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Abstract 

    Brain cells such as microglial, neurons, and astrocytes, undergo varieties of 

morphological and functional changes during their life cycle, or responding to micro 

environmental perturbation. To better understand the functions of these cells in different 

status and sub-status, it is essential to study the morphological characteristics of the cells. 

More importantly, the process of categorizing cells into different status and sub-status 

serves as a prerequisite for further analysis. In this dissertation, we propose a method for 

comparative profiling of quantitative arbor morphology data across multiple ensembles of 

brain cells (neurons, glia) with the overall goal of analyzing alterations/differences in 

cellular arbors, in a manner that also facilitates qualitative interpretation and model 

inference. Our method works in three steps. First, we propose a robust unsupervised co-

clustering method for the purpose of robustly identifying groups and sub-groups of cells 

with similar morphologies, and simultaneously identifying the hierarchical grouping 

patterns among the corresponding arbor measurements. Second, we compare the 

identified cell groups and morphological measurements using an adaptation of 

Tibshirani’s Sparse Group LASSO algorithm, allowing us to identify the most significant 

feature groups, in addition to individual features that underlie the cellular arbor 

alterations. Finally, for the special common case when batches of images are 

continuously being acquired under a common imaging protocol, we describe an approach 

in which the first step can be performed only once, and the resulting models are reused 

for subsequent imaging experiments, thereby saving computing time. We illustrate our 

comparative arbor analytics method with data from a neuro-engineering study aimed at 

profiling glial alterations resulting from the insertion of a neural recording device into the 
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brain tissue. The experiments on microglial and astrocytes perturbation analysis in the 

Binge Alcohol study also proofed the power of the proposed method in discovering cell 

types/subtypes, and discovering features of significance in real biological applications.  
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Chapter 1 Introduction 

The arbors of brain cells, especially neurons, astrocytes, and microglia, can undergo 

alterations in response to external perturbations (e.g., injury, healing, alcohol abuse, 

drugs), and/or exhibit differences across brain tissue samples that have been subjected to 

different experimental conditions (Zanier et al., 2015). There is a widespread need to 

detect and quantify these arbor alterations, since they are informative of the underlying 

biological processes (Morrison et al., 2013). Such analysis must be sensitive to subtle 

changes, and be scalable to large ensembles of arbors at the same time. As noted widely, 

there is no single measurement that can quantify an arbor, but a sufficiently 

comprehensive and multifaceted collection of arbor measurements can capture an arbor’s 

morphology in the aggregate (Scorcioni et al., 2008; Parekh, et al. 2013; Lu et al., 2015). 

Given the sheer diversity of arbor alterations, it is also important to have the ability to 

separate the more significant/important changes from others. Importantly, the analysis 

should provide an output that allows an investigator to interpret the results at a qualitative 

level.  

The availability of quantitative arbor measurements for large cell populations is 

growing rapidly, as exemplified by the NeuroMorpho database containing contributions 

from investigators around the world (www.neuromorpho.org). This is also true at the 

level of an individual experimental study. For example, advances in fluorescence 

confocal microscopy and stage robotics now enable large multi-millimeter swaths of 

brain tissue to be imaged in a step-and-repeat manner, and the resulting images can be 

stitched together to create seamless mosaics (montages) that capture thousands of cells at 
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fine resolution (250 – 300nm/pixel), while preserving their spatial distributions over 

extended distances (Tsai et al., 2011; Rey et al., 2014). At the same time, advances in 

methods for large-scale automated reconstruction of cellular arbors (Megjhani et al., 2015, 

Kulkarni et al., 2015, Zhou et al., 2016, Peng et al., 2015, Meijering 2010) enable 

quantification of cellular arbors at the population scale, using comprehensive libraries of 

arbor features that capture detailed measurements of arbor anatomy, especially Ascoli’s 

L-measure (Scorcioni et al., 2008, Parekh, et al. , 2013) that can be exported to the open 

SWC data representation (Cannon et al., 1998). Finally, software tools for visualizing and 

editing arbor reconstructions have progressed to the point when large ensembles of 

reconstructions (tens of thousands), rather than just one reconstruction, can be visualized 

three-dimensionally, edited, and quantitatively analyzed in a collective manner (Luisi et 

al., 2011, www.farsight-toolkit.org). These studies produce high-dimensional datasets (~ 

130 dimensions per cell) that require effective multivariate bio-informatics “big data 

analytics” algorithms. We have earlier called this capability “arbor analytics” (Lu et al. , 

2015). Recent advances (e.g., Lu et al., 2015, Xu et al. , 2016) in arbor analytics make it 

possible to profile arbors in a comprehensive manner, and at the scale of large cell 

populations (e.g., thousands of cells). In this paper, we extend arbor analytics to the next 

logical step – comparative population-scale profiling of two or more ensembles of 

cellular arbors with the goal of analyzing cellular differences and alterations. For these 

reasons, we refer to our proposed method as “comparative arbor analytics.”  

In this paper, we propose a comprehensive and usable method for population-scale 

comparative arbor analytics that includes three major components. First, we focus on the 

problem of unsupervised/exploratory analysis of quantitative arbor morphology data for 

http://www.farsight-toolkit.org/
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large cell populations (>50 cells). Specifically, we describe a method for unsupervised 

co-clustering of quantitative arbor morphology data (specifically, Scorcioni et al.’s L-

measure) for a population of cells. This entails identifying groups of cells with similar 

morphologies in a hierarchical manner, and simultaneously identifying the hierarchical 

grouping patterns among the corresponding arbor measurements for the purpose of 

interpreting the characteristics of the identified cell groups. In choosing approaches to 

exploratory co-clustering, we have emphasized practical usability. One practical barrier 

to usability relates to the setting and adjustment (tuning) of parameters. These internal 

settings of analytics algorithms are often not understandable to non-mathematical users. 

In this regard, our method is capable of generating usable results without requiring any 

parameter settings from users. Two adjustments are optionally available to the user, and 

they are both quite intuitive, as described later. Another barrier to usability of cluster 

analysis systems is their sensitivity to noise, outliers, and data variability. Our method is 

designed with built-in wavelet-based “smoothing” mechanisms, and specific choices of 

distance metrics that allow it to detect grouping patterns in a robust manner. Finally, our 

method is designed to be hierarchical, so groups and sub-groups in the data can be 

detected effectively and rapidly. 

Even after the grand data re-organization provided by the unsupervised harmonic co-

clustering step, qualitative interpretation is still somewhat challenging due to the fact that 

the arbor measurements are a complex combination of heterogeneous quantities. For 

example, the L-measure data include a mix of spatial lengths, widths, and volumes, and 

several dimensionless quantities (e.g., counts of objects, shape features, etc.). These 

measurements are extracted at different scales ranging from spines of neurons to gross 
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measurements of an entire arbor. The scientific significance of these features must be 

established in an intelligent and guided manner. For example, it cannot be based purely 

on statistical measures on individual features alone, they should be based on a thoughtful 

combination of statistical measures and qualitative considerations emanating from the 

scientific context and the objectives of the investigator. The sparse group least absolute 

shrinkage and selection operator (LASSO) method pioneered by Tibshirani (1997) 

provides us with the ability to address these compelling needs in a powerful yet practical 

manner. This method forms the core of the second step of our method, and it enables us 

to reveal a sparse set of the most important explanatory factors underlying the 

population-level arbor differences at chosen scales and/or levels of detail. For example, it 

allows us to perform a thoughtful grouping of L-measure features in a manner that 

facilitates human interpretation of the machine-computed results, and the sparse group 

LASSO enables us to identify the most distinguishing feature groups, and individual 

features within. The fundamental power of this method emanates from its use of the  ℓ0  

norm in the data regularization. In this method, variable selection typically amounts to 

the selection of the important factors (groups of variables) rather than individually 

derived variables, as each factor corresponds to one measured variable. The resulting 

interpretation model allows us to perform a comprehensive comparative analysis between 

cell groups. It provides the ability to discover insights within each cell group as of what 

features are significantly different between groups.  

Finally, for the practical case when batches (or a series) of images are being acquired 

under a common imaging protocol, typically as part of a larger ongoing study, it may be 

impractical to perform the above-described two-step analysis after all of the data is fully 
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collected. Since the images are being acquired under the same conditions, it is preferable 

to perform the first harmonic co-clustering step once, and then reuse the common 

baseline models (cell grouping patterns, underlying feature groups), to analyze newly 

acquired images, thereby saving computing time. We describe this “batch learning” style 

of applying our method to experimental studies in this paper. 

We present examples of its usefulness by analyzing synthetic datasets, as well as other 

experimental data such as brain perturbation study, binge alcohol study. We also tested 

our method for the benchmark dataset, cell reconstruction ensembles downloaded from 

the NeuroMorpho database. The proposed co-clustering and comparative interpretation 

algorithm is incorporated into an interactive graphical user interface around an intuitive 

heat map representation in the free and open-source FARSIGHT Trace Editor (Luisi et al. , 

2011, www.farsight-toolkit.org). We illustrate our comparative arbor analytics method 

from a neuro-engineering study aimed at profiling glial alterations resulting from the 

insertion of a neural recording device into the brain tissue.  

The following chapters are organized as follows. In Chapter 2, we give a brief 

literature review for arbor analytics, co-clustering, dimensionality reduction and 

comparative analysis. Limited by the number of existing literatures on arbor analytics, we 

include a few of the recent ones in the section. Several types of co-clustering algorithms 

are described including two way clustering, matrix decomposing based clustering and 

graph based clustering. We also describe the major categories of dimensionality reduction 

methods including linear and non-linear approaches. We introduce our dimensionality 

reduction method (diffusion distance) in great detail in Chapter 3. The diffusion 

embedding requires data points to be connected as a weighted graph. A random walk 

http://www.farsight-toolkit.org/
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probability field is constructed from the graph. We model the probability field as a 

Markov chain process so that the distance between data points is captured as the 

transition probability. In Chapter 4, we describe the details about the clustering algorithm 

that we are using in the co-clustering approach. It is a hierarchical clustering in the sense 

that it clusters points into clusters of different scales in different levels. The hierarchical 

structure is captures in a partition tree. The clustering procedure is a basic step for the co-

clustering framework. The details and theoretical support of the co-clustering frame work 

is given in Chapter 5. First of all, we introduced a scheme that enhances the dual 

geometry in the co-clustering problem, to bring stronger affinity to the data points in the 

other space (row space or column space). The iterative procedure is described afterwards 

as the major steps of the method. Finally, we give the theory of orthogonal basis and 

smoothness as a convergence criterion, and a better explanation of the algorithm itself. 

We introduce the comparative self-interpretation algorithm in Chapter 6. The algorithm is 

formed based on sparse group lasso, in which a convex optimization objective function is 

formularized with regularizing both in the individual level and in a group wise level. A 

brief introduction about lasso and group lasso is given in the chapter, as well as the detail 

of the sparse group lasso algorithm. Chapter 7 includes the analytical results we have 

done on multiple experiments. One examples is the Microglial profiling in the rat brain 

perturbation experiment, where four sub status of microglial and their space distribution 

are identified. Another example is astrocyte profiling in the binge alcohol study, where 

astrocytes are profiled into four groups with different morphological characteristics. We 

also did analysis for neuron profiling, where different types of neurons, as well as neuron 
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subtypes are identified. Finally, we applied the profiling algorithm and the interpretation 

algorithm on a binge alcohol study.   



8 

 

Chapter 2 Background and Prior Literature 

2.1 Arbor Analytics  

    Quantitative analysis of arbor morphology data for neurons, microglia, and astrocytes 

has been of long-term interest to neuroscience, and simpler methods that just focus on a 

few arbor measurements computed on individual cells, or small populations of cells. For 

example, Vargas-Irwin et al., (2014) proposed a framework for single neuron and 

ensemble data analysis. An automated method to quantify microglia morphology and 

application to monitor activation state longitudinally in vivo was presented by Kozlowski 

et al., (2012). In Tan’s work (2014), they analyzed the influence of gold surface texture 

on microglia morphology and activation.  

    The advent of comprehensive collections of arbor measurements, notably Ascoli’s L-

measure (Scorcioni et al., 2008; Parekh, et al., 2013), has set the stage for a more 

comprehensive style of quantitative arbor analysis. In this approach, 

manually/computationally reconstructed arbors are exported to a standardized data format, 

for example, the open SWC data representation (Cannon et al., 1998), and then 

automated computer programs are used to compute a comprehensive array of arbor 

measurements. This approach provides the opportunity for a far more extensive analysis 

without additional data acquisition. The potential offered by such analysis is tempered by 

the need for tools to handle the high data dimensionality.  

    Increasingly, these studies driven by growing collections of reconstructions (e.g., 

www.NeuroMorpho.org), and our growing ability to reconstruct arbors with a high 

degree of automation (e.g., Zhou et al. , 2016, Peng et al. 2015, Hogrebe et al., 2012, 

http://www.neuromorpho.org/
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Meijering 2010, Wang et al., 2011, Luisi et al. , 2011, Peng et al., 2011, Turetken et al. , 

2011), reconstruct entire populations of arbors (Megjhani et al. , 2015, Kulkarni et al., 

2015, Rey-Villamizar et al., 2014), and compute widely accepted arbor measurement 

collections (Scorcioni et al., 2008, Parekh, et al. , 2013). Our work exemplifies this recent 

trend. Specifically, this dissertation represents a much needed extension of our published 

paper (Lu et al. , 2015), where we presented a robust unsupervised harmonic co-clustering 

method for profiling arbor morphologies for ensembles of reconstructed brain cells based 

on quantitative measurements of the cellular arbors. This method can identify groups and 

sub-groups of cells with similar arbor morphologies, and simultaneously identify the 

hierarchical grouping patterns among the quantitative arbor measurements. The more 

recent work of Xu et al., (2016) proposed a non-parametric Bayesian approach to 

unsupervised quantitative profiling of microglial arbor states, and mapping their 3-D 

spatial distributions across extended brain tissue regions imaged by mosaiced confocal 

microscopy. The arbor morphology data are fitted into an Infinite Gaussian Mixture 

Model (IGMM) with collapsed Gibbs sampling to discover arbor-morphological classes, 

their morphological ‘signatures,’ and the underlying covariance matrices, all in an 

unsupervised manner. Although these prior methods provide a significant level of feature 

grouping and analysis, they do so at the level of individual datasets. This paper provides 

the much-needed extension for comparative analysis of two or more data sets, with a 

systematic biologically meaningful strategy for interpreting the comparative arbor 

analytics results. 

    Within the realm of comparative analysis, the main contribution of this work is the 

identification of the most significant alterations across distinct groups. In the recent 
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literature, Polavaram et al. , 2014 presented a database-wide statistical analysis of 

dendritic arbors, enabling quantification of the major morphological similarities and 

differences across broadly adopted metadata categories. They also adopted a 

complementary unsupervised approach based on clustering and dimensionality reduction 

to identify the main morphological parameters leading to the most statistically 

informative structural classification. The purpose of this method is very similar to ours, 

except the approach is different, which leads to a different insight discovery. In our 

model, we derive the arbor morphological similarity/difference after the clustering 

analysis so we focus on comparison among groups. Also, the use of group LASSO in our 

model allows us to relate the alterations directly to the original arbor measurements and 

their biological functionality.  

2.2 Co-clustering 

    The problem of co-clustering, where both rows and columns of a data matrix are 

clustered simultaneously, has received significant attention in bio-informatics, and other 

data-intensive areas of research. Dhillon & Mallela (2003), Cheng & Church (2000), 

George & Merugu (2005) are the pioneers applied co-clustering methods to gene 

expression data, text mining (document classification), and recommendation systems. 

Many co-clustering approaches have been described, including the hierarchical model 

(Xu et al. 2006), bi-clustering model (Cheng & Church 2000), pattern-based model 

(Hartigan 1972), and matrix decomposition model, etc.  

2.1.1 Iterative Methods 

    In Chen and Church’s algorithm, the goal is to find biclusters with low variance in a 

greedy way. It iteratively remove rows and columns with high residuals (or variances) out 
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from the whole matrix. The iterative removing process stops when a certain criterion is 

satisfied by a given threshold. The criterion for achieve constant biclusters is based on the 

definition of a mean square residue (MSR) 

 MSR =
1

|𝐼||𝐽|
 ∑ (𝑎𝑖𝑗 − 𝑎𝑖𝐽 − 𝑎𝐼𝑗 + 𝑎𝐼𝐽)2,

𝑖∈𝐼,𝑗∈𝐽
 (1) 

where  𝑎𝑖𝑗 is the data element at row i and column j, 𝑎𝑖𝐽, 𝑎𝐼𝑗 and 𝑎𝐼𝐽 are the mean of the 

expression values in of row i, column j, and the whole bicluster respectively, for 𝑖 ∈ 𝐼 and 

𝑗 ∈ 𝐽. For seeking constant row clusters, column clusters, or rectangle biclusters, MSR is 

an effective measurement. However, this metric is not suitable for scale and shift-scale 

biclusters.  

BiMex is a co-clustering algorithm designed for gene expression like data, where only 

upregulate and downregulate biclusters are found. The algorithm works for binary data 

due to its mechanism that it seeks a rectangle bicluster with 1s in a matrix. If a given 

matrix is continues non-binary data, it should be normalized into to a binary matrix (with 

only elements 1s and 0s) before applying the algorithm. This is a divide and conquer 

algorithm starts with the whole matrix, iteratively dividing into checker board format. 

Another algorithms works with manipulating matrix entry order is the Order 

Preserving Submatrix problem (OPSM) (Gao et al., 2006).  In the OPSM model, a 

bicluster is defined as a submatrix within which the orders of entries are preserved. In 

each bicluster, there exists a linear ordering of the column in which the values of all rows 

within the bicluster is linearly increasing, and the other way, too (there exists a linear 

ordering of the row in which the values of all columns within the bicluster is linearly 

increasing). The algorithm constructs biclusters by iteratively increase the size of the 
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partial biclusters, and ordering the probability of the submatrix reaching a fixed size 

defined by users. This algorithm is greedy and heuristic. 

2.1.2 Matrix Decomposition Methods 

    Another important application for co-clustering algorithms is to find the hidden block 

structure of a data matrix. There are several typical methods proposed in the past decade 

dealing with this problem using matrix decomposition methods, such as Block Value 

Decomposition (BVD) and Non-negative Matrix Factorization (NMF). 

 Long et al., (2005) presented a co-clustering framework, the block value 

decomposition for dyadic data, which factorizes the dyadic data matrix into three 

components, the row-coefficient matrix R, the block value matrix B, and the column-

coefficient matrix C. The coefficients denote the degrees of the rows and columns 

associated with their clusters and the block value matrix is an explicit and compact 

representation of the hidden block structure of the data matrix. Under this framework, 

they focused on a special yet very popular case – non-negative dyadic data, and propose a 

specific novel co-clustering algorithm that iteratively computes the three decomposition 

matrices based on the multiplicative updating rules.  

    In this method, data are formulated as dyadic data denoted as (x, y), given two sets 𝑿 =

{𝑥1, 𝑥2, … , 𝑥𝑛} and 𝒀 = {𝑦1, 𝑦2, … , 𝑦𝑛} . For the scalar dyads, the data can always be 

organized as an 𝑛 × 𝑚 two-dimensional matrix Z by mapping the row indices into X and 

the column indices into Y. Then, each w(x, y) corresponds to one element of Z. The goal 

is to simultaneously clustering X into k  disjoint clusters and Y into l disjoint clusters. This 

is equivalent to finding block structure of the matrix Z, i.e., finding k × l submatrices of Z 
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such that the elements within each submatrix are similar to each other and elements from 

different submatrices are dissimilar to each other. Since the elements within each block 

are similar to each other, we expect one center to represent each block. Therefore a k × l 

small matrix is considered as the compact representation for the original data matrix with 

a k × l block structure. In the traditional one-way clustering, given the cluster centers and 

the weights that denote degrees of observations associated with their clusters, one can 

approximate the original data by linear combinations of the cluster centers.  

    Non-negative matrix factorization (NMF) is a recent method for finding two low-rank 

non-negative matrices whose product provides a good approximation to the original 

nonnegative matrix. Given a data matrix 𝑿 ∈ 𝑅𝑀×𝑁,  NMF aims to find two low-rank 

non-negative factors 𝑼 ∈ 𝑅𝑀×𝑅 and 𝑽 ∈ 𝑅𝑁×𝑅, which are the basis factor and low-rank 

representation factor, respectively. The squared error (Euclidean distance) objective 

function is formulated as 

 J𝑁𝑀𝐹 = ∑ ∑(X𝑖𝑗 − (𝑈𝑉𝑇)𝑖𝑗)2

𝑀

𝑗=1

𝑁

𝑖=1

= ‖𝑋 − 𝑈𝑉𝑇‖𝐹
2 (2) 

subject to 𝑈 ≥ 0, 𝑉 ≥ 0. 

    In Shang et al., work (2012), a co-clustering method was proposed using graph dual 

regularization non-negative matrix factorization (DNMF) algorithm which 

simultaneously considers the geometric structure information contained in data points as 

well as features. They first construct a k-nearest neighbor data graph whose vertices 

correspond to {𝑥1,𝑥2, … , 𝑥𝑛}. And use the 0–1 weighting scheme for constructing the k-

nearest neighbor graph as, and define the data weight matrix as  
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 W𝑖𝑗 = {
1, 𝑖𝑓 X𝑖𝑗 ∈ 𝑁(X𝑖) 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
} , 𝑖 , 𝑗 = 1, … 𝑛, (3) 

where 𝑁(X𝑖) represent the set of k-nearest neighbors of X𝑖 . The graph Laplacian of the 

data graph is defined as 𝐿 = 𝐷 − 𝑊, where 𝐷 is a diagonal degree matrix whose entries 

are given by D𝑖𝑖 = ∑ W𝑖𝑗𝑗 . Based on two graph regularizers of both data manifold and 

feature manifold, they proposed a novel graph dual regularization non-negative matrix 

factorization, whose objective function  is formulated as 

 J𝑁𝑀𝐹 = ∑ ∑(X𝑖𝑗 − (𝑈𝑉 𝑇)𝑖𝑗)2

𝑀

𝑗=1

𝑁

𝑖=1

+ 𝜆𝑇𝑟(𝑉𝑇𝐿𝑉) + 𝜇𝑇𝑟(𝑈𝑇𝐿𝑈) (4) 

subject to 𝑈 ≥ 0, 𝑉 ≥ 0. 

2.1.3 Others 

    The partitioning-based model, first introduced by Xu et al., (2006), has attracted much 

interest, because of the simplicity of the formulation, and its close relationships with 

other well studied problems, such as spectral clustering and matrix decomposition 

(Banerjee et al.. 2004; Ding et al.. 2005). Specifically, we also infer clusters of rows, 

clusters of columns, in addition to the coherent sub-matrix. The Coupled Two Way 

Clustering (CTWC) algorithm, introduced by Getz et al.. (2003), separately clusters the 

rows and columns at first, and then obtains a stable bi-cluster by iteratively combining 

pairs of row and column clusters. The Interrelated Two Way Clustering (ITWC) method 

proposed by Tang & Zhang, processes the data matrix by initially clustering on one space 

(either row space or column space), and then clustering on the other space within the 

initial clusters (Tang & Zhang 2005). Banerjee et al., (2004) proposed a generalized 

Bregman co-clustering algorithm by posing co-clustering as a matrix approximation 
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problem. In our algorithm, we use matrix approximat ion as a criterion of how smooth the 

reorganized data is. Brameier & Wiuf (2007) presented a co-clustering approach based on 

Self-Organizing Maps (SOMs). SOMs are a probabilistic clustering method that imposes 

a neighborhood structure on the clusters. It combines the center-based clustering of 

standard SOMs with a representative-based clustering. 

Most of the algorithms in the literature have been shown to perform well on small 

datasets in their respective application areas. However, a direct application of these 

methods to large high-dimensional neuro-morphological datasets proved impractical for 

several reasons. First, most clustering methods require the user to specify the number of 

clusters, and this is impractical when performing exploratory data analysis. Second, we 

found that as the population size grows, the computational times increased drastically, 

making interactive analysis impractical. Third, we found that the prior hierarchical 

clustering methods were overly sensitive to outliers and noise in the data. Specification of 

cluster number is not required in our method because the clustering is conducted in a 

multi-scale manner. Our algorithm is able to infer the hierarchical geometry of the row 

and column spaces, and also take into consideration the block structure of the entire data 

matrix simultaneously. The algorithm presented here, and its 64-bit implementation are 

designed to be scalable to large datasets containing large populations of cells (tens of 

thousands of cells or more), limited only by the speed and memory of the computer. 

Moreover, the proposed algorithm uses the diffusion distance (Coifman & Lafon 2006) as 

the distance metric (described further below), making it inherently robust to missing 

values and outliers due to image processing and automated tracing errors. 
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2.3 Dimensionality Reduction 

In real world data mining applications, data dimensionality is usually very high due to 

the amount of available feature measuring ability. In order to handle and study the data 

better, it is very essential to lower the dimensionality of the data so that a compact and 

intrinsic structure is revealed. The dimensionality is of crucial importance especially for 

tasks like classification and clustering. The ability of finding out the intrinsic 

dimensionality and properties is directly limiting the performance of the following 

procedures. In this section, we review the current available dimensionality reduction 

algorithms in a systematic way. Dimensionality reduction algorithms can be classified as 

linear and nonlinear approaches based on the data structure the algorithm is able to 

handle. PCA is the most commonly used linear approach. While there are multiple 

categories of nonlinear approach. Nonlinear approach can be divided into three 

algorithms that preserve global properties, preserve local properties and alignments of 

local properties. There are several representative algorithms from each category that we 

are about to introduce in greater detail. The relationship between those algorithms are 

related to each other and even identical under certain circumstances.  

The problem of dimensionality can be summarized as follows. Assume we have a data 

representation 𝑿 ∈ ℝ𝑛×𝑀 , consisting of n data vectors 𝒙𝑖 , 𝑖 = 1,2,3, … , 𝑛  with 

dimensionality D. Assume further that the data has an intrinsic dimensionality of 𝑑 , 

where 𝑑 ≤ 𝐷 . Dimensionality reduction techniques transform the data X into a new 

dataset Y with dimensionality 𝑑, while retain the fundamental geometry of the original 

dataset. Generally neither the intrinsic dimensionality 𝑑 nor the preserved geometry is 
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known or given for the problem. We briefly describe the algorithm and theory of a few 

popular state of art techniques in the following section. 

2.2.1 Linear Dimensionality Reduction  

Applying linear dimensionality reduction algorithm, the original high dimensional data 

is usually embedded into a lower dimensional space by a linear projection or mapping. 

Among the variety of linear methods, PCA is the most straightforward and robust method 

for such task. It is an unsupervised algorithm requires no input information and 

parameters. 

    PCA, Principal Components Analysis projects a high dimensional data into a lower 

space by preserving as much variances as presented in the original data. PCA finds a set 

of new basis from the original data, with maximal variances along each new basis.  

Embedded data is simply coordination’s in the new basis coordination system. Assume 

the mapping function denoted as M, the goal is to find the mapping function M such that 

it maximize the covariance  𝑀𝑇𝑐𝑜𝑣(𝑿)𝑀 of the mapped data. Notice that 𝑐𝑜𝑣(𝑿) is the 

covariance of the original data 𝑿. Mathematically, it is straightforward that the new basis 

are the principle eigenvectors of the covariance matrix. Therefore, PCA solves the eigen 

system of the covariance of the original data 𝑿 

 𝑐𝑜𝑣(𝑿)𝑀 =  𝜆𝑀. (5) 

The eigen problem is solved for the d principal eigen values 𝜆. The low-dimensional data 

representations 𝑦𝑖  of the data points 𝑥𝑖 are computed by mapping them onto the linear 

basis M, i.e., 𝒀 = (𝑿 − 𝑿̃)𝑀 .  
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    PCA has been specifically applied in multiple domain where dimensionality reduction 

is required. However, it can be time consuming since that the covariance matrix is 

proportional to the data dimension. Beside, solving the eigen problem is time consuming 

too. Therefore, in datasets where n < D, instead of computing the eigen system of the 

covariance system, we use the Euclidean distance matrix (𝑿 −  𝑿̃)(𝑿 −  𝑿̃)𝑻  as an 

alternative. 

2.2.2 Nonlinear Dimensionality Reduction 

Among the nonlinear dimensionality reduction methods, there are mainly three 

categories based on the preservation of global or local relativity and connectivity. There 

are methods that preserve the global properties and connectivity of the original data in the 

embedded lower dimensional space. The most popular and often used global nonlinear 

techniques include multidimensional scaling (MDS), Isomap, and maximum variance 

unfolding (MVU), kernel PCA, and multilayer autoencoders. There are methods that 

preserve the local properties and connectivity of the original data in the embedded lower 

dimensional space. Local nonlinear techniques that are deployed in a lot of applications 

including local linear embedding (LLE), Laplacian eigen maps, Hessian local linear 

embedding (Hessian LLE), and local tangent space analysis (LTSA). And there are 

methods that preserve global alignment with a mixture of linear models. The two most 

famous global alignment techniques are local linear coordination (LLC), and manifold 

charting. We describe one technique from each subtype in the following paragraphs. 
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ISOMAP 

    Isomap is a dimensionality reduction method that preserves the global relativity and 

connectivity of the original data.  

    In isomap, the distance metric used is the geodesic distance between the data points 

𝑥𝑖 ,(𝑖 = 1,2,3, … , 𝑛). Geodesic distance is the distance between two points measured over 

the manifold. It is computed by constructing a neighborhood graph G, in which each 

every data point serves as a node, and the edges between nodes are only connected if it is 

within the k  nearest neighbors 𝑥𝑖𝑗, (𝑗 = 1,2,3, … , 𝑛)  in the dataset X. Unlike in 

multidimensional scaling or similar techniques, where the Euclidean distance is applied, 

the density and distribution of the neighborhood is not taken into consideration. When 

data points lies in a Swiss roll like configuration, the two data points that are considered 

neighbors based on the Euclidean distance is not actually neighbors considering the local 

connectivity. In isomap, their distance over the manifold is much larger than appears. 

isomap preserves the pairwise locality by using geodes ic or curvilinear distances between 

data points.  

    The geodesic distance between two points are estimated by using the shortest path 

found in the constructed graph, Dijkstra’s is a well-known algorithm for solving such 

problems with elegancy and simplic ity. Thus, the isomap computes a pairwise geodesic 

distance matrix between all data points from the original data matrix X. After deriving the 

geodesic matrix, the embedding is achieved by applying multidimensional scaling on the 

resulting distance matrix. Therefore, the lower dimensional data 𝑦𝑖  is mapped using MDS 

on 𝑥𝑖 based on the geodesic distance, instead of the Euclidean distance. 
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    Although Isomap has been successfully applied in variety of methods and applications,  

especially data visualization and bio-medical experiments, yet there are a few drawbacks 

with its topological instability. In building the neighborhood graph, there may be 

erroneous connections between data points which can lead to impact to the performance 

of the algorithm. When the manifold is nonconvex or “hole” formed, the Isomap might 

fail to extract the intricacy underling structure of the data. However, there are methods 

been proposed dealing with this problem. An example for overcoming the short circuiting 

is to removing data points with large total flows in the shortest path algorithm. Also it is 

compromised by removing the nearest neighbors that violate local linearity of the 

neighborhood graph. 

Local Linear Embedding (LLE) 

    Local Linear Embedding (LLE) is a nonlinear dimensionality reduction method that 

preserves the local relativity and connectivity of the original data in the lower 

dimensional space.  

    Similarly, LLE derives data connectivity through constructing a neighborhood graph. 

The local properties of a data point 𝑥𝑖 in the manifold is described by forming the data 

point as a linear combination 𝑊𝑖  (the so-called reconstruction weights) of its k  nearest 

neighbors 𝑥𝑖𝑗  . The assumption for locality preserving is : if the low-dimensional data 

representation preserves the local geometry of the manifold, the reconstruction weights 

𝑊𝑖  that reconstruct data point 𝑥𝑖  from its neighbors in the high-dimensional data 

representation also reconstruct data point 𝑦𝑖  from its neighbors in the low-dimensional 
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data representation. Therefore, the objective is formulated as to minimize the cost 

function 

ϕ(Y) =  ∑(𝑦𝑖 − ∑ 𝑤𝑖𝑗𝑦𝑖𝑗

𝑘

𝑗=1
)2.

𝑖

        (6) 

For finding the d-dimensional data representation Y. It can be shown that the coordinates 

of the low dimensional representations 𝑦𝑖  that minimize this cost function can be found 

by computing the eigenvectors corresponding to the smallest d nonzero eigenvalues of 

the inner product (I −W)T (I −W). In this formula, I is the n × n identity matrix. 

    It also implies that the reconstruction weight of the data point are invariant to 

translation, rotation and rescaling. Because of the invariance to these transformations, any 

linear mapping of the hyperplane to a space of lower dimensionality preserves the 

reconstruction weights in the space of lower dimensionality. Hence, LLE fits a 

hyperplane through the data point 𝑥𝑖 and its nearest neighbors, thereby assuming that the 

manifold is locally linear.  

The popularity of LLE has led to the proposal of linear variants of the algorithm, and 

to successful applications to, e.g., super resolution and sound source localization. 

However, there also exist experimental studies that report weak performance of LLE. A 

possible explanation lies in the difficulties that LLE has when confronted with manifolds 

that contains holes. In addition, LLE tends to collapse large portions of the data onto a 

single point in cases where the target dimensionality is too low. 

Compared to Isomap, LLE attempts to preserve solely local properties of the data. As a 

result, LLE is less sensitive to short-circuiting than Isomap, because only a small number 
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of properties are affected if short-circuiting occurs. Furthermore, the preservation of local 

properties allows for successful embedding of nonconvex manifolds. In LLE, the local 

properties of the data manifold are constructed by writing the data points as a linear 

combination of their nearest neighbors. In the low-dimensional representation of the data, 

LLE attempts to retain the reconstruction weights in the linear combinations as good as 

possible (Roweis, et al., 2000). 

Local Linear Coordination (LLC) 

    Locally Linear Coordination (LLC) is dimensionality reduction method that preserve 

the global alignments with a mixture of linear models. The procedure of LLC consists 

two stages, the mixture stage and the alignment stage. In the mixture stage, LLC 

computes a mixture of local linear models in the original data space with methods like 

EM. While in the alignment stage, the local modes are aligned in order to obtain the low 

dimensional data representation using a variant of LLE. 

LLC first constructs a Mixture of m Factor Analyzers (MoFA) using the EM algorithm. 

Alternatively, a Mixture of Probabilistic PCA models (MoPPCA) model could be 

employed. The local linear models in the mixture output m data representations 𝑧𝑖𝑗 and 

their corresponding responsibilities  𝑟𝑖𝑗 , where 𝑗 = 1,2,3, … , 𝑚, for every data point  𝑥𝑖 . 

The responsibilities 𝑟𝑖𝑗 describe to what extent data point 𝑥𝑖 corresponds to the model j, 

they satisfy∑ 𝑟𝑖𝑗𝑗 = 1 . Using the local models and the corresponding responsibilities, 

responsibility-weighted data representations 𝑢𝑖𝑗  = 𝑟𝑖𝑗𝑧𝑖𝑗  are computed. The 

responsibility-weighted data representations 𝑢𝑖𝑗 are stored in an n × m D block matrix U.  

The alignment of the local models is performed based on U and on a matrix M that is 
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given by M = (I −W)T (I −W). Herein, the matrix W contains the reconstruction weights 

computed by LLE, and I denotes the n × n identity matrix. LLC aligns the local models 

by solving the generalized eigen problem 

 𝑨𝑣 =  𝜆𝑩𝑣 (7) 

for the d smallest nonzero eigenvalues. In the equation, A is the inner product of MTU and 

B is the inner product of U. The d eigenvectors 𝑣𝑖  form a matrix L, that can be shown to 

define a linear mapping from the responsibility-weighted data representation U to the 

underlying low-dimensional data representation Y. The low-dimensional data 

representation is thus obtained by computing Y = UL. 

2.4 Sparse Regularization  

        In this dissertation, in order to achieve an automatic way of discovering the 

significant alterations, we propose a comparative analysis model based on an adaptation 

of the sparse group LASSO algorithm (Ming et al., 2006, Simon et al., 2013). The group 

lasso was first proposed by Ming et al., (2006). In their work, they considered the 

problem of selecting grouped variables (factors) for accurate prediction in regression. 

Such a problem arises naturally in many practical situations with the multifactor analysis-

of-variance problem as the most important and well-known example. Instead of selecting 

factors by stepwise backward elimination, they focused on the accuracy of estimation and 

considered extensions of the LASSO, the LARS algorithm (Efron, et al., 2004) and the 

non-negative garrote for factor selection (Yuan, 2007). For high-dimensional supervised 

learning problems, using problem-specific assumptions can sometimes lead to greater 

accuracy. Simon et al. , (2013) presented a sparse group lasso algorithm in their work. 

They introduced a regularized model for linear regression with ℓ1 and ℓ2 penalties and 
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showed that it has the desired properties of group-wise and within-group sparsity. They 

proposed the algorithm to fit the model via an accelerated generalized gradient descent 

method, and extended the model and algorithm to convex loss functions. Our 

comparative interpretation algorithm adopts the sparse group LASSO, using a pre defined 

group of L-measure features, and the output yields a ranking of the significant feature 

groups and their significance scores. In other words, it gives a robust ranking of the 

alterations in terms of the feature groups. 

   As noted above, the practical case when batches (or a series) of images are being 

acquired under a common imaging protocol, typically as part of a larger ongoing study, 

represent an important use case for comparative arbor analytics. The proposed method is 

readily usable in a “batch learning” style in which mathematical models extracted from a 

representative subset of the data can be reused for processing datasets from similar 

experiments and applications. This idea is not new, and similar concepts using an 

unsupervised learned model for faster processing was proposed earlier. For example, in 

the exploratory environment learning application (Amershi et al., 2009), they presented a 

data based user modeling framework that uses both unsupervised and supervised 

classification approaches to build student models for exploratory learning environments. 

They applied the framework to build student models for two different learning 

environments and using two different data sources (logged interface and eye-tracking 

data). Despite some limitations due to the size of datasets, they have provided initial 

evidence that the framework can automatically identify meaningful student interaction 

behaviors and can be used to build user models for the online classification of new 

student behaviors online. Kyriakopoulou et al., (2006) proposed a text classification 
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model using clustering in their work. They addressed the problem of learning to classify 

texts by exploiting information derived from both training and testing sets. To 

accomplish this, clustering is used as a complementary step to text classification, and is 

applied not only to the training set but also to the testing set.  
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Chapter 3 Diffusion Embedding and Diffusion Distance 

    In practical applications, it is usually important and necessary to analyzing the 

underlying geometric structure of the given dataset, as well as the local and global 

correlation between data points. Given a data matrix 𝑿 ∈ ℝ𝑚×𝑛,say the rows of which 

are observations, and the columns of which are variables (features), the task of 

discovering data structure and correlation is becoming extremely difficult and unreliable 

in high dimensional space using conventional methods. Therefore, it is essential to reduce 

the dimensionality of the data, and represent the data in another space while keeping the 

relative structure of the dataset. 

    In traditional methods, the correlation between data points is often measured by a 

similarity/distance function. For example, the distance described in Euclidean space 

 𝑑(𝒙𝑖 ,𝒙𝑗) = ‖𝒙𝑖 − 𝒙𝑗‖
2

= √∑ (𝑥𝑖𝑧 − 𝑥𝑗𝑧)2
𝑛

𝑧=1

2

. (8) 

However, as the dimensionality increases, it is unreliable to capture the connectivity 

between data points. The global structure constructed is highly biased by the high 

dimensionality. Besides, the distance function is sensitive to noise given the correlation is 

computed between single pair of data points. 

    In this dissertation, we propose a new method of reducing the data dimensionality 

using the diffusion theory. In our method, we represent our data in the embedded lower 

dimensional space. The lower dimensional space is achieved by sampling a forward 

Markov chain. The Markov chain is achieved from a random walk field constructed 
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based on a connected graph. We first construct a connected graph on the datasets, the 

vertices in which represents data points, and the edges in which represent affinities 

between data points. The second step is to construct a probability field from the 

connected graph. The probability of walking from one data point to another is defined as 

the affinity between the two points normalized by the local volume (density). This 

random probability field satisfies two conditions: static and reversible, thus we can 

construct a Markov chain from it. Running forward the chain with different time steps 

yields multi-scales analysis on the original dataset (will be described further). 

Mathematically, this leads to the graph Laplacian, and the computation can be done using 

spectral analysis. The diffusion distance therefore can be defined both in the probability 

field as well as in the embedded lower dimensional space. The distances computed this 

way run over the entire dataset with considering all connections, therefore, it is highly 

robust to random noises appear in the dataset.  

3.1 Graph and Sparse Affinity 

    Graphs can be used to model many types of relations and processes in physical, 

biological, social and information systems. It is a mathematical structure used to model 

pair wise relation between objects. A weighted graph is composed of vertices and edges, 

𝑮(𝑽, 𝑬),  where the set of vertices 𝑽  represents objects, while the set of edges 𝑬 

represents affinity between objects. In an undirected graph, the edge between two objects 

has no orientation. In other words, 𝑒(𝑎, 𝑏) = 𝑒(𝑏, 𝑎). The graph captures both the local 

connectivity and the global activity of the network. 

    In our method, we construct a graph network on the data set. Take 𝑿 ∈ ℝ𝑚×𝑛  as an 

example, each observation 𝒙𝑖is treated as a vertex in the graph, the edges between 
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vertices 𝒙𝑖 and 𝒙𝑗 is assigned as the affinity value computed using an affinity kernel. The 

graph is described and stored as a matrix 𝑮 ∈ ℝ𝑚×𝑚, the entry 𝑔(𝑖, 𝑗) stores the edge 

𝑒(𝒙𝑖 , 𝒙𝑗). The affinity kernel 𝑘(𝒙𝑖 , 𝒙𝑗): 𝒙 × 𝒙
∆
→ ℝ has to satisfies two conditions: 

 𝑘 is symmetric: 𝑘(𝒙𝑖 , 𝒙𝑗) = 𝑘(𝒙𝑗, 𝒙𝑖), 

 𝑘 is positivity preserving: 𝑘(𝒙𝑗, 𝒙𝑖) ≥ 0. 

The selection of affinity kernel can be tricky. In most conditions, the affinity kernel 

should be able to capture the connectivity both locally and globally. But in our case, the 

diffusion theory applied later requires the local information to be preserved as much as 

possible, while the unreliable global information can be discarded accordingly. Therefore, 

it is essential to select affinity kernels that enhance the nearest neighbors’ connectivity. In 

our case, we choose sparse affinity kernel, which resulted in affinity values only among 

neighboring data points, the affinity between far away data points are zeros. This yields a 

sparse graph. It is schematically illustrated in Figure 1. In Figure 1(a), the graph keeps 

only neighboring points connected, and it yields sub-graphs already without further 

analysis. While in Figure 1(b), the graph keeps connectivity between all data points, 

when most of the weight is biased due to high dimensionality. The sparse affinity kernel 

is a modification of the Gaussian kernel 

 𝑘(𝒙𝑖 , 𝒙𝑗) = 𝑒−‖𝒙𝑖−𝒙𝑗‖
𝛼

𝜀⁄
. (9) 

Parameter α  and ε  control the decaying speed and scale of affinity values. In another 

word, the two parameters define how sparse the affinity matrix (the graph) is. If the 

parameter α and ε are carefully selected, the affinity matrix will achieve sparsely for the 

given dataset. The main purpose of using the sparse affinity is to preserve and emphasize  
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Figure 1. Constructed graph using different affinity criterions. The left graph is constructed 

by sparse affinity, only neighbors are maintained for further analysis.  The right 

graph is constructed by conventional affinity function, it is fully connected. 

the local information without bias. The global information will be discovered by further 

diffusion procedure. 

3.2 Random Walk Field 

Graph based random walk is a random walk on a weighted graph, where at each step 

the location jumps to another vertex according to some probability distribution associated 

with the edge weight. In a simple random walk, the location can only jump to 

neighboring vertices of the graph.  

Before introducing the transition (jump) probability distribution, there are a few 

important concepts to be defined. Assume the graph is constructed as described above, 

the edge weights between data points are assigned with the affinities. The weights are 

positively related to the similarity between data points. The closer data points are in the 

variable space, the higher the weights are. If a data point 𝒙𝑖  is close to many other data 

points in the neighborhood, the sum of the weights between this data point and other data 

points ∑ 𝑘(𝒙𝑖 , 𝒙𝑗)
𝑗∈ℕ
𝑗≠𝑖  is high in general. Thus brings us to the definition of local density 
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 𝑑(𝒙𝑖) =  ∑ 𝑘(𝒙𝑖 ,𝒙𝑗),

𝑗∈ℕ

𝑗≠𝑖

 (10) 

where ℕ is the connected neighborhood. The transition probability is not only related to 

the affinity between the vertices, but also related to local density of the data points. Thus 

we define the transition probability as a function of 

 𝑝(𝒙𝑖 , 𝒙𝑗) =
𝑘(𝒙𝑖 , 𝒙𝑗)

𝑑(𝒙𝑖)
. (11) 

An important fact of the transition probability is that it satisfies 

 ∑ 𝑝(𝒙𝑖 ,𝒙𝑗)

𝑗∈ℕ

𝑗≠𝑖

= 1. (12) 

Based on the above equations, we define a transition matrix 𝑴 on the random walk field, 

the entries 𝑚𝑖,𝑗  is the transition probability 𝑝(𝒙𝑖 ,𝒙𝑗). Mathematically, The transition 

matrix is computed by 

 𝑴 = 𝑫−1𝑮, (13) 

where 𝑫 is a diagonal matrix with elements 𝑑(𝒙𝑖), and is the graph affinity matrix. 

    The above transition matrix defines the random walk on the dataset within one time 

step. If we run the chain forward in 𝑡 time points, equally take the power of 𝑴, 𝑴𝒕 = 𝑴𝒕, 

it allows us to view the dataset in a different scales (large scales reveals the global 

geometry, while small scales reveals the local connectivity). From a data analysis point of 

view, large scales infer clusters with larger radius, and small scales infer cluster 

information with smaller radius. This is illustrated by the following example in Figure 2. 
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    We generate a dataset of 1200 data points. The 1200 data points are randomly sampled 

from three 2-D Gaussian distribution. The centroids of the three distributions are 

{1, 0.8}𝑇 , {1, −0.8}𝑇, and {−1.5, 0}𝑇 . The covariance matrix for all three distributions is 

the unitary matrix. We form the transition matrix following the procedures above, and 

compute the power of the transition matrix. In the experiment, we run different time steps 

(different scales), three of them are shown in the figure, name ly, 𝑡 = 8, 𝑡 = 64, and 

𝑡 = 1024. In the figure, the plot on the left side is the scatter plot of the data points 

coordinates, it is color coded by the transition probability at time 𝑡 from one fixed point 

(sampled from the first distribution) to others. The matrix shown on the right hand side 

are the transition matrix at time 𝑡. The diffusion process at different time point reveals 

different cluster information as can been inferred from the figure. At 𝑡 = 8, the diffusion 

process indicates a cluster of 3 with significant and clear boundary regarding the 

transition probability. At 𝑡 = 64, the first two distributions are merged into one cluster, 

which grouping the dataset in a larger scale. While at 𝑡 = 1024, the entire data set are 

integrated into one group. Therefore, the group information can be clearly identified with 

delicate selection of transition scales adapted to the data, as well as to the application. In 

the figure below, we show the transition matrix and diffusion process at different time 𝑡. 

On the left side, data sampled from three 2-D Gaussian distributions are plotted with their 

spatial coordinates. The data points are color coded by the transition probability from a 

fixed point. On the right side are the transition matrices at time 𝑡 = 8,  𝑡 = 64, and 𝑡 =

1024 respectively. 
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Figure 2. Transition matrix and diffusion process at different time 𝒕. On the left side, data 
sampled from three 2-D Gaussian distributions are plotted with their spatial 
coordinates. Data points are color coded by the transition probability.  
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3.3 Markov Chain and Spectral Analysis  

A Markov chain (discrete-time Markov chain or DTMC), is a mathematical system that 

undergoes transitions from one state to another on a state space. It is a random 

process usually characterized as memory less: the next state depends only on the current 

state and not on the sequence of events that preceded it. A discrete-time random process 

involves a system which is in a certain state at each step, with the state changing 

randomly between steps. The steps are often thought of as moments in time, but they can 

equally well refer to physical distance or any other discrete measurement. Formally, the 

steps are the integers or natural numbers, and the random process is a mapping of these to 

states. The Markov property states that the conditional probability distribution for the 

system at the next step (and in fact at all future steps) depends only on the current state of 

the system, and not additionally on the state of the system at previous steps.  

The random process we define above in previous section leads us to the Markov 

process given it satisfies the critical mathematical properties: 

 The random walk satisfy the stationary property 

 𝑝(𝒙) =
𝑑(𝒙)

∑ 𝑑(𝒚)𝒚∈𝑿
. (14) 

 The transition is reversible 

 𝑝(𝒙)𝑝(𝒙, 𝒚) = 𝑝(𝒚)𝑝(𝒚, 𝒙). (15) 

 The random walk process is ergodic given the dataset 𝑿 is finite. 

The above construction of the Markov chain naturally leads us to the spectral analysis  

(analysis based on the Eigen system). Matrix 𝑴 =  𝑫−1𝑮 is not necessarily a symmetric 

http://en.wikipedia.org/wiki/State_space
http://en.wikipedia.org/wiki/Integers
http://en.wikipedia.org/wiki/Conditional_probability_distribution


34 

 

matrix, but 𝑮 is symmetric since it’s the affinity between data points and 𝑫−1  is non-

singular diagonal matrix. Therefore we have  𝑫−
1

2𝑮𝑫
1

2 is symmetric. Then we have 𝑴̌ =

𝑫−1𝑮 = 𝑫−
1

2(𝑫−
1

2𝑮𝑫−
1

2)𝑫
1

2 , it is easily seen that 𝑴̌ and 𝑫−
1

2𝑮𝑫−
1

2 share the same eigen 

values and eigen vectors. Take the eigen values {𝜆1, 𝜆2, 𝜆3, … , 𝜆𝑚} and the eigen vectors 

{𝜓1, 𝜓2, 𝜓3, … , 𝜓𝑚}. We can define the diffusion distance and diffusion embedding in the 

next section. 

3.4 Diffusion Distance  and Diffusion Embedding 

    In Section 3.2 and 3.3, we defined the random walk and Markov chain on the data. 

In this section, we will introduce the distance measure of the original data in the 

embedded diffusion space and in the probability field. We interpret the diffusion distance 

in the probability field, while the computation of distance and embedding will be given 

based on the spectral analysis. 

Within one time step, the probability of transition from 𝒙𝑖 to 𝒙𝑗 is given by 𝑝(𝒙𝑖 , 𝒙𝒋).  

The probability describes the similarity of the data points in some extent. The fact of 

random noise could contribute a lot to such a single link measurement. Therefore, in our 

process, we define the similarity measurement not only concerning the pair of data points 

interested. We also consider the neighborhood connection of the two points. In another 

word, the connection from 𝒙𝑖 to 𝒚, where 𝒚𝜖ℕ𝒙𝑖(𝒚 is a data point in 𝒙𝑖  neighborhood), 

and the connection from 𝒚 to 𝒙𝑖  both contribute to the similarity between 𝒙𝑖  and 𝒙𝑗 .  

Hence, the likelihood of walking from 𝒙𝑖 to 𝒙𝑗 within one time step is defined as  

        𝑑(𝒙𝑖 , 𝒙𝒋) = ∑ ‖𝑝(𝒙𝑖 , 𝒚) − 𝑝(𝒚, 𝒙𝑗 )‖
𝛽

𝒚𝜖ℕ𝒙𝑖

𝒚≠𝒙𝑖
. (16) 
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We usually choose β = 2 to be the L-2 normal.  In advance, we also define the diffusion 

distance over multiple time steps,  

 𝑑𝑡(𝒙𝑖 , 𝒙𝒋) = ∑ ‖𝑝𝑡(𝒙𝑖 ,𝒚) − 𝑝𝑡(𝒚,𝒙𝑗 )‖
𝛽

𝒚𝜖ℕ𝒙𝑖

𝒚≠𝒙𝑖

 (17) 

by taking the eigen values and eigen vectors, we map the original data point into the 

spectral space φt: Ω
∆
→ ℝn , 

 𝜑𝑡(𝑥) = {𝜆1
𝑡𝜓1(𝑥),  𝜆2

𝑡 𝜓2(𝑥),  𝜆3
𝑡 𝜓3(𝑥), … , 𝜆𝑛

𝑡 𝜓𝑛(𝑥)}. (18) 

The eigen values are derived from the Markov process, therefore it is known to be ‖λi ‖ ≤

1. In this process, we can choose the dimensionality of the embedded space as where the 

eigen value drop significantly (say 𝑠). The embedded diffusion space is then defines as 

 Ψ𝑡(𝑿) ≜ (

𝜆1
𝑡𝜓1(𝑥)

𝜆2
𝑡 𝜓2(𝑥)

⋮
𝜆𝑠

𝑡𝜓𝑠(𝑥)

). (19) 

Further we define the diffusion distance in the spectral space as 

 𝑑𝑡(𝒙𝑖, 𝒙𝒋) = ∑ 𝜆𝑙
𝑡‖𝜑𝑡(𝒙𝑖) − 𝜑𝑡(𝒙𝑗) ‖

𝛽𝑙≥0
. (20) 

 

3.5 Examples 

To demonstrate the ability of the diffusion embedding in dimensionality reduction and 

capturing global information among dataset, we created a synthetic dataset as well as a 

real word dataset.  We also visualize the embedding results in the diffused space. The 

visualization is conducted on a 3-D embedded space for simplicity. 
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The first dataset created is a matrix with 256 rows and 128 columns. The entries of the 

matrix is a realization of the function 𝑀𝑖,𝑗 =
1

2
(1 + sin (

𝑖+𝑗+2𝑖𝑗

2
)) . The matrix is 

embedded into the diffusion space of both its row space and column space. The results 

are as shown in Figure 3. The embedded data reveals clear geometric structure of the 

original dataset, while the same interpreting is not possible in the original row and 

columns spaces. Though the embedded data does not appear a linear separable structure, 

it is very straightforward and manageable to use any simple kernel on top of it in order to 

separate the data into adapted groups (clusters) according to the application at hand. 

 

Figure 3. Embedding of a data matrix with 128*256 entries. The plot on the left is the 

embedding from the column space, the plot on the right side is the embedding from 
the row space. 

We also applied the diffusion embedding on another data set with 2,418×567 entries. 

The data is created by the Minnesota Multiphase Psychological Inventory, which is the 

most widely used standardized psychological test. It is based on a survey with 567 

relating questions among 2,418 people sampled. The data is only embedded from the 

observation space into the diffusion space. In the embedding space, the data is gathered in 

a relatively dense manner, but the boundary between different groups is easy to identify 
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using any classifier. After construct the probability field and the Markov chain, the result 

is finally achieved at 𝑡 = 3 in Figure 4.  

 

Figure 4. Embedding of a data matrix with 2,428×567 entries. The plot on the left is the 

embedding of the 2428 data points, the plot on the right side is the labeled 

embedding. 

    In both of the examples shown above, we choose the sparse affinity introduced  

(𝑘(𝒙𝑖 , 𝒙𝑗) = 𝑒−‖𝒙𝑖−𝒙𝑗‖
𝛼

𝜀⁄ , 𝛼 = 2, 𝜀 = 0.7). For the computation of diffusion distance, we 

chose to use L-2 norm (𝑑𝑡(𝒙𝑖, 𝒙𝒋) = ∑ 𝜆𝑙
𝑡‖𝜑𝑡(𝒙𝑖) − 𝜑𝑡(𝒙𝑗) ‖

𝛽𝑙≥0 , 𝛽 = 2). 
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Chapter 4 Hierarchical Partition Tree and Orthonormal Basis 

In the area of data organizing, machine learning and pattern recognition, there are 

many ways to organize a dataset into a meaningful structure. In this chapter, we introduce 

a way of organizing a dataset into a hierarchical partition tree. The basic concepts about 

partition and hierarchical tree will be given later in this chapter. There are many formats 

of hierarchical tree can be constructed from a dataset. We introduce a classical binary tree 

adapted symmetrical data structures and flexible trees adapt to general data types as well.  

The goal of constructing a hierarchical partition tree on a dataset is to extract the group 

(cluster) structure in multiple levels and multiple scales, yet to have a good sight of how 

good the derived structure is. Therefore, we also introduce a set of orthogonal basis 

derived from the hierarchical partition tree. The orthogonal basis can be used for 

expansion of the original dataset, further being used as a criterion of measuring the 

smoothness of the original dataset. 

This chapter is organized as follows: In Section 4.1, we introduce the basic concepts 

notations about partition and hierarchical tree. A brief introduction and comparison of 

binary tree and flexible tree is given in Section 4.2. In Section 4.3, we give several 

algorithms of how to build a hierarchical tree in both bottom up and top down procedures. 

An induction of an orthogonal basis and its theoretical support is given in Section 4.4. 

Finally, a brief summary is presented in Section 4.5. 
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4.1 Hierarchical Partition Tree  

4.1.1 Basic Concepts 

Partition is a division of a set. A partition of a set 𝑿 is a set of non-empty subsets, such 

that each element 𝒙 is in one subset and only in one subset. OR 𝑿 is a disjoint union of 

the subsets. A set of subsets P is a partition of set 𝑿 only if it satisfy the following 

conditions: 

 P does not contain any empty set, ∅ ∉ 𝑃. 

 The union of the sets in P is equal to 𝑿,⋃ 𝑝𝑖𝑝𝑖∈𝑃 = 𝑿. 

 The intersection of any distinct sets in P is empty, if  𝑝𝑖 , 𝑝𝑗 ∈ 𝑃, 𝑎𝑛𝑑 𝑝𝑖 ≠

𝑝𝑗 , 𝑡ℎ𝑒𝑛 𝑝𝑖 ∩ 𝑝𝑗 = ∅. 

A tree structure or tree diagram is a way of representing the hierarchical nature of 

a structure in a graphical form. It is named a "tree structure" because the 

classic representation resembles a tree, even though the chart is generally upside down 

compared to an actual tree, with the "root" at the top and the "leaves" at the bottom. A 

hierarchical tree is a tree structure consists of multiple levels. Each level is consisting of 

elements called “node”. The bottom levels of the tree are the leaves and the top level of 

the tree is the root. All nodes in the internal level are connected to its upper and lower 

level through its children (lower level) and parent (upper level). 

4.1.2 Hierarchical Partition Tree 

Hierarchical partition tree is a crucial structure of representing and organizing data in 

our algorithms. In this section, we give the details of the representation of a hierarchical 

partition tree and its construction. In this tree structure, if each level is treated as a set, 

http://en.wikipedia.org/wiki/Hierarchy
http://en.wikipedia.org/wiki/Structure
http://en.wikipedia.org/wiki/Tree_structure#Representing_trees
http://en.wikipedia.org/wiki/Tree
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then each level is a partition of its lower level, as well as the original data set. The 

partition of each level is divided by varies of clustering algorithms, and the correlation 

between data points are determined in the embedded diffusion space as described earlier.  

A schematic illustration of a hierarchical partition tree is as shown in Figure 5. 

 

Figure 5. Hierarchical partition tree model 

Assume again, a data set 𝑿 ∈ ℝ𝑚×𝑛 is given, we aim to organize the dataset in its 

feature space, namely we treat each of the 𝒙𝑖 ∈ ℝ𝑛, 𝑖 = 1,2,3, … , 𝑚 as a data point. Say 

the final tree structure includes 𝐿 levels. Thus we can define the bottom level with  𝑚 

elements in the original set (𝑚 leaves in the bottom level), denoted as 

 𝑿 =  𝑿𝐿 = ⋃ 𝒙𝑖

𝑚

𝑖=1

= ⋃ 𝒏𝐿
𝑖

𝑚

𝑖=1

. (21) 

In this level, 𝒏𝐿
𝑖 =  𝒙𝑖 . The partition in this level is consists of m distinct subsets, each of 

the subset contains a single element from the original data set. To construct the (𝐿 −

1) 𝑡ℎ  level (The second to the bottom level), we apply a certain clustering algorithm 

which will be given in later sections, so that the 𝑚 nodes will be assigned in to 𝐾𝐿−1 
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groups (𝐾𝐿−1denotes the number of nodes in the (𝐿 − 1)𝑡ℎ level). Therefore, the (𝐿 −

1) 𝑡ℎ level is a partition of the 𝐿𝑡ℎ  level. We denote the level as 

 𝑿 ≜  𝑿𝐿−1 = ⋃ 𝒏𝐿−1
𝑖 .

𝐾𝐿−1

𝑖=1

 (22) 

Similar but slightly different, 𝒏𝐿
𝑖  is a function of the node’s children,  𝒏𝐿

𝑖 =

𝑓(𝒏𝐿−1
1, 𝒏𝐿−1

2, … , 𝒏𝐿−1
𝐽), where 𝐽 is the size of the current node (number of children). 

The selection of clustering algorithm and the function 𝑓 = (. ) can be various according 

to different dataset and applications, we will discuss later in greater details. 

The same schema is used for building the (𝑙 − 1)𝑡ℎ  level from the 𝑙𝑡ℎ  level. We 

clustering the 𝐾𝑙−1  elements into 𝐾𝑙  groups, each nodes are represented as  𝒏𝑙
𝑖 =

𝑓(𝒏𝑙−1
1, 𝒏𝑙−1

2, … , 𝒏𝑙−1
𝐽), and the partition is denoted as 

 𝑿 ≜  𝑿𝑙−1 = ⋃ 𝒏𝑙−1
𝑖 .

𝐾𝑙−1

𝑖=1

 (23) 

The procedure is continued until there is only one group left, in another words, we have 

reach the root of tree. In summary the entire procedure can be denoted as 

 

𝑿 =  𝑿𝐿 = ⋃ 𝒙𝑖

𝑚

𝑖=1

≜  𝑿𝐿−1 = ⋃ 𝒏𝐿−1
𝑖

𝐾𝐿−1

𝑖=1

𝑿 ≜  𝑿𝑙−1 = ⋃ 𝒏𝑙−1
𝑖

𝐾𝑙−1

𝑖=1

 

≜ ⋯ 𝑿 ≜  𝑿1 = ⋃ 𝒏1
𝑖

𝐾1

𝑖=1

. 

(24) 
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4.2 Tree Construction 

In the bottom-up approach, we describe the details of each step for constructing a 

flexible hierarchical tree. The hierarchical clustering we used in our method is based on 

the classic k-means algorithm. We modify the algorithm in different aspect to adapt to the 

current scenario. The algorithm is given and described as follows: 

In the first step of this algorithm, each row of 𝑋 is treated as a multivariate data point 

with dimension  𝑚. We assume that the structure of these data points can be modeled by 

a hierarchical partition tree denoted 𝛵𝑟 = ⋃  𝑇𝑟
𝑙𝐿

𝑙=1 , where  𝑇𝑟
𝑙 is the 𝑙th level of the tree. 

This tree is constructed as follows. The lowest level, denoted  𝑇𝑟
𝐿 , is composed of 𝑛 

elements from the data matrix 𝑋. We group these 𝑛 elements from  𝑇𝑟
𝐿 into 𝐾𝐿−1

𝑟  clusters. 

For this, the standard k-means algorithm is modified as follows: 

a. The number of clusters at each level is chosen automatically as a fixed fraction of 

the number of items to be clustered. For the experiments reported here, we used 1/5 as the 

default setting, and this was chosen empirically. The intuition behind this setting is that 

we expect to cluster elements into groups that contain roughly 1/5 of the data points at 

each level. The user of this algorithm can adjust this setting based on this intuition. 

b. We impose a constraint on the maximum cluster radii of the k-means algorithm to 

promote the formation of homogeneous clusters. The cluster radii are constrained to be 

less than a threshold. For the experiments reported here, we used a threshold value of 1.5 

times the average distance of the intra-cluster data points to the cluster centroids. 

Increasing this setting beyond 1.5 can be expected to result in larger clusters being 

formed, and/or potential outliers being included within the clusters. If there are data 
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points that exceed all of the cluster radii constraints, k-means clustering is performed 

with a larger number of initial partitions. The data are presented to the k-means algorithm 

in a consistent manner, in order to minimize the variability in the output due to the 

manner in which the data points are ordered. With this in mind, the cluster centroids for 

the k-means algorithm are initialized as follows. At each level at which the k-means 

algorithm is applied, we use a standard single-link agglomerative hierarchical clustering 

algorithm with a Euclidean distance measure to organize the data points into an ordered 

list in which similar data points (in the sense of the Euclidean distance measure) are 

consistently placed closer to each other. The number of cluster centroids for the k-means 

algorithm is known at each level as described above, and these cluster centroids are 

sampled uniformly from this ordered list of data points. One practical concern with large 

datasets is the time required to perform the hierarchical clustering. With this in mind, we 

split large datasets (containing more than 10,000 points) into several parts, with 2,000 

data points per part, and sample evenly across these parts. 

c. The clustering is driven by the diffusion distance metric instead of the traditional 

Euclidean distance measure (Coifman & Lafon 2006; Coifman & Maggioni 2006). In 

computing the diffusion distances, different 𝑡  values are used at different levels, 

reflecting the fact that clustering is conducted at different scales. The scale of 𝑡 is set 

through a fraction 𝜀 of similarity values such that 𝑆𝑖,𝑗 =  𝑆𝑗,𝑖 = 𝑒− ‖𝒙𝑖−𝒙𝑗‖
2

/𝜀, where 𝜀 is 

initialized to 1 √2⁄  and scaled up by √2 for each higher level.  

With this initial clustering, the centroids of the 𝐾𝐿−1
𝑟  clusters constitute the  𝑇𝑟

𝐿−1 level 

of the tree. We repeat this procedure by clustering the elements from  𝑇𝑟
𝐿−1 into 𝐾𝐿−2

𝑟  
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clusters to form the  𝑇𝑟
𝐿−2 level. We continue clustering in this manner until there is only 

one all-inclusive cluster  𝑇𝑟
1.  

The above-mentioned parameter settings are not altogether independent. For example, 

in choosing the fraction number (1/5) in item a, the underlying assumption is that we are 

clustering 5 elements into one group at each level, and correspondingly, the radii 

constraint is 1.5 in point b. If the fraction number is increased, then the radius constraint 

should be lowered. For most datasets that we analyzed, these empirically chosen 

parameters did not affect the results appreciably. The clustering procedure is done is a 

multi-scale manner, such that we compute clusters of different scales at different levels. 

As long as the initial parameters (for the first level) are chosen on a sufficiently small 

scale, the entire procedure scales up automatically. 

4.3 Orthogonal Basis 

Given that we are dealing with a discrete space, it is natural to quantify smoothness 

using a Haar-like wavelet basis in terms of point-wise exponential decay of coefficients. 

The Haar wavelet is a sequence of rescaled "square-shaped" functions that together form 

a wavelet basis. With this in mind, we induce a Haar-like point-wise wavelet basis using 

a hierarchical partition tree described by Coifman & Maggioni (2006). The row space of 

the data matrix is denoted 𝑉𝑟. For each level 𝑙 , let 𝑉𝑟
𝑙  denote the space of all functions that 

are constant over all nodes at this level. For example, 𝑉𝑟
1 is a one-dimensional space of 

constant functions on 𝑋𝑟 . The following sequence of subspaces 

 𝑉𝑟
1 ⊂ ⋯ ⊂ 𝑉𝑟

𝑙 ⊂ 𝑉𝑟
𝑙+1 ⊂ ⋯ 𝑉𝑟

𝐿 = 𝑉𝑟  (25) 
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provides a basis for multi-resolution analysis of 𝑉𝑟 . Let 𝑊𝑟
𝑙  denote the orthogonal 

complement of 𝑉𝑟
𝑙 in 𝑉𝑟

𝑙+1 (𝑉𝑟
𝑙+1 = 𝑉𝑟

𝑙 ⊕ 𝑊𝑟
𝑙, where the symbol “⊕ " denotes the union 

of two orthogonal complement spaces). Using this notation, the space of all functions 𝑉𝑟 

can be decomposed as follows 

 𝑉𝑟 = 𝑉𝑟
𝐿 = [⊕𝑙=1

𝐿−1 𝑊𝑟
𝑙] ⊕ 𝑉𝑟

1. (26) 

Consider a node in the partition tree 𝑋𝑘
𝑙  at level 𝑙  that is split into two sub-nodes, 

𝑋𝑗
𝑙+1 and  𝑋𝑗+1

𝑙+1, respectively. There is a zero-mean Haar-like function 𝜓𝑗,𝑙,𝑘  supported 

only over these two sub-nodes, and is piecewise constant on each of them. If a node 𝑋𝑘
𝑙  is 

split into three or more sub-nodes, then (#𝜌(𝑙, 𝑘) − 1)  Haar-like orthogonal functions 

{𝜓𝑗,𝑙,𝑘}
𝑗=1

#𝜌(𝑙,𝑘)−1
 must be constructed, where #𝜌(𝑙, 𝑘) denotes the cardinality (size) of the 

𝑘th sub-node at level 𝑙. The collection of these functions is augmented by the constant 

function on 𝑋𝑟  to form the following orthonormal basis of 𝑉𝑟 

 𝛹𝑟 =  {𝜓0} ∪ ⋃ ⋃ [{𝜓𝑗,𝑙,𝑘}
𝑗=1

#𝜌(𝑙,𝑘)−1
]

𝐾𝑙
𝑟

𝑘=1

𝐿−1

𝑙=1

. (27) 

In this equation, 𝑙 denotes the level of the tree, 𝑘 is the index of node 𝑋𝑘
𝑙  at level 𝑙 , and 

𝑗 = 1, … , #𝑠𝑢𝑏(𝑙, 𝑘) − 1 (Gavish et al. 2010). 
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Figure 6. Hierarchical Partition Tree and Haar-like basis 
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Chapter 5 Dual Network and Co-clustering 

Co-clustering is a mechanism of clustering a dataset in both the observation and the 

variable space. Specifically, given a data matrix, a co-lustering algorithm groups the rows 

of the matrix as well as the columns of the matrix into clusters. The critical key to solve 

the problem involving the selection of an efficient and accurate clustering algorithm, and 

a way of couple the row and column space.  

In this chapter, we introduce the proposed co-clustering frame work and the supporting 

theory. First we introduce the schema to enhance the dual space. An organization in one 

space introduces stronger affinity between certain features in the other space, and vice 

versa. Secondly, we describe the co-clustering frame work. The diffusion embedding is 

applied before the clustering, so that the dimensionality is reduced and distance is 

accurate and reliable. The co-clustering algorithm is iterative with row clustering and 

column clustering conducted alternatively, and the dual enhancement appending step in 

between. We also give the theoretical support of how to stop the iterative process based 

on orthogonal basis expansion and harmonic analysis. Finally, we show a few examples 

of how to use the proposed method on both synthetic toy dataset and a real world dataset. 

A summary is given in the end of the chapter with conclusion and discussion of the 

proposed method. 

5.1 Dual Enhancement 

  In the process of constructing the affinity graph, we treated each of the observation as 

a data point and computed the pairwise sparse affinity using the proposed affinity graph. 

Say if we use a cosine kernel with a zero threshold 
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 𝑘(𝒙𝑖 , 𝒙𝑗) = max (
< 𝒙𝑖 , 𝒙𝑗 >

‖𝒙𝑖  ‖‖ 𝒙𝑗 ‖
, 0). (28) 

In a binary feature table where the entries are either “+1” or “-1”, the sparse affinity is 

simply the number of matching items minus the number of nonmatching items, 

normalized by the total number of variable. In this way, we are treating all the variables 

equally and even weighted, and independent. At the same time, we are assuming the 

observations are in an unorganized structure. But in reality, there is a way of organizing 

the observations such that it reveals a different weighting of the variables, further leading 

to an enhancement of affinities between parts of the variables. We introduced a scheme to 

enhance the dual affinity by introducing “meta” variables as a function of the organized 

observations’ variables.  

A simple but persuasive example is given below in Table 1. In the table, we have four 

observations (let’s say four cells, C1, C2, C3, and C4), each with 3 variables F1, F2, and 

F3. The last row of the table contains the affinity of F1 to the each of the other variable. 

From the table, the information we derived is: The correlation between F1 and F2, and 

the correlation between F1 and F3 are equal. There is no preference or significant 

coherence from a global perspective. 

If more information are given, say that we are informed of the clusters between C1 and 

C2, C3 and C4. By taking a function of the variables (we choose to use the average here), 

a table with additional coordinates are given as below in Table 2. 
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Table 1. Feature affinity without dual enhancement 

 F 1 F 2 F 3 

C 1 +1 -1 +1 

C 2 +1 +1 +1 

C 3 -1 +1 +1 

C 4 +1 +1 -1 

Affinity to F 1 1 0 0 

 

Table 2. Feature affinity with dual enhancement 

 F 1 F 2 F 3 

C 1 +1 -1 +1 

C 2 +1 +1 +1 

C 3 -1 +1 +1 

C 4 +1 +1 -1 

{C 1, C 2} +1 0 +1 

{C 3, C 4} 0 +1 0 

{ C1, C2, C3, C4} +0.5 +0.5 +0.5 

Affinity to F 1 1 1/21 5/21 

 

In the new table with “meta” variables, the dimensionality of the feature is 7 instead of 4. 

The affinity computed suggests that there is a stronger affinity between F1 and F3 than 
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between F1 and F2. The underlying interpretation is even the variable pairs have the 

same affinity in a small scale, but their affinity in a coarser is different.  

    Therefore, the organization in the observation space contains and provides affinity 

enhancement in the variable space in a coarser scale. In our method below, we use this 

additional coordination (“meta” variable) in clustering in dual space. The enhancement 

significance relies on the performance of the clustering result in the other space, and as 

well as the nature of the data. 

5.2 Co-clustering Framework 

Given the a data matrix 𝑿𝑛×𝑚 with 𝑛 rows and 𝑚 columns, our goal is to cluster the 

rows and columns of the feature matrix concurrently, so that groups of similar objects 

and groups of correlated variables are identified at the same time. For this, we describe an 

iterative algorithm that clusters the rows and columns alternately. The core step of this 

algorithm is presented in “pseudo code” form as Algorithm 1 below, and described in 

detail next. 

In the first step of this algorithm, each row of 𝑿 is treated as a multivariate data point 

with dimension  𝑚. We assume that the structure of these data points can be modeled by 

a hierarchical partition tree denoted 𝛵𝑟 = ⋃  𝑇𝑟
𝑙𝐿

𝑙=1 , where  𝑇𝑟
𝑙 is the 𝑙th level of the tree. 

The construction process of the partition tree is described in Chapter 4.  

Once the row clustering is complete, an augmented data matrix, denoted 𝑋𝑟
𝐴 , of size 

(𝑛 +  ∑ 𝐾𝑙
𝑟𝐿−1

𝑙=1 ) × 𝑚  is constructed as follows: 𝑋𝑟
𝐴  is the same as  𝑋𝑟 , with newly 

appended rows being constituted of cluster centroids from all levels.  
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   This augmentation has the effect of coupling the row and column spaces, allowing us 

to perform an analogous clustering of the columns. Specifically, we now treat each 

column of 𝑋𝑟
𝐴  as a data point with dimension (𝑛 +  ∑ 𝐾𝑙

𝑟)
𝐿𝑟−1
𝑙=1 . Next, denoting the column 

space of 𝑋𝑟
𝐴  as 𝑋𝑐 , we construct a separate hierarchical partition tree 𝛵𝑐  based on the 

column space  𝑋𝑐 using the same procedure as for the rows. Similarly, an augmented 

dataset 𝑋𝑐
𝐴  is derived with a size of 𝑛 × (𝑚 +  ∑ 𝐾𝑙

𝑐𝐿𝑐−1
𝑙=1 ) in the fourth step to set the 

stage for clustering the rows. By iteratively repeating the four steps listed above, the 

algorithm has been shown to converge to a stable and smoothly reorganized data matrix. 

In this matrix, clusters along the row space represent groups of similar cells, while 

clusters of columns represent groups of correlated features. 

 

After the last iteration, an agglomerative hierarchical clustering is performed on each 

cluster at each level on both rows and columns, to reorder the data points. We use a 

simple average linkage based clustering algorithm, and the Euclidean distance metric 

during this last hierarchical clustering step (Sibson, 1973).  

Algorithm 1: Co-clustering Iteration 

Input: Data matrix 𝑋𝑛×𝑚  

1. Denoting 𝑋𝑟  as the row space of  𝑋 , construct a hierarchical partition tree 

𝛵𝑟  on 𝑋𝑟 . 
 

2. Augment reordered dataset 𝑋𝑟  to form 𝑋𝑟
𝐴 .  

 
3. Denoting 𝑋𝑐 as the column space of  𝑋𝑟

𝐴, construct a hierarchical partition tree 

𝛵𝑐 on 𝑋𝑐 . 
 

4. Augment reordered dataset 𝑋𝑐 to form 𝑋𝑐
𝐴 .  
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Figure 7. Row and column partition tree 

 

Figure 8. Row basis 

5.3 2D Orthogonal Basis 

In Chapter 4, Section 4.4, we described how to form a Haar-like orthogonal basis from 

a hierarchical partition tree. In the following paragraphs, we introduce the formation of 2-

D Haar-like orthogonal basis derived from the 1-D basis in row partition tree and column 

partition tree. The 2-D basis are a set of tensor product of the 1-D basis. The tensor 

product of 𝛹𝑐 and 𝛹𝑟  (the column and row space basis functions, respectively), given by 
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 Ψ = {∏ 𝛹𝑟 𝛹𝑐 }, (29) 

where 

 𝛹𝑟 =  {𝜓0} ∪ ⋃ ⋃ [{𝜓𝑗,𝑙,𝑘}
𝑗=1

#𝜌(𝑙,𝑘)−1
]

𝐾𝑙
𝑟

𝑘=1
𝐿−1
𝑙=1 ,  (30) 

 

 

Figure 9. Column basis 

 

and 

 𝛹𝑐 =  {𝜓0} ∪ ⋃ ⋃ [{𝜓𝑗,𝑙,𝑘}
𝑗=1

#𝜌(𝑙,𝑘)−1
]

𝐾𝑙
𝑐

𝑘=1

𝐿−1

𝑙=1

. (31) 

forms an orthogonal basis for the entire data matrix.  
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Assume a random row tree and column tree as shown in Figure 7, 𝛹𝑟  and 𝛹𝑐derived 

from the 2 tree structures are shown in Figure 8 and Figure 9. The tensor product of the 

two 1-D basis then forms the 2-D orthogonal basis illustrated in Figure 10. 

 

Figure 10. 2D rectangle basis 
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5.4 Co-clustering with Stop Criterion 

This section describes the theory for sensing convergence of the iterative co-clustering 

procedure described above, so it can be halted correctly. Our goal is to arrive at a 

homogeneous set of clusters, despite noise in the data matrix. Achieving this goal 

requires a method for smoothing the data matrix. Therefore, we approximate the feature 

matrix by expanding it using this orthogonal basis after each iteration. The coefficients of 

this expansion, 〈𝑿, 𝛹𝑟⨂𝛹𝑐 〉, decay rapidly and reach a plateau with increasing order of 

terms. It is known that the 𝑙𝑝 sum of expansion coefficients, written as ∑ |〈𝑋, 𝛹𝑟⨂𝛹𝑐 〉|𝑝 ,𝑖,𝑗  

indicating the smoothness, converges to a fixed value when further smoothing of the data 

matrix is not possible (Strömberg, 1998). In the special case when 𝑝 = 1, the 𝑙𝑝 sum is 

called the 𝑙1 entropy. In our work, we use the 𝑙1 entropy as the stopping criterion for the 

iterations. The iterative procedure using the 𝑙1 -entropy as a stopping criterion is 

summarized below as “Algorithm 2”. 

 

Algorithm 2: Harmonic based convergence 

Input: Data matrix 𝑋𝑛×𝑚  

1. Apply an iteration of Algorithm 1 and obtain partition trees 𝛵𝑟 and 𝛵c on row 

space and column space. 
 

2. Construct Haar-like bases 𝛹r and 𝛹c. 
 

3. Obtain tensor basis Ψ by taking the tensor product of 𝛹𝑟  and 𝛹𝑐 . 
 

4. Compute the 𝑙1-entropy 𝑙1(Ψ,𝑋) = ∑|〈𝑋, Ψ〉|. 

 

5. Repeat steps 1 through 4 until 𝑙1(Ψ, 𝑋) converges. 
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5.5 Test Example 

    We evaluated the harmonic co-clustering method on synthetic datasets. The purpose of 

the synthetic data experiments is to confirm that the proposed co-clustering algorithm 

produces the correct results when the expected results are known in advance. The real-

data experiments were designed to evaluate the practical usability of the proposed method 

on publicly available arbor reconstructions. 

For the synthetic data, we evaluated the performance for one-way clustering and two-

way co-clustering. For the neuronal datasets, we used the average F-measure of the 

(cross-validation) classification results to measure the clustering performance (Powers, D. 

M. W., 2011). We also computed a variety of other performance measures (described 

below) to measure the partitioning ability of our co-clustering method.  

A synthetic block-structured data matrix with 200 rows and 200 columns was created 

for evaluating the correctness and performance of the presented algorithm. This matrix 

was created such that there are 3 known bi-clusters in the data. It consists of 3 major 

blocks, the sizes of which are 90 × 70, 70 × 80, and 120 × 75, respectively. The first 

block consists of 90 data points drawn from 3 multivariate normal distributions with total 

dimensionality of 70. Of these 90 data points, 45 were drawn from 𝑁(𝝁11, Σ11). The next 

30 data points were drawn from 𝑁(𝝁12, Σ12 ). And the remaining 15 points were drawn 

from 𝑁(𝝁13 , Σ13 ) . The second block consists of 80 data points from 2 multivariate 

normal distributions with dimensionality of 80. Half of them were drawn from 

𝑁(𝝁21, Σ21) while the other half were drawn from 𝑁(𝝁22, Σ22). The third block consists 

of 120 data points from a multivariate normal distribution with dimensionality of 75, a 
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sub block of it was replaced with another distribution of dimensionality 50. These 

parameters are summarized in Table 3.  

Table 3. Synthetic data parameters 

𝝁11 (8,8,…,8)T 𝚺11 3*I 

𝝁12 (9,9,…,9)T 𝚺12 2*I 

𝝁13 (10,10,…,10)T 𝚺13 2.5*I 

𝝁21 (4,4,…,4)T 𝚺21 4*I 

𝝁22 (2,2,…,2)T 𝚺22 2*I 

𝝁31 (-4, -4,…,-4)T 𝚺31 3*I 

𝝁31 (-6,-6,…,-6)T 𝚺31 3*I 

 

The rest of the matrix was set to background. Gaussian noise was added to the matrix 

to test the robustness of the algorithm. The synthetic matrix is displayed in Figure 11(A). 

This matrix was then permuted randomly. Figure 11(B) shows the permuted matrix in 

heat map form. This permuted matrix is presented as input to our co-clustering algorithm 

and the benchmark algorithm we compared with. One benchmark is a recent two-way 

hierarchical clustering algorithm (Chen et al., 2013), the results from which are shown in 

Figure 11(C). Average linkage and Euclidean distance was used in this algorithm to 

produce the displayed result. The algorithm was able to identify the first major b lock, but 

failed to identify the other two due to the presence of sub-clusters in each block. Figure 

11(D) shows the results produced by our algorithm using diffusion distance and 

hierarchical reordering. The result is a perfect recovery of the generated data in Figure 
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11(A). It is also much smoother. The algorithm is able to identify the three major blocks  

correctly. One can easily find each of the sub-clusters and sub-blocks in the reorganized 

heat map, corresponding to the lower-level tree branches. Specifically, Figure 11 

demonstrates the superiority of hierarchical harmonic co-clustering over Chen et al.’s 

two-way clustering algorithms: (A) Synthetic 200x200 data matrix displayed as a color-

map. (B) Randomly permuted data matrix used as input to the co-clustering algorithm. (C) 

Chen et al.’s two-way hierarchical clustering fails to recover the data geometry. (D) Co-

clustering results from the proposed algorithm are much more accurate.  

    We calculated the validity indices using the Fuzzy Clustering Toolbox (Balasko et al.  

2005) for row clusters and column clusters to evaluate the one-way clustering 

performance in Figure 12. Here, SC (Partition Index) is the ratio of the sum of 

compactness and separation of the clusters. The Separation Index S uses a minimum 

distance separation for measuring partition validity (A. M. Bensaid et al., 1996). The XB 

(Xie & Beni, 1991) index quantifies the ratio of the total variation within clusters and the 

separation of clusters. The Dunn Index (DI) and Alternative Dunn Index (ADI) are for 

measuring compactness and cluster separation. Indices are calculated for clusters 

highlighted by the circles in Figure 11(C - D). Validity indices are lower for the proposed 

method indicating that it achieved a better clustering and partitioning result. Our method 

produces a superior co-clustering than the benchmark method (For both row and column 

cluster indices, four out five results are better). 
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Figure 12. Demonstrating the superiority of hierarchical harmonic co-clustering: (A) 

Synthetic data matrix. (B) Randomly permuted data matrix. (C) Benchmark 

algorithm. (D) Results from the proposed algorithm are much more accurate.  

We also use the Kullback-Leibler divergence (Kullback et al. 1951) to evaluate the 

two-way co-clustering performance for the dataset as shown in Table 4(E) (red bars 

correspond to the benchmark algorithm and the blue bars to our algorithm). The three 

chosen sub-blocks are indicated by the numbered rectangles. The diagonal entries with 

small K-L values in Table E show that the proposed algorithm’s clusters are very 

homogeneous, whereas the non-diagonal elements with higher K-L values indicate that 

the groups are very dissimilar. 
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Figure 13. Row and column clustering validity indices SC: Partition Index, S: Separation 
Index, XB: Xie & Beni index, DI: Dunn Index, and ADI: Alternative Dunn Index 

indicate improved performance (smaller values are better). 

Table 4. Kullback–Leibler (KL) divergence between group for Chen et al.’s algorithm in 
red and for the proposed algorithm in blue (smaller diagonal entries and higher off-

diagonal entries indicate better performance). 

 1 2 3 

1 0.8/0.8 3.4/3.2 5.1/4.9 

2 3.1/3.2 0.3/2.6 3.9/1.9 

3 4.6/4.7 4.1/1.7 0.5/0.4 

 

To further demonstrate the performance and the robustness of the proposed algorithm, 

we created a pool of synthetic datasets including 50 matrices with 200×200 entries each. 

All matrices are generated with different cluster patterns and background noise, but all 

the 50 synthetic datasets were created so they contain three row clusters and three column 

clusters, so the KL divergence numbers can be compared consistently in Figure 11 (A). 

For the compared method, we cut the dendrogram at the level that splits the data into 

three clusters. To evaluate the performance from all 50 datasets in a consistent manner, 

we define a validation score: KL divergence ratio, the ratio of the summed non-diagonal 
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entries to the summed diagonal entries (Table 4). The distribution of the KL divergence 

ratios from the proposed algorithm and the benchmark algorithm as summarized by the 

histogram in Figure 12, clearly indicates the superiority of the proposed method. 

5.6 Limitations of the Proposed Methods 

The proposed co-clustering algorithm was able to recover the exact geometry structure 

in our synthetic data sets in the previous section, it also works well in identifying cell 

clusters and feature correlations in the experiments we analyzed on in Chapter 7. 

However, just like all algorithms in the literatures, our methods has its limits in certain 

conditions and data settings. Below we listed a few cases when our method might fail or 

the performance will not be ideal. 

In a clustering problem, the algorithm performance will drop dramatically if there are 

more number of clusters then the number of data points in each cluster, the effect of the 

condition will be dramatic especially if the data points are not highly scattered across the 

feature space. Our method, especially in the process of construct the hierarchical partition 

tree, will suffer from the same reason.  

Another case that our algorithm will not be necessary is when the data dimensionality 

is very low (typically less than 50 data points, and less than 10 in the feature 

dimensionality). The algorithm will still return a reasonable result, but it’s not necessary 

to apply such a comprehensive methods on the dataset with a simple setting.  

In our methods, we have the ability to handle a reasonable amount of missing data, the 

typical way is to interpolating using the neighbor values. But when the amount of missing 
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data increases and exceeds a certain level, the algorithm will lose its power in identifying 

the patterns and hidden geometries.   
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Chapter 6 Comparative Interpretation  

    In order to interpret the analysis and profiling result, in our framework, we propose to 

use the sparse group lasso as a feature selection and interpreting tool. In previous 

literatures, group lasso was first proposed by Mingyuan (2000). In their work, they 

considered the problem of selecting grouped variables (factors) for accurate prediction in 

regression. Such a problem arises naturally in many practical situations with the 

multifactor analysis-of-variance problem as the most important and well-known example. 

Instead of selecting factors by stepwise backward elimination, they focused on the 

accuracy of estimation and consider extensions of the lasso, the LARS algorithm and the 

non-negative garrotte for factor selection. Noah Simon presented a sparse group lasso 

algorithm in their work 2009. They discussed the sparsity and other regularization 

properties of the optimal fit for the model, and showed that it has the desired effect of 

group-wise and within group sparsity. They proposed the algorithm to fit the model via 

accelerated generalized gradient descent, and extended the model and algorithm to 

convex loss functions. 

6.1 LASSO and Group LASSO 

In 1996, Robert Tibshirani proposed a new method for estimation in linear models.  

The LASSO (Least Absolute Shrinkage and Selection Operator) is a regression method 

that involves penalizing the absolute size of the regression coefficients. The “LASSO” 

minimizes the residual sum of squares subject to the sum of the absolute value of the 

coefficients being less than a constant value. By penalizing (or equivalently constraining 

the sum of the absolute values of the estimates) you end up in a situation where some of 

the parameter estimates may be exactly zero. The larger the penalty applied, the further 
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estimates are shrunk towards zero. This is convenient when we want some automatic 

feature/variable selection, or when dealing with highly correlated predictors. In our 

application, we choose to use lasso for selecting distinguishing measurement to interpret 

the profiling result and rebuild a model for further analysis.  

In a typical linear regression model, assume the data of interest consists of 𝑁 data 

points and each with 𝑝 dimensions. The data matrix can be presented as 𝑿 ∈ 𝑅𝑁×𝑝, a 

respond (label) vector is usually given 𝒚 ∈ 𝑅𝑁. In many applications, we have 𝑝 ≫ 𝑁. To 

solve this, it is regularized by bounding the 𝑙1 norm and minimize the objective function 

 min
𝜷∈𝑅𝑝

(‖𝒚 − 𝑿𝜷‖2
2 + 𝜆‖𝜷‖1). (32) 

In the equation above, 𝜷 is the coefficients vector. 

    The solution of the above optimization problem yields a sparse coefficient vector 𝜷, 

which in applications are interpreted as significant feature/measurement for the 

prediction/regression model.  

Further, consider the application where features/measurements can be divided into 

practical meaningful groups, for example in a gene expression data, a group of genes are 

regulating the express of the same protein. Or a group of features are statistically 

correlated but independent among groups. If these group information is given or can be 

extracted from the dataset, a desired solution will be one that is able to give a sparse set.  

Yuan & Lin proposed an algorithm for solving this problem. Suppose that the 𝑝 

predictors are divided into 𝐿 groups, with 𝑝𝑙  the size of each group. For ease of notation, 

we use a matrix 𝑿𝑙   to represent the predictors corresponding to the 𝑙𝑡ℎ group, with 
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corresponding coefficient vector 𝜷𝒍. Assume that 𝒚 and X are normalized with zero mean. 

The algorithm is formulated as 

 min
𝜷∈𝑅𝑝

(‖𝒚 − ∑ 𝑿𝑙𝜷𝑙

𝐿

𝑙=1

‖

2

2

+ 𝜆 ∑ √𝑝𝑙‖𝜷𝑙‖2

𝐿

𝑙=1

), (33) 

where the √𝑝𝑙 terms accounts for the varying group sizes, and ‖. ‖2 is the Euclidean 

norm (not squared). This procedure acts like the lasso at the group level: depending on 𝜆, 

an entire group of predictors may drop out of the model. In fact if the group sizes are all 

one, it reduces to the lasso.  

6.2 Sparse Group LASSO 

In the above algorithm, however, we cannot achieve sparsity within groups. 

Specifically, if the coefficient for one group does not shrink to zero, all the member 

variables within the group will be non-zero. In our application, we need a regularization 

that yields sparsity both in group levels and individual variable levels as well.  To achieve 

this, we adopt a sparse group lasso model proposed by (Noah), which provides for a more 

general criterion also works for the standard group lasso with non-orthonormal model 

matrices. Consider the sparse group lasso criterion 

 min
𝜷∈𝑅𝑝

(‖𝒚 − ∑ 𝑿𝑙𝜷𝑙

𝐿

𝑙=1

‖

2

2

+ 𝜆1 ∑ √𝑝𝑙‖𝜷𝑙‖2

𝐿

𝑙=1

+ 𝜆2‖𝜷‖1) , (34) 

where = 𝜷 = (𝜷1, 𝜷2, 𝜷3, … , 𝜷𝐿  )is the entire parameter vector.   
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6.3 Criterion and Algorithm 

The problem is formulated as a convex optimization problem. Therefore, the optimal 

solution is characterized by the subgradient equations. The criterion is separable so that 

block coordinate descent can be used for the optimization. Focusing on one group  𝑘, the 

subgradient must satisfy 

 𝑿𝑘
𝑇 (𝒚 − ∑ 𝑿𝑙𝜷𝑙

𝐿

𝑙=1

) = 𝜆1𝑠𝑘 + 𝜆2𝑡𝑘, (35) 

where 𝑠𝑘 and 𝑡𝑘 are the subgradient of ‖𝜷𝑘‖2 and ‖𝜷‖1.  𝑠𝑘 =  
𝜷𝑘

‖𝜷𝑘‖2
, and 𝑡𝑘 = sign(𝜷𝑘). 

It is obvious that when  

                            ‖𝑿𝑘
𝑇(𝒚 − ∑ 𝑿𝑙𝜷𝑙𝑙≠𝑘 ) − 𝜆2‖

2
≤ 𝜆1,  𝜷𝑘=0.  (36) 

The subgradient equation can also give insight into the sparsity within a group which is at 

least partially nonzero. We redefine the variables as 𝑿𝑙 = 𝒁 = (𝑍1, 𝑍2, … , 𝑍𝑝𝑙
), and the 

coefficients  𝛽𝑙 = 𝜃 = (𝜃1 , 𝜃2 , … , 𝜃𝑝𝑙
). That is: 

 𝑍𝑗
𝑇 (𝒚 − ∑ 𝑿𝑙𝜷𝑙

𝐿

𝑙=1

) = 𝜆1

𝜃𝑗

‖𝜷𝑘‖2
+ 𝜆2𝑡𝑗. (37) 

To satisfy 𝜃𝑗 = 0, only if  

 ‖𝑍𝑗
𝑇(𝒚 − ∑ 𝑿𝑙𝜷𝑙

𝑙≠𝑘

− ∑ 𝑍𝑗𝜃𝑗

𝑖≠𝑘

) − 𝜆2‖

2

≤ 𝜆1. (38) 

 

Overall, the algorithm is a sequence of nested loops with outer loop solving group 

sparsity and inner loop solving within group sparsity:  
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  Cyclically iterate through the groups, at each group (k) execute step (2) 

Check if the groups’ coefficients are identically 0, by seeing if they obey 

    ‖𝑿𝑘
𝑇(𝒚 − ∑ 𝑿𝑙𝜷𝑙

𝑙≠𝑘

) − 𝜆2‖

2

≤ 𝜆1                            

If not, within the group apply step (3). 

 Start with 𝜃 = 𝜃̂, check if ‖𝑍𝑗
𝑇(𝒚 − ∑ 𝑿𝑙 𝜷𝑙𝑙≠𝑘 − ∑ 𝑍𝑗𝜃𝑗𝑖≠𝑘 ) − 𝜆2‖

2
≤ 𝜆1 , if so, set 

𝜃𝑗 = 0 ,otherwise minimize the following and update 𝜃 

1

2
∑(𝑤𝑖 − ∑ 𝑍𝑖𝑗𝜃𝑗)2

𝑝𝑙

𝑗=1

𝑁

𝑖=1

+ 𝜆1‖𝜃‖2 + 𝜆1 ∑|𝜃𝑗 |

𝑝𝑙

𝑗=1

                           

where 𝑤𝑖 = 𝒚 − ∑ 𝑿𝑙𝜷𝑙𝑙≠𝑘 − ∑ 𝑍𝑗𝜃𝑗𝑖≠𝑘 . 
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Chapter 7 Applications on Profiling Brain Cells 

7.1 L-measure 

    As noted above, the L-measure (LM) (Scorcioni et al., 2008) is a set of 

neuroanatomical features (summarized graphically in Figure 13) that collectively 

characterize the morphology of an individual cell’s arbor. The features are computed 

from arbor reconstruction files in the standard SWC file format. The L-measure extracts a 

set of approximately 40 core morphological measurements of neurons (e.g., soma size, 

number of stems, process diameters, lengths, bifurcation patterns), and their derived 

statistics (average, standard deviation, minimum, maximum, and sum). In this work, we 

extended the list of L-measure parameters to capture additional morphological 

characteristics of cells. In particular, we added features describing the wrapping convex 

hull and an ellipsoid that captures the overall shape and orientation of the cells, to derive 

a list of 130 features per cell in http://farsight-toolkit.org/wiki/L_Measure_functions. 

Figure 13 shows a graphical summary of the quantitative arbor measurements used for 

this study. The entries in green are derived from the L-measure of Scorcioni et al., (2008), 

and the entries in red are our extensions to the L-measure. Overall, there are 43 

fundamental measurements, and additional derived measurements (e.g., mean, variance, 

maximum, minimum, etc.) that together amount to 130 measurements per reconstruction. 

The multivariate input data to the co-clustering algorithm are denoted 𝑋 = {𝒙𝑖}𝑖=1
𝑛 , 

where 𝑛 is the number of data points (cells), and each vector 𝒙𝑖 has as many elements as 

there are L-measure features (~130). These input data can also be written as a large 

feature matrix  𝑋𝑛×𝑚 , with 𝑛  rows corresponding to 𝑛  cells, and 𝑚  columns 

corresponding to 𝑚 arbor features. 

http://farsight-toolkit.org/wiki/L_Measure_functions
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Figure 13. A graphical summary of the quantitative arbor measurements used for this study. 

The entries in green are derived from the L-measure of Scorcioni et al. (2008), and 

the entries in red are our extensions to the L-measure.  

7.2 Mouse Brain Astrocytes Analysis 

Glial cells account for a large fraction of the cells in the mammalian brain, with 

astrocytes constituting the most abundant (>50%) cell type (Verkhratsky & Butt 2007). 

Astrocytes are critical to brain development, physiology, and pathology, including: (i) 

regulation of neuro, glio- and synaptogenesis (Song et al. , 2002) , (ii) development and 

regulation of the blood-brain barrier, (iii) responding to various kinds of brain insults 

through reactive astrogliosis , (iv) mediating several neuronal and other diseases, such as 

HIV, depression, brain ischemia and edema, epilepsy, and dementia , and (v) reacting to 

foreign objects including neural probes. In executing these functions, astrocytes undergo 
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alterations in structure, functional state, and relationship with other cells, including 

astrocytes, microglia, neurons, and endothelial cells. There has been a growing interest in 

understanding the roles of astroglia (Kulkarni, et al., 2015). 

    In our work, we primarily report results from the data acquired in a previously 

published study (Maynard & Leasure, 2013). For these examples, three 50 𝜇𝑚 thick 

serial sections from the medial prefrontal cortex of 24 rats exposed to binge alcohol 

consumption and voluntary exercise were multiplex labeled to reveal cell nuclei (DAPI), 

microglia (Iba-1), vessels (SMI-71), neurons (NeuN), and astrocytes (GFAP). Eight 

confocal image tiles, forming a 2 × 4 montage covering a 775 µm × 1,550 µm area, were 

imaged for each tissue section, resulting in 24 tiles for each animal. The tiles were 

imaged sequentially in five fluorescence channels using the 405 nm, 488 nm, 560 nm, 

594 nm, and 633 nm laser lines of a Leica SP8 upright confocal microscope with a 40× 

oil immersion objective. The image dimensions were 1,024 × 1,024 × 52 voxels (387.50 

µm × 387.50 µm × 1 µm). The acquisition speed was 600 Hz, and the zoom factor was 

0.75. The tiles were set to have approximately 10% spatial overlap, and the z-stacks were 

collected encompassing the entire thickness of the tissue. 

    Although the vital roles of astrocytes in brain development, physiology and pathology 

are receiving growing recognition, much remains unknown about their quantitative 

architecture, especially the heterogeneity in astrocyte arbor morphology. In order to 

overcome these barriers, it is essential to first quantify the arbor morphology. 

Unfortunately, no single number is capable of describing a complex three-dimensional 

cell arbor. For this reason, we adopt the L-measure introduced in the previous section. 
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With the large number of cells that are present in brain tissue, and the high-

dimensionality of the L-measure’s feature space, the analysis of the combined data from 

all of the cells is a non-trivial task. We applied the proposed method to the astrocyte 

arbor reconstructions obtained from the 24 datasets used in this study. Figure 14 

demonstrates the co-clustering results in the form of a heat-map representation where 

each row corresponds to a cell, with a total of about 30,000 cells in this study, and each 

column corresponds to a feature from the L-measure collection. The horizontal tree on 

the left side of the heat-map illustrates the grouping structure of the cell population, 

whereas the tree on top illustrates the grouping structure of feature correlations.  Figure 14 

shows a quantitative analysis of GFAP+ cells from a binge alcohol study with 24 animals, 

four groups (24 fields, 387.07 × 387.07 × 50 μm were imaged from each animal), using 

co-clustering of L-measure data. (A) Heat map rendering of the co-clustering result (each 

row corresponds to an individual cell, each column represents a feature). Four clusters of 

morphological cell-types were identified (circled in the horizontal tree) in (G1 – G4). 

Representative cells from each group. This figure indicates that the population under 

study consists of cells which have a wide variability in terms of arbor morphology, 

starting with complex morphology with multiple branches in G1 to relatively simple 

structures in G4. 

The co-clustering reveals that the GFAP+ cells in the population under study fall into 

four major groups, highlighted by circles in the horizontal tree in Figure 14. 

Representative cells from these four groups are shown in columns (G1 - G4). Results  
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Figure 15. Quantitative analysis of a binge alcohol study with 24 animals, four groups, using 

co-clustering of L-measure data. (A) Heat map rendering of the co-clustering result 

(each row corresponds to an individual cell, each column represents a feature).  
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Table 5. Features selected by the co-clustering algorithm. Results indicate that the astrocyte 

cells in the given population vary largely in terms of their size, shape and arbor 

complexity. 

 

indicate that the four groups represent cells with variable morphological complexity, with 

the most complex arbors in G1 to the least complex in G4.  

Table 5 lists the mean values of the relevant features for each group. It can be observed 

that the four groups are distinct in terms of the overall sizes of the cells (as indicated by 

the surface area and volume), the complexity of their arbor morphologies (as indicated by 

the number of segments, stems, branch points, and bifurcations) and their shapes (as 

indicated by the skewness values). 

Table 6 lists the proportions of the four groups within the population under study. It 

can be observed that the GFAP+ astrocyte cell population consists largely of cells with 

high complexity G1 and low complexity G4. 

Table 6. Astrocyte cell distribution by group. The population under study is seen to consist 

mostly of cells with complex arbor morphologies (Group 1). 
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In order to quantify the performance of co-clustering, a set of statistical dispersion 

indices are computed, by the co-clustering algorithm based on the diffusion distance. The 

within-cluster dispersion index is defined as 

 
𝑝𝑖𝑛𝑡𝑟𝑎,𝑘 =

∑ (𝑑𝑖𝑘 − 𝑟𝑘)2𝑁𝑘
𝑖=1

𝑟𝑘
， 

 

(39) 

where 𝑝𝑖𝑛𝑡𝑟𝑎,𝑘 is the intra cluster dispersion of cluster k, 𝑟𝑘 is mean of distances 

between all data points and the centroid of cluster 𝑘, and 𝑑𝑖𝑘 is the distance between data 

point 𝑖 and the centroid of cluster 𝑘. Similarly, the inter-cluster dispersion index is 

defined as 

 
𝑝𝑖𝑛𝑡𝑒𝑟,𝑝𝑞 =

∑ (𝑑𝑖𝑞 − 𝑟𝑝𝑞)2𝑁𝑞

𝑖=1 + ∑ (𝑑𝑖𝑝 − 𝑟𝑝𝑞)2𝑁𝑝

𝑖=1

𝑟𝑝 + 𝑟𝑞
， 

 

(40) 

where 𝑝𝑖𝑛𝑡𝑒𝑟,𝑝𝑞 is the inter cluster dispersion of cluster 𝑝 and 𝑞, 𝑟𝑝𝑞 is the mean 

distance between all data points in cluster 𝑝 and the centroid of cluster 𝑞 and 𝑟𝑞𝑝 is the 

mean distance between all data points in cluster 𝑞 and the centroid of cluster 𝑝. Table 7 

shows the intra and inter-cluster dispersion indices computed for the four groups. The 

intra-cluster indices with low values indicate strong intra-cluster homogeneity, while high 

values of the inter-cluster dispersion indicates strong cross-cluster heterogeneity. 
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Table 7. Inter and intra-cluster dispersion values for the four cell groups. Low intra-cluster 

dispersion indicates strong within-cluster homogeneity while high inter-cluster 

dispersion indicates strong between cluster heterogeneity. 

 

    Finally, we note that unlike microglia, the morphological analysis of astrocytes is an 

emerging area of research (Zhang & Barres, 2010; Anderson et al., 2014) and new 

morphological categories are still being discovered (Matyash & Kettenmann 2010). 

Consequently, the interpretation of cell types is largely dependent upon the experimental 

hypothesis being tested. To this end, the proposed co-clustering method provides a 

powerful quantitative tool for investigating morphological heterogeneity of astrocyte cell 

populations. 

7.3 Mouse Brain Microglia Analysis 

    The brains of Long Evans rats were dissected free of the skull while not disturbing 

implanted neural recording devices (NeuroNexus Inc., Ann Arbor, MI) after 30 days of 

recording. The brains were fixed, aligned and blocked to optimize the capture of each 

device within a single 100µm thick tissue slice. Histochemistry was used to label all cell 

nuclei (Hoechst 33342), astrocytes (GFAP), microglia (Iba-1), and neurons (NeuroTrace 

640/660). The tissue slices were imaged using an Olympus IX81 inverted DSU 

microscope with a 30x silicone oil objective with 800µm working distance. Unimplanted 

control tissue was collected using the same protocols for comparison. 
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Figure 15. Fluorescent image and traces: (a) projection of 3D fluorescent image from device 

implanted tissue, the white arrow indicates the device region, (b) a patch from 

image a, (c) reconstructed traces. 

     Microglia consist of a central soma containing the cell nucleus, from which the cell 

arbor emanates. To segment the soma, we segment all cell nuclei, and isolate the nuclei 

that are positive for Iba-1. A level set-based segmentation is used to segment the somas 

for the isolated cells. An automated minimal spanning tree based algorithm is used to 

trace the cell arbors in Figure 15(c), after which their morphology is quantified using the 

L-measure library from computational neuroanatomy. A total of 127 features are 

computed for each cell arbor. Figure 15 shows a sample image, and the automated 

microglia traces. Two L-measure tables were thus generated, one from a device-

implanted tissue (4,408 cells), and the other control tissue (3,891 cells).  
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Figure 16. Heatmap of (a) raw feature table of the implanted tissue data, (b) reorganized 

data table applying Algorithm 1 Purple boxes indicated four salient groups of cells. 
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Figure 17. Spatial distribution & typical samples: (a-b) spatial distribution of four subsets 

of cells for a control tissue and implanted tissue, color coded spheres corresponding 
to cells in four groups, (c-f) typical samples of four subsets cells. 

    Figure 16(a) shows a heatmap representing the L-measure data matrix from the 

implanted tissue dataset, and the heatmap in Figure 16(b) shows the distribution of the 

results of applying Algorithm 1 to the data matrix, after convergence. In the heatmap, 

each row corresponds to a cell and each column corresponds to a feature. Each entry is 

mapped to a color according to the accompanying color map. The hierarchical partition 
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trees on the row and column spaces are plotted adjacent the heatmap. In our software 

implementation, each row in the heatmap, and each node in the row partition tree are 

linked to the image visualization system, allowing each cell group to be highlighted for 

visualization. 

 

 

Figure 18. Correlated features: two groups of features plotted with high correlation within 

cluster. 

    The harmonic co-clustering reveals four salient groups of cells, as seen in Figure 17(b). 

Figure 17(a) – (b) show the spatial distributions of each of these cell groups using color-

coded spheres for control, and device-implanted tissue, respectively. The panels (c) – (f) 

in Figure 17 show close-ups of sample cells from each cluster. Microglia exhibit varying 

arbor morphologies indicative of their activation states. Resting microglia have 

symmetric and complex arbors. Progressively more activated microglia exhibit less 

complex arbor morphologies. Clearly, in the control tissue, cells from the four cell groups 

are distributed uniformly throughout the tissue. However, in the device-implanted tissue, 
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a group of complex (resting) cells is distributed far away from the device-implantation 

region, and the group of low-complexity (activated) cells and arborless round cells are 

close to the device-implantation region. The most salient features that distinguish each 

cluster from the others are arbor complexity and size features, and sample values are 

listed in Table 8. In this table, decreasing mean values of features along groups is visually 

consistent with the cell morphologies as seen in Figure 17. 

Features are highly correlated with each other within each feature group. In Figure 20, the 

two groups of features are plotted along cells from one cluster. 

We also analyzed a large dataset of nearly 30,000 cells that combines datasets from ten 

different tissues, four of them are control tissues with 14,570 cells and six are implanted 

tissues with 14,983 cells. The tissue perturbation caused by the device implantation can 

be quantified, as follows. The percentages of each subset of cells from ten datasets are 

shown in Table 9. The proportion of the first two groups (high and moderate complexity 

cells considered as resting cells) from implanted tissues is lower than that from control 

tissue, but the proportion of the last two groups (low complexity and round cells 

considered as activate cells and arbor less amoeboid) from implanted tissue is higher than 

that from control tissue. Thus the inserted device triggers microglia activation near the 

device. 
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Table 8. Variation of the Significant Features among Groups 

 

Group 

Features 

Surface_Area Volume Segments Stems Branch_Point Bifurcation Skewness 

1 7,433 8,226 34 7 14 13 29.8 

2 3,478 3,770 17 5 6 5 26.9 

3 1,773 1,928 10 3 5 3 17.3 

4 50.3 33.5 0 0 0 0 0 

 

 

Figure 19. Identified group population in control and experimental tissue. 

Table 9. Cell Proportion from Ten Datasets 

 G 1 G 2 G 3 G4 Percentage Ratio 

Device  274 725 6,815 7,169 1.9:4.9:45.4:47.8 

Control  3,250 4,272 3,883 3,165 22.4:29.3:26.6:21.7 
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7.4 Neuronal Reconstruction Analysis  

7.4.1 Pyramidal Neurons from the Mouse Neocortex 

An ensemble of 728 reconstructions (all available entries) of six morphological 

subtypes of pyramidal neurons with wide-ranging morphologies were downloaded from 

the NeuroMorpho.Org (Ascoli et al., 2007) database (www.neuromorpho.org) to test the 

performance of the proposed method. All the reconstructions are in the open SWC format 

(Cannon et al. , 1998). These reconstructions were from diverse sources including (Chen 

et al., 2009; Krieger et al., 2007; Rocher et al., 2010; Smit-Rigter et al., 2012; Lee et al., 

2011; and Trevelyan et al., 2006). This ensemble is displayed in Figure 20. 

The raw L-measure data for this ensemble is presented visually as a heat map in Figure. 

21(A). In Figure 21(B), the reorganized data matrix resulting from the co-clustering 

algorithm is presented as a heat map. The horizontal tree structure shows the geometry of 

the dataset in terms of cells whereas the vertical tree structure indicates the geometry of 

the data set in terms of features. The six subtypes of cells are identified at the third level 

in the heat map. The corresponding cell groups are shown in Figure 21(D) and Figure 

21(A).  

For the analysis, the exact number of cell clusters and the number of feature groups are 

not required from the user. We set the initial values as 1/5 of the cell number and 1/5 of 

feature number for rows and columns respectively, these numbers could be set differently 

for other applications.  Since clustering is conducted at multiple scales, groups obtained 

at different levels are at different similarity scales. The visualization (the heat map) and 

the linked system clearly identified valid groups. The algorithm is able to correctly 

identify the six subtypes of cells based on the morphological measurements alone. 
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Figure 16. Thumbnail panel of 728 neuron reconstructions in the NeuroMorpho database 

representing all reconstructed pyramidal cells in the mouse neocortex, containing 6 

subclasses of pyramidal cells with varying morphological characteristics. 
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Since the dataset we used is manually labeled, a confusion matrix was generated as in 

Figure 22(B). Precision and Recall statistics were computed for each cluster of cells for 

evaluation. The overall accuracy is also listed in the table. 

Feature groups with high intra-cluster correlation are of obvious interest for data 

interpretation. A correlated group of features provide guidance for feature selection and 

further analysis, and help identify the major features that distinguish the cell clusters. 

Examples of feature groups that differentiate cell clusters are shown in Figure 21(B, 

C&D). In Figure 21 (B), blocks that highlighted by purple boxes are feature groups that 

differentiate a specific cell type from others. In Figure 21(C), the distinguishing features 

of the groups are highlighted for each block, and the corresponding reconstructions are 

shown in Figure 21(D). In Group 1 and Group 5, cells are morphologically more complex 

than other cell groups, correspondingly, in block B2 and B7, the overall complexity 

features exhibit higher than average values. Cell somas in Group 2 exhibit simpler 

morphological characteristics compared to other cell groups, and correspondingly, block 

B1 has lower than average values. Block B1 includes soma size and complexity features 

such as soma height, soma width, soma depth, soma surface area, soma radii, root branch 

point. On the other hand, Group 5 has more complex somas, especially root branch point 

(as B4). In Group 5, the cells have more stems, segments, and branches, as indicated in 

block B6. Cells in Group 3 and Group 6 are not morphologically symmetric, thus the  
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Figure 21. Analysis of all 728 pyramidal cell. (A) Data matrix displayed as a heat map. (B) 

Harmonic co-clustering results. (C, D) Visual confirmation of sample cells from the 

boxed regions.  

feature blocks B3 and B8 have lower than average values. Symmetric features include 

skewness along the x, y, & z axes, and the skewness magnitude. Additional details about 

the arbor features are available at the FARSIGHT websiten http://farsight-

toolkit.org/wiki/L_Measure_functions. To be specific, in Figure 17 Analysis of all 728 

pyramidal cell reconstructions from the mouse neocortex in the NeuroMorpho database. 

(A) Data matrix of 728 cells and 130 features/cell displayed as a heat map. (B) Harmonic 

co-clustering results with overlaid circles indicating the six identified subclasses of 

pyramidal cells. Overlaid boxes B1 - B8 highlight distinctive feature groups of 

automatically identified cells. (C, D) Visual confirmation of sample cells from the boxed 

http://farsight-toolkit.org/wiki/L_Measure_functions
http://farsight-toolkit.org/wiki/L_Measure_functions
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regions. ↑indicates feature values above the average and ↓ indicates feature values below 

average. (B1: Soma size and complexity features; B2, B5, B7: Overall size and 

complexity features; B3, B8: Overall symmetric features; B4: Soma size features B6: 

Segments and branches). 

 

Figure 22. Automatically identified pyramidal sub-types (one subtype in each column in A), 

and confusion matrix (manually validated) in B for the dataset in Figure 6. The high 

recall and precision values demonstrate the effectiveness of the proposed method. 
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7.4.2 Rat Hippocampal Neurons 

This dataset consists of 502 complete neuronal reconstructions of four types of neurons 

from the rat hippocampus in the NeuroMorpho.Org (Ascoli et al., 2007) database 

(www.neuromorpho.org). This is a very heterogeneous collection of cells that are 

imaged under a variety of conditions (e.g., cultured, obtained from neonates, or drug 

treated), as part of diverse studies including: pyramidal cells from (Ishizuka et al., 1995), 

pyramidal cells from (Scorza et a l., 2011), pyramidal cells from (Tamamaki et al., 1991), 

granule cells from (Bausch et al., 2006), granule cells from (Carnevale et al., 1997), 

granule cells from (Arisi et al., 2007), PCC cells and pyramidal cells from (Gulyás et al., 

1999), interneuron cells from (Chitwood et al., 1999), and interneuron cells from 

(Golding et al., 2005). 

Despite this heterogeneity, four groups of neurons were correctly identified by the co-

clustering algorithm based only on the arbor morphologies, as shown in Figure 23. The 

four cell types are pyramidal cells, granule cells, PCC cells, and interneurons respectively. 

A confusion matrix is also given based on the manual labeling in Figure 23 (E). The co-

clustering heat map and tree structures for this dataset are shown in Figure 23 (B).  

The pyramidal cells, identified as Group 1 in the co-clustering heatmap, have high 

overall complexity features. For example, the number of segments of each cell is higher 

than that in other groups, number of branches spread out from each stem is also more 

than that in other groups. Cells in this group also have higher values for bifurcation 

values (bifurcation angles, bifurcation diameter ratios, etc).  The second group identified 

by the co-clustering algorithm is the granule group, in which cells have simple 

morphological structures. Number of branches spread out from each stem is quite low, 

http://www.neuromorpho.org/
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approximately zero as there is rarely any bifurcations. However, the skewness features of 

this group are high since all branches are located on one side of the soma. The PCC cells, 

identified in the third group, also have simple morphological structures. Therefore, the 

overall complexity features are of low values. On the other hand, it’s skewness features 

are lower than that in the second group though their stems and braches are not symmetric, 

but distributed uniformly on the surface of the soma. Specifically, in Figure 23, we 

analyzed of all 502 neuronal cell reconstructions from the rat hippocampus region. (A) 

Data matrix of 502 cells and 130 features/cell displayed as a heat map. (B) Harmonic co-

clustering results with overlaid circles indicating the four identified groups of cells.  

Overlaid boxes B1 – B5 highlight distinctive feature groups of automatically identified 

cells. (C, D) Visual confirmation of sample cells from the boxed regions. ↑indicates 

feature values above the average and ↓ indicates feature values below average. (B1: 

Overall size and complexity features. B2: Overall symmetric features. B3: Segments and 

branches. B4: Tips amplitudes. B5: Soma complexity features). (E) shows the confusion 

matrix using labels specified in the database. 

To test the sensitivity of the proposed algorithm to subtle arbor differences, we 

selected four subtypes of interneurons including bitufted cells, Calbindin (CB) containing 

cell, Calretinin (CR) containing cells, and Cholecystokinin (CCK) containing cells. The 

morphologies of these four subgroups are quite similar to each other (especially among 

the last three subtypes). The algorithm gives an overall accuracy of 79%. Notice that the 

accuracy is not as high as the other datasets and reflects the difficulty of the task – these 

four cell subtypes are very difficult to discern visually. 
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Figure 23. Analysis of all 502 neuronal cell reconstruction. (A) Data matrix of 502 cells and 

130 features, (B) Harmonic co-clustering results, (C, D) Visual confirmation of 

sample cells from the boxed regions, (E) Confusion matrix using labels specified in 

the database. 

7.5 Binge Alcohol Study  

    In this section, we present an application of our proposed framework in a binge alcohol 

study. A brief introduction of the experiment and data acquisition will be given in Section 
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7.5.1. In Section 7.5.2, we will describe the details of applying the framework, including 

data preparation, parameter setting up, and analysis results interpretation. 

7.5.1 Study & Data Description 

It is known that exercise benefits the brain, in part because it powerfully promotes glial 

health and plasticity. However, exposure to drugs of abuse has been shown to limit future 

experience-induced brain change. In an experiment conducted by Emily et. al (2014), 

they investigated whether binge alcohol exposure would reduce the beneficial effects of 

exercise on glia. They focused on the medial prefrontal cortex (mPFC), an alcohol-

vulnerable region, dysfunctions in which contribute to the perpetuation of addiction. Rats 

underwent a four-day binge exposure, followed by a week of rest and then 4 weeks of 

exercise. Immunofluorescence was used to label microglia, astrocytes, and neurons in 

serial tissue sections through the mPFC. The Confocal microscope images were 

processed using FARSIGHT, a computational image analysis toolkit.  

Tissues were collected from a previous study of binge damage and exercise-driven 

repair in female rats (Maynard and Leasure, 2013b). Experimental rats were given an 

ethanol diet or an isocaloric control diet every eight hours for four days by intragastric 

gavage. Seven days after the last dose of alcohol or isocaloric diet, rats in the exercise 

groups were given access to exercise wheels for a total of five and a half hours each day 

for four weeks. After 28 days of exercise, rats were killed and their brains were removed 

for imaging. Three 50 µm serial sections from the mPFC of each animal were processed 

using multi-channel immunofluorescence to label cell nuclei (4',6-diamidino-2-

phenylindole, DAPI), microglia (Iba1), neurons (NeuN), and astrocyte fibrils (GFAP). A 

Leica SP8 confocal microscope was used to image eight fields of view (hereafter referred 
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to as “tiles”) in a 2x4 rectangle covering a 775 µm x 1,550 µm wide region for each 

tissue section, resulting in 24 fields of view for each animal. After image acquisition, 

each Z-stack was separated by channel and saved in TIFF format for processing in 

FARSIGHT. In the Farsight Pipeline, an initial segmentation step segmented all nucleus 

in the DAPI channel. A following active learning classification algorithm allows a user 

interactive classifying of nucleus into different cell types. Furthermore, the astrocytes and 

microglia arbor reconstructions are derived by using a tracing and reconstruction 

algorithm. 

7.5.2 Analysis on Microglial and Astrocytes 

    From the above procedures, the total number of microglial cell construction collected 

in this experiment is 11,822, each with 132 arbor measurements. A table of 11,822 ×132 

is set as input to the proposed frame work. We use a default setting of 50 cell clusters and 

32 feature groups for the co-clustering algorithm. In Figure 24, we show a heatmap of the 

reorganized data using the co-clustering algorithm. Population distribution of the four 

clusters is also given for each experimental condition in Figure 25. There are four cell 

clusters (ramified, elongated, activated and amoeboid) identified. We present them here 

in a decreasing order of the cell morphology complexity. A zoomed-in view of the four 

clusters are shown in Figure 26 (e, f, g, h), selected from a collection of the microglial 

channel of the four experimental groups in (a, b, c, d). It is clear that the population of 

amoeboid microglia in the Exercise Binge is significantly higher than in the rest of the 

experimental conditions.  
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Figure 24. Microglia co-clustering heatmap, rows correspond to cells, columns correspond 

to measurements. Four clusters are identified from the heatmap. 

In the next step, we performed the sparse group lasso. Label information are derived 

from the co-clustering result. Specifically, in this application, we labeled the entire 

dataset as 12 classes. Each class represents a combination of cell cluster (3) and 

experimental condition (4). The reason that the forth cell cluster (amoeboid) is excluded 

is because these cells are arbor less. Our feature group information in this application are 

given according to their functional and morphological properties by biologists. The 132 

measurements are divided into 32 groups. The group lasso results are presented in Figure 



93 

 

4. In this experiments, our lambda is chose to be in the range of [0, 2.5]. Figure 27 (A) is 

a coefficient plots across lambdas, the degree of freedom are given when each feature get 

selected. The MSE is shown in Figure 27 (B), the estimation accuracy increase along 

while the sparsity decrease. The acceptable range is given between the two dash lines. 

Further we selected a coefficient vector with degree of freedom 28, which in this case fits 

best of the regression. We plotted the distribution of each of the significant features 

across clusters and experimental conditions. The statistics of the high ranking features are 

given in Table 10. We choose the same parameter and model for further batch learning. 

 

Figure 25. Microglia cell cluster distribution among experiment conditions. S0-sendetary 
control, S1-sendetary binge,E0- exercise control, and E1-exercise binge. C1, C2, C3 

and C4 represent four clusters. 
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Figure 26. Sample view of microglia sub-types across experimental conditions. C1-ramified, 

C2-elongated, C3-activated, and C4-amoeboid. 
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Figure 27. Lasso plot. The x-axis is the logarithm of lamda, the y-axis is the coefficients and 

mean square error, in (A) and (B), respectively. In (A), each curve represent a 

feature as listed in the legend. The degree of freedom is given on top when more 

features been selected. The acceptable range is indicated between the two vertical 

dash lines. 
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Figure 28. A coefficient vector selected from Figure 27, with degree of freedom 28. The x-

axis represent feature index and the y-axis represent coefficient. 

 

Table 10. Examples (cell size & leaf level) of feature distribution across experimental 
condition and cell cluster. 

Cell Size 

    

 

Sedentary Control Sedentary Binge Ex Control Ex Binge 

Group 1 328.94  +/-  120.19 281.5  +/-  71.53 252.3  +/-  90.53 157.77  +/-  71.57 

Group 2 192.98  +/-  40.23 189.63  +/-  37.91 147.69  +/-  33.02 130.44  +/-  31.19 

Group 3 92.69  +/-  36.87 92.75  +/-  39.5 76.59  +/-  28.74 66.77  +/-  26.63 

Leaf Level 

    Group 1 6.58  +/-  2.57 5.64  +/-  1.28 5.11  +/-  2.09 3.54  +/-  3.03 

Group 2 3.98  +/-  0.85 3.84  +/-  0.83 3  +/-  0.78 2.41  +/-  0.85 

Group 3 1.92  +/-  0.83 1.87  +/-  0.83 1.5  +/-  0.62 1.39  +/-  0.69 
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Figure 29. Distribution of Cell Size and Leaf Level across experimental groups and cell 

clusters. 
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Chapter 8 Conclusion  

In this dissertation, we proposed a comprehensive and usable method for population-

scale comparative arbor analytics that includes three major components. First, we use our 

previously reported unsupervised harmonic co-clustering algorithm for identifying groups 

of cells with similar morphologies in a hierarchical manner, and simultaneously 

identifying the hierarchical grouping patterns among the corresponding arbor 

measurements. This algorithm is applied to the combined ensemble. For example, if we 

are interested in comparative profiling of two cell populations A and B, harmonic co-

clustering is performed on the combination of A and B. This step can be thought of as a 

grand reorganization of the data matrix that allows us to establish a common baseline of 

cell grouping patterns, and the underlying feature groups for the combined dataset, 

enabling a sensitive analysis of the differences between A and B in subsequent steps.  

The unsupervised hierarchical harmonic co-clustering algorithm is a practically 

effective tool for quantitative arbor analytics, and in our experience, requires very little 

effort in terms of settings and parameter tuning. The static and low-resolution figures in 

the paper do not fully convey the live interactive power of this method as can be 

experienced on a large dual screen monitor. For example, the names of the L-measure 

parameters are visible in the live system but not on our figures since the text become too 

small. Given a large table of L-measure data, our algorithm identifies groups of similar 

cells with similar features. The investigator can then study a small number of sample 

cells from each group knowing that they typify members of the group. Furthermore, our 

method makes it convenient to compare groups of cells visually and quantitatively.  It’s 
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linked embedding into the FARSIGHT trace viewing and editing tool enables efficient 

visual confirmation of the analyses. Our work has also resulted in a modest but useful 

extension to the L-measure. The co-clustering algorithm is agnostic to the choice of arbor 

measurements, and other sets of arbor measurements can be used just as effectively.  

This method is robust to noise, produces biologically meaningful yet concise results, 

and is scalable to large datasets. The algorithm outperforms recent methods in dealing 

with high dimensional datasets due to the adoption of the diffusion distance measure. By 

coupling the geometry of row space and column spaces, it is not only able to extract the 

cluster structures in row and column spaces, but also map the sub-block structure of the  

data matrix.  

The Haar wavelet-based smoothing provides a theoretically sound and practically 

effective way for co-clustering large datasets. For small datasets (<50 data points), the 

proposed method will produce valid results, but not offer any significant benefits over 

conventional co-clustering methods. There is no theoretical upper bound to our method, 

and it should, in principle, work correctly given enough computing resources. With such 

future applications in mind, our C++ software implementation has been written in a 

manner that is 64-bit compliant using long word lengths, in order to handle potentially 

much larger datasets in the future. To date, we have conducted experiments with ~30,000 

data points. Beyond this size, the user will likely be limited by the available visualization 

resources (e.g., screen size). 

The strengths and limitations of the proposed method are ultimately tied to the 

expressiveness of the data matrix fed to the harmonic co-clustering. It is critical to 
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demonstrate the utility and robustness of the harmonic co-clustering analysis with large 

heterogeneous populations of cells , and the ability to differentiate cell subtypes with 

subtle morphological differences. For this purpose, we have focused our efforts on two 

such datasets in the NeuroMorpho database, one of which is to identify different cell 

types from the same region, while the other is to identify subtypes of pyramidal cells.  

Similarly, the algorithm should be able to cluster any arbor cells when similar 

measurements are computed. The performance of the clustering will depend on the 

quality of the reconstructions, and the sensitivity with which subtle arbor differences 

between different neuronal subtypes are reflected in the quantitative L-measure data. In 

other words, the co-clustering algorithm is able to group cell subtypes as long as the 

morphological differences are captured with sufficient sensitivity by the feature 

measurements. We expect that libraries like the L-measure will continue to be refined in 

the future, and the co-clustering algorithm will be able to exploit these refinements. Some 

of these refinements may well be inspired by quantitative arbor analytics on a population 

scale. 
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