
MULTIDIMENSIONAL AGGREGATIONS IN PARALLEL

DATABASE SYSTEMS

A Dissertation Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Yiqun Zhang

December 2017

MULTIDIMENSIONAL AGGREGATIONS IN PARALLEL

DATABASE SYSTEMS

Yiqun Zhang

APPROVED:

Carlos Ordonez, Ph.D., Chairman
Dept. of Computer Science

Omprakash Gnawali, Ph.D.
Dept. of Computer Science

Xin Fu, Ph.D.
Dept. of Electrical & Computer Engineering

Lennart Johnsson, Ph.D.
Dept. of Computer Science

Stephen Huang, Ph.D.
Dept. of Computer Science

Dean, College of Natural Sciences and Mathematics

ii

Acknowledgements

I would like to express my sincere thanks to my advisor Dr. Carlos Ordonez for

his patience, guidance, and support during my study at the University of Houston.

His knowledge, insights, and generous help gave me high confidence in my efforts to

undertake the challenge of the research projects that this dissertation presents.

I am very grateful to Dr. Omprakash Gnawali, Dr. Xin Fu, Dr. Stephen Huang,

and Dr. Lennart Johnsson for taking the time to serve on my dissertation committee

and sharing with me their knowledge and experience. It is my privilege to work with

my fellow researchers, Dr. Wellington Cabrera and Dr. David Matusevich. I want

to thank them for the friendship and teamwork we had together during the past five

years.

I want to thank all my colleagues at VoltDB Inc. especially Bruce Reading, John

Piekos, and Ning Shi who offered me the most solid and unwavering support when I

had to play the role of both a Ph.D. student and a software engineer during the last

year of my Ph.D. study.

I also want to thank my parents Jingli and Desheng, and other family members

especially my cousin Yuanfeng Wen and my sister-in-law Wensi Song. Their uncon-

ditional love has always been the strongest emotional support that I am so blessed

to have through my graduate study here, more than 7,000 miles away from home, in

the United States.

Last but not least, my sincere thanks go to my dear friends Yifei Wan, Alex Zhou,

Fangkai Yang, Zihao Zhou, Lei Qin, Le Chen, and many, many others. It has been

such an amazing journey with your company and support.

iii

MULTIDIMENSIONAL AGGREGATIONS IN PARALLEL

DATABASE SYSTEMS

An Abstract of a Dissertation Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Yiqun Zhang

December 2017

iv

Abstract

Aggregations help computing summaries of a data set, which are ubiquitous in

various big data analytics problems. In this dissertation, we provide two major

technical contributions which work on parallel database systems that significantly

extend the capabilities of aggregations, studying two complementary multidimen-

sional mathematical structures: cubes and matrices. Cubes present a combinatorial

problem in a set of discrete dimensions, widely studied in database systems. On the

other hand, matrices are widely used in machine learning models, requiring iterative

numerical methods taking input as multidimensional vectors. Both problems are dif-

ficult to solve on large data sets residing on secondary storage, and their algorithms

are difficult to optimize in a parallel cluster. First, we extend cubes to intuitively

show the relationship between measures aggregated at different grouping levels by

introducing the percentage cube, a generalized database cube that takes percentages

as its basic measure instead of simple sums. We show that the percentage cube is

significantly harder to compute than the standard cube due to a higher exponen-

tial complexity. We propose SQL syntax and introduce novel query optimizations

to materialize the percentage cube without any memory limitations. We compare

our optimized queries with existing SQL functions, evaluating time, speed-up, and

effectiveness of lattice pruning methods. Besides, we show columnar storage provides

significant acceleration over row storage, the standard storage mechanism. Second,

we study parallel aggregation on large matrices stored as tables and study how to

compute a comprehensive data summarization matrix, called Gamma. Gamma gen-

erally fits in main memory, and it is shown to enable the efficient derivation of many

v

machine learning models. Specifically, we show our Gamma summarization matrix

benefits linear machine learning models, including PCA, linear regression, classifica-

tion, and variable selection. We analytically show our summarization matrix captures

essential statistical properties of the data set and we experimentally show Gamma

allows iterative algorithms to iterate faster in main memory. Also, we show Gamma

is further accelerated with array and columnar storage. We experimentally prove

our parallel aggregations allow faster computation than existing machine learning

libraries for model computations in R and Spark, two popular analytic platforms.

vi

Contents

1 Introduction 1

2 Related Work 6

2.1 Online Analytical Processing . 6

2.2 Faster Analytic Algorithms . 8

2.3 Data Summarization . 9

2.4 Scalable Matrix Multiplication . 11

3 Percentage Cube 13

3.1 Definition . 13

3.1.1 Percentage Aggregation . 13

3.1.2 Standard Cube . 14

3.1.3 Percentage Cube . 14

3.1.4 Example . 15

3.2 SQL Syntax . 18

3.2.1 Percentage Aggregation . 18

3.2.2 Percentage Cube . 21

3.3 Evaluation Method . 22

3.3.1 Evaluating Percentage Aggregation 22

3.3.2 Evaluating Percentage Cube 28

3.4 Incremental Computation . 31

3.5 Pruning the Percentage Cube . 33

3.5.1 Row Count Threshold . 34

3.5.2 Percentage Threshold . 39

3.5.3 Top-k percentages . 40

3.6 Experiments . 41

vii

3.6.1 Experimental Setup . 41

3.6.2 Comparing Percentage Aggregation Methods 44

3.6.3 Performance of the incremental computation 46

3.6.4 Comparing Percentage Cube Materialization Methods 48

3.6.5 Comparing Cube Pruning Mechanisms 48

4 Matrix Aggregation:
The Gamma operator 52

4.1 Definition . 52

4.2 Gamma Summarization Matrix . 53

4.3 Two-Phase Analytic Algorithm . 56

4.4 Models Exploiting the Gamma Matrix 58

4.4.1 Principal Component Analysis (PCA) 59

4.4.2 Linear Regression (LR) . 61

4.4.3 Variable Selection (VS) . 62

4.5 Time Complexity and Parallel Speedup 65

4.6 Data Summarization in Parallel Database Systems 66

4.6.1 Data summarization in SciDB 67

4.6.2 Programming Mechanisms in SciDB 67

4.6.3 The Gamma Array Operator to Summarize a Matrix 68

4.6.4 Additional Considerations . 73

4.6.5 Accelerating Summarization with a GPU 76

4.7 Data summarization in Columnar DBMS 78

4.8 Experiments . 81

4.8.1 Setup . 82

4.8.2 Comparing Analytic Systems (N = 1 node) 85

4.8.3 Parallel Processing (N = 1, 10, 100 nodes) 92

viii

4.8.4 Fast Data Summarization with a GPU 95

5 Conclusions 98

Bibliography 102

ix

List of Figures

3.1 Drill-down percentage cube visualization 18

3.2 Expansion from data cube to percentage cube. 29

3.3 Dimensions as binary codes. 39

4.1 The workflow for a system using Γ for model computation 57

4.2 How the Gamma operator works in SciDB 75

4.3 The horizontal and vertical layout for X in the columnar DBMS. . . 79

4.4 Comparing systems to compute Γ on a local server: Array DBMS, R,
and SQL. 89

4.5 Γ computation time: CPU vs. GPU. 95

x

List of Tables

3.1 An example fact table, F , with two dimensions. 15

3.2 An OLAP cube built on top of the fact table F 16

3.3 A percentage cube built on top of the fact table F 17

3.4 pct(salesAmt) on table F . 21

3.5 Summary of grouping columns for individual percentage queries transactionLine
(N=6M). 42

3.6 Candidate cube dimensions’ cardinalities. 42

3.7 Selected cube dimensions at various d. 43

3.8 Percentage Aggregation: GROUP-BY vs. OLAP. Scale factor=4,N=24M
(times in secs). 45

3.9 Cube Generation: GROUP-BY vs. OLAP. Scale factor=1, N=6M
(times in secs). 45

3.10 Direct pruning vs. Cascaded pruning (times in secs). 46

3.11 Time to evaluate the percentage cube with nulls in the measure. n =
20M, d = 4 (times in secs). 46

3.12 Incremental computation, ONE query (n =20M, d = 4, δ = 1%, times
in secs). 47

3.13 Incremental computation (n =20M, δ = 1%, times in secs). 47

3.14 Top k percentages (times in secs). 50

3.15 Pruning method: row count threshold vs. top k, n = 20M (times in
secs). 51

4.1 Summary of matrices: summarization and models. 57

4.2 Data sets. 82

4.3 Hardware and operating system. 83

4.4 Comparing computation of model Θ using R and DBMS+R; dense
matrix operator; data set KDDnet; local server; times in secs. 86

xi

4.5 Bayesian variable selection (VS) in gene data set (d = 12506, n = 248):
Comparing R+SciDB with R at 1000 iterations; times in secs. 87

4.6 Comparing matrix summarization algorithms; data set KDDnet; dense
(dn entries) and sparse (zeroes deleted); Local 1/2; times in secs. . . . 88

4.7 Comparing the dense operator (working on disk+RAM), the sparse
operator (working on disk+RAM), and the dense matrix multiplica-
tion in MKL BLAS (parallel LAPACK, working only on RAM) to
compute Γ; local server 4GB RAM; synthetic data sets; times in secs. 90

4.8 Parallel speedup: Γ dense matrix summarization operator with multi-
threaded processing varying M=# SciDB instances (N=1 node, 4-
core CPU); times in secs. 92

4.9 Parallel processing: Comparing R+SciDB and Spark varing N (# of
nodes); data set KDDnet d = 38; dense matrix; times in secs. 93

4.10 Comparing computation of model Θ using R, DBMS+R, and DBMS+R+GPU;
dense matrix operator; N=1 node (CPU=8 cores); times in secs. . . . 97

xii

Chapter 1

Introduction

Business and scientific activities are becoming more and more data-driven. Most

organizations are now collecting data at the most detailed level possible, and the

volume of data is growing very fast at ever-accelerating rates. As a result, the

increasing need for analyzing and understanding collected data is drawing more and

more people’s attention to the great challenges of big data analytics.

Big data analytics is a new data mining trend [20, 1] with higher data volume,

varied data types, and parallel processing. Data aggregation is one of the most

commonly used approaches to help understand the collected data and provide data

findings in a summarized, meaningful format that is useful for the end user. Clas-

sic aggregate functions include sum(), avg(), count(),max(), and min(). However,

we believe that an essential aggregation that is missing from the SQL list is the

percentage.

Percentages are essential in big data analytics. They can express the proportion-

ate relationship between two amounts summarized at different levels. Sometimes,

percentages are less deceiving and more intuitive than absolute values. Therefore,

they are suitable for comparisons. Furthermore, percentages can also be used as an

intermediate step in some applications for complex analytics. Unlike classic aggre-

gation functions that mostly require only one scan pass over the data set and one

1

single aggregation level, percentage requires aggregations at two different detail lev-

els (one for the total amount and one for the individual amount). Along with the

computation complexity is the lack of support in SQL. Traditional SQL aggregate

functions are cumbersome and inefficient to compute percentages given the amount

of SQL code that needs to be written and the inability of the query optimizer to

efficiently evaluate such aggregations. We explore the problem of percentage aggre-

gation and tackle the challenge by proposing new intuitive, easy-to-use SQL syntax

and a series of query optimizations to facilitate the efficient evaluation of percentage

aggregations.

Traditional aggregate functions, supported by the GROUP-BY operator, can

produce zero-dimensional or one-dimensional summaries of the data set. Data cube,

first introduced in [19], generalized the standard “GROUP BY” operator to provide

multi-dimensional summaries of the dataset, computing aggregations for every com-

bination of the grouping columns. Building data cubes has been well recognized as

one of the most important and essential operations in OLAP. However, exploring

percentages we just mentioned in a full data cube is a new problem, which is com-

putationally harder. In this dissertation, we introduce a specialized form of data

cube taking percentages as the aggregated measure which we call the percentage

cube. A percentage cube shows the fractional relationship in every cuboid between

each aggregated measure and its further summed-up measures aggregated by less

detailed grouping columns. Unfortunately, existing SQL aggregate functions, OLAP

window functions, and Multidimensional Expressions (MDX) are insufficient to com-

pute percentage cubes. The computation is rather complicated to express even with

the percentage aggregation syntax we proposed. The exponential number of grouping

2

column pairs adds further complexity. In this dissertation, we also further explore

percentage aggregation in a cube, proposing percentage cube syntax as well as impor-

tant techniques and optimizations to efficiently evaluate them. We justify that the

percentage cube subsumes iceberg queries (based on a decreasing row count thresh-

old) and it represents a harder problem because there are exponentially more groups

and it is feasible to find large percentages both at high levels and deep levels in the

dimension lattice. Moreover, it is generally necessary to explore percentages inter-

actively. Such challenges make percentage cube materialization (precomputation)

mandatory.

Analyzing big data for interesting pattern or trends can go way more complicated

than just aggregating relational data in DBMSs. Analysts develop machine learning

models from the data set. Beyond simple aggregations on the data, people build

much more complicated models from which they can not only understand the data

but also make predictions and decisions proactively. The data, in this case, is much

better represented as matrices.

From a system perspective, row DBMSs [45] remain the best technology for trans-

action processing [44] and column DBMSs are becoming a competitor in query pro-

cessing [41] in large databases [42]. However, both kinds of DBMS are considered

slow and difficult to use for mathematical computations on large datasets due to the

abundance of matrices. Currently, Hadoop and MapReduce systems [23, 42] (e.g.,

Spark [50, 47], HadoopDB, Cassandra, Hive, MongoDB, and the Mahout project)

are the most popular for big data analytics. From a statistical perspective, R is the

most popular platform, but despite many efforts it remains slow and not scalable for

big data analytics. Array DBMSs (SciDB [43], Rasdaman [6]) represent alternative

3

analytic systems, closer to relational DBMSs, that enable computation with large

matrices in R, which share many features with old DBMSs like efficient I/O, in-

dexing, concurrency control, and parallel processing, but have significantly different

storage and query processing mechanisms. On the algorithm side, there has been

extensive research efforts on optimizing machine learning algorithms on large-scale

data sets and in parallel. Many algorithms are adapted to work iteratively or using

a randomized approach. However, those work still require scanning the original data

set multiple times. As the data sets grow explosively, those algorithms can suffer

degraded performance due to the I/O bottleneck. In contrast, optimizing machine

learning algorithms with data summarization techniques has received scant atten-

tion. We focus on the optimization of algorithms to compute three fundamental and

complementary models. Specifically, we study the computation of principal compo-

nent analysis (PCA) [22] with the correlation matrix[48], linear regression (LR) [22]

and variable selection (VS) on large datasets. However, these three models require

different numerical and statistical methods for their solutions: PCA is generally

computed with a Singular Value Decomposition (SVD) on the correlation [48, 22]

(covariance) matrix of the data set; LR is solved with least squares via a matrix

factorization; VS requires visiting an exponential search space of variable combina-

tions, whose most promising solution is currently found by MCMC methods, used in

Bayesian statistics [17]. A costly matrix multiplication plays a very important role

in the computation of those models. The root causes are a matrix transposition and

then a slow matching between the ith row from the input matrix with the jth column

from its transpose. With that motivation in mind, we introduce a summarization

matrix, called Gamma, that captures essential statistical properties of the data set,

4

to compute the first and the second moment (mean, variance) of multivariate prob-

ability distributions. The most important characteristics of the Gamma matrix is

that it is much smaller than the data set and it can be used to avoid recomputing

costly matrix multiplications. We show the Gamma summarization matrix can be

efficiently computed via a novel form of matrix multiplication, optimized for large

data sets, in which Gamma can be incrementally updated in main memory. To that

end, we introduce two parallel incremental algorithms for dense and sparse large

input matrices (i.e. the data set), respectively, which scan the data set once, in

parallel. Exploiting Gamma, we introduce a “meta” algorithm that divides the com-

putation of our models into two phases: (1) parallel incremental summarization to

get Gamma, (2) model computation in main memory exploiting the Gamma matrix,

including the iterative behavior.

Experimental evaluation shows our summarization operator removes main mem-

ory limitations from R and it is much faster than R (even when the data set fits

in RAM) and orders of magnitude faster than a column DBMS (one of the fastest

DBMSs, evaluating summarization with SQL queries). There are efficient functions

in R, LAPACK [5, 14], SciDB [43], and Spark [50] to compute matrix multiplication,

but we show they are inefficient to summarize the data set. More importantly, we

show R and LAPACK fail when there is insufficient RAM for large input matrices.

From a parallel perspective, the array DBMS is orders of magnitude faster and has

better speedup than Spark, when running in a large cluster in the cloud.

5

Chapter 2

Related Work

2.1 Online Analytical Processing

As previously mentioned, there exist OLAP extensions proposed in the ANSI

SQL-OLAP [25], an amendment that allows computing percentages in a single, but

inefficient, query. These extensions involve windowing and partitioning with the

OVER and PARTITION clauses. OLAP extensions are available in Oracle, IBM

DB2, HP Vertica, and Teradata. Microsoft SQL Server provides a loosely related

SQL extension to get the top or bottom percent of rows according to some numeric

expression. These extensions are different from our proposal in several aspects. Their

usage, syntax, and optimization are not as simple as ours since they are based on a

window of rows. They are more general, but not particularly suitable to compute

percentages which we argue it is a very common aggregation. These extensions

require specifying another aggregate function as an argument whereas ours only

requires calling the pct() function.

Some SQL extensions to help data mining tasks are proposed in [12]. These

include a primitive to compute samples and another one to transpose the columns of a

table. SQL extensions to perform spreadsheet-like operations with array capabilities

are introduced in [46]. Unfortunately, those spreadsheet extensions are not adequate

to compute percentage aggregations because their goal is avoiding joins to express

cells formulas, but they are not optimized to handle two-level aggregations or perform

6

transposition. Our optimizations and proposed query generation can be combined

with this approach. UDFs represent a programming mechanism to materialize and

query the cube in RAM [10], while maintaining a tight integration with the DBMS.

This approach allows processing the input table directly, using the cube in RAM as a

proxy of the fact table and then evaluating SQL cuboid queries on the cube. Another

closely related approach is a horizontal aggregation [36], which presents multi-row

results in pivoted form. This approach enables more intuitive understanding of all

percentages within a cuboid.

Extending data cubes to support more types of aggregations has been explored in

[39, 40], mainly focusing on aggregating textual data. Percentage aggregation queries

were introduced in [31]. We make several significant contributions beyond this paper.

Specifically, we refine the definition of left keys and right keys in the function calls

with the introduction of “BREAKDOWN BY” and “TOTAL BY” clauses. We be-

lieve our new syntax is more intuitive. We also improve the OLAP evaluation method

with the row number() approach, being twice faster than the previous “DISTINCT”

approach because we avoid an external sort operation. Nevertheless, the GROUP

BY method remains the winner. We revisit query processing in a columnar DBMS,

which presents new challenges. More importantly, we generalized percentage aggre-

gation queries to the percentage cube, which is a significantly harder problem and

even harder than standard cubes. To the best of our knowledge, percentage cubes

had never been explored before. Moreover, traditional pruning techniques need to be

adapted. Finally, preliminary research on percentage aggregation appeared in [53].

Further research on percentage cube appeared in [54]. The main differences are the

following. We introduce an incremental algorithm. We consider nulls, which require

7

different semantics from traditional SQL. We introduce two alternative methods to

prune the cube: a minimum percentage threshold and getting the top k largest per-

centages. We showed top k percentages is a harder problem, resulting in a holistic

[19] aggregation.

2.2 Faster Analytic Algorithms

Research has developed fast algorithms based mostly on sampling, data summa-

rization, and gradient descent [18, 24], but generally working in a sequential manner

(data mining) or outside a parallel data analysis system (Hadoop or DBMS). Sample-

based algorithms [15] require mechanisms to control approximation error, and they

are hard to program in parallel for data sets with skewed distributions. In our case,

no sampling is required, although it can further accelerate our summarization al-

gorithms. Stochastic (incremental) gradient descent (SGD) [23] is another popular

approach, useful when there is a convex function to optimize (like least squares in

LR). As for drawbacks, SGD is naturally sequential (difficult to process in paral-

lel), it obtains an approximate solution, and it is difficult to adapt to non-convex

functions (e.g., clustering). On the other hand, we believe we are the first to study

parallel data summarization as matrix multiplication. Given their relevance to our

work, data summarization and matrix multiplication are discussed in more detail

below.

Despite the prominence of statistical and machine learning models, there is not

much work studying how to accelerate their computation inside a DBMS. Accel-

erating SVD has received attention [29], but producing approximate solutions and

8

without considering parallelism. Linear classification with Support Vector Machines

(SVMs) is not a problem we considered, but it is straightforward to define a summa-

rization operator for a diagonal matrix Γ to get a reasonably accurate Naive Bayes

classifier. The importance of aggregate UDFs to accelerate the computation of sta-

tistical models in relational DBMSs is identified in [35], making a big step forward

compared to a pure query-based approach [32]. Following the same ideas, [23] in-

troduces the MADlib library to compute statistical models with SQL mechanisms,

combining queries and UDFs. Nevertheless, neither [35] nor [23] had envisioned ma-

trix multiplication as a vector-based outer product computation which can be pushed

into an aggregation operator with arrays both as input and output. Moreover, the

integration with R was not considered.

2.3 Data Summarization

Our summarization matrix was first proposed in [37] to solve PCA, linear regres-

sion, and variable selection. Our recent research [38] explored the optimizations for

sparse input data sets and showed that our SciDB implementation defeated Spark

in performance on a large cluster on the cloud. In [52], we migrated our algorithm

to a relational columnar DBMS and its performance is very close to that of SciDB.

A similar, but less general data summarization to ours was pioneered in [51] to ac-

celerate the computation of distance-based clustering: the sums of values and the

sums of squares. Later, [8] exploited such summaries as multidimensional sufficient

statistics for the K-means and EM clustering algorithms. The main differences with

9

[51] and [8] are: data summaries were useful only for one model (clustering). Com-

pared to our proposed matrix, their summaries represent a (constrained) diagonal

version of Γ because dimension independence is assumed (i.e. cross-products, covari-

ances, correlations, are ignored) and there is a separate vector to capture L. From a

computational perspective, our summarization algorithm boils down to one matrix

multiplication, whereas those algorithms work are aggregations. Another major dif-

ference is that in our models, one summarization matrix is sufficient, whereas those

clustering models need more than one matrix. In short, our summarization is more

general and it can help computing more complex models like PCA, LR, and VS that

could not be solved with older summaries. From a statistical perspective, we have

identified the product of the extended matrix Z with itself as a fundamental summa-

rization for a data set covering zeroth, first, and second moments of its probabilistic

distribution. A more general data summarization capturing up to the fourth mo-

ment was proposed in [16], but it relies on binning (i.e. building histograms) which

are incompatible with most statistical methods. Parallel processing for data sum-

marization has received moderate attention. Reference [27] highlights the following

techniques: sampling, incremental aggregation, matrix factorization, and similarity

joins. Our proposal is a combination of incremental aggregation and scalable matrix

multiplication that enables fast matrix factorization in main memory. A closely re-

lated work that identified the linear sum of points L and the quadratic sum of points

Q with cross-products is [35], but it did not recognize the importance of expressing

the computation as a single matrix product, did not study parallel processing, did not

consider sparse matrices, and did not synthesize the 2-step algorithm, which has po-

tential for new models. From a “systems” angle, array DBMSs supporting UDFs did

not exist and it was not envisioned the summarization step could be solved entirely

10

by the DBMS and the iterative and mathematical computations being evaluated in

R.

2.4 Scalable Matrix Multiplication

Matrix multiplication has been extensively studied with dense and sparse matri-

ces, as well as one processor (sequentially) or N processors (in parallel) [5, 13]: paral-

lel sparse matrix multiplication is the hardest combination. The specific assumptions

about matrix shape, density, and parallel computation model vary widely. Most re-

search has proposed algorithms partitioning and storing the input matrices by block

in distributed memory [13, 14]. Dense matrix multiplication in main memory in

one computer is considered as a solved problem for the most part [13]. Even though

multiplication of large matrices exceeding RAM limits (out-of-core) has been studied

before [13], nobody has looked at the case that the input matrix (data set) is large,

but the result matrix is much smaller and dense. In other words, most research has

focused on dense-dense multiplication producing a dense matrix or sparse-sparse mul-

tiplication producing a sparse matrix. From a parallel perspective, most algorithms

work in a multi-core CPU or GPU. In consequence, parallel matrix multiplication

algorithms for matrices residing on secondary storage have not made their way into

ScaLAPACK because of the complexity of combining parallel computation with MPI

and efficient I/O on disk. MPI is not an efficient interface for DBMS technology be-

cause it has an underlying shared-memory model that requires transmitting data

across nodes.

Sparse and parallel matrix multiplication are harder problems [4, 9, 26, 49], where

11

the parallel computation model is shared memory via MPI. That is, such approaches

are generally incompatible with shared-nothing architectures like Hadoop and paral-

lel DBMSs. However, there is some work from the database systems angle to multiply

sparse matrices for graph analytics [34]. As additional differences, most algorithms

assume matrices of arbitrary shape and size, as long as they are compatible with ma-

trix multiplication and they reduce the problem to a matrix-vector multiplication.

In contrast, our matrix summarization operator is significantly different (but useful

in big data analytics), because it is optimized for a single rectangular matrix as in-

put (in general the shape of a large data set), the input matrix is block-partitioned

only along the largest dimension (n), parallelization is based on vector-vector outer

products and there is no communication overhead during parallel processing. Last

but not least, an array DBMS provides not only fast mechanisms to manipulate large

matrices but also an elegant and well-defined programming mechanism to create new

matrix operators, something that was not feasible with SQL-based DBMSs.

12

Chapter 3

Percentage Cube

3.1 Definition

Let F be a relational table having a primary key represented by a row identifier

i, d discrete attributes (dimensions) and one (or more) numerical attribute (mea-

sures): F (i,D1, . . . , Dd, A). Discrete attributes (dimensions) are used to group rows

to aggregate the numerical attribute (measure). In general, F can be a temporary

table resulting from some queries or a view.

3.1.1 Percentage Aggregation

Consider a typical percentage problem, for example, how much is the Q1 sales

amount in California accounted for in the total Q1 sales amount. Percentage com-

putations like this involve two levels of aggregations: the individual level that will

appear as the numerator in the percentage computation (Q1 sales amount in Califor-

nia), and the total level that will show as the denominator (total Q1 sales amount).

In the DBMS, we name the result table of the individual level aggregation “Findv” and

the total level aggregation “Ftotal”. Both levels of aggregations aggregate attribute

A by different sets of grouping columns.

13

3.1.2 Standard Cube

We consider the standard cube having a set of discrete dimensions, where some

dimensions may be hierarchical like location (continent, country, city, state) or time

(year, quarter, month, day). In order to simplify exposition and better understand

query processing, we compute the cube on a denormalized table F defined below,

where all dimensions, including all dimension levels, are available on the fact table

F . That is, F represents a star schema. Such fact table F enables roll-up/drill-down,

slice/dice cube operations using any dimension at any level without join computa-

tion. Including joins to explore dimension levels which would significantly complicate

studying query processing. We will use F to generate a percentage cube with all the

d dimensions and one measure [19].

3.1.3 Percentage Cube

Percentage computation in a percentage cube happens in the unit of a cuboid.

When talking about a cuboid, we use G to represent its grouping column set, that

is, G contains all the dimensions in that cuboid which are not “ALL”s. Also, we

let g = |G| to represent the number of the grouping columns in a cuboid. To

answer the sales amount question, for example, we need to look at the cuboid G =

{state, quarter}, where no dimension should be “ALL”, g = |G| = 2. In each cuboid,

we use L = {L1, . . . , Lj} to represent the grouping columns used in the total level

aggregation (“total by”). When computing percentages, measures aggregated by

L will serve as the total amount (denominator). The total amounts then can be

further broken down to individual amounts using some additional grouping columns

14

R = {R1, . . . , Rk}, L ∩ R = ∅. Columns in R are called “break down by” columns.

Overall, the individual level aggregation will use L ∪ R as its grouping columns. In

our sales amount example, to get the total level amount (total Q1 sales amount), we

need to aggregate the attribute by L = {quarter}. To add more granularity to the

per state level, the aggregation result needs to be further broken down by adding the

grouping columns in R = {state}. Note that set L can be empty, in that case, the

percentages are computed with respect to the total sum of A for all rows. The total

level and individual level has to differ, therefore R 6= ∅. In each cuboid where the

two levels of aggregation happen, L∪R = G. The percentage will be the quotient of

each aggregated measure from the individual level and its corresponding value from

the total level. All the individual percentage values derived from the same total level

group will add up to 100%.

3.1.4 Example

Here we give an example of a percentage cube. Assume, we have a fact table, F ,

storing the sales amounts of a company in the first two quarters of 2017 in some US

states as shown in Table 3.1.

Table 3.1: An example fact table, F , with two dimensions.

i state quarter salesAmt (million dollars)
1 CA Q1 73
2 CA Q2 63
3 TX Q1 55
4 TX Q2 35

The fact table F has two dimensions D1=state and D2=quarter (taken from the

15

cube time dimension) and only one measure A = salesAmt. In order to explore

sales, we build the multi-dimensional cube shown in Table 3.2.

Table 3.2: An OLAP cube built on top of the fact table F

state quarter salesAmt (million dollars)
D1 D2 A
CA Q1 73
CA Q2 63
CA ALL 136
TX Q1 55
TX Q2 35
TX ALL 90
ALL Q1 128
ALL Q2 98
ALL ALL 226

From Table 3.2 it is easy to find out the sum of the sales amount grouped by

any combination of the dimensions in the fact table. However, the user may be

interested in a “pie-chart” style quotient, such as how much Q1 sales amount in

California contributed to the total Q1 sales amount. That is when the user wants a

percentage. With the standard OLAP cube, we first evaluate the query to get the

total Q1 sales amount (128M), then a second query to get the Q1 sales amount in

California (73M), and finally, perform the division to get the answer (57%). This

process may not look complicated when looking at a single question, but data analysts

usually explore the cube with a lot of cube exploration operations (roll-up/drill-

down, slice/dice). Therefore, the effort of identifying the individual/total group and

evaluating additional queries every time to get percentages becomes a burden in the

analysis. Instead, Table 3.3 shows a percentage cube built on top of the fact table

F .

16

Table 3.3: A percentage cube built on top of the fact table F .

total by break down by state quarter salesAmt%
L1 {R1}, {R1, R2} A
state quarter CA Q1 54%
state quarter CA Q2 46%
state quarter TX Q1 61%
state quarter TX Q2 39%
quarter state CA Q1 57%
quarter state TX Q1 43%
quarter state CA Q2 64%
quarter state TX Q2 36%
ALL state CA ALL 60%
ALL state TX ALL 40%
ALL quarter ALL Q1 57%
ALL quarter ALL Q2 43%
ALL state,quarter CA Q1 32%
ALL state,quarter CA Q2 28%
ALL state,quarter TX Q1 24%
ALL state,quarter TX Q2 16%

Using this percentage cube table, we can easily answer the question “how much

did California contribute to Q1 sales?” with a glance at one row. But this flexibility

has a price. Compared to the standard cube table (Table 3.2), each cuboid in the per-

centage cube is significantly exploded. For instance, for the cuboid {state, quarter},

we only have four rows of data showing the sales amount in every {state,quarter}

combination. On the other hand, in the percentage cube, given all potential dimen-

sion combinations for left keys (“total by”) and right keys (“break down by”), we

have 12 rows of data showing the percentages dividing individual amounts (numer-

ator) by total amounts (denominator).

In a real environment, analysts may not even need to look at this percentage cube

17

table. Pie charts are considered as a natural visualization of percentages. Percentage

cubes are, in this sense, a collection of hierarchical pie charts which users can easily

navigate by rolling up or drilling down to choose cube dimensions. Once the compu-

tation of a percentage cube is complete, it can be interactively visualized traversing

the dimension lattice up and down, without further query evaluations. Figure 3.1

shows a pie chart example.

Figure 3.1: Drill-down percentage cube visualization

3.2 SQL Syntax

3.2.1 Percentage Aggregation

By far, there is no syntax in the standard SQL for percentage aggregations. In

this section, we will first propose our pct() function to compute them.

18

pct(A TOTAL BY L1, . . . , Lj

BREAKDOWN BY R1, . . . , Rk).

The first argument is the expression to aggregate represented by A. The next two

arguments represent the list of grouping columns used in the total level aggrega-

tion and the additional grouping columns to break the total amounts down to the

individual amounts. The following SQL statement shows one typical pct() call:

SELECT L1, . . . , Lj, R1, . . . , Rk,

pct(A TOTAL BY L1, . . . , Lj

BREAKDOWN BY R1, . . . , Rk)

FROM F

GROUP BY L1, . . . , Lj, R1, . . . , Rk;

When using the pct() aggregate function, several rules shall be enforced:

1. The “GROUP BY” clause is required because we need to perform a two-level

aggregation.

2. Since set L can be empty, the “TOTAL BY” clause inside the function call is

optional, but the “BREAKDOWN BY” clause is required because R 6= ∅. Any

columns appeared in either of those two clauses must be listed in the “GROUP

BY” clause. In particular, the “TOTAL BY” clause can have as many as d− 1

columns.

3. Percentage aggregations can be applied to any queries along with other aggre-

gations based on the same GROUP BY clause in the same statement. But

19

for the simplification and exposition purposes, we do not apply percentage

aggregations on queries having joins.

4. When having more than one pct() calls in one single query, each of them can be

used with different sub-grouping columns, but still, all of their columns have

to be present in the “GROUP BY” clause.

The pct() function computes one percentage per row and has a similar behavior

to the standard aggregate functions sum(), avg(), count(),max(), and min() that

have only one argument. The order of rows in the result table does not have any

impact on the correctness, but usually, we return the rows in the order given by the

“GROUP BY” clause because rows belong to the same group (i.e. rows making up

100%) are better displayed together. The pct() function returns a real number in the

range of [0,1] or NULL when dividing by zero or doing operations with null values. If

there are null values, the sum() aggregate function determines the sums to be used.

That is, pct() preserves the semantics of sum(), which skips null values.

Example

We still use our fact table shown in Table 3.1. The following SQL statement

shows one specific example that computes the percentage of the sales amount of

each state out of every quarter’s total.

SELECT quarter, state,

pct(salesAmt TOTAL BY quarter

BREAKDOWN BY state)

FROM F

20

GROUP BY quarter, state;

In this example, at the total level we first group the total sums by quarter, then we

further break each group down to individual level by state. The result table is shown

in Table 3.4.

Table 3.4: pct(salesAmt) on table F .

quarter state salesAmt%
Q1 CA 57%
Q1 TX 43%
Q2 CA 64%
Q2 TX 36%

3.2.2 Percentage Cube

Below we propose our SQL syntax to create a percentage cube on the fact table

we showed in Table 3.1. When creating a percentage cube, the pct() function call

will no longer require a “TOTAL BY” or “BREAKDOWN BY” clause.

SELECT quarter, state, pct(salesAmt) FROM F

GROUP BY quarter, state

WITH PERCENTAGE CUBE;

Comparing Table 3.4 and Table 3.3 we will find that a percentage cube is no more

than a collection of percentage aggregation results.

21

3.3 Evaluation Method

3.3.1 Evaluating Percentage Aggregation

The pct() function call can be unfolded and evaluated in standard SQL. The

general idea can be described as the following two steps:

1. Evaluate the two levels of aggregations, respectively.

2. Compute the quotient of the aggregated measures as the individual percentage

value from Findv and Ftotal where both of them match in their L (total-by)

columns.

In practice, how do we compute the two levels of aggregations is the key factor to

distinguish the evaluation methods. In this section, we introduce two methods: the

first one is the OLAP window method exploiting window functions, and the second

one is the GROUP-BY method using standard aggregations.

The OLAP Window Method

We first consider SQL built-in functions. Queries with OLAP functions can apply

aggregations on window partitions specified by the “OVER” clauses. There can exist

several window partitions with different grouping columns in each OLAP query. That

makes this method the only way we can get Findv and Ftotal from the fact table within

only one single query. The issue with the OLAP window function is that although

the aggregate function is computed with respect to all the rows in each partition,

22

the result is applied to each row. Therefore, in our case, the result table may have

duplicated rows with the same percentage values. The following example shows the

SQL query to compute the percentage of the sales amount for each state per quarter,

using the raw OLAP window function method:

SELECT quarter, state, (CASE WHEN Y <> 0 THEN X/Y

ELSE NULL END) AS pct

FROM

(SELECT quarter, state,

sum(salesAmt) OVER (PARTITION BY quarter, state) AS X,

sum(salesAmt) OVER (PARTITION BY quarter) AS Y FROM F) foo;

To get the results correct, we can get rid of the duplicates with the following two

methods:

1. Use the “DISTINCT” keyword.

SELECT L1, . . . , Lj, R1, . . . , Rk,

(CASE WHEN Y <> 0 THEN X/Y

ELSE NULL END) AS pct

FROM

(SELECT DISTINCT L1, . . . , Lj, R1, . . . , Rk,

sum(A) OVER (PARTITION BY L1, . . . , Lj, R1, . . . , Rk) AS X,

sum(A) OVER (PARTITION BY L1, . . . , Lj) AS Y FROM F) foo;

The disadvantage with this method is that the use of “DISTINCT” keyword

will introduce external sorting in the query execution plan. Such sorting can be

expensive if no auxiliary data structures (indexes, projections) are exploited.

23

2. Use “row number()”

row number() is another OLAP function that can assign a sequential number

to each row within a window partition (starting at 1 for the first row). When

using this method, we assign row identifiers in each partition defined by L ∪

R, then we just need to select one of such tuples per group to eliminate the

duplicates.

SELECT L1, . . . , Lj, R1, . . . , Rk,

(CASE WHEN Y <> 0 THEN X/Y ELSE NULL END) AS pct

FROM

(SELECT L1, . . . , Lj, R1, . . . , Rk,

sum(A) OVER (PARTITION BY L1, . . . , Lj, R1, . . . , Rk) AS X,

sum(A) OVER (PARTITION BY L1, . . . , Lj) AS Y,

row number() OVER (PARTITION BY L1, . . . , Lj, R1, . . . , Rk)

AS rnumber FROM F) foo WHERE rnumber = 1;

The GROUP-BY Method

This method is based on standard aggregations. The two levels of aggregations

are pre-computed and stored in temporary tables Ftotal and Findv respectively. The

percentage value is evaluated in the last step by joining Findv and Ftotal on the L

columns and computing Findv.A/Ftotal.A. It is always important to check before

computing that Ftotal.A cannot be zero as the denominator.

We explain the evaluation of Ftotal and Findv. It is evident that Findv can only be

computed from the fact table F :

24

SELECT L1, . . . ,Lj,R1, . . . ,Rk, sum(A) INTO Findv FROM F

GROUP BY L1, . . . ,Lj,R1, . . . ,Rk;

Ftotal, however, as a more brief summary of the fact table with fewer grouping columns

(only columns in L) than Findv, can be derived either also from the fact table F , or

directly from Findv. Evaluating aggregate functions requires a full scan of the input

table. Therefore, the size of the input table has a major impact on the performance.

When the size of F is much larger than Findv, in which case the cardinality of the

grouping columns is relatively small, getting Ftotal from Findv will be much faster

than computing it from F because fewer rows are scanned:

SELECT L1,L2, . . . ,Lj,sum(A) INTO Ftotal

FROM Findv or F

GROUP BY L1,L2, . . . ,Lj;

The final result can be either inserted into another temporary table or in-place by

updating on Findv itself. The in-place update avoids creating the temporary table

with the same size as Findv. That is helpful for saving disk space.

INSERT INTO Fpct

SELECT Findv.L1, . . . ,Findv.Lj,Findv.R1, . . . ,Findv.Rk,

(CASE WHEN Ftotal.A 6= 0 THEN Findv.A/Ftotal.A

ELSE NULL END) AS pct

FROM Ftotal JOIN Findv

ON Ftotal.L1 = Findv.L1, . . . ,Ftotal.Lj = Findv.Lj;

Compared to the two methods we introduced just now, we argue that our syntax

25

for percentage is a lot simpler and do not require join semantics.

Handling Abnormal Data

In order to have a well-defined and robust aggregation for diverse analyses, it is

necessary to consider abnormal and missing values. Specifically, it is necessary to

define rules to handle nulls in the dimensions, nulls in the measure attribute, zeroes,

and negative values in the measure attribute. We introduce the following rules,

indicating where our proposed aggregation deviates from standard SQL. These rule

can be considered to integrate percentage aggregations into a DBMS or BI tool.

1. Nulls in the values of the dimensions are treated as a single missing value.

Therefore, the behavior is same as a GROUP BY query. That is, SQL auto-

matically handles nulls in the dimensions.

2. A null in at least one measure value in some BREAKDOWN subgroup will

result in all percentages for all subgroups being null. In other words, we do not

treat a missing measure value as a zero like standard SQL; such percentages

would be misleading. In other words, it is better to make all percentages in

the corresponding cuboid null.

3. In general, percentages adding up to 100% come from positive values. There-

fore, negative percentages are allowed with a warning.

4. A total sum equal to zero will result in all percentages for individual subgroups

being null (i.e. undefined).

26

Classification of Percentage Aggregations

In this section, we answer the questions: are percentage aggregation harder? how

hard is it to compute the percentage cube? what is their theoretical connection to

existing aggregations? Let us recall the taxonomy of cube aggregations proposed by

Gray [19].

• Distributive: sum(), count()

• Algebraic: pct()

• Holistic: top-k percentages

Since percentages are expressed as an equation dividing one sum() by another

sum() it is an algebraic aggregation. Notice count(*) can be treated as a sum(1).

Recall holistic aggregations are the most challenging ones since they require sorting

rows by the aggregated value. In our case, percentages are ranked, and we select

the k percentages with the highest ranks in descending order. On the other hand,

filtering out low percentages does not change the time complexity of the percentage

cube. Each aggregation class results in a different cube generalization, going from

easiest to hardest:

• Distributive: standard cube

• Algebraic: percentage cube

• Holistic: pruned percentage cube with top k percentages

In our experimental evaluation, we will quantify the extra effort getting each of

these cubes.

27

3.3.2 Evaluating Percentage Cube

Recall that percentage cubes extend standard data cubes. Even though they

share a similarity that can give us insight on data in a hierarchical manner, they

are quite different. A data cube has a multidimensional structure that summarizes

the measures over cube dimensions grouped at all different levels of details. A data

cube whose dimensionality is d will have 2d different cuboids. While a percentage

cube, in addition to summarizing the measure in cuboids as a data cube does, it

categorizes the dimensions in each cuboid into set L and R in all possible ways.

Then vertical percentage aggregation is evaluated based on each L and R key sets.

The computational complexity of the percentage cube can be summarized in the

following properties:

Property 1: The number of different grouping column combinations in a cuboid

with g grouping columns is 2g − 1.

Property 2: The total number of all different grouping column combinations in a

percentage cube with d dimensions is
d∑
i=1

(di)(2
i − 1) = O(22d).

So a percentage cube can be much larger than an ordinary data cube in size, and

it is a lot more difficult to evaluate. Figure 3.2 shows a specific example when d = 2,

the data cube will have 4 cuboids while the percentage cube will have in total 5

different grouping column combinations (The last cuboid {∗, ∗} will not be included

28

Figure 3.2: Expansion from data cube to percentage cube.

in the percentage cube because the set R cannot be empty). The gap is not so big

because the d we show is small due to space limit, since both the number of cuboids

in the cube and the number of possible grouping column combinations in one cuboid

grow exponentially as d increases, this gap will become surprisingly large when d

gets large.

Due to the similarity of the representation of percentage cubes and percentage

aggregations, it is not surprising that the problem of building a percentage cube can

be broken down to evaluating multiple percentage aggregations and they can share

similar SQL syntax.

We describe the algorithm to evaluate a percentage cube using percentage queries

in Algorithm 1. The outer loop in Algorithm 1 iterates over each cuboid. Recall that

we use G to represent a cuboid’s grouping column set (dimensions in that cuboid

29

that are not “ALL”s). For each cuboid, we will exhaust all the possible ways in

the inner loop to allocate the columns in set G to set L and R (columns in set L

are the grouping columns for the total level aggregation, and columns in set R are

the additional grouping columns to break down the total amounts). For each L and

R allocation, we evaluate a percentage aggregation and union all the aggregation

results together to be the final percentage cube table.

Data: fact table F , measure A, cube dimension list M = {D1, . . . , Dd}
Result: d-dimension percentage cube

Result table RT = ∅ ;
for each G ⊆M,G 6= ∅ do

for each L ⊂ G do
R = G \ L

RTtemp = pct(A TOTAL BY L
BREAKDOWN BY R);

RT = RT ∪RTtemp ;

end

end
return RT ;

Algorithm 1: Algorithm to evaluate percentage cube.

There is one small difference in the output schema between an individual per-

centage aggregation and a percentage cube. In a percentage cube, we add two more

columns called “total by” and “break down by” to keep track of the total and the

individual level setting (See Table 3.3). This is because unlike individual percent-

age queries having only one total and the individual level setting in the output, the

percentage cube explores all the potential combinations. An entry having column

{A,B} may be “total by” A and “break down by” B or the opposite, or even “break

down by” both A and B.

30

We also need to point out that for each cuboid, no matter how the grouping

column setting L and R change, the individual level aggregation Findv will stay the

same. This is because the Findv is grouped by L and R meanwhile L∪R = G which

will always stay the same in one cuboid. Based on this observation, unlike in vertical

percentage aggregations that we compute Findv from F in each pct() call, here we only

compute Findv once for every cuboid, then the result will be materialized for the rest

of the L and R combinations in the same cuboid to avoid duplicated computations

of Findv.

3.4 Incremental Computation

In a real environment, the data warehouse is periodically refreshed with batches

of new records [30], significantly growing in size. So it is highly desirable to reuse

previous cube computations to refresh the percentage cube. Assume the data ware-

house has a large table F and a smaller table Fδ with newly inserted records. We

assume |Fδ| � |F |, typically ≤ 1%.

Let Ftotal = F ∪ Fδ. A straightforward algorithm is to recompute the percentage

cube on F ∪Fδ, which we call a full recomputation. On the other hand, we can obtain

an equivalent relational algebra equation,

πDj ,sum(A)(Ftotal) = πDj ,sum(A)(F) ∪ πDj ,sum(A)(Fδ)

.

Since percentage aggregations are algebraic, we can materialize the standard cube

31

with sum(). The sum() aggregation is distributive which means it can be incremen-

tally computed. Based on these facts, we can state two important properties:

Property 4: A Percentage Aggregation can be incrementally computed.

Property 4 enables developing incremental algorithms by materializing total and

individual aggregation queries on F and defining materialization aggregations on Fδ.

Property 5: The Percentage Cube can be incrementally computed.

Property 5 is a generalization of Property 4. This property allows developing

incremental algorithms by materializing the standard cube on F , also materializing

the standard cube on Fδ and finally recomputing the percentage cube. However, this

may not be optimal when some cuboids do not change. This is precisely the case

when some combinations of dimension values do not have newly inserted records.

Tracking which percentage cells change is a much harder problem, a research issue

for future work.

The experimental section will compare the full recomputation and the incre-

mental computation. Computing one percentage aggregation query incrementally is

challenging since a join computation cannot be avoided. Computing the percentage

cube incrementally is harder since we cannot avoid the combinatorial explosion of

the cube. Experiments will pay attention to time complexity as d grows.

32

3.5 Pruning the Percentage Cube

Not all percentages are interesting or provide valuable information. Based on

common analytic goals, we propose three mechanisms to identify interesting per-

centages:

1. Row count threshold: filtering out groups below a row count threshold, similar

to frequent itemsets [33].

2. Percentage threshold: filtering out percentages below a minimum percentage

threshold.

3. Top k percentages: Getting the top-k highest (or lowest) percentages.

The percentage computation can exploit a row count (SQL count(*)) threshold,

like iceberg queries [21], to significantly reduce the computation effort and avoid

getting percentages on tiny groups with very few records behind. Since a high d is

sparse, the row count threshold is essential when computing percentages on many

dimensions or dimensions where percentages are very small (e.g., percentage of sales

by product id, for all products).

The last two mechanisms are alternative filtering mechanisms: The user should

use either filter, but not both. The rationale behind such constraint is that output

would be incomplete and it would be difficult to understand an overall picture.

33

3.5.1 Row Count Threshold

We revisit the classical optimization to prune the search space of cubes. Since

the data cube with d dimensions has 2d cuboids as well as numerous group rows

within each cuboid, it is a computationally hard problem. Moreover, as explained in

Section 3.3.2, a percentage cube is much larger than a standard data cube because,

in addition to the 2d cuboids, there are a lot more potential total group columns

combinations in each cuboid. Therefore, computing percentage cubes is significantly

more demanding than getting cubes.

Taking a closer look, not all percentage groups (i.e. groups formed by the total

level aggregation) are valuable. Although in some groups the user can discover

entries with remarkable percentage values, the group itself may be small in row

count. Discoveries based on such groups do not have enough “statistical evidence”,

like support in frequent itemsets [2]. It is expected there will be many of such small

groups in the percentage cube, especially when d is large. If we can avoid computing

those groups, the overall evaluation time can be correspondingly reduced and output

size reduced.

On the data cube side, a similar problem of eliminating GROUP-BY partitions

with an aggregate value (e.g., count) below some support thresholds can be solved

by computing Iceberg cubes [21]. For Iceberg queries, it is justified that a frequency

threshold is required, and it is even more necessary in a percentage cube. In an

analog manner, we introduce a threshold to prune groups under a specified size.

We call this threshold group threshold, represented by φ. In percentage cubes, all

the groups are generated by the total level aggregation (Ftotal). Therefore, unlike in

34

Iceberg cubes, we prune the partitions, in percentage cubes we prune groups under

a specified size φ, that is, to filter the aggregated count() of groups formed by all the

possible L sets through this frequency threshold.

Previous studies have developed two major approaches to compute Iceberg cubes,

top-down [55] and bottom-up [7]. The most important difference between those two

methods is that the bottom-up algorithm can take advantage of Apriori pruning

[3]. Such pruning strategy can also apply on percentage cubes. In this section, we

introduce two pruning strategies: direct pruning and bottom-up cascaded pruning.

Direct pruning based on row count

Direct pruning further results in Algorithm 1. This algorithm validates the

threshold on all possible grouping column combinations directly without sharing

pruning results between computations at difference grouping levels. In order to let

the computation of Ftotal continue to reuse the result of Findv table that comes from

the coarser level of details, we also put count(1) in Findv results. When computing

Ftotal from F , the group frequency is evaluated by count(). However, when utilizing

Findv to get Ftotal, the group frequency is evaluated by summing up the counts in

Findv. The threshold is enforced in Ftotal query by specifying the threshold in the

“HAVING” clause.

SELECT L1,L2, . . . ,Lj,sum(A),count(1) AS count

INTO Ftotal

FROM F

GROUP BY L1,L2, . . . ,Lj

35

HAVING count(1)> φ;

SELECT L1,L2, . . . ,Lj,sum(A),sum(count) AS count

INTO Ftotal

FROM Findv

GROUP BY L1,L2, . . . ,Lj

HAVING sum(count)> φ;

Cascaded pruning

In order to take advantage of previous pruning results, we propose a new algo-

rithm that iterates over all cube groups going from coarser aggregation levels (few

grouping columns) to finer (more grouping columns) levels. We show the cascaded

pruning algorithm to compute the percentage cube with a frequency threshold φ in

Algorithm 2. If the count() of any group fails to meet the minimum threshold, the

group can be pruned and we avoid going deeper down checking other groups that

have more dimensions included in the path along the dimension lattice. On the other

hand, qualified groups can be materialized in temporary tables with their grouping

column values, the count(), and the aggregated measures so that this materialized

table can later be used for percentage computations, or the prune the lattice search

space with more detailed grouping columns.

We contrast our cascaded algorithm, shown in Algorithm 2, with the percentage

cube algorithm shown in Algorithm 1. We first determine the cuboid to get G,

the cuboid’s dimension list in the outermost loop. Then we get each L and R sets

from G in the inner loop. Keep in mind that the Findv is always grouped by G.

36

Data: Fact table F , measure A, cube dimension list G = {D1, . . . , Dp}, group
threshold φ

Result: d-dimensional percentage cube

Result table RT = ∅ ;
Ftotal0 = σcount>φ(πcount(1),sum(A)(F)) ;
for each L ⊂ G,L 6= ∅ do

i = getRepresentationCode(L) ;
p = getParentCode(i) ;
if p = 0 then

Ftotali = σcount>φ(πL,count(1),sum(A)(F)) ;
else

if Ftotalp does not exist then
continue next L;

else
if Findviexists then

Ftotali = σsum(count)>φ(πL,sum(count),sum(A)(
Ftotalp ><Ftotalp .L=Findvi

.L Findvi)) ;

else
Ftotali = σcount(1)>φ(πL,count(1),sum(A)(
Ftotalp ><Ftotalp .L=F.L

F)) ;

end

end

end
if |Ftotali | 6= 0 then

Materialize Ftotali ;
end
for each R ⊆ (G \ L) do

S = L ∪R; sCode = getRepresentationCode(S) ;
if FindvsCode

does not exist then
Materialize FindvsCode

= πS,sum(A)(F) ;
end
RTtemp = πS,FindvsCode

.A/Ftotali
.A(

Ftotali 1Ftotali
.L=FindvsCode

.L FindvsCode
) ;

RT = RT ∪RTtemp ;

end

end
return RT ;

Algorithm 2: Cascaded bottom up algorithm to get the percentage cube.

37

Therefore, in this computational order, every Findv is computed, intensively utilized

and discarded. The cascaded pruning algorithm, however, generates the aggregation

result level by level. The complication here is that a grouping column set on a certain

level may appear in multiple cuboids. For example, for a cube with dimensions

{A,B,C,D}, a grouping column set {A,B} is used in cuboid {A,B,C}, {A,B,D},

and {A,B,C,D}. Therefore, the materialized result table for each grouping column

set can be reused in multiple cuboids in a more scattered manner. It is important

we keep the results for future usage after a group is first computed. A side effect is

that when computing some Ftotal, it is not always true that Ftotal can be computed

from Findv because the Findv it needs may not have been computed yet.

In order to label the L set on each materialized table, we assign each cube dimen-

sion with an integer identifier according to the position it is standing in the dimension

list. The identifier for the i-th dimension will be 2i−1. With the dimension identifier,

any L set or R set or cuboid dimension list can be represented by a representation

code that comes from the bitwise OR operation on all the dimensions’ identifier in

the set, and the code for its parent set can be evaluated by eliminating the highest

non-zero bit. All materialized Findv and filtered Ftotal will be named as Findvi and

Ftotali where i stands for the dimension representation code. Figure 3.3 shows the

relation between the representation code and the dimension set it represents. Also

by eliminating the highest non-zero bit, it can be linked with its parent dimension

set.

To close this section, we emphasize that by applying pruning mechanisms time

complexity is significantly reduced from O(22d). The specific time O() bound will

depend on dimensions probabilistic properties.

38

Figure 3.3: Dimensions as binary codes.

3.5.2 Percentage Threshold

Getting rid of almost empty cells in the cube helps a lot, but it is not enough

in a practical scenario. The user may want to further filter out percentages below a

certain percentage threshold. The main challenge is that it is not possible to prune

the dimension lattice like classical cubes, because large percentages may be “hidden”

behind groups with small percentages. Therefore, it is impossible to use traditional

lattice pruning strategies like those used in frequent itemsets or iceberg queries [20].

That is, percentages are not anti-monotonic. In short, a percentage cube represents

a significantly harder problem than standard cubes. We summarize this challenge as

the following result:

Property 3: A percentage aggregation on a set of cube dimensions is not anti-

monotonic. Therefore, it is impossible to develop bottom-up minimum percentage

discovery algorithms based on percentages.

39

Time complexity O(22d) does not change from building the percentage cube since

filtering out small percentages can be done with a sequential algorithm on each

cuboid after the percentage cube is materialized.

3.5.3 Top-k percentages

Filtering out low percentages may be difficult if the dimensions have high cardi-

nality. Instead, the user may decide to look at the highest percentages. The main

idea is to rank percentages from highest to lowest and then select the k highest ones,

where k ≥ 1. This filtering procedure needs to be done on each cuboid. Query

evaluation will require sorting percentages within each cuboid, which is an expensive

computation in a big cube. An important observation is that selecting the top k

percentages should be done after the cube is materialized because k may increase.

That is, it would be a bad idea to materialize a pruned percentage cube.

Time complexity is significantly higher than computing a percentage cube and

filtering out low percentages. For the percentage cube, this additional computation

will result in O(22d) sorts, where each sort has time complexity O(mlog2(m)) assum-

ing an average m rows per cuboid. That is, time becomes O(22dmlog2(m)). Notice

it is difficult to derive worst-case bounds because the number of rows in a cuboid

depends on dimension cardinality, which can vary widely.

40

3.6 Experiments

3.6.1 Experimental Setup

Hardware and Software

We conducted our experiments on a 2-node cluster of Intel dual-core workstations

running at a 2.13 GHz clock rate. Each node has 2GB main memory and 160GB

disk storage with SATA II interface. The nodes are running Linux CentOS release

5.10 and are connected by a 1 Gbps switched Ethernet network.

The HP Vertica DBMS was installed under a parallel 2-node configuration for

obtaining the query execution times shown in this section’s tables. Our default

configuration was 2 nodes in a local cluster, but some experiments used 1 node on

the Amazon cloud.

The reported times in the table are rounded down to integers and are averaged

on seven identical runs after removing the best and worst total elapsed time.

Data Set

The data set we used to evaluate the aggregation queries with different optimiza-

tion strategies is the synthetic data sets generated by the TPC-H data generator. In

most cases, we use the fact table transactionLine as input and the column “quantity”

as the measure. Table 3.5 shows the specific columns from the TPC-H fact table that

we used as left key and right key to evaluate percentage queries. |L1| and |R1| are

41

the cardinalities of L1 and R1 respectively. Table 3.6 shows the candidate dimensions

and their cardinalities we used to evaluate percentage cubes.

Table 3.5: Summary of grouping columns for individual percentage queries
transactionLine (N=6M).

L1 R1 |L1| |R1|
brand quarter 25 4
brand dweek 25 7
brand month 25 12
clerkKey dweek 1K 7
clerkKey month 1K 12
clerkKey brand 1K 25
custKey dweek 200K 7
custKey month 200K 12
custKey brand 200K 25

Table 3.7 shows the dimensions we chose to generate the Percentage Cube at

various cube dimensionality. In this dissertation, we vary the dimensionality of the

cube d from 2 to 6. Very large d does not make much sense for our computation

because the groups will be too small.

Table 3.6: Candidate cube dimensions’ cardinalities.

Dimension Cardinality
manufacturer 5
year 7
ship mode 7
month 12
nation 25
brand 25

42

Table 3.7: Selected cube dimensions at various d.

d D1 D2 D3 D4 D5 D6

2 nation brand
3 nation brand year
4 nation brand year month
5 nation brand year month ship mode
6 nation brand year month ship mode manufacturer

System Programming

All the algorithms we presented in this paper can be implemented by assembling

queries that are already supported in DBMSs. That is, our solution is portable,

not tied to any platform or specific database system. To support the percentage

aggregation and the percentage cube SQL syntax that we proposed, we developed a

Java program that parses the percentage cube queries and converts them into a se-

quence of SQL queries for each method (i.e. OLAP window function or GROUP-BY

queries). The Java program connects to the DBMS via JDBC, sends SQL queries,

finally downloading the final result cube table. There are two reasons in favor of

JDBC: it is a standard protocol, it works on Java guaranteeing portability across

diverse computers and operating systems. The main cons with JDBC are the slow

speed to export large tables and the overhead to submit multiple SQL statements.

We avoid the first limitation by computing the cube inside the DBMS (i.e. we ex-

port one small table at the end). Regarding the overhead to submit multiple SQL

statements, we minimize it, by sending several statements together. At the end, the

percentage cube can be exported to external programs, like Excel or R, to visualize

(as explained in Section 3.1) or further explore results. An important acceleration

43

could be obtained with high d cubes by integrating our algorithms inside the DBMS,

but such approach requires availability of source code and it represents a signifi-

cant programming effort. Therefore, we believe that Java/JDBC are a reasonable

compromise.

3.6.2 Comparing Percentage Aggregation Methods

As explained in Section 3.3.2. the computation of the percentage cube is based

on assembling multiple percentage aggregation queries, in a lattice traversal algo-

rithm. With this motivation in mind, we first compare the two methods to imple-

ment pct() as discussed in Section 3.3.1, i.e. GROUP-BY and OLAP. We performed

this comparison on a replicated fact table F whose scale factor = 4. In this com-

parison, we include optimization options for both methods. For the GROUP-BY

method, we evaluate Ftotal from F and Findv separately, while for the OLAP window

function method we eliminate duplicates by using “DISTINCT” and row number()

separately.

We also compared the time to evaluate the percentage cube when certain portion

of the measure data is null. In Table 3.11, we showed the comparison result. The

comparison does not show an obvious difference in evaluation performance when we

vary the percentage of null measure values in the fact table.

Table 3.8 shows the result of the comparison. For each grouping column combi-

nation in each row, we highlight the fastest configuration with bold font. Generally

speaking, evaluation by the GROUP-BY method was much faster than by the OLAP

window function method. For the OLAP method, using row number() instead of

44

Table 3.8: Percentage Aggregation: GROUP-BY vs. OLAP. Scale factor=4,N=24M
(times in secs).

GROUP-BY OLAP
|L1| |R1| Ftotal from F Ftotal from Findv DISTINCT row number()

25 4 8 5 52 29
7 7 5 50 28

12 7 5 50 28
1K 7 10 6 48 22

12 10 7 49 22
25 19 16 63 30

200K 7 35 10 43 23
12 13 11 44 27
25 56 51 62 54

“DISTINCT” keyword may accelerate the evaluation speed by about 2 times. But it

is still obviously slower than the GROUP-BY method. For the GROUP-BY method,

we can see the cardinality of the right key |R1|, has a direct impact on the perfor-

mance of two strategies to generate Ftotal. When |R1| is relatively small, say |R1| = 7,

for all different |L1| we have tested, generating Ftotal from Findv is about 2-3 times

faster than from F . However as |R1| gets larger, say |R1| = 25, it matters less where

Ftotal is generated from.

Table 3.9: Cube Generation: GROUP-BY vs. OLAP. Scale factor=1, N=6M (times
in secs).

d GROUP-BY OLAP
2 4 41
3 10 155
4 30 545
5 148 2402
6 1147 9174

45

Table 3.10: Direct pruning vs. Cascaded pruning (times in secs).

threshold Direct Pruning Cascaded Pruning
d (% of N) SF=1 SF=8 SF=1 SF=8
5 10% 91 690 70 674

8% 91 693 72 675
6% 90 692 74 676

0 124 728 130 729
6 10% 268 1767 177 1680

8% 269 1769 182 1687
6% 272 1774 186 1687

0 437 1981 436 1930

Table 3.11: Time to evaluate the percentage cube with nulls in the measure. n =
20M, d = 4 (times in secs).

null% time
0 3.72
5 3.58

10 3.55
15 3.73
20 3.62

3.6.3 Performance of the incremental computation

We start by studying incremental computation for a single percentage query,

shown in Table 3.12. We vary the cardinality of the first dimension of the fact table,

which is the number of unique groups the first dimension generates. As we can see

from the table, the incremental computation is always faster than recomputing the

full percentage cube. Also, the performance gain from the incremental computation

grows as the cardinality increases (more groups are generated).

46

Table 3.12: Incremental computation, ONE query (n =20M, d = 4, δ = 1%, times
in secs).

Cardinality Original Full Recomp. Incremental Fraction incr/full
1 0.63 0.63 0.26 41%

10 0.67 0.70 0.27 39%
100 26.91 25.65 5.97 23%

Table 3.13: Incremental computation (n =20M, δ = 1%, times in secs).

d Original Full Recomp. Incremental Fraction incr/full
1 0.3 0.4 0.1 25%
2 0.5 0.6 0.2 33%
3 0.9 1.0 0.6 60%
4 2.6 2.7 2.6 96%
5 26.4 30.5 29.8 98%

Table 3.13 compares the incremental percentage cube computation with a full

recomputation when inserting 1% records (200k). The goal is to understand if there

are time savings and if time can be bounded by |Fδ|. To our surprise, the incremental

computation is almost as slow as a full recomputation as d grows. That is, extra

time is not proportional to |Fδ|. But it does work at low d. The fraction trend

of time between incremental and full recomputation indicates that an incremental

computation time approaches a full recomputation time. In fact, at d = 5, the times

are almost the same. After profiling the query plan for bottlenecks, analyzing each

query and trying several n sizes (smaller n sizes omitted because the trend was fuzzy)

we concluded that d is a much more important performance factor than n because

two percentage cubes are computed: one on F and one on Fδ. Coming up with

a more efficient incremental algorithm, compatible with SQL, is an item for future

47

work. As can be seen, at low d there is some gain, but at high d time almost doubles

despite the fact that top k percentages are discovered on the materialized percentage

cube.

3.6.4 Comparing Percentage Cube Materialization Methods

We now assemble the pct() queries together using the Algorithm 1 to materialize

the entire percentage cube. Since evaluating a percentage cube is much more de-

manding than evaluating individual percentage queries, when comparing those two

methods in cube generation, we choose the best method based on the experimental

results presented in Section 3.6.2. That is, for GROUP-BY method, we generate

Ftotal from Findv, and for OLAP window function method, we use row number()

OLAP function to eliminate duplicated rows. Table 3.9 shows the result of this com-

parison. The result shows that our GROUP-BY method is about 10 times faster than

the OLAP window function method for all d’s. When d gets larger, it will take the

OLAP window function method hours to finish. The two methods show an enormous

difference in their performances because our GROUP-BY method takes advantage

of the materialized Findv. So we can not only avoid duplicated computation of Findv

for each group in the same cuboid but also benefit from the generation of Ftotal for

different L set.

3.6.5 Comparing Cube Pruning Mechanisms

Cube cells with very few rows do not provide reliable knowledge because an

interesting finding may be a coincidence, without enough evidence. Therefore, in

48

general, the user will apply a minimum row count threshold in order to avoid almost

empty cells. Since the percentage cube is big, it is necessary to apply a further filter

on the percentages. We propose to either: get the top k percentages, where k ≥ 1

or get all percentages above a minimum threshold, φ. Applying both percentage

pruning filters would result in incomplete and confusing output.

3.6.5.1 Row count threshold

Even though the GROUP-BY method exhibits acceptable performance when eval-

uating the percentage cube, it is still not sufficient especially for fact tables with

large d and N . As discussed in Section 3.5.1, we want to further optimize this eval-

uation process by introducing group frequency threshold to prune the groups with

low count(). In this section, we compare the cube generation with various group

thresholds using direct pruning on Algorithm 1 and cascaded pruning in Algorithm

2. We choose the values of the threshold as certain percentages of total row number

of the fact table N . Here we choose the count() threshold as 10% of N , 8% of N ,

and 6% of N as well as no threshold applied. The result is shown in Table 3.10. We

first look at evaluation times for each algorithm separately. It shows although the

time increases when we decrease the threshold, the difference is not so big. This is

because the data distribution of the data set we used is almost uniform. A more

skewed distribution of values will result in a more obvious increase in evaluation

times for the decreasing thresholds. But on the other hand, we can see from the

result that the evaluation time increases greatly for runs with no threshold. There-

fore it proves to us that it is necessary to prune the groups with small sizes because

not only users have little interest in them but also by pruning them, the evaluation

49

time can be shortened. Then we compare the evaluation time between algorithms.

When d continues to grow, bottom-up algorithm shows a much better performance

for cases when thresholds are applied. But two algorithms shows almost no differ-

ence when threshold φ = 0. Direct pruning can run without the support of the Java

program. However, for cascaded pruning, a Java program is needed to participate in

the processing throughout the evaluation. So, the cost of communication via JDBC

and the running the Java program can compromise the true performance of the al-

gorithm. This cost can be diminished by integrating the algorithm into the DBMS

as a built-in functionality.

3.6.5.2 Getting Top k percentages

Table 3.14: Top k percentages (times in secs).

d pct cube top k Total top k
1 0.3 0.1 0.4 25%
2 0.5 0.1 0.6 17%
3 0.9 0.4 1.3 31%
4 2.6 1.9 4.5 42%
5 26.4 62.9 89.3 76%

As explained before, identifying the highest percentages is a demanding computa-

tion. Table 3.14 analyzes evaluation times as d grows on a large table (relative to the

system). The fraction of the time taken by the top k computation grows as d grows

and the trend indicates it approaches 1. These times highlight the combinatorial

time complexity and the high cost of one sort per cuboid.

50

3.6.5.3 Selecting percentages above a minimum percentage threshold

In Table 3.15, we compare time to prune percentages on fact tables with varying d.

We generated the percentage cube on fact tables that have 20M rows and increasing

number of dimensions. From the result, we can see that as d grows, the time it

takes to compute the top k percentages become more and more significant and its

growth rate is so much larger than the time for computing percentages with row

count thresholds given the exponential number of sort operations, one per cuboid.

Table 3.15: Pruning method: row count threshold vs. top k, n = 20M (times in
secs).

d threshold top-k=2
1 0.42 0.44
2 0.58 0.69
3 1.23 1.65
4 4.84 7.89
5 42.94 126.24

51

Chapter 4

Matrix Aggregation:

The Gamma operator

4.1 Definition

We start by defining the input matrix, stressing it is a set of n column vectors.

All models take a d× n matrix X as input. Let X = {x1, ..., xn} be the input data

set with n points, where each point xi is a vector in Rd. Intuitively, X is a wide

rectangular matrix. In the case of LR and VS, X is augmented with a (d + 1)th

dimension containing an output variable Y , making X a (d+ 1)× n matrix. We use

i = 1 . . . n and j = 1 . . . d as matrix subscripts. We emphasize that for convenience

in mathematical notation we use column vectors and column-oriented matrices.

We use Θ, a set of matrices and associated statistics, to refer to a statistical model

in a generic manner. Thus Θ represents the PCA, LR, and VS models defined in

Chapter 4.4. Moreover, Θ could represent a clustering or classification model. PCA

represents an unsupervised (descriptive) model to reduce dimensionality. Linear re-

gression is a fundamental supervised model, whose solution helps understanding and

building other linear models. Variable selection (VS), a supervised model, is among

the computationally most difficult problems in statistics and machine learning, in

which Markov Chain Monte Carlo (MCMC) methods [22, 17] are a promising solu-

tion.

52

4.2 Gamma Summarization Matrix

In this section we introduce the Γ summarization matrix. This matrix contains

several vectors and submatrices that represent important sums derived from the data

set. In Chapter 4.4, we show such sums help derive fundamental statistical properties

of the data set, for each dimension (variable) and for each variable pair.

We first review sufficient statistics matrices [22, 35], which are integrated and

generalized into a single matrix:

n = |X| (4.1)

L =
n∑
i=1

xi (4.2)

Q = XXT =
n∑
i=1

xi · xTi (4.3)

Intuitively, n counts points, L is a linear sum of xi and Q is a quadratic sum of

xi, where xi is multiplied by itself (i.e. squared) with a vector outer product. As

explained in Section 4.4.2 , the linear regression model uses an augmented matrix,

represented by X. We introduce a more general augmented matrix Z, by appending

an additional (d + 1)th row to X, which contains the vector Y. Since X is d × n, Z

has (d+ 2) rows and n columns, where row [0] are 1s and row [d+ 1] is Y .

Matrix Γ contains a comprehensive, accurate, and sufficient summary of X to

efficiently compute all models previously defined. Below, we show Γ in two equivalent

forms: (1) as vector-matrix and matrix-matrix multiplications; (2) as sums of vector

outer products. Notice 1 is a column-vector of n 1s, which allows expressing a

53

sum as a matrix product. Such equivalence has important performance implications

depending on how the matrix is processed.

Γ =


n LT 1T · Y T

L Q XY T

Y · 1 Y XT Y Y T



=


n

∑
xTi

∑
yi∑

xi
∑
xix

T
i

∑
xiyi∑

yi
∑
yix

T
i

∑
y2i


The fundamental property of Γ is that it can be computed by a single matrix

multiplication using Z. Therefore, we study how to compute the matrix product

below, related to, but not the same as the Gram matrix ZTZ [13]:

Γ = ZZT (4.4)

Matrix Γ is fundamentally the result of “squaring” matrix Z. Γ is compara-

tively much smaller than X for large n, symmetric and computable via vector outer

products. Such facts are summarized in the following properties:

Property 1 (matrix product versus vector outer product): Γ can be equivalently

computed as follows:

Γ = ZZT =
n∑
i=1

zi · zTi . (4.5)

Property 2 (small size): Given a large data set X where d � n, matrix Γ size is

O(d2)� O(dn) as n→∞.

54

Property 3 (symmetry): Γ = ΓT , which can be condensed into a triangular matrix

with d+ (d+ 2)2/2 ≈ d2/2 entries, saving 1/2 of CPU operations.

Property 4 (first and second moment): Matrix Γ summarizes X to compute the first

and second moment of several multivariate probabilistic distributions.

Property 1 is fundamental to derive a highly efficient summarization operator.

Property 1 gives two equivalent expressions to obtain Γ: one as a matrix multiplica-

tion and the second one as a sum of vector outer products. We make the following

fundamental observation. Even though it is tempting to evaluate ZZT as a matrix

multiplication it is a bad idea: we need to compute and materialize ZT first, a costly

transposition, storing it, and then perform the actual matrix multiplication. Instead,

we defend the idea of evaluating the summation
∑n

i=1 zi · zTi . We will experimentally

prove this hypothesis. Assuming zi fits in main memory, then it is reasonable to

assume the vector outer product also fits in main memory. Therefore, it makes more

sense to evaluate such sum in parallel. Given the prominent importance of Γ, we

believe our operator should be available on any big data analytic system. We call

our operator Γ(X) (called Gamma(X) in a C++ function).

Property 2 means that if Γ can fit in main memory, it is feasible to maintain

a summary of X in main memory. However, we emphasize that we cannot assume

X can fit in main memory. Therefore, the challenge is to efficiently compute Γ,

minimizing the number of times X must be read from secondary storage.

Property 3 states it is possible to save one half of the CPU work. Notice storage

space in triangular form is still O(d2), but it requires a nested indexing mechanism. In

55

order to allocate a square array, which enables faster address computation and block-

based access, we prefer not to use compact storage. Notice Property 2 implies ZZT =

(ZZT)T = (ZT)TZT = Γ, highlighting the matrix product is non-commutative. In

other words, Γ 6= ZTZ. Table 4.1 provides a summary of all matrices, including the

input data set, the output variable, model Θ, and Γ.

We explain Property 4 in more technical detail. Γ is a fundamental summarization

matrix because it can help computing the first and second expected moments of

many probabilistic distributions: the first moment E[x] = µ, to get the global mean

(average) and the second moment E[(x−µ)(x−µ)T] = V for the covariance matrix,

which measures mean squared error (MSE) per dimension and helps to understand

each variable pair behavior. Mean squared error is the most commonly used error

measure in statistics and machine learning because it is mathematically easier to

optimize [22]. Γ can be used to directly derive the global mean and the covariance

matrix: That is, Γ helps to understand each individual variable and each pair of

variables. The following models represent a generalization of these basic statistical

matrices. Higher order variable interactions can be analyzed adding dimensions to

X for each variable pair.

4.3 Two-Phase Analytic Algorithm

Recall from Section 4.1, Θ represents a statistical model. Therefore, based on Γ

a fast algorithm to compute Θ in two phases is the following:

1. Compute Γ.

56

Table 4.1: Summary of matrices: summarization and models.

Matrix Size Description
X d× n Data set: dimensions/variables
X (d+ 1)× n Augmented matrix with 1s
Z (d+ 2)× n Augmented X matrix with 1s and Y
Γ (d+ 2)× (d+ 2) Summarization matrix
U d× d Principal components
V d× d Squared eigenvalues; diagonal
Y 1× n Dependent variable
β (d+ 1)× 1 Regression coefficients, Y intercept
γ d× 1 Selected variables; binary vector

System
Setup

Data
Summarization

Model
Computation

Figure 4.1: The workflow for a system using Γ for model computation

2. Iterate exploiting Γ in intermediate matrix computations.

These two phases can be repeated as many times as needed for iterative algo-

rithms in a system using this paradigm, the workflow is shown in Figure 4.1. This

dissertation focuses on optimizing Phase 1, which is a well-defined problem for any

input data set X. Phase 2 requires incorporating Γ in the steps of numerical and

statistical methods. By exploiting Γ, it becomes possible to reduce the number of

times X is read and to reduce CPU computations in iterative methods. Identifying

in which models intermediate matrix computations accept Γ is a deep research topic.

We point out that this work builds on top of previous research and we make clear

for which kind of models our optimizations apply. That is, our choice of methods to

57

solve PCA, LR, and VS has been carefully chosen because they can exploit Γ in the

most demanding matrix equations.

4.4 Models Exploiting the Gamma Matrix

Our summarization matrix benefits a large family of statistical models. In this

dissertation, we focus on PCA, LR, and VS, where one summarization matrix is

sufficient despite their iterative methods are different. Our summarization matrix can

be generalized to compute the Naive Bayes classifier, K-means/EM clustering, logistic

regression, and Linear Discriminant Analysis, among others. But these latter models

require more than one summarization matrix (e.g., k summarization matrices for K-

means or EM). This introduces different assumptions and other iterative methods.

Therefore, such models are a research issue for future work.

For the statistical models, we focus on we use a single summarization matrix

Γ that is non-diagonal. That is, we do not assume dimensions are independent.

Therefore, Γ is a full matrix with O(d2) non-zero entries. From an algorithmic

perspective, we have managed to use Γ as a proxy of X in every step. Therefore,

the model Θ is computed in one (parallel) pass over X, as explained in the next

subsections.

There are two basic directions to generalize Γ: (1) computing multiple Γ ma-

trices, where each one corresponds to some subset of X, obtained by partitioning

X based on the values of some attribute G (e.g., class, cluster ID). (2) Assuming

dimensions are independent, resulting in a diagonal Γ matrix with O(d) non-zero

entries. Both generalizations can be combined resulting in multiple data summaries

58

assuming independence or dependence, covering a wide spectrum of models. Gener-

alization (1) can potentially benefit classification models like Naive Bayes and Linear

Discriminant Analysis Generalization (2) is the gateway to compute simple descrip-

tive statistics like the mean and standard deviation on multiple data subsets and

also clustering models. In general, both generalizations require iterative methods,

reading the data set at every iteration. Therefore, their solution is different from the

one-pass solution presented in this work, and it is an issue for future work.

We now present customized algorithms to compute each model Θ under our

unifying 2-phase method.

4.4.1 Principal Component Analysis (PCA)

The objective of PCA is to reduce the noise and redundancy of dimensions by re-

expressing the data set X on a new orthogonal basis, which is a linear combination of

the original dimensions basis. In this case, X has d potentially correlated dimensions

but no Y . In general, PCA is computed on the covariance or the correlation matrix

of the data set [22].

We focus on computing PCA on the covariance matrix V or the correlation matrix

ρ [22] of X, both symmetrical matrices. The PCA model Θ consists of U , a set

of d orthogonal vectors, called the principal components of the data set, ordered

in decreasing order by their length (variance) and a diagonal matrix D2, with the

squared eigenvalues (lengths). PCA is computed with an eigen decomposition of V

or ρ, whose solution is the factorization ρ = UD2UT = (UD2UT)T . We stress that we

are not computing the SVD factorization X = UDV T , where U 6= V as that is a more

59

general numerical analysis problem [13, 22]. The correlation matrix, ρ, is generally

preferred because it normalizes dimensions. Notice that when X has been normalized

(i.e. with a z-score, centering at the origin subtracting µ and rescaling variables by

standard deviation σj) ρ = XXT/n. Therefore, given ρ, its eigen decomposition

[22] is a symmetric matrix factorization expressed as ρ = (XXT)/n = UD2UT . In

general, only k principal components (k < d) carry the most important information

about the variance of the data set and the remaining d−k components can be safely

discarded to reduce d. The actual reduction of d to some lower dimensionality k (i.e.

the k principal components) requires an additional matrix multiplication, which is

simpler and faster than computing Θ.

PCA can be computed solving SVD on the correlation matrix. To compute PCA

we rewrite the correlation matrix equation based on the sufficient statistics in Γ:

ρab = (nQab − LaLb)/(
√
nQaa − L2

a

√
nQbb − L2

b) (4.6)

The PCA algorithm two phases are:

1. Compute Γ.

2. Compute ρ (or covariance matrix V), solve SVD of ρ (or V). Optional: select

the k principal components (generally whose eigen-value is at least 1).

We omit discussion of the actual dimensionality reduction of X to a k-dimensional

data set. This computation is straightforward requiring only matrix multiplication

between a d× k matrix Γ derived from SVD and X.

60

4.4.2 Linear Regression (LR)

Let X = {x1, . . . , xn} be a set of n data points with d explanatory variables and

Y = {y1, . . . , yn} be a set of values such that each xi is associated to yi. The linear

regression model characterizes a linear relationship between the dependent variable

and the d explanatory variables.

Using matrix notation, the data set is represented by matrices Y (1× n) and X

(d× n), and the standard definition of a linear regression model is:

Y = βTX + ε (4.7)

where β = [β0, . . . , βd] is the column-vector of regression coefficients, ε represents

the Gaussian error and for mathematical convenience X represents X augmented

with an extra row of n 1s stored on dimension X0. The vector β is usually estimated

using the ordinary least squares method [28], whose solution is:

β̂ = (XXT)−1XY T (4.8)

As introduced above, Γ contains those 2 partial matrix products and so β̂ =

Q−1(XY T). Therefore, the LR algorithm becomes:

1. Compute Γ.

2. Solve β̂ exploiting Γ.

61

4.4.3 Variable Selection (VS)

We now focus on one of the hardest analytical problems: variable selection in

statistics, feature selection in machine learning. Because we have previously intro-

duced linear regression, we will study variable selection in this model. However, our

algorithms have the potential to be used in other models such as probit models [22],

Bayesian classification [22], and logistic regression [22]. All of which have similar

intermediate matrix computations.

The input is X, like LR, but it is necessary to add model parameters. In general,

a linear regression model is difficult to interpret when d is large, say more than

20 variables. The search for the best subsets of explanatory variables that are good

predictors of Y is called a variable selection. The assumption of this search is that the

data set contains redundant variables or they have low predictive accuracy and thus

they can be safely excluded from the model. When d is high, an exhaustive search on

the 2d subsets of variables is computationally intractable for even a moderately large

d. Traditional greedy methods, for instance, stepwise selection [22] can only find

one subset of variables, likely far from the optimal, but the probabilistic Bayesian

approach aims to identify several promising subsets of variables, which in theory can

be closer to the optimal. In this work, the set of selected variables will be represented

by a d-dimensional vector γ ∈ {0, 1}d, such that γj = 1 if the variable j is selected,

and γj = 0 otherwise. We denote by Θγ the model that selects k out of the d

variables, corresponding to the vector γ. The dot product k = γT · γ indicates how

many variables were selected. Throughout this dissertation, we will use γ as an index

to project matrices on selected variables such as βγ and Xγ.

62

MCMC Methods: the Gibbs Sampler for VS

We use the Bayesian formulation and Gibbs sampler introduced in [28] based on

a Zellner G-prior, which has the outstanding feature of sharing several intermediate

matrix computations with the other models defined above. Given a model Θ with K

parameters, one of the parameters is sampled from its prior distribution, while the

othersK−1 parameters remain fixed. The set of variables selected at iteration i of the

sequence of observations is denoted by a vector γ[i]. The Gibbs sampler for variable

selection generates the Markov chain: γ[0], . . . , γ[N], in which it is expected the best

variable subsets will appear more frequently. At each iteration I, the Gibbs sampler

generates γ[I] based on the previous state of the Markov chain, γ[I−1]. Since each

coordinate γ
[I−1]
j is a parameter of model Θγ, the Gibbs sampler visits all d entries

of γ[I]. In more detail, for every variable γ
[i]
j the normalized probabilities p(γ

[i]
j = 0)

and p(γ
[i]
j = 1) are calculated. Based on these probabilities either γ

[i]
j = 0 or γ

[i]
j = 1

is chosen by sampling and the jth position of vector γ
[i]
j is updated accordingly.

The Markov chain becomes stable after an initial number of iterations, known as the

burn-in period B. Then, the MCMC method iterates for a large number of iterations

until the posterior probabilities of γ have been sufficiently explored (essentially a

CPU bound computation, which requires many trial and error runs).

Recall that we performed the variable selection with an MCMC method, poten-

tially requiring thousands of iterations. We base the computation of π (γ|X, Y) on

the Zellner G-prior due to [28]. Zellner’s G-prior relies on a conditional Gaussian

prior for β and an improper (Jeffrey’s) prior for σ2 [28], with parameters c and β̃.

The most common prior probability for γ is the uniform prior π (γ|X) = 2−d [28].

63

Under Zellner’s G-prior, the parameter c influences the number of variables selected

by the model: large c values lead to parsimonious models (few variables), whereas

small values of c promote saturated models (many variables). On the other hand, β̃

is a hyper-parameter [28] (i.e. a new parameter not belonging to the original linear

regression model) to impose a Gaussian on β.

β|σ2, X ∼ Nk+1

(
β̃, cσ2

(
XXT

)−1
)

(4.9)

σ2 ∼ π
(
σ2|X

)
∝ σ−2 (4.10)

For notational convenience Xγ, β̃γ,Qγ mean projecting X, β̃,Q on selected vari-

ables. Recall X = [1, X]. The full equation to get the posteriors of γ involves:

π(γ|X, Y) ∝ (c+ 1)−
k+1
2

(
Y Y T

− c
c+1

(YXγ
T)(Qγ)

−1(XγY
T)

−(c+ 1)−1̃‘βTγ Qγβ̃γ

)−n/2
The Zellner G-prior is computationally convenient for big data because equations

can be expressed in terms of Γ. We will use the sufficient statistics by equations 4.1,

4.2 and 4.3 in order to avoid recomputing those matrix products at each iteration.

Therefore, our optimized algorithm becomes

1. Compute Γ, which contains Qγ, XγY
T and Y Y T .

2. Iterate the Gibbs sampler a sufficiently large number of iterations to explore

π(γ|X, Y).

64

4.5 Time Complexity and Parallel Speedup

Our analysis is based on the 2-phase algorithm introduced in Section 4.3. We

start with time complexity. Phase 1, which corresponds to the summarization matrix

operator, is the most important. Computing Γ with the dense matrix operator is

O(d2n). On the other hand, computing Γ with the sparse matrix operator is O(k2n)

for the average case assuming k entries from xi are non-zero. Assuming X is hyper-

sparse k2 = O(d) then the matrix operator is O(dn) on average. Space required

by Γ in main memory with a dense representation is O(d2). In Phase 2 we take

advantage of Γ to accelerate computations involving X. Because we are computing

matrix factorizations derived from Γ time is Ω(d3), which for a dense matrix it may

approach O(d4), when the number of iterations in the factorization numerical method

is proportional to d. In short, the time complexity for Phase 2 for the models we

consider does not depend on n. I/O cost is just reading X with the corresponding

number of chunk I/Os in time O(dn) for dense matrix storage and O(kn) for sparse

matrix storage.

We now analyze the parallel speedup assuming N processors on a shared-nothing

parallel architecture. Recall that we assume d < n and n → ∞. For Phase 1 each

chunk of X is hashed to N processors. Because we assume xi fits in one chunk,

this results in xi being hashed as well. Our matrix operator can compute each outer

product xi·xTi in parallel, resulting inO(d2n/N) work per processor for a dense matrix

and O(dn/N) work per processor for a sparse matrix. Both dense and sparse matrix

operators become optimal as N increases or n → ∞. We now consider Phase 2,

which involves numerical methods from linear algebra. Since Γ significantly reduces

65

problem complexity and the numerical methods used to solve SVD, least squares

and matrix inversion are mathematically complex, we assume matrix factorizations

are computed on one node (N = 1) calling the efficient LAPACK library. In other

words, it is not worth reprogramming SVD, least squares, or matrix inversion to run

in parallel across N nodes, but they can indeed be run in parallel on one node with

a multicore CPU, taking advantage of LAPACK. Notice the MCMC method used

by VS is difficult to parallelize across iterations since each iteration depends on the

previous one. It makes sense computing each iteration, requiring a matrix inversion,

as fast as possible. Therefore, for Phase 2, there are two choices for computation:

totally sequential or parallel with scale up (increasing number of cores and threads).

In short, for Phase 2, we rely on the parallel and numeric capabilities provided by

LAPACK, which is a gold standard for numeric accuracy and which provides superb

performance on one node with multicore CPUs.

4.6 Data Summarization in Parallel Database Sys-

tems

In this section, we elaborate on the system implementation details in two parallel

database systems with N processing units in a shared-nothing architecture (i.e. N

nodes, each with its own memory and disk space). We also discuss in detail the

general and system-dependent optimizations.

66

4.6.1 Data summarization in SciDB

A parallel array DBMS enables the manipulation of multidimensional arrays, re-

moving RAM limitations in a large matrix computation. The fundamental difference

between SciDB and a row or column DBMS is storage by chunk instead of block.

Such chunk storage requires different programming and optimization, compared to

SQL queries or UDFs. Moreover, it is feasible to develop an operator that receives a

matrix as input and produces a matrix as output, something not easy to do in SQL.

SciDB organizes array storage by chunks [43], where each chunk is a large mul-

tidimensional block on secondary storage that stores a preferably large fraction of

cells (values) for one numeric attribute (e.g., a subarray). Array storage in SciDB

can be visualized as a grid of rectangular chunks (tiles in 2D), where each chunk

comprises a rectangular area of contiguous cells. Storage for dense and sparse arrays

is different, but SciDB allows an efficient migration to a dense representation as a

matrix gets denser.

4.6.2 Programming Mechanisms in SciDB

The major question is how to program the computation of Γ in SciDB. Choices

are: (1) exporting (with a bulk mechanism) the X matrix to a linear algebra package

(LAPACK); (2) using relational style queries on arrays in the AQL (Array Query

Language) language provided by the DBMS; (3) composing existing array opera-

tors in the AFL (array functional language) language; (4) developing a new array

operator, tailored to Γ. Exporting the input matrix is a bad idea, as it defeats the

purpose of the DBMS, no matter how fast the computation can happen outside. The

67

query language is a natural second option, but it is inefficient as it requires a similar

evaluation query plan as an SQL query with a costly relational join operation. In

fact, we will show such join is slow even on a fast column DBMS. Existing matrix

operators are inefficient and limited by RAM. These alternatives were experimentally

compared in [37] and our new matrix summarization operator was the winner.

4.6.3 The Gamma Array Operator to Summarize a Matrix

As pointed out by previous research [35], it is easy to compute only n, L, without

Q, because they only require sums of a value (counting) and incrementally summing

a d-vector. That is, Q makes the computation more demanding. Recalling that Γ

contains n, L, and Q as submatrices, the main challenge is to compute this matrix

product:

Γ = ZZT =
n∑
i=1

zi · zTi ,

which requires cross-products between all dimension pairs, an O(d2n) computa-

tion. That is, we study the summarization operator purely as a matrix multiplication

that subsumes all previous approaches. A fundamental aspect is to optimize com-

putation when X (and therefore Z) is sparse; any multiplication by zero returns

zero. Therefore, when computing ZZT a multiplication should be evaluated only

when both vector zi entries are different from zero. Since dense and sparse matrices

have different storage and different processing in main memory, this leads specialized

summarization operators for each of them.

68

Dense Matrix Operator

The dense operator requires that all data of zi (xi in consequence) fits in one

chunk. In other words, zi cannot be partitioned into several chunks in spanned

storage. This requirement is important to accelerate I/O: larger chunks improve

I/O because our Γ computation requires a full scan of the data set, without join

algorithms. Otherwise, if d is so large that it is necessary to store xi spanning

several chunks, then it would be necessary to call a join algorithm, joining X with

itself.

Smaller chunks would trigger seeks, resulting in poorer performance. Fitting

many points xi in one chunk is not an unreasonable assumption because SciDB favors

fairly large chunk sizes, typically ranging above 8 MB. Another major requirement

and advantage is that the operator must work in parallel. It is a requirement that

complicates programming because it is essential to design and develop the operator

in such a way that X can be evenly partitioned across N processing nodes, with

minimal or no need of synchronization overhead. The advantage is, of course, the

ability to scale processing to larger N as n grows. Our Γ operator works fully in

parallel with a partition of X into N subsets X [1] ∪X [2] ∪ · · · ∪X [N] = X, where we

independently compute Γ[I] on X [I] for each node I (we use this notation to avoid

confusion with matrix powers and matrix entries). In SciDB terms, each worker,

I, will compute Γ[I]. When all workers are done, the coordinator node will gather

all results and compute a global Γ = Γ[1] + · · · + Γ[N] with O(d2) communication

overhead per node (much smaller than O(dn). This is essentially a natural parallel

computation [42], because we can push the actual multiplication of zi · zTi into the

array operator. Given the additive properties of Γ, the same algorithm is applied on

69

each node I = 1 . . . N to get Γ[I], combining all partial results Γ =
∑

I Γ[I] in the

coordinator node. Our parallel algorithm to compute Γ is below.

/* X on secondary storage, Γ in main memory */
Data: X = {x1, x2, . . . , xn} = X [1] ∪ · · · ∪X [N]

Output: Γ

/* Parallel for:
N nodes working in parallel on partition X [I] */

for I = 1 . . . N do
Γ[I] ← 0
for xi ∈ X [I] do

zi = [1, xi, yi]
for a = 0 . . . d+ 1 do

for b = 0 . . . a do

Γ
[I]
ab ← Γ

[I]
ab + zia ∗ zib

end

end

end

end
/* send local summaries to coordinator node */
Γ =

∑N
I=1 Γ[I]

Algorithm 3: The parallel dense algorithm to compute lower triangular Γ on a
dense matrix.

Sparse Matrix Operator

A sparse matrix uses less space on secondary storage, resulting in faster I/O and

a smaller footprint in RAM per point. A second advantage is that since more cells fit

in one chunk d can be higher compared to the dense operator. Therefore, assuming

a density threshold, ψ, xi can have higher dimensionality being able to fit in one

chunk. If p is the maximum dimensionality for a dense matrix representation, then

d = dp/ψe can be the maximum dimensionality for a sparse matrix. For instance, if

ψ = 0.01 then d = 100× p.

70

In a similar manner to a dense matrix, we assume xi fits in one chunk. Moreover,

since xi is a sparse vector, its coordinates reside on the same chunk improving I/O

locality. Under this assumption, the algorithm for a sparse matrix has the same

outer loop on i to scan partition X [I], compared to the algorithm for a dense matrix.

The first major difference is that we dynamically build a main memory sparse vector

representation for zi, following a similar scheme to LAPACK [14], whose number of

non-zero entries is k = |zi|. The loop to build zi is O(d) (and not O(k)) because

SciDB does not store matrix entries as (subscript,value) pairs. Instead, SciDB uses

Run-Length Encoding for a sequence of zeroes, which consumes more disk space, but

allows an easy gradual change from sparse to dense representation. The second major

difference is the two inner loops, which go a = 1 . . . k, b = 1 . . . k which result in O(k2)

flops. Such optimization results in a much better time complexity O(k2n) < O(d2n).

Assume that X is hyper-sparse [9] so that k2 ≤ d (i.e. k = O(
√
d); the ratio of

the number of non-zero entries to d asymptotically approaches zero). Then time

complexity becomes O(dn), which is significantly lower than O(d2n). In a similar

manner to the dense operator, there is O(d2) communication overhead per node

(much smaller than O(dn) if the data set had to be transferred) to get the global

summary matrix, Γ, in time O(d2N) using a locking mechanism to update the matrix.

Finally, nnz ≤
√
dn can be used as a threshold to use the sparse algorithm, where

nnz is the number of non-zero entries in X.

The sparse operator brings two computational aspects into question. The first

issue is the ability to maintain Γ in RAM for high d. The second one is developing a

third operator for a sparse Γ matrix. We emphasize that for most big data analytics

problems d < n. For the first issue, it is reasonable to maintain Γ for fairly high

71

/* X on secondary storage, Γ in main memory */
Data: X = {x1, x2, . . . , xn} = X [1] ∪ · · · ∪X [N]

Output: Γ

/* Parallel for:
N nodes working in parallel on partition X [I] */

for I = 1 . . . N do
Γ[I] ← 0
for i = 1 . . . |X [I]| do

k ← 1 /* zi0 = 1 */
zi ← [1, xi, yi]
for j = 0 . . . d+ 1 do

if zij 6= 0 then
vk ← zij
ik ← j
k ← k + 1

end

end
/* k = |zi| */
for a = 1 . . . k do

for b = 1 . . . a do

Γ
[I]
iaib
← Γ

[I]
iaib

+ via ∗ vib
end

end

end

end
/* send local summaries to coordinator node */
Γ =

∑N
I=1 Γ[I]

Algorithm 4: The parallel sparse algorithm to compute lower triangular Γ on a
sparse matrix.

72

d in RAM given the rapid growth in RAM volume (we experimentally show this is

feasible for d ≈ 1000). For the second issue, in general, a sparse representation for

Γ does not make sense because that would imply the dataset contains zero-constant

dimensions to start with (i.e. useless). Moreover, any constant dimension should be

detected and eliminated, alerting the user. For such cases, it makes sense to discard

constant dimensions on a pre-processing pass computing only n, L and the diagonal

of Q. That is, computing only row 0 (column 0) and the diagonal of Γ (no dimension

cross-products). The user can now safely discard any dimension, j, whose σj = 0.

This a consequence of Γ containing an extended set of sufficient statistics from which

we can derive µj, σj for dimension j.

4.6.4 Additional Considerations

Data quality: Constant dimensions and missing values

Our Γ summarization matrix can help detect and fix data quality problems.

Because µa, σa can easily be derived from Γ, the Γ matrix can be used to eliminate

constant and near-constant dimensions where σa ≈ 0.

Consider the trivial, but common, case that Γaa = 0 for a = 1 . . . d+1 (remember

that Γ00 = n). This means that dimension a is completely full of zeroes: clearly

such dimension is useless and should be eliminated from further consideration. In a

more general case, consider constant dimensions with non-zero values. If dimension

a is constant then the variance of dimension a is zero, then all covariances Σab

or correlations ρab are undefined (null in SQL). The reason is straightforward: a

constant dimension provides no statistical insight to the analyst (other than alerting

73

the analyst that something may be wrong in data collection). Moreover, PCA and

linear regression require eliminating constant dimensions because their intermediate

matrices cannot be factorized or inverted. In short, we assume that before computing

model Θ, all constant and near-constant dimensions have been eliminated, and any

missing values have been replaced or their points eliminated.

Systems Aspects

Our operators were programmed in C++ with the API provided by SciDB. The

operator was programmed as an array aggregation (Figure 4.2), which has similar-

ities with an aggregate UDF in a relational DBMS [35]. The similarities are: the

ability to update variables in main memory, seamless integration with a scan over

the input array, parallel execution with just one synchronization barrier at the end,

programmed in an efficient language (the same as the DBMS: C++), similar pro-

cessing phases (initialization, increment, final, and return), and not being able to

call other array operators within the operator source code. However, as fundamen-

tal differences, we must mention: our array operator receives array chunks as input

(not rows) and it produces an array as output, not a scalar value. Therefore, it is

unnecessary to do data type conversion like in a relational DBMS [35]. The ability

to define a parallel array operator that receives an array as input and produces an

array as output was fundamental for us.

We now discuss why the dense and sparse operators working together with R can

compute models faster than alternative approaches. Specifically, our array operator

is much faster than an implementation on Hadoop-MapReduce systems (e.g., Spark

[50]) and it is much faster than any SQL-based engine, including UDFs. This is a

74

Figure 4.2: How the Gamma operator works in SciDB

list of main reasons. Our operator works in a single array scan with large disk blocks

(chunks) and these chunks are fairly large (>8MB) [43] (and growing in the future

as RAM grows). The operators work with compiled C++ code: there is no overhead

or delay parsing a query, query optimization at run-time, or ODBC communication

overhead. Moreover, compiled C++ code is faster than Java byte code and faster

and more memory-efficient than Java compiled code (widely used on Hadoop). Since

we use an array operator that takes an array as input and an array as output, there

is no overhead converting matrices between different representations. Our operator

cannot be as efficient as compiled FORTRAN code used by LAPACK for small ma-

trices, where small means a matrix that can fit in the cache memory in the CPU.

However, our operator scales much better as matrices get bigger and they surpass

cache memory size. In fact, we will show our operator surpasses LAPACK speed

75

for very large sparse matrices, which is the state of the art for high performance

computing. Such comparison settles any speed concerns about our operator. On the

parallel processing side, the input matrix storage layout is key to enable a fully par-

allel computation without needing to send data from one node (or processing thread)

to another one. Our main assumption is that xi can fit completely in one chunk:

we will show experiments where d = 800, a truly high dimensionality. Moreover, we

can solve even higher d problems with sparse matrices, the norm in big data analyt-

ics. While it is true, data shuffling in a distributed system may be needed for high

dimensional data we will experimentally show we can solve fairly high d problems.

Considering pure C++ code reading a binary file our operator will likely be faster

simply because SciDB has an efficient I/O subsystems, processing is multi-threaded

and access is block-based. In other words, a well-crafted C++ program would need

to mimic or redo the basic SciDB array storage. Therefore, our system runs much

faster and is more scalable than any other C++, LAPACK, SQL or Hadoop-based

system. Our experiments will prove that is the case.

4.6.5 Accelerating Summarization with a GPU

Computing Γ by evaluating ZZT is a bad idea because of the cost of comput-

ing and materializing ZT . Instead, we evaluate the sum of vector outer products∑n
i=1 zi · zTi , which is easier to parallelize and update in RAM. Moreover, since Γ

is symmetric, we only compute the lower triangle of the matrix during computation

to save execution time. Our Γ matrix multiplication algorithm works fully in par-

allel with a partition of X into N subsets X [1] ∪ X [2] ∪ · · · ∪ X [N] = X, where we

independently compute Γ[I] on X [I] for each processor I. A fundamental aspect is

76

to optimize computation when X (and therefore Z) is sparse: any multiplication by

zero returns zero. Specifically, nnz ≤
√
dn can be used as a threshold to decide using

a sparse or algorithm, where nnz is the number of non-zero entries in X. Computing

Γ on sparse matrices with a GPU is challenging because tracking and partitioning

non-zero entries may reduce parallelism by adding more complex logic in the operator

code. In this dissertation, we focus on the dense matrix algorithm.

Our following discussion focuses on integration with an array DBMS, given its

ability to manipulate matrices. From a systems perspective, we integrated our model

computation using Γ with the SciDB array DBMS and the R language, with a 2-phase

algorithm: (1) data summarization in one pass returning Γ; (2) exploiting Γ in inter-

mediate computations to compute model Θ. We emphasize zi is assembled in RAM

(we avoid materializing zi to disk). Unlike normal UDFs in a traditional DBMS,

which usually need to serialize a matrix into binary/string format then deserialize

it in succeeding steps, our operators in SciDB returns Γ directly in array format,

which is a big step forward compared to previous in-DBMS approaches. Phase 2

takes place in R on the master node leveraging R’s rich mathematical operators and

functions. Although this phase does not run in parallel across nodes, it does not

impact the overall performance since Γ passed from SciDB in the first step is much

smaller than the data set, resulting in much faster iterations working in RAM. That

is, Phase 1, computing Γ, is the main task to parallelize.

Parallel processing happens as follows. In SciDB, arrays are partitioned and

stored as chunks, and such chunks are only accessible by C++ iterators. In our

previous work [38], we compute the vector outer product zi · zTi as we scan the data

set in the operator. We emphasize zi is assembled in RAM (we avoid materializing

77

zi to disk). In general, interleaving I/O with floating point computation is not good

for GPUs because it breaks the SIMD paradigm. In our GPU accelerated operator,

we first extract matrix entries in each chunk into main memory. Then we transfer

the in-memory subsets of X to GPU memory, one chunk at a time. Then the GPU

computes the vector outer products zi ·zTi fully in parallel with its massive amount of

processing units (cores). The sum is always maintained in the GPU memory. It takes

log(n) time to accumulate n partial Γs into one using the reduction operation. When

the computation finishes for the whole dataset, the Γ matrix is transferred back from

GPU memory to CPU main memory. The C++ operator code is annotated with

OpenACC directives to work with GPU. In our current GPU version, the CPU only

does the I/O part. Since the DBMS becomes responsible for only I/O, our approach

has promise in relational DBMSs.

4.7 Data summarization in Columnar DBMS

We start by discussing storage in the columnar DBMS, where indexing is not

required. The dataset and model matrices are stored in tables, having a primary key

with a specific combination of matrix subscripts, depending on their storage layout.

We use two fundamental dataset layouts for X: horizontal and vertical. The first

layout is a standard tabular representation which has n rows, each having d columns.

The second layout is based on a pivoted table with one attribute value per row and

up to dn rows, which enables efficient processing of sparse matrices and which also

removes DBMS limitations on the maximum number of columns. The I/O efficiency

of each layout depends on matrix sparsity and the specific query physical operator

78

Figure 4.3: The horizontal and vertical layout for X in the columnar DBMS.

(scan, join, sort). Figure 4.3 illustrates the two types of layout.

In order to achieve better performance, the data set will be sorted by the matrix

subscripts, and will be segmented and distributed to all the N processing nodes

evenly according to the value of a hash function on the row number i. This process

will be automatic in the columnar DBMS during the data loading phase once we

properly define the table at creation time. The following SQL command shows a

proper way to define the input table X in Vertica:

CREATE TABLE X (

i INT NOT NULL ENCODING RLE,

j INT NOT NULL ENCODING COMMONDELTA COMP,

v FLOAT)

ORDER BY i, j

SEGMENTED BY MODULARHASH(i) ALL NODES;

79

Computing matrix equations with SQL queries has proven to be hard to optimize

[32]. To get started, it is not possible to create fixed queries that can efficiently

evaluate mathematical equations because the table definition for the input data set

is not fixed (especially for the horizontal layout with d columns). Second, evaluating

matrix equations with pure SQL queries usually involves table joins, which are always

quite expensive for DBMSs especially when they are evaluated in parallel. Therefore,

SQL code generation at run-time from R and developing specialized mathematical

UDFs to bypass table joins are necessary. Statistical methods and data mining

algorithms are also programmed with R in order to take full advantage of its rich

library of models and techniques.

The R program is based on two sets of parameters. The first set of parame-

ters controls SQL code generation (i.e. table name and layout) and database sys-

tems optimizations, which are tailored to each algorithm (with some essential math

optimizations across multiple models). The second set of parameters controls the

mathematical behavior of each technique. Examples include the number of clusters,

tolerance threshold for convergence, numeric stability issues, and so on.

We must emphasize that SQL code generated by R represents a Turing-complete

language. That is, we can evaluate any equation with matrices, no matter how

complex.

As we have discussed in Chapter 4.2, Γ = Z · ZT [37]. Γ can be computed by a

single SQL query using self-joins like the following:

SELECT

a.j AS i,

b.j AS j,

80

SUM(a.v * b.v) AS v

FROM X a JOIN X b ON a.i = b.i

GROUP BY a.j, b.j;

To bypass the expensive self-join in the SQL query, we can also compute the Γ

by calling a user-defined transform function that builds vector zi and updates Γ in

parallel and incrementally:

SELECT Gamma(i, j, v USING PARAMETERS d = d)

OVER (PARTITION BY MOD(i,N)

ORDER BY i, j)

FROM X;

4.8 Experiments

We present experiments focusing on scalability and parallel processing. Because

our operator and the 2-phase algorithm do not change the accuracy of matrices and

final results, it is unnecessary to measure statistical or numeric accuracy. We should

emphasize that our summarization operator was used to produce the Γ matrix to be

consumed by the R package. That is, the final model Θ computation happened in

R. Therefore, the model computed by R alone and the model computed by SciDB in

tandem with R are the same.

This is an overview of experiments with a focus on scalability and parallel pro-

cessing. We first review existing system and justify our choice of specific systems

for comparison. We start our evaluation presenting time benchmarking experiments

comparing our operator with popular analytic systems, including the R package and

81

Table 4.2: Data sets.

Data set d n Description
KDDnet 38 5M Network intrusion detect (KDD Cup)
Gene 12506 248 Gene data to predict cancer survival

a fast columnar DBMS on a single computer with a powerful multicore CPU. We

should stress R and many math packages internally use LAPACK for the most nu-

merically intensive computations. Therefore, in order to test our matrix operators

with large matrices, we also make a careful comparison with the LAPACK [14, 13]

library (the state of the art in numerical linear algebra) using its Intel MKL variant

(the fastest variant for Intel multicore CPUs). Finally, we analyze scalability and

speedup on a large cluster in the cloud with large data sets comparing our R+SciDB

system with Spark, currently the most popular analytic platform from the Hadoop

stack.

4.8.1 Setup

We used two data sets: the network intrusion data set and a microarray genomics

data set, summarized in Table 4.2, obtained from the KDD Cup repository (KDD

99), and a cancer data set repository, respectively. We sampled and replicated the

KDDnet to get varying n (data set size) and d (dimensionality), without altering

its statistical properties. Its columns were replicated three times and rows were

replicated to get d = 100, n = 10M. Based on this “reference” data set rows were

sampled and replicated in log-10 scale and columns were replicated in log-2 scale.

On the other hand, the Gene data set was left as is.

82

Table 4.3: Hardware and operating system.

Item Local Cloud (Amazon)
OS Linux Ubuntu Linux Ubuntu
CPU 4 cores: 2.15 GHz 2 cores (2VCPU): 2GHz/worker

4 cores (4VCPU): 2GHz/coord.
N nodes 1 1, 10, 100
threads SciDB: 2 instances SciDB: 2,20,200 instances

Spark: NA Spark: 2,20,200 executors
RAM 4 GB 7.5 GB/node (SciDB/Spark)

15 GB/coordinator (Spark)
Storage 3 TB 10 TB

4.8.1.1 Mathematical Models Functions and Parameters

For PCA and LR, we used the R default parameter settings to get accurate results.

On the other hand, for VS we used a small number of iterations for the MCMC

Gibbs sampler since this algorithm is CPU bound (after being optimized) and we

were interested in comparing performance, rather than getting an accurate Bayesian

model, which would require many trial/error experiments and tens of thousands of

iterations (i.e. exploring the posterior probability and evaluating convergence of

the Markov Chain). For Spark, we used the available functions it had for matrix

multiplication, LR, PCA, and MLlib, the best library currently available. We should

mention Spark did not offer functions for variable selection. For LR and PCA, we

used the recommended number of iterations by Spark.

4.8.1.2 System Setup and Tuning

We tested our operator and competing systems on two hardware configurations

(summarized in Table 4.3): (1) one node (N = 1) (4-core CPU) and (2) N nodes

83

(2-core VCPU). Our default system configurations were two instances for SciDB and

two executors per node for Spark (i.e. 2 threads per node). For N = 1 data sets were

copied to the Linux file system and then loaded into the respective DBMS (array,

column). For the N nodes, we used the Amazon cloud, which already offered optimal

configuration for HDFS, and where Spark was pre-installed and tuned. The times to

transfer, copy, and load the data sets into chunk format for SciDB or the time to copy

CSV files from Unix to HDFS for Spark are not included in our time measurements,

since it was a one-time event. Processing times include the I/O time to read arrays

in chunk format in SciDB, and the time to read the CSV files, and transform them

into RDD format [50] which is the distributed memory format in Spark.

For the array DBMS and the column DBMS, we cleared the buffers (DBMS

cache) before each run to make sure measurements include the time to read from

disk. We ran each program three times on each system and we reported the average.

When the R system crashed, mainly due to RAM limitations, we reported “fail”. For

Spark, we made sure the data set was cleared from distributed memory before each

run, but Spark could cache the data set for iterative algorithms (LR, PCA). That is,

we attempted to make a fair comparison, giving each system the best opportunity.

In general, when the computation could not finish in 30 min it was automatically

stopped and we reported “stop”. We show execution times in seconds. In some

isolated cases we let the system run for 1 hour.

84

4.8.2 Comparing Analytic Systems (N = 1 node)

4.8.2.1 Comparing R+SciDB and R alone

We start by comparing our proposed hybrid solution combining the array DBMS

and the R package to the R package alone, assuming a dense matrix as input. We

did not compare with a sparse matrix storage in R because most statistical models in

R are computed with an input matrix with a dense layout. Moreover, a sparse data

set requires a significantly different storage structure in RAM, which would require

making at least two passes to convert the data set from dense to sparse storage. For

PCA, we called the princomp() function and for LR, we called solve(), both stan-

dard R function calls widely used by R analysts. For VS in R, we use the R script

available from [28] to solve Bayesian variable selection with the same method. The

original R script from [28] was so slow that it could not run in under one hour even

for n=1k (i.e. when the data set fits completely in RAM). Therefore, we were forced

to incorporate our optimization based on Γ, but as a matrix multiplication. Incorpo-

rating a faster optimization based on vector outer products would require developing

a C++ function working by block in R, converting the R matrix representation to

native C++ arrays, back and forth, which we consider a topic for future research.

The SciDB dense matrix operator computes Γ, which is passed to an R script further

optimized by us. We would like to mention our time measurements on SciDB and

the column DBMS do not include the time to load the data set and apply an array

redimension operator to convert it from table to matrix because, in practice, they

are a one-time event.

Table 4.4 compares the total time to get Θ in R alone and the combination

85

Table 4.4: Comparing computation of model Θ using R and DBMS+R; dense matrix
operator; data set KDDnet; local server; times in secs.

d n PCA LR VS
R R+SciDB R R+SciDB R R+SciDB

10 100k 0.5 0.6 0.5 0.6 3.4 3.6
10 1M 4.8 1.3 5.6 1.3 7.6 4.7
10 10M 45.2 7.0 50.1 7.1 58.8 9.6
10 100M fail 64.7 fail 69.8 fail 93.4

100 100k 5.7 2.5 6.3 2.6 34.4 14.8
100 1M 61.2 16.8 60.5 16.9 113.0 29.1
100 10M fail 194.9 fail 194.9 fail 207.2

DBMS+R. We can see R scales well, but eventually crashes upon reaching RAM

capacity. For all models, our Γ operator on R+SciDB is faster than R working alone.

These times prove the superiority of our operator and our 2-phase algorithm. A

combination of factors make R slower: parsing the input text file, single-threaded

processing, but mainly not exploiting our summarization matrix.

We now turn our attention to the Gene data set, with very high d, analyzed in

Table 4.5. The authors of [28] provide an R program that computes a state-of-the-art

Bayesian model that was our reference Gibbs sampler algorithm. This R program

was so slow that we had to incorporate our Γ summarization matrix computed in

R as a matrix product. Since d > n temporary matrices (on selected variables)

were ill-conditioned and the MCMC method did not converge properly. That is,

they could not be inverted or factorized. Convergence with such a high d required

hundreds of thousands of iterations, becoming prohibitive. Finally, variables with

marginal correlation to Y had little statistical significance. Therefore, we ran an

initial variable pre-selection step computing correlations between each variable and

Y , to obtain a reduced dimensionality p, in which the MCMC method converged

86

Table 4.5: Bayesian variable selection (VS) in gene data set (d = 12506, n = 248):
Comparing R+SciDB with R at 1000 iterations; times in secs.

p R+SciDB R unoptimized R optimized
with Γ

100 17 1139 16
200 43 * 43
400 83 * 85
800 199 * 200

properly. As seen in Table 4.5, Γ is essential to accelerate computation and R

(optimized) was competitive with R+SciDB because the data set could fit in RAM.

We emphasize our optimization had a significant impact on R alone, highlighting its

generality.

4.8.2.2 Computing Γ on R, Array DBMS, and Column DBMS

It is natural to wonder if Γ can be computed by the other systems, beyond the

array DBMS. With this question in mind, we investigated how Γ can be computed

on each system, making a reasonable effort to develop an efficient program within

each system constraints.

For R, the data set was read from disk and loaded in RAM and then Γ was ob-

tained with a standard matrix multiplication using %*% (i.e. the fastest mechanism

available, commonly used by R analysts). For the column DBMS, we stored X on a

vertical layout with one entry Xij per row (i, j, v), where i = 1 . . . n and j ∈ {1 . . . d}.

The query to get Γ was a self-join on i grouping the two dimension subscripts. We

defined the table sorted by i so that all dimension values were clustered on disk; in

this manner, the query optimizer could use a merge-join, the fastest join possible

87

Table 4.6: Comparing matrix summarization algorithms; data set KDDnet; dense
(dn entries) and sparse (zeroes deleted); Local 1/2; times in secs.

Dense matrix Sparse matrix
d n R SQL Γ dense op. SQL Γ sparse op.

density=12%
10 100k 0.6 3.8 0.1 0.6 0.1
10 1M 5.1 31.9 1.1 5.8 0.5
10 10M 50.2 917.2 9.2 13.4 1.6
10 100M fail stop 110.3 218.4 53.3

density=27%
100 100k 6.5 74.0 3.3 23.9 1.8
100 1M 44.1 612.5 31.0 231.6 10.6
100 10M fail stop 332.7 stop 105.2
100 100M fail stop 3423.7 stop 1015.3

in time O(n). Figure 4.4 shows the comparison of the three systems: the upper

plot compares at low dimensionality, d = 10, and the lower plot compares at a high

dimensionality, d=100. For sparse matrix experiments, zeroes are deleted, resulting

in a smaller SQL table and a smaller (compressed) array on the disk. As can be seen

in the plots, the fastest computing mechanisms are our sparse and dense operators,

with the sparse operator being at least twice as fast compared to the dense one,

with matrices having the same d, and n sizes. In general, our operator is about an

order of magnitude faster than R and about two orders of magnitude faster than the

SQL query. Table 4.6 complements Figure 4.4, providing a “drill down” view on the

specific numbers, demonstrating our operator is both scalable and uniformly more

efficient, showing when R failed due to insufficient RAM and indicating when the

SQL DBMS had to be stopped for waiting for more than 30 minutes. These results

make clear SQL cannot solve dense matrix problems, but it shows promise for sparse

matrices of low dimensionality.

88

(a) d=10

(b) d=100

Figure 4.4: Comparing systems to compute Γ on a local server: Array DBMS, R,
and SQL.

89

Table 4.7: Comparing the dense operator (working on disk+RAM), the sparse oper-
ator (working on disk+RAM), and the dense matrix multiplication in MKL BLAS
(parallel LAPACK, working only on RAM) to compute Γ; local server 4GB RAM;
synthetic data sets; times in secs.

d = 100 d = 200 d = 400 d = 800
n density dense sparse MKL dense sparse MKL dense sparse MKL dense sparse MKL

1M 0.1% 27.5 0.2 3.0 94.4 0.2 8.2 374.2 0.4 379.4 1395.4 0.9 fail
1M 1.0% 27.5 0.5 3.0 96.8 1.1 8.2 374.2 3.8 364.7 1404.4 4.0 fail
1M 10.0% 29.4 4.0 3.0 100.7 7.0 8.2 374.2 16.3 367.5 1416.9 46.4 fail
1M 100.0% 30.7 44.0 3.0 106.4 148.8 8.3 374.2 542.3 389.1 1449.4 2159.6 fail
10M 0.1% 290.3 1.1 fail 1003.2 2.0 fail stop 3.2 fail stop stop fail
10M 1.0% 294.8 6.7 fail 1006.4 12.8 fail stop 26.6 fail stop stop fail
10M 10.0% 315.0 50.8 fail 1052.3 104.7 fail stop 195.3 fail stop stop fail
10M 100.0% 323.5 450.6 fail 1058.3 1582.5 fail stop stop fail stop stop fail

4.8.2.3 Comparing Γ Algorithm with Fast Matrix Multiplication: SciDB

versus Intel MKL (LAPACK)

Here we study in more depth the computation of Γ. As mentioned above, R and

many other mathematical packages use the LAPACK library [13, 14], which is both

extremely fast and highly accurate. Therefore, it is natural to ask whether it is worth

computing Γ with LAPACK (in RAM). Moreover, it is important to understand how

LAPACK behaves with truly large matrices, reaching RAM capacity and much larger

than L1/L2 cache memory. Parallel LAPACK variants are well tested and used by

most systems with dense matrices. On the other hand, as of today, developing

parallel programs with distributed memory for sparse matrices is an ongoing effort

[9]. Here we compare our operator with dense matrix functions available in MKL for

multi-core CPUs. Later, we compare with a sparse matrix multiplication available

in SciDB that works in distributed memory in a parallel cluster (using ScaLAPACK

[14]), which requires partitioning the input matrix and using MPI (Message Passing

Interface).

90

Table 4.7 compares our Gamma operators with MKL, the fastest LAPACK par-

allel version for multicore CPUs. We emphasize MKL is working on RAM only,

whereas our operator includes both I/O and CPU time. Therefore, we give MKL an

advantage. As a major observation, MKL fails due to insufficient RAM at n=1M,

d=800 and at n=10M with all d values; there is no quick fix to solve this issue other

than partitioning X on secondary storage and developing a new algorithm.

Evidently, MKL is very efficient with small dense matrices and therefore, it is

worthless optimizing our operators C++ code for small matrices. The main reason

MKL is much faster is that it takes advantage of cache memory (L1 and L2) in the

CPU, reading matrix blocks from RAM in the worst case. MKL incorporates so-

phisticated matrix multiplication algorithms that are very efficient when the matrix

is small enough (relative to L1/L2 cache size). Also, MKL incorporates an efficient

algorithm to move matrix blocks between the cache memory and the RAM repeat-

edly, a low-level optimization out of scope for us. Nevertheless, MKL is marginally

faster than our dense matrix operator at d=400. These results prove our dense ma-

trix operator is slower but scalable. For sparse matrices, the gap gets wider. At

the lowest density extreme (density 0.1%) our sparse operator is much faster than

MKL and our dense operator. In fact, for large matrices (n=1M), density 0.1% and

d=400 our sparse operator is three orders of magnitude faster than MKL and the

dense operator. For d=800, our sparse operator is three orders of magnitude faster

than the dense operator. For n=10M, MKL fails with all d values due to insufficient

RAM, the dense operator must be stopped at d = 400, but our sparse algorithm can

still efficiently work at d=400. Considering that the sparse algorithm is just 50%

slower than the dense one with 100% density, it comes out as the overall winner.

91

Table 4.8: Parallel speedup: Γ dense matrix summarization operator with multi-
threaded processing varying M=# SciDB instances (N=1 node, 4-core CPU); times
in secs.

n=100k n=1M n=100M
M time speedup time speedup time speedup

1 1.4 1.0 13.0 1.0 146.6 1.0
2 0.7 2.0 6.8 1.9 82.8 1.8
4 0.8 1.8 6.2 2.1 60.8 2.4

In summary, our dense and sparse matrix operators working together beat MKL in

scalability and speed.

4.8.3 Parallel Processing (N = 1, 10, 100 nodes)

All speedup figures are computed as sN = T1/TN [14], where T1 is the time for

a purely sequential version and TN is the time on N nodes; ideal speedup means

SN ≈ N .

Table 4.8 presents speedup experiments varying the number of threads on our

local server. The goal is to determine the optimal number of threads in the 4-core

CPU (i.e. a scale-up analysis). As can be seen, as the number of threads grows

time decreases, but the time gain shrinks. The optimal number of threads is 2 since

those times are closest to the theoretical maximum speedup. Intuitively, 1 thread

cannot interleave the intensive CPU computation for Γ with I/O to scan X and at

the other extreme, 4 threads incur too much overhead, switching thread context, and

interleaving scan access to different chunks with one disk. Evidently, it is not worth

going beyond the number of cores in the CPU, 4 in this case (results for 8 threads

are much worse). In conclusion, the only alternative to achieve better speedup is to

92

Table 4.9: Parallel processing: Comparing R+SciDB and Spark varing N (# of
nodes); data set KDDnet d = 38; dense matrix; times in secs.

R+SciDB Spark
N nodes n Gamma/PCA/LR speedup Gramian speedup LR (20 iters) speedup PCA speedup

1 1M 7.0 1.0 78 1.0 314 1.0 98 1.0
10 1M 1.0 7.0 84 0.9 246 1.3 101 1.0
100 1M 0.3 25.0 80 1.0 364 0.9 106 0.9
1 10M 69.0 1.0 200 1.0 2524 1.0 352 1.0
10 10M 6.8 10.1 94 2.1 376 6.7 120 2.9
100 10M 0.7 98.6 98 2.0 414 6.1 120 2.9
1 100M 610.0 1.0 1342 1.0 stop NA 2932 1.0
10 100M 56.2 10.9 210 6.4 2594 NA 432 6.8
100 100M 5.7 107.8 224 6.0 920 NA 220 13.3

increase N in the parallel cluster (i.e. scale out).

We conclude our study of parallel processing analyzing speedup and scalability

in a large computer cluster in the Amazon cloud. Since Γ is a summarization matrix

whose computation is highly parallel it is natural to wonder if it works well on another

parallel system, different from SciDB. The current trend in big data analytics is

Apache Spark [50], which has proven to be easier to program, more scalable and more

general than MapReduce. With such motivation, we studied how to compute the

same machine learning models on Spark. Spark has a rich library of linear algebra and

machine learning functions called MLlib, which offers matrix multiplication, PCA,

and LR, but not VS. After trying several alternatives to compute Γ, we picked the

Gramian() function because it was the most efficient, because it multiplies a matrix

by itself, using Z as input. We should stress that according to Spark documentation,

Gramian() calls ScaLAPACK to evaluate the matrix multiplication in parallel in the

most efficient manner. On the other hand, the PCA and LR models were directly

available in MLlib passing the data set as the main input. The main difference is that

PCA is solved by SVD like ours, but LR uses a gradient descent method [18, 24],

93

which today is the fastest method to compute machine learning models. That is,

we compare two very different approaches to analyze big data: our summarization

matrix versus gradient descent.

Before discussing results, we must explain installation, configuration, and tuning

of both systems. We had to install SciDB as a collection of SciDB instances, where

we assigned two instances (threads) to each node. One of the nodes served both as a

coordinator and a worker. That is, this node was “overworked”. Such limitation was

an architecture constraint of SciDB since it is assumed that all nodes are uniform

and the coordinator incurs on minimum overhead. On the other hand, Spark had the

advantage of having a separate coordinator node, which had more RAM as shown

in Table 4.3. Another important aspect was using sparse or dense matrices. Since

Spark offered algorithms only with a dense (row) storage that is the one we used

in SciDB; time differences would be even larger processing the KDDnet data set in

sparse form. Finally, we used the parameter defaults in Spark for the LR and PCA

models (20 iterations for LR, 5 components for PCA).

Table 4.9 compares SciDB and Spark running in the cloud varying N (the number

of nodes) and n (data set size). The first major observation was that in R+SciDB the

computation of Θ (the model) taking Γ as input, took less than one second for LR

and PCA. Therefore, we reported the three times together in one column for SciDB.

From a raw time perspective, SciDB was two orders of magnitude faster than Spark to

compute Γ. To compute models, the time difference is even more significant, close to

three orders of magnitude, because the actual model computation took less than one

second. In summary, R+SciDB exhibited optimal speedup and significantly better

performance. From a speedup perspective, to compute Γ, Spark had good speedup

94

Figure 4.5: Γ computation time: CPU vs. GPU.

at N = 10, but it was bad at N = 100 (explained by a slow matrix transposition).

To compute LR, there was a better speedup up to N = 100, but far from ideal.

Finally, for PCA, the results were the best, with decent speedup up to N = 100. On

the other hand, SciDB exhibited an ideal speedup to compute Γ both at N = 10

and N = 100. Notice, that due to SciDB architecture, when N = 1 a single node is

overworked (coordinator+worker), which explains why speedup is better than linear

when N grows. Since the time to compute the LR and PCA models was negligible

given the fast multicore CPU, the speedup was the same for Γ, LR and PCA.

4.8.4 Fast Data Summarization with a GPU

Figure 4.5 illustrates GPU impact on data summarization, which is the most

time-consuming step in our 2-phase algorithm. Figure 4.5a shows the GPU has little

95

impact at low d (we do not show times where d < 100 since the GPU has a marginal

impact), but the gap between CPU and GPU rapidly widens as d grows. On the

other hand, Figure 4.5b shows the GPU has linear speedup as n grows, an essential

requirement given the I/O bottleneck to read X. Moreover, the acceleration w.r.t

CPU remains constant.

4.8.4.1 GPU Impact on Total Time to get Model

We now analyze GPU impact on the overall model computation, considering

machine learning models require iterative algorithms. Table 4.10 shows the overall

impact of the GPU. As can be seen, SciDB removes RAM limitations in the R run-

time and it provides significant acceleration as d grows. The GPU provides further

acceleration despite the fact the dense matrix operator is already highly optimized

C++ code. The trend indicates the GPU becomes more effective as d grows. Accel-

eration is not optimal because there is overhead moving chunk data to contiguous

memory space and transferring data to GPU memory and because the final sum

phase needs to be synchronized. However, the higher d is, the more FLOP work

done by parallel GPU cores.

96

Table 4.10: Comparing computation of model Θ using R, DBMS+R, and
DBMS+R+GPU; dense matrix operator; N=1 node (CPU=8 cores); times in secs.

n d model CPU GPU
R R+SciDB R+SciDB

1M 100 PCA 29 14 8
1M 200 PCA 90 46 16
1M 400 PCA fail 165 33

10M 100 PCA fail 147 104
10M 200 PCA fail 466 215
10M 400 PCA fail 1598 455
10M 100 LR fail 147 103
10M 200 LR fail 464 212
10M 400 LR fail 1594 451

97

Chapter 5

Conclusions

We proposed a generalized form of data cube, namely the percentage cube, that

takes percentages as the fundamental aggregated measure. We introduced minimal

SQL syntax extensions to compute percentage queries and to materialize the percent-

age cube. Specifically, we introduced the pct() aggregate function and we considered

alternative evaluation methods based on standard SQL (i.e. ensuring portability and

wide applicability). We studied two alternative evaluation methods: OLAP functions

and the GROUP-BY method using standard aggregate functions. We studied query

optimizations for both methods, including efficient reuse of intermediate results,

bypassing sorting in the query plan. We introduced pruning strategies extending

previous techniques from iceberg queries. From a theoretical perspective, we showed

percentages are in a higher complexity class, doubly exponential. We characterized

percentages within the cube function hierarchy. We justified percentages are an al-

gebraic function. On the other hand, selecting the top-k percentages represents a

holistic function. This was a big step beyond the standard cube. Fortunately, since

percentage aggregations are algebraic, we showed that it was feasible to incremen-

tally compute percentage queries and the percentage cube. Experimental results

showed that our GROUP-BY method worked much faster than existing OLAP win-

dow functions in SQL. We also showed the direct and cascaded pruning strategies

reduced evaluation time. We then showed pruning the cube lattice was essential.

Filtering out low percentages added little time. We showed the additional time to

get top k percentages was significant, but still acceptable. Finally, the incremental

98

computation was effective for a percentage query, but not effective for the percentage

cube, given the doubly exponential number of cuboids.

Since percentage cubes are a new concept, there are many research issues for fu-

ture work. The percentage cube explores all possible grouping column combinations

and the results have to be computed through joins. Due to the large amount of

grouping column combinations, it was difficult to take advantage of the projections

in the columnar DBMS to exploit merge joins (bypassing a sort phase in a sort-merge

join). We expected better performance will be achieved by a tighter level integra-

tion with the DBMS exploiting aggregate UDFs [11]. We have shown selecting the

top k percentages in the cube represented the most demanding class of percentage

aggregation, which offers many opportunities for optimization, especially reducing

combinatorial and sort cost. Currently, we store the cube as a relational table, which

is inefficient as cube dimensionality d grows. A potential improvement is to exploit

a non-tabular data structure, like a hash tree or FP-tree, but the caveat is that such

data structures become incompatible with SQL tables. Therefore, it is necessary to

explore a compromise between our purely relational solution and non-relational data

structure solution. Incremental algorithms are fundamental in big data analytics

since the number of records keeps growing and it is always preferable to reuse previ-

ous results. Our experimental results indicated incremental algorithms are good for

individual percentage queries, but inefficient for the percentage cube. Therefore, a

promising direction is to materialize the percentage cube on a carefully chosen set of

dimensions.

We introduced Gamma, a comprehensive, but small, summarization matrix,

which accelerated the computation of many machine learning models. We developed

99

parallel summarization algorithms based on a special form of matrix multiplication

to efficiently compute Gamma. A key optimization was to evaluate matrix multipli-

cation via a sum of vector outer products, instead of computing a product between

the input matrix and its transpose. Based on the summarization matrix, algorithms

to compute linear models were transformed to work in two phases: Summarization

and iteration. Considering that dense and sparse matrices have different storage and

require different processing in RAM, we introduced specialized summarization algo-

rithms for dense and sparse matrices, respectively. We explained how to implement

our algorithms in the SciDB array DBMS, to remove main memory limitations from

R, and enable parallel processing. We presented an extensive experimental section.

R was significantly accelerated by Gamma, and our algorithms working on SciDB

eliminated R main memory limitations. Moreover, the array DBMS was an order of

magnitude faster than a fast column-based DBMS, which evaluates matrix multipli-

cation with SQL queries. We also compared Γ with the fast matrix multiplication

functions from LAPACK (MKL) which was the math library internally called by R.

LAPACK (and MKL) failed when the input matrix did not fit in RAM, whereas

our algorithms scaled beyond main memory limits. Our algorithms were slower than

LAPACK with small dense input matrices, but became significantly faster with large

sparse matrices. Further benchmarking compared the array DBMS with Spark on a

large parallel cluster in the cloud showed our algorithms running on the array DBMS

were two orders of magnitude faster than Spark calling functions from MLlib. From

a parallel perspective, Spark did not have a good speedup to compute the summa-

rization matrix (with a Gramian product via LAPACK), but had a good (almost

linear) speedup to compute PCA and LR. On the other hand, our algorithms run-

ning on the array DBMS showed a linear speedup for both summarization and model

100

computation. Our experiments provide evidence that data summarization with fast

matrix multiplication is a promising research direction. We need to study how other

machine learning models, which require matrix multiplications, can exploit or gen-

eralize our Gamma summarization matrix. Large, high dimensional, data sets, are

generally sparse matrices. Therefore, they deserve more attention than lower di-

mensional, dense, data sets. Based on current hardware trends, another reasonable

assumption we made is that the partial and result matrices fit in main memory at

each processing node. Nevertheless, an ideal summarization operator should work

with input and output matrices of unlimited size. Clearly, our summarization matrix

is promising to analyze big data, where we showed our array-based algorithms vastly

outperform Spark, the dominating big data system. This big gap motivated inte-

grate our summarization algorithms with Spark. We envision two alternatives: via

a low-level transfer interface between the array DBMS and Spark, or programming

them in Scala or Java.

101

Bibliography

[1] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance
perspective. IEEE Transactions on Knowledge and Data Engineering (TKDE),
5(6):914–925, 1993.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between
sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, pages 207–216, 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proceedings of the 20th International Conference on Very Large
Databases, pages 487–499, 1994.

[4] K. Akbudak and C. Aykanat. Simultaneous input and output matrix parti-
tioning for outer-product-parallel sparse matrix-matrix multiplication. SIAM
Journal on Scientific Computing (SISC), 36(5):C568C590, 2014.

[5] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. D. Croz,
S. Hammerling, J. Demmel, C. Bischof, and D. Sorensen. LAPACK: A portable
linear algebra library for high-performance computers. In Proceedings of the
1990 ACM/IEEE Conference on Supercomputing, pages 2–11, 1990.

[6] P. Baumann, A. M. Dumitru, and V. Merticariu. The array database that is
not a database: file based array query answering in rasdaman. In Advances in
Spatial and Temporal Databases, pages 478–483. Springer, 2013.

[7] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg
CUBE. In Proceedings of the 1999 ACM SIGMOD International Conference on
Management of Data, volume 28, pages 359–370. ACM, 1999.

[8] P. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to large
databases. In Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining, pages 9–15, 1998.

[9] A. Buluç and J. Gilbert. Parallel sparse matrix-matrix multiplication and index-
ing: Implementation and experiments. SIAM Journal on Scientific Computing,
34(4), 2012.

[10] Z. Chen and C. Ordonez. Efficient OLAP with UDFs. In Proceedings of the
ACM 11th International Workshop on Data Warehousing and OLAP, pages
41–48, 2008.

[11] Z. Chen, C. Ordonez, and C. Garcia-Alvarado. Fast and dynamic OLAP ex-
ploration using UDFs. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, pages 1087–1090, 2009.

102

[12] J. Clear, D. Dunn, B. Harvey, M. Heytens, and P. Lohman. Non-stop SQL/MX
primitives for knowledge discovery. In Proceedings of the 5th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 425–
429, 1999.

[13] J. Demmel. Applied Numerical Linear Algebra. SIAM, 1st edition, 1997.

[14] J. Dongarra, I. Duff, D. Sorensen, and H. van der Vost. Numerical Linear
Algebra for High-Performance Computers. SIAM, 1998.

[15] P. Drineas, M. Mahoney, and S. Muthukrishnan. Sampling algorithms for l2
regression and applications. In Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithm, pages 1127–1136, 2006.

[16] W. DuMouchel, C. Volinski, T. Johnson, and D. Pregybon. Squashing flat files
flatter. In Proceedings of the 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 6–15, 1999.

[17] A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis. Chap-
man and Hall/CRC, 2003.

[18] R. Gemulla, E. Nijkamp, P. Haas, and Y. Sismanis. Large-scale matrix factor-
ization with distributed stochastic gradient descent. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 69–77, 2011.

[19] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational
aggregation operator generalizing group-by, cross-tab and sub-total. In Proceed-
ings of the 12th International Conference on Data Engineering, pages 152–159,
1996.

[20] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, San Francisco, 2nd edition, 2006.

[21] J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation of iceberg cubes
with complex measures. In Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data, pages 1–12, 2001.

[22] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer, New York, 1st edition, 2001.

[23] J. Hellerstein, C. Re, F. Schoppmann, D. Wang, E. Fratkin, A. Gorajek, K. Ng,
and C. Welton. The MADlib analytics library or MAD skills, the SQL. Pro-
ceedings of the VLDB Endowment, 5(12):1700–1711, 2012.

103

[24] S. Hoi, J. Wang, P. Zhao, R. Jin, and P. Wu. Fast bounded online gradient
descent algorithms for scalable kernel-based online learning. In Proceedings of
the International Conference on Machine Learning, 2012.

[25] ISO-ANSI. Amendment 1: On-Line Analytical Processing, SQL/OLAP. ANSI,
1999.

[26] V. Karakasis, T. Gkountouvas, K. Kourtis, G. Goumas, and N. Koziris. An ex-
tended compression format for the optimization of sparse matrix-vector multi-
plication. IEEE Transactions on Parallel and Distributed Systems, 24(10):1930–
1940, 2013.

[27] F. Li and S. Nath. Scalable data summarization on big data. Distributed and
Parallel Databases, 32(3):313–314, 2014.

[28] J. Marin and C. Robert. Bayesian Core: A Practical Approach to Computational
Bayesian Statistics. Springer, 2007.

[29] A. Menon and C. Elkan. Fast algorithms for approximating the singular value de-
composition. ACM Transactions on Knowledge Discovery from Data (TKDD),
5(2):13, 2011.

[30] L. Muñoz, J.-N. Mazón, and J. Trujillo. Automatic generation of ETL pro-
cesses from conceptual models. In Proceedings of the ACM 12th International
Workshop on Data Warehousing and OLAP, DOLAP ’09, pages 33–40, 2009.

[31] C. Ordonez. Vertical and horizontal percentage aggregations. In Proceedings
of the 2004 ACM SIGMOD International Conference on Management of Data,
pages 866–871, 2004.

[32] C. Ordonez. Integrating K-means clustering with a relational DBMS using SQL.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 18(2):188–
201, 2006.

[33] C. Ordonez. Models for association rules based on clustering and correlation.
Intelligent Data Analysis, 13(2):337–358, 2009.

[34] C. Ordonez. Optimization of linear recursive queries in SQL. IEEE Transactions
on Knowledge and Data Engineering (TKDE), 22(2):264–277, 2010.

[35] C. Ordonez. Statistical model computation with UDFs. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 22(12):1752–1765, 2010.

[36] C. Ordonez and Z. Chen. Horizontal aggregations in SQL to prepare data sets for
data mining analysis. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 24(4):678–691, 2012.

104

[37] C. Ordonez, Y. Zhang, and W. Cabrera. The Gamma operator for big data sum-
marization on an array DBMS. Journal of Machine Learning Research (JMLR):
Workshop and Conference Proceedings (BigMine 2014), 36:61–96, 2014.

[38] C. Ordonez, Y. Zhang, and W. Cabrera. The Gamma matrix to summarize dense
and sparse data sets for big data analytics. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 28(7):1906–1918, 2016.

[39] L. Oukid, O. Asfari, F. Bentayeb, N. Benblidia, and O. Boussaid. CXT-cube:
Contextual text cube model and aggregation operator for text OLAP. In Pro-
ceedings of the Sixteenth International Workshop on Data Warehousing and
OLAP, pages 27–32. ACM, 2013.

[40] L. Oukid, N. Benblidia, F. Bentayeb, and O. Boussaid. TLabel: A new OLAP
aggregation operator in text cubes. International Journal of Data Warehousing
and Mining, 12(4):54–74, 2016.

[41] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and
S. Zdonik. C-Store: A column-oriented DBMS. In Proceedings of the 31st
International Conference on Very Large Databases, pages 553–564, 2005.

[42] M. Stonebraker, D. Abadi, D. DeWitt, S. Madden, E. Paulson, A. Pavlo, and
A. Rasin. MapReduce and parallel DBMSs: friends or foes? Communications
of the ACM, 53(1):64–71, 2010.

[43] M. Stonebraker, P. Brown, D. Zhang, and J. Becla. SciDB: A Database Manage-
ment System for Applications with Complex Analytics. Computing in Science
and Engineering, 15(3):54–62, 2013.

[44] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and
P. Helland. The end of an architectural era: (it’s time for a complete rewrite).
In Proceedings of the 33rd International Conference on Very large Databases,
pages 1150–1160, 2007.

[45] M. Stonebraker, L. Rowe, and M. Hirohama. The implementation of Postgres.
IEEE Transactions on Knowledge and Data Engineering, 2(1):125–142, 1990.

[46] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N. Folkert, A. Gupta,
L. Sheng, and S. Subramanian. Spreadsheets in RDBMS for OLAP. In Pro-
ceedings of the 2003 ACM SIGMOD International Conference on Management
of Data, pages 52–63, 2003.

[47] R. Xin, J. Rosen, M. Zaharia, M. Franklin, S. Shenker, and I. Stoica. Shark:
SQL and rich analytics at scale. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pages 13–24, 2013.

105

[48] H. Xiong, S. Shekhar, P. Tan, and V. Kumar. TAPER: A two-step approach
for all-strong-pairs correlation query in large databases. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 18(4):493–508, 2006.

[49] A. Yzelman and D. Roose. High-level strategies for parallel shared-memory
sparse matrix-vector multiplication. IEEE Transactions on Parallel and Dis-
tributed Systems, 25(1):116–125, 2014.

[50] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica. Spark: Clus-
ter computing with working sets. In Proceedings of the 2nd USENIX Conference
on Hot Topics in Cloud Computing, pages 10–10, 2010.

[51] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering
method for very large databases. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, pages 103–114, 1996.

[52] Y. Zhang, C. Ordonez, and W. Cabrera. Big data analytics integrating a parallel
columnar DBMS and the R language. In Proc. of IEEE CCGrid Conference,
2016.

[53] Y. Zhang, C. Ordonez, J. Garćıa-Garćıa, and L. Bellatreche. Optimization of
percentage cube queries. In Proceedings of the 20th International Conference on
Extending Database Technology (EDBT), 2017.

[54] Y. Zhang, C. Ordonez, J. Garcia-Garcia, L. Bellatreche, and H. Carrillo. The
percentage cube. Information Systems, 2017. conditionally accepted.

[55] Y. Zhao, P. Deshpande, and J. Naughton. An array-based algorithm for simulta-
neous multidimensional aggregates. In Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data, volume 26, pages 159–170.
ACM, 1997.

106

