
ROBUST DOMAIN ADAPTATION USING

ACTIVE LEARNING

A Dissertation Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Kinjal Dhar Gupta

August 2016

ROBUST DOMAIN ADAPTATION USING

ACTIVE LEARNING

Kinjal Dhar Gupta

APPROVED:

Dr. Ricardo Vilalta,
Department of Computer Science
University of Houston

Dr. Christoph Eick
Department of Computer Science

Dr. Guoning Chen
Department of Computer Science

Dr. Ashish Mahabal
Department of Astronomy
California Institute of Technology

Dean, College of Natural Sciences and Mathematics

ii

Acknowledgements

I would like to express my sincere thanks and deepest gratitude to my adviser,

Dr. Ricardo Vilalta, for being the most wonderful mentor I could have ever had.

I would like to thank him for his undivided attention, constant cooperation, and

extremely useful guidance in research and in real life throughout my PhD degree

course. Without his mentorship, it would have been impossible for me to achieve the

goal of completing my PhD studies. I would like to thank my parents Mr. Kalyan

Dhar Gupta and Mrs Shibani Dhar Gupta, and my sister, Sharanya Dhar Gupta,

for their constant love, care, support, and encouragement, without which I would

never have been able to be at this place of my life. I would also like to thank all

my committee members, Dr. Eick, Dr. Chen, and Dr. Mahabal for their valuable

time and input to my research. I would like to thank Dr. Lucas Macri and Renuka

Pampana for providing the pre-processed data used in this research. Last but not

the least, a special thanks to all my friends and family members for their best wishes

that I have kept receiving during the last couple of years.

iii

ROBUST DOMAIN ADAPTATION USING

ACTIVE LEARNING

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Kinjal Dhar Gupta

August 2016

iv

Abstract
Traditional machine learning algorithms assume training and test datasets are gen-

erated from the same underlying distribution, which is not true for most real-world

datasets. As a result, a model trained on the training dataset fails to produce good

classification accuracy on the test dataset. One way to mitigate this problem is to

use domain adaptation techniques; these techniques build a new model on the un-

labeled test dataset (target dataset) by transferring information from a related but

labeled training dataset, (source dataset) even when their underlying distributions

are different. One other important issue is that in domain adaptation, But there is

no allowance for obtaining class labels on the test dataset during the training phase.

This issue can be handled by active learning techniques that assume the existence of

a budget that can be used to label instances on the target domain. Active learning

finds the most informative instances of the test dataset that can be labeled by the

expert to get a better classification accuracy on the unlabeled test dataset.

The goal of this research is to build an optimal classifier on the target dataset by

using information related to model complexity. We propose a novel domain adapta-

tion technique using active learning to find the optimal value of a parameter of a class

of models that yields the best classifier on the target dataset without assuming the

equivalence of the class-conditional probabilities across the domains, unlike other

domain adaptation methods. This research also proposes a novel data-alignment

technique that allows the use of the source model directly on the target if the distri-

butions differ due to a linear shift, thus avoiding building a complete new classifier

on the target domain. Empirical results show that our methods yield better classifi-

cation accuracy than the state-of-art methods.

v

Contents

1 Introduction 1

1.1 Machine Learning . 1

1.1.1 Supervised Learning . 1

1.1.2 Unsupervised Learning . 3

1.2 Motivation . 3

1.2.1 Domain Adaptation . 4

1.2.2 Active Learning . 4

1.2.3 Disadvantages of Domain Adaptation 5

1.3 Research Goal . 5

1.4 Dissertation Layout . 6

2 Background 7

2.1 Preliminary Concepts in Statistical Learning 7

2.2 Reasons for Dataset Shift . 8

2.3 Domain Adaptation . 10

2.3.1 Instance-based Domain Adaptation 12

2.3.2 Feature-based Domain Adaptation 16

2.3.3 Iterative-based Domain Adaptation 19

2.3.4 Other Domain Adaptation Methods 19

vi

2.4 Active Learning . 20

2.4.1 Sampling Scenarios . 21

2.4.2 Query Strategy Frameworks 23

2.5 Active Learning in Domain Adaptation 24

3 Method 26

3.1 A Novel Data-Alignment Method . 29

3.1.1 Problem Formulation . 31

3.1.2 A Maximum-Likelihood Approach 32

3.2 Data-Alignment Method Using Linear Mixture Models 35

3.2.1 Mathematical Formulation . 36

3.3 A Novel Method Of Domain Adaptation Using Active Learning . . . 37

3.3.1 Problem Formulation . 38

3.3.2 Estimating Prior Distribution of Parameter θ Using Domain
Adaptation . 39

3.3.3 Modeling the Likelihood of Parameter θ Using Active Learning 41

3.3.4 Estimating the Posterior of Parameter θ 45

4 Experiments and Results 47

4.1 Experiments For Novel Data-Alignment Method 48

4.1.1 Cepheid Star Datasets . 48

4.1.2 Experimenting on Cepheids Datasets with 2 features 50

4.1.3 Experimenting on Cepheid dataset with 2 features using Linear
Mixture Model . 55

4.1.4 Light Curve Feature Characterization 57

4.1.5 Experimenting on Cepheids Dataset with 5 features 58

4.2 Experiments For Novel Domain Adaptation using Active Learning . . 66

vii

4.2.1 Supernova and Landmine Datasets 67

4.2.2 Estimating the Prior of θ using Domain Adaptation 69

4.2.3 Estimating the Likelihood of θ using Active learning 72

4.2.4 Estimating the Posterior of θ and Building the final model . . 73

5 Conclusion and Future Work 78

5.1 Summary of Contributions . 78

5.2 Conclusions and Limitations . 79

5.3 Future work . 80

Bibliography 81

viii

List of Figures

3.1 Left. The distribution of Cepheids along the Large Magellanic Cloud
LMC (top sample), deviates significantly from M33 (bottom sample).
Right. M33 is aligned with LMC by shifting along mean magnitude. . 30

4.1 A linear relation exists between the logarithm of the period and the
magnitude of a Cepheid star. The graph shows both fundamental and
first-overtone Cepheids from the Large Magellanic Cloud that overlap
more than expected due to interstellar dust and poor image resolution 49

4.2 Summary of classification error (in percentage) of all the algorithms
with and without domain adaptation using different base learning al-
gorithms.The bar groups are in the following order : (1) ’Without DA’:
using the source classifier directly on the target (2) ’KMM(DA)’: Us-
ing Kernel Mean Matching (3) ’Standard Shift’: using standard shift
(4)’Proposed DA with GMM’: using proposed data alignment method
using Gaussian Mixture Model (5) ’Proposed DA with LMM’: using
proposed data alignment method using Linear Mixture Model 57

4.3 Features capture geometric properties of light curves that exhibit clear
differences between the two classes of interest. 59

4.4 Summary of classification error (in percentage) of algorithms with
and without domain adaptation using different base learning algo-
rithms.The bar groups are in the following order : (1) ’Without DA’:
using the source classifier directly on the target (2) ’KMM(DA)’: Using
Kernel Mean Matching (3) ’Proposed DA with GMM’: using proposed
data alignment method using Gaussian Mixture Model (4) ’KMM(DA)
with proposed shift’: using proposed data alignment method and then
using KMM on shifted data . 62

ix

4.5 Classification error (in percentage) of algorithms on all three datasets
: LMC, M33 and SMC.The bar groups are in the following order : (1)
and (2) Error on LMC dataset having 2 features vs 5 features (3) and
(4) Error on M33 dataset having 2 features vs 5 features (5) and (6)
Error on SMC dataset having 2 features vs 5 features 65

4.6 Classification error (in percentage) of algorithms on M33 dataset with
2 Features. The bar groups are in the following order : (1) Error using
source model directly on target without domain adaptation (2)Error
using domain adaptation algorithm kernel mean matching (3) Using
proposed algorithm with gaussian Mixture model 66

4.7 Classification error (in percentage) of algorithms on M33 dataset on 5
features. The bar groups are in the following order : (1) Error using
source model directly on target without domain adaptation (2)Error
using domain adaptation algorithm kernel mean matching (3) Using
proposed algorithm with Gaussian Mixture model 67

4.8 Classification error (in percentage) of algorithms on SMC dataset on
5 features. The bar groups are in the following order : (1) Error using
source model directly on target without domain adaptation (2)Error
using domain adaptation algorithm kernel mean matching (3) Using
proposed algorithm with Gaussian Mixture model 68

4.9 The histogram and and the prior distribution of θ for Supernova 2-
class source dataset. Here θ refers to the number of hidden nodes of
a neural network . 70

4.10 The histogram and and the prior distribution of θ for Landmine source
dataset. Here θ refers to the number of hidden nodes of a neural network 71

4.11 Classification error (in percentage) on Supernova 2-class dataset using
prior θte=θ

∗
tr=33 and posterior θ∗tr-σ ≤ θte ≤ θ∗tr+σ 76

4.12 Classification error (in percentage) on Supernova 2-class dataset using
prior θte=θ

∗
tr=34 and posterior θ∗tr-σ ≤ θte ≤ θ∗tr+σ 76

4.13 Classification error (in percentage) on Landmine dataset using prior
θte=θ

∗
tr=23 and posterior θ∗tr-σ ≤ θte ≤ θ∗tr+σ 77

4.14 Classification error (in percentage) on Landmine dataset using prior
θte=θ

∗
tr=24 and posterior θ∗tr-σ ≤ θte ≤ θ∗tr+σ 77

x

List of Tables

4.1 Classification Performance under Visible Band. Numbers in paren-
theses represent standard deviations. Last two columns correspond to
proposed methodology. 51

4.2 Classification Performance under Infrared Band. Numbers in paren-
theses represent standard deviations. The last column corresponds to
proposed methodology. 53

4.3 Comparison of Classification Performance under Infrared Band. Num-
bers in parentheses represent standard deviations.The last column cor-
responds to proposed methodology. 54

4.4 Initial values and final parameter estimates for fitting a linear mixture
model on LMC source dataset . 55

4.5 Classification Accuracy of M33 Dataset by fitting it into Linear Mix-
ture Model with Gaussian noise. 56

4.6 Classification Accuracy on M33 dataset with 5 Features with and with-
out alignment. 60

4.7 Comparison of Classification Performance under Infrared Band. Num-
bers in parentheses represent standard deviations.The last column cor-
responds to proposed methodology. 61

4.8 Classification Performance under Infrared Band using SMC as the
source dataset. Numbers in parentheses represent standard deviations. 64

4.9 Classification Performance under Infrared Band using LMC as the
source dataset and SMC as the target dataset. Numbers in parenthe-
ses represent standard deviations. 64

xi

4.10 Classification Accuracy on Supernova 2-class dataset using our pro-
posed method of domain adaptation using active learning.Here we
used θ∗tr =33 . 73

4.11 Classification Accuracy on Supernova 2-class dataset using our pro-
posed method of domain adaptation using active learning.Here we
used θ∗tr =34 . 73

4.12 Classification Accuracy on Landmine dataset using our proposed method
of domain adaptation using active learning.Here we used θ∗tr =23 . . . 74

4.13 Classification Accuracy on Landmine target dataset using our pro-
posed method of domain adaptation using active learning.Here we
used θ∗tr =24 . 75

xii

Chapter 1

Introduction

1.1 Machine Learning

Machine learning is a sub-field of computer science that deals with the teaching of

a system to improve its performance over various tasks by gaining new experience.

Two basic types of machine learning methods that are related to my research are

supervised learning and unsupervised learning.

1.1.1 Supervised Learning

Supervised learning is a process that builds an optimized function or a model that

maps a certain set of given inputs to some desired outputs. These outputs are in

the form of labels or values already assigned by an expert (supervisor). The input

1

is a set of entities represented as data points in a space defined by features, each of

which denotes a characteristic of the data points. The set of given input data points

in the learning phase is called the training dataset. After the learning process ends,

the model is generally tested on a new dataset, also known as the testing dataset,

that has not been used for the training purpose. The error generated by the model

is equal to the average of all the errors or discrepancies contributed by the each test

data point as predicted by the model.

1.1.1.1 Types of Supervised Learning

There are two types of supervised learning: classification and regression. Classi-

fication is a supervised learning technique that maps the input data points to the

desired output that are generated from the distribution of a discrete random vari-

able. The learning process divides the data space into regions, each region belonging

to a different class. The intrinsic assumption is that all points lying within a region

can be classified as the same class as assigned by the model. Thus with a given

small number of labeled data points, the algorithm is able to predict the class of any

unknown data point that is sampled from the same underlying distribution. Some

of the well known classification learning methods include Neural Networks, Naive

Bayes, K-Nearest Neighbor, Decision Trees, Logistic Regression, and Support Vector

Machines.

Regression is a supervised learning process that builds a function that maps each

input data point to a desired output value generated from the distribution of a

2

continuous random variable.

1.1.2 Unsupervised Learning

Unsupervised learning differs from supervised learning by the fact that there are

no desired outputs available. However in most cases the number of categories in

which the data points should be divided is known. Thus the goal of unsupervised

learning is to form clusters on the training data such that the data points belonging

to the same category will be included in the same cluster. Some of the popular

unsupervised learning methods include K-Means clustering, Self-Organizing Maps

and Expectation-Maximization Algorithm.

1.2 Motivation

Traditional machine learning algorithms assume that the training and the test datasets

are sampled from the same underlying distribution, which is not true for most real-

world datasets. As a result, a model trained on the training dataset fails to produce

good classification accuracy on the test dataset. In addition, it is often seen that

labeling a new test dataset is very expensive.

So when a new unlabeled dataset is to be classified, there are two options: (1)

to choose a labeled but related dataset, also called the source dataset, and transfer

information from it to the new dataset, also called the target dataset, or (2) try to

3

obtain labels for some of the instances of the new dataset to build a model on it.

The former method is known as domain adaptation[1][2][3][4] and the latter can be

handled by active learning [5].

1.2.1 Domain Adaptation

Domain Adaptation is the process of building a new model on the target dataset by

using some information from the source dataset. If the target has very few labels

it is called a supervised domain adaptation and if there exists no target labels, it

is called unsupervised domain adaptation. However, there is no allowance of extra

target labels than those already available.

1.2.2 Active Learning

On the other hand active learning assumes that there exists a small budget to label

some instances of the target data. Its goal is to find a sample of most informative

examples of the target dataset; this process involves an expert during the learning

phase. A typical active learning procedure selects one or a batch of instances from

the target dataset and query their labels from an expert, then build a model on

the same dataset to find the next set of most informative examples that need to be

queried. The process continues until the budget runs out.

4

1.2.3 Disadvantages of Domain Adaptation

Domain adaptation suffers from certain disadvantages. In domain adaptation it is

assumed that there exists at least one model in either the current data space or in

some projected space that can classify both source and target perfectly. This is called

the covariate shift[6]. This does not hold true in case of many real world datasets.

Also these methods use weighted instances or transformed features from the source

domain to build a model on the target domain. As a result the model formed on the

target domain gets biased towards the source. Active learning reduces this bias by

allowing us to incorporate some labeled instances from the target dataset. This led

us to the idea of using active learning with domain adaptation.

1.3 Research Goal

This research combines domain adaptation with active learning to improve the ac-

curacy of a model built on the target dataset. The motivation behind using domain

adaptation is to utilize as much information as possible from a related but labeled

dataset. The reason for using active learning is to reduce the bias induced by the

source dataset during domain adaptation.

The aim of this research is to build an optimal classifier on the target dataset by

using information related to model complexity. We propose a novel domain adapta-

tion technique using active learning to find the optimal value of a parameter of a class

of models that yields the best classifier on the target dataset without assuming the

5

equivalence of the class-conditional probabilities across the domains. We combine

the prior distribution of the parameter, obtained from the source, with its likelihood

obtained from a sample of most informative labeled instances of the target dataset.

This research also proposes a novel data alignment technique that allows the use of

the source model directly on the target if the distributions differ due to a linear shift,

thus avoiding building a complete new classifier on the target domain.

1.4 Dissertation Layout

The layout of my dissertation is as follows :

• Chapter 2 presents a background of various domain adaptation and active

learning techniques and those which use both domain adaptation and active

learning.

• Chapter 3 describes the methodologies used in this research.

• Chapter 4 includes the results of the experiments of this research.

• Chapter 5 is a summary of contributions and our conclusion from this re-

search.

6

Chapter 2

Background

2.1 Preliminary Concepts in Statistical Learning

Consider an n-component vector-valued random variable (X1, X2, , Xn), where each

Xi represents an attribute or feature; the space of all possible feature vectors is called

the input space X. Consider also a set w1, w2, , wk corresponding to the possible

classes; the space of all possible classes is called the output space W . A classifier

typically receives a set of training examples as input from a source domain, Ttr =

(xi, wi)
p
i=1, where x = (x1, x2, , xn) is a vector in the input space, and w is a value

in the (discrete) output space. We assume the training or source sample Ttr consists

of independently and identically distributed (i.i.d.) examples obtained according to

a fixed but unknown joint probability distribution, Ptr(x,w), in the input-output

space X × W . The outcome of the classifier is a hypothesis or function f(x|θ)

7

(parameterized by θ) mapping the input space to the output space, f : X → W . We

commonly choose the hypothesis that minimizes the expected value of a loss function

L(w, (x|θ)), also known as the risk:

R(θ, P (x,w)) = E ∼ P [L(w, f(x|θ))] (2.1)

where we typically adopt the zero-one loss function L(w, f(x|θ)) = 1{x|w=f(x|θ)}(x);

1(.) is an indicator function. We will also assume a testing sample from a target

domain, Tte = {xi}qi=1, that consists of i.i.d. examples obtained from the marginal

distribution Pte(x) according to a different joint distribution, Pte(x,w), over X×W .

2.2 Reasons for Dataset Shift

Traditional machine learning algorithms assume that the joint distributions Ptr(x,w)

and Pte(x,w) across the source (training) and the target(testing) domains respec-

tively are the same. But in real-world scenarios this does not hold true. The result

is Ptr(x,w) 6= Pte(x,w), which is known as a dataset shift. There can be various

reasons for this shift:

• Simple covariate shift: The joint distributions Ptr(x,w) and Pte(x,w) can

be modeled as a product of their priors and posterior such as Ptr(x,w) =

Ptr(w|x)Ptr(x) and Pte(x,w) = Pte(w|x)Pte(x). We say that a simple covariate

shift has occurred when Ptr(w|x) = Pte(w|x) and Ptr(x) 6= Pte(x), i.e., the

difference between the joint distributions is attributed to the change in the

covariates x. This is the basic assumption of most domain adaptation methods.

8

• Prior probability shift: A prior probability shift occurs when the distribu-

tion over the the source and the target classes are different, i.e., Ptr(w) 6= Pte(w)

where the joint distributions Ptr(x,w) and Pte(x,w) are modeled as Ptr(x,w)

= Ptr(x|w)Ptr(w) and Pte(x,w) = Pte(x|w)Pte(w) respectively.

• Sample selection bias: When the change in the joint distributions of the

source and the target domains occur due to an unknown sample rejection pro-

cess, we call it a sample selection bias.

• Imbalanced data: When one or more classes in a dataset are very rare, as

compared to others in the same dataset, we call it an imbalanced dataset. The

imbalanced dataset shift problem is mainly caused due to a design issue. If the

goal of a problem is to detect rare events, many times the dataset is balanced

by discarding instances of the major class, to give more importance to the

rare-event training instances. This results in a disparity between the source

and the target distributions. For a conditional modeling case, imbalanced data

problem can be regarded as a sample selection problem with a known selection

bias.

• Domain shift: When there is a change in measurements across the source

and the target domains, we call it a domain shift problem. For example, if the

source data are measured in one particular system of units and the target data

are measured in another, we say that a domain shift has occurred.

• Source component shift: When the observed data is made up of data from

9

different sources with different characteristics, and the proportions of those

sources vary across the training and the test distributions, we call it a source

component shift.

In this research we deal with two scenarios :

1. A scenario when a covariate shift occurs between the source and the target

distributions due to a linear shift of the marginals Ptr(x) and Pte(x) but the

conditionals Ptr(w|x) and Pte(w|x) remain the same, i.e., Ptr(w|x) = Pte(w|x)

and Ptr(x) 6= Pte(x).

2. A much more generic scenario when a covariate shift occurs between the source

and the target distributions but we cannot assume that the conditionals Ptr(w|x)

and Pte(w|x) are the same, i.e. , Ptr(w|x) 6= Pte(w|x) and Ptr(x) 6= Pte(x).

2.3 Domain Adaptation

The dataset shift problem is handled in the literature by domain adaptation methods.

Domain adaptation has gained much attention recently, mainly due to the pervasive

character of problems where distributions change over time; it assumes the learning

task remains constant (e.g., classifying variable Cepheid stars into two classes), but

the marginal and class posterior distributions between source and target domain

may differ (as opposed to transfer learning[8], where tasks can exhibit different input

representations, i.e., different input spaces).

10

Domain adaptation methods can be broadly grouped into three categories as

follows:

• Instance-based domain adaptation: The goal of instance-based domain

adaptation is to identify the instances in the source that are more related to

the target and give them more importance while calculating the risk. A new

model is built on the weighted source data which is used as a classifier on the

target. Several instance-based domain adaptation methods have been proposed

such as finding the weight ratio Pte
Ptr

to weigh the instances, as direct estimation

covariate shift[6][7], direct estimation using covariate shift assumption[9], solv-

ing sample selection bias problem[10], and kernel mean matching method[11].

The underlying assumption of instance based methods is that the target must

be in support of the source.

• Feature-based domain adaptation: In some cases the source and the target

may be overlapping, but it is not possible to determine a sample of instances of

the source that are more important than the others. In that case, feature-based

methods are used. The idea is to project both the source and the target datasets

into a common feature space such that they can be aligned. A new model is

built on the transformed source data that is used as the classifier on the target.

Some of the proposed feature-based methods include structural corresponding

learning[14], subspace alignment method[15] and others[20][21][39].

• Iterative-based domain adaptation: In iterative-based domain adaptation,

a model is built on the target in an iterative way. In each iteration some

11

instances of the target domain are labeled depending upon their proximity to

the margin and a model is built on them. Also some of the source instances

are discarded at every iteration that are lie far away from the labeled target

instances.

We explore these three types of domain adaptation in detail in the following

sections of this chapter.

2.3.1 Instance-based Domain Adaptation

Instance-weighting is one of the most common domain adaptation techniques. Let

M be the class of models for which we wish to obtain the best classifier M∗. Let

l(x,w,M) be the loss function. Our objective is to find M∗ such that :

M∗ = arg min
M∗∈M

∑
(x,w)∈X×W

P (x,w)l(x,w,M). (2.2)

As P (x,w) is unknown we use the sampled dataset P (x,w)∗ to approximate P (x,w).

Thus we minimize the following empirical risk to obtain M∗ such that:

M∗ = arg min
M∗∈M

∑
(x,w)∈X×W

P (x,w)∗l(x,w,M). (2.3)

or

M∗ = arg min
M∗∈M

N∑
i

l(xi, wi,M) (2.4)

where N is the number of instances (xi, wi) in the data.

12

Similarly we can say that our main goal is to find M∗ on target distribution

Pte(x,w) such that :

M∗ = arg min
M∗∈M

∑
(x,w)∈X×W

Pte(x,w)l(x,w,M). (2.5)

But since we have labeled instances only in the source dataset, we re-write the

equation 2.5 in the following way:

M∗ = arg min
M∗∈M

∑
(x,w)∈X×W

Pte(x,w)

Ptr(x,w)
Ptr(x,w)l(x,w,M). (2.6)

or

M∗ = arg min
M∗∈M

∑
(x,w)∈X×W

Pte(x,w)

Ptr(x,w)
Ptr(x,w)∗l(x,w,M). (2.7)

or

M∗ = arg min
M∗∈M

N∑
i=1

Pte(x
tr
i , w

tr
i)

Ptr(xtri , w
tr
i)
l(xtri , w

tr
i ,M). (2.8)

Thus we see that weighting the loss for the instance (xtri , w
tr
i) with

Pte(xtri ,w
tr
i)

Ptr(xtri ,w
tr
i)

gives us

the solution for domain adaptation. However it is not possible to calculate Pte(xi,wi)
Ptr(xi,wi)

for a pair (xi, wi), since we do not have enough labeled instances in the target domain.

To find a solution to this problem we explore two cases: class imbalance and covariate

shift.

2.3.1.1 Class Imbalance

In a class-imbalance problem, it is assumed that the conditional distribution of X is

the same for source and target domains, i.e., Ptr(x|w = wi)=Pte(x|w = wi) for all wi

13

∈ W but Ptr(w) 6= Pte(w) as mentioned in [30]. Using Bayes formula, we can write

Pte(x,w)

Ptr(x,w)
=
Pte(w)

Ptr(w)

Pte(x|w)

Ptr(x|w)
(2.9)

or

Pte(x,w)

Ptr(x,w)
=
Pte(w)

Ptr(w)
(2.10)

To solve the class-imbalance problem we obtain Pte(w)
Ptr(w)

as given in [31]. Alterna-

tively, we can do a stratified sampling on the training instances from the source

domain such that class distribution across two domains match. In such methods,

under-represented classes are over-sampled, and over-represented classes are under-

sampled[32][33][34]. For logistic regression functions it can be shown that

Pte(w|x) =
g(w)Ptr(w|x)∑c
w=1 g(w)Ptr(w|x)

(2.11)

where c is the number of classes and

g(w) =
Pte(w)

Ptr(w)

Other methods have been proposed as well for those learning algorithms that do

not model P (w|x) = P (w|x) directly[35]. The class distribution of the target domain

sometimes is known[31] and sometimes it is estimated using EM algorithm[36].

2.3.1.2 Covariate Shift

Covariate shift is a common assumption made in domain adaptation. It is assumed

that the marginal distributions differ, whereas the class conditionals remain same

14

across source and target domains, i.e., Ptr(w|x) = Pte(w|x) but Ptr(x) 6= Pte(x).

This means that there exists an optimal model that can classify both target and

source data perfectly. Ideally a model built on the source domain should be able

to classify the target dataset - but that does not happen most of the times. The

reason is the use of misspecified models[6], which means that the model built on the

source never produces the optimal model, i.e., there exists no M∗ ∈ M such that

P (w|x = xi,M) = P (w|x = xi).

Under covariate shift, we can write the equation

Pte(x,w)

Ptr(x,w)
=
Pte(x)

Ptr(x)

Pte(w|x)

Ptr(w|x)
(2.12)

or

Pte(x,w)

Ptr(x,w)
=
Pte(x)

Ptr(x)
(2.13)

One way [6] to minimize the covariate shift is to re-weight the log likelihood of each

source instance (xi, wi) with the ratio Pte(x)
Ptr(x)

using maximum likelihood estimation.

But the assumption is that Pte(x) must be in the support of Ptr(x). One such

method is to build density estimators for source and target domains and estimate

the ratio between them[9]. Another way is to learn the weights discriminatively[7].

This method assumes that Pte(xi)
Ptr(xi)

∝ 1
p(s=1|x,M)

. The source and target is labeled as

0 and 1 respectively and a classifier M∗ is built on this combined source and target

data to compute the weights g(xi) = 1
p(s=1|xi,M∗)

.

One of the most-popular instance-based domain adaptation methods is kernel

15

mean matching. The goal of this method is to minimize the maximum mean discrep-

ancy between two distributions by projecting the distribution in reproducing Hilbert

kernel space (RKHS). The maximum mean discrepancy is given by the equation :

MMD(Ttr, Tte) =‖ 1

mtr

mtr∑
i−1

φ(xtri)− 1

mte

mte∑
i−1

φ(xtei) ‖H (2.14)

The objective is:

minβ ‖
1

mtr

mtr∑
i−1

β(xtri)φ(xtri)− 1

mte

mte∑
i−1

φ(xtei) ‖H (2.15)

such that

β(xtri) ∈ [0, B] and | 1

mtr

mtr∑
i−1

β(xtri)− 1| < ε

The β values acts as the weights[10] for the source examples. The error of each source

example is multiplied with the corresponding β value while calculating the risk of

the training model, thus giving appropriate weights to the relevant source examples.

2.3.2 Feature-based Domain Adaptation

The difference in the distributions of the source and the target domains can also

arise due to the change in the features. Such a change of representation of X can

affect both the marginal distribution P (x) and the conditional distribution P (w|x).

In that case, we assume that under some change in representation the joint dis-

tributions of the source and the target datasets will be equal. Let t : X → Z

denote a transformation function that transforms an observation x represented in

the original form into another form zi = t(x) ∈ Z. We define variable Z such

16

that it satisfies P (z) =
∑

x∈X,t(x)=z P (x) The joint distribution of Z and W is then

P (z, w) =
∑

x∈X,t(x)=z P (x,w). Thus if we can find t for the source and target do-

mains, we can say that Ptr(z, w) = Pte(x,w). Since now the distributions are the

same, the optimal model built on transformed source data will also be the model on

target data.

As mentioned in [37], it is to be noted that with a change of representation, the

entropy of P (w|z) is likely to increase from the entropy of P (w|x), because Z is

usually a simpler representation of the observation than X, and thus encodes less

information. In other words, the Bayes error rate usually increases under a change

of representation. Therefore, the criteria for good transformation functions include

not only the distance between the induced distributions Ptr(z, w) and Pte(z, w) but

also the amount of increment of the Bayes error rate.

The effect of representation change for domain adaptation was first formally ana-

lyzed in [1]. They proved a generalization bound for domain adaptation that is depen-

dent on the distance between the induced Ptr(z, w) and Pte(z, w). One feature-based

domain adaptation technique is metric learning [13][12]. It uses the Mahalanobis

distance as a distance metric and introduces pair-wise constraints to determine the

similarity between source and target instances. But it requires target labels. An-

other method that uses distance metric along with target labels is described in [38].

They propose one of the most common transformation used in feature based meth-

ods - feature subset selection. In this method the criterion of selecting features is

to minimize an approximated distance function between the distributions in the two

17

domains.

There are many unsupervised domain adaptation techniques that use feature sub-

set selection. One such method is structural corresponding learning [14]. It is widely

used in sentiment analysis and deals with bag of words. It chooses K pivot features,

which are frequent words in both domains, and are highly correlated with labels. It

learns K classifiers to predict pivot features from remaining features. For each feature

it adds K new features and represents source and target data with these features. It

applies Principal Component Analysis (PCA) on source and target dataset to get a

lower dimensional representation and learns a classifier on this representation.

One of the simplest and most common feature subset selection is subspace align-

ment method[15]. It applies PCA on both source and target and choose d eigen-

vectors for which it obtains the maximum accuracy on the source domain. It trans-

forms the source subspace to align with the target subspace using a subspace align-

ment matrix. Once the source and target are aligned, it builds the classifier on the

source data to classify the target. Algorithm 1 shows the steps of subspace alignment.

Algorithm 1 Subspace Alignment Algorithm

Input : Labeled Source data Ttr, unlabeled Target data Tte , Subspace dimension
d
Output : Classifier MT on target data.

1: T ∗tr ← PCA(Ttr, d) (source subspace defined by d eigenvectors)
2: T ∗te ← PCA(Tte, d) (target subspace defined by d eigenvectors)
3: Z = T ∗tr(T

∗
tr)

TT ∗te (aligning source dataset with target)
4: T atr = T ∗trZ (source data in aligned space)
5: T ate = TteT

∗
te (target data in aligned space)

6: Build a classifier MT on T atr

18

Here (T ∗tr)
TT ∗te corresponds to subspace alignment matrix and (T ∗tr)

T is the trans-

pose of T ∗tr.

2.3.3 Iterative-based Domain Adaptation

Iterative-based methods builds the model iteratively on the target dataset by using

the information of source data. One of the most popular iterative-based algorithm is

DASVM[16]. The idea is to assign pseudo-labels to target instances that are closest

to the margin of the the classifier and fall within it, and discard those instances that

are far from the boundary in every iteration. The algorithm then builds a model

on combined remaining labeled source instances and target instances with pseudo-

labels. The algorithm stops when there are no new target instances that are to be

labeled.

2.3.4 Other Domain Adaptation Methods

The problem of domain adaptation has been attacked from various other angles: by

proving error bounds as a function of empirical error and the distance between source

and target distributions[1][2][22]; as part of multitask learning by finding a common

representation using spectral functions[23]; within a co-training framework where

target vectors are incorporated into the source training set based on confidence[24];

and by using regularization terms to learn models that perform well on both source

and target domains[26].

19

In this research, we address two scenarios. The first scenario assumes the ex-

istence of a covariate shift, and shift between the priors is due to a linear shift.

Different from previous work in our strategy is to shift the target data to achieve

a close alignment with the source data[17][18][19]. By making both sets as similar

as possible, we expect the source model to generalize well on the target domain.

We do not use any existing feature-based methods and thus our algorithm does not

incur any loss of information or increase in entropy. The second scenario does not

assume the existence of the covariate shift, nor does it assume that the source and

target have shared support. Thus most of the domain adaptation methods become

non-applicable. We use a different approach, as described in section 3.3, to solve this

problem.

2.4 Active Learning

Active learning [5][42] is a technique that assumes the existence of a budget to label

some instances of an unlabeled target dataset and aims to build an optimal classifier

on the unlabeled dataset by finding the most informative examples in the dataset

iteratively and querying their labels from an expert. The active involvement of the

expert leads to the convergence of the process to a better learning model compared

to passive machine learning techniques. We discuss some sampling scenarios and

sampling strategies in the following sections.

20

2.4.1 Sampling Scenarios

There are three main sampling scenarios for active learning. They are described as

follows :

• Membership query synthesis: Membership query synthesis[40] is one of

the first investigated area of active learning. In this setting, the active learner

generates the queries de novo, without sampling from any existing underlying

distribution. Some of its application include predicting the absolute coordinates

of a robot hand given the joint angles of its mechanical arm as inputs[41], and

’scientific robots’ to execute a series of autonomous biological experiments[43].

• Stream-based selective sampling: Another sampling scenario is stream-

based selective sampling[45][44]. In this scenario, an instance is first sampled

from the actual distribution and then the learner decides to query it or not. The

assumption is that the sampling an unlabeled instance is free or inexpensive.

This method is also known as sequential active learning as the instances are

sampled in sequence, one by one, as the learner decides whether to query it or

discard it. For a uniform input distribution, stream-based selective sampling

behaves like membership query synthesis.

The decision to query the sample or not can be designed in various ways. One

way to decide that is to check how informative the sample is and make a ran-

dom biased decision such that more informative instances are more likely to

be queried[46]. Another approach is to find the region of uncertainty and only

21

query if the sample belongs to that region[45]. A common way to achieve this is

to set a threshold for the informativeness of the instance and query it only when

its information is above this threshold. A more-robust approach is to find a set

of classifiers in a region that is unexplored or unknown to the model class that

would be consistent with the labeled training set. This region is known as the

version space. The idea is to query the instance if any two or more classifiers

disagree in their labels while classifying the instance. This process is more com-

plex as the region has to be maintained after every sampled instance has been

queried. Some of the applications of stream-based selective sampling include

part-of-speech tagging[46], sensor scheduling[47], learning ranking functions for

information retrieval[48] and word-sense disambiguation[49].

• Pool-based sampling: Pool-based sampling[27] assumes that we have a small

labeled dataset and a large pool of unlabeled dataset that is fixed. The

learner chooses to query the most informative instance from the pool and

add it to the set of labeled instances. The difference between pool-based

and stream-based sampling is that the former has access to the entire pool

to choose the most informative instances, whereas the latter can only view one

instance at a time. Some of the applications of pool-based sampling include

text classification[27][50][51][52], information extraction[53][54], image classifi-

cation and retrieval[51][55], and video classification and retrieval[56][57], speech

recognition[58], and cancer diagnosis[59].

22

2.4.2 Query Strategy Frameworks

All active learning scenarios involve evaluating the informativeness of unlabeled in-

stances. We explore only one such strategy in detail, that is related to this research-

uncertainty sampling.

2.4.2.1 Uncertainty Sampling

Uncertainty sampling is one of the most common query strategies[28]. In this frame-

work, the instance is queried based on its measure of uncertainty. The amount of

uncertainty can be measured in three ways :

• Least-confidence sampling: The learner queries the instance that is the

least confident:

x∗LC = arg max
x

1− Pθ(w∗|x).

where w∗ = arg maxw Pθ(w|x). The disadvantage of this strategy is that it does

not incorporate information from other classes that are not the most probable

ones.

• Margin sampling: Margin sampling[29] overcomes the disadvantage of least

confident sampling by querying the instance that has the lowest margin. The

margin is defined by the difference in the probability of the two most probable

classes for a given instance. Thus,

x∗M = arg min
x

Pθ(w
∗
1|x)− Pθ(w∗2|x).

23

where w∗1 and w∗2 are the first and second most probable classes for x.

• Sampling using entropy: The third sampling strategy involves querying

using entropy[60] as the uncertainty measure:

x∗H = arg max
x

c∑
i

Pθ(wi|x)logPθ(wi|x).

where c is the number of distinct class labels.

The choice of uncertainty sampling strategy is application dependent. Other

query strategies include query-by-committee (QBC) algorithm[61], expected gradient

length (EGL) approach[62], expected error reduction[63], variance reduction[42], and

density-weighted methods[42]. More details of its application can be found in [42].

In this research we use pool-based [27] active learning with margin sampling [29] as

our query strategy.

2.5 Active Learning in Domain Adaptation

In recent years, there has been much research on combining active learning with

domain adaptation. Some existing active learning techniques in domain adaptation

use query-by-committee approach[64]. But this approach assumes that the classes

are separable. On the other hand other approaches[65][66] focus on using the source

model to train the examples from the target domain that are similar to the source

domain, thus increasing the pool of queries without incurring a cost for labeling

these examples. The model is built iteratively on this pool that increases after each

24

iteration. They also propose a convergence criterion of the algorithm based on the

sampling techniques of the queries[65]. There are other algorithms [66][67] that use

the source model as the initial model of their algorithm instead of any random model

built on the target domain. However these methods do not check for redundancies

in the queries.

Our method differs from other methods in that we transfer the optimal model

complexity of the source dataset to build models on the target domain during active

learning, and then use the queried labeled instances to find an optimal parameter

value on the target dataset. We do not transfer the information of the instances in

the source domain directly to the target. We explain our methodology in detail in

section 3.3.

25

Chapter 3

Method

This section describes our proposed method in detail. It is often seen in real world

datasets that the training and test datasets differ in their distributions considerably.

As a result, a model built on the training dataset cannot be used directly on the

test dataset without doing some necessary adjustments. To overcome this problem

researchers use domain adaptation.

However most domain adaptation methods assume that existence of covariate

shift between the source(train) and the target(test) domains, which may not hold

true for most real world datasets. Also, these methods use weighted instances or

transformed features from the source domain to build a model on the target domain.

As a result, the model formed on the target domain is biased towards the source.

Active learning reduces this bias by allowing us to incorporate some labeled instances

from the target dataset. This led us to the idea of using active learning with domain

26

adaptation.

The goal of this research is to design an algorithm that builds an optimal classifier

on the target domain without making the covariate shift assumption, i.e., there

exists a model that can classify both source and target perfectly. Thus we cannot

claim that the model built using any sample of the source dataset can yield optimal

classification accuracy on the target dataset. However, it can be assumed that since

both source and target are related, the distribution of complexity of the models across

the two datasets will be similar. But this does not guarantee that the optimal model

parameters in the source domain will be equal to the optimal model parameters in

the target domain. Thus our main goal is to find the optimal parameter for the class

of models that would generate the optimal classifier on the target domain. We use

the optimal parameter of the class of models on the source to build models on the

target domain through an active learning process. When we exhaust the budget of

querying the target instances, we proceed to find the optimal value of the parameter

on the target dataset for the same class of models using the labeled target instances

and the prior distribution of the parameter obtained from the source dataset.

One aspect of any domain adaptation method is that it always builds a new

model on the target dataset. In this research we address another scenario where the

source and the target distributions differ only by a linear shift. We aim to align the

datasets, and use the source model directly, thus avoiding building a new model on

the target domain. Both these scenarios are described as follows:

1. For the following sections we will refer to as first scenario, the assumption that

27

the covariate shift occurs between the source and the target distributions due

to a linear shift of the marginals Ptr(x) and Pte(x) but the conditionals Ptr(w|x)

and Pte(w|x) remain the same, i.e. , Ptr(w|x)=Pte(w|x) and Ptr(x) 6= Pte(x).

It is very specific in nature but can be applied in domains where there exists

a shift between the train and the test datasets due to the nature of acquiring

the data.

2. The second scenario, which is the main goal of this research, is much more

generic than the previous method, as it does not have covariate shift assump-

tion between the source and the target distributions. Thus, for this scenario,

Ptr(w|x) 6= Pte(w|x) and Ptr(x) 6= Pte(x). However, we do assume that the

prior distribution of the complexity of the classifiers on these two domains are

the same.

In the case of scenario 1 we introduce a novel method[17][18] to estimate the

linear shift instead of using any existing domain adaptation methods. In the case of

scenario 2, we first estimate the prior of the complexity of the model from the source

dataset. Then we use active learning to estimate the posterior distribution of the

complexity of the model in the target dataset. We discuss the scenarios in detail in

sections 3.1 and 3.3 respectively.

28

3.1 A Novel Data-Alignment Method

In this section we describe the scenario 1 which is specific to the assumption that the

change in prior distribution of the source and target domain is due to a linear shift

in the data. The goal is to find the shift across various features and align the target

dataset with the source dataset so that the source classifier can be directly used on

the target dataset for a better classification accuracy, as compared to simply using

it directly. The advantage of this method is that it eradicates the necessity to build

a complete new model on the target dataset.

The problem we address is characterized by an original source domain where class

labels abound, and by a target domain with no class labels. We show how the tar-

get domain can still be learned by assuming the difference in the joint input-output

distribution is mainly due to a systematic shift of sample points. We illustrate an

example in the context of Cepheid variable star classification, where we wish to dis-

criminate stars according to their pulsation mode(s); specifically, we focus on the two

most abundant classes, which pulsate in the fundamental and first-overtone modes.

Such classification can in fact be attained for nearby galaxies with high accuracy

(e.g., Large Magellanic Cloud) under the assumption of class label availability. The

high cost of manually labeling variable stars, however, suggests a different mode of

operation where a predictive model obtained on a data set from a source galaxy Ttr,

is later used on a test set from a target galaxy Tte. Such scenario is not straightfor-

wardly attained, as shown in figure 3.1 (left), where the distribution of Cepheids in

29

the Large Magellanic Cloud LMC galaxy (source domain, top sample), deviates sig-

nificantly from that of M33 galaxy (target domain, bottom sample). In this example,

we employ two features only: apparent magnitude in the y-axis, and log period in the

x-axis, but our solution is general and allows for a multi-variate representation. Both

the offset along apparent magnitude, and the significant degree of sample bias, are

mostly due to the fact that M33 is ∼ 16 × farther than the LMC. At these greater

distances, the shorter-period (i.e., less luminous) Cepheids fall below the detection

threshold and longer-period (i.e., more luminous) stars are preferentially detected.

This is what we refer to as a systematic shift, where all objects or events (i.e., sample

points) are exposed to the same change, and thus we expect a similar displacement

throughout the entire target distribution.

Figure 3.1: Left. The distribution of Cepheids along the Large Magellanic Cloud
LMC (top sample), deviates significantly from M33 (bottom sample). Right. M33
is aligned with LMC by shifting along mean magnitude.

Our general solution is to shift the data on the target domain, Tte, to the point

where the model previously obtained over the source domain, Ttr, can be re-used. We

30

call this the data-alignment problem[17]. This differs from previous methods where

the goal is to generate a model afresh by re-weighting examples on the training set[3];

instead we leave the model intact, and transform the testing set until the model can

be re-used. An example of a successful alignment is shown in Figure 3.1 (right),

where shifting the sample of M33 along the y-axis (apparent mean magnitude) by

the right amount, enables us to do classification with the same model obtained on

the source domain.

3.1.1 Problem Formulation

We generalize our problem as follows. Assume a training set Ttr and a predictive

model f(x|θ) obtained by training on Ttr. Assume also an unlabeled testing set

Tte = x, where each feature vector can be split into two parts: x = (XA, XB) =

(x1, x2, ..., xm, xm+1, xm+2, ..., xn). Without loss of generalization, we assume each

feature in the set XB = {xm+1, xm+2, ..., xn} has suffered a shift. We wish to generate

a new dataset T ′te = x′, where x′ = (XA, X
′
B) = (x1, x2, ..., xm, xm+1 + δm+1, xm+2 +

δm+2, ..., xn + δn), to achieve the goal of aligning Tte along Ttr. Our real focus is in

the set ∆ = δm+1, δm+2, ..., δn; we aim at choosing ∆ to minimize R(θ, Pte(x,w)).

Note that even if the alignment is done appropriately, the joint distributions

between training and testing could differ because Ptr(x) 6= Pte(x) due to a form of

sample bias. A proper alignment simplifies the data set shift problem into a covariate

shift problem.

31

Applying active learning after this process will guarantee a better performance

of the model.

3.1.2 A Maximum-Likelihood Approach

Our method to attack the problem above consists of shifting Tte using maximum like-

lihood. To begin, we first assume the marginal distribution from which the training

is drawn, Ptr(x), is a mixture of Gaussians. We estimate parameters directly from

our sample Ttr, since we know all class labels (i.e., we know which vector belong to

each component or Gaussian). This enables us to have a complete characterization

of the marginal distribution:

Ptr(x1, x2, ..., xm, xm+1, xm+2, ..., xn) =
c∑
i=1

φigi(x|µi,Σi) (3.1)

where

gi(x|µi,Σi) =
1

(2π)n/2|Σi|1/2
exp{−1

2
(x− µi)TΣ−1i (x− µi)} (3.2)

where φi, µi, and Σi are the mixture coefficient (i.e., prior probability), mean and

covariance matrix of the ith component respectively, n is the number of features,

and c is the number of components.

Our next step is to define a new testing set T ′te = {x′}, where x = (x1, x2, ..., xm, xm+1+

δm+1, xm+2 + δm+2, ..., xn + δn), since we know a shift has occurred along our input

features. Our approach is to find the ∆ that maximizes the log likelihood of Tte with

32

respect to distribution Ptr(x):

L(∆|Tte) = log

q∏
k=1

Ptr(x
k) =

q∑
k=1

logPtr(x
k) (3.3)

To simplify our notation, we can rewrite the marginal distribution (equation3.1)

as follows:

Ptr(x1, x2, ..., xm, xm+1, xm+2, ..., xn) =
c∑
i=1

αivi(x
k) (3.4)

where

αi =
1

(2π)n/2|Σi|1/2

and

vi(x
k) = exp{−1

2
(xk − µi)TΣ−1i (xk − µi)}

When we apply a shift across the set of features, the resultant marginal test distri-

bution can be modeled as follows:

Pte(x1, x2, ..., xm, xm+1, xm+2, ..., xn) =
c∑
i=1

αizi(x
k) (3.5)

where

zi(x
k) = exp{−1

2
(xk + δ − µi)TΣ−1i (xk + δ − µi)}

Here we define a new vector δ that captures the amount of shift applied to each

feature; vector δ has values other than zero only for the set of features in XB (Section

3.1.1).

33

Algorithm 2 Gradient Ascent Algorithm

Input : Target data Tte , Learning rate η, Weight vector W= [W1,W2,...Wm] where
m is the number of features and Wi ε {0, 1} . Here Wi=1 denotes the the data has
to be shifted along ith feature and Wi=0 denotes no shift along ith feature
Output : Final ∆∗

Initialize : Shift ∆ as zero vector, , error ε

1: While ε ≥ .001
2: For every iteration t > 0
3: Evaluate the gradient Gt of

L(∆|T ′te) =

q∑
k=1

log

(
c∑

k=1

αizi(x
k)

)

4: Update ∆ as ∆t=∆t−1 ×W + η ×G×W
5: Endwhile

The equation for the log-likelihood function ends up as follows:

L(∆|T ′te) =

q∑
k=1

log

(
c∑

k=1

αizi(x
k)

)
(3.6)

To solve this optimization problem, we use an iterative gradient ascent approach

as shown in algorithm 2 ; we search the space of values in ∆ for which the log-

likelihood function reaches a maximum value. We stop the iteration when the change

in the log-likelihood function is less than a small value (in our experiments = 0.001).

We summarize the above steps in Algorithm 3

34

Algorithm 3 Proposed Data Alignment Algorithm

Input : Source data Ttr, Target data Tte, Optimal source classifier M∗
S.

Output : The optimal model M∗
T on the target dataset.

1: Fit the source data Ttr into a Gaussian Mixture Model as given in equation 3.1

Pte(x1, x2, ..., xm, xm+1, xm+2, ..., xn) =
c∑
i=1

αizi(x
k)

where

zi(x
k) = exp{−1

2
(xk + δ − µi)TΣ−1i (xk + δ − µi)}

2: Define the shifted target dataset T ′te = {x′}, where x = (x1, x2, ..., xm, xm+1 +
δm+1, xm+2 + δm+2, ..., xn + δn)

3: Find the value of ∆ in equation 3.6 that maximizes the following log-likelihood
function using gradient ascent algorithm described in algorithm 2.

L(∆|T ′te) =

q∑
k=1

log

(
c∑

k=1

αizi(x
k)

)

4: Substitute the value of ∆ in the target dataset to obtain the shifted target dataset
T ∗te

5: The optimal source classifier M∗
S becomes the optimal target classifier M∗

T as
now it can be claimed that Pte(x,w) = Ptr(x,w).

3.2 Data-Alignment Method Using Linear Mix-

ture Models

Different from previous work, we assume a bi-variate Linear Mixture Model with

Gaussian noise, and use Maximum Likelihood to find the shift between source and

target distributions. The idea is to align the two datasets so that a model learnt on

the source domain can be effectively used on the target domain.

35

3.2.1 Mathematical Formulation

We generate a mixture of linear regression models, as described in [79]. The log like-

lihood equation for LMC data for the two features X (Log Period) and Y (Apparent

Mean Magnitude) can be written as follows:

LogL(θ|y1, y2, ...yn, x1, x2, ...xn) =
n∑
i=1

log

(
2∑
j=1

πjσj(yi|xi)

)
(3.7)

where y1, y2 , ... yn are observations of Y , x1, x2 , ... xn are observations of X, and

each component σj(yi|xi) corresponds to a Gaussian distribution N(xTi βj, σj) with

coefficient πj .Parameter estimates are captured in θ. The equation can be expanded

as follows:

LogL(θ|y1, y2, ...yn, x1, x2, ...xn) =
n∑
i=1

log

(
2∑
j=1

πj
1

σj
√

2π
e
−

(yi−x
T
i βj)

2

2σ2
j

)
(3.8)

where xi = [xi1xi2]
T and βj = [βj1xj2]

T . Here xi1 and xi2 indicate the value of

Log Period and the bias variable for the ith observation respectively (xi2=1 for all

observations). βj1 and βj2 are the corresponding regressor variables for the jth

component. To align M33 data with LMC data, we assume a shift δ across Mean

Magnitude only. The log-likelihood equation for M33 data can be written as follows:

LogL(θ, δ|y1, y2, ...yn, x1, x2, ...xn) =
n∑
i=1

log

(
2∑
j=1

πj
1

σj
√

2π
e
−

(yi+δ−x
T
i βj)

2

2σ2
j

)
(3.9)

36

To find the maximum value of δ we differentiate 3.9 with respect to δ and equate

to zero. After some algebraic manipulation we derive the following equation:

(
ci12αi1e

−γi1(δ) + ci22αi2e
−γi2(δ)

αi1e−γi1(δ) + αi2e−γi2(δ)

)
+

(
ci13αi1e

−γi1(δ) + ci23αi2e
−γi2(δ)

αi1e−γi1(δ) + αi2e−γi2(δ)

)
= 0 (3.10)

where

cij1 =
(yi + δ − xTi βj)2

2σ2
j

, cij2 =
(yi + δ − xTi βj)

σ2
j

, cij3 =
1

2σ2
j

αij = πj
1

σj
√

2π
e−cij1 , γij = cij2δ + cij3δ

2

We shift the target dataset across the apparent mean magnitude by δ and classify

the target dataset using the source model f(x|θ). If we have a small budget to query

instances in the target domain , we use it to find the most informative instances of

the target domain using active learning. We choose f(x|θ) as our initial model for

active learning.

3.3 A Novel Method Of Domain Adaptation Us-

ing Active Learning

In this section we describe a novel method of domain adaptation using active learning.

Most of the domain adaptation algorithms assume the existence of covariate shift.

But in many real world scenarios, this assumption does not hold true. However, we

37

can assume that since the source and the target are related datasets, the complexity

of a particular class of models across the two domains are similar. The goal of this

novel method is to determine the best possible complexity for a particular class of

the models given the target dataset, by using the information of complexity of the

same class of models on the source dataset and the labels of the target dataset using

active learning.

3.3.1 Problem Formulation

We generalize this problem similar to the way as given in section 3.1.1. We assume a

training set Ttr and an unlabeled testing set Tte. The joint input-output distributions

of source and target datasets are represented by Ptr(x,w) and Pte(x,w) respectively,

where Ptr(x,w)=Ptr(w|x) Ptr(x) and Pte(x,w)=Pte(w|x) Pte(x). In this scenario we

do not assume the existence of the covariate shift between the datasets Ttr and

Tte. Thus we have Ptr(w|x) 6= Pte(w|x) and Ptr(x) 6= Pte(x). However, we consider

the source and the target domains are related by having similar complexity on the

predictive models ftr(x|θ) and fte(x|θ) built from a class of models M . Thus we

can assume that the prior distributions of the parameters of M are same across

both source and target distributions, i.e., Ptr(θ|M)=Pte(θ|M). Since the class of

models is fixed for both domains, we can write Ptr(θ)=Pte(θ). However the posterior

distribution of the parameters of the model given the dataset are not the same, i.e.,

Ptr(θ|T) 6=Pte(θ|T), where T represents the data.

38

Our goal is to estimate the best parameters θ∗te of the class of models M by max-

imizing posterior probability Pte(θ|T) that can be written as the following equation

using Bayesian statistics:

Pte(θ|T) =
Pte(T |θ)Pte(θ)∑n
i=1 Pte(T |θ)Pte(θ)

(3.11)

where Pte(T |θ) and Pte(θ) are the likelihood and prior distribution of the parameters

θ of the class of models M in the target domain. As the denominator is constant

and invariant for a particular value of θ we can reduce the equation 3.11 to

Pte(θ|T) = c1Pte(T |θ)Pte(θ) (3.12)

where c1 is a constant. For simplicity, we assume c1=1 and θ as one dimensional

parameter of the class of models M . To find the maximum value of Pte(θ|T), we

calculate the maximum value value of the product of Pte(T |θ) and Pte(θ).

Pte(θ|T) ∝ Pte(T |θ)Pte(θ)

3.3.2 Estimating Prior Distribution of Parameter θ Using

Domain Adaptation

We assume that the prior distribution of the parameter θ can be represented as

Gaussian distribution over a single variable θ.

P (θ) =
1√

2σ2π
e−

θ−µ
2σ2 (3.13)

39

where µ and σ are the mean and standard deviations of the Gaussian distribution.

And σ2 is the variance. Thus Pte(θ) and Ptr(θ) can be modeled like the equation

3.13 as :

Ptr(θ) =
1√

2σ2
trπ

e
− θ−µtr

2σ2tr (3.14)

and

Pte(θ) =
1√

2σ2
teπ

e
− θ−µte

2σ2te (3.15)

where µtr and σtr are the mean and standard deviations of the parameter θ in the

source domain respectively and µte and σte are the mean and standard deviations

of the parameter θ in the target domain respectively As Pte(θ)=Ptr(θ), µte=µtr and

σte=σtr. Thus if we can estimate the values of µtr and σtr from the source dataset, we

can substitute them for the values of µte and σte in the equation 3.15, thus obtaining

the prior distribution of θ on the target dataset.

For this purpose, we generate K samples of the source dataset using uniform

random sampling without replacement. Each of the K samples contain P percent

of the source dataset. Both K and P can be regarded as design parameters of the

experiments and are thus user-defined.

We build classifiers on each of the K samples using a range of m θ values, θ ∈

{θ1, θ2, θ3, ..θm} based on the class of models M . For each sample denoted by Sktr we

get a value θk∗i , where 1 ≤ i ≤ m, that gives the maximum classification accuracy

on the Kth sample Sktr. Thus we get K values of θ from the all the source sample

datasets. We fit these values of θ in a single variate gaussian distribution as given

40

in the equation 3.14 and estimate the values of µtr and σtr. As a result we get the

values for µte and σte. Thus we get the maximum value of the prior Ptr(θ) at θ=µtr.

Also we can say that the best parameter on the source θ∗tr is given by µtr.

3.3.3 Modeling the Likelihood of Parameter θ Using Active

Learning

To model the likelihood of the parameter we use active learning to query the most

informative instances in the target dataset, given a budget of cost B for querying by

the expert, as described in algorithm 4. We use the state-of-art pool-based active

learning using margin sampling as the uncertainty sampling technique. The algo-

rithm first selects K instances from the pool PU
te at random and queries their labels

from the expert and add the labeled instances in QL. It then builds a model MS on

QL using the value of θ∗tr. It removes the queried labels from the pool of unlabeled

instances. Then it finds the example xi with the maximum margin and queries it. It

adds xi to QL with its label wi. it then removes xi from PU
te and builds a model MS

on QL. The process is repeated until the cost reaches the budget. After the budget

has been used to query B instances on the target dataset, we proceed to estimate

the likelihood Pte(T |θ).

It can be safely assumed that the probability of the dataset being classified cor-

rectly by a hypothesis is inversely proportional to the error made by the hypothesis

on the dataset. Thus we define the likelihood of the parameter θ as a decaying

41

Algorithm 4 Active Learning Algorithm

Input : Target Pool Pte, learning algorithm LBase with parameter θ=θ∗tr, Budget
B, Initial cost K.
Output : A set of labeled target examples Q∗L.
Initialize : QL={}, Cost=0

1: Select K instances randomly from Pte.
2: Query K instances by expert and add them to QL.
3: Cost=Cost+K
4: Build a model MS on QL using LBase with θ∗tr
5: Set the unlabeled pool dataset as PU

te = Pte - QL

6: While Cost ≤ B
7: Find the instance xi from PU

te that has the minimum margin such that

xi = arg min
x

Pθ(w
∗
1|x)− Pθ(w∗2|x).

where w∗1 and w∗2 are the first and second most probable classes for x.
8: Query xi by expert and add it to QLnew such that QLnew =QL ∪ (xi, wi) where
wi is the true label of xi

9: Cost=Cost+1
10: Set QL=QLnew.
11: Remove xi from PU

te such that PUnew
te =PU

te -xi
12: Set PU

te=PUnew
te

13: Build a model MSnew on QL using LBase with θ∗tr
14: Set MS = MSnew

15: Endwhile
16: Q∗L= Final QL

function as follows:

Pte(T |θ) = N0e
−λt (3.16)

where N0 is a constant at t=0 , λ is a function of θ and t is equal to the classification

error on the queried examples of the target dataset, also known as the in-sample

error, denoted by Ein. At t=0, we define likelihood Pte(T |θ) = 1. Thus substituting

the values of t and Pte(T |θ) in equation 3.16 , we getN0=1. Thus the equation of

42

likelihood becomes:

Pte(T |θ) = e−λt (3.17)

where t=Ein and λ=k1g(θ), where k1 is a constant.

To obtain Ein we build a model on the queried examples for each of the values of

θte where θ∗tr-σte ≤ θte ≤ θ∗tr+σte where σte=σtr is the standard deviation of the prior

probability distribution Pte(θ) obtained from equation 3.15 as described in section

3.3.2.

We define Eout as the error on the out-sample error, i.e., the error estimated on

the instances in input space that are not included in the training phase of building

a classifier. We know from Vapnik-Chervonenkis inequality[82] that with a certain

probability 1- δ , the bound on the error Eout is given by the equation :

Eout ≤ Ein +

√
8

N
ln

4mH(2N)

δ
(3.18)

where Ein is the in-sample error on N training instances and mH(q) is a polynomial

function that defines that largest number of dichotomies on q training instances given

the class of hypotheses H:

mH(q) ≤
dV C(H)∑
i=0

N !

i!N − i!
(3.19)

where dV C(H) is the Vapnik-Chervonenkis dimension, or more commonly known as

VC dimension.The VC dimension dV C(H) is defined as the maximum number of

examples that can be shattered by the hypothesis H[82]. Thus it depends on the

complexity of the hypothesis and in turn is dependent on θ. The VC dimension of

43

various classes of hypothesis are known in the literature. For example, VC dimension

dV C(H) of neural networks with sigmoid gate functions has a lower bound σ(wlogw)

and a upper bound of O(w2) [81] where w is the number of weights in the network.

In our research the parameter θ we use is the number of hidden nodes h in a neural

network. Thus dV C(H) of a network with h hidden nodes can be estimated as

minimum wlogw where w=(i +1)× h + (h + 1)× o where i and o are the number

of input features and output classes respectively.

We refer to the second term of the left-hand side of the equation 3.18 as g(θ).We

say that the λ of the equation 3.17 is directly proportional to g(θ).Thus λ is defined

as:

λ = k1g(θ) = k1

√
8

N
ln

4mθ(2N)

δ
(3.20)

where k1 is the constant of proportion. Thus, if we substitute the value of t with

Ein and λ with g(θ), obtained from equation 3.20, in the equation 3.17, we will get

a value of Pte(T |θ) for every value of θte where θ∗tr-σ ≤ θte ≤ θ∗tr+σ.

Also, we know that l > dV C(H) from [82], the minimum value of mH(q) can be

obtained using lowest value of l which is dV C(H)+1, which has a lower bound wlogw.

Also since mH(q) is always greater than zero and a monotonically increasing function,

a higher value of θ will generate a higher VC dimension dV C(H) and in turn a higher

value of λ, irrespective of the lower or upper bound of VC dimension dV C(H). Thus

this method generalizes to all hypothesis whose VC dimension is greater than 1.

44

3.3.4 Estimating the Posterior of Parameter θ

Once we have estimated the value of the priors Pte(θ) and the values of the likelihood

Pte(T |θ) for every value of θte where θ∗tr-σte ≤ θte ≤ θ∗tr+σte, we multiply the priors

Pte(θ) with the corresponding likelihood values Pte(T |θ) to obtain the posterior as

given in the equation 3.11. The value of θ for which we get the maximum value of the

posterior is our optimal value, θ∗te of the parameter θ . We use this value θ∗te to build

the optimal classifier f(x|θ∗te) on the target domain using the B queried instances as

our training dataset. We present our proposed method in an algorithm as given in

Algorithm 5

θ∗te = arg max
θ

Pte(T |θ)Pte(θ). (3.21)

The same method of determining f(x|θ∗te) can be also applied to the any scenario

where the covariate shift assumption holds, including the scenario described in section

3.1.

45

Algorithm 5 Proposed Domain Adaptation Method Using Active Learning

Input : Source data Ttr, Target data Tte, learning algorithm LBase with parameter
θ, Budget B, Initial cost K.
Output : Model M∗

T on Tte

1: Find the prior distribution Pte(θ) of the parameter θ on the source dataset as
described in section. 3.3.2.

2: Find the optimal parameter value θ∗tr=µtr from Ptr(θ) where µtr is the mean of
Ptr(θ). And as per assumption, Pte(θ)=Ptr(θ).

3: Use θ∗tr as the value of θ for the model MT on the target dataset to find a set
of B most informative instances QL labeled using active learning as described in
algorithm 4, starting with K target instances.

4: Build model MT on Tte for each of the values of θte where θ∗tr-σte ≤ θte ≤ θ∗tr+σte
where σte is the standard deviation of Pte(θ).

5: For each θte in the above step, find error t = Ein on the QL.
6: For each θte in the above step, find the value of λ using equation 3.20.
7: For each λ in the above step, find the value of likelihood Pte(T |θ) = e−λt .
8: For each θte find the value of posterior Pte(θ|T)=Pte(θ|T)Pte(θ).
9: Choose the θ as θ∗te that maximizes Pte(θ|T)
10: Build the model M∗

T on Tte using QL as the training set and θ∗te as the optimal
value for the parameter θ.

46

Chapter 4

Experiments and Results

This section includes the experimental results of the methods described in chapter

3. We use two separate sets of data for the two different scenarios. For scenario 1,

in which we assume that the dataset shift has occurred due to a linear shift in the

marginal distributions of the source and the target datasets, we use three datasets

from astronomy domain which include data of the Cepheid stars from three differ-

ent galaxies: Large Magellanic Clouds (LMC), Small Magellanic Clouds(SMC) and

Triangulum galaxy(M33). For scenario 2, in which we do not assume that the target

dataset has a covariate shift, we use Supernova datasets from astronomy domain

and Landmine datasets that include information from the images for a landmine

detection problem. We present the results for these two scenarios in section 4.1 and

section 4.2 respectively.

47

4.1 Experiments For Novel Data-Alignment Method

In this section we show the results obtained by running the novel data-alignment

method as described in section 3.1. Section 4.1.1 describes the datasets used for

this purpose. Section 4.1.2 describes the experimental design and shows the results.

Section 4.1.3 contains a variation of the method as described in Section 3.1. Section

4.1.4 describes three new features generated by us from the given datasets that

improve their cross-validation accuracy. We combine these features with those used

in sections 4.1.2 and 4.1.3 and present the results of our proposed data alignment

method on these higher dimensional datasets in section 4.1.5.

4.1.1 Cepheid Star Datasets

Classical Cepheid variables (also commonly referred to as Population I Cepheids) are

stars both massive 4-11 MSun (solar masses) and luminous 1 × 103 − 5 × 104 LSun

(solar luminosities), that undergo regular pulsations with periods ranging from 2 to

100 days. The pulsations are driven by cyclical changes in the opacity of hydrogen

and helium in the outer atmosphere of these stars[68]. A tight correlation exists

between period (P) and luminosity (L) for Cepheid variables:

log10L = a+ b× log10P (4.1)

where a and b are fitting parameters. Figure 4.1 shows an example of such relation

for a sample of Cepheids populating the Large Magellanic Cloud galaxy. The flux of

each star is represented by its apparent magnitude m, defined as m = −2.5× log10 Ld2 ,

48

where d is the distance from Earth to the star measured in parsecs. Hence, smaller

numbers correspond to brighter magnitudes (higher fluxes).

Figure 4.1: A linear relation exists between the logarithm of the period and the
magnitude of a Cepheid star. The graph shows both fundamental and first-overtone
Cepheids from the Large Magellanic Cloud that overlap more than expected due to
interstellar dust and poor image resolution

Cepheid variables can be classified according to their pulsation mode(s): fun-

damental and first-overtone. Our analysis uses data obtained by two surveys: (1)

the third phase of the Optical Gravitational Lensing Experiment (OGLE-III)1 and

(2) the M33 Synoptic Stellar Survey2. OGLE[72] is a collaboration of mostly Polish

astronomers originally designed to search for dark matter using gravitational mi-

crolensing. The project has been observing the Magellanic Clouds and the Galactic

1Data repository available at http://ogledb.astrouw.edu.pl/ ogle/CVS/
2Data repository available at http://faculty.physics.tamu.edu/lmacri/M33SSS/

49

Bulge using a dedicated 1.3-m telescope at Las Campanas Observatory in Chile.

As a side product of the search for microlensing events, OGLE has discovered tens

of thousands of variable stars, including Cepheids. We analyze the third catalog of

OGLE Large Magellanic Cloud Cepheids[73], on both the visible (V) and infrared (I)

bands; the training set for the visible band contains 3,059 points (i.e., light curves),

while the training set for the infrared band contains 3,056 points. Data is of excellent

quality, with statistical uncertainties of 0.001% and 0.00035% on each band respec-

tively. The approximate detection thresholds of these observations are V = 21.5

and I = 21 mag, well below the faintest apparent magnitude of any Cepheid in the

Large Magellanic Cloud. The M33 Synoptic Stellar Survey[74] is a follow-up study

of Cepheids and other variables initially discovered by the DIRECT project[75][76].

These testing sets contain 323 points in the visible band, and 322 points in the

infrared band (statistical uncertainties of 0.0125% and 0.0056% respectively). The

approximate detection thresholds of these observations are V = 23 and I = 21.5

mag, which are adequate to detect all fundamental mode Cepheids with P > 3 days

and first-overtone Cepheids with P > 2 days.

4.1.2 Experimenting on Cepheids Datasets with 2 features

In the first set of experiments, we refer to data from the Large Magellanic Cloud

galaxy as the source domain, and to data from M33 galaxy as the target domain.

As a pre-processing step, parameters for the mixture of Gaussians on the source

domain are estimated directly through the data. Since class labels are available, it

50

Table 4.1: Classification Performance under Visible Band. Numbers in parentheses
represent standard deviations. Last two columns correspond to proposed methodol-
ogy.

Learning Accuracy on LMC Accuracy on M33 (target domain)
Algorithm (source domain) Cross-Validation Standard Proposed Method

Neural 94.77 (1.18) 96.18 (0.16) 90.09 (1.33) 96.78 (0.90)
Networks
SVM 94.48 (1.19) 92.55 (0.26) 95.30 (0.28) 95.76 (0.88)
Polynomial 1
SVM 94.59 (1.23) 95.28 (0.19) 93.69 (0.61) 95.98 (0.80)
Polynomial 2
SVM 94.62 (1.21) 95.08 (0.20) 93.38 (0.66) 95.98 (0.80)
Polynomial 3
Decision 94.32 (1.27) 97.61 (0.13) 94.49 (0.52) 97.27 (0.75)
Trees
Random 93.80 (1.26) 97.78 (0.13) 94.12 (0.41) 96.13 (0.78)
Forest

is straightforward to estimate means, covariance matrices and mixing proportions.

Implementation of the learning algorithms can be found in WEKA [77] using default

parameters. Specifically, neural networks are invoked with one hidden layer, two

internal nodes, a learning rate of 0.3, momentum of 0.2, and 500 epochs. Support

Vector Machines are invoked with polynomial kernels of degrees 1, 2, and 3 respec-

tively. Decision trees are invoked with a confidence factor of 0.25. Random Forests

combine 10 decision trees on each run. For 2 features , we solve for 3.6 by invoking

the solvefunction in the symbolicmathtoolbox in Matlab.

Our first set of experiments compute predictive accuracy when the model obtained

on LMC is applied to the transformed target domain (when a shift is applied to

apparent magnitude). Accuracy is obtained by creating bootstrap samples of the

51

target or test set (M33); each sample is generated by sampling with replacement.

We generated 10 samples, and averaged our results after applying model f(x|θ) on

each transformed sample. Table 4.1 shows our results when the data refers to the

visible band. The first column corresponds to the learning algorithms. The second

column corresponds to accuracy on the source domain (as reference only). The third

column shows accuracy on the target domain when class labels are available. The

next columns show accuracy on M33 when class labels are unavailable. The fourth

column (labeled Standard) shows results using the values listed in Table 2 of [74]. We

take into consideration that the apparent magnitudes of the OGLE LMC Cepheids

are not corrected for the average amount of interstellar dust towards this galaxy, while

[74] applies a correction for dust3. The fifth column (labeled ProposedMethod) shows

results when δ is determined using maximum likelihood based on density estimation

(Section 3.1).

Compared to previous work [74], we observe a significant increase in accuracy

when δ is computed using the proposed method; this is true for all learning algorithms

under consideration, which validates our proposed methodology. Furthermore, re-

sults for both show accuracies similar to those obtained on M33 when class labels are

present, evidencing how an appropriate shift in magnitude renders the model trained

on the source domain valid under the target domain. Our final estimation for δ for

visible band is -6.24.

Table 4.2 displays results similar to the ones describe above, but using the infrared

3For reference, the adjustment values derived in[74] are δ = -6.45 ± 0.02 for the visible band,
and -6.31 ± 0.02 for the infrared band.

52

Table 4.2: Classification Performance under Infrared Band. Numbers in parentheses
represent standard deviations. The last column corresponds to proposed methodol-
ogy.

Learning Accuracy on LMC Accuracy on M33 (target domain)
Algorithm (source domain) Cross Validation Standard Proposed Method

Neural 96.89 (0.16) 97.05 (0.14) 94.25 (2.45) 96.99 (0.81)∗

Networks
SVM 97.00 (0.17) 93.18 (0.26) 96.80 (0.15) 95.50 (1.11)
Polynomial 1
SVM 96.98 (0.17) 93.18 (0.26) 94.97 (0.58) 96.83 (0.79)∗

Polynomial 2
SVM 97.02 (0.17) 93.18 (0.26) 95.15 (0.82) 96.71 (0.78)∗

Polynomial 3
Decision 96.35 (0.17) 96.27 (0.17) 95.77 (0.49) 97.62 (1.08)∗

Trees
Random 96.47 (0.17) 95.78 (0.16) 95.62 (0.71) 96.86 (0.84)
Forest

band. Compared to previous work, we observe a general improvement in accuracy

when is computed using maximum likelihood, but the improvement is less clear. Our

final estimation for δ for infrared is -6.08 which is different from the one obtained

using the visible band, because the effects of reddening due to interstellar dust are

significantly reduced at infrared waves[78]. Overall, empirical results support our

proposed methodology.

We further compare our results with the existing domain adaptation algorithms

and present the results in Table 4.3 using the data only from the infrared band. It

can be expected that the results will be similar in the visible band. In this table , the

first column refers to the base learning algorithm. The rest of the columns show the

classification accuracy on M33(target) data when different models were used. The

second column refers to the classification accuracy when the model built on the source

53

Table 4.3: Comparison of Classification Performance under Infrared Band. Num-
bers in parentheses represent standard deviations.The last column corresponds to
proposed methodology.

Learning Accuracy on M33 (target domain)
Algorithm Source model KMM SA Proposed Method

Neural 92.70 (1.19) 92.93 76 96.99 (0.81)
Networks
SVM 92.70 (1.19) 92.93 78 95.50 (1.11)
Polynomial 1
SVM 92.70 (1.19) 92.93 77 96.83 (0.79)
Polynomial 2
SVM 92.70 (1.19) 92.93 75.33 96.71 (0.78)
Polynomial 3
Decision 92.90 (1.24) 94.28 77.67 97.62 (1.08)
Trees
Random 92.90 (1.24) 94.35 72 96.86 (0.84)
Forest

is directly used on the target. The third column shows the accuracy on M33 data

when we applied a well-known instance-based domain adaptation technique called

kernel mean matching. The fourth column shows the accuracy on M33 data when

we applied a well-known feature-based domain adaptation technique called subspace

alignment method.The fifth column shows the accuracy on M33 data when we used

our proposed method.

From this table we see that our proposed method achieves a higher accuracy

than the existing domain adaptation methods, thus eradicating the need of building

a new model on the target dataset and as a result decreasing the complexity of the

problem.

54

Table 4.4: Initial values and final parameter estimates for fitting a linear mixture
model on LMC source dataset

Paramter Initial value Final Value
β1 [-3.259 16.407]’ [−3.25916.407]′
β2 [-2.969 16.904]’ [−2.92916.889]′
α1 0.1 0.164
α2 0.1 0.214
π1 0.404 0.384
π2 0.596 0.606

4.1.3 Experimenting on Cepheid dataset with 2 features us-

ing Linear Mixture Model

We run experiment on the same datasets as we do in Section 4.1.2, but instead of

fitting the data into a Gaussian Mixture model, we fit the data into a mixture of

Linear model[80] with Gaussian Noise as described in following sections.

4.1.3.1 Fitting a Mixture of Linear Models

We use equation 3.8 as given in the section 3.2.1 to fit a mixture of linear models

to the source data. The two components refer to the two classes: Fundamental and

First-Overtone. We use the EM algorithm[79] to do parameter estimation. The EM

algorithm stops when the change in Q-value in the E-step falls below 10−10. Initial

values and final parameter estimates are shown in Table 4.4.

55

Table 4.5: Classification Accuracy of M33 Dataset by fitting it into Linear Mixture
Model with Gaussian noise.

Accuracy on M33 (target domain)
Algorithm No Data Alignment With Data Alignment

Neural 92.70 (1.19) 97.90 (0.89)
Networks
SVM 92.70 (1.19) 96.27 (0.86)
Polynomial 1
SVM 92.70 (1.19) 96.10 (0.80)
Polynomial 2
SVM 92.70 (1.19) 96.53 (0.88)
Polynomial 3
Decision 92.90 (1.24) 98.07 (0.83)
Trees
Random 92.90 (1.24) 98.03 (0.69)
Forest

4.1.3.2 Aligning M33 Data with LMC Data

We use the parameter values in Table 4.4 to find the shift between LMC and M33.

Solving equation 3.10 yields a value of δ=-6.06. After shifting M33 data by δ we

obtain the results shown in Table 4.5. Experimental results show how classification

accuracy increases significantly after the source and target datasets are aligned.

We present a summary of the classification errors on M33 dataset for our pro-

posed methods against the popular domain adaptation method, kernel mean match-

ing(KMM), in figure 4.2. We observe that except SVM Polynomial with degree 1,

all other base algorithms yield error lower than KMM as well as the standard shift

for both the proposed methods.

56

Figure 4.2: Summary of classification error (in percentage) of all the algorithms
with and without domain adaptation using different base learning algorithms.The
bar groups are in the following order : (1) ’Without DA’: using the source classifier
directly on the target (2) ’KMM(DA)’: Using Kernel Mean Matching (3) ’Standard
Shift’: using standard shift (4)’Proposed DA with GMM’: using proposed data align-
ment method using Gaussian Mixture Model (5) ’Proposed DA with LMM’: using
proposed data alignment method using Linear Mixture Model

4.1.4 Light Curve Feature Characterization

Most previous work in light curve classification deals with features useful over a

broad number of classes. As an example, identification of microlensing events re-

quires features that can discriminate among several variable sources such as peri-

odic variables, eruptive variables, and supernovae[70][71]. Typically, features are

extracted from spectral analysis, and can be specialized or generic; the latter in-

cludes statistical tests, coefficients from the Fourier transform, and auto-correlation

coefficients. In contrast, our study targets specialized geometric properties that serve

57

as better discriminators between the two types of pulsation mode in Cepheid vari-

able stars (fundamental and first-overtone). We employ five features out of which

three - PhaseShift, Depth, and Slope - are calculated by fitting a polynomial curve

along the points of one pulsation cycle. The other two features, MeanMagnitude

and LogPeriod, are directly available from the Optical Gravitational Lensing exper-

iment (Section 4).

Figure 4.3 shows our features along typical light curves for the two different

pulsation modes. PhaseShift is the phase at which the light curve shows its highest

magnitude (apparent brightness) in one phase cycle; Depth is equal to the difference

between the highest and lowest magnitudes in one complete pulsation cycle; Slope

is the angle of the line that connects the highest and lowest magnitudes. These

features point to stark differences in the geometric shape of light curves between the

two classes of interest, and thus appear more informative than other more typical

features.

4.1.5 Experimenting on Cepheids Dataset with 5 features

We use the same dataset as in Section 4.1.2 but with the additional three new pro-

posed features as mentioned in Section 4.1.4. As a pre-processing step, parameters

for the mixture of Gaussians on the source domain are estimated directly through

the data. We assume two Gaussians (one Gaussian for class fundamental and one for

overtone). Since class labels are available, it is straightforward to estimate means,

58

Figure 4.3: Features capture geometric properties of light curves that exhibit clear
differences between the two classes of interest.

covariance matrices and mixing proportions. Implementation of the learning algo-

rithms can be found in WEKA[77] using default parameters. Specifically, neural

networks are invoked with one hidden layer, two internal nodes, a learning rate of

0.3, momentum of 0.2, and 500 epochs. Support Vector Machines are invoked with

polynomial kernels of degrees 1, 2, and 3 respectively. Decision trees are invoked

with a confidence factor of 0.25. Random Forests combine 10 decision trees on each

run.

Our experiments compute predictive accuracy when the model obtained on LMC

(source domain) is applied to the transformed target sample (where a shift ∆ is added

to each feature vector, Section 3.1). Accuracy is obtained by creating bootstrap

samples of the target or test set(M33); each sample is generated by sampling with

59

Table 4.6: Classification Accuracy on M33 dataset with 5 Features with and without
alignment.

Learning Accuracy on M33 (target domain)
Algorithm No Data Alignment With Data Alignment

Using Magnitude Using All Features
Neural 91.82 (1.42) 91.82 (1.42) 92.76 (1.09)
Networks
SVM 91.82 (1.42) 91.82 (1.42) 95.21 (1.00)
Polynomial 1
SVM 91.82 (1.42) 91.82 (1.42) 95.42 (0.89)
Polynomial 2
SVM 91.82 (1.42) 91.82 (1.42) 94.91 (0.75)
Polynomial 3
Decision 91.64 (1.60) 91.64 (1.60) 93.79 (1.00)
Trees
Random 91.64 (1.42) 91.64 (1.42) 94.24 (0.89)
Forest

replacement. We generated 10 samples, and averaged our results after applying the

training model on each transformed sample. Table 4.6 shows our results. The first

column corresponds to the learning algorithms. The second column shows accuracy

values on M33 with no data alignment. The third and fourth columns show accuracy

on M33 with data alignment; we make a distinction between shifting along apparent

magnitude only vs shifting over all features4 (including our geometric features, section

4.1.4). Numbers in parentheses represent standard deviations.

Our results show a significant increase in accuracy when the data alignment step

is applied to the target sample, and all features are used during data alignment (p

= 0.05 level using a t-student distribution); this is true for all learning algorithms

4When shifting along all features we exclude the log period, as this is independent of the distance
to galaxies.

60

under consideration. There is also an advantage when data alignment is effected over

all features, as opposed to shifting along magnitude only, but the differences are not

always significant. The mean increase in accuracy over all learning algorithms with

M33 as the target domain is 0% when shifting along magnitude, but 2.57% when

shifting along all features. Overall our results show the effectiveness of the data

alignment step, and the geometric feature representation.

Additional observations can be drawn from Table 4.6. For example, accuracy

gain is more clear when using Neural Networks, Decision Trees, and SVMs with high

order polynomials; these algorithms tend to generate complex decision boundaries,

which suggests a relatively complex class distribution. In addition, it is interesting

to observe that the gain in accuracy between LMC and M33 is evident when shifting

along all features, but there is no accuracy gain when shifting along magnitude.

Table 4.7: Comparison of Classification Performance under Infrared Band. Num-
bers in parentheses represent standard deviations.The last column corresponds to
proposed methodology.

Learning Accuracy on M33 (target domain)
Algorithm Source model KMM SA Proposed Method

Neural 91.82 (1.42) 96.03 68 92.76 (1.09)
Networks
SVM 91.82 (1.42) 93.27 72 95.21 (1.00)
Polynomial 1
SVM 91.82 (1.42) 93.94 69.33 95.42 (0.89)
Polynomial 2
SVM 91.82 (1.42) 93.60 68.67 94.91 (0.75)
Polynomial 3
Decision 91.64 (1.60) 94.63 74.67 93.79(1.00)
Trees
Random 91.94 (1.42) 94.28 68.33 94.24 (0.89)
Forest

61

We show the classification error in percentage on M33 dataset with 5 features

using source model, KMM and our proposed method in figure 4.4. We also include

the error when KMM is used after aligning the target data with the source data

using our proposed method.

Figure 4.4: Summary of classification error (in percentage) of algorithms with and
without domain adaptation using different base learning algorithms.The bar groups
are in the following order : (1) ’Without DA’: using the source classifier directly on
the target (2) ’KMM(DA)’: Using Kernel Mean Matching (3) ’Proposed DA with
GMM’: using proposed data alignment method using Gaussian Mixture Model (4)
’KMM(DA) with proposed shift’: using proposed data alignment method and then
using KMM on shifted data

Similar to Table 4.3, we further compare our results with the existing domain

adaptation algorithms and present the results in Table 4.7 using the data only from

the infrared band. In this table, the first column refers to the base learning algorithm.

The rest of the columns show the classification accuracy on M33(target) data when

62

different models were used. The second column refers to the classification accuracy

when the model built on the source is directly used on the target. The third column

shows the accuracy on M33 data when we applied a well KMM. The fourth column

shows the accuracy on M33 data when we apply subspace alignment method. The

fifth column shows the accuracy on M33 data when we used our proposed method.

We use the same methods on two other pairs of datasets. Like the previous pair

LMC as the source and M33 as the source, we use data from Small Magellanic Clouds

(SMC) as the source and M33 as the target and apply our proposed method. We

show the results in Table 4.8. For 2 features we get δ=-5.70 for the SMC-M33 pair.

As SMC is very close to LMC and show similar characteristics, we do not shift SMC

against LMC with 2 features. We use our domain alignment method on the pair

LMC and SMC only with 5 features, taking LMC as the source and SMC as the

target. We present the results in Table 4.9

63

Table 4.8: Classification Performance under Infrared Band using SMC as the source
dataset. Numbers in parentheses represent standard deviations.

Accuracy on M33 (target domain)
Learning Using 2 Features Using 5 Features
Algorithm Source model Proposed Method Source model Proposed Method

Neural 92.00 (0.28) 98.00 (0.13) 92.33 (0.28) 91.00 (0.29)
Networks
SVM 92.00 (0.28) 98.00 (0.14) 92.33 (0.28) 91.33 (0.29)
Polynomial 1
SVM 92.00 (0.28) 97.33 (0.16) 92.67 (0.27) 94.00 (0.24)
Polynomial 2
SVM 92.00 (0.28) 97.67 (0.15) 92.33 (0.28) 94.00 (0.24)
Polynomial 3
Decision 92.00 (0.28) 97.00 (0.17) 91.67 (0.29) 94.00 (0.24)
Trees
Random 92.00 (0.28) 97.67 (0.15) 92.67 (0.26) 94.67 (0.21)
Forest

Table 4.9: Classification Performance under Infrared Band using LMC as the source

dataset and SMC as the target dataset. Numbers in parentheses represent standard

deviations.

Accuracy on SMC (target domain)

Learning Using 5 Features

Algorithm Source model Proposed Method

Neural Networks 91.31(0.29) 99.41(0.17)

SVM Polynomial 1 98.01(0.19) 98.67(0.19)

SVM Polynomial 2 97.42(0.10) 98.96(0.19)

SVM Polynomial 3 97.95(0.10) 99.18(0.18)

Decision Trees 96.58(0.27) 91.64(1.60)

Random Forest 98.23(0.22) 99.21(0.25)

64

We show the classification error of cross validation on all three datasets in figure

consisting of 2 features and 5 features , thus proving the effectiveness of using three

proposed features. We show the classification error on M33 dataset using SMC as the

source dataset with 2 features and 5 features in figure 4.6 and figure 4.7 respectively.

We also show the classification error on SMC dataset using LMC as the source dataset

with 5 features in figure 4.8.

Figure 4.5: Classification error (in percentage) of algorithms on all three datasets :
LMC, M33 and SMC.The bar groups are in the following order : (1) and (2) Error
on LMC dataset having 2 features vs 5 features (3) and (4) Error on M33 dataset
having 2 features vs 5 features (5) and (6) Error on SMC dataset having 2 features
vs 5 features

65

Figure 4.6: Classification error (in percentage) of algorithms on M33 dataset with 2
Features. The bar groups are in the following order : (1) Error using source model
directly on target without domain adaptation (2)Error using domain adaptation
algorithm kernel mean matching (3) Using proposed algorithm with gaussian Mixture
model

4.2 Experiments For Novel Domain Adaptation

using Active Learning

In this section we present the experimental results for the novel domain adaptation

method using active learning as described in 3.3.

66

Figure 4.7: Classification error (in percentage) of algorithms on M33 dataset on 5
features. The bar groups are in the following order : (1) Error using source model
directly on target without domain adaptation (2)Error using domain adaptation al-
gorithm kernel mean matching (3) Using proposed algorithm with Gaussian Mixture
model

4.2.1 Supernova and Landmine Datasets

4.2.1.1 Supernova Datasets

The supernova datasets used in this research have been provided by Supernova Pho-

tometric Classification Challenge [83]. It is a simulated dataset but at par with

the expected real world dataset. It consists of supernova light curves simulated ac-

cording to Dark Energy Survey specifications with the help of SNANA light curve

simulator[84]. The dataset has been divided into training set and test set which we

treat as our source and target datasets respectively. The source dataset consists of

67

Figure 4.8: Classification error (in percentage) of algorithms on SMC dataset on 5
features. The bar groups are in the following order : (1) Error using source model
directly on target without domain adaptation (2)Error using domain adaptation al-
gorithm kernel mean matching (3) Using proposed algorithm with Gaussian Mixture
model

718 light curves obtained using spectroscopic method, whereas the target dataset

consists of 11946 photometric samples. The three classes of this dataset are super-

nova Type Ia, Ib and Ic. We use these datasets to classify supernova Type Ia versus

the other two classes, Type Ib and Type Ic. The number of features in the original

dataset is 108. However we used a low dimensional versions of the original dataset.

The original data is reduced using Kernel Principal Component Analysis[86] to 20

features for 2-class classification problem.

68

4.2.1.2 Landmine Datasets

The landmine datasets that have been used are referred in [85]. There are 29 datasets

each of which consists data from different mine fields. Each instance in the dataset

has 9 features extracted from the radar images of the mine fields and belong to either

of the classes 0 or 1. Here 1 represents the presence of landmine and 0 denotes its

absence. The goal is to build a classifier to detect the landmines(class-1) from the

clutter(class-0).

Among these 29 data sets, datasets 1 to 15 correspond to regions that are rel-

atively highly foliated and datasets 16 to 29 correspond to regions that are bare

earth or desert. Thus they are suitable for being used as domain adaptation meth-

ods. However all of them are unbalanced datasets. So, for our research we combine

datasets 1 to 5 to produce our source dataset and use dataset 24 as our test dataset.

4.2.2 Estimating the Prior of θ using Domain Adaptation

To determine the prior of the parameter θ as described in section 3.3.2, 100 bootstrap

samples of the source dataset were generated by uniform random sampling without

replacement. Each sample contained 80% of the original dataset. In our experiments,

θ refers to the number of hidden nodes of a neural network. We build models using

neural network on each of the sampled datasets using a range of values of θ starting

from 2 to 50. We obtain the values for θ for which we get the highest accuracy on

each of the sample dataset. Figure 4.9 and 4.10 shows the histogram and the prior

69

distribution of θ for Supernova 2-class and Landmine source datasets.

Figure 4.9: The histogram and and the prior distribution of θ for Supernova 2-class
source dataset. Here θ refers to the number of hidden nodes of a neural network

The mean of the distribution denoted by µtr gives the optimal value θ∗tr of the

parameter θ in the source. From our experiments, we obtain µtr=33.75 and σtr = 9.35

for the Supernova source dataset, and µtr=23.59 and σtr = 13.58 for the Landmine

70

Figure 4.10: The histogram and and the prior distribution of θ for Landmine source
dataset. Here θ refers to the number of hidden nodes of a neural network

71

source dataset. Here σtr refers to the standard deviation of the prior distribution.

4.2.3 Estimating the Likelihood of θ using Active learning

We use θ∗tr obtained from the prior distribution to build models on the target dataset

during active learning. We divide the target randomly in two parts: a pool of target

instances, from which data will be queried, and a test set which will be unknown

to the learning phase. For Supernova dataset the pool and the test dataset were

of equal size, whereas the size of the pool of Landmine target dataset was 300 and

the rest represented the test dataset. We generated 10 such pair of pools and test

datasets from both the Supernova target dataset and the Landmine target datasets.

We limit our budget to a minimum of 50 queries and increase it till 2000 for the

Supernova target dataset.For Landmine dataset we limit our budget to a minimum

of 50 queries and increase it till we use the entire pool of 300 instances.

After the active learning method stops, we build a model on the queried examples

for each of the values of θte where θ∗tr-σte ≤ θte ≤ θ∗tr+σte, where σte=σtr. For the

Supernova 2-class dataset the value of θte varied from 24 to 43. For Landmine target

dataset the value of θte varied from 10 to 37. We calculated the in-sample error

Ein for each of the values of θte and thus calculated the likelihood of θte using the

equation 3.17.

72

4.2.4 Estimating the Posterior of θ and Building the final

model

We calculate the product of prior obtained in the section 4.2.2 and likelihood obtained

in the section 4.2.3 to determine the best posterior probability of the parameter θ

to get the optimal value θ∗te. We then use θ∗te to build the optimal model f(x|θ∗te) on

the target domain. We present our results in the tables 4.10, 4.11, 4.12 and 4.13.

Table 4.10: Classification Accuracy on Supernova 2-class dataset using our proposed
method of domain adaptation using active learning.Here we used θ∗tr =33

Maximum Accuracy on Supernova 2-class target dataset
Cost Using Prior Using Posterior Using Posterior

[θ = 33] [θ ± 1σ] [θ ± 0.5σ]
50 80.91 (0.66) 82.11 (0.31) 82.27 (0.45)
100 85.08 (0.55) 86.17 (0.35) 86.10 (0.37)
200 88.76 (0.37) 89.35 (0.37) 89.42 (0.37)
500 92.28 (0.18) 92.49 (0.18) 92.51 (0.19)
1000 93.41 (0.17) 93.57 (0.19) 93.57 (0.20)
2000 93.75 (0.22) 93.81 (0.22) 93.81 (0.23)

Table 4.11: Classification Accuracy on Supernova 2-class dataset using our proposed
method of domain adaptation using active learning.Here we used θ∗tr =34

Maximum Accuracy on Supernova 2-class target dataset
Cost Using Prior Using Posterior Using Posterior

[θ = 34] [θ ± 1σ] [θ ± 0.5σ]
50 80.97 (1.17) 82.22 (0.89) 82.32 (0.75)
100 85.21 (0.29) 86.24 (0.37) 86.18 (0.32)
200 88.94 (0.25) 89.53 (0.27) 89.48 (0.20)
500 92.29 (0.16) 92.54 (0.17) 92.56 (0.19)
1000 93.48 (0.27) 93.59 (0.24) 93.60 (0.23)
2000 93.73 (0.22) 93.82 (0.21) 93.80 (0.23)

The first column in these tables refers to the maximum cost(or budget) assigned

73

Table 4.12: Classification Accuracy on Landmine dataset using our proposed method
of domain adaptation using active learning.Here we used θ∗tr =23

Maximum Accuracy on Landmine target dataset
Cost Using Prior Using Posterior Using Posterior

[θ = 23] [θ ± 1σ] [θ ± 0.5σ]
50 90.92 (2.11) 91.13 (1.82) 90.79 (1.86)
100 91.88 (1.58) 91.99 (1.60) 91.80 (1.70)
150 92.30 (1.42) 92.40 (1.61) 92.39 (1.52)
200 92.69 (1.20) 92.80 (1.31) 92.78 (1.22)
250 93.06 (1.03) 93.12 (1.13) 93.12(1.07)
300 93.17 (1.08) 93.31 (1.03) 93.24 (1.06)

to the active learning method. The second column shows the classification accuracy

of the target dataset using the best prior θ∗tr. As θ∗tr = 33.75 for Supernova 2-class

source dataset, we show results for both θtr = 33 and θtr = 34 in tables 4.10 and 4.11

respectively. Similarly for landmine dataset we show results for θtr = 23 and θtr = 24

in tables 4.12 and 4.13, since θ∗tr = 23.59 for Landmine source dataset. The third and

fourth column corresponds to the accuracy on the target dataset using the proposed

method as described in 3.3. The third column refers to the experiment when we

use θ∗tr-σte ≤ θte ≤ θ∗tr+σte and the fourth column refers to the experiment where we

use θ∗tr-0.5σ ≤ θte ≤ θ∗tr+0.5σ.We show the classification errors on Supernova and

Landmine datasets in figures 4.11, 4.12, 4.13 and 4.14.

From these results we observe that using posterior probability of θte yields better

classification accuracy on the target dataset than using the best prior θ∗tr. We can also

observe that even if we use half of the number of θte values to calculate the likelihood,

we will still achieve a better accuracy than using the prior θ∗tr. This leads us to an

important conclusion: if the standard deviation σtr of the prior distribution Ptr(θ)

74

Table 4.13: Classification Accuracy on Landmine target dataset using our proposed
method of domain adaptation using active learning.Here we used θ∗tr =24

Maximum Accuracy on Landmine target dataset
Cost Using Prior Using Posterior Using Posterior

[θ = 24] [θ ± 1σ] [θ ± 0.5σ]
50 90.09 (2.59) 90.73 (1.97) 90.57 (2.06)
100 91.04 (1.60) 91.89 (1.58) 91.91 (1.72)
150 90.84 (1.58) 92.36 (1.72) 92.51 (1.56)
200 92.55 (1.52) 92.81 (1.19) 92.77 (1.29)
250 92.64 (1.10) 93.08(1.09) 93.11 (1.10)
300 92.71 (1.47) 93.26 (1.04) 93.27 (1.04)

is high, we can simple use the values of θte that lies within half a standard deviation

of θ∗tr. This will reduce the time and complexity of the algorithm considerably.

As the method is independent of the covariate shift assumption, it is very likely

that this method will also work for datasets that show a covariate shift. Also, as

the parameter θ is user defined, it can be chosen as per the requirement of the

experiment. Thus we can conclude that our proposed method is most likely to yield

better results in most scenarios of domain adaptation.

75

Figure 4.11: Classification error (in percentage) on Supernova 2-class dataset using
prior θte=θ

∗
tr=33 and posterior θ∗tr-σ ≤ θte ≤ θ∗tr+σ

Figure 4.12: Classification error (in percentage) on Supernova 2-class dataset using
prior θte=θ

∗
tr=34 and posterior θ∗tr-σ ≤ θte ≤ θ∗tr+σ

76

Figure 4.13: Classification error (in percentage) on Landmine dataset using prior
θte=θ

∗
tr=23 and posterior θ∗tr-σ ≤ θte ≤ θ∗tr+σ

Figure 4.14: Classification error (in percentage) on Landmine dataset using prior
θte=θ

∗
tr=24 and posterior θ∗tr-σ ≤ θte ≤ θ∗tr+σ

77

Chapter 5

Conclusion and Future Work

5.1 Summary of Contributions

In this research we present two novel methods of domain adaptation. The first

method is a new data-alignment method that can be applied to scenarios where the

marginal distributions of the training and testing datasets differ by a linear shift.

The second method that we proposed is more general in nature as it can be applied

to all pairs of training and testing datasets whose marginal distributions are different

irrespective of whether they have a covariate shift or not. However in this case we

assume that the priors of the parameters of the models remain the same across the

training(source) and testing(target) domains.

78

5.2 Conclusions and Limitations

From our experiments, we can conclude that our proposed data-alignment method,

as described in 3.1, produces better classification accuracy than methods that use

data without any alignment. We see that this method is well suited to classify the

same type of stars across different galaxies. We also see that this method works

better than the standard shift. The method is not only restricted to astronomy

domain - it can be used in any other domains as well. One of the advantages of

this method is that the source model can be directly used, removing the need of

building a completely new model on the target domain. But the algorithm suffers

from a limitation that the co-variate shift assumption must hold between the source

and the target datasets and the change in prior distributions must be due to a linear

shift, which restricts its usage to only certain types of datasets.

On the other hand, the domain adaptation method that uses active learning,

as described in section 3.3, without building a model using the source instances or

features directly, is much more general in nature and is more likely to yield optimal

classifier on the target dataset in any domain adaptation scenarios. This method

has a much broader scope of application and is not limited by the budget cost or

the complexity of the model. Its only limitation is the number of executions needed

in the experiment. One way to reduce this overhead is to restrict running the ex-

periments with less number of parameter values both on source and on target based

on the number of features of the dataset and the standard deviation of the marginal

distribution of the parameter in question. This method can easily be incorporated

79

with any active learning algorithms combined with any domain adaptation scenarios.

5.3 Future work

Both of the methods proposed here can be expanded further to achieve better per-

formance in complex scenarios. One way can be to use active learning with the data

alignment method to detect the shift using very limited number of queries from the

target dataset. Also the data alignment method can be used to classify the Cepheid

stars across various other galaxies. Another future work may be to use this method

to classify other type of starts whose light curves show similar properties.

In our research we used only one parameter for the second method. This can

be expanded to a problem that searches for the optimal combination of values for

a set of parameters. Also the method can be extended to other classes of models

with a different set of parameters. Another aspect is to estimate an optimal range

of the parameters both on source and target. Last but not he least, one direction

of research will be to estimate the impact of the parameters on the classification

accuracy.

80

Bibliography

[1] Ben-David, Shai, John Blitzer, Koby Crammer, and Fernando Pereira. “Anal-
ysis of representations for domain adaptation.” Advances in neural information
processing systems 19 (2007): 137.

[2] Ben-David, Shai, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira,
and Jennifer Wortman Vaughan. “A theory of learning from different domains.”
Machine learning 79, no. 1-2 (2010): 151-175.

[3] Quionero-Candela, Joaquin, Masashi Sugiyama, Anton Schwaighofer, and Neil
D. Lawrence. Dataset shift in machine learning. The MIT Press, 2009.

[4] Blitzer, John, and Hal Daume III. Domain Adaptation, Tutorial.International
conference in machine learning, 2010.

[5] Settles, Burr. “Active learning.” Synthesis Lectures on Artificial Intelligence and
Machine Learning 6, no. 1 (2012): 1-114.

[6] Shimodaira, Hidetoshi. “Improving predictive inference under covariate shift by
weighting the log-likelihood function.” Journal of statistical planning and infer-
ence 90, no. 2 (2000): 227-244.

[7] Bickel, Steffen, Michael Brckner, and Tobias Scheffer. “Discriminative learning for
differing training and test distributions.” In Proceedings of the 24th international
conference on Machine learning, pp. 81-88. ACM, 2007.

[8] Pan, Sinno Jialin, and Qiang Yang. “A survey on transfer learning.” IEEE Trans-
actions on knowledge and data engineering 22, no. 10 (2010): 1345-1359.

[9] Sugiyama, Masashi, Shinichi Nakajima, Hisashi Kashima, Paul V. Buenau, and
Motoaki Kawanabe. “Direct importance estimation with model selection and its
application to covariate shift adaptation.” In Advances in neural information
processing systems, pp. 1433-1440. 2008.

81

[10] Huang, Jiayuan, Arthur Gretton, Karsten M. Borgwardt, Bernhard Schlkopf,
and Alex J. Smola. “Correcting sample selection bias by unlabeled data.” In
Advances in neural information processing systems, pp. 601-608. 2006.

[11] Gretton, Arthur, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten
Borgwardt, and Bernhard Schlkopf. “Covariate shift by kernel mean matching.”
Dataset shift in machine learning 3, no. 4 (2009): 5.

[12] Saenko, Kate, Brian Kulis, Mario Fritz, and Trevor Darrell. “Adapting visual
category models to new domains.” In European conference on computer vision,
pp. 213-226. Springer Berlin Heidelberg, 2010.

[13] Kulis, Brian, Kate Saenko, and Trevor Darrell. “What you saw is not what
you get: Domain adaptation using asymmetric kernel transforms.” In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 1785-
1792. IEEE, 2011.

[14] Blitzer, John, Ryan McDonald, and Fernando Pereira. “Domain adaptation with
structural correspondence learning.” In Proceedings of the 2006 conference on
empirical methods in natural language processing, pp. 120-128. Association for
Computational Linguistics, 2006.

[15] Fernando, Basura, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. “Un-
supervised visual domain adaptation using subspace alignment.” In Proceedings
of the IEEE International Conference on Computer Vision, pp. 2960-2967. 2013.

[16] Bruzzone, Lorenzo, and Mattia Marconcini. “Domain adaptation problems: A
DASVM classification technique and a circular validation strategy.” IEEE trans-
actions on pattern analysis and machine intelligence 32, no. 5 (2010): 770-787.

[17] Vilalta, Ricardo, Kinjal Dhar Gupta, and Lucas Macri. “A machine learning ap-
proach to Cepheid variable star classification using data alignment and maximum
likelihood.” Astronomy and Computing 2 (2013): 46-53.

[18] Vilalta, Ricardo, Kinjal Dhar Gupta, and Lucas Macri. “Domain Adaptation
under Data Misalignment: An Application to Cepheid Variable Star Classifica-
tion.” In ICPR, pp. 3660-3665. 2014.

[19] Vilalta, Ricardo, Kinjal Dhar Gupta, and Ashish Mahabal. “Star Classifica-
tion Under Data Variability: An Emerging Challenge in Astroinformatics.” In
Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 241-244. Springer International Publishing, 2015.

82

[20] Ando, Rie Kubota, and Tong Zhang. “A framework for learning predictive struc-
tures from multiple tasks and unlabeled data.” Journal of Machine Learning Re-
search 6, no. Nov (2005): 1817-1853.

[21] Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. “Domain adaptation for
large-scale sentiment classification: A deep learning approach.” In Proceedings of
the 28th International Conference on Machine Learning (ICML-11), pp. 513-520.
2011.

[22] Blitzer, John, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer
Wortman. “Learning bounds for domain adaptation.” In Advances in neural in-
formation processing systems, pp. 129-136. 2008.

[23] Argyriou, Andreas, Massimiliano Pontil, Yiming Ying, and Charles A. Mic-
chelli. “A spectral regularization framework for multi-task structure learning.”
In Advances in neural information processing systems, pp. 25-32. 2007.

[24] Chen, Minmin, Kilian Q. Weinberger, and John Blitzer. “Co-training for domain
adaptation.” In Advances in neural information processing systems, pp. 2456-
2464. 2011..

[25] Mansour, Yishay, Mehryar Mohri, and Afshin Rostamizadeh. “Domain adapta-
tion with multiple sources.” In Advances in neural information processing sys-
tems, pp. 1041-1048. 2009.

[26] Kumar, Abhishek, Avishek Saha, and Hal Daume. “Co-regularization based
semi-supervised domain adaptation.” In Advances in neural information process-
ing systems, pp. 478-486. 2010.

[27] Lewis, David D., and William A. Gale. “A sequential algorithm for training text
classifiers.” In Proceedings of the 17th annual international ACM SIGIR confer-
ence on Research and development in information retrieval, pp. 3-12. Springer-
Verlag New York, Inc., 1994.

[28] Lewis, David D., and Jason Catlett. “Heterogeneous uncertainty sampling for
supervised learning.” In Proceedings of the eleventh international conference on
machine learning, pp. 148-156. 1994.

[29] Scheffer, Tobias, Christian Decomain, and Stefan Wrobel. “Active hidden
markov models for information extraction.” In International Symposium on In-
telligent Data Analysis, pp. 309-318. Springer Berlin Heidelberg, 2001.

83

[30] Japkowicz, Nathalie, and Shaju Stephen. “The class imbalance problem: A
systematic study.” Intelligent data analysis 6, no. 5 (2002): 429-449.

[31] Lin, Yi, Yoonkyung Lee, and Grace Wahba. “Support v ector machines for
classification in nonstandard situations.” Machine learning 46, no. 1-3 (2002):
191-202.

[32] Kubat, Miroslav, and Stan Matwin. ”Addressing the curse of imbalanced train-
ing sets: one-sided selection.” In ICML, vol. 97, pp. 179-186. 1997.

[33] Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. “SMOTE: synthetic minority over-sampling technique.” Journal of
artificial intelligence research 16 (2002): 321-357.

[34] Zhu, Jingbo, and Eduard H. Hovy. “Active Learning for Word Sense Dis-
ambiguation with Methods for Addressing the Class Imbalance Problem.” In
EMNLP-CoNLL, vol. 7, pp. 783-790. 2007.

[35] Chan, Yee Seng, and Hwee Tou Ng. “Estimating class priors in domain adap-
tation for word sense disambiguation.” In Proceedings of the 21st International
Conference on Computational Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, pp. 89-96. Association for Computa-
tional Linguistics, 2006.

[36] Chan, Yee Seng, and Hwee Tou Ng. “Word Sense Disambiguation with Distri-
bution Estimation.” In IJCAI, vol. 5, pp. 1010-5. 2005.

[37] Jiang, Jing. “A literature survey on domain adaptation of statistical classifiers.”
URL: http://sifaka. cs. uiuc. edu/jiang4/domainadaptation/survey (2008).

[38] Satpal, Sandeepkumar, and Sunita Sarawagi. “Domain adaptation of conditional
probability models via feature subsetting.” In European Conference on Principles
of Data Mining and Knowledge Discovery, pp. 224-235. Springer Berlin Heidel-
berg, 2007.

[39] Daum III, Hal. “Frustratingly easy domain adaptation.” arXiv preprint
arXiv:0907.1815 (2009).

[40] Angluin, Dana. “Queries and concept learning.” Machine learning 2, no. 4
(1988): 319-342.

[41] Cohn, David A., Zoubin Ghahramani, and Michael I. Jordan. “Active learning
with statistical models.” Journal of artificial intelligence research (1996).

84

[42] Settles, Burr. “Active learning literature survey.” University of Wisconsin, Madi-
son 52, no. 55-66 (2010): 11.

[43] King, Ross D., Kenneth E. Whelan, Ffion M. Jones, Philip GK Reiser, Christo-
pher H. Bryant, Stephen H. Muggleton, Douglas B. Kell, and Stephen G. Oliver.
“Functional genomic hypothesis generation and experimentation by a robot sci-
entist.” Nature 427, no. 6971 (2004): 247-252.

[44] Atlas, Les E., David A. Cohn, Richard E. Ladner, Mohamed A. El-Sharkawi,
Robert J. Marks, M. E. Aggoune, and D. C. Park. “Training Connectionist Net-
works with Queries and Selective Sampling.” In NIPS, pp. 566-573. 1989.

[45] Cohn, David, Les Atlas, and Richard Ladner. “Improving generalization with
active learning.” Machine learning 15, no. 2 (1994): 201-221.

[46] Dagan, Ido, and Sean P. Engelson. “Committee-based sampling for training
probabilistic classifiers.” In Proceedings of the Twelfth International Conference
on Machine Learning, pp. 150-157. The Morgan Kaufmann series in machine
learning,(San Francisco, CA, USA), 1995.

[47] Krishnamurthy, Vikram. “Algorithms for optimal scheduling and management
of hidden Markov model sensors.” IEEE Transactions on Signal Processing 50,
no. 6 (2002): 1382-1397.

[48] Yu, Hwanjo. “SVM selective sampling for ranking with application to data re-
trieval.” In Proceedings of the eleventh ACM SIGKDD international conference
on Knowledge discovery in data mining, pp. 354-363. ACM, 2005.

[49] Fujii, Atsushi, Takenobu Tokunaga, Kentaro Inui, and Hozumi Tanaka. “Se-
lective sampling for example-based word sense disambiguation.” Computational
Linguistics 24, no. 4 (1998): 573-597.

[50] McCallumzy, Andrew Kachites, and Kamal Nigamy. “Employing EM and pool-
based active learning for text classification.” In Proc. International Conference
on Machine Learning (ICML), pp. 359-367. 1998.

[51] Tong, Simon, and Daphne Koller. “Support vector machine active learning with
applications to text classification.” Journal of machine learning research 2, no.
Nov (2001): 45-66.

[52] Hoi, Steven CH, Rong Jin, and Michael R. Lyu. “Large-scale text categoriza-
tion by batch mode active learning.” In Proceedings of the 15th international
conference on World Wide Web, pp. 633-642. ACM, 2006.

85

[53] Thompson, Cynthia A., Mary Elaine Califf, and Raymond J. Mooney. “Active
learning for natural language parsing and information extraction.” In ICML, pp.
406-414. 1999.

[54] Settles, Burr, and Mark Craven. “An analysis of active learning strategies for
sequence labeling tasks.” In Proceedings of the conference on empirical methods
in natural language processing, pp. 1070-1079. Association for Computational
Linguistics, 2008.

[55] Zhang, Cha, and Tsuhan Chen. “An active learning framework for content-
based information retrieval.” IEEE transactions on multimedia 4, no. 2 (2002):
260-268.

[56] Yan, Rong, Jie Yang, and Alexander Hauptmann. “Automatically labeling video
data using multi-class active learning.” In Computer Vision, 2003. Proceedings.
Ninth IEEE International Conference on, pp. 516-523. IEEE, 2003.

[57] Hauptmann, Alexander G., Wei-Hao Lin, Rong Yan, Jun Yang, and Ming-Yu
Chen. “Extreme video retrieval: joint maximization of human and computer
performance.” In Proceedings of the 14th ACM international conference on Mul-
timedia, pp. 385-394. ACM, 2006.

[58] Tur, Gokhan, Dilek Hakkani-Tr, and Robert E. Schapire. “Combining active
and semi-supervised learning for spoken language understanding.” Speech Com-
munication 45, no. 2 (2005): 171-186.

[59] Liu, Ying. “Active learning with support vector machine applied to gene expres-
sion data for cancer classification.” Journal of chemical information and computer
sciences 44, no. 6 (2004): 1936-1941.

[60] Shannon, Claude Elwood. “A mathematical theory of communication.” ACM
SIGMOBILE Mobile Computing and Communications Review 5, no. 1 (2001):
3-55.

[61] Seung, H. Sebastian, Manfred Opper, and Haim Sompolinsky. “Query by com-
mittee.” In Proceedings of the fifth annual workshop on Computational learning
theory, pp. 287-294. ACM, 1992.

[62] Settles, Burr, Mark Craven, and Soumya Ray. “Multiple-instance active learn-
ing.” In Advances in neural information processing systems, pp. 1289-1296. 2008.

86

[63] Roy, Nicholas, and Andrew McCallum. “Toward optimal active learning through
monte carlo estimation of error reduction.” ICML, Williamstown (2001): 441-448.

[64] Li, Shoushan, Yunxia Xue, Zhongqing Wang, and Guodong Zhou. “Active
Learning for Cross-domain Sentiment Classification.” In IJCAI. 2013.

[65] Persello, Claudio, and Lorenzo Bruzzone. “Active learning for domain adapta-
tion in the supervised classification of remote sensing images.” IEEE Transactions
on Geoscience and Remote Sensing 50, no. 11 (2012): 4468-4483.

[66] Saha, Avishek, Piyush Rai, Hal Daum III, Suresh Venkatasubramanian, and
Scott L. DuVall. “Active supervised domain adaptation.” In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases, pp. 97-112.
Springer Berlin Heidelberg, 2011.

[67] Rai, Piyush, Avishek Saha, Hal Daum III, and Suresh Venkatasubramanian.
“Domain adaptation meets active learning.” In Proceedings of the NAACL HLT
2010 Workshop on Active Learning for Natural Language Processing, pp. 27-32.
Association for Computational Linguistics, 2010.

[68] Cox, John P. “Theory of stellar pulsation.” (1980).

[69] Persson, S. E., Barry F. Madore, W. Krzemiski, Wendy L. Freedman, M. Roth,
and D. C. Murphy. “New Cepheid period-luminosity relations for the Large Mag-
ellanic Cloud: 92 near-infrared light curves.” The Astronomical Journal 128, no.
5 (2004): 2239.

[70] Belokurov, Vasily, N. Wyn Evans, and Yann Le Du. “Light-curve classifica-
tion in massive variability surveysI. Microlensing.” Monthly Notices of the Royal
Astronomical Society 341, no. 4 (2003): 1373-1384.

[71] Belokurov, Vasily, N. Wyn Evans, and Yann Le Du. “Light-curve classification
in massive variability surveysII. Transients towards the Large Magellanic Cloud.”
Monthly Notices of the Royal Astronomical Society 352, no. 1 (2004): 233-242.

[72] Udalski, A. “The Optical Gravitational Lensing Experiment (OGLE): Bohdan’s
and Our Great Adventure.” In The Variable Universe: A Celebration of Bohdan
Paczynski, vol. 403, p. 110. 2009.

[73] Soszynski, I., R. Poleski, A. Udalski, M. K. Szymanski, M. Kubiak, G. Pietrzyn-
ski, L. Wyrzykowski, O. Szewczyk, and K. Ulaczyk. “The optical gravitational
lensing experiment. the ogle-iii catalog of variable stars. i. classical cepheids in
the large magellanic cloud.” arXiv preprint arXiv:0808.2210 (2008).

87

[74] Pellerin, Anne, and Lucas M. Macri. “The M 33 Synoptic Stellar Survey. I.
Cepheid Variables.” The Astrophysical Journal Supplement Series 193, no. 2
(2011): 26.

[75] Stanek, K. Z., J. Kaluzny, M. Krockenberger, D. D. Sasselov, J. L. Tonry, and
M. Mateo. “DIRECT Distances to Nearby Galaxies Using Detached Eclipsing
Binaries and Cepheids. II. Variables in the Field M31ABased on observations
collected at the Michigan-Dartmouth-MIT Observatory 1.3 m telescope and at
the FL Whipple Observatory 1.2 m telescope.” The Astronomical Journal 115,
no. 5 (1998): 1894.

[76] Macri, L. M., K. Z. Stanek, D. D. Sasselov, M. Krockenberger, and J. Kaluzny.
“DIRECT Distances to Nearby Galaxies Using Detached Eclipsing Binaries and
Cepheids. VI. Variables in the Central Part of M33Based on observations col-
lected at the Fred L. Whipple Observatory 1.2 m telescope and at the Michigan-
Dartmouth-MIT 1.3 m telescope.” The Astronomical Journal 121, no. 2 (2001):
870.

[77] Hall, Mark, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. “The WEKA data mining software: an update.” ACM
SIGKDD explorations newsletter 11, no. 1 (2009): 10-18.

[78] Madore, Barry F., and Wendy L. Freedman. “The Cepheid distance scale.”
Publications of the Astronomical Society of the Pacific 103, no. 667 (1991): 933.

[79] Faria, Susana, and Gilda Soromenho. “Fitting mixtures of linear regressions.”
Journal of Statistical Computation and Simulation 80, no. 2 (2010): 201-225.

[80] Gupta, Kinjal Dhar, Ricardo Vilalta, Vicken Asadourian, and Lucas Macri.
“Adapting Predictive Models for Cepheid Variable Star Classification Using Lin-
ear Regression and Maximum Likelihood.” Proceedings of the International As-
tronomical Union 10, no. S306 (2014): 319-321.

[81] Bartlett, Peter L., and Wolfgang Maass. “Vapnik Chervonenkis Dimension of
Neural Nets.” The handbook of brain theory and neural networks (2003): 1188-
1192.

[82] Abu-Mostafa, Yaser S., Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning
from data. Vol. 4. Singapore: AMLBook, 2012.

88

[83] Kessler, Richard, Alex Conley, Saurabh Jha, and Stephen Kuhlmann. “Su-
pernova Photometric Classification Challenge.” arXiv preprint arXiv:1001.5210
(2010).

[84] Ishida, Emille EO, and Rafael S. de Souza. “Kernel PCA for Type Ia supernovae
photometric classification.” Monthly Notices of the Royal Astronomical Society
430, no. 1 (2013): 509-532.

[85] Xue, Ya, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram. “Multi-
task learning for classification with Dirichlet process priors.” Journal of Machine
Learning Research 8, no. Jan (2007): 35-63.

[86] Schlkopf, Bernhard, Alexander Smola, and Klaus-Robert Mller. “Kernel princi-
pal component analysis.” In International Conference on Artificial Neural Net-
works, pp. 583-588. Springer Berlin Heidelberg, 1997.

89

