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lMeny stecl bridses, buvildings, transmissiou and recepbion towers
are constructed using Duild-vp members. The buekling lozd cf a
built-up column is of interest to the designer because berding
roments and stresses from the transverse locds erc amplified wvwhen the
compressive force approaches this criticel lcad.

This thesis presents an analycticel study to evaluate the crivical

buckiing lead for several types of built-up orismalic members. The

effect of shear deformations on the buckling strength is discussed i

o

detail. An experimental investizstion on the measurement of buckling

strength of bulli-uwp menmters was made on small scale test columns.

23

Test results are compared with those predicted by the theoretical

anelysis. The tests verify the vrecdictiorns of columa buckling
strengths noade using the theoreticel basis presented in this varper.
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1. IWIRODUCTIOH

A built-up colum i¢ 2 cumpressioa menbzr in which the compovenis

of lhe colunn are conncctzd by e system of lacing bars o

ol
-

bavten

olates. The Tunctions of the Lracing system sre to provide a
NN

=

mechanism for the transmicsion of shear by the column and to reduce
the laterzlly vnsupported lenglh of the legs so that they moy carry
hilgh compressive loads.,

The earliest treatment of the problem on bu;lt—un columns wes by

1, . . . A o )
Engesser” in 1389 in which he presented approximete formulas for the

45

buckling load of latticed colums as well as that of cclumns with

batten plates. In 1009 Engesszr” published a refined snalysis of the
same probler;, taking into sccount the secondary effect of the shearing

forces. The fallure of the Quebec Bridce3 during construction in 1307
to certain deficiencles of this type of column and gZar
rige to wvarious theroretical and experimeuntal iunvestigaticne into the
behavior of bullt~up colunes.

~The effect of the shearing forces which occur when a column
deflects near the buekling losd will be discussed in Chapter 2. Their

influence on the critical lead vas fcund practically negligible

et
o

ection of the types cooventional in structural

columns of solid cross s

design. This is entirely due to the fact that the shearing stresses
v 3 ) AFS

lEngesser; F., Zenbtralblett der Bavverwalturzy, Vol. 11, p. k33, 1291,

?Fnéesse” F., Zentralblatt der Bauwverwaltung, Vol. 23, 1203.

- - 0 -
3 Royal Cormissicn Quel

- . - 1 R g
55 Guebec Bridge Innulry Repors, Ctoeve, Canala,
a0
Vol. 1, 1903, v. 15CY
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and the distertion caused by these stresses are very small, even in
the worst case cf an I-section bueckling in the plane of the web. The
conditions are different in bullt-up columns. The contribution of the
shearing forces to the total deflection of the column is much greater
in the case of built-up colums. The decrease in buckling strength
due to the shear deflection is therefore much gieater than in the case
of column with solid cress section and depends upon the detailed
arrangement and dimensions of the lacing elements.

The built-up coluwn is in reality a three dimensional framewor:

and the stability of which can be investigated more accurately by the

74

wethods of framework analysis. Many attempts have been made to approach

the problems in this manner and to arrive at exact solutions c¢f the
coluﬁn problem. However, all these studies, which considered the
column as a framevorx, did nct add ruch nev knowledge concerning the
performance of built-up columns beyond that already furnished by
Engesser's vworkx. They confirmed the results first derived by Engesser,
and this is their importsnce. The exact sclutions differ from the
approximate formulas, in that the number n of panels in which the
column is subdivided appears only in exact exctressions for the
critical load developei on the basis of the fremework theory, but n
affects the results only in cases where it is a smzall number. In

practice n 1s usvally greater than I, and the exact and the approxi-

il

mate methods furnish nearly the same results. Therefore, in this
paver the enalysis is hased on the approzimete method, in whic
built-up column is treated as a prismatic member. This epproach is

reasonable becausge in practicze the column legs are considerably close



to one ancther and the vertical length of a penel in the braced plane
is usually small compared with the column height.

The purpose of <this thesis is to present an analytical study to
determine the elastic buckling load of built-upw prismatic members. In
order to coanfirm the theory derived, the sﬁall scale experimental
column tests were performed.

In Chapter 2 the elastic buckling of prismatic bars will be
discussed. Expressions for the critical load will be derived by means
of solving tﬂe differential equation for the deflection curve of the
fundamental column. The'same expressicns will be used for buillt-up
prismatic menbers.

Laced columns and columns with batten plates wiil be discussed in
Chopter 3. The effect of chear deformstions on the buckling load is
discussed in destail in each case. The three-legged column of
prismatic cross section, which is often used as a guyed structure to
support devices for the transmission and reception of radio and tele-
vision signals, is also treated in detall in this chepter. Columms
using perforated cover plates, instead of lacing bers or batten plates
are often used in practice. In order to illustrate the overall theory
the effect of shear deformations on the buckling strength for this
kind of column is also discussed. Howesver, for these columns the
shear influence is not significant and may be neglected for practical
purvoses.

In order to determine how actual bullt-up columns behsve, three
test coluins vere designed, constructed and tested in the structures
laboratory. The test results are compared with those predicted by the

theory and are discussed in detail in Chapter L.
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2. BUCKLIIG OF BARS

2.1. Euler's Colum Formula

1. Colurm with Hinged BEnds.

In g study of the strength of compression members it is
useful to approach the subject by considering the behavior of an
"ideal column", which is a solid bar assumed initially to be perfectly
straight and compressed by a centrally spplied load.

Consider first the case of a slender, ideal column with

‘hinged ends, acted upon by a longitudinzl force P applied along the
centroidal axis of the ember (Fig. 2-la). The colurm is assumed %o be
perfectly elastic, and the strésses do not exceed the proporticnal

liwit. If the load P is less than the critical value, the bar
X

I

remeins straight and undergoes

P it
l only axial compression. This
—_ ﬁﬁl—_—___—' straight form of elastic eguili-
\
\ brivm is "stable”, which means
\
! that if a lateral force is applied
.._)_A‘__.;Q__ 2 .
L { end a small deflection produced,
™ In
’f“ the deflection disappears when the
/ P
! i lateral force is removed and the
—L—q o Y
bar returns to its straight form.
P P P .
If P 1is gradually increased, a
(&) (b) condition is reached in which the

straight form of equilibrium

becomes "unstabie" and a small



lateral Torce will produce a deflection which does nct disappear when
the laterzl force is rermoved. The “eritical load {(or Euler lo=d)" is
then defined as the axisl force vhich is sufficient to keép the bar in
such a slightly bent form (Fig. 2.1.b).

The critical load can be calculated by using the differential
equation of the deflection curve. When the coordinste axes are taken
as indicated in Fig. 2.1.p and also the column is assumed to be in =

slightly deflected position, the bending moment at any cross section

mn is
M = Py
and the differential equation becomes
Ex ‘i;’z=~m=-?~;
4™ , P Yy = o |
or AX™ EI (2-1)

The general solution of this equation is

¥y = A sinkEx + B cos k¥ (2)

. . , P . .
in vaich kK = = and A and B are constants of integration.

For ¥ = 0, y = 0, hence B - 0, and therefore

Yy = A Sin K X (b)

which is the general equation of the deflection curve. This is a
sinusoidal curve, the value of y varying from zero for kx = O,
X, 2 , 37, etc., to a maximum valve of + A Tor kx = %W 5
3/2 7t , ebe. The value of A 1is therefore equal to A , the

meximu deflection, and we have, in terms of &,



VN = A sSin KXY = A S;Y\}——EP—E % (C)

For single curvature, as in Fig. 2-1.b, kx varies from O to U ,

hence for

— p
e o _ d
X LJ kﬂ—-n} or ) = (d)

fror which

Por = TLL;I | (2-2)

which is Euler's formula for long colums. This is the smallest

critical load for the bar in Fig. 2-1 a.

Theoretically, the assumed conditions of equilibrium are
satisfied for k1 = 21T , 3 m® , etc., corresponding to curves
vith one, two or more nodes (Fig. 2-2). TFor double curvature, for

P P example (Fig. 2—2a), we have

aTlEx

kl- = 2 x and hence P, = %
which is four times the value given
by Eq. (2-2). That is, the

.V * l L critical load for double curvature
!

vl
|

is four times that for single

w]h |

curvavure. Multiple curvature

I cannot of course occur in practice
P with free, round-ended columns, but
b

% may readily be induced by inter-

Fig’- 2_2
mediate lateral support. This



analysis shows to some extent the strengthening value of such inter-
mediate support for very long colvmns, or, a reduction of the

unsupported length.

2. The Effect of End Conditicons.

Eq. (2—2) has been derived for the case of freely pivoted
ends, giving zero bending moments st these points. The critical
loads for columns with some other end conditions can be obtained
from the solution of the precedidng case by uvsing for 1 a reduced
length L, vhich is the actual length between points of inflection or
of zero moment. 1In Fig. 2-3 are shown four cases of end condition
wiéh the length indicated between points of zexro moment. Substituting
these in Eq. (2—2) ve have, for the four cases, the following

theoretical formulas:

a) Hinged ends Per = Tii: N
\ L.
b) One end fixed, one end free Py = 2 TET
- }(2—3)
¢) Both ends fixed Doy = _:ffiﬁi_
cy = k,_
Q e
d) One end fixed, one end hinged P.. = A TE
* Cy — L}.

Eq. (2-3) are obtained from Eq. (2-2) by substituting in place of the
length 1 of the bar a reduced length L. Thus we can write in

general
= — (2-%)

In b, the case cf a prismetic bar with one end built-in and the other

end free, the reduced length L is twice the actual length



(L = 2 1). 1iIn ¢, the case of & bar with both ends built-in, L is
nalf the actual length. In d, vith onc end built-in and the other ena

hinged, L 1is two thirds of the actual length.

(<) (4)

3. [The Effect of Shearing Force on the Critical Load.

—

In the preceding derivations of the eguations for the
critical loade, the effect of shearing force on the deflection was
neglected. Vhen buckling'occurs, howvever, theré will be shearing
forces acting on the cross sections of the bar. The effect of these
forces on the critical load_will now be discussed for the hinged end
column (Fig. 2-L). The change in angle of the deflection curve

produced by the shearing force is

d“}s . — TLQ — n A cJM' (e)
Tdx T AG AG A x

vhere A is the total cross-sectional area of the column, G the
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modulus in shear, and n & numerical
factor depending on the shape of the cross

s 1
section.

The rate of change of slope producel

by the shearing force Q represents the

v

additicnal curvature dve to shear and is

equal to

2

AY: _ n aQ no4am )
d')(z' AG[ AN AGI' d)(z' (I)

The totel curvatvre of the deflection curve

Fig. 2-4

is now obteained by adding the curveture
produced by the shearing force to the curvature produced by the
bending moment. Then, for the column in Fig. 2-3, the differential

equation of the deflection curve becores

Ay A, Ky, M d'm (o)

J.Xl - okx‘ sz £€x A G dow I
1For a rectangular cross section the factor n = 1.2, and for a
circular cross section n = 1.11. For an I beam bent about the

minor axis of the cross section (i.e., bent in the plane of the
flanges) the factor n = 1.2 A/Af ; where Ap is the area of the
tvo flanges. This value lies within the range 1.k to 2.8 for the

usuzl I beam and plate girder sections. If an I beam bends in the

rd

plane of the web {about the major axis) the factor n = A/AW where
- ~ 1. . fal Z
A, 1is the area of the web. For this case values of n from 2 to ©

are typical for rolled steel sections.



since M = Py , thus we have
1" Py P W )
= - A (n)
N ' EX A& /
or . iy . Y\ ? _ P P i
Y (, C ) =Y @) (1)
P .
Let m = [T, the general solution of this equation is
EKZCJ_—~—
A&
Y= A tes M X + B Sin wmx (3)
From the boundary condition: x = 0, y = 0;

ve obtain the stebility equation

Sive wm L = @) (x)

from which the least critical value of the load is obtained

Pe

2_‘—\
Pcr = "\ Pe (2-5)
I A G
R ET
vhere Pe = -——f:— represents the Euler criticel locad for

this case. Thus, owing to the action of shearing forces, the critical

load is diminished in the ratioc oL . Thus P., = o Ps ;

| ' I
Oi = o (l)
" o O
|+ P =
A& &
T EX . .
vhere o= T represents critical stress.
- A 2

From the fact that A< |
therefore Per € Pe

-

Assume ¢, = Ty = 33,000 psi, G = 12 X 1.06 psi, n

1
|4
N
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then we have oA = ——iréag————- . It is seen that the ratio
is very nearly equal to unity for solid columns, such as a column of
rectangular cross section or a column with I cross section. Hence
in these cases the efifect of shearing force can usually be neglected.
For built-vp columns sonsisting of strubts connected by lacing bars or
batten plates, the shear effect may become of practical importance and

will be the major part of this study. A grapn of Eg. (2-5) is given

in Fig. 2-5.
1.0
\\\
\\=\
g =
o
|
o |
0 ‘0.5 .o
n Pe/A <
Figc 2"‘5

.~ .

L. Applicability of Euler's Column Formula

It was assumed in the previous discussion that the bar wes
very slender, so that the maximum compressive stresses which occurred
during buckling remeined within the proportional limit of the material.
Only under these conditions will the preceding equations for the

critical lcads be valid. To establish the limit of avplicability of

these formulas the fundamental caese of hinged ends (Fig. 2-1) will
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be illustrated.

Let A T sectionel area of colvmn
r = least radius of gyration
G’cr -~ criticel value cf the conpressive stress

Dividing the critical load from Bg. (2-2) by A , and letting

I
Y = A , Ve have

. _Fer _l‘.;ﬁm. (2-5)
A (___)"
s

This stress depends only on the modulus of leasficity E of the
material and on the slenderness ratio ,ﬁ/r . The expression is valid
as long as the stress o, remains vithin the proportional limit.
When'tﬁe proportional limit and the modulus E are knovn for a
particular materiel, the limiting value of the slenderness ratio l/r
can be found readily from Eq. (2-6). For example, for e structural
steel with a proportional limit of 30,000 psi and E = 30,000,000
psi, we find the minimum L/r from Eq. (2-6) to be about 1CO0.
Consequently, the critical loed for a bar of this materizgl, having
hinged ends, can be calculated from Eq. (2—2)‘if f/r is greater than
i0C., If l/r is less than 100, the compressive stress reaches the
proportional limit before buckling can occur and Eg. (2—2) cannot be

. L
used.

1 , s - . o mas
For the buckling of hars compressed heyond the proportional limit see

1t .

Timoshenko, "Tacory of Blastic Stability” 2nd Ed., Chap. 3, p. 163-1CL,

McGraw-Hill Book Company, Inc., 1961.



Fig., 2-6

Eq. (2-6) can be represented graphically by the curve A C B
in Fig. 2-6, vhere the critical.stress is plotted as a function of ﬁ/r.
The curve approcaches the horiiontal axis asymptotically, and the
critical stress epproaches zero as the slenderness rabtio incresses.
The curve 1s also asymptotic to the vertical axis, but is applicable
in this region only as long as the stress 0., remains below the
proportional limit of the meterial. The curve in Fig. 2-6 is plotted
for the structural steel mentioned above, and point C corresponds to a
proportioﬁal linit of 30,000 psi. Thus only the portion B C of the
curve can be used.

Proceeding as for a bar witi hinged ends, we can find the
same erxpressions for the critical stresses analogous %o Eq. (2~6) for

the other cases showm in Fig. 2-3.



These eguations are written in general

: T E
ey = — (2-7)

)

in vhich L 1is a reduced length for each case. Thus the results

obteined for the fundamental case can be used for other cases of
buckling of bars by using the reduced length instead of the actual

length of the bar.

5. Revisions to Buler Formula in the Inelastic Range

As stated in the preceding scction, the Euler formula is
satisfactory only for cases vhere stresses are proporitional to
strains., Outside of the elastic range L is not cornstant and the
Euler formula must be revised in order for it to be zpplicable in
the inelastic range.

In 1889 Friedrich Enéesser proposed the so-called tangent-
modulus theoryl in vhich the moduli of elasticity for stresses above
the proportionzel limit are determined from the slope of the stress
strain curve. Engesser assumed that the colwmn remaired straight
until failure and that the tangent modulus was constant for the
entire cross section of a qolumn. To plot a curve of the Euler
equation above the proporﬁional limit with the Engesser proposal it
is necessary to assume certain values of P/A , find the tangent

modulus for ecch from a stress-strain curve, and then use the Euler

1, . . . s .
Zeitschrift fur Architekur und Ingenieurwesen, 1889. -



equation to determire the corresponding L/r values for plotting
against P/A . The applicetion of this method results in curves which
come much closer to test-result curves than does the use of the
regular Buler expression.

During the last seveﬁty years applications of the tangent-
modulus theory by the engineering profession have made a full circle
from considerable respect to little respect and back to considerable
respect. After ils introduction many engineers claimed that thé
theory was poor because a very important fact was not considered in
its development. The fact supposedly neglected was that the strains
on one side of the column vere Qecreasing as were the stresses on
that side, and that these changes were made in the range of the
elastic modulus.

Based on this criticiswm Engesser revised his old theory and
introduced the reduced-modulus or double-modulus theory in 1395. A
reduced modulus somewhat greater than the tangent modulus is used and
the estimated load which a colurn can support is larger than that
given by the original Engesser theory. For a good many years the
double-modulus theory was accepted as being the correct theory of
column action in the inelastic range, dbut in recent years many doubts
have been voiced about the double-modulus theory. Actual test results
fall in betvween the values given by the two theories and in fact they
tend to be closer to the tangent-modulus values than to the reduced-
modulus values. Furthermore, the tangent-modulus values are on the

safe side vhile the double-mocdulus values are on the unsafe side.



¥. R. Shanley presented a poper in 19471 vnich discugssed the
shortcomings of the double-modulus theory and showed that the
original tangent mcdulus thcory was the better of the two. Curves

are presented in Fig. 2-7 showing the comparison of the resulis

obtained by using these two formulas and also the Euler formula.

Redumced Moduwlus

o —=

’ > oyt LIY«\?'(‘_
\T&“je“i_ FY‘OP Y DY\A\

Moaulns

Fig . 2"'7
(after Shenley)

1 .
F. R. Shanley, "The Column Paradox,” Journal of the Aeronautical
Sciences, (May 1947), p. 26.
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3. BUCKLIFG OF BUILT-UP COLUMNS

3.1. Descrivption

Built-up compression mesbers are often used for very large
structures where the members are long and support very heavy loads.

When built-up sections are used they are connected on their
open sides with a system of lacing bars or batten plates. The
functions of tﬁe bracing system are to provide a mechanism for the
transmission of shear and to reduce the-laterallr unsupported length
of the column components so that they may carry high compressive
loads.,

The built~up sections shovn in Fig. 3-1 are often used for
structural compression members. Four angles are sometimes arrenged
as shown in (a) to produce larger r vélues. This type of menber
may often be seen in towers and in crane booms. A pair of channels
(v) is often used as a building columm or as a web member in a large
truss. OSometimes the channels may be turned out as shown in (¢). A
built-up section (d) consisting of a pair of channels with perforated
cover plates is also frequently used for the compression members of

buildings and bridge trusses.

U

&) (b) <) (o

—

Fig. 3-1



= =T Ty =7

== - i .

() (b) (<) | ()
Fig. 3-2

The built-up sections shown in Fig. 3-2 are used when the
rolled shapes do notb héve sufficient strengtin to resist the column
loads; the arezs in tﬁese sections are increzased by adding plates to
thelflanges. In the e&aluation cf the critical buckling load fow
“these non-latticed built-up columns, the lateral shearing forces are
small and can be neglected. Eg. (2—&) for a single column is used to
calculate the critical load for the non-latticed built-up columns.

The critical load for the built-up latticed column is always
less than for a solid column having the same cross-sectional area and
the same slenderness ratio ‘Z/r . This decrease in the critical load
is duve primarily to the fact that the effect of shear on deflections
is much greater for a built-up latticed column than for a solid bar.
The shearing forces are therefore definitely not negligible for the
built-up lztticed columns. The actual values of the critical loads
depend upon the detailed arrangement and the dimensions of.the bracing
systems.,

If the huilt-up column has'a large number of panels, Eq. (2—5),
derived for a solid tar, can be adapted to the calculation of the

—_— — —
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critical load. Ve can write Eg. (2-5) in the form

Py = & (3-1)

b+ e

vhere Po is the Euler criticel load and the gquantity 1/K for a
built-up column corresponds to n/AG for a solid bar. Thus the
factor l/K is the quantity by ﬁhich the shearing force Q 1is
multiplied in order to obtain the additional slope -y of the
deflection curve dve to shear. Thus we have

Y = —-—9——— (a)

K .

and to determine the quantity l/K in any particular case we nust
investigate the lateral displacements producéd by the shearing

force.

3.2. Laced Colurn

It was pointed out in the preceding section that the addi-

tional change in slope of the deflection curve due to the shearing

force is expressed by 'T%_' Q , and the effect of shear on the

. . . | .
critical loed in Eq. (3-1) is represented by = vhich represents
the change in slope of the deflection curve due to the unit
shearing force.
Fig. 3-3 shows the deformation of one panel under the unit

shearing force. Assuming hinges at the joints, the angular

Ss
displacement produced by the unit shearing force can be taken as .

when the deformation is small. By using the principle of viriual
N*L
AE

work we have S, = 2. , in vhich N , A and
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~

0 are an axial load,

P
-ﬁ——_~;§i cross-sectional area and
;I'éi\¢ the length of the mewber,
2 éi a respectively. In the
.[] ;Z members Fl1, N = 1,
RN EZ i -
and in ¥2, W = -\’._o—;;’
——————-jZ thus we have
P (b)
(&)
Fig. 3-3
S, — 1% b + I a
ST EA cos*d-sind. B Ag
). 1 .
= 2 ( — ) (n)
E Sin - cosPp-Ad tand. Ay
| e | ( ] \ )
— e r. = - + _2
K O E Sin . Cosqu A Ton . Ap (3 )

Substitute in Eq. (3-1) the critical load for a strut with hinged

ends (Fig. 3-3a) is

"TET : |

Pc\v- = /Qz [ + an1< | (3'3)
)Lz

|
E Aasin Pcostd * EA5+0~.~n<P>

In this expression T 1is the moment of intertia of the cross
2

section of the strut, that is, I = 2 I, + , in which

A, and I, are the area and the moment of inertia of the channel,
while Ay and 4, eare the areas of two dlagonals and two battens,

respectively. If Ay and Ag are small in.comparison with the areca
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of the channels (Fig. 3-3a) or other main members, the critical
load from Eq. (3—3) mey be considerebly lower than the Euler vaiue.
The effect of Ag on critical load is larger than that of Ay .
Thus the laced column may be considerably weaker than a solid strut
with the same EI , but since the amount of material used is less,
the laced column may'be more economical. When Eq. (3-3) is used,
the actual built-up column is replaced by an equivalent colwrn of a

reduced length L wvhich is to be determined from the equation

eI | !
L = ij b 11'(EA&SM¢CW§¢ +EAE“*J (e).

When there are two diagonal

~ T

lacing bars in each panel (Fig.

3-la) the shearing force will

)
o

%E:i. stress one diagonal in tension

~battens do not teke part in the

transmission of shearing force,

P
+/
0 . and the other in compression. The
Y
P

1 . T and thg system is equivalent. to
P P that shown in Fig. 3-Ub. The
() (b () critical load in this case can be
obtained from Eg. (3-3) by
Fig. 3-b

omitting the term containing Ay

and doubling the cross-sectional area Az - Thus we have

wET ' l (3-k)
'S TET )
{ -+ LL E AA'STY\ CP C0514’
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and a reduced -length for an equivalent column is

| wET . l )
L. = /Q JV‘ + k‘i. ( E‘A&S\"Y\Cb CDSL¢ (d)

In the above equations Ay denotes the cross-sectional area of four
diagonals, two on each side of the column in the same panel.

Eq. (3-L) can be used also in the case of a single system of
diagonal bars (Fig. 3-ke) provided A3 1s The area of two diagonals
and ¢ is measured as shown.

It is seen that the value of critical load for the laced
column is determined from the‘size of column components, its
configuration, the length of the column and also depends upon the
arrangement and dimensions of bracing systéms. The effects of these
factors on the ﬁuckling strength are further illustrated by the

following numerical examples:



(a) Colurm (Fig. 3-3a)
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_ Chanunel Bracing P.. L
a D 1 Section Diagonal |Horizontel| (K T
(in)| (i) [ (£t M(in)X(in)X(1b/rt] (in)X(in) | (in)X(in) Sa. (3-3)

Ni' 6 3118 |4X15/8Xx5.103/16% 3/16/1/8 X 3/16| L41.0 |148
2| 6| 3{18|bX15/8x5.4|3/16%3/8|1/8%3/8 43.8 1k3
31 6 3|12 |4X15/8%5.4|3/16% 3/16/1/8 x 3/16| 18.3 |eo1
L 6| 3118[3X11/2X4.13/16X 3/16{1/8 X 3/16| 31.8 |1b7
51 6| 3118|3X11/2X413/16X3/8(1/8%x3/8 | 33.5 1k
61 6| 3128/3X11/2Xk13/16X 3/16{1/8 X 3/16| 1k.0 {220
T1 6] 3[18|4Xx15/8x5.L3/16x%x3/8 {1/8% 3/16] 43.L |1k3
8§ 6| 3 |1Blax1 5/8 X 5.4 [3/16 X 3/16{1/8 X 3/8 | 41.3 |1by
9| 8 3|18 |Lx15/8Xx5.43/16% 3/16(1/8 x 3/16| 33.8 |151

10 | .8 312 |4X15/8X5.4[3/16% 3/16(1/8 X 3/16| 17.8 |22k

1L | 6| b 128 |hbXx15/8X%5.L35K3/16 (1/8x3/16] 30.2 170

12 | 8| W |28 4hxX15/8%5.k3/15%X3/16[1/8 X 3/16| 30.1 172




2k

(b) Colum 2. (Fig. 3-ba)
Columm Components Bracing Por L
a | b 1 Channel Diagonel. |Horizowtal| (K) s
. (in) |(in)| (£6) (in)x(in)x (an/pt), (10JX(n) § ()X (in) g (3-1)
1| 6| 3]18{4Xx15/8%x5.43/16%3/161/8 X 3/16| Lh.1 |1ke
21 6| 3118}4x15/8Xx5L4B/16%x3/8]1/8%x3/8 | 45.5 |10
31 6| 3128|4x15/8%Xs5.k33/16X% 3/16/1/8 X 3/16| 18.9 |217
Ly 6| 3 ]18|3x11/ex h;l 3/16 X 3/16{1/8 X 3/16| 33.7 |1k43
5 6 | 3118{3Xx11/2Xx4.13/16%X3/8|1/8X 3/8 3h.5 1kl
6| 6| 3|2813x11/2xk13/16X3/16/1/8x 3/16| 1k.3 |219
71 6| 3|18/ 4x15/8%5.k3/16%3/8[1/8X% 3/16] 45.5 |1k
8| 6| 3|18/ 5%158%s5.k[3/26%3/16/1/8 X 3/8 | M1 |12
9| 8] 3118{4x15/8%x5.k(3/16X3/161/8% 3/16| k2.7 |15
10| 8 3128 4x15/8%5.43/16X3/16/1/8 x 3/16] 18.7 |220
11| 6| b | 28] kx15/8%5.43/16%3/16/1/8 X 3/16] 32.2 |166
| 12 | 8| 4 |28 L4x15/8%X5.43/16% 3/161/8 % 3/16] 31.8 |167
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(¢) Column 3. (Fig. 3-ke)
Colum Components Bracing Porp
(i) (;)1) (fi) ot | ooy | :
I Eq.(3-4)
No.
1| 6| 3118 LX15/8%X5.4 3/16 X 3/16 | k1.6 [146
2] 6| 318 LX15/8X5.4 3/16 X 3/8 | k.1 [ike
31 6| 3| 28 LX15/8%5.4 3/16 X 3/16 | 18.k  |220
L] 6| 3118 3X11/2%Xka 3/16 X 3/16 | 32.2 [146
51 6| 3118 3X11/2% k.1 3/16 X 3/8 | 33.7 [1b3
61 6| 3|28 3%X11/2X k.1 3/16 X 3/16 | 14.0 220
71 - - - - - - -
8 - - - - - - -
9 8 3 18 4X15/8X5.h 3/16 X 3/16 | 39.2 {150
10| 8| 3] 28| LX15/8%xs5.k 3/16 X 3/16 | 17.9 |e22
11 6| 4| 28} LX15/8XKX5.k 3/16 X 3/16 | 31.3 |eok
12| 8| 4| 28| Lx15/8%x5.L 3/16 X 3/16 | 30.5 Q171
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3.3. Column with Betten Plates

The battened colum, subdivided by the battens into panels, is

a highly redundent structure and its exact analysis would be rather

laborious. However, in studying the stability problem of this system

simplifying assumptions have been found concerning the local deforma-

tions of the framework which can be applied to determine the internal

forces of the system.

From the theory of rectangular fremeworks it

is known that the distorted form of such a framework is characterized

by points of inflection at the center of the transverse members, and

approximately at the mid-pcint of each chord member. Therefore the

redundant system can be replaced by a statically determinste framework

having articulated links at the midpoint of cach mernber as shown in

Fig. 3-5.
P

e —
——
L

S

r_
:

b

I

~

ol
-
w
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3.3.1. Two-legged Column with Batten

Bracing

In the case of a two-legged
column made with batterns only, as shown
in Fig. 3-6a, the lateral displacement
produced by the unit shearing force can
be obtained by considering the deforme--
tions of an element of the strut between
the points of inflection which are
agsumed to be at the mid-points of the
panels mn and myny . The bending of

the element will be as shown in
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e
n..
RN : —--10)/2
- 2
my rny
1
i
A
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| i

e

Fig. 3-6

Fig. 3-6b. The lateral deflection consists of the sum of the

displacements &s; , due to bending of the batten, and s, , due

to bending of the channels. TFig. 3-7 shows in the bending of the

batten that there are couples

£ M=%  acting at the ends, and the angle of

rotation at each end of the batten is

obtained by the conjugate-beam method,

3eT, GEZT, T )z EIL,
b | [!lﬁé
P §

The total leteral displacement is

ész éS| -+ ész

& o __O\.zb
éSl: ’2— T 24 EI, (e)
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a 3 } . 0_\_____.____ {n
952 = __71_(\ 2 ~ - 5 E (£)

where b is the length of the batten, B Yy is its flexural

rigidity and & IC is the flexurel rigidity of orne of the vertical

channels. The total angular displacement produced by the unit

shearing force is -

2
| ) ab LN
Y= s = = Izcz, | 24 EI (&)
—_ b g <
2
Substituting into BEq. (3-1) yields
. .
P = KEZ : (3-5)
e e . TET( ob a? ‘)
| 22 12 EX, 24 EBI,

- DI vt B~

and a reduced length for an equivalent column is

L8

L=,QVI1+—KEI(M + ac>_ (n) .-

A2 12 EX)y 24 T,

2
, . b . ‘y
In the above equaticns the factor —IEQ; represents the critical

load for the entire column calculated as for a solid column. t is
seen that when b is large or when flexural rigidity (E Ib) of the
batten is small, the critical load is much lower than that given by
Buler's formula.

If the flexural rigidity of the batten is very large, assume

E I, = ©° ; Eq. (3-5) produces in this case

T ET ! (3-6)
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I and I; din the above formula can be represented by 2 Agp 2 and
2 : . .

A, r, , respectively, therefore Eq. (3-6) can be written in the form

of

}
TLZ'O\L 2/\& \'1'
24 S Ac Yo
l (3)
] + 0,93 ﬁ‘:&l:
(%)

For safety purposes we mey use 1.0 in lieu of the fraction of 0.83

PCV - PQ

[

::Pe

in the above expression, thus Eq. (3-6) becomes

F.

Pa
Fcr = P?, iy Py (3—68)
. AN+ Na
. . - A , .
In this equation A = v represents the slenderness ratio of the
built-up column, and Ng - —?— -represents the slenderness
a

ratio of one channel between the bettens of the panel.
In the calculation of the angular displacement 7y; the shear in

the batten must be taken into consideration also. From Eq. (3-7) it

can be seen that the shearing force in the batten is s , and the

corresponding shearing strain in

I

o. n n a
( b ) Ay & bAy, & (k)
For this case Ab is the cross-sectional area of two battens and n

equals 1.2 for the rectangular section. Adding this expression to

the previous Eg. (g), we obtain

TET 1 - '
Fer = L5 4 XEI/ ob at* no >(3 7

+
22\ n.;;f 24ET. bA,G

instead of Eg. (3-5).
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3.3.2. Effect of Local Failure

A built-up column rep?esents a framevork vhich will collapse if
any member of the structure begins to yield locelly before the
critical load P.p 1is reached for wnich the column was designed. It
is therefore necessary to take the possibility of local. failure into
account in the evaluation of the critical load.

If the ve;tical channels of the built-up column represented in
Fig. 3-3a are very flexible, or if the distance betvween battens is

large, collapse of the column may occur as a2 result of local buckling

of the channels bestween two consecutive battens.

P 18 P 1% .
=z ER Assuming that the rigidity of the
S 7
, H } battens is very large, the critical
i ]
o. ,/ s value of the compressive force at
’ ’
II /
3 vhich the assumed buckling will
- b [ occur is found from TFig. 3-3b
(a) z z
2
e P T E I
\\ ’ = 2
P\ 2 N
A
-———~T—— s O or
‘o
2 2T E e
| P= — (1)
o 1’_ ¢ &2
)
L o In the analysis of the bending
¢b) t

. . 1
£ of a beam-column vith hinged ends™ ,
2

o
N
[92]
w

]
(6]

the maximun deflection & is

1 See Timoshenko, S. and Gere, J., "The Theory of Elastic Stability",
2nd Edition, McGraw Hill Book Co., Inc., lew York, 1961, p. 29, Eq.(a).
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given in the form
° = 5 (\*—l—:j“) ()

in which 9 ¢ is the maximum deflection due to a lateral load only
and ol represénts the ratio of P/Pcr . Eg. (m) expresses the
effect of axial load on the deflection; the é«a due to the lateral
load only is increased by the amplification factér ——~F;;E—~ when
an axlal load .is also present.

The effect of the axial load P/2 on the bending of the verbical

channels can nowv be tsken into account by writing Iq. (£ in the
(]

form of Bq. (m),

> ]
_ & (n)
o5z = 4R EI, |- o :
where
‘ﬁP
oz - LCT (O)
2| EIe
S

Using expression (n) for S s2 » the critical load P.,. for the

strut shown in Fig. 3-6b can be written in the form

P - TeT ! (3-8)
* 2 2
Cr SR, E:.I [ ab o, o R L1
_ : 2 e, | 2AEL (-0 bAG

Since oL depends upcn PC

» » this equation can be solved best by

trial and error.l It should be noticed also thet the critical load

lgee Apperdix for trhe computer solution written in the FORTRAN language.



for the column between battens (Fig. 3-8a) is always less then that
given by Eq. (l), inasmuch as the batiens are not rigid. This nmeans
that the true value of ol is larger then that given by Eg. (o) and
hence the true critical load is less than that obtained from Eq. (3-8).
However, these differences are nct of practical significance, since
the term in the denominator of Eg. (3-8) containing I. is usually
small compared with the term containing Iy.

The critical load for the column with batten bracing is
determined from the configuration and size of the column components,
and also depends upon the arrangement and dimensions of the particular
batten system. The effects of these factors on the buckling strength
are further illustrated by the following numerical examples: (See
Table 3—1).

It is interesting to note that column lQ in the Table 3-1 has
a larger value of Poyr than that of column 1 although the latter

has a larger b value.



Table

w
w

3-1

_ P.. (K)
N N Channel Batten 4o Vlng . (3-7J2q. 3.5 *L/x

No. [(in) [(in) | (£6)(in)X(in)x(3b /2t M(in)% (in)

11 6| bl12) 3Xx25xk1 |1/3X% [20.38 [23.3% [28.3% | 155
21 6| bl12| 3x13xLka T X4 (k8.0 |L46.67 |M6.67 | 121
3] 6 k| 20f 3x15xk1 |1/8X3% |e1.25 [20.72 [20.72 | 182
b1 8| k|12) 313 x b1 [1/86x3 [23.18 [22.36 |22.36 | 180
51 81 h|12] 3Xx15Xxha T X% {39.3¢ [38.10 {38.10 | 13k
61 8| b| 2| 3¥x13 x4k [1/8x3 [17.82 |17.33 (17.33 | 198
712 | 4] 12| 3X15Xxkl |1/8%X % |16.30 | 15.68 [15.67 | 210
8112 | L] 12| 3X14X b1 £ x4 |e8.70 | 27.73 |27.70 | 157
9112 | b {20} 3x15xLka |1/8x% |13.55 | 13.03 |13.02 230‘
100 61 3|12 3Xx15Xxk1 [1/8%x% |30.54 |29.12 [29.12 | 117
11 8 3| 12| 3x15x b1 1/8 X % |25.27 | 23.97 (23.97 | 129
l2(12 | 3| 12| 3x 15k x k.1 |1/8%X% |12.48 | 17.66 |17.66 | 150
13 6| 5| 2| 3x13xL.1 [1/8X3 - 21.03 - 180
( 4y 8| 52 3xkxb |1/868x3| - 16.91 - 200
15|12 | s5j 2| 3x1x%1 [1/8x%| - 12.13 - 236
16 2 bl 12 3x1ixha {3/16%x1 - 45.76 143.55 | 122
171 36 L 12l 3X15%k.a 3/16 X1 31.02 j27.hs | 1L8
82k | 4 18] 3Xx 13Xkl |3/16%x1 - 32.27 |31.48 | 1h7
19036 4| 18| 3x15xL.1 |3/16%1 ok,18 |22.Lk5 | 17k




3.k, Three-leszed Column

3.k.1. - Descrivntion

The three-legmed laced tower of prismatic cross section is
often used as a guyed structure to support devices for the trans-
mission and reception of radio and television signals. The legs
almost invariably are arranged to occupy the vertices of an equi-
lateral triangle in cross section. Bracing connects the legs to
form three braced planes, each parallel to the axis of the tower and
each making a dihedral angle of €0° with the others. The bracing
system may consist of diagonais, battens, or a combination of both.
The.three braced planes of a tower are subdivided into vertically
stacked panels by the bracing members and are usually identical.

The buckling loads for the equileteral triangle tower, (1)
with triangulated web systems of various configurations, and (2) with
nontriangulated web systems (battens only), are treated in this
article.

For a prismatic member of Fig. 2-L, the least critical
value of the load P, considering the effect of shearing force, is

given by Eq. (3-1)

5 Pe
TCr — ?Q
I+ »
\ 1
in wvhich X = - = -~ 1is defined as the shearing

™/ her
stiffness. The expression K for use with the three-legged tower

will now be derived:



o
1

Let Qp Yve the shearing force in one of the braced planes and
Xp the shearing stiffness of a braced plane. The angle between a
braced plane and the direction in which the buckled tower cross

section is displaced is designaled by ﬁ (Fig. 3-10). The moment of
P

} A
— /\
' b
m~ | n - }?ﬁ\
1% e/ "\

* Fig. 3-10

et~ O

Fig. 3-9

inertie about any axis of the section, I , is invariant. The
displacement of a braced plare gsuch as A B in Fig. 3-10 consists of
a component along direction A B, y p , and a component perpendiculer
to plane A B . The former results in é shear resistance directed
from B to A. Designating the total displacement of the cross

section by ¥y , then

\/? = Y cos B (3-9)
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The curvature in plane A B associated with axial deformations

|}
of legs A and B 1is designated . Y ;P , and from Fig, 3 -2

b L
e e 2
t - f
_b Ly
€A putind ___‘i_._ o= — z = - 2
g - f f
"
Thus, 75? may be expressed
N ' — 66- 6A = ' - - P N cos @ (3'10)
Assume the shear in the
T
e leg of a column is taken as
' . '
// \\ —jgi— , and the shear in
/ _ \\ each leg is resolved into
/
P/ components in the braced
/ \\ © planes at each vortex of
M @7& P mo
] the equilateral triangle
] - .
v\~
&2 rb,¥/’ A B C . The shearing force
_/

~ O !
/ DY
P\ Gp 1n each plane is
/m t P
1 S S

Q o = —;— Pﬂ‘QO-S B (3-11)

Y
Thus the relation for the
Fig. 3-12 panel distortions due to
sheer is oblained:
2 H
: ¢! 3Py cos B 12

ke Kp



y Pa" cos b
Y SP = 3 (3"'13)
2. KF

Egs. (3-9), (3-10) and (3-13) yield

Y

l \
T Cos = Ve = 7\‘:>F+ \/5\?
Py a1k
= ("‘ EPI y + '*'__?\‘F—'—) cos f (3-1%)
2 P

from vhich

1! P b . -1
N+ EI< |——'” 3y = 0O (3-15)
3Ky

It is noted that Eq.(i) in Chapter 2 can be written in the form

0, p I - o
7 ET | - B 1=
K

vhich is idertical to Eq. (3-15), with the exception that ‘%"‘(KP)
is Tound in the latter, while K appears in the former. The

foregoing implies that Eq. (3-1) ray be used to determine the

buckling load of three-legsed towers provided —%—- Kp 1s substituted

for K . The formula corresponding to Eq. (3-1) for the three-lezged

tower is therefore

Fcr == Pe (3-—18.)

|+-3E-Q—-—-
=2 ¥p

Eq. (3-1la) is velid for both web systems, namely (1) with trianguleted

. \ . . . 1 . oo
bracing, and (2) with non-triansulated brecinz. The stiffness Kp



for eacn particular case is cvaluated according to the methods

shovm in the previous section.

-

3.4.2. Column with Nontriansuleted VWeb Systen

For the case of a column with batten bracing only (Fig. 3—11),

) e o 24 = ‘ jEﬂZ+-—§i) (3-16)
—_—— = = — 24 € I I 3"'
Kp @ o~ Gp b f

In this expression Iy 1is the moment of irertia of the batten cross
section and I, is the moment of inertia of a leg of the tower about
its centroidal axis. It is here assumed that the column legs are
circular or tubular so that any axis of the cross section is a
principal axis, and I, is invariant. The vertical and horizontal
dimensions of the panel in the braced planes are a and b ,
respectively. Eq. (3-16) ignores the possibility of additional
effects due to shear distortion in the batten.

The formula corresponding to Ea. (3—1) for three-leggzed towers

with batten bracing are, therefore

T ET
N 2
0 = = (3-17)
cr + 1 | 2ab + o
l A 3b ( Iy Te

The rotation of a tower leg 6 at a point midway between two
B 2 2 ¢

battens is

lTomayo, J. Y., and Ojalud, M., "Buckling of Three-lezzed Columns
with Batten Bracing,” Proceedings of the A. S. C. E., Vol. 91, No.
ST 1, February, 1955.
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(S

CK — ————
- A _Z 4
% o 7 T3erL < © z“‘")
2
\ 2 ., ok
@F 2o.b /. P
= ¥ + :
24 E ( Ty 1c,> 4 ET,
S
- ()
E Iz T, b T (3-18)

To simplify subsequent expressions, the following substitutions

are introduced:

2
N o= e (3-19)
and . .
=" ET
Pe = A

The component of shear in one leg along the direction of the

breced plane dvue to @ , is —ga . The total panel shear is

- % o) ) : -20
Substituting from Eq. (3-18),
2
5 Py cosp |
& = (3-21)
2y
3 &

The curvature associated with sheesr distortion is designated y"SP s

n

then ,
2.
N o) "g“_},\" ‘15 Cos @
Jspo = = £ =
F= Y e ___%_-i_”
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and

2 P W
-3 KP \)b Cos @ )
Ve, = Y | (3-22
1 ] = =5 N

3 B
The curvature associated with axial changes in the length of the legs

is given by Eq. (3-10). Thus, the governing differential eguation is

obtained from the following:

\}P = \’“ CDS(3 = \]bP_;.\)_s?
- go
‘)“c.:;s(& = (-— _P ¥ 4+ 2 ke b cos 8
e . Y.
3 E
Substitute gy = - P7
b ET
T2 P P
P 3 FKFp EI
3+ (= > P )\,-; °
)—TEA/
or 2 P )
\I"""‘t" C' 4 T KP ) .
ET 2 )TV (33
=

Solving for the pin-ended condition yields the following solution

for the buckling load P in implicit form:

2 P
3 ke -
F C\+ ___Z___F_A/ > Fe
. VT3 E
Therefore
2 | A~ 2 N =0
() Crseh) Pl
or 3
N -
P+ P - N
LN +— -
|<.P E FF E



Ly

Solving for P ,

-T -/ 7T*+R
Pc\r = 2 (3-24)
in which
3 Y
— -+ ”E;— PQ
T = (3-25)
AN
kp E
and
b Pe (3-26)
R = > |
Kp E

Eq. (3-2L) may be regarded as a refinement of Eq. (3-17).

Vhereas the latter considers the change in slope assoclated with

shear type deformation to be (Fig. 3-11) for purposes of

o
computing the shearing force, the full value 6, 1is used in the
derivation of Bq. (3-2L). The buckling loads calculated from Eq. (3-2M)

and (3—17) for different column dimensions are shown in Table 3-2.

Table 3-2. (See Fig. 3-9)

a b 1 leg Batten P (K)
No. | (in) | (in) (ft-in)(in. Die.}(in. Dia.)Eq (3-17)|*Eq. (3-24)
1 L 6 | b -2% 3/8 . 3.805 3.816
2 6 .| 6 | b-2% 3/8 3/8 9.12 7.96
3| 5| 6| 5-2% 3/8 0 2.99 2.93
L & | 10 | 8-2% % 3/8 7.80 7.35
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3.1.3. Column with Trisnsulsted Veb System.

For the case of a column with diagonal and horizontal bracing

erranged symmetrically about the lonzitudirel axis, the stiffness

%p
can be evaluvated by the same analysis as before.
I | 1’
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Fig. 3-13
For the case of the column in Fig. 3-13a,
e 8s ) ! + 1 ) -2
kF_ & A E \Sind-cos’dAy  Tend Ay (3-21)

In this equation Ay iIs the cross sectionel area of the diagonal
bracing, and A 1s the cross sectionel area of the horizontal
bracing. It is again assumed that the column legs are circular or
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tubvlar and that I, is invariant.
Inserting Eq. (3-27) in Eq. (3-la), the critical load for
the triangulated lacing column (Fig. 3-13a) is debermined to be
T EY
L (3-28)
2 T

| i
-
b+ T3 (AL'SH’\@‘LDSZCF Prb-er\dp)

Pc_y— =

and a reduced length for the equivalent column is

_ 2 I \ N | ) 20
L= Q,J\ + 3 IS <.AA'$ﬂ¢-cb§d> Ap-tand (3-29)

In the above equations, Ad is the cross-sectional area of the
diagonal web,.and Ay is that for the horizontal bracing.

| The expressions for the buckling load of triangulated wveb
systems of the configurations shown in Figs. 3-13c znd & are aiso
shown in Art. 3.2. The buckling load for the web system of two
diagonals (Fig. 3-13c) for an equilatefal triangular column is
therefore

L
Fer = y T \ ) (3-30)

I+ —== T
3 £ Sind - CosTd- A

and a reduced length for the equivalent column is

T I

- \
L= )‘j‘ + 3 * (s;n¢.c,0§¢.pm\> (3-31)

In the 2bove equations, Ad denotes the cross-sectional area of the
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two diagonels in the web panel.
Eqg. (3-30) can be used also in the case of a web systenm
composed of a single diagonal (Fig. 3-13d) provided Ay 1s the erea

of ore diagonal and <}> is measured as showm.



3.5. Column with Perforated Cover Plates

Colunns with perforated cover platesl instead of lacing bars
or batten plates are often used in prscticé. The effect of shear
deformation on the buckling strength of these columns will be
illustrated in this article.
The cross section of a typical colvmn with perforated cover
plates is shown in Fiz. 3-llka. In the calcvletion of the cross-
sectional area and moment of inertia of the column, the properties of
the net area (section n n) can be used with sufficient accuracy for
most practical purposes. ;n determining the latersl displacement due
to unit shearinz force, consider as before a typical element.from the
column (Fig. 3—1Mb). This element is similar to the element from the
column with batten plates (Fig. 3-50), except that instead of a
narrow batten plate the portion of the cover plate between perforations
is used. Thus, finally the idealized element of Fig. 3-1kc is obtained
where the horizontal cross member can be considered as infinitely
rigid. The lengths of the vertical projections, which are treated
as cantilever beams, will be scmevhere between c/2 =and a/2 , Where
¢ 1is the length of a perforation. The value 3 c/h is reasonable and

ives results which sgreec with exnerimentsz.
[= v &

Ly, . White and B. Thurlimann, "Study cf Cclumns with Perforated

Cover Plates", ARBA Bull. 531, 1956.

2Tpia.
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The equations for a column with batten plates can now be
modified for this case. Assune the cross menmber (analogous to a
'bat’t:'en) is infinitely rigid, I’o S o may be substituted in
Eq. (e) and “%si = O is obtained. The displacement % o, is

determined as the deflection of a cantilever ( Eq. (f) ) , and

S s2 is obtained as

(P)
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952 =7 (%
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In this expression

Iy represents the moment of inertia of the
"flange" of the column, that is, the entire effective area of the

column on one side of the =

axls, taken about the centroid of the

flange (axis 1-1). The anguler displacement due to unit shearing
force is

Y = Vo 95yt 8s2 9 >
ok o a b4 oET
' Z f
from which is obtained
T EY ‘ \
— -32
25 b4 &E$f>

as the critical load for a column with perforated cover plates.
. The tests made on such

columns have not indicated any weakness
due to shear deformationl

Therefore, for these columns the shear
effect may be neglected for

practical purposes. The design of such
columms hinges on the effective area of the perforated plates.

1Stang, A. H., and Greenspan, M., "Perforated Cover Plates for Steel
Columns, National Bureau of Standards (U.S.), Journal of Research,
Vol. 25, 192, Research Papers

RP 1473 and RP 1b7k, znd Vol. LO,
1948, Research Papers RP 1861 and RP 1880.



L4, BUILT-UP COLUM TESTS

In order to obtain some experimental confirmation on the
buckling strength of built-up columns, several column tests were
performed for columns with diagoral bracing as well as for columus
with batten systems. Three test columns were deéigned and tested as
pinned-end columns using the universal testing machine in the Civil
Engineering structures laboratory. The tests confirmed the
predictions of column buckling strengths made on the theoretical

basis presented in this paper.

L,1. Test Specimens

The dimensions of the column speciﬁens were designed to Tit
within the existing testing machine in the structures laboratory.

Test Column No. 1 was fabricated of steel channel of 2 x 2 x
1/8 inches with 1/8 x i inch bars for the battens. The 5/3 inch
rectangular end plates used at the top and bottom had holes bored in
them to accormodate hemlispherical bearing heads of hardened steel.
Details of fabrication are shown in Fiz. 4-1 and L-2.

Test Column No. 2 was fabricated of steel with 3/8 inch
diameter bars for the triangle legs and % inch bars for the battens.
Again the 5/3 inch thick triangular plates used at the top and
bottom had holes bored in them to accommodate the hemispherical
bearing heads. Details of fabricetion are shown in Fig. L-3 and L4-L,

Test Columm fo. 3 was febricated of steel with 3/8 inch
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diameter bars for the trianglelegs and % inch diemeter bars for the
diagonal bracing. The seme diagonal pottern was used for each of the
three braced panels of the column. Devtails of fabrication are showm
in Fig. b4-5 and 4-6.

At cach eﬁd of the column specimens % inch radius hemisphericel
bearing heads and brackets of hardened steel were designed to serve
as pimned-end supports. These bearing pieces were heat-treated for
one hour at 1;3300 F temperature and were then oil quenched. The
details of construction are shown in Figs. L7 and L4-8.

The test column properties are as follows:

Test Columm No. 1

a = Lh.25 in. ' ' b = 2.5 in.
= s 2 21, i b
Ac = 0.379 in. Ic = 0.00064% in.
Ay = 0.062h in.2 L, = 0.000326 in.h
1 = 36.625 in. E = 29.6 X 103 Ksi
1. . -1
P, = 260.73 Kips % 0.04h03 Kip

L I 189.1k in.

Test Column No. 2
2 ' -

fecg
!

[
1

0.1105 in. 4.25 in.

b = k.0 in. = 36.625 in.

I

L
I = 0.887 in. 0.000192 in.

N

B P

I, © 0.000971 in.-  29.6 X 103 Ksi.
P, = 193.18 Kips N = £541.10 in.”2
= 0.275k86 Kips’l T = - k372.10 Kips

- 88,529.00 Kips®
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)
- .2
A, = 0.1105 in. a = L.05 in.
b = 3.0 in. 1 = 36.625 in.
- in
I = 0.501 in.” Ay = 0.0491 in.?
- . kb - ‘
. © 0.000971 in. E = 29.6 X 103 Xsi
¢ T u6.667°
1 -1
P, = 109.11 Kips ”E;‘ - 0.0020037 Kips
L = 39.12 in.
The predicted loads were as follows:
Predicted load in Kips
Descriptior L
Two-legzed Colurm Three-legred Column
oot Eq. (3-7)  |Ed. (3-17)|Eq.(3-2%) | Bq.(3-30}| *
Colimn 4 2 q. { g. v i /
No. 1 9.78 - - - 151
No. 2 - 4.89 5.07 - 138
No. 3 - - - 95.2 105
.2, Test Set-up

General views of the test set-up and the test arrangements are

shovm in Figs. 4-9 through L-17.

The three specimens were tested in

the 200,000. pound nechanical beam and weight testing machine.

transit was uvsed to ald the alignment of the

column in a true vertical

position so that the load would be applied exactly along the central



29

.,
2
(=]
5
i
o
O
-
a
N

ead

yi

st
o
5
~
O
O
—
o)
~




2
O

(a) Columm No. 2

[l "'-“q-'u«"uuvaw

(o) Column Head




(a) éolumn.No. 3

(b) Column Head




Lh-12

Fig.

3
8
3
—
o}
3]
o
L)
ot
&
,m
=S
0

(Col. Ho. 1)

4-13

Fig.

ling Load

X

Column at Buc

(Col. Ko. 1)




63

Suberitical Load

(Col. Ho. 2)

T T T v

Fig. L-15
Column at Buckling Load

(Col. No. 2)




Fig. L4-16
Suberitical Lozd

(Col. No. 3)

Fig. L-17
Column Failed Locally

(Col. No. 3)




axis at mid-heizht and as close as possible to the central axis at
the ends. The load was applied in small increments and the lateral
deflection at mid-height wvas observed using the transit. The

critical load was read directly from the test machine.

4.3, Test Results

The column buckling loads, as determined from the above tests,
vere found to be 9.50 Kips for Columm No. 1 and .80 Kips for
Column No. 2. Columm No. 3 failed locally at 14.8 Kips

Figures h-12, L-1k and L-16 show the columns in the testing
macﬁine with a sméll initial compressive load. In Figures L4-13 and
4-15 the compressive loads have practically reached the maximum
observed vaelues, and transverse deflecticns can be seen. After the
ultinate load was reached the columns continued to deflect with no
change in the load. In Figure L-17 the local buckling may be seen in
one of the triangular legzs.

Figures L-18 and L4-19 show some of the other test columns that
failed locally during testing: such fallures were believed to be due
to the small size of components and inadequate worlmanship in

fabrication

L.h. Discussion and Remarks

The test result was 2.5 per cent below the predicted wvalue for
Column To. 1. For Column No. 2 the test value was 5 per cent below
the predicted value based on Eq. (3-2L) and 1.75 per cent below

the predicted value based on Eq. (3-17). The small discrepancy
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between the theorcetical values and the experimental results are
considered to be due to the slight imperfections in alignment,
initial out-of-straightness, and unsymmetrical residusl stress
distribution in the test columns.

The test results of the above two cases show ressonable agree-

", L

ment vith the theoretical calculations. Therefore, it is conecluded
that the theoretical forﬁulas derived from the snalysis based on the
approximate method can e used to predict the buckling load for
built-up columns of batten type construction.

For the three-legged column with betten brocing the test
results indicate either Eq. (3-17) or Eq. (3-2L) may be used to
predict the buckling loadi However, this may not always be the cace.
The.effect cén be seen by comparing the loads predicted from the tw
equations for a column of different Gimensions. Assume Column No. 2

in Table 3-2 for example, the predicted buckling loads ave:

according to Eg. (3—17), PCr = 9.12 Kips, and accofding to
Eq. (3-2&), Pcr Z 7.96 Kips. It is the writer's considered

opinion that inasmuch as Xq. (3—2&) has a more rational basis, it
is the more relicble. Further tests are needed in which the
parameters are systematically varled before one can estsblish the
relative validity of these two eqgustions.

For Test Cblumn Bo. 3, the three-legged colurn with diagconal
bracing, the experimental resull shows that the column failed
locally in one of the column legs at 1L.8 Kips. The deficiency wves
considered to be due to the imperfection in worlmeaenship, initial

-

crookedness of the column legs and possibly due To the lnaccu

H
v
o
W
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sizing of the leg members between two consecutive bracings of the
web pancl. In order to'prevent failure of the leg members prior to
primary failure of the column, the columg length would have to be
increased so that a truly long colwmn, by L/r +terminclogy, was
used. However, the present testing machine limits the useful column
height to that employed in the present tests. |

In Column To. 2, if the % inch diameter bars used for the
battens were replaced with bars of rectangular section of equal
cross sectional area (1/8"X T7/16") and the other dimensions remained
unchanged, then according to Eg. (3-2L) Pcr = 15 Kips would be
obtained. In this case the buckling strength of the colwm is
increased from 5 Kips to.lS Kips due to the change of cross sectionol
shapé of the batbens, although the cross sectionsl area remains the
same. The web shear rigidity of the column is thus greatly
increased. If the web system of Columm Ko. 2 was changed from non-
triangulated web (battens only) to a triangulated web system (lacing
pattern) as in the case of Column No. 3, and the other dimensions
remained unchanged, theﬁ it would be found from the predicted
buckling loads of these two columms that the web rigidity would be
greatly increased in this case too.

Robert A. Williamsonl introduces the effective thickness (te)
as a measure of fﬁe potential effect of web rigidity in built-up

columns. He expresses the critical buckling load in terms of the

P

1
See discussion by Williamson, Rovbert A., A.S.C.E. Vol. 91, No. 8T 5,

October 1965.
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effective thickness. For three-legged columns with triangulated veb
systems (systems with both disgonals and battens) he expresses the
critical buckling load by an equation of the following form:
Pe . ,
= -
P.. 4 (4-1)

z Pe

3 bte

For the case of triangulated systems, by replacing each
triangulated panel with a fictitious solid panel of equivalent shear

rigidity, the effective thickness, t, , is given by

o~ b
te = G L3 (4-2)
— 3
[ Aw
In this expression iw = the length of each acting web member in
the panel, and Ay 'z its cross-sectional area. The summation

extends over the length of the panel a . By evaluating te from
Eq. (4-2) ana insérting this value in Eq. (4-1), equations identical
with Egs. (3-28) and (3-30) for evaluation of bucklirg loads are
derived. A similar approach is applicable to nontriangulated web
systems (batten only). For the case of Eq. (3-17) in which the
buckling shear is regarded as being dependent on the rotation of tﬁe
line adjoining the inflection points in adjacent panels, the

corresponding value of t, 1s given by

14E:¢[ o
et Lo (RS

obtained by eguatihg the shear resistarice of the so0lid panel to that

te = (1-3)
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of the nontriangulated panel wvhich it replaces. Inserting Eq. (4-3)
in Eq. (4-1) a result vhich coincides with Eq. (3-17) is cbtained.
Eq. (3-24) considers the buckling.shear to be a function of the
rotation of the leg at the inflection point. Based on this

assumption, equating the shear distortion yields

+ _ 2-4'5'1:/[ | \l
e LA

(4-1)

Substitution in Eq. (4-1) gives an expression which is essentielly
equivalent to Eq. (3-2L4). |
The concept of effec@ive thickness provides a con&enient
measure of the potential effecf.of veb flexibility. It ié of
interest to note that t, , in the case of tall guyed towers with a
conventional triangulated web system, is usually more then 0.001 in.,
vhereas te for the author's test column Fo. 2, with its nontrianzu-
lated web system, is several orders of magnitude less -
approximately 0.000036 in. The low critical buckling strength of
Test Column No. 2 in this investigation demonstrates the importance
of the influence of low web rigidity in degrading the buckling strength.
For a critical load beyond the proporfional limit of the material
the equations derived in this paper can be used 2lso by introducing
Ey 1instead of E. Take the case shown in Fig. 3-6. Under the action
of an axial load the chords of the column will be uniformly compressed
wnile the battens are unstressed. Hence in calculating the critical load
vhich is beyond the proportional limit, Eq. (3-5) can be used. The

substitution of Ey for E is necessary only in those terms relating



T

to the chords vhile E and G are retained in those terms relating
to the battens. Thus, if compression of the column exceeds the
proporitional limit, the battens become relatively more rigid and the

properties of the built-up column approach those of a solid column.



RUCKLING LOAD FOR LACED COLUMNM NQOe 1 (FIGe 3~3 )
REAL Is ICs IK, L

1 READ(54100) As By ACs ICs Es Ls PHIs ADs AB

100 FORMATIARF10.5)
[=2 % TCH+HACHRB%%2 /2,
WRITE(64102) Ay Ba ACs ICs Eo Ls PHI» ADy AB,IT

101 FORMAT(OXs 'AZ'9E124500X 9 'R=T4F124500X e 'AC=Y 4E124545Xs'IC=14E124.5/

18X ot F=t gF12 a5+5X 0 L=t 9E124595XstPHI=T sE124595Xs!ADR=13E124545XsAB=

213FE12e545X ' I=14E1245//)

X=1e74533E-2%PHI
PE=341416%%2%E%] /L%x%2
IK=le/F%{1la/7(SIN(X)*COS(X)#%¥2%AD)+COSIX)/Z{SINIX)*AB))
RENDL=L%*¥SORT ({1 «+PEXIK) -
PCR=R,1416%%#2%¥E#] /REDL %%2
SLR=RFDL/SOART(I/(2%AC))
WRITF(64102) PEs IKs REDLs SLRs PCR

102 FORMAT{AXe'PF=1teE12,5e5X 911 /K=1"3F12e595Xs'REDL=19E12e595Xs!L/R=",

1F12e5/8X4"PCR=1'9E12.5/7/)

GO TO 1
FAND
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RUCKLING LOAD FOR LACED COLUMN NOe 2 ANMD NOe 3 ( FIGs 3-4 )
REAL Ts TCs IKs L
] RFAD(5,100) As Bs ACs ICs Es Ls PHISAD
1NN FORMAT(AFL0,.5)
WRTTF(6,101) As Bs ACs ICs Es Ls PHIs AD
107 FORMAT(BXs '"A='3E12e5s5Xs"B=13512e535XstAC=1,4,E1245+s5Xs'IC=14E1265/
18X 9 1E=1aF12¢5e5X s L=t sF12e595X s PHI=! 9E126505Xs'AD=14E12645//)
I=2 % ICH+HACHR*%D /2,
X=1a74533E=2%PHI
PE=2,4 141 AM#DHERT /1 6% 2
TU=Te/F3#(1a/{SINIXI#COS(XI*X¥2XAD))
REDL=L#SART (1 +PE*IK)
PCR=B41416%%2%FEX] /RED ¥*¥*2
SLR=REDL/SART(I1/{2e%ACH))
WRITF(6,102) PEs IKs REDLs SLRs PCR
102 FORMAT(EXs 'PEF='3E12.595X st 1/K=13F12e595Xs 'REDL="3E124595Xs'L/R=">
1F12e5/8Xs'PCR=1,E1245//)
GO TO 1
EAND

nooe19

€l
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RUCKLING LOAD FOR PUILT=-UP COLUMN WITH RATTEN BRACING
REAL Is 1C, IRs Ls IKs N
1 READ(S5s 100) As By ACs ICs AB. IBs Lo Es No G
100 FORMAT({8F10.5)
J=2¥IC+ACHB®%2 /2.
WRITE(6s 101) Ay Be ACs Is ICs ABs IBs Ls Es MNs G
107 FQQMAT(RX9'A='9E12.595X9’B=’3E12.595X9'AC='9F12.595X9'I='9E12o595X
Lot IC=taF1245/8X s AB=1 3 12:595Xs ! IB=13E12,595X9!L=1,3E12e545Xs'E="?,F
212835 % s IN=13F12e505X01G=f4E1245//)
PE=3 4l 416%*#2XFX] /L %%2
IK=ARB/ (126 ¥FE#IBY+A#X2/ (24 0¥ EXTICY+NFA/ (BRABXG)
REDL=L*SORT(1e4PE*IK)
PCR=341416%%2%E*#T /REDL%*%2
SLR=RFNDL/SORTI(I/(2e%AC))
WRITE({6,102) PEs, IKe REDLs SLRs PCR
102 FORMAT(BX s 'PF=13E124595Xs'1/K='3F12e6595Xs'REDL=14F124595Xs_/R=",
1F12e5/8X4'PCR=14E12.577/)
GO TO 1
FMND

0000109



RUCKLTIMG LOAD FOPR PUTLT—UP COLILAN wITH RATTEN BRACING

CEERCT A [ ACAL PIICKL TR TS CANSTNFREN ‘

REAL Ty T0e TPRa La T4 M

T REAN(R. 10N) As Ty ACe TCs ARs Tite Ls Fo Mo (34 PCR1I
1NN TARMAT (01N, R)
T=2 a1 C+2Cubiunl /2,

FRITFL6. 191) As He ACy 14 ICs ARs IBs Ly Es N (o PCRI
10T FORAT(AY s tAzt a[T2,540Xs 1=t 3F12,.h95X, TAC= 1 9E 126548 X st 1=t ,E12.5
15X PTC="al 12,5 58Xs "ARS1WF1I246/8Xs 1IH=1 351245,5Xe 'Lt 4E124545X%
s TR E 2 BB e INS 1 aF 1D, 5,5X, 101,12 ,5/0Y, TPCRI=1F1245/ /)
PE=2 T4 TARSIRITHT 71 %3
NOIN K=1, 100000
ML DHA=DCDT /(2 %42 Q14 TA%RDIAFRTC /A%%D)
[ =AY/ (120 F 210 ) +ARRD /(24 4% FXTCH(La~ALPHA) )+ A/ (REALRG)
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SLR=RENL/SNRT (T /(2% ACY)
TE (2SI PCR=DPORT) o1 Fe 1.F=5) &0 TN 20
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RUCKLING LOAD FOR THREE-~LEGGED COLUMN WITH BATTEN BRACING
REAL T4 I8, ICs IKPs Ls N
1 READ(5.100) ACs As By Ly I. IBs ICs-E
100 FORMAT(RF1N,L.5)
WRITE(AL,101) ACs As Ry Ls Ts IBy ICs E
101 FOPMAT(BXs 1AC=!oE124545Xs 'Az14F12e505Xs'B=19E12,5s5Xs'L=t4E1245/
18X ot I=1,F1l2,545Xe'IR=t,E124+5s S5Xs'IC=13FE12e545Xe'E=t4E1245//)
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PCRA=SPF/( (1 a+3alb16%%2%T )Y /L H%2/3R8e%(2e#A%B/IB+AXA/IC))
WRITF(64102) PEs No IKPsy Ts Re PCRs PCRA
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2/)
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END
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6. HOTATIONS

The following symbols were adopted for use in this paper:

a2, b, ¢, d

Ac

E

L

M

Humericsl coefficlents, distances

Lrea of one leg of built-up column

Modulus of elasticity

Modulus of leasticity in shear

Centroidal moment of inertia of column cross section
Centroidal moment of inertia of batten cross section

£

Centroidal moment of inertia of a leg of the column

Shearing stiffness

Shearing stiffrness of one panel

Height of column or tower
Reduced length

Moment at a section

2
A term equal to 1o E -+ 17 ; in three-legged
< 4 O le
tover
Axial force in column
_ n*eT
Fuler critical load = '—‘fZ?T“
n*EL
Critical buckling load = [z

Shearing force on a column cross section
Shearing force in a panel

Rudius of gyration

A term equal to in three-legged towver

2
ke E



X, Y

J

80"

mli

+ P

in three-legged towver.

- |+l

- M
? E
Rectangular coordiratces
Deflection of the buckled column
Deflection due to shear in a braced plane

Deflection due to flexure in a braced plane

Section modulus

ingles, ratios

Shearing unit strain

Deflection |

Angle

Mumerical factor, slenderness ratio
Radius of curvature

Unit normal stress

Comressive unit stress at critical load

Angle
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