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ABSTP^CT

Many steel bridges, buildings, transmission and reception tov/ers 

are constructed using built-up members. The buckling load of a 

built-up column is of interest to the designer because bending 

moments and stresses from the transverse loads are amplified when the 

compressive force approaches this critical load.

This thesis presents an ana].ybical study to evaluate the critical 

buckling load for several types of built-up prismatic members. The 

effect of shear deformations on the buckling strength is discussed in 

detail. An e:cperimental investigation on the measurement of buckling 

strength of bui.lt-up members was made on small scale test columns. 

Test results are compared i-rith those predicted by the theoretica.1 

analysis. The tests verify the predictions of column buckling 

strengths made using the theoretical basis presented in this paper.
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1. IltoROilUCTIOII

A built-up colurnn is e. cor.ipression raeiiibs:? in which the oopponente 

of the colvx’.n are connected by e system of lacing bars or batten 

plates. The functions of the bracing system are to provide a 

mechanism for the transmission of shear by the column and to reduce 

the laterally unsupported length of the legs so that they may carry 

high compressive loads.

The earliest treatment of the problem on built-up columns was by 
Engesser"*" in 1389 in which he presented approximate fcrailas for the 

buckling load of latticed columns as well as that of columns with" 

batten plates. In 19^9 Engesser^ published a refined analysis of the 

same problem, taking into account the secondary effect of the shearing 
3 

forces. The failure of the Quebec Bridge during construction in lyCV 

called attention to certain deficiencies of this type of column and ga” 

rise to various tberoretical and experimental investigations into the 

behavior of built-up col'amns.

The effect of the shearing forces v.’hich occur when a column 

deflects near the buckling load will be discussed in Chapter 2. Their 

influence on the critical load was found practically negligibd.e in 

columns of solid cross section of the types conventional in structural 

design. This is entirely due to the fact that the shearing stresses

^Engesser, F., Zentralblett der Bauver~..TaItung, Vol. 11, p. ^3, 1S91- 

^Engesser, F., Zenbralblatt der Bauverwaltung, Vol. 29, 1SJO9> 

3"Roya.l Commission Quebec Bridge Inquiry Report,” Ottawa, Canada, 
Vol. 1, 1903, p. I5C9O.



and the distortion caused "by these stresses are very small, even in 

the worst case cf an I-section buchling in the plane of the we"b. The 

conditions are different in "built-up columns. The contribution of the 

shearing forces to the total deflection of the column is much greater 

in the case of built-up columns. The decrease in buckling strength 

due to the shear deflection is therefore much greater than in the case 

of column with solid cross section and depends upon the detailed 

arrangement and dimensions of the lacing elements.

The built-up column is in reality a three dimensional framework 

and the stability of which can be investigated more accurately by the 

methods of frame'-rork analysis. Many attempts have been made to approach 

the problems in this manner and to arrive at exact solutions cf the 

column problem. However, all these studies, which considered the 

column as a framework, did not add much new knowledge concerning the 

performance of built-up columns beyond that already furnished, by 

Engesser's work. They confirmed the results first derived by Engesser, 

and this is their importance. The exact solutions differ from the 

approximate formulas, in that the number n of panels in which the 

column is subdivided appears only in exact expressions for the 

critical load developed on the basis of the framework theory, but n 

affects the results only in cases where it is a small number. In 

practice n is usually greater than k, and the exact and the approxi

mate methods furnish nearly the same results. Therefore, in this 

paper the analysis is based on the approximate method, in which the 

built-up column is treated as a prismatic member. This approach is 

reasonable because in practice the column legs are considerably close 
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to one another and the vertical length of a panel in the braced plane 

is usually small compared with the column height.

The purpose of this thesis is to present an analytical study to 

determine the elastic buckling load of built-up prismatic members. In 

order to confirm the theory derived, the small scale experimental 

column tests were performed.

In Chapter 2 the elastic buckling of prismatic bars will be 

discussed. Expressions for the critical load will be derived by means 

of solving the differential equation for the deflection curve of the 

fundamental column. The same expressions will be used for built-up 

prismatic members.

Laced columns and columns with batten plates will be discussed in 

Chapter 3- The effect of shear deformations on the buckling load is 

discussed in detail in each case. The three-legged column of 

prismatic cross section, which is often used as a guyed structure to 

support devices for the transmission and reception of radio and tele

vision signals, is also treated in detail in this chapter. Columns 

using perforated cover plates, instead of lacing bars or batten plates 

are often used in practice. In order to illustrate the overall theory 

the effect of shear deformations on the buckling strength for this 

kind of column is also discussed. However, for these columns the 

shear influence is not significant and may be neglected for practical 

purposes.

In order to determine how actual built-up columns behave, three 

test colurans were designed, constructed and tested in the structures 

laboratory. The test results are compared with those predicted by the 

theory and are discussed in detail in Chapter 4.



2. BUCiailTG OF B/kRS

2.1. Euler's Column Formula

!• Column uith Hinged Ends.

In a study of the strength of compression members it is 

useful to approach the subject by considering the behavior of an 

"ideal column", which is a solid bar assumed initially to be perfectly 

straight and compressed by a centrally applied load.

Consider first the case of a slender, ideal column with 

hinged ends, acted upon by a longitudinal force P applied along the 

centroidal axis of the ember (Fig. 2-la). The column is assumed to be 

perfectly elastic, and the stresses do not exceed the proportional 

the critical value, the bar 

remains straight and undergoes 

only axial compression. This 

straight form of elastic equili

brium is "stable", which means 

that if a lateral force is applied 

and a small deflection produced, 

the deflection disappears when the 

lateral force is removed and the 

bar returns to its straight form. 

If P is gradually increased, a 

condition is reached in which the 

straight form of equilibrium 

becomes "unstable" and a small

than

P

(b)

limit. If the load P

2-1

is less
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lateral force will produce a deflection which does not disappear when 

the lateral force is removed. The "critical load (or Euler load)" is 

then defined as the axial force "which is sufficient to keep the bar in 

such a slightly bent form (Fig. 2.1.b).

The critical load can be calculated by using the differential 

equation of the deflection curve. VJhen the coordinate axes are taken 

as indicated in Fig. 2.1.b and also the column is assumed to be in a 

slightly deflected position, the bending moment at any cross section 

mn is

M — P

and the differential equation'becomes

EX — - M = -

^•1 ?
or + BX O (2-1)

The general solution of this equation is

~ Asin^)(+BcD5^y

I P
in which k. =----- , and A and B are constants of integration.j ex
For x = 0, y = 0, hence B - o, and therefore

=: A S.-rx K X (t>)

which is the general equation of the deflection curve. This is a 

sinusoidal curve, the value of y varying from zero for let = 0, 

K , 2 to , 3 7E. , etc., to a maximum value of ± A for kx = tc

3/2 to , etc. The value of A is therefore equal to & , the 

maximum deflection, and we have, in terms of A,



6

to tu

hence for

(d)or

from which

(2-2)

which is Euler’s formula for

critical load for the bar in Fig. 2-1 a.

assumed conditions of equilibrium are

satisfied 3 it:

2-2). For double curvaturemore nodes (Fig.vzith one two or

P example (Fig. havewe

kl and hence Pe

which is four times the value given

by Eq. (2-2) That is the

critical load for double curvature

that for singleis four times

cannot of course occur in practice

P

(5) may readily be induced
Fig; 2-2

_P_
El

1.

Theoretically, the

columns, but

for kl

with free, round-ended

long columns. This is the smallest

etc., corresponding to curve

varies from 0

mediate lateral support. Thi

$ i Yt k: y

by inter-

For single curvature, as in Fig. 2-1,b

curvature. Multiple curvature

P 
Ei

T_____ L

P
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analysis shows to some extent, the strengthening value of such inter

mediate support for very long colcmns, or, a reduction of the 

unsupported length.

2. The Effect of End Conditions.

Eq. (2-2) has been derived for the case of freely pivoted 

ends, giving zero bending moments at these points. The critical 

loads for columns with some other end conditions can be obtained 

from the solution of the precedidng case by using for 1 a reduced 

length L, izhich is the actual length between points of inflection or 

of zero moment. In Fig. 2-3. are shc.-m four cases of end condition 

vzith the length indicated betvzeen points of zero moment. Substituting 

these in Eq. (2-2) we have, for the four cases, the following 

theoretical formulas:

a)

b)

Hinged ends

One end fixed, one end free

Pcr = It El

^(2-3)

JL"

-5-I^EI

c) Both ends fixed Pcr =
Jlx

d) One end fixed, one end hinged Pcy =
x ex

r

Eq. (2-3) are obtained from Eq. (2-2) by substituting in place of the 

lengt.h 1 of the bar a reduced length L. Thus we can write in 

general

L (2-l|)

In b, the case of a prismatic bar with one end built-in and the other

end free, the reduced length L is twice the actual length 
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( L - 2 1). In c, the case of a bar A.’ith both ends built-in, L is 

half the actual length.' In d, xzith one end built-in and the other end 

hinged, L is two thirds of the actual length.

Fig. 2-3

(t>)

3- The Effect of Shearing Force on the Critical Load.

In the preceding derivations of the equations for the 

critical loads, the effect of shearing force on the deflection was 

neglected. Vdien buckling occurs, however, there vri.ll be shearing 

forefes acting on the cross sections of the bar. The effect of these 

forces on the critical load, will now be discussed for the hinged end 

column (Fig. 2-k). The change in angle of the deflection curve 

produced by the shearing force is

_ 7i <3. = n. C1M
dx A Gr A 6

whore A is the total cross-sectional area of the column, G the
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Fig. 2-U

modulus in shear, and n a numerical

factor depending on the shape of the cross

L- 1section.

The rate of change of slope produced 

by the shearing force Q represents the 

additional curvature due to shear and is 

equal to

_ n <*<a _ n a.xr>i 

dy1 AGr A <5- ctx2,

The total curvature of the deflection curve

is now obtained by adding the curvature

produced by the shearing force to the curvature produced by the

bending moment. Then,_ for the column in Fig. 2-3, the differential 

equation of the deflection curve becomes

rs £11 +
Ax1 Ax1 A Gr

^For a rectangular cross section the. factor n = 1-2, and for a 

circular cross section n - 1.11. For an I beam bent about the 

minor axis of the cross section (i.e., bent in the plane of the 

flanges) the factor n 1.2 A/Af , where A» is the area of the 

two flanges. This value lies within the range l.U to 2.S for the 

usual I beam and plate girder sections. If an I beam bends in the 

plane of the ^zeb (about the major axis) the factor n ly A/A-v7 where 

A^.j is the area of the web. For this case values of n from 2 to 6

are topical for rolled steel sections
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since M - P y , thus we have

(h)

O (i)

, IVI-. , general solution of this eauation is

' 1 = A 5 vr> X -V- B> S-'vt -VAX

Let -ha = -------------—x— . the

From the boundary condition: x - 0 ,• y = 0 ;

- = Z > y = 0 ;

we obtain the stability equation

S i v> -m JI. O (k)

from which the least critical value of the load is obtained

where
Tu EX

Pe =

P.____
Y\ Pe

A Ct

represents the Euler

(2-5)

critical load for

this case. Thus, ox-ring to the action of shearing forces, the critical

load is diminished in the ratio ol . Thus Per = <A- P6 ;

, Tt ET
where cr ------—-— represents critical stress.c-r ^2.

From the fact that ol < I ,

therefore P<_r < Pe.

Assume - 33,000 psi, G - 12 X 10^ psi, n = 1.2
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then we have d- = —----  • It is seen that the ratio

is very nearly equal to unity for solid columns, such as a column of 

rectangular cross section or a column with I cross section. Hence 

in these cases the effect of shearing force can usually be neglected. 

For built-up columns sonsisting of struts connected by lacing bars or 

batten plates, the shear effect nay become of practical importance and 

will be the major part of this study. A graph of Eq. (2-5) is given 

in Fig. 2-5.

Fig. 2-5

U. Applicability of Euler's Column Formula

It was assumed in the previous discussion that the bar was 

very slender, so that the maximum compressive stresses which occurred, 

during buckling remained' ^dthin the proportional limit of the material. 

Only under these conditions will the preceding equations for the 

critical loads be valid. To establish the limit of applicability of 

these formulas' the fundamental case of hinged ends (Fig. 2-1) will 
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be illustrated.

Let A - sectional area of colvnn

r - least radius of gyration

^cr “ critical value of the compressive stress 

Dividing the critical load from Eq. (2-2) by A , and letting

This stress depends only on the modulus of leasticity E of the 

material and on the slenderness ratio //r . The expression is valid 

as long as the stress remains \athin the proportional limit.

Vflien the proportional limit and the modulus E are knovn for a 

particular material, the limiting value of the slenderness ratio X/r 

can be found readily from Eq. (2-6). For example, for a structiural 

steel with a proportional limit of 30^000 psi and E = 3^^000,000 

psi, we find the minimum 1/r from Eq. (2-6) to be about 100. 

Consequently, the critical load for a bar of this material, having 

hinged ends, can be calcuJ.ated from Eq. (2-2) if ^/r is greater than 

100. . If X./r is less than 100, the compressive stress reaches the 

proportional limit before buckling can occur and Eq. (2-2) cannot be 

, 1 usea.

"^For the buckling of bars compressed beyond the proportional limit see 

Timoshenko, "Theory of Elastic Stability" 2nd Ed., Chap. 3? P- 163-124, 

McGraw-HilJ. Book Company, Inc., 1961.
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Fig. 2-6

Eq. (2-6) can be represented graphically by the curve A C B 

in Fig. 2-6, where the critical stress is plotted as a function of Z/r. 

The curve approaches the horizontal axis asymptotically, and the 

critical stress approaches zero as the slenderness ratio increases. 

The curve is also asymptotic to the vertical axis, but is applicable 

in this region only as long as the stress <rcr remains below the 

proportional limit of the material. The curve in Fig. 2-6 is plotted 

for the structural steel mentioned above, and point C corresponds to a 

proportional limit of 30,000 psi. Thus only the portion BC of the 

curve can be used.

Proceeding as for a bar i-d-th hinged ends, we can find the 

same egressions for the critical stresses analogous to Eq. (2-6) for 

the other cases shown in Fig. 2-3-



These equations are written in genei’al

( 2-7 )

in which L is a reduced length for each case. Thus the results 

obtained for the fundamental case can be used for other cases of 

buckling of bars by using the reduced length instead of the actual 

length of the bar.

5* Revisions to Euler Formula in the Inelastic Range

As stated in the preceding section, the Euler formula is 

satisfactory only for cases where stresses are proportional to 

strains. Outside of the elastic range E is not constant and the 

Euler formula must be revised in order for it to be applicable in 

the inelastic range.

In 1889 Friedrich Engesser proposed the so-called tangent- 
modulus theory'1’ in which the moduli of elasticity for stresses above 

the proportional limit are determined from the slope of the stress 

strain curve. Engesser assumed that the column remained straight 

until failure and that the tangent modulus was constant for the 

entire cross section of a column. To plot a curve of the Euler 

equation above the proportional limit vath the Engesser proposal it 

is necessary to assume certain values of P/A , find the tangent 

modulus for each from a stress-strain curve, and then use the Euler

■*"Zeitschrift fur Architekur und Ingenieurwesen, 1889. 
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equation to determine the corresponding L/r values for plotting 

against P/A . The application of this method results in curves which 

come much closer to test-result curves than does the use of the 

regular Euler expression.

During the last seventy years applications of the tangent- 

modulus theory hy the engineering profession have made a full circle 

from considerable respect to little respect and back to considerable 

respect. After its introduction many engineers claimed that the 

theory was poor because a very important fact was not considered in 

its development. The fact supposedly neglected was that the strains 

on one side of the column were decreasing as were the stresses on 

that side, and that these changes were made in the range of the 

elastic modulus.

Based on this criticism Engesser revised his old theory and 

introduced the reduced-modulus or double-modulus theory in 1895* A 

reduced modulus somewhat greater than the tangent modulus is used and 

the estimated load which a column can support is larger than that 

given by the original Engesser theory. For a good many years the 

double-modulus theory was accepted as being the correct theory of 

column action in the inelastic range, but in recent years many doubts 

have been voiced about the double-modulus theory. Actual test results 

fall in between the values given by the two theories and in fact they 

tend to be closer to the tangent-modulus values than to the reduced- 

modulus values. Fiirthermore, the tangent-modulus values are on the 

safe side while the double-modulus values are on the unsafe side.



16

F. R. Shanley presented a paper in 19’i-7"*" which discussed the 

short conings of the double -raodu’Lus thcoiy and showed that the 

original tangent modulus theory was the better of the two. Curves 

are presented in Fig. 2-7 showing the comparison of the results 

obtained by using these two formulas and also the Euler formula.

Fig. 2-7
(after Shanley)

F. R. ShanJ.ey, "The Column Paradox," Journal of the Aeronautical 
Sciences, (Pay 19^7),' p. 26.
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3. BUCKLING OF BUILT-UP COLUMNS

3-l« Description

Built-up compression members are often used for very large 

structures where the members are long and support very heavy loads.

When built-up sections are used they are connected on their 

open sides with a system of lacing bars or batten plates. The 

functions of the bracing system are to provide a mechanism for the 

transmission of shear and to reduce the laterally unsupported length 

of the column components so that they may carry high compressive 

loads.

. The built-up sections shown in Fig. 3-1 are often used for 

structural compression members. Four angles are sometimes arranged 

as shotm in (a) to produce larger r values. This type of member 

may often be seen in towers and in crane booms. A pair of channels 

(b) is often used as a building column or as a web member in a large 

truss. Sometimes the channels may be turned out as shown in (c). A 

built-up section (d) consisting of a pair of channel.s with perforated 

cover plates is also frequently used for the compression members of 

buildings and bridge trusses.

lb)
Fig. 3-1
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(&)

_JL_

(<^) CA')

Fig. 3-2

The "built-up sections shovm in Fig. 3-2 are used when the 

rolled shapes do not have sufficient strength to resist the column 

loads; the areas in these sections are increased by adding plates to 

the flanges. In the evaluation of the critical buckling load for 

■'■.these non-latticcd built-up columns, the lateral shearing forces are 

small and can be neglected. Eq. (2-U) for a single column is used to 

calculate the critical load for the non-latticed built-up columns.

The critical load for the built-up latticed column is always 

less than for a solid column having the same cross-sectional area and 

the same slenderness ratio Z/r . This decrease in the critical load 

is due primarily to the fact that the effect of shear on deflections ' 

is much greater for a built-up latticed column than for a solid bar. 

The shearing forces are therefore definitely not negligible for the 

built-up latticed columns. The actual values of the critical loads 

depend upon the detailed arrangement and the dimensions of the bracing 

systems.

If the built-up column has a large number of panels, Eq. (2-$), 

derived for a. solid bar, can be adapted to the calculation of the
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critical load. Vie can vzi'ite Eq. (2-9) in the form

PPCr — pT (3-1)

1+ k
where Pe is the Euler critical load and the quantity 1/K for a 

built-up column corresponds to n/AG for a solid bar. Thus the 

factor 1/K is the quantity by which the shearing force Q is 

multiplied in order to obtain the additional slope •y of the 

deflection curve due to shear. Thus we have

and to determine the quantity 1/K in any particular case vre must 

investigate the lateral displacements produced by the shearing 

force.

3.2. Laced Column

It was pointed out in the preceding section that the addi

tional change in slope of the deflection curve due to the shearing 

force is expressed by —■ Q. , and the effect of shear on the 
critical load in Eq. (3-1) is represented by —^r which represents 

the change in slope of the deflection curve due to the unit 

shearing force.

Fig- 3-3 shows the deformation of one panel under the unit 

shearing force. Assuming hinges at the joints, the angular 

displacement produced by the unit shearing force can be taken as 

when the deformation is small. By using the principle of virtual 
kjzj2_ 

work we have § — T~------- , in which Kl , A and
A E
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Fig. 3-3

P
0 are an axial load, 

cross-sectional area and 

the length of the member, 

respectively. In the 

members Fl, M = 1, 

and in F2, N = --- -—— ,’ CO54>

thus we have

L = „ J_ (—_____ 1______ + _1____
K Ck Ex Sin 4s • cos2’^ Aa. t^n^-Ab

Substitute in Eq. (3-1) the critical load for a strut with hinged 

ends (Fig. 3~3a) is

P = I ct*
IL2-EI 

--- - , . -I~ ——

In this expression I is the moment of intertia of the cross
Ac t2 

section of the strut, that is, I = 2 Ic q- , in which

A.c and Ic are the area and the moment of inertia of the channel, 

while and A-D are ihe areas of two diagonals and two battens, 

respectively. If A-^ and Aj are small in comparison with the area 
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of the channels (Fig. 3-3a) or other main members, the critical 

load, from Eq. (3-3) may be considerably lower than the Euler value. 

The effect of on critical load is larger than that of Ab .

Thus the laced column may be considerably weaker than a solid strut 

with the same El , but since the amount of material' used is less, 

the laced column may be more economical. VZhen Eq. (3-3) is used, 

the actual built-up column is replaced by an equivalent column of a 

reduced length L which is to be determined from the equation

y E Aa. 5>r\4) coslc}>

When there are two diagonal 

lacing bars in each panel (Fig. 

3-Ha) the shearing force will 

stress one diagonal in tension 

and the other in compression. The 

battens do not take part in the 

transmission of shearing force, 

and the system is equivalent, to 

that shovm in Fig. 3-kb. The 

critical load in this case can be 

obtained from Eq. (3-3) t>y 

omitting the term containing A-^

and doubling the cross-sectional area A^ . Thus we have

PCr ■jc^Er 

(3-k)

1 + E A^ism cos1^
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and a reduced length for an equivalent column is

it1 E x. <I
JL1" E A<k 4> (a)

In the above equations denotes the cross-sectional area of four 

diagonals, two on each side of the column in the same panel.

Eq. (3-^) can be used also in the case of a single system of 

diagonal bars (Fig. 3-Uc) provided A^ is the area of two diagonals 

and as measured as shox-m.

It is seen that the value of critical load for the laced 

column is determined from the size of column components, its 

configuration, the length of the column and also depends upon the 

arrangement and dimensions of bracing systems. The effects of these 

factors on the buckling strength are further illustrated by the 

following numerical examples:
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(a) Co2vnn (Fig. 3~3a)

No.

a 
(in)

b 
(in)

1 
(ft)

Channel
Section

(in)x(in)x(lb/ft'

Bracing P(0
So.(3-3)

L 
rDiagonal

(in)x(in)
Horizontal 
(in)x(in)

1 6 3 18 Ul 5/8 x 5.Il 3/16 X 3/16 1/8 x 3/16 41.0 148

2 6 3 18 U X 1 5/8 X 5A 3/16 X 3/8 1/8 X 3/8 43.8 143

3 6 3 28 H X 1 5/8 X 5.1l 3/16 x 3/16 1/8 x 3/16 18.3 221
ij- 6 3 18 3 x 1 1/2 X 4.1 3/16 X 3/16 1/8 X 3/16 31.8 14?

5 6 3 18 3 x 1 1/2 X 4.1 3/16 X 3/8 1/8 X 3/8 33.5 144

6 6 3 28 3 X 1 1/2 X 4.1 3/16 X 3/16 1/8 X 3/16 14.0 220

7 6 3 18 4 X 1 5/8 X 5.4 3/16 X 3/8 1/8 X 3/16 43-4 143

8 6 3 18 4 X 1 5/8 X 5.4 3/16 X 3/16 1/8 x 3/8 41.3 147

9 8 3 18 4 X 1 5/8 X 5.4 3/16 X 3/16 1/3 X 3/16 33.8 151

10 . 8 3 28 4 X 1 5/8 X 5.4 3/16 X 3/16 1/8 X 3/16 17.8 224

11 6 ij. 28 4 X 1 5/8 X 5.4 3/5 x 3/16 1/8 X 3/16 30.8 170

12 8 28 4X1 5/8 X 5.4 3/16 X 3/16 1/8 X 3/16 30.1 172
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(b) Column 2. (Fig. 3-^a)

ITo.

a 
(in)

b 
(in)

1
(ft)

Column Components Bracing ^cr
(K)

Eq.(3-4)

L 
rChannel 

(in)x(in)x(lb/ft)
Diagonal.
(in)x(in)

Horizontal 
(in)X(in)

1 6 3 18 11 X 1 5/8 X 5.I1 3/16 X 3/16 1/8 X 3/16 44.1 142

2 6 3 18 11 X 1 5/8 x 5.I1 3/16 X 3/8 1/8 X 3/8 140

3 6 3 28 11 X 1 5/8 X 5.11 3/16 X 3/16 1/8 X 3/16 18.9 217

li 6 3 18 3 X 1 1/2 X U.l 3/16 X 3/16 1/8 X 3/16 33.7 143

5 6 3 18 3 X 1 1/2 X 11.1 3/16 X 3/8 1/8 X 3/8 3^.5 141

6 6 3 28 3 X 1 1/2 X 11.1 3/16 X 3/16 1/8 X 3/16 14.3 219

7 6 3 18 11 X 1 5/8 X 5-^ 3/16 X 3/8 1/8 X 3/16 45.5 140

8 6 3 18 11 X 1 5/8 X 5.11 3/16 X 3/16 1/8 X 3/8 44.1 142

9 8 3 18 li X 1 5/8 X 5.I1 3/16 X 3/16 1/8 X 3/16 42.7 145

10 8 3 28 li X 1 5/8 X 5.I1 3/16 X 3/16 1/8 X 3/16 18.7 220

11 6 li 28 li X 1 5/8 X 5.I1 3/16 X 3/16 1/8 X 3/16 32.2 166

12 8 li 28 li X 1 5/8 X 5.I1 3/16 X 3/16 1/8 X 3/16 31.8 167
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(c) Column 3* (Fig- 3-^c)

No.

a 
(in)

b 
(in)

1 
(ft)

Colunin Components Bracing Per
(K)

Eq.(3-4)

L 
rChannel 

(in)x(in)x(lb/ft)
Diagonal 
(in)x(in)

1 6 3 18 it X 1 5/8 X 5.4 3/16 X 3/16 41.6 146

2 6 3 18 4X1 5/3 x 5.4 3/16 X 3/8 44.1 142

3 6 3 . 28 4 X 1 5/8 X 5.4 3/16 X 3/16 18.4 220

U 6 3 18 3 X 1 1/2 X 4.1 3/16 X 3/16 32.2 146

5 6 3 18 3 X 1 1/2 X 4.1 3/16 X 3/8 33-7 1^3

6 6 3 28 3 X 1 1/2 X 4.1 3/16 X 3/16 14.0 220

7 - * - - - -

8 - * - - -

9 8 3 18 4 X 1 5/8 X 5.4 3/16 X 3/16 39-2 150

10 8 3 23 4X1 5/8 X 5.4 3/16 X 3/16 17-9 222

11 6 U 28 4 X 1 5/8 X 5.4 3/16 x 3/16 ' 31-3 224

12 8 u 28 4 X 1 5/8 X 5.4 3/16 x 3/16 30.5 171
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3 • 3 • Colimn with Batten Plates

The battened, column, subdivided by the battens into panels, is 

a highly redundant structure and its exact analysis would be rather 

laborious. However, in studying the stability problem of this system 

simplifying assumptions have been found concerning the local deforma

tions of the framework which can be applied to determine the internal 

forces of the system. From the theory of rectangular frameworks it 

is known that the distorted form of such a framework is characterized 

by points of inflection at the center of the transverse members, and 

approximately at the mid-point of each chord member. Therefore the 

redundant system can be replaced by a statically determinate framework 

having articulated links at the midpoint of each member as shown in

3.3-I- Txro-legged Column with Batten

Bracing

In the case of a two-legged 

column made with battens only, as shown 

in Fig. the lateral displacement 

produced by the unit shearing force can 

be obtained by considering the deforma- ' 

tions of an element of the strut between 

the points of inflection which are 

assumed to be at the mid-points of the 

panels mn and m^n,. The bending of
Fig. 3-5

the element will be as shotm in
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Fig. 3-6

Fig. 3-613. The lateral deflection consists of the sura of the

displacements 5 s/ due to bending of the batten, and 5 52. , due 

to bending of the channels. Fig. 3-7 shows in the bending of the

Fig. 3-7

batten that there are couples

acting at the ends, and the angle of 

rotation at each end of the batten is 

obtained by the conjugate-beam method,

a_ M- fe_______ M b _ ‘Lb
3EIb kEIfe 12 eib

The total lateral displacement is

c>s — o> 5| + "5 52.

> _ G- (X _ b
^51- — 2 4 eJb (e)



< = r y —1—
d 52- 2 < Z J 3E.1.O A- S> £ Ie

(f)

where "b is the length of the batten, E LD is its flexural 

rigidity and E Ic is the flexural rigidity of one of the vertical 

channels. The total angular displacement produced by the unit 

shearing force is '

Y =
<K b <K----------- ------------- 

|2.EXb 24 EIC

Substituting into Eq. (3-1) yields

(g)

IC'&T

53

t

24 &xc

(3-5)

and a reduced length for an equivalent column is

(h)

In the above equations the factor represents the critical

load for the entire column calculated as for a solid column. It is 

seen that when b is large or when flexural rigidity (E I-c) of the 

batten is small, the critical load is much lower than that given by 

Euler 1 s formula.

If th.e flexural rigidity of the batten is very large, assume

E It-, - c>o *, Eq. (3"5) produces in this case

(3-6)
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I and Ic in the above formula can be represented by 2 Ac r^ and 
2 ,Ac rQ , respectively, therefore Eq. (3"6) can be written in the form 

of

For safety purposes we may use 1.0 in lieu of the fraction of O.83 

in the above expression, thus Eq. (3-6) becomes

Pc< — Pe,----- ------ i--- (3-6a)
A + A

AIn this equation X - —y represents the slenderness ratio of the

built-up column, and Ap - -5— -represents the slenderness
G.

*La

ratio of one channel between the battens of the panel.

In the calculation of the angular displacement 'y, the shear in 

the batten must be taken into consideration also. From Eq. (3-7) it 

can be seen that the shearing force in the batten is . and the 
b 

corresponding shearing strain in

, <k x n =
I b Ab <T A b

For this case A-o is the cross-sectional area of two battens and n 

equals 1.2 for the rectangular section. Adding this expression to 

the previous Eq. (g), we obtain

instead of Eq. (3-5)•
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3.3*2. Effect of Local Failure

A "built-up column represents a frarne*7ork ■'j’nich will collapse if 

any member of the structure begins to yield, locally before the 

critical load Pcr is reached for \fnich the column vzas designed. It 

is therefore necessary to take the possibility of local failure into 

account in the evaluation of the critical load.

If the vertical channels of the built-up column represented in

Fig. 3-Sa are very flexible, or if the distance between battens is 

large, collapse of the column may occur as a result of local buckling 

of the channels between two consecutive battens.

Assuming that the rigidity of the 

battens is very large, the critical 

value of the compressive force at 

which the assumed buckling will 

occur is found from Fig. 3-Sb

P TC2ETc

2 "" (k2

or

2 x" E 1,
oJ-

In the analysis of the bending 
of a beam-column vzith hinged ends"*" , 

the Biaximun deflection <S> is

1 See Timoshenko, S. and Gere, J., "The Theory of Elastic Stability", 
2nd Edition, McGraw Hill Book Co., Inc., Hew York, 1961, P- 29, Eq.(a).
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given in the form

=■■ ^>o ——3------- 'l (m)

y I — c* y

in which c> 0 is the maximum deflection due to a lateral load only 

and oL represents the ratio of P/Pcr • Eq. (m) expresses the 

effect of axial load on the deflection; the d 0 due to the lateral 

load only is increased by the amplification factor ---- -— when
I - oL

an axial load -is also present.

The effect of the axial load P/2 on the bending of the vertical 

channels can now be taken into account by writing Eq. (f) in the 

form of Eq. (m).

(n)

where 

(o).

Using expression (n) for 5 52 the critical load Pcr for the

strut shown in Fig. 3"6b can be written in the form

' p = 2LE£ ------------------- !--------------------------  (3-8)
1 j . it El < o^b o-1 ___ L__ + '

Jh1 L 12. 2^EI^()-oL) t>Ab^

Since oL depends upon Pcr , this equation can be solved best by

trial and error."*" It should be noticed also that the critical load

-*"See Appendix for the computer solution written in the FORTRAN language. 
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for the column between battens (Fig. 3~8a) is always less than that 

given by Eq. (1), inasmuch as the battens are not rigid. This means 

that the true value of o2_ is larger than that given by Eq. (o) and 

hence the true critical load is less than that obtained from Eq. (3-8). 

However, these differences are not of practical significance, since 

the term in the denominator of Eq. (3-8) containing Ic is usually 

small compared with the term containing LQ.

The critical load for the column with batten bracing is 

determined from the configuration and size of the column components, 

and also depends upon the arrangement and dimensions of the particular 

batten system. The effects of these factors on the buckling strength 

are further illustrated by the following numerical examples: (See 

Table 3*1)•

It is interesting to note that column 10 in the Table 3-1 has 

a larger value of Pcr than that of column 1 although the latter 

has a larger b value.
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Table 3-1

No.

a
(in)

b 
(in)

1 
(ft)

Channel 
(in)x(in)x(lb/ft)

Batten 
(in)x(in)

rcr (k)
*L/r3q.(3-5) “3q.(3-7 co1O'* 

r-i

1 6 4 12 3 X 1| X 4.1 1/3 X | 29.34 23.34 23.34 155

2 6 4 12 3 X 1| X 4.1 h
Io

j

X

1____

48.02 46.67 46.67 121

3 6 4 20 3 X 1| X 4.1 l/8xf 21.25 20.72 20.72 182

U 8 4 12 3 X 1| X 4.1 1/8 X 23.18 22.36 22.36 180

5. 8 k 12 3 X 1| X 4.1 £x i- 39.30 33.10 38.10 134

6 8 4 20 3 x i| x 4.1 1/8 x 17.82 17.33 17.33 198

7 12 4 12 3 x 4- x 4.1 1/8 X | 16.30 15.68 15.67 210

8 12 4 12 3 x 4 x 4.1 P|
h

 X 28.70 27.73 27.70 157

9 12 4 20 3 x 4 x 1/8 X | 13.45 13.03 13.02 230

10 6 3 12 3 x 4 x 4.1 1/8 X | 30.54 29.12 29.12 117

11 8 3 12 3 x 4 x 4.1 1/8 X 25.27 23.97 23.97 129

12 12 3 12 3 x 4 x 4.1" 1/8 x 12.48 17.66 17.66 150

13 6 5 20 3 x 4 x 4.1 1/8 X 5 - 21.03 - 180

1I4- 8 5 20 3 x 4 x 4.1 1/8X1 - 16.91 - 200

15 12 5 20 3 x .4 x 4.1 1/8 X - 12.13 - 236

16 24 4 12 3 x 4 x 4.1 3/16 X 1 - 45.76 43.55 122

17 36 4 12 3 x 4 x 4.1 3/16 x 1 - 31.02 27.45 148

18 24 4 18 3 x 4 x 4.1 3/16 X 1 - 32.27 31.48 147

19 36 4 18 3 x 4 x 4.1 3/16 X 1 - 24.18 22.45 ]_7 k



3 A. Three-le^ed Colimn 

3.^.1. ■ Description

The three-legged laced tower of prismatic cross section is 

often used as a guyed structure to support devices'for the trans

mission and reception of radio and television signals. The legs 

almost invariably are arranged to occupy the"vertices of an equi

lateral triangle in cross section. Bracing connects the legs to 

form three braced planes, each parallel to the axis of the tower and 

each making a dihedral angle of 60° with the others. The bracing 

system may consist of diagonals, battens, or a combination of both. 

The three braced planes of a tower are subdivided into vertically 

stacked panels by the bracing members and are usually identical.

The buckling loads for the equilateral triangle towrer, (1) 

with triangulated web systems of various configurations, and (2^ vdth 

nontriangulated web systems (battens only), are treated in this 

article.

For a prismatic member of Fig. 2-^, the least critical 

value of the load P, considering the effect of shearing force, is 

given by Eq. (3-1)

in which K - —------- is defined as the shearing
Va^t T

stiffness. The expression" K for use with the three-legged tower 

■vrill now be derived:



Let Qp be the shearing force in one of the braced planes and 

Kp the shearing stiffness of a braced plane. The angle between a 

braced plane and the direction in which the buckled tower cross 

section is displaced is designated by (Fig- 3-10). The moment of 

inertia about any axis of the section, I , is invariant. The 

displacement of a braced plane such as AB in Fig. 3-10 consists of 

a component along direction AB, y p , and a component perpendicular 

to plane A. B . The former results in a shear resistance directed 

from B to A. Designating the total displacement of the cross 

section by y , then

P - Co s £>
(3-9)
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The cvTvature in plane A B associated vath axial deformations

of legs A and B is designated ii
V bp and from Fig. 3 - ]2

n
Thus, 7 kp rnay be expressed

Fig. 3-12

shear is obtained:

Assume the shear in the

leg of a column is taken as
P-y*—5— , and the shear in 
D

each leg is resolved into 

components in the braced 

planes at each vortex of 

the equilateral triangle 

ABC. The shearing force 

Qp in each plane is

Qp= (3-11)

Thus the relation for the 

panel distortions due to

"T" px/' co5
(3-12)
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I) P *1 C-6S (?>
'Vsp =------- T------------------ (3-I3)

-^p
Eqs. (3-9)j (3-10) and (3-13) yield

Co5 — ") p = bp 4- -/ $p

- (-—-i + -I"1" -1 CPS 6 (3-^)
— El 3 v CDSP\ "27 1T /

from which

-I -----------= O (3-15)

Ell . 2-? /x 1 /

It is noted that Eq.(i) in Chapter 2 can be written in the form

„ P / I \
f + -----^ET- 1 = y

\ K /
3 

which is identical to Eq. (3-15), vzith the exception that “g (^p)

is found in the latter, while K appears in the former. The 

foregoing implies that Eq. (3-1) riay be used to determine the 

buckling load of three-legged tovrers provided Kp is substituted 

for K . The formula corresponding to Eq. (3-1) for the three-legged 

tower is therefore

p —---------------------------------- (3-la)
1 cr fv। ± ---------

Eq. (3-la) is valid for both web systems, namely (1) with triangulated

bracing, and (2; vri.th non-triangulated bracing. The stiffness Kp 
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for each particular case is evaluated according to the methods 

shoxm in the previous section.

3 • H. 2. Column with Nontriangulated Neb System^-

For the case of a column with batten bracing only (Fig. 3-11),

_L = p
Kp (9p

2 d
s- (9-p

I f z^b + 
bH V Tb Tc (3-16)

In this expression 1^ is the moment of inertia of the batten cross 

section and Ic is the moment of inertia of a leg of the tower about 

its centroidal axis. It is here assumed that the column legs are 

circular or tubular so that any axis of the cross section is a 

principal axis, and Ic is invariant. The vertical and horizontal 

dimensions of the panel in the braced planes are a and b , 

respectively. Eq. (3-16) ignores the possibility of additional 

effects due to shear distortion in the batten.

The formula corresponding to Eq. (3-1) for three-legged towers 

with batten bracing are, therefore

Per
(3-17)

The rotation of a tower leg, 6 2 > at a point midway between two 

battens is

■^Tomayo, J. Y., and Ojalud, M., "Buckling of Three-legged Columns 
with Batten Bracing," Proceedings of the A. S. C. E., Vol. 91; No. 
ST 1, February, 1965.



(3-13)

To simplify subsequent egressions, the following substitutions

are introduced:

AJ =
I •cb

and . .

Pc
TC5" E-T

(3-19)

The component of shear in one leg along the direction of the
POp 

braced plane due to Op is —™ . The total panel shear is 
0

-f- fM- -3- f'iK CDS p' ' (3’20)

Substituting from Eq. (3-18),

-y- Pi t c=» ?
af ----------------- - -------------------------(3.21)

1 -Te

The curvature associated with shear distortion is designated y SP

then

1sp

2- P *
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and

(3-22)1

obtained from the following:

n
Cd 5 +

Substitute

P

3

or

(3-23)

Solving for the pin-ended condition yields the following solution

P in implicit form:

— D

or 3/V3

P *
*L.
"e

n 
bp

n
F

2. A/

3

governing differential equation isis given by Eq. (3-10). Thus, the

Therefore

2__£_
3 E

changes in the length of the le,

for the buckling load

3 )<P

1- -L_ s 'i

V-E V 
3 c.

±.
3 K

3 t^p

El

1

p 
Ex

/V
"E

P 
Ex

-L- S 1
3 Kp 

2.
1 “ ~3"

The curvature associated \rith axial



Solving for

(3-210-
- T

2

in wThich
3 A* 0

——- 4. R re.
T = - (3-25)

A/
E

and

Id (3-26)
—" 1

^P. E-

Eq. (3-210 may be regarded as a refinement of Eq. (3-17)-

Whereas the latter considers the change in slope associated with
2 A

shear type deformation to be —™ (Fig. 3-U) for purposes of 

computing the shearing force, the full value 02 is used in the 

derivation of Eq. (3-2^r). The buckling loads calculated from Eq. (3-2^1-) 

and (3-17) f°r different column dimensions are shown in Table 3~2.

Table 3-2.. (See Fig. 3-9)

No.
a 

(in)
b 

(in)
. 1
(ft-in)

leg 
(in. DiaO

Batten 
(in. DiaO

P (k) cr x
Eq (3-17) *Eq. (3-211-)

1 U 6 U - 2| 3/3 X u 3.805 3.816

2 6 . 6 ■t
=-

1 ro
 

I\)
|h 3/8 3/3 9.12 7.96

3 5 6

h
’O

J 
(M

 i

LTX 3/8 X 
14. 2-99 2.98

li. 6 10

I 

7^1 

co 1.
2

3/3 7.80 7.36
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3.^.3. Column t'/iuh Triangulated Web System.

For the case of a column with diagonal and horizontal bracing 

arranged symmetrically about the longitudinal axis, the stiffness Kp 

can be evaluated by the same analysis as before.

P PF

(<x)

Fig. 3-13

For the case of the column in Fig. 3-13a,

. I _ nrp ^5 _ 1 r i_____________ + 1

Ep (£p <X E V 5m <£>■ co51‘t> A4.

In this equation is the cross sectional area of the diagonal 

bracing, and A. is the cross sectional area of the horizontal 

bracing. It is again assumed that the column legs are circular or 
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tubular and that Ic is invariant.

Inserting Eq. (3-2?) in Eq. (3-la), the critical load for 

the triangulated lacing column (Fig. 3-13a) is determined to be

-rt? ex

------------------- ----------------------------- (3-28)
2- IL2"! / ________ I_________ I__________

* 3 52? V AiL" CDS2^ Ab1to<'r>41

and a reduced length for the equivalent column is

K JLK f______ >------- + —!-----

3 V Ade
(3-29)

In the above equations, is the cross-sectional area of the 

diagonal web, and A'D is that for the horizontal bracing.

The expressions for the buckling load of triangulated web 

systems of the configurations shorn in Figs. 3-13c and d are also 

shown in Art. 3*2. The buckling load for the web system of two 

diagonals (Fig. 3-13c) for an equilateral triangular column is 

therefore

r^r - 2 , < (3-30)

v £ ■ Cos1^ • A^ '

and a reduced length for the equivalent column is

2_ TJ-T /________ I________ \
3 52" V 5io A^y (3-31)

In the above equations, A^ denotes the cross-sectional area of the 
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two diagonals in the web i^anel.

Eq. (3-30) can be used also in the case of a web system 

composed of a single diagonal (Fig. 3~13d.) provided is the area 

of one diagonal and <^> is measured as shown.
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3.5• Column VTith Perforated, Cover Plates

Columns -vjith perforated cover plates"*" instead of lacing "bars 

or batten plates are often used in practice. The effect of shear 

deformation on the buckling strength of these columns will be 

illustrated in this article.

The cross section of a typical column with perforated cover 

plates is shown in Fig. In the calculation of the cross-

sectional area and moment of inertia of the column, the properties of 

the net area (section n n) can be used with sufficient accuracy for 

most practical purposes. In determining the lateral displacement due 

to .unit shearing force, consider as before a typical element from the 

column (Fig. 3-l^b). This element is similar to the element from the 

column with batten plates (Fig. 3-Sb), except that instead of a 

narrow batten plate the portion of the cover plate between perforations 

is used. Thus, finally the idealized element of Fig. 3-14c is obtained 

where the horizontal cross member can be considered as infinitely 

rigid. The lengths of the vertical projections, which are treated 

as cantilever beams, will be somewhere between c/2 and a/2 , where 

c is the length of a perforation. The value 3 CA" Is reasonable and 

gives results which agree with experiments .

W. vThite and B. Thurlimann, "Study of Columns with Perforated 
Cover Plates", AREA. Bull. 531, 1956.

^Ibid.
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The equations for a colunn uith batten plates can now be 

modified, for this case. Assume the cross member (analogous to a 

batten) is infinitely rigid, L - may be substituted in 

Eq. (e) and '‘d 51 - 0 is obtained. The displacement is

determined as the deflection of a cantilever ( Eq. (f) ) , and

<5 5a. is obtained as

A = I --- L---  = --- 1™?'.--- (P)
^ 52 2 < V 3



In this expression represents the moment of inertia of the 

"flange" of the column, that is, the entire effective area of the 

column on one side of the z axis, taken about the centroid of the 

flange (axis 1-1). The angular displacement due to unit shearing 

force is
, x

-y _ I __ S 5) t c) 5 2. _ A C

from which is •obtained

Per = ------------------------- ---------- (3-32)

1 + V ^4 KErTyJ

as the critical load for a column with perforated cover plates.

. The tests made on such columns have not indicated any weakness 

due to shear deformation^. Therefore, for these columns the shear 

effect may be neglected for practical purposes. The design of such 

columns hinges on the effective area of the perforated plates.

^"Stang, A. H., and Greenspan, M., "Perforated Cover Plates for Steel 
Columns, National Bureau of Standards (U.S.), Journal of Research 
Vol. 23, 19h-2, Research Papers RP 1^73 and RP 1^7^, and Vol. ^0 
19^8, Research Papers IW 1861 and RP 1880.



U. BUILT-UP COLUI.EJ TESTS

In order to obtain some experimental confirmation on the 

buckling strength of built-up coliynns, several column tests were 

performed for columns with diagonal bracing as well as for columns 

with batten systems. Three test columns were designed and tested as 

pinned-end columns using the universal testing machine in the Civil 

Engineering structures laboratory. The tests confirmed the 

predictions of column buckling strengths made on the theoretical 

basis presented in this paper.

li-.l. Test Specimens

The dimensions of the column specimens were designed to fit 

within the existing testing machine in the structures laboratory.

Test Column Ko. 1 was fabricated of steel channel of 2 x 2 x 

1/8 inches with 1/8 x -f inch bars for the battens. The 5/8 inch 

rectangular end plates used at the top and bottom had holes bored in 

them to accommodate hemispherical bearing heads of hardened steel. 

Details of fabrication are shown in Fig. U-l and U-2.

Test Column No. 2 was fabricated of steel with 3/8 inch 

diameter bars for the triangle legs and inch bars for the battens. 

Again the 5/3 inch thick triangular plates used at the top and 

bottom had holes bored in them to accommodate the hemispherical 

bearing heads. Details of fabrication are shoxm in Fig. 4-3 and 4-4.

Test Column No. 3 was fabricated of steel with 3/8 inch
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diaraeter bars for the trianglelegs and inch diameter bars for the 

diagonal bracing. The same diagonal pattern was used for each of the 

three braced panels of the column. Details of fabrication are sho-.-m 

in Fig. 4-5 and 4-6.

At each end of the column specimens inch radius hemispherical 

bearing heads and brackets of hardened steel were designed to serve 

as pinned-end supports. These bearing pieces were heat-treated for 

one hour at 1',330° F temperature and were then oil quenched. The 

details of construction are shovm in Figs. 4-7 and 4-8.

The test column properties are as follows:

Test Column No. 1

a - 4.25 in. b - 2.5 in.

Ac - O.379 in.2 Ic = 0.0064 in.11

Ab - 0.0o24 in.2 Ib / 4O.OOO326 in.

1 - 36.625 in. E = 29.6 X 103 Ksi

N =1.2 G = 12 X 103 Ksi

Pe
x 1= 260.73 Kips ” " 0.04403 Kip"1

L - 180.14 in.

Test Column No. 2

Ac
2- 0.1105 in. a - 4.25 in.

b - 4.0 in. 1 - 36.625 in.

I
- 0.887 in?' = 0.000192 in?’

Pc
4

= O.OOO97I in. E = 29.6 X 103 Ksi

pe - 193 • 18 Kips N = -P8541.10 in.

- = 0.27546 Kips-1 T = - 4372.10 Kips

E p- - 88,529.00 Kips
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Test Colvj.ia Tfo. 3

Ac - 0.1105 in.- a = 4.25 in.

b = j.O in. 1 - 36.625 in.

I = 0.501 in.^ Ad = 0.0491 in.2

Ic = 0.000971 in.^ E = 29.6 X 10^ Ksi

4* 46.667
1

Pe = i09.ll Kips ' "T" * 0.0020037 Kips
Kp

L - 39.12 in.

The predicted loads were as follows:

\Descriptior
Tesu\^ 
Column

Predicted load in Kips
L 
r

Two-legged Column Three-legged Column
Eq. (3-7) Eq. (3-1?) Eq.(3-24) Eq.(3-30)

Mo. 1 9.78 - - 151

Mo. 2 - 4.89 5.07 - 138

Mo. 3 - - - 95.2 105

4.2. Test Set-up

General views of the test set-up and the test arrangements are 

shoim in Figs. 4-9 through 4-17- The three specimens were tested in , 

the 200,000. pound mechanical, beam and weight testing machine. A 

transit was used to aid the alignment of the column in a true vertical 

position so that the load would be applied exactly along the central
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(a) Column No. 1

(b) Column Head.

Fig. 1+-9
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Fig. lt-10
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(a) Column No. 3

Column Head.

Fig. 1|—11



62

Fig. U-12

Subcritical Load

( Col. Nq. 1)

Fig. I1--I3

Column at Buckling Load

(Col. Ko. 1)
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Fig. U-1U

Subcritical Load

(Col. No. 2)

Fig. 1+-15

Column at Buckling Load

(Col. No. 2)

1
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axis at raid-height and as close as possible to the central axis at 

the ends. The load was applied in snail increments and the lateral 

deflection at raid-height was observed using the transit. The 

critical load was read directly from the test machine.

U.3• Test Results

The column buckling loads, as determined from the above tests, 

were found to be 9«5O Kips for Column Mo. 1 and U.80 Kips for 

Column No. 2. Column No. 3 failed locally at 14.8 Kips.

Figures 4-12, 4-14 and 4-16 show the columns in the testing 

machine with a small initial compressive load. In Figures 4-13 and 

4-15 the compressive loads have practically reached the maximum 

observed values, and transverse deflections can be seen. After the 

ultimate load was reached the columns continued to deflect wutb no 

change in the load. In Figure 4-1? the local buckling may be seen in 

one of the triangular legs.

Figures 4-13 and 4-19 shovr some of the other test columns that 

failed locally during testing: such failures were believed to be due 

to the small size of components and inadequate worlunanship in 

fabrication.

4.4. Discussion and Remarks

The test result was 2.5 per cent below the predicted value for 

Column No. 1. For Columm No. 2 the test value was 5 per cent below 

the predicted value based on Eq. (3-24) and 1.75 Per cent below 

the predicted value based on Eq. (3-1?)• The small discrepancy



Fig. 11-18

Typical Local Failure 

of a Batten Column

Fig. 4-19

Typical Local Failure

of a Triangular Laced Column 
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between the theoretical values and the experimental results are 

considered to be due to the slight imperfections in alignment, 

initial out-of-straightness, and unsymmetrical residual stress 

distribution in the test columns.

The test results of the above two cases show reasonable agree

ment with the theoretical calculations. Therefore, it is concluded 

that the theoretical formulas derived from the analysis based on the 

approximate method can be used to predict the buckling load for 

built-up columns of batten type construction.

For the three-legged column with batten bracing the test 

results indicate either Eq. (3-1?) or Eq. (3-2^) may be used to 

predict the buckling load. However, this may not always be the case. 

The effect can be seen by comparing the loads predicted from the two 

equations for a column of different dimensions. Assume Column Ho. 2 

in Table 3-2 for example, the predicted buckling loads are: 

according to Eq. (3-1?)^ ?cr “ 9-12 Kips, and according to 

Eq. (3-2^), Pcr 2 7*96 Kips. It is the writer's considered 

opinion that inasmuch as Eq. (3-24) has a more rational basis, it 

is the more reliable. Further tests are needed in which the 

parameters are systematically varied before one can establish the 

relative validity of these two equations.

For Test Column No. 3) "the three-legged column with diagonal 

bracing, the experimental result shows that the column failed 

locally in one of the column legs at 14.8 Kips. The deficiency was 

considered to be due to the imperfection in worlmanship, initial 

crookedness of the column legs and possibly due to the inaccurate 
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sizing of "the leg members bctyeen two consecutive bracings of the 

web panel. In order to prevent failure of the leg members prior to 

primary failure of the column, the column length would have to be 

increased so that a truly long column, by L/r terminology, was 

used. However, the present testing machine limits the useful column 

height to that employed in the present tests.

In Column Ko. 2, if the inch diameter bars used for the 

battens were replaced vzith bars of rectangular section of equal 

cross sectional area (1/8"X 7/16") and the other dimensions remained 

unchanged, then according to Eq. (3-2^) Pcr - 1$ Kips would be 

obtained. In this case the buckling strength of the column is 

increased from 5 Kips to 15 Kips due to the change of cross sectional 

shape of the battens, although the cross sectional area remains the 

same. The web shear rigidity of the column is thus greatly 

increased. If the web system of Column No. 2 was changed from non

triangulated web (battens only) to a triangulated web system (lacing 

pattern) as in the case of Column No. an<3- the other dimensions 

remained unchanged, then it would be found from the predicted 

buckling loads of these two ’columns that the web rigidity would be 

greatly increased in this case too.

Robert A. VJilliamsonA introduces the effective thickness (te) 

as a measure of the potential effect of web rigidity in built-up 

columns. He expresses the critical buckling load in terms of the

See discussion by Williamson, Robert A., A.S.C.E. Vol. 5>
October 1965*
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effective thickness. For three-legged columns ^-zith triangulated web 

systems (systems with both diagonals and battens) he expresses the 

critical buckling load by an equation of the follOvriLng form:

Pe. x
P-------------------------TK---------

I ---------
3 6x b t e.

For the case of triangulated systems, by replacing each 

triangulated panel with a fictitious solid panel of equivalent shear 

rigidity, the effective thickness, te , is given by

In this expression lw - the length of each acting web member in 

the panel, and Aw - its cross-sectional area. The summation 

extends over the length of the panel a . By evaluating t from 

Eq. (4-2) and inserting this value in Eq. (4-1), equations identical 

with Eqs. (3-23) and (3*30) for evaluation of buckling loads are 

derived. A similar approach is applicable to nontriangulated web 

systems (batten only). For the case of Eq. (3-1?) in which the 

buckling shear is regarded as being dependent on the rotation of the 

line adjoining the inflection points in adjacent panels, the 

corresponding value of te is given by

2-4r E Xc.
Cr oJ b

obtained by equating the shear resistance of the solid panel to that
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of the nontriangulated panel which it replaces. Inserting Eq. (U-3) 

in Eq. (4-1) a result which coincides with Eq. (3-1?) is obtained.

Eq. (3-24) considers the buckling shear to be a function of the 

rotation of the leg at the inflection point. Based on this 

assumption, equating the shear distortion yields

_ E Tr'' f _______ !_________ 1
3 (W)

Substitution in Eq. (4-1) gives an expression which is essentially 

equivalent to Eq. (3-24).

The concept of effective thickness provides a convenient 

measure of the potential effect of web flexibility. It is of 

interest to note that te , in the case of tall guyed towers with a 

conventional triangulated web system, is usually more than 0.001 in., 

whereas t for the author's test column No. 2, with its nontriangu- 

lated web system," is several orders of magnitude less -- 

approximately O.OOOO38 in. The low critical buckling strength of 

Test Column No. 2 in this investigation demonstrates the importance 

of the influence of low web rigidity in degrading the buckling strength.

For a critical load beyond the proportional limit of the material 

the equations derived in this paper can be used also by introducing 

E^. instead of E. Take the case shown in Fig. 3-6. Under the accion 

of an axial load the chords of the column t-ri.ll be uniformly compressed 

while the battens are unstressed. Hence in calculating the critical load 

which is beyond the proportional limit. Eq. (3-5) can be used. The 

substitution of E^. for E is necessary only in those terms relating 
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"bo the chords while E and G are retained in those terms relating 

to the "battens. Thus, if compression of the column exceeds the 

proportional limit, the "battens become relatively more rigid and the 

properties of the built-up column approach those of a solid column.



C RUCKLIMG LOAD FOR LACFD COLUMN NO. 1 (FIG. 3-3 ) 
REAL I, IC, IK, L

1 READ(5.1OO) A, B, AC, IC, E, L, PHI, AD,'AB
TOO FORMAT(PF10.5)

I=2.*IC*AC*B**2/2.
WPITE(6,101) A, B, AC, IC, E. L, PHI, AD, AB,I

10] FORMAT(PX, 1A=',E12.5,5X,'R=I,E12.5,5X,'AC=',E12.5,5X,'IC=«,E12.5/ 
1RX,'F=i,f12.5,5X,,L=',E12.5,5X>iPHI = ',E12.5,FX,'AD=' ,E12.5,5X , 'Ab = 
2« ,E12.5,5X,•1 = ’ ,E12.5//)
X=1.74533E-2*PHI
PE=3.1416**2*E*I/L**2
TK=1./F*(1./(SIN(X)*COS(X)**2*AD)+COS(X)/(SIN(X)*AB))
REDL=L*SORT(1,+PE*IK) '
PCR=3.1416**2*E*I/REDL**2
SLR=RFDL/SORT(I/(2.*AC))
WRITF(6,1()2) PE, IK, PEDL, SLR, OCR

10 2 FORMAT(PX,'PF= ' ,E12.5,5X , ’1/K=',E12.5,5X,'REDL=',El2.5,5X,1L/R=',
■ 1F12.5/8X,,PCR=<,E12.5//)

GO TO 1
END
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C RUCKLING LOAD FOR LACED COLUMN MO. 2 AMD NO. 3 ( FIG. 3-4 ) 
REAL I, IC, IK, L

] RFAD(5,100) A, B , AC, IC , E > L , PHI,AD
]00 FORMAT(RF10.5)

WRTTF(6,101 ) A, B, AC, IC, E, L, PHI, AD
10] FORMAT(8X, 1A = * ,E12.5,5X, '8=' ,E12.5,5X,'AC=’ ,E12.5,5X,' IC=' , E12.5/ 

18X,’E=’ ,F12.5,5X,,L=' ,E12.5,5X,'PHI = ' ,E12.5,5X , 'AD=',E12.5//)
I=2.*IC+AC*B**2/2.
X=1,74533E-?*PHI
PF=3.141A**2*E*I/L**2
TK=1./R*!l./(SIN(X)*C0S(X)**2*AD))
RFRL=L*SQRT(1.+PE*IK)
PCR = 3.J 416**2*F*I/RFDL**2
FLR=REDL/SQRT(I/(2.*AC))
WRITE(6,102) PE, IK, REDL, SLR, PCR

102 FORMAT(RX,1PF=’ , E12.5,5X , * 1/K=1,E12.5,5X, 1REDL= 1 , E12.5,5X , 1L/R = ’ ,
1F12.5/8X,'PCR=' ,E12.5//) 

GO TO 1 
cNR)
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BUCKLTMG LOAD FOR Pl JILT-UP COLUMN WITH BATTEN BRACING 
REAL I, IC, IB, L> IK. N

1 READ(5, 100) A, B, AC, IC, AB, IB, L, E, N, G
100 FORMAT(8F10.5)

I=?.*IC+AC*B**2/2.
WRITE(6, 101) A, B, AC, I, IC, AB, IB, L, E, N, G

101 FORMAT(EX,•A=»,E12.5,5X,’B=»,E12.5,5X,’AC=’,F12.5,5X,'I=',E12.5,5X 
1,' IC=•,F12.F/flX,’AB=•,E12.5,5X,'IB=',E12.5,5X,'L=»,E12.5,5X,'E=• ,E 
212.^,1SX,'N=’,F12.I5,5X,’G=',E12.5//)
PF=3.1416**2*F*I/L**2
IK=A*R/(12.*F«IR)+A**2/(24.*E*IC)+N*A/(B*AB*G)
REDL=L*SORT(1.4PE*IK)
PCR=3.1416**2*E*I/REDL**2
c,LR = RFDL/SOPT ( I / ( 2.*AC ) )
WRITE(6,102) PE, IK. R^DL, SLR, PCR

10? FORMAT(RX,»PF=’,E12.5,5X,’1/K=»,E12.5,5X,•REDL=1,El2.5,5X,'L/R= », 
1F1B.S/RX,'PCR=’ ,E12.5//)

GO TO 1
END

00001Q



C nl •Ck'L T mg load FfiP F’-UILT-IIP COLUL'M V’ITH FATTEN GRACING
r rpprrT ncr i.nrAt '"'liCk'l tmg j g CnNSTDFREO

^FAI. T, yr, T", L* T<, D
i irin; a. L, AO. I <?, AR. T i, L, F, . 0, pcoi

ynn thpm a t ( q cr y d , ,
T = ?.F-ic + aC*FO(*?/2.
!JR 17^(6. 1'11 ) A. F., Ar. ], ye, AO, IB, L, L, N, , PCR1

1 '’'1 FOP^ATfAY, ' A - । . n 2 . c, . =■> X. , * B= ' , F ] 2. b , LX , ’ AC= ’ , E1 2.5,5 X , ' I = ' , £ 1 2.5
J, ox, ' y c= 1 . F1 ? . F , 5 X , 1 A F< = ’ . F1 2.5 / B X , 1 I 1 , E 12.5,5 X . 1 L “ 1 , E 1 2.5,5 X
2 , • 17 = ' . 71 2 , , o x , ' N = । . F 1 7.0,5 X , ' G = 1 , F12.F/P, x, ’ P C P1 = ’ ,1-12.5//)

Pr7 = '’. 1/-!.■’F-x--)'-7 >=-F-x-1/i -x -x-^
r'-o 1 o k -1 , lonon:)
A| ni4A=nro) / ( b .-so . y y ? *F* J C / A-^-x-.? )
IK=A*i</( 1 2.*F*I!' )+A^-::-?/ ( 2 A . < E-x I r-x-( 1.-ALPHA ) ) +,'j-x-A / ( w* A3«G )
f.'CrD|_ = LX-AD!?T ( 1 . + DF-X I !< )
PC P = ■-> . 1 A 1 6 -ih:-? *F-x I /R FDL. -iH!- 2
5LP = RF'-'L/S'Or?T ( j / (?.*Ar y )
TF ( Ai-'Pf pcr-’-PCPi ) .ip. 1.F-5) GO Tn 2C
IF (Pro ,LT. orn1) GO to
nrPi^Drpi+y,F-2
Gr> TA in

?n popy=dopi-i.F-?
1.0 roNTIMijr

'•'PTTFfA, 100)
yny FnpriATfPX, ’ITFPATION TO RF FURTHER INCREASER'///)

G^ TO 1
7G '.in T TF ( G , y ()2 ) ALPHA, T1', PFDL, SLR. PCP

im r.-nDVAT(.oy. • ALPHA= ' .^y ?. 5.5x. ' 1 /'<= ' , F 12.5,5 X , ' RFnL= ' . E 12.5 , 5 X ,
1 'L/P='.^y 2.0/o v , Iprpzt,n 2.0//)

r, n yr) y



C BUCKLING LOAD FOR THREE-LEGGED COLUMN WITH BATTEN BRACING 
REAL I, IB, IC, IKP, L, N

1 READ(5,100) AC, A, B, L» I, IB, IC,-E 
ion FORMAT(PF10,5)

V'RITF(A,101 ) AC, A, R, L, I, IB, IC, E
ini F0RMAT(8X, *AC= 1 , El 2.5,5X, 1 A=',E12.5,5X,'B=•,E12.5,5X,'L=• , E12.5/

18X,'I = »,F12.F, = X , *IR=',E12.5, 5X,'IC=«,E12.5,5X,»E=’,E12.5//) 
\'=A*B/( 12»*IB)+A*A/( 16.*IC) 
PF=3.1416**2*E*I/L**2
IKP=(2.*A*B/IB+A«A/T C)/(24.*E)
R=6.*PE/(IKP-N/E)
T=(1.5+df*n/F)/( IKP-N/F)
PCP=(-T-SQRT(T**2+R))/2.
PCRA = PF/((l. + 3.1416**2*I )/L**2/36.*(2.*A*B/IB+A*A/I C) ) 
WRITF(6,]02) PE, M, IKP, T, R, PCR, PCRA

102 FORMAT(8X,'PE=',E12.5,5X,'N=',E12.5,5X,'l/KP=',E12.5,5X,,T=l,E12.5
1,5X,'R=’,E12.5/8X,'PCR(EO.3-24) = ’ ,E12.5/8X,'PCR(EQ.3-17 ) = ' , E12.5// 
2/)

GO TO 1
FMD
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ri T mg I-QAT Fnp THPFF-lJ’r-Cil-1) CC'L'- x: '.VITI-I LACED hR AC I NCj ( F I G3-1 3A ) 
l<r ■' L I , T C. T v o . |_

1 QTAnfS. A.r , A, n, L, T, IC? pHl;
1 I"-1"1 c r\ r? I ■• «, T I Q 1 ri K J

I T- f f, . 1 ;.l ) AC, A, R. I., T. IC? PUJ. A|,
in, n-np.,AT(ov, I'.r= f ,C] F.p ,c;v. ' A = • , i ? 5 x , ' fi = ' , E 12.5 • 3 X , 1 L = ' , E12 . ̂  /

1 O / , ' I - f , r: x? . , r,:/ ; , /.p- , , p 1 7 . 5 , F x , 1 I C = * , rj. 7. . 5 , 5 X , • E = ' » E 12.3,5 X » 1 PP I
? - 1 • r 1 ’ . , r>x , i A । , i- 1 2 . ^ / / )

Y - i , 7 /, 9 1.1" _ 7 DI I |
o F = G , 1 A i (C,-^-s; ? r.;-r J / [_ v-)

T v p = 1 . /F-x- ( ] . / ( R I R ( X ) *CC c- ( X ) D ) +CO.X ( X ) / ( 5 T rl ( X ) *AB ) )
n M I. = |_ ¥ G.n ? T ( 1 . + F. t" ■> . / ? . j p )
pr'J = , 1 A 1 A * ¥- ■> -”r F J / R !" 3 L ■“ -X- /
rLP = r>Pn[ /Sr-.py ( T / ( F e A< ) )

'•,r' T ( A . 1 t 7 ) PF, r<P,prr,i_,r|_p,Dfp

] np FOR’-’A j ( px , t op- । . F12 . r> ; r'X , । ] / rd = r ,p] 2.5,5x » 1 RFDL = ' , E12.5 ?5X , 1 L/R = ' ?
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C r;!<ri TMr, L^Ar' FO-' THnr ^-LFr.r.FC' rOLUi’.,’-' I TH LACFO A R AC I .<G ( F I S 3-13 C AM:"> I;) 
'-■"M. J, TC. TF'^. I.

1 FcAr)(S, Ifn) A, q. |_, j, Z,r>, |C, f. pHl
1 C-C r.->rv.-/' T ( PFll'.F )

1 ri T T I" ( A » 1 •1 1 ) AC* A » H « L • I , A! 1 , T C , ■; •> PHI
I H '^P'^TtPY, f r\C= t ,!"] 2.A 1 ■',\= t , r 12.5 * 5X , 1 ' » F 12 . r> , Fv , • L= ' , Fl 2 . "V

1 ::y . , t = , ,Fl?,'-,sy,r/n=' , Fl 2 . b » X , ' I C= ' » r 17. . 5 , L> X , ' F> ' ,!-1 2 . b , 5 X > * Pl i I
7 = , , r i . rv / ;

Y= 1,7'>r 7?l
FT-= 7 . 1 /, 1 ,<.-K-F-7-!:r%J / I. 7
T 0=1 ./n.--. ( I . / ( C I M ( V ) -x-rnc, ( y ) .;h:-2) )
nr:r>L =L-;' SORT ( 1 .+1'52'2 . /3 . * IKP )
r'<-p = ^ . ia i r-,-x-x2 y-f :<i/'?c->.L-<2
rLF = Rrr^L./Sr'r-'T ( I / ('=.-2AC ) )
’■’C T Tr ( A , 1 'v2. ) PF . T KO , T-rr.L , c.l,r-» PAR

1 rr.pvAT(qY, tDF=i . r 12 . ^ * 5X , n /Kn= । , F ] 2 . c. . Av , f Rrpl = * . E12.5 , fy , » L /R = 1 .
1 F1 ? . r' / Q y . 1 f = 1 » FI 2 . A,/ / ) 

r-p TO I
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6. IIOTATIONS

The follovzinc sjnnbols verc adopted for use in this paper:

a, b, c, d Numerical coefficients, distances

Ac Area of one leg of built-up column

E Modulus of elasticity

G Modulus of leasticity in shear

I Centroidal moment of inertia of column cross section

Centroidal moment of inertia of batten cross section

*0 Centroidal moment of inertia of a leg of the column

K Shearing stiffness

Kp Shearing stiffness of one panel

1 Height of column or tower

I. Reduced length

M Moment at a section

N
a b aP

A term equal to ■+ in three-legged
12 lo Ic

tower

P Axial force in column
k1 B I

Pe Euler crxLical load - ....

Pcr Critical buckling load -

Q Shearing force on a column cross section

Shearing force in a panel

r Radius of gyration

R
U P<

A term equal to —----------- in three-legged tower
kp e



8o "

gi --------------- -------j,n three-legged tower.
J_____ aL_

r-P E
X, Y Rectangular coordinates

7 Deflection of the buckled column

Vsp Deflection due to shear in a braced plane

7tf> Deflection due to flexure in a braced plane

Z Section modulus

Angles, ratios

*Y Shearing unit strain

Deflection

0 Angle

A Numerical factor, slenderness ratio

Radius of curvature

O' Unit normal stress

O^.,. Compressive unit stress at critical load

Angle
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