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Abstract

Multicore embedded systems are rapidly emerging. Hardware designers are packing

more and more features into their design. Introducing heterogeneity in these sys-

tems, i.e., adding cores of varying types, provides opportunities to solve problems

in different aspects. However, those designs present several challenges to embedded

system programmers since software is still not mature enough to efficiently exploit

the capabilities of emerging hardware, gorgeous with cores of varying architectures.

Programmers still rely on understanding and using low-level hardware-specific

APIs. The approach is not only time-consuming but also tedious and error-prone.

Moreover, the solutions developed are very closely tied to a particular hardware,

raising significant concerns over software portability. What is needed is an industry

standard that will enable better programming practices for both current and future

embedded systems. To that end, in this dissertation, we have explored the possi-

bility of using existing standards, such as OpenMP, that provide portable high-level

programming constructs along with the industry-driven standards for multicore sys-

tems. We built a portable yet lightweight OpenMP runtime library that incorporates

the Multicore Association APIs, making OpenMP programming model available to

embedded-system programmers with a broad coverage of targeting embedded de-

vices. In this dissertation, we also explore how to use industry standard APIs as the

mapping layer of OpenMP onto heterogeneous-embedded systems. By adopting HIP

as the plugin to our stack, we could portably map the applications to heterogeneous

devices from different vendors with single-code space.
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Chapter 1

Introduction

In this chapter, we introduce the motivation of the dissertation topic, the main

contribution, and the outlines of this dissertation report.

1.1 Motivation

Programming embedded systems is a challenge, the use of low-level proprietary Ap-

plication Programming Interfaces (APIs) makes the development process tedious

and error-prone. Embedded systems are becoming more heterogeneous, for better

performance and power efficiency. Hardware designers pack more and more special-

ized processors into the new embedded systems and System-on-Chips(SoCs) such as

DSPs, FPGAs, and GPUs. Those hardware elements have different architectures

and instruction sets, making software development more complicated. Thus a steep

learning curve follows.
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Furthermore, programming tools that could help programmers efficiently oversee

and utilize the computation power of these hardware remains a challenge, especially

considering the development of high-performance parallel applications. Developers

will need to tackle the distribution of computations and tasks among the different

computation elements available, with explicit synchronization and communication.

Without a portable and easily adopted programming model, the efficient use of that

hardware is not possible.

OpenMP [22] is considered a potential candidate to resolve most challenges we

discussed above. OpenMP is a pragma-based programming model; it allows the

software developers to parallelize sequential code incrementally, providing data par-

allelism or task parallelism without the need to handle lower-level threading libraries

or Operating-System-level (OS-level) resources. Besides, OpenMP allows a compiler

to ignore the directives thus further guarantees the portability of software products.

With the release of OpenMP 4.5 specification [6], OpenMP expanded its coverage

to heterogeneous architectures. The OpenMP target construct allows programs to

dispatch part of the executions onto accelerators. Early studies that implement and

explore the new OpenMP features include [58, 42].

There is still significant impediments to map OpenMP onto the embedded domain

despite the high potential for using OpenMP on heterogeneous multicore-embedded

systems. Unlike commonly guaranteed features in the general-purpose computation

devices, embedded systems are typically short of hardware resources or OS-level

support. As an example, most OpenMP compilers translate the pragmas into parallel

code with OS-level threading libraries. Cache coherence is expected by the OpenMP
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Figure 1.1: Solution stack using OpenMP on MCA APIs

compilers. Not surprisingly, embedded systems lack some of these features such as

OS.

Figure 1.1 illustrates the solution stack to resolve the challenges discuss above.

We choose to deploy the APIs defined by the MultiCore Association (MCA) [4] as

the translation layer of the OpenMP runtime library. MCA is a non-profit industry

consortium formed by a group of leading semiconductor companies and academics.

It defines open standards for multicore embedded systems. There are three major

specifications established by the MCA, the Resource Management API (MRAPI),

the Communication API (MCAPI), and the Task Management API (MTAPI). We

have explored mapping of OpenMP runtime on MRAPI and the suitability of using

MCAPI across embedded nodes in our previous work [68, 60]. The results from our

past work demonstrated that such an approach, translating OpenMP to MCA APIs,
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has potential for both programmability and portability.

In this dissertation, we propose a comprehensive-solution stack and expandable

platform, to help programmers explore parallelism on heterogeneous-embedded plat-

forms with the support of OpenMP. Our stack uses MCA APIs as the mapping layer,

with suitable plug-ins and an optimized scheduler, to provide a portable OpenMP

implementation across heterogeneous-embedded platforms.

1.2 Contributions

The main contributions of this dissertation are:

• Explore the suitability of mapping OpenMP onto embedded systems with

MRAPI, MTAPI, and other industry standards.

• Extend MCA Task Management API to support heterogeneous systems across

vendors.

• Adopt MCA APIs to represent lower-level system resources, providing OpenMP-

sufficient parallel-execution support.

1.3 Dissertation Outline

This section gives an introduction of the outlined introduction of the dissertation.

In Chapter 2 we review the background of the dissertation related technologies and
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concepts, which includes a high-level programming model, and the low-level indus-

try standards that abstract the underlying system, and software details. Chapter 3

discusses the related work of the dissertation, the available work regarding pro-

gramming parallel applications on embedded systems, and the existing effort to use

industry standards for abstraction. Chapter 4 describes our investigation and exper-

iments that choose the proper plugin language for our solution stack and offloading

the computation tasks onto heterogeneous platforms. Chapter 5 provides the work

we have done towards MCA, the industry-standard APIs; including the efforts for

each of the MCA APIs towards a broader support target platforms, an extension

to support on heterogeneous systems, and a discussion on performance. Chapter 6

discusses the mapping of OpenMP, the higher-level programming model, onto MCA

APIs, to provide a convenient programming model while guaranteeing the software

portability. Chapter 7 discusses the overall contribution and the future work.
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Chapter 2

Background

In this chapter, we introduce the background of the dissertation. In this work, we

adopt OpenMP as the programming model, with the help of MCA APIs and HIP, to

map on various homogeneous and heterogeneous systems. We also highlight key fea-

tures and usability, which will better help understand our dissertation and the solu-

tion stack to the challenges. Noted the background of Heterogeneous-programming

Interface for Portability (HIP) and Heterogeneous System Architectures (HSA)

will be introduced in Section 5.3.

2.1 OpenMP

OpenMP [22] is a well-known portable and scalable programming model that facil-

itates programmers with simple, but a versatile interface to develop parallel appli-

cations in both homogeneous or heterogeneous environments. By inserting pragmas

6



into a regular program, OpenMP makes it easy for programmers to leverage the

underlying hardware rapidly and effortlessly. The primary model of OpenMP for

parallel execution is fork - join.

OpenMP has the feature that allows programmers to gradually parallelize sequen-

tial codes. This makes OpenMP the best choice when developers want to explore

the potential parallelism of existing-legacy programs. We use MCA Resource Man-

agement APIs to manage the system thread-level resource and implement OpenMP

data-parallelization functionality. Besides, we also map OpenMP task construct onto

MCA Task Management APIs. This provides programmers with an easy-to-use pro-

gramming interface for task parallelism for broad coverage of embedded systems.

Therefore, we will introduce the related OpenMP concepts in this section.� �
1 void sum(int n, float *a, float *b)

2 {

3 int i;

4 #pragma omp parallel for

5 for (i=1; i<n; i++)

6 b[i] = (a[i] + a[i-1]) / 2.0;

7 }� �
Listing 2.1: OpenMP example

As seen in the code snippet in Listing 2.1, the program begins with a single thread

execution, when encounters the parallel region marked as #pragma omp parallel

for, the master thread will create or fork a team of worker threads to compute the

workloads in parallel. After the computation, all the worker threads will synchronize

and join, leaving only the master thread to continue for the rest of computations.
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OpenMP task and taskwait constructs were introduced in OpenMP 3.0 specifica-

tion. They are updated with the definition of taskgroup and task dependency clauses

in OpenMP 4.0 specification. OpenMP defines a task as a particular instance of ex-

ecution that contains the executable codes and its data frame. The task constructs

can be placed anywhere inside an OpenMP parallel construct, and explicit tasks are

created when a thread encounters the task construct. Then these tasks can be syn-

chronized by using the taskwait construct. The tasks must pause and wait for their

child tasks to be completed at the taskwait form cause before moving on to the next

stage in the program.

8



� �
1 int fib(int n)

2 {

3 int i, j;

4 if (n<2) return n;

5 else{

6 #pragma omp task shared(i)

7 i=fib(n-1);

8 #pragma omp task shared(j)

9 j=fib(n-2);

10 #pragma omp taskwait

11 return i+j;

12 }

13 }

14 int main(void){

15 #pragma omp parallel shared(n)

16 {

17 #pragma omp single

18 printf ("fib(%d) = %d\n", n, fib(n));

19 }

20 }� �
Listing 2.2: OpenMP task example

The code snippet in Listing 2.2 illustrates the implementation of OpenMP task

parallelism solution of Fibonacci numbers.

Although programmers targeting general-purpose computation facilities have con-

veniently enjoyed parallelizing serial codes using OpenMP for many years, most of

the embedded-system programmers have not been able to exploit this functionality.

Typical embedded systems lack features found on general-purpose computers that

are essential for OpenMP execution. OpenMP implementations usually rely heavily

on threading libraries and OS-level resources. However, a typical embedded system
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may lack such features. Also, some embedded systems may not have an OS such

as a bare-metal device. It might seem simple to offload the most compute-intensive

portions of the code to an accelerator using conventional methods, such as remote

procedure calls. However, alternate dataflow-oriented approaches have proved to be

more efficient due to lesser application deadlocks, for devices such as FPGAs [12].

This hurdle requires programmers to re-think what kind of specialized resources an

embedded device can offer.

It remains a challenge to create an efficient (almost universal) programming in-

terface for the embedded world. Because such platforms can not provide substantial

details of the hardware or efficient tools for application optimization.

2.2 MCA Libraries

To address some of the fundamental issues of programming multicore-embedded sys-

tems, the Multicore Association (MCA) was founded by a group of leading semi-

conductor companies, embedded-solution companies, and academics, aiming to form

industry standards for programming embedded systems.

The Multicore Association API [4] defined MRAPI (the multicore resource man-

agement API), MCAPI (the multicore communication API) and MTAPI (the mul-

ticore task management API), as the fundamental stands. With the three sets of

API designed exclusively for the embedded systems, MCA APIs aim to abstract the

lower-level hardware details and provide a unique API interface across platforms,

to rapidly implement the software development and quick exploration of parallelism
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and heterogeneous computations. We will introduce the three major APIs from the

Multicore Association in the following paragraphs.

2.2.1 MCA Resource Management APIs

MRAPI handles resource-management challenges of the most critical hardware re-

sources on real products, including shared memory, remote memory, synchronization

primitives, and metadata, for both SMP and AMP architectures. MRAPI can sup-

port any number of cores, even each with a different instruction set, same or different

OSes. Besides that, MRAPI allows coordinated concurrent access to the systems re-

sources by deploying the synchronization primitives for embedded systems that with

limited hardware resources. The MRAPI supports a variety of operating systems,

including Embedded Linux, RTOS, and even Bare-Metal systems. We would like to

summarize some of the fundamental concepts of MRAPI since we will be using this

functionality in our software design.

2.2.1.1 Domain and Nodes

The MRAPI systems are composed of one or more domain; each domain is consid-

ered as a unique system global entity. An MRAPI node is an independent unit of

execution, and an MRAPI domain will comprise a team of MRAPI nodes. Each

node can map to any execution unit such as a process, thread, a thread-pool, or a

hardware accelerator.
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2.2.1.2 Memory Primitives

With the concept of heterogeneity in mind, MRAPI supports two different memory

models, the shared memory, and the remote memory. Shared memory primitives

allow users to manage the on-chip or off-chip shared memory directly, with assigned

attributes. Unlike the Linux shared memory, which is only accessible within one

operating system’s entity, the MRAPI shared memory can be accessed by different

nodes running different OSes. The remote memory model enables the access of

distinct memories. This model can be physically consecutive or not direct access,

for the latter case, some other methods like DMA can be used to access the remote

memory. By providing unique API interfaces, MRAPI hides all memory access details

from the end users.

2.2.1.3 Synchronization Primitives

MRAPI offers a set of synchronization primitives including Mutexes, Semaphores

and Reader/Writer locks. These synchronization primitives guarantee the MRAPI

nodes properly access the shared resources, to avert data race or race conditions.

2.2.1.4 System Resource Metadata

MRAPI specification provides a facility for retrieval of system metadata in a resource

tree format, providing details of resources availability for the target system.

MRAPI is an excellent candidate that can simplify the interface of underlying
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hardware and OS-level resources, for programmers as well as the higher-level language

such as OpenMP. In the dissertation, we propose extension and implementation of

MRAPI with thread-level resource management and use the extended MRAPI im-

plementation to be the mapping layer of our OpenMP implementation. Performance

evaluations in the later chapter will prove that by adding MRAPI as an abstract

layer, our OpenMP-MCA runtime library (RTL) will not incur extra overheads and

achieve compatible performance.

2.2.2 MCA Communication APIs

MCAPI is designed to capture the core elements of communication and synchroniza-

tion required for closely distributed embedded systems, as a message-passing API.

Industry vendors such as [7, 5] have also provided MCAPI support for their products.

The purpose of MCAPI, which is a message-passing API, is to capture the es-

sential elements of communication and synchronization that are required for closely

distributed embedded systems. MCAPI provides a limited number of calls with suffi-

cient communication functionalities while keeping it simple enough to allow efficient

implementations. Additional functionality can be layered on top of the API set. The

calls are exemplifying functionality and are not mapped to any particular existing

implementation.

MCAPI defines three types of communication:

• Messages, connectionless diagrams.

13



• Package Channel, connection-oriented, uni-directional, FIFO package streams.

• Scalar Channel, connection-oriented, single-word uni-directional, FIFO pack-

age streams.

MCAPI messages provide a flexible method to transmit data between endpoints

without first establishing a connection. The buffers on both sender and receiver

sides must be furnished by the user application. MCAPI messages may be sent

with different priorities. MCAPI packet channels provide a method to transmit data

between endpoints by first establishing a connection, thus potentially removing the

message header and route discovery overhead. Packet channels are unidirectional and

deliver data in a FIFO (first in first out) manner. The buffers are provided by the

MCAPI implementation on the receive side, and by the user application on the send

side. MCAPI scalar channels provide a method to transmit scalars very efficiently

between endpoints by first establishing a connection. Like packet channels, scalar

channels are unidirectional and deliver data in a FIFO (first in first out) manner.

The scalar functions come in 8-bit, 16-bit, 32-bit, and 64-bit variants. The scalar

receives must be of the same size as the scalar sends. A mismatch in size results in

error.

In the work discussed in Chapter 5, we based on the reference MCAPI implemen-

tation from the MCA official website. We deployed all their API implementation and

modified the transportation-layer implementation to target our platform specifically.

14



2.2.3 MCA Task Management APIs

In this section, we briefly introduce OpenMP and MCA Task Management API

(MTAPI) by discussing their essential features, usability, and suitability for the dis-

sertation. The MCA Tasking API is aiming to manage the task-level parallelization

of multicore embedded platforms. It includes complete support of task life-cycle, with

optimization of task synchronization, scheduling, and load balancing. Siemens re-

cently released its open-source MTAPI implementation [8] as a part of the EMBB [2]

library.

The Multicore Association (MCA) is formed by a group of leading semiconductor

companies and academies. Several functionality for the Multicore Association API [4]

includes MRAPI (the multicore resource management API), MCAPI (the multicore

communication API), and MTAPI (the multicore task management API). MCA

APIs aim to abstract the lower-level hardware details and provide a unique and

easy-to-use API for different embedded architectures, thus expedite the software

development procedures.

To address the concerns of managing task parallelisms of embedded applications,

MCA defined the Multicore Task API (MTAPI). MTAPI is designed to support

both SMP and AMP systems, allowing an unlimited number of cores in the same

or different architectures. Moreover, it allows minimum implementation on top of

an embedded operating systems or even on bare metal with very limited hardware

resources. MTAPI can ease the path to conducting portable task parallelisms on

embedded devices. The central concepts of MTAPI are listed as follows:

15



2.2.3.1 Domain and Node

MTAPI system is comprised of one or more MTAPI domains. An MTAPI domain

is a unique system global entity. Each MTAPI domain contains a set of MTAPI

nodes. An MTAPI node is an independent unit of execution. A node can be a

process, thread, a thread pool, a processor, a hardware accelerator, or an instance of

an operating system. The mapping of MTAPI node is implementation-defined. In

the MTAPI implementation, we use for this work, an MTAPI node compromises a

team of worker threads.

2.2.3.2 Job and Action

A job is an abstraction of the work to be done. An action is the implementation of

a particular job. Different actions can implement the same job. An action can be

a software action or a hardware action. For instance, a job can be implemented by

one action on a DSP board and another action on a general-purpose processor. The

MTAPI API will pick a suitable action at runtime when executing the job.

2.2.3.3 TASK

An MTAPI task consists of a piece of code together with the data to be processed.

A task is light-weight with fine granularity; thus, an application can create a large

number of tasks. The tasks created within a node can be scheduled across different

nodes, internally. Each task is attached to a particular action at the runtime. The

tasks are scheduled by the MTAPI runtime scheduler. The MTAPI runtime library,
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therefore, seeks an optimized way and a suitable action to handle the execution of

the task. In this project, MTAPI tasks are created to address the OpenMP explicit

tasks.

2.2.3.4 QUEUE

The queue is introduced to guarantee the sequential order of task execution. The

tasks associated with the same queue object must be executed in the order that they

are attached to the queue. This feature is useful in the scenarios where the data

must be processed in a specified order.

2.2.3.5 TASK GROUP

Task groups allow synchronization of a group of tasks. Tasks attached to the same

group must be completed before the next step by calling groupwait.

Primarily, the MTAPI specification is designed for embedded systems. Unlike

other parallelism-programming models for the general-purpose computing systems,

the MTAPI specification can be potentially developed for resource-limited devices,

heterogeneous systems which consist of different computation units with different

ISAs, devices using embedded OSes or even bare metal. MTAPI features are de-

signed for accommodating various embedded architectures. Secondly, MTAPI is

currently under active development by many embedded-system vendors and univer-

sity researchers, as we have discussed in the related work section. The MRAPI and
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MCAPI working groups continue to work with the MTAPI working group to iden-

tify gaps and improve the MCA features for enabling efficient mapping of tasks to

embedded platforms. However, MTAPI is still a low-level library. A higher-level

programming model is desired to improve the programmers’ productivity. Thus, it

is necessary to introduce OpenMP to the parallel-application development for em-

bedded systems, with the lower-end support provided by MTAPI APIs.

We see MTAPI has certain advantages to being the mapping layer of our OpenMP-

MCA RTL for the embedded-systems domain. In Chapter 5, we discussed the work

we have done towards map OpenMP task support on top of MTAPI runtime library

which achieved a good performance.

2.3 HIP and ROCm Stack

GPU has been promoted as the frequently used accelerator for both embedded sys-

tems and high-performance computing facilities. GPU computation accelerators,

achieve significant power efficiency over the CPU alone. The modern programming

model for GPU makes it much easier to port applications to GPU than the other

hardware accelerators such as DSP or FPGAs. In this section, we introduce the

background of the HIP and Radeon Open Compute Platform (ROCm) from the

semiconductor company of AMD. Those tools provide an easy-to-adopt program-

ming model and the fully open-source software stack to programmers that target

GPUs across vendors.
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2.3.1 HIP Programming Model

Compute Unified Device Architecture (CUDA) has been widely used for GPU pro-

gramming, a significant portion of libraries and applications utilizing GPU were built

with CUDA. However, CUDA is a proprietary programming model of NVidia, which

caused a series of drawbacks, including closed-source toolchain and lack of application

portability.

AMD recently announced its GPUOpen initiative that provides a comprehen-

sive open-source software stack-targeting programming on GPU. HIP, as part of the

GPUOpen initiative, was intended to be adopted for both new application develop-

ment and to port the existing GPU programs developed by CUDA. HIP is a thin

layer that directs the compilation and execution of the applications onto either a

NVidia or an AMD path. By maintaining single-code space of C++ applications

with HIP routines, the programs can execute across platforms. Thus, the portability

is firmly guaranteed. Besides, HIP supports the latest C++ language features such

as templates and lambdas.

As illustrated in Figure 2.1, programs developed by HIP can be compiled and

executed on platforms powered by both NVidia GPU and AMD GPU cards. On the

NVidia path, the HIP compiler will incur NVCC as the C++ compiler, and translate

the HIP routines in the applications to CUDA in the header files. In this way, the

application developed in HIP will have no performance lose when comparing to the

applications drawn up with CUDA on NVidia platforms. On the AMD path, HIP

compiler will trigger the HCC compiler as the C++ compiler for HIP applications,
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Figure 2.1: HIP on AMD and NV platforms

configure, and set the proper flags for compilation.

To aid the port of CUDA applications onto HIP, HIP provides a tool called

”hipify,” which performs a source-to-source translation over the existing CUDA ap-

plications onto HIP. The hipify tools are built with the C/C++ front-end of Low

Level Virtual Machine (LLVM) compiler; thus, the hipify-tool code performs gram-

mar analysis and makes sure the correctness of the translated CUDA applications.

2.3.2 ROCm Software Stack

ROCm, the open source software stack targeting AMD GPUs, and includes several

components listed as follows:
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• Linux Kernel Driver for GPU computing, available on both Debian and Fedora.

• User-mode runtime system based on HSA, for global-scale memory manage-

ment and kernel dispatch.

• Heterogeneous C and C++ compiler that compiles both host code and device

code offline.

The ROCm system is currently supported for the AMD Fiji GPUs, which features

High-Bandwidth Memory(HBM). In our initial experiments on the ROCm stack,

we observed large performance advantages of the Fiji GPUs over the NVidia GPUs

on a set of data-streaming benchmarks, due to the extra-wide memory bandwidth

provided by the HBM memory, of 512GB/sec.

With the release of ROCm by AMD, the GPU programmers were able to see the

whole picture of GPU programming, from the top-layer programming model, runtime

system, kernel driver, to the lower-level Instruction System Architecture(ISA) device

code. Thus, the programmers have the privilege of exploring the full stack of the

GPU apps, whether for debugging or performance tuning. This was not possible with

the closed-source toolchain. In the next paragraphs, we will discuss the technologies

used in ROCm stack, which are related to our decision on plugins for MTAPI.

2.3.2.0.1 ROCm Linux Driver The ROCm Linux driver initially targets AMD

APUs that are fully compliant with the HSA specification. Those include Kaveri

desktop APUs and Carrizo embedded/notebook APUs. It later extended to support

of discrete GPU, which includes the FIJI series GPUs. The driver handles memory
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allocation on both host and the GPU device, to provide interfaces for all stacks above

in ROCm. It also includes multi-GPU system-level support with the shared view of

host side memories for the GPUs in the system.

2.3.2.0.2 ROCK Runtime System ROCK Runtime System in ROCm stack

includes the ROCR Runtime and The ROCT Thunk Interface. ROCR runtime is

built from the HSA support for AMD APUs, and extended to support discrete GPUs

(dGPUs) such as FIJI series from AMD. The goal of ROCR runtime is to harness the

power of GPUs for the applications by providing hardware-enabled dispatch queues

for task offloading.

The ROCT Thunk Interface plays as an intermediate between the user-mode

APIs and the ROCm kernel driver. The Thunk interface will iterate HSA compatible

computation nodes online and refer to the resources such as global memory and LDS

memory on devices.

The ROCK and ROCT together complete the runtime support of the heteroge-

neous computations on AMD dGPUs, as part of the ROCM software stack. The

runtime components heavily depend on the existing work for HSA and supports of

HSA compliant devices such as Kaveri and Carrizo APUs.

2.3.2.0.3 Heterogeneous C/C++ Compiler HCC, AKA. Heterogeneous Com-

pute Compiler, is designed and implemented to aid the programming difficulties on

heterogeneous systems. The HCC compiler, as a part of the ROCm software stack, is
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based on LLVM, an active open-source compiler community. HCC implements sev-

eral standards to enable programming on heterogeneous systems without touching

the proprietary toolchain. By adopting the standards such as C++17, C++AMP,

and OpenMP, the applications are portable access systems.

For example, HCC translates the device kernel developed with HIP onto its par-

allel for each routines, and therefore map to the heterogeneous computation nodes.

The compiler currently supports two backends, HSA Intermediate Language(HSAIL),

and the Lighting Compiler. The HSAIL backend can generate fat binaries that exe-

cute on both HSA compliant devices and AMD dGPUs; while the Lighting Compiler

is specifically designed and implemented for AMD GPU ISA.
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Chapter 3

Related Work

This chapter introduces the related work of programming models of multicore-embedded

devices, standards library or APIs of embedded systems, and the related efforts for

task-scheduling projects over heterogeneous-embedded platforms.

3.1 Parallel Programming Model

This section discusses related efforts on a higher-level parallel-programming model

for embedded systems. There are some parallel-programming models available in the

general computing domain. Some of the programming models are mature and widely

adopted in the industry and academics. Though there is no dedicated standard per se

in the embedded domain for parallel-programming; we see some efforts to implement

a few programming models onto some embedded systems. This demonstrates the

possibility of porting of these programming models onto embedded systems.
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3.1.1 Pragma-based Programming Model

OpenMP [22] is the de-facto programming model for shared memory computation,

and has been extended to heterogeneous architectures with the release of OpenMP

4.0. There has been some effort to mapping OpenMP onto the embedded domain.

Our previous work [68] translates OpenMP to MCA Resources Management API, to

support OpenMP on several Power-based embedded systems from Freescale Semi-

conductor. OpenMP was implemented on a high-performance DSP MPSoC, with

efficient memory management and software-cache coherence in [18].

TI [58] supports accelerator features from the OpenMP 4.0 standard. Open-

MDSP [33], an extension of OpenMP, was designed for multi-core DSPs to fill the

gap between the OpenMP memory model and the memory hierarchy of multi-core

DSPs. However, the approach was not generic enough to be used for the other sys-

tems. The authors in [70] conducted similar research. The authors discussed an

OpenMP compiler for the use of distributed scratchpad memory in [44]. Some tools,

which can automatically generate OpenMP directives from serial C/C++ codes,

and run on a general computer and embedded system, have been discussed [73].

Marongiu et al. [45] supported OpenMP for a multi-cluster MPSoC embedded sys-

tem. However, this work was not designed for portability. Thus, a fair amount of

effort will be required before it can be mapped to other embedded devices. Many

research activities aim to map OpenMP onto embedded systems, making OpenMP

a suitable candidate for programming parallel-applications for embedded systems.

OpenACC [49] was another well-adopted pragma-based programming model used
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to program to heterogeneous platforms with accelerators such as GPUs [72, 63].

However, to the best of our knowledge, there is no work on targeting OpenACC on

embedded systems.

3.1.2 Language Extension and Libraries

MPI is the dominated message-passing programming model for distributed-memory

environment computing [31]. However, MPI is too feature rich for embedded systems.

Some projects [43, 11] implemented subsets of MPI standards to support embedded

distributed systems, however, portability issues are a big hurdle for MPI to support

a larger range of embedded systems.

OpenCL [32] is a language extension of C, aiming to serve as the data-parallel

programming model for heterogeneous platforms. The primary use of OpenCL is

for programming GPUs on general-purpose computations; though we see some work

supported OpenCL on several embedded devices such as [40, 35]. OpenCL is still too

low-level, and performance portability is a big issue when reusing OpenCL programs

for different architectures [28].

OmpSs [25] programming model helps program on clusters of GPUs, and it has

been extended to use CUDA and OpenCL recently [54].

StarPU [13] was designed for heterogeneous platforms, aiming to provide a run-

time library that allows multiple parallel programs to run concurrently. However,

this library mainly targets conventional computation facilities; it will not resolve the

concern of portability over different embedded architectures.
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There are some models, libraries, and language extensions to programming ac-

celerators and heterogeneous systems [37] but their adaptability and suitability for

embedded platforms were questionable. We have combined a high-level widely-used

programming model, OpenMP, with an embedded-specific industry standard, MCA,

and targeted a platform with PowerPC cores.

We believe that OpenMP has certain advantages that can be considered as an

appropriate programming model for embedded systems. The OpenMP parallel for

construct can conduct data parallelism in an efficient manner, the task and taskgroup

construct allows programmers to quickly explore task parallelism for irregular algo-

rithms. Furthermore, the newly added target construct brings a significant potential

for support of various types accelerators for offloading computation. However, the

lack of resources, different architectures, and the low-power requirements prevents

the broad support of OpenMP on embedded systems. With the proposed solution

framework, we can provide for embedded programmers an easy-to-adopt parallel-

programming model while ensuring broad programming support for targeting em-

bedded systems.

3.2 Standards for Programming Multicore Em-

bedded Systems

In this section, we discuss standards and libraries of various embedded architectures.
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3.2.1 Tools and Libraries for Multicore Embedded Systems

Development of software products for embedded systems typically requires implemen-

tation using the lower-level vendor-provided APIs. These do not follow standards or

specifications, making the learning curve steep and software portability is not guar-

anteed. Adopt industry standards is crucial. It draws attention towards industry

and university researchers. The Multicore Association (MCA) [4] was founded by a

group of leading semiconductor companies and universities, provides a set of APIs

for abstracting the low-level details of embedded software development. This eases

efforts to resolve resource concurrency, communication, and task parallelism.

Architectures of embedded systems are various. A particular programming chal-

lenge is to work close to the hardware. Due to the necessity of tackling low-level

details, C is used for embedded application development. Besides, vendors typically

offer Software Development Kits (SDKs) that specifically fit their own devices; which

makes programming embedded devices not portable and error-prone.

Language extensions have been proposed to abstract the low-level operations for

a certain set of functionality on embedded systems [52, 21]. OpenCL and CUDA

work closer to the platform. CUDA [48] is a popular programming model for GPU

programming, but this is proprietary and limited to NVIDIA devices. Several efforts

use CUDA to program NVIDIA devices such as Tegra mobile processor, for embedded

applications [69, 20, 51].
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3.2.2 MCA APIs

MCA APIs have been implemented and used on various embedded architectures.

MCAPI was implemented on FPGA, and suitability of MCAPI for MPSoC was dis-

cussed [46]. A proof-of-concept of MRAPI on a Xilinx Virtex-5 FPGA has been

applied [30]. High-level languages such as UML includes complex channel seman-

tics and provides automatic code generation for interconnection and deployment of

system components based on MCAPI [47].

Some projects use MTAPI as the task-parallelism management API for embed-

ded platforms. Siemens recently released their MTAPI implementation as part of

the Embedded Multicore Building Blocks (EMBB) [2] library. We adopt the EMBB

MTAPI implementation in our OpenMP-MTAPI runtime library. The work is dis-

cussed in Section 5.

European Space Agency (ESA) built their MTAPI implementation [17] for ef-

fortless configuration of Symmetric Multiprocessing (SMP) in their space products.

Stefan et al. published a baseline implementation of MTAPI for their research on

open-tiled many-core SoC (System-on-Chip) [66].

3.2.3 HSA Standards

Heterogeneous System Architecture (HSA) is a consortium lead by AMD and ARM [53];

it aimed to provide hardware and software solutions to reduce disjoint memory oper-

ations for heterogeneous architectures. Unlike MCA APIs, HSA expects system-level
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support for its specification, which includes both hardware and software design.

AMD Kaveri-series desktop APUs and Carrizo-series embedded/laptop APUs

have been designed and manufactured in compliant of HSA specifications. The

Bifrost Mali GPUs [1] also have the full support of the HSA specifications. The

Mali series GPUs are widely used in smartphones and other mobile devices. Over

750 million units of Mali GPUs were shipped in 2015. There will be broader research

and implementations on mobile devices for HSA.

Several academic activities were built based on the HSA specifications. A project

was developed on top of the CPU-GPU hardware coherence commitment from HSA

standards [50].

The programmers can use the HSA runtime library directly for application de-

velopment for HSA. In addition, there were several higher-level programming tools

designed to enable easier programming for HSA platforms. CLOC compiler allows

users to write OpenCL-like kernels for HSA applications [3]. HIP and ROCm stack,

discussed in Section 2.3, are alternative programming models for HSA compliant

systems. In this dissertation, we adopt HIP as the plugin for MTAPI, to map com-

putations onto heterogeneous-embedded accelerators.
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3.3 HIP for GPU Programming

AMD announced its GPUOpen project in late 2015. Professional computing of

GPUOpen provided a comprehensive open-source software stack for GPU program-

ming. The tools provided can help with the tedious programming experiences with

traditional GPU programming. By using these tools, programmers can trace prob-

lems down through the open-source stack. The details of our solution stack were

introduced in Section 2.3.

3.4 Task Scheduling over Heterogeneous Systems

In general, the task-scheduling problem is known to be NP-Complete [65]. There

were intensive studies, and various scheduling heuristics conducted towards efficiently

scheduling tasks. Some algorithms were proposed to resolve task scheduling over

heterogeneous-embedded systems.

One method used directed acyclic graphs (DAGs) to represent tasks and edges

to represent the dependencies. This has been widely adopted to schedule tasks

over heterogeneous architectures [55, 64, 14]. One project compares eleven static

heuristics for mapping tasks over heterogeneous-distributed systems [15]. However,

that work was not specifically targeted for embedded systems. As a result, some

main considerations were missing such as limited hardware resources and the different

system architectures.

Some work was aimed to resolve task scheduling over heterogeneous-embedded
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systems. One project proposed a heterogeneous tasks-scheduling algorithm based on

a DAG algorithm over networked-embedded systems [71]. This work shows a signif-

icant possibility of applying DAG heuristics to heterogeneous-embedded systems

Some papers extended the StarPU [13] runtime library for better performance.

Multiple StarPU applications were composed of heterogeneous systems by introduc-

ing a hypervisor that automatically expands or shrinks contexts using feedback from

the runtime system [34]. A theoretical framework and three practical mapping al-

gorithms were proposed to achieve up to 30% faster completion time [74]. However,

this work only considers the scenario of task-scheduling between CPU and GPUs. In

this dissertation, we explore the performance tuning of the MTAPI scheduler with

GPU plugins.

32



Chapter 4

GPU Plugin

GPUs have been heavily used for general purpose computing in recent years, which is

mainly because of the massive-parallel architecture. GPUs can accelerate execution

time from 10s to 100 times faster. With the fast development of self-driving, deep-

learning, and virtual-reality industries, GPUs will play a larger role in embedded

systems. However, most of the applications for GPUs are using proprietary CUDA

language.

As discussed in Chapter 1, MTAPI library can be extended onto heterogeneous

architectures by adding plugins. In this dissertation, we would like to extend the so-

lution stack we proposed onto GPU devices. Thus, the choice of the plugin languages

is critical. To compare the programming tools for the state-of-the-art GPU architec-

tures, we conduct an investigation to HIP, CUDA, and OpenCL. In this chapter, we

provide companions to programming models, memory models, and the performance

on various GPU platforms.
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4.1 Open Source Programming on GPUs

Many GPU-accelerated applications have been developed in the modern HPC and

workstations. However, a big portion of those applications were programmed with

the proprietary CUDA language.

Proprietary software causes many problems. End users are always tightly con-

trolled by the vendor software. Also, end programmers do not have access to the

source code of toolchain. Thus, flexibility is limited. With CUDA, the hardware

options are limited to NVidia. This causes severe software portability problems for

devices from different vendors, such as AMD.

Heterogeneous-compute Interface for Portability (HIP) and its tools, proposed

by AMD, allow developers to convert CUDA code to common C++. Moreover,

the application written in HIP can execute on both NVidia and AMD platforms.

This set of tools provides GPU-programmers with more choices for hardware and

development tools.

Also, HIP provides a clang-based tool called ”hipify.” It is to help developers

quickly transform their existing CUDA-based codes onto HIP, without a lot of manual

modifications. The whole software stack is completely open-sourced. Programmers

can easily trace their source code through the stack and tune for better performance.

OpenCL is a cross-platform programming language for heterogeneous platforms.

It is not limited to GPU, but also supports for other architectures, including CPU,

DSP, and CELL. Both HIP and OpenCL can be adopted for programs on GPUs

across vendors. Thus, it is desirable to compare HIP and OpenCL in this chapter.
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Overall, HIP has certain advantages for programming on GPUs. Firstly, with

HIP, the programmers can write both host and devices code in C++. Moreover, the

compiler supports the latest C++17 features such as templates, lambdas, or classes.

OpenCL requires compilation of the kernel at the run time, which is not a convenient

way, and can potentially cause many problems. The HIP compiler compiles both the

host code and the device-kernel code offline, creating a single fat binary for execution.

Secondly, the grammar of HIP is less complicated. Programmers can move from

their familiar programming languages onto HIP without a steep learning curve.

Also, HIP is developed as a part of the open source software stack by AMD. The

programmers have significantly more flexibility to track throughout the whole soft-

ware toolchain. It is very important to provide industry standards and open source

toolchains to programmers.

4.2 Performance Evaluation of HIP

We evaluate the performance of HIP over general computing GPU platforms from

both AMD and NVidia. The motivation behind is to make sure HIP can achieve

good performance. This is the prerequisite for HIP to be adopted for heterogeneous

computing. In addition, it is worthwhile to investigate HIP on GPUs across vendors.

We have configured test platforms from both AMD and NVidia. The test bed

from AMD features a Fiji Nano GPU card and a test bed from Nvidia equipped

with one GTX Titan X GPU. Those GPUs are all high-end consumer-grade, which

is powerful for general computing. The main features for AMD Fiji NANO is as

35



follows:

• Featured 4GB HBM (high-bandwidth memory).

• Global-memory bandwidth is 512 GB/sec.

• 4096 streaming processors.

• 8192 GFLOPS computation capacity.

• TDP: 175W.

And here is features for NVidia Titan X GPUs:

• Featured 12 GB DDR5 global memory.

• Global-memory bandwidth is 336 GB/sec.

• 3072 CUDA cores.

• 6144 GFLOPS computation capacity.

• TDP: 250W.

The hardware capacity for these two GPUs is on par. The major difference is the

configuration of the global memory.

FIJI Nano GPU is one of the first GPUs that features the HBM memory. It

delivers very high memory bandwidth, a rate at 512 GB/second. However, due to

the limitation of the new HBM manufacture technology, there are only 4 GB HBM
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Figure 4.1: Mini N-Body simulation performance comparison

on the device. It is quite tight for general purpose computing. The Titan X GPU

features much larger 12 GB DDR5 memory. However, the memory bandwidth is

much smaller compared to the FIJI Nano GPU. We believe these two GPU cards are

good candidates for our performance evaluation.

The benchmark simulates a n-body algorithm and has been ported to HIP. We

executed it on both AMD FIJI NANO GPU and NVidia Titan X GPU. Also, with

HIP implementation, the application can perform as good as that implemented in

CUDA.

As seen in Figure 4.1, FIJI Nano achieves better performance, with the help

of higher computation capacity, and wider global-memory bandwidth. The overall

performance on the FIJI Nano platform is much greater than that on the Titan
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X GPU card. The difference in performance is greater along with larger size of

input. Moreover, HIP and CUDA achieves similar performance levels on the Titan

X platform. On the NVidia platforms, HIP only plays as a very thin layer that

translates the HIP routines back to CUDA routines.

HIP has the potential for being the programming model for many GPU devices,

and it is fully open-sourced. Thus, we choose to develop HIP as the plugin target

for our heterogeneous MTAPI library. Moreover, we extend the use of HIP onto

heterogeneous-embedded systems with our solution stack.
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Chapter 5

MCA API Work

In this chapter, we introduce the work we have done towards extending and en-

riching MCAPI and MRAPI libraries. We study and implement MCAPI onto a

heterogeneous-embedded board, and extend MRAPI with more thread-level resource-

management capacity. We secondly introduce the work that extends the MTAPI li-

brary onto heterogeneous-embedded systems, which is achieved by defining external

plugins of HIP. Applications written in our MTAPI library can execute on embedded

systems with GPUs across vendors.
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5.1 Implement MCAPI on Heterogeneous Plat-

form

Our goal is to design and create a portable programming paradigm for heterogeneous-

embedded systems. We plan to leverage the recently ratified accelerator features of

the de-facto shared-memory programming model OpenMP that may serve as a ve-

hicle for productive programming of heterogeneous-embedded systems. To begin

with, we have studied the industry standards MCA API, which specifies essential

application-level semantics for communication, synchronization, resource manage-

ment, and task management capabilities.

We have explored the multicore-communication APIs (MCAPI) that are designed

to capture basic communication and synchronization required for closely distributed

embedded systems. We have considered Freescale QorlQ P4080 as the target and

evaluation platform for this work. We identified the primary challenge of this project

is to establish a communication mechanism between the host processor and the Data-

Path-Acceleration Architecture (DPAA) incorporating accelerators, which includes

Security Engine (SEC 4.0), and Pattern Matching Engine (PME) accelerators. The

work for this section has been published in [59, 60].

5.1.1 Target Platform

The P4080 development system is a high-performance development platform sup-

porting the P4080 Power-architecture processor. Figure 5.1 shows the preliminary
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Figure 5.1: P4080 block diagram

block diagram of P4080.

5.1.1.1 P4080 Processor

The P4080 processor is based upon the e500mc core built on Power Architecture and

offering speeds at 1200-1500 MHz. It consists of a three-level cache hierarchy with 32

KB of instruction and data cache per core, 128 KB of unified backside L2 cache per

core, as well as a 2 MB of shared front side cache. There are totally eight e500mc cores

built in the P4080 processor. It also includes the accelerator blocks known as Data-

Path-Accelerator Architecture. It offloads various tasks from the host, including

routine packet handling, security-algorithm calculation, and pattern matching. The

41



P4080 processor has been used for combined control, data path, and application-

layer processing. It is ideal for applications such as enterprise and service provider

routers, switches, based station controllers, radio network controllers, and long-term

evolution (LTE). It also has been deployed in general-purpose embedded computing

systems in the networking, telecom/datacom, wireless infrastructure, military, and

aerospace.

5.1.1.2 DPAA

The P4080 includes the first implementation of the PowerQUICC Data-Path-Acceleration

Architecture (DPAA). This architecture provides the infrastructure to support sim-

plified sharing of networking interfaces and accelerators by multiple CPU cores.

DPAA includes the following major components:

• Frame manager

• Queue manager

• Buffer manager

• Security engine

• Pattern matching engine

DPAA plays an important role in addressing critical performance problems in high-

speed networking I/O. It provides a bundle of user space APIs to be called by the

end user to customize accelerator parameters and configurations.
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Figure 5.2: P4080 PME

5.1.1.3 Pattern Matching Engine (PME)

The PME provides hardware acceleration for regular expression scanning, scan across

streamed data and finds out the matched patterns, providing a very high-speed hard-

ware acceleration. Patterns that can be recognized or matched by the PME are two

general forms, byte patterns, and event patterns. Byte patterns are single matches

such as ’abcd123’ existing in both the data being scanned and in the pattern spec-

ification database. Event patterns are a sequence of multiple byte patterns. In the

PME, event patterns are defined by stateful rules. The PME specifies patterns as

regular expressions (Regex). The host processor needs to convert Regex patterns

into the PME’s specification data path, which means there is a one-to-one mapping

between a regular expression and a PME byte pattern. Within the PME, match de-

tection precedes in stages. The Key Element Scanner performs initial byte-pattern

matching, with the handoff to the Data Examination engine for an elimination of

43



false positives through more complex comparisons. The Stateful Rule Engine re-

ceives confirmed necessary matches from the earlier stages, and monitors a stream

for addition subsequent matches that define an event pattern. Figure 5.2 shows the

general block diagram of PME.

We explored and analyzed DPAA and its component PME in depth. We intend

to simplify the programming-interfaces to the low-level details of PME by exploiting

the capabilities of MCAPI. This API has the vocabulary to establish communication

on a bare-metal implementation (no OS at all), that was one of the motivational

aspects to choose PME as our candidate accelerator. This hardware accelerator does

not offer shared memory support with the host processors and the power processor

cores (e500mc cores) for the P4080.

As a result, the data movement between the host and the accelerators need to be

handled via a DMA channel explicitly. Thus, it is desired to use a standard commu-

nication API such as MCAPI to handle the data transportation and messaging.

5.1.2 Design and Implementation of PME support in MCAPI

Firstly we studied functionalities and the prototype implementation of MCAPI.

MCAPI is an industry-standard API for inter-core communication within a loosely

coupled distributed embedded SOC. It can be treated as MPI. However, the APIs

of MCAPI are much lighter than those of MPI. And MCAPI is designed for the

embedded platforms. Nodes are a fundamental concept in the MCA interfaces that

map to an independent thread of control such as a process, thread, or processor.

44



Figure 5.3: Solution stack

In our implementation phase, we set up the PME as a node in MCA and e500mc

processors as the other node. Our solution stack is seen in Figure 5.3.

We explored the MCAPI transportation layer that serves as the communication

layer for PME. We modified the ’create end point’ function to cater to the PME

platform. We also modified two transportation layer APIs to build the MCAPI

transportation channel for PME. They appeared on top of the DMA channel for

PME package transportations.

For the MCAPI message passing, we used the Pattern Matcher Control Interface

(PMCI) library, a C interface to send and receive pattern matcher control commands

to the PME. We found that this functionality is partly abstracted by utilizing the
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MCAPI massage mechanism, including sending and receiving messages. To imple-

ment PMCI support within MCAPI transportation layer, we added the PMCI shared

library into the MCAPI build system. In this connectionless-messaging mechanism,

the source code makes function calls directly to the PMCI library. The primary

functions involved in this process include:

• pmci open

• pmci close

• pmci set option

• pmci read

• pmci write

For instance, the routines to open pmci was mapped to the MCAPI transportation-

layer-initialization subroutine. The routine to close pmci was included in the MCAPI

transportation-finalize subroutine. The read and write routines have been mapped

into the MCAPI message receive and send subroutines while the routine to set con-

figuration has been incorporated into the MCAPI node and endpoint initializations.

As seen in Figure 5.4, we set the Power-processor as one node with a dedicated

endpoint, and the PME as the other node with another endpoint. We therefore

encrypt PMCI message under the MCAPI communication interface. Unlike the

package channel or the scalar channel in MCAPI, sending and receiving messages

in MCAPI are connectionless, which means there is no need to build connections

between the nodes beforehand. This enables the flexibility to send or receive messages
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Figure 5.4: MCAPI on PME
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between nodes and endpoints, as well as to communicate with multiple endpoints,

simultaneously. Another important feature provided by MCAPI is the capacity to

manage prioritized messages, which has potential for being utilized in our future

work.

5.2 Multicore Resource Management API exten-

sion

MRAPI supports process-level parallelism by mapping MRAPI nodes on processes

and utilizing the MRAPI synchronization primitives to synchronize between nodes.

However, such parallelism can be cumbersome for parallelizing embedded systems.

The overhead due to launching a process and inter-process communication (IPC)

(causing additional context-switching) can be a performance kill. Each process

has a private address space; thus one process is unable to access the other pro-

cess’s data. Unlike processes, threads are lightweight. The threads lower the cost

of creation and the ability to exchange large data structures by passing pointers.

OpenMP writes multithread applications without creating, synchronizing, or destroy-

ing threads. MRAPI can enhance the thread-level support for embedded platforms.

5.2.1 Target Platforms

For this work, we have chosen the T4240RDB platform from Freescale’s QorlQ family.

Since this hardware platform is not a typical X86 platform, we believe it is important
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Figure 5.5: T4240RDB block diagram

for the reader to know about the features of the platform and its system setup

procedures, before we discuss the design and implementation of the software.

5.2.1.1 T4 Processor

The T4240RDB platform features twenty-four virtual threads from twelve PowerPC

e6500 cores, running at 1.8 GHz and providing rich I/O capabilities. The Freescale T4

processor family is commonly used in networking routers, switches, gateways to fully

utilize the combined control, datapath support and application layer processing, and

also for general-purpose embedded computing systems. Twelve PowerPC e6500 64-

bit dual-threaded cores with integrated AlitiVec SIMD processing units are clustered
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Figure 5.6: T4240RDB hypervisor

in the T4240RDB board, manufactured using 28 nm process. The e6500 core includes

a 16 GFLOPS AlitiVec technology execution unit that supports SIMD architecture,

to achieve DSP-like performance for math-intensive applications and is considered

to be mapped to the OpenMP 4.0 SIMD support. E6500 cores are clustered to

four cores with a shared multibank L2 cache, and three groups in the T4240RDB

board are connected by the CoreNet coherency fabric, sharing a 1.5 MB CoreNet

(L3) cache. Additionally, it has hardware support for L1 and L2 cache coherency.

The design of e6500 cores also uses several low-power techniques, including pervasive

virtualization and cascading-power management.

T4240RDB provides support for hypervisor for embedded-systems. The Freescale

embedded hypervisor can add a layer of software that enables efficient and secure par-

titioning of a multicore system, including the partition of a system’s CPUs, memory
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and I/O devices. Each partition capable of executing a different or the same guest

operating systems. We plan to use MCAPI to exploit hypervisor in future work. Fig-

ure 5.6 illustrates how Freescale Hypervisor manages the embedded-systems hard-

ware and partitions on the system. The 12 e6500 cores in T4240RDB uses the

Freescale Hypervisor, so we can efficiently simulate an Asymmetric Multiprocessing

environment in many formats.

We consider T4240RDB as a heterogeneous platform. We partition the T4240RDB

board in two parts that each has own hardware resource, including CPUs, memory

and I/O devices. As seen in Figure 5.6, we can explore our OpenMP runtime based

on MCA libraries when the partitions use different operation systems.

5.2.1.2 T4240RDB Setup

Unlike the general-purpose computer, the T4240 RDB uses a time-consuming pro-

cedure to boot an embedded device and configure it for a specific term. We describe

the procedures for setting up the T4240RDB board to illustrate how to set up an

embedded platform.

The T4 board comes with a pre-installed u-boot and the embedded Linux im-

age on the NOR flash-drive. Moreover, by default, the T4 boots from the NOR

flash drive. In the default configuration, the file system is refreshed for every reset.

However, the default configuration required modification.

The system initially loads the u-boot bootloader, and then reads the Linux image

onto RAM, therefore, the Linux kernel in RAM. Any changes we made to the board,
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Figure 5.7: NFS development environment

would be lost after the system reset. We can not connect the board to Ethernet,

which makes file transfer difficult and development impossible.

We configured the T4240RDB to load the embedded kernel image from a TFTP

server while u-boot mounted an NFS root file system, as seen in Figure 5.7. Trivial

File Transfer Protocol (TFTP) is a file transfer protocol that allows a client to access

a file at a remote host [57]. The TFTP server is configured in one Linux desktop while

the T4240RDB board is the client that obtains the image files in u-boot. NFS [56]

is a distributed file system protocol that allows a user to access data over a network

much like accessing local storage. We also configured the Linux desktop to host the

NFS server. The root file system is customized and saved on the remote NFS server,

while not using the limited local-hardware resources on the board.
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5.2.1.3 Comparing T4240RDB with P4080DS

We highlight the differences in the target platform that we had used for our in Sec-

tion 5.1 and the platform that we are using for the work discussed in this subsection.

Our goal is to provide a software toolchain that can be used across more than one

platform, and we have substantially improved our previous toolchain to make it suit-

able platform. The P4080DS processor with eight Freescale e500mc PowerPC cores,

is compliant with PowerISA v.2.06 and includes hypervisor and visualization func-

tionality. It supports CoreNet communications which connect cores and data-path

accelerators. Eight e500mc cores are attached to the CoreNet fabric directly, unlike

the e6500.

T4240RDB platform with twelve PowerPC cores connect four e6500 cores as to

the CoreNet fabric. The L1 cache is 32 KB, the same for both processors. While the

L2 cache size is 128 KB.

5.2.2 MRAPI Node Management Extension

MRAPI’s node initialization process was used to create threads associated with

MRAPI node IDs. MRAPI node initialization process created new nodes related to

node IDs and registered the node related information in the global MRAPI database

shared by all the nodes in one domain. MRAPI categories the hardware resources

into four categories: computation entities, memory primitives, synchronization prim-

itives, and system metadata. This rich feature set of MRAPI allows process-level and

system-level resource management. MRAPI supports a team of nodes where one node
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is the host and the other are accelerators. Our work procedures simplify MRAPI on

multi-thread applications, as well as the OpenMP runtime libraries. The MRAPI

reference implementation was modified to accommodate the extension of this project

as seen in Listing 5.1.� �
1 typedef struct{

2 pthread_t *thread_handle;

3 pthread_attr_t *attr;

4 void *(*start_routine) (void *);

5 void* arg;

6 } mrapi_thread_parameters_t;

7

8 void mrapi_thread_create(

9 MRAPI_IN int domain_id,

10 MRAPI_IN int node_id,

11 MRAPI_OUT mrapi_thread_parameters_t* init_parameters,

12 MRAPI_OUT mrapi_status_t* status )

13 {

14 if (mrapi_impl_initialized()){

15 if(mrapi_impl_thread_create(domain_id, node_id, init_parameters))

16 *status = MRAPI_SUCCESS;

17 }

18 else{

19 *status = MRAPI_ERR_NODE_NOTINIT;

20 }

21 }� �
Listing 5.1: MRAPI Node Extension

The thread-creation operation is accomplished for each node calling mrapi thread create.

The function created a worker thread for the node requested and registered thread-

related information in the global-domain database for the calling node. This is

associated with the created thread and managed for later use.
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5.2.3 MRAPI Memory Management Extension

MRAPI shared memory constructs maps the memory allocation onto the system-

level shared memory, which is a function of the Inter-Process Communication (IPC).

However, this is not suitable for OpenMP and the other thread-level parallel com-

putation. We extended the MRAPI implementation to offer end-users more memory

allocation choice. For instance, most of the OpenMP global-shared data is mapped

to the process private heap instead of the system-level shared memory. This allows

sharing among threads. Data mapped onto the heap can be shared by all threads

created by the same process.This facilitates the global-data movement. We make it

more feasible to utilize varying memory features available on different platforms, by

extending the MRAPI memory model to support thread-level memory.

5.3 Extend MTAPI onto heterogeneous-embedded

Systems

In Chapter 5, we present work that uses low-level industry standard, MCA APIs

for multicore-embedded systems. We further discuss the abstraction of the software

stack to use a higher-level pragma-based approach such as OpenMP that is further

translated to the low-level standard MCA API.

However, as the concept of Dark Silicon [27] draws a big attention by the hardware

system designer to rethink the scalability of multicore system, the trend towards

heterogeneity in embedded systems is very evident.
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Dark silicon is a term used in the electronics industry. In the nano-era, transistor

scaling and voltage scaling are no longer in line with each other, resulting in the

failure of Dennard scaling [29].

Besides good performance has been achieved by adopting heterogeneous compu-

tation, the power efficiency is another big advantage for heterogeneous computation.

A significant portion of embedded systems is restricted in power consumption, espe-

cially for the Socs that need to be powered by a battery.

Thus, in this chapter, we discuss the work to extend both standard APIs and the

OpenMP programming model in the heterogeneous-embedded systems, specifically

targeting embedded systems with GPU.

5.3.1 Design and Implementation of Heterogeneous MTAPI

In Section 2.2.3, we discussed the MCA Task Management APIs (MTAPI) and its key

features. In Subsection 6.2 we explore task-parallelism using OpenMP and MTAPI

over broad coverage of embedded systems. We further explore Heterogeneous Sys-

tem Architectures (HSA) as a target platform for the MTAPI library, by adopting

HIP as the plugin for the MTAPI RTL system. This work enables the support of

heterogeneous computing for MTAPI library.
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5.3.1.1 Heterogeneous System Architectures (HSA) Background

A short background of HSA and its features are discussed. The HSA Foundation is a

not-for-profit organization of industry and academia, to define and develop Heteroge-

neous System Architecture (HSA) which is a set of open-sourced computer hardware

specifications and software-development tools. The founders of HSA include AMD,

ARM Holdings, Imagination Technologies, MediaTek, Qualcomm, Samsung, and

Texas Instruments. They are committed to producing HSA compatible products to

enrich the HSA ecosystem. As a long term goal, HSA will cover the productions from

heterogeneous-embedded systems, portable devices, personal computers, and up to

high-performance computers. Software that uses HSA standards can be executed on

different architectures without refactoring.

5.3.1.2 Development Platform

The development machine is powered by an AMD A10-7850K-2, a Kaveri APU. The

APU contains four CPU cores and 8 AMD R9 GPU cores. The L1 cache is 256

KB while there is total 4 MB L2 cache. The Kaveri APU is the first product that

features HSA technology. HSA is new technology and related support of developing

HSA is limited. The vast potential of HSA encourages us to implement our system

on this cutting-edge heterogeneous platform.
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5.3.1.3 heterogeneous Uniform Memory Access

The HSA proposed heterogeneous Uniform Memory Access (hUMA), which allows

the CPU to pass a pointer to a GPU directly without explicit data movement. After

the GPU finishes execution, the CPU can immediately read the buffer. Data copy

between the CPU and GPU are no longer required. The key features of hUMA is as

follows:

• hUMA supports Bi-directional Coherent Memory. CPU and GPU must have

the same view of the entire memory space without explicit data movement to

keep memory coherence.

• The GPU can access pageable memory from virtual memory that is not in

physical memory.

• Both CPU and GPU can dynamically access and allocate any location in the

system’s virtual memory space.

Applications for GPUs suffer by slow data-movement. hUMA plays a significant

role to HSA, and it has the potential to be a standard for future heterogeneous

computation.

5.3.1.4 HSA Context Switch Support

The context switch was not supported in GPU architecture, due to the lack of hard-

ware support. HSA proposed a software alternative to this problem. The HSA com
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devices provide a decent way for programmers to explore irregular applications on

GPUs. This concept will play a bigger role in the evolution of the architecture for

future GPUs.

5.3.2 Motivations and Design to Support HIP as Plug-in to

MTAPI

MTAPI is a standardized API for expressing task-level parallel programming on a

broad range of embedded systems with different hardware architectures. The MTAPI

specification is designed for both homogeneous and heterogeneous systems. HSA

aims to provide easy-to-use programming interfaces for heterogeneous systems, with

the support of different kind of devices, including CPU, GPUs, DSP, or FPGAs.

Also, it provides a simplified memory model that connects these devices.

In contrast to HSA, MCA APIs target to serve as the comprehensive industry

standards that fully simplify and abstract the underneath system resources, enabling

the power of portability over a set of embedded systems. Thus, it is interesting to

investigate the potential of combining the portability and abstraction enabled by

MCA APIs and the heterogeneous coverage provided by HSA and HIP.

Also, the HSA Foundation targets to encourage and promote HSA-provided de-

vices to cover the systems from embedded, portable devices to workstations and

supercomputers, to dominate the standard for heterogeneous computation. More-

over, most of these company-members of the HSA Foundation focus on Embedded

Systems. It is very possible that in the near future the HSA standard will be widely
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Figure 5.8: Plug-ins for MTAPI actions

supported in heterogeneous multicore-embedded systems. Starting with the release

of ARM Mali GPU naming in Bifrost, the HSA feature has been supported. Due

to the large number of the Mali devices (used 700 million in 2015), HSA will play

a much broader role in GPU computing. All the trends and evolution encourage

us to further extend our OpenMP-MCA work, to make HIP and HSA a plug-in for

heterogeneous-computing.

MTAPI specification is designed to take heterogeneity into consideration, in par-

ticular with the original definition of Jobs, Tasks, and Actions. In MTAPI, each

MTAPI task is bundled with a job. The job is a piece of the processing implemented

by an action. Also, one job can be implemented by multiple actions; those actions

can be either software-defined or hardware-defined. As seen in Figure 5.8, MTAPI

actions can take plug-ins from the external environment.
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Figure 5.9: NVidia Tegra K1 features

In this dissertation, we have extended the current MTAPI reference implemen-

tation [2] to take actions that are implemented by HSA, targeting NVidia GPUs,

AMD HSA-compatible APUs, and AMD dGPUs.

5.3.3 Performance Evaluation Platforms

To measure the performance of our heterogeneous MTAPI implementation, we set

up two state-of-the-art embedded systems that feature GPUs for exploration and

developed a set of benchmarks.
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5.3.3.1 NVidia Jetson TK1 Board

As seen in the Figure 5.9, the Jetson TK1 embedded development-board features a

NVidia Tegra K1 processor, which includes a ARM quad-core Cortex A15 CPU and

192-core Kepler GPUs. It is manufactured in 28 nm technology. The board also

includes 2 GB of DDR3L DRAM (2 ways) and 16 GB of fast eMMC for storage. On

the board, both of the CPU and GPU cores use the same physical DRAM memory.

The theoretical memory bandwidth of TK1 board is 14.928 GB/sec.

However, unlike an HSA-compliant device, its CPU and GPU has non-unified

memory spaces. Also, there is not full hardware-cache coherency between the CPU

and the GPU. As a result, the applications still need memory-copy between the host

CPU and the device GPU. We have several performance evaluations that illustrate

the performance impact of those architecture features. We observed longer times

spent on data-movement on the TK1 board than on the Carrizo board.

The TK1 board has been widely adopted for both research and industry, including

the Computer-Vision related domains, auto-piloted cars, and robots. Overall, the

TK1 board is a very powerful embedded system. The CUDA Toolkit from NVidia is

supported by the board. Thus, it is a good candidate for us to test the heterogeneous

MTAPI.

5.3.3.2 AMD Carrizo Embedded Board

As the very first device that is fully compliant with HSA 1.0 specifications, Carrizo

was released in mid-2015. The Carrizo APU used was manufactured in 28 nm.
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It contains 4 ”Excavator” CPU cores and 512 GCN streaming processors for

an integrated GPU. The Carrizo board is configured to run with two channels of

DDR3-1600 memory, and each channel of the memory has 12.8 GB/sec theoretical

bandwidth. Thus, the theoretical-memory bandwidth of the Carrizo processor is 25.6

GB/sec.

The Carrizo APU processor and its SoCs have been widely used in the embedded-

system’s domain, including medical-imaging equipment, industrial controllers, and

gaming. Moreover, most of the embedded applications take full advantage of the

powerful GPU cores by using OpenCL toolchain. With the release of HIP and

ROCm, it is desirable to program with such tools, for better performance and easier

programming interfaces. We set up the heterogeneous environment MTAPI and the

HIP on the board, and achieved a very competitive performance.

5.3.4 Performance Evaluation of Extended MTAPI Imple-

mentations

We evaluated the performance of the MTAPI implementation by using one set of

GPU-specified benchmarks and one set of real applications. The first set of bench-

marks was purely designed for platforms that are equipped with GPU devices, to test

the features that are of most interest in the GPU domain GPU-streaming rate, global-

memory bandwidth, and PCIE data-transfer rate. All benchmarks were ported to

our platforms, with HIP as the plugin.

We also ported a set of real applications and benchmarks to compare our solution
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stack for embedded systems with GPUs. The applications and benchmarks had

OpenMP running on the host CPUs and HIP on the GPUs. We compared the

performance of the host side and the GPU-accelerator side, across the platforms

from AMD and NVidia.

5.3.4.1 GPU Benchmarks Comparison

We focused on comparing the fully optimized powerful computation rates that target

GPU devices in the embedded systems. Therefore, the performance was for the two

heterogeneous-embedded systems we set up previously: the NVidia TK1 development

board and the Carrizo board.

5.3.4.1.1 GPU Streams Benchmark The memory bandwidth of GPU devices

is significantly larger than the traditional CPU cores. We saw a very wide, 512

GB/sec on the AMD Fury series discrete-GPUs. These were equipped with the High-

Bandwidth Memory (HBM), compared to 51.2 GB/sec for an E5-2687 Workstation

CPU processor. We tested the efficiency of benchmarks for streaming-applications.

The GPU-STREAM [24] benchmark was ported and we measured the performance

on our test beds. The benchmark essentially tests the performance of four simple-

kernels on GPUs:

• Copy: c[i] + a[i]

• Multiply: b[i] = n*a[i](n stands for a constant)

• Add: c[i] = b[i] + b[i]
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• Triad: a[i] = b[i] + n*c[i]

Those kernels require minimum time on float-variable computation, leaving the

performance-bottlenecks to be the global-memory bandwidths of the underlying GPU

system. The performances seen in Table 5.1 were measured in GB per second. We

showed the theoretical memory-bandwidth of Carrizo was 25.6 GB/sec, and that of

TK1 board was 14.928 GB/sec.

Table 5.1: GPU-STREAM performance evaluation

Kernels Copy Multiply Add Triad Efficiency
Double on Carrizo 21.552 21.630 21.422 21.359 84.00%
Float on Carrizo 18.825 18.769 21.389 21.426 78.31%
Double on TK1 12.908 12.933 13.111 13.097 87.16%
Float on TK1 10.727 10.672 11.578 11.732 74.8%

As illustrated in Table 5.1, the TK1 board achieved better efficiency compared to

the Carrizo board on double-precision and slightly worse on single-precision. How-

ever, the Carrizo board with a much larger theoretical memory-bandwidth makes

the overall performance better than the TK1 board.

5.3.4.1.2 GPU Stride Memory Access Benchmark It is important to use

the coalesced memory-access pattern to achieve optimal performance on GPUs. How-

ever, the coalesced memory-access pattern is not guaranteed. We normally expect

stride memory-access pattern for GPU applications, such as accessing an element

in data-structures. Thus, it is important to measure the performance of the GPU

devices on the stride memory-access pattern.

We adopted the benchmark provided from [9], and ported it to run on both TK1
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Figure 5.10: Stride memory access benchmark results

and Carrizo embedded-boards.

As seen in Figure 5.10, the performance on the Carrizo board had a certain ad-

vantage when the size of the stride was less than 8 bytes. However, when the size of

the stride increased to more than 8 bytes, the performance on Carrizo decreased dra-

matically. The behavior relates to the wavefront-size of the AMD GCN architecture

and the optimizations on the driver-level support.

For GPU architecture, warp for NVidia GPU and wavefront for AMD GPU

are the basic units of hardware-scheduling. The warp for NVidia GPUs consists

32 threads and the wavefront for AMD GCN GPUs has 64 threads. Each of the

warp/wavefront for GPU applications processes a single-instruction over all of the

threads at the same time. Thus, when the stride size is larger than 64 bits (8 bytes),
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there is no data reuse inside the wavefront for each read from global-memory. It can

explain the poor performance when the stride size was larger than 8 bytes for the

Carrizo board.

In comparison, the performance on the TK1 board was more stable on a different

stride pattern. Good performance should be related to the optimizations on the

NVidia toolchains and drivers for the stride-memory and texture-memory access.

Because the CUDA toolchain is proprietary, we had no way understand it at a deeper

level.

The takeaway from this benchmark evaluation is that, for the Carrizo board,

the size of stride memory-access should be limited to less than 8 bytes or 64 bits

to achieve good performance. Moreover, AMD drivers have room to improve, for

large-stride memory-access.

5.3.4.1.3 Mixed Benchmark for GPUs In the previous GPU-specific bench-

marks, we evaluated the data-streaming and the stride-memory access rates, to show

several characteristics of the two systems. Additionally, we ported the mixbench [38]

to measure the performance of GPUs on a mixed operational-intensive kernel. The

benchmark contains mixed-operations of multiplication and addition. It was config-

ured for the data types including float, double, and integer.

As the iterations increased for each set of tests, more data was fed into the

computation-kernels. As seen in Figure 5.11, the Carrizo board has a significant

increase in the performance for each of the float, double, and integer data types. For

float-type benchmark in Figure 5.11a, a stable performance for iterations smaller
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Figure 5.11: Evaluating mixbench benchmark for Carrizo and TK1 Boards
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than 32 was seen. Both on Carrizo and TK1, the performance started to decrease at

similar rates for iterations larger than 64. On double-precision seen in Figure 5.11b

and integer type seen in Figure 5.11c, the performance on the Carrizo board is very

stable on iterations smaller than 32. However, it starts to decrease gradually for

increasing iterations.

For the TK1 board, the performance decreased as early as the second iteration.

The decreased rate for double-precision was similar to the normal-distribution, and

the rate for integer-type was similar to a linear decrease. The performance advantage

on the Carrizo board is the efficient HSA-compliant architecture. Those features

include hUMA memory for faster data-coherency and copy rates, as well as the

hardware kernel-dispatch. Those features helped minimize the overhead for kernel-

executing on the GPU cores, resulting in better performance.

By observing the three GPU-specific benchmarks ported to our solution stack, we

concluded that TK1 board from NVidia is very powerful. The performance for this

platform is more stable with different input sizes, because of to the highly optimized

CUDA toolchains. However, proprietary-software prevented us from investigating

the performance we have observed from the benchmarks.

With the HSA-architecture, we expected good performance on the Carrizo board.

However, HIP is relatively new and not as mature as NVidia CUDA toolchains. We

see more room for improvement for the compiler and driver. We have to emphasize

that the HIP and ROCm stack are all open-sourced. Unlike CUDA toolchains, we

can explore the stack and tune performance as needed. Industry standards and open

source are the keys for general-computing on heterogeneous-embedded systems.
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5.3.4.2 Application and Benchmarks Evaluation

To further measure the performance of our extended heterogeneous MTAPI RTL,

we also ported a set of real-applications and benchmarks. For these tests, we mainly

focused on the performance gained by dispatching tasks or workloads onto the GPU-

accelerators. Thus, the comparison was between the host-side OpenMP performance

and the performance on GPUs.

5.3.4.2.1 LU Decomposition Performance The LU Decomposition is an im-

plementation of the algorithm that calculates the solutions of a set of linear-equations.

This is a challenging application, because of relatively large row and column de-

pendencies for the input-matrix. The application is modified to use HIP and our

heterogeneous MTAPI.

We analyze the details of the application performance by comparing the time

for data-movement between the host and the device, kernel-execution time, and the

overall CPU-time between the Carrizo and the TK1 boards. Moreover, we also

compare the overall performance between the parallel host-side and execution on the

GPU-accelerator.

As seen in the Figure 5.12, the overall execution time on the Carrizo board is

much shorter than the Tegra K1 board. Furthermore, the difference is mainly due

to the data-allocation and movement.

The time spent on kernel-execution for both boards are quite similar. For analysis,

the fast data-transfer on the Carrizo board is the hUMA memory-architecture as
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Figure 5.12: LU decomposition on Carrizo and Tegra K1 Boards, note the differences

in the scale
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Figure 5.13: LU decomposition performance CPU vs GPU

discussed. In the hUMA memory-model, both of the host CPU and the GPU have

the same view of the entire memory-space. Therefore, the data-movement for the

Carrizo board only means to pass on the pointers between the CPU and the GPU.

However, on the NVidia TK1 board, the CPU and GPU units are logically two

elements in the system, which have separate memory-space in the same physical-

memory. Thus, the data transfer is enforced, before and after the kernel-execution,

and those steps are the primary part of the execution. This test is a good example

of the advantage in supporting bi-directional memory-coherence.

We further explored the speedup of execution on the host CPUs. We ran the

OpenMP version of the LU Decomposition application on the host CPU side with four

threads on both the Carrizo and the TK1 boards. The result is seen in Figure 5.13.
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Because of the data-movement on the TK1 board, there are no performance gains

on the GPU, compared to the TK1 CPU.

As the size of the input matrix increases, we see a larger performance advantage

on the Carrizo GPU. The trend we observed is mainly due to the massively parallel-

computation capacity provided by the GPU.

The data-movements for GPU systems are very costly and require careful opti-

mization and performance-tuning. The HSA-compliant features provided by Carrizo

minimize this concern. We achieved a better overall performance on the Carrizo

board than the TK1 board, which highly ascribes to the HSA architecture.

By enabling HIP as the plugin, we extended our MTAPI runtime-library to sup-

port the heterogeneous-embedded systems that features GPUs. Furthermore, a much

better performance was achieved on the HSA-compliant architectures.
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Chapter 6

Map OpenMP onto MCA APIs

In this chapter, we introduce the project that maps OpenMP, the higher-level pro-

gramming models, onto the MCA APIs. The mapping of OpenMP to MCA APIs

provides higher-level programming-models while ensuring the portability of the ap-

plications using our solution stack.

6.1 Enhancing OpenMP Runtime Libraries with

MCA API

In the embedded industry, the GNU compiler is the dominated compiler. We explored

the suitability of MCA libraries with the GNU-compiler-based OpenMP runtime li-

brary, the libGOMP. We built an OpenMP runtime-library called libEOMP [68]

where we mapped the essential resource-management functionality of the MCA
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libraries to an OpenMP runtime-library implemented in OpenUH compiler [41].

OpenUH translates OpenMP directives and function calls into the parallel code for

use with a custom runtime library (RTL). GCC’s latest release provides support

for OpenMP 4.5 on C/C++ compilers and FORTRAN, which is encouraging for

multicore-embedded programmers to use OpenMP.

Compilers translate the high-level OpenMP pragma-based directives into an Intermediate-

Representation (IR). The directives provide hints to the compiler to perform code-

transformations, so that the serial-code can be converted into parallel-code. After

translating the OpenMP constructs to C-like IR, the large part of the code is built

into a separate runtime-library. This provides a set of high-level functions that

are used to implement the OpenMP-constructs efficiently. The OpenMP runtime

typically manages the parallel-execution by creating worker-threads, and managing

thread pools and the synchronization among threads. An efficient runtime can also

offer productive-scheduling, data-locality, and workload-balancing techniques.

In general purpose computation, the systems offer full OSes and multi-threading

libraries that can be effectively utilized by the OpenMP runtime library. Unfortu-

nately, most of the embedded systems do not provide these features since they are

heavily customized to cater to specific applications. Hence, we use MRAPI as the

translation layer for OpenMP, to target such complex systems. The work in this

section has been published in [61, 68].

75



6.1.1 Memory Mapping

In the OpenMP runtime, some global data-structures must be maintained. For

example, each team of nodes needs to keep a block of work-share to be assigned

later. In this project, we extend the MRAPI shared-memory constructs to allocate

thread-level shared-data, as seen in Listing 6.1� �
1 void *gomp_malloc (size_t size)

2 {

3 mrapi_shmem_attributes_t shm_attr;

4 shm_attr.use_malloc = MCA_TRUE;

5 mrapi_status_t mrapi_status;

6 mrapi_shmem_create_malloc(SHMEM_DATA_KEY,size,&shm_attr,&mrapi_status);

7 if (mrapi_status == MRAPI_SUCCESS) {

8 return shm_attr.mem_addr;

9 }

10 else

11 gomp_fatal("MRAPI failed memory allocation");

12 }� �
Listing 6.1: MRAPI memory extension

6.1.2 Synchronization Primitives

The synchronization-primitives of OpenMP-MCA runtime library has been mapped

to MRAPI mutexes. This is to prevent critical data-races and manage accesses to

the shared-data. Specifically, we use mrapi mutex create to create the mutex object

upon initialization.
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� �
1 /* libGOMP Mutex Lock entry */

2 static inline void

3 gomp_mutex_lock (gomp_mutex_t *mutex)

4 {

5 int oldval = 0;

6 gomp_mutex_lock_slow(mutex, oldval);

7 }

8

9 /* MCA Mutex Lock entry */

10 static inline void

11 gomp_mrapi_mutex_lock (gomp_mrapi_mutex_t *mutex)

12 {

13 mrapi_status_t mrapi_status;

14 mrapi_status = MRAPI_SUCCESS;

15 mrapi_mutex_lock(mutex->mutex_handle,&(mutex->mutex_key),MRAPI_TIMEOUT_INFINITE,

&mrapi_status);

16 }� �
Listing 6.2: MRAPI mutex in libGOMP

Listing 6.2 illustrates the MRAPI mutex function used to enhance the original

libGOMP runtime-library. MRAPI mutex maps the lock-operation for the target-

system, thus, making this low-level operation portable across to various sets of sys-

tems that supportes MCA API.

6.1.3 Metadata Information

MRAPI metadata-constructs have been utilized in the OpenMP library. We used

the MRAPI metadata-trees to retrieve the available number of processors online for

node-management. Moreover, the information is used to serve the MRAPI nodes for
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threads-management.

6.1.4 Evaluating GNU OpenMP with MRAPI

In this subsection, the performance of the extended GNU OpenMP library was mea-

sured with MCA API. A discussion on the performance follows.

Table 6.1: Relative overhead of OpenMP-MCA runtime library versus GNU OpenMP
runtime

Directive 4 8 12 16 20 24
Parallel 0.98 1.04 0.73 0.98 0.98 1.03
For 1.00 1.10 1.10 1.01 1.31 1.49
Parallel for 0.99 1.36 1.05 1.03 0.81 0.95
Barrier 0.90 0.93 1.13 0.90 1.48 1.32
Single 0.41 2.39 1.09 0.97 0.99 1.03
Critical 0.99 1.34 0.99 1.19 1.11 0.45
Reduction 0.98 0.97 1.00 0.94 1.07 1.01

We used EPCC [16] to evaluate the OpenMP-MCA RTL, and to measure over-

heads caused by adding MCA API. EPCC is a set of programs that measure the

overhead of OpenMP directives. Besides, it is also used to evaluate OpenMP runtime-

library implementations. Table 6.1 lists the performance for OpenMP-MCA library

compared to the original GNU OpenMP library. In Table 6.1, we normalized the

overhead of OpenMP-MCA RTL, to provide a relative performance. The smaller

number indicates fewer overheads. OpenMP-MCA library does not incur major

overhead, and it performs better for some OpenMP-constructs.

With different thread-pool sizes, the PARALLEL-construct performs better than

libGOMP. And the overheads are slightly higher than libGOMP for the for construct.
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Thus, the combined Parallel for construct has a similar overhead. Performance

on the rest of the constructs is also comparable to libGOMP, with different sized

thread-pools. We have achieved competitive performance for each of the OpenMP

constructs on T4240RDB board, though OpenMP-MCA library still has more room

to be optimized with a larger thread-pool.

Next, we want to ensure the correctness of our implementation. For this step,

we used the OpenMP validation suite [67] to check if the enhancements made to the

library did not cause a lose of functionality. The results from the validation suite

also helped determine which implementation defects to fix.

We then evaluated our OpenMP-MCA RTL implementation using NAS OpenMP

benchmarks [36]; the results are illustrated in Figure 6.1. The execution time was

measured in seconds, and the performance comparison was between the OpenMP-

MCA library and the proprietary GNU OpenMP library. The NAS benchmarks

have several different data-sets available. Typically, size S and W, which are the

smallest data-sets available, can be used to validate the correctness of the compiler

being tested. The larger data-sets can be used to measure the performance of the

compiler and the OpenMP runtime-library. In this project, we chose the size A of

NAS benchmarks for our performance-measurement. As seen in the Figure 6.1, the

execution time for the single thread is in seconds.

We illustrated the performance from single-thread to 24 threads, which is the

maximum number of threads available on the T4 board. Besides the performance

comparison, we also measured the speed-up rate of both libraries within the same

graph.
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As seen in Figure 6.1, the performance of OpenMP-MCA library is very com-

parable to the proprietary GNU OpenMP library. In CG, EP, and IS test cases,

the OpenMP-MCA library showed better performance compared to the proprietary

libGOMP. On the speed-up rate, most of the benchmarks perform well. On EP

test case, both of the OpenMP libraries had a great speed-up rate. The rest of the

benchmarks achieved speed-up around 15 with 24 threads.

The performance and speed-up rates seen in Figure 6.1 show that, by enhancing

libGOMP library with MCA APIs, no significant-overhead was incurred. Also, it

provides portable software stacks to target a large number of multicore-embedded

platforms.

6.2 Mapping OpenMP Task Parallelism to MTAPI

We discuss our proposed light-weight, portable OpenMP library that maps its task-

parallelism onto MTAPI. Task-parallelism is essential for embedded-products. The

automotive-application is a good example; the state-of-the-art automobile chips need

to handle different signals and executions from many various aspects. Those in-

clude electronic-control units for valves, fuel-injection, and sensors. Each of these

operations can be classified as a task. Those tasks could be executed in paral-

lel with the help of an adequate programming model, such as the OpenMP task-

parallelism. Moreover, the vast potential for self-driven cars exacerbates the needs

for task-parallelism. There are many other examples available in the embedded

domain that requires the help of task-parallelism, including robotics and aircraft.

80



Figure 6.1: Evaluating OpenMP-MCA runtime library using NAS benchmarks
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However, due to the impediments we discussed in the previous chapters, to map

OpenMP task constructs onto embedded-devices is difficult. In addition, to build

a portable implementation on devices with different architectures is even harder.

Thus, in this section, we used the task management API (MTAPI) as the mapping

layer of OpenMP task-constructs and achieved competitive performance. We have

previously published this work in [62].

6.2.1 Overall Framework

In Subsection 6.2, we introduced our previous work that maps OpenMP task-parallelism

support onto MTAPI library. In addition, MTAPI can take plug-ins to implement

actions that execute on devices with different architectures. With the MTAPI library

implemented in Section 5.3, further extended our solution stack onto heterogeneous

platforms.

Figure 6.2: OpenMP-MTAPI solution diagram

Our proposed solution is to map the OpenMP constructs to MTAPI APIs. This is
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to provide an elegant OpenMP programming interface and a comprehensive software

stack for embedded systems. This work requires a broad learning of the OpenMP

compilers and their runtime translations, as well as the environment-configurations.

Figure 6.2 illustrates our framework. An OpenMP compiler front-end translates

the OpenMP constructs into OpenMP-MTAPI library function calls. Therefore, the

lower layer contains the transformation of the OpenMP application. The executable

file is formed by linking OpenMP-MTAPI library and MTAPI library. During the

execution time of the application, the OpenMP-MTAPI library takes the OpenMP

task function-pointer and the task data-pointer to create a task. The OpenMP-

MTAPI library then translates the tasks onto MTAPI task, and moves the control of

execution onto the MTAPI library. After parallel execution, the MTAPI library sends

the results back to the OpenMP-MTAPI library, thus accomplishing the execution

of OpenMP-task.

6.2.2 Implementation

In this subsection, we give more implementation-level details of the work regarding

the map of OpenMP task constructs onto MTAPI.

6.2.2.1 Parallel Construct

In the conventional OpenMP library, when the master-thread encounters an OpenMP

parallel-region, a set of worker-threads are created and associated with a team. Thus,

this is the ”fork” of OpenMP’s ”fork-join” execution-model. After the creation of
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worker-threads, the OpenMP library sets them into the state of wait. Later the

library can wake them to working state. The overheads of the OpenMP-construct is

reduced, since threads are not created multiple times.

In our enhanced OpenMP-MTAPI library, threads are not handled directly; which

ensures portability. Instead, we used MTAPI to control the thread-management

and workload-scheduling, to ensure the portability across different architectures and

OSes. In our library, we initialized the default MTAPI node and created the default

MTAPI action with the associated job handle when codes encountered the parallel-

region. Therefore, the program can start MTAPI tasks without further initialization.

6.2.2.2 Task and Taskwait Constructs

OpenMP compilers translate each of the explicit tasks to a runtime-library function

call with several parameters, including a function pointer, data frame, arguments,

and dependencies. Inside the function, the tasks are created and put into the task

queue for further execution. For taskwait construct, a typical OpenMP library spec-

ifies the descendant-tasks of the current task, and waits for their completion before

moving to the next step.

We directly mapped OpenMP explicit tasks to MTAPI tasks in OpenMP - MTAPI

library. This is done by sending the function-pointer and data-frame to the previ-

ously created MTAPI action, and starting the corresponding task-creations by call-

ing mtapi task create routine. We also store the returned task-handle for further

reference-created tasks. Besides, the optional OpenMP group IDs are mapped to the
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MTAPI tasks. In the context of MTAPI, task wait utilizes the task-handle which

is obtained from the creation of tasks, and then waits for the completion of the

corresponding task. We assigned the OpenMP task-wait functionality onto MTAPI

routines.

6.2.2.3 Taskgroup Construct

OpenMP 4.0 specification introduced the taskgroup construct, which provides a

simplified task-synchronization mechanism. The taskgroup defines a structured re-

gion. All tasks created in the region, including their subtasks, belong to the same

taskgroup. At the end of the taskgroup region, there is a synchronization point,

which forces all tasks in this taskgroup to wait for completion.

MTAPI specification provides a set of routines for taskgroup management. When

creating MTAPI tasks, programmers have options to associate tasks to a taskgroup.

In our OpenMP runtime library implementation, when encountering OpenMP taskgroup

region, we created an MTAPI task-group with the default group ID. Inside the group

region while creating tasks, we specified which MTAPI taskgroup the tasks belonged

to. We also mapped the exit-point of taskgroup onto the mtapi group wait all rou-

tine. This was performed with the taskgroup handle obtained previously.

6.2.3 Performance Evaluation

In this subsection, we evaluated the implementation of our OpenMP-MTAPI run-

time library. Our implementation achieved increased performance while ensuring
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portability. We use the OpenMP Task micro-benchmarks [39] to demonstrate the

overheads incurred by the OpenMP task-construct. We discuss the performance

analysis by evaluating applications from OpenMP task benchmarks from Barcelona,

the OpenMP Task Suite (BOTS) [26]. The experimental platform consists two E5520

CPUs, with 16 total threads for execution. The system provides sufficient resources

to test over different numbers of threads. As mentioned earlier, we used the EMBB-

MTAPI implementation for our prototype OpenMP-MTAPI runtime library.

6.2.3.1 OpenMP Task Micro-benchmark Measurement

Figure 6.3: OpenMP task overheads measurement

To measure the performance of our translation, we first evaluated if the addition

of an MTAPI-layer could result in any overhead. We used the OpenMP task micro-

benchmark suite and compared the overhead of our OpenMP-MTAPI library against

GCC OpenMP library. As a comparison, OpenUH-OpenMP runtime library was
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Figure 6.4: Evaluate OpenMP-MTAPI RTL with BOTS benchmarks

also tested [10]. The overhead in this scenario is the difference between parallel-

execution time and the sequential-execution time over an identical section of code.

During testing, the micro-benchmark conducted a large number of iterations, for

both task-parallel executions and subsequential executions. Figure 6.3 illustrates the

comparison of the overheads. In the graph, the Y-axis indicates the actual overhead

of the OpenMP task-constructs in microseconds, for 1 to 16 threads. When the

threads were less than 4, the OpenMP-MTAPI library performed similar to the GCC

OpenMP library. However, the OpenMP-MTAPI library has significant advantages

for larger numbers of threads. The performance of OpenUH library showed fewer

overhead for less than eight threads; however, when the number of threads increased,

the OpenMP-MTAPI library performed better.

Our runtime-library performs better in task overhead. Minimum overhead of

tasks creation and scheduling over many threads is desired, when MTAPI is used on

multicore-embedded devices.

In this subsection, we measured the performance of the OpenMP-MTAPI library

using the BOTS suite. We chose Fibonacci and SparseLU for performance evaluation.
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6.2.3.2 Fibonacci Benchmark

The Fibonacci benchmark uses a recursive task-parallelization method to compute

the nth Fibonacci number. This benchmark features small computation loads, but

heavy dependency and synchronization among the tasks. As seen in Figure 6.4a, the

OpenMP-MTAPI library performs better than GCC OpenMP library with less than

eight threads, while GCC OpenMP library has a distinct advantage with a larger

number of threads. Our prototype implementation was further improved, especially

for the synchronization strategies when using a large number of threads.

6.2.3.3 SparseLU Benchmark

The SparseLU benchmark computes an LU matrix factorization over sparse matrices.

The matrix showed workload imbalance while using task-parallelism and dynamic

scheduling lead to a better performance.

6.3 OpenMP-MTAPI for heterogeneous-embedded

Systems

We designed and developed the heterogeneous MTAPI runtime library in Section 5.3.

Moreover, to measure the performance of the extended-heterogeneous MTAPI li-

brary, we implemented benchmarks and applications. We achieved a relatively good

performance on our targeted HSA-compliant Carrizo embedded-board. In this sec-

tion, we introduce the OpenMP task constructs with our heterogeneous MTAPI
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Figure 6.5: OpenMP-MTAPI with HIP plug-in

library, which enables the support of OpenMP task-construct on heterogeneous plat-

forms.

6.3.1 OpenMP Task Construct with Heterogeneous MTAPI

Figure 6.5 shows our OpenMP-MTAPI flowchart, which takes HIP-implemented ac-

tion on the MTAPI library. In our implementation, the functionality of communi-

cation and offloading tasks to HIP plugin are handled by the MTAPI library. The

OpenMP-MTAPI runtime library is an intermediate layer that dispatches OpenMP

tasks onto the MTAPI task queue. Also, it specifies the dependencies between tasks.

When an explicit task is created in the context of OpenMP task, the runtime

library gathers the related task information and sends it to the task queue handled

by the MTAPI library. MTAPI then schedules the task and arranges the tasks to
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execute on the offloading device. The development platform is the same as discussed

in Subsection 5.3.1.2, and we uses the same test-beds we adopted in Subsection 5.3.3,

for both the AMD Carrizo, and Nvidia Tegra K1 boards.

6.3.2 Performance Measurement for Heterogeneous OpenMP-

MTAPI

We measure the performance and efficiency of our solution-stack for heterogeneous

platforms. The underlying heterogeneous-embedded platforms are the Carrizo and

the Tegra K1 boards. We analyze each of the test cases by comparing the performance

on the host and the accelerator. The time spent on data-transfer and kernel-execution

were also tested.

We ported several test cases from Rodinia [19] and the Scalable Heterogeneous

Computing (SHOC)[23] benchmark suite. Those benchmark suits are well-adopted

for industry and academia. The main purpose is to measure the potential perfor-

mance loss that is introduced by extending MTAPI onto heterogeneous platforms.

6.3.2.1 Grid Computation Evaluation

RTM8 was modified from an oil and gas industry application and ported to our

solution stack. We use this application to evaluate the potential for speedups for

such structured-grid applications. Moreover, the structure of the application features

massive-parallel computation. We expect good performance for this application.

The original application was programmed in FORTRAN. We use the single-thread
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Table 6.2: RTM8 application

Carrizo Fortran CPU Carrizo Task GPU Carrizo Speedup TK1 Task GPU

PT Rate(millions/sec) 5.213 1195.23 229.26 987.65

FLOP Rate(Gflops) 0.3493 80.08 229.26 66.172

FORTRAN code as the base of the performance comparison.

6.3.2.1.1 RTM Application As seen in Table 6.2, a larger performance gain

was achieved by executing the application on GPUs with our software stack. The

performance on GPU was 229.26 times faster than that on single-thread host CPU.

Since this application involves minimum data-transfer between host and device, we

also obtained good performance on the TK1 board, about 82% of what we got

from the Carrizo board. Certain applications that require massive-structured grid-

operations are very suitable to execute on GPUs.

6.3.2.1.2 Hotspot Benchmark HotSpot is a widely used algorithm that esti-

mates processor temperature. Each output cell in the computational grid represents

the average temperature value an area on the chip. We modified the benchmark

to work with heterogeneous MTAPI library and used by the OpenMP task con-

struct. The performance data is illustrated in Table 6.3. In the table, we use TK1

to represent the performance of the Tegra K1 board and use CZ to account for the

performance on Carrizo board. The time for each step was measured in s. The

speed-up rate was calculated by dividing time of OpenMP on the host to the time

of benchmark offloaded to GPU.
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Table 6.3: HOTSPOT performance data

CPU to GPU Data GPU to CPU Data GPU Data Allocation Kernel Execution Overall GPU Time OpenMP CPU Time Speedup

TK1 64 485 475 65365 325 66650 3220 0.05

TK1 512 3395 36903 44906 247 85451 29692 0.35

TK1 1024 11700 154722 49457 277 216156 81796 0.38

CZ 64 70 134 232 155 591 4437 7.51

CZ 512 1586 693 1360 157 3796 11544 3.04

CZ 1024 3595 5015 3452 169 12231 25338 2.07

By analyzing the performance table, the HotSpot benchmark achieved a much

better performance on the Carrizo board, with an average speed-up by the factor

of four. However, the benchmark ran very poorly on the Tegra K1 board. The

data-transportation and device data-allocation used of the time for execution. As a

result, though the kernel-execution time on both the Carrizo and Tegra boards were

similar, the difference for overall performance were large. On the Carrizo board, the

hUMA memory architecture and HSA architecture are enabled, which theoretically,

has much smaller overheads to transfer data from the host to the device and back to

the host. The same applies to data allocation. Better performance was achieved by

adopting proper software tools and underlying heterogeneous-embedded system. Our

solution stack can help programmers explore parallelism over devices across vendors,

providing better performance and portability.
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Chapter 7

Conclusion

7.1 Conclusion

This dissertation focused on developing a high-level, standard-based software solution

stack for heterogeneous-embedded multicore systems. We have explored low-level

Multicore Association standards that offer communication management, resource

management, and task management APIs. Those APIs can help to manage data

movement between cores, resource synchronization, and task parallelism on multicore

systems. To abstract the software stack even further, we have adopted a high-level

pragma-based standard approach, OpenMP, and translated OpenMP to the MCA

APIs layer. To this end, embedded platforms that comply with MCA APIs can

benefit from OpenMP. As we know, embedded systems are typically heterogeneous

platforms consisting of either ARM + GPU, or ARM + DSP, or CPU + FPGA, or

CPU + GPU; it is critical to extend the software stack so as to support these types
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of systems. Which provide cores with features and varying functionality. However,

without an efficient software stack, it is a challenge to tap their potential.

We propose a solution stack that maps OpenMP to heterogeneous-embedded

systems by adding an HSA plug-in for the MTAPI library. This allows us to offload

computations to HSA-compatible devices.

The overall contributions of this thesis are as follows:

• Portable software stack using OpenMP for heterogeneous multicore embedded

systems.

• Extend MCA task management API to support heterogeneous systems across

vendors.

• Evaluate the proposed solution stack on various embedded systems and show

the effectiveness and portability of our solution stack.

7.2 Future Work

For future work, we would like to explore and evaluate our stack on more types

of heterogeneous-embedded devices, which include bare-metal devices, DSP devices,

and FPGA devices. Those devices are frequently used in embedded devices. How-

ever, the programming models for those devices are not available. We believe our

solution stack will be helpful for system resource management and execution schedul-

ing over the underlying devices.
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OpenMP 4.5 has been released. The computation offloading to accelerators is

better supported. Thus, it is desirable to explore the OpenMP target and target data

constructs with our solution stack. We believe OpenMP will be the proper high-level

programming model for future heterogeneous computing on embedded platforms.

Moreover, support for more programming interfaces in our solution stack can

provide more options for the programmers. For the industries of the auto-driving

car, medical imaging, and Virtual Reality, GPU is playing a more important role.

The effort of introducing HIP to our solution stack is our first step to ease the

programming on heterogeneous-embedded systems involving GPUs.
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[47] A. Nicolas, H. Posadas, P. Peñil, and E. Villar. Automatic deployment
of component-based embedded systems from uml/marte models using mcapi.
XXIX Conference on Design of Circuits and Integrated Systems,DCIS 2014.,
2014.

[48] NVIDIA. Cuda C Programming Guide. http://docs.nvidia.com/cuda/

cuda-c-programming-guide/.

[49] NVIDIA. The openacc specification, version 2.0, august 2013. URL http:

// www. openacc-standard. org/ , 2013.

[50] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D. Hill, S. K.
Reinhardt, and D. A. Wood. Heterogeneous system coherence for integrated
cpu-gpu systems. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 457–467. ACM, 2013.

[51] N. Rajovic, A. Rico, J. Vipond, I. Gelado, N. Puzovic, and A. Ramirez. Ex-
periences with mobile processors for energy efficient hpc. In Proceedings of the
Conference on Design, Automation and Test in Europe, pages 464–468. EDA
Consortium, 2013.

[52] A. Reid, K. Flautner, E. Grimley-Evans, and Y. Lin. SoC-C: Efficient Program-
ming Abstractions for Heterogeneous Multicore Systems on Chip. In Proceedings
of CASES ’ 08, pages 95–104. ACM, 2008.

[53] P. Rogers and A. C. FELLOW. Heterogeneous system architecture overview.
In Hot Chips, 2013.

[54] F. Sainz, S. Mateo, V. Beltran, J. L. Bosque, X. Martorell, and E. Ayguadé.
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