 51000 11.76 

150000 6000 120 -4900.00 179000 96.65 96000 93.75 50000 88.00 47000 87.23 

200000 -12000 -9000 -33.33 165000 107.27 87000 113.79 43000 127.91 39000 130.77 

300000 -58000 -11500 -404.35 175000 133.14 1000000 105.80 58000 200.00 51000 213.73 
 

From Table – 5.1 (a) – (d), it can be seen that ΔR/Ro is positive for frequency of 100 kHz. But there is a variation in the data 

for combination 5 – 6 (Table – 5.1 (c)), as the ΔR/Ro values are negative. This could be explained due to a cracking in the wood. 

(Figure – 5.6).  
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Figure – 5.6 Cracking in wood 

5.5 Ultrasonice Pulse Velocity 

Figure 5.7 represents the changes in the Ultrasonic Pulse Velocity of the specimens with 

changes in moisture content. Initially the specimen was oven dried for 30 minutes at @45oC. It 

was then immersed in tap water for upto 24 hours and UPV was recorded. Similar test was 

conducted on specimen immersed in salty water (salinity 35 gm/L). It can be seen that, on oven-

drying the specimen; the UPV increases as compared to that of in unsaturated condition. Further, 

on immersing the specimen in tap water for upto 24 hours, UPV decreases gradually. This could 

be because on drying the specimen, water evaporates and the voids are filled with air. As the 

Ultrasonic Pulse Velocity of air is more than that of water, Ultrasonic Pulse Velocity of the 

specimen increases on drying and decreases on immersion in water. Similar trend was also 

observed for specimen-2 immersed in salty water.  

 

Crack in wood 
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Figure – 5.7 Variation in UPV with moisture changes 

On immersing the specimen for 24 hours in tap water, UPV decreased by 36% whereas 

on immersing the specimen in salty water, it decreased by about 7%. This shows that salt 

penetrates in the specimen and plugs the air voids and affects the wave speed.  

5.6 Summary 

1. Based on the study, we can say that tree cover preservation is a major concern since; 

most of the current forest cover is a result of reforestation instead of preserving the old 

forests. 

2. As screwed connection offer better stability of results, screwed connection was adopted 

for this study. 

3. 100 kHz can be used as a frequency for measurements of wood. 

4. Ultrasonic Pulse Velocity could be used as a measurement technique for moisture 

detection. Also, moisture penetration can be differentiated based on the changes in 

Ultrasonic Pulse Velocity of the specimen. 
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CHAPTER 6    CONCLUSIONS AND RECOMMENDATIONS  

6.1 Conclusions 

Based on this study, following conclusions can be advanced: 

1. Smart Cement, chemo-piezo sensitive cement is a suitable material for real time 

monitoring through the service life of the structure, with electrical resistivity as a sensing 

parameter magnifying changes upto 2000 times. 

2. Salt contamination decreases the initial resistivity by 97%, minimum resistivity by 93% 

whereas Biosurfactant contamination increases the initial resistivity by 22% and 

minimum resistivity by 16% as compared to Smart Cement prepared with tap water. 

3. As compared to Smart Cement with tap water, 28 day resistivity decreased by 562% due 

to salt contamination; whereas biosurfactant addition increased 28 day resistivity by 

120%.  

4. Salt contamination increases the short term (1 day) compressive strength by 45% while 

Biosurfactant addition decreases the short term (1 day) compressive strength by 14% 

5. Long term compressive strength of smart cement specimen with UH-BS decreases by 5% 

as compared to smart cement with tap water. This shows that, UH-BS could be used as a 

Water Reducing Admixture (WRA).  

6. Long term (28 days) piezoresistive sensitivity decreased by 111% and 85% due to salt 

and biosurfactant contamination respectively. 

7. Moisture detection is an advantageous and beneficial application of Smart Cement. Also, 

moisture penetration can be differentiated between salted and unsalted water on the basis 

of change in electrical resistivity values. 

8. Tree cover preservation is a major concern since; most of the current forest cover is a 

result of reforestation instead of preserving the old forests. 

9. 100 kHz should be used as a frequency for measurements of wood. 
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10. Ultrasonic Pulse Velocity (UPV) decreased by about 36% and 7% on about 15% 

moisture infiltration of nonsaline and saline water respectively.  Change in the UPV can 

be used as a correlation to determine the moisture changes in wood. 

6.2 Recommendations 

Based on the results of this study, following suggestions are offered for future studies: 

1. LCR device was used to monitor the changes in the electrical properties of the 

cementitious composites. New instruments can be developed, to prove the effectiveness 

of electrical characterization in different fields.  

2. Use of other additional additives can be initiated to improve the sensitivity of smart 

cement with contaminations. 

3. Novel measurement technique or data acquisition system can be developed to determine 

the resistivity of wood.  

4. Real time monitoring along with the implementation of Artificial Intelligence can help to 

better predict the stresses in the cementitious materials. 
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