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Abstract

Image-guided and robot-assisted surgical procedures are rapidly evolving due to their

potential to improve patient management and cost effectiveness. Magnetic Resonance

Imaging (MRI) is used for pre-operative planning and is also investigated for real-

time intra-operative guidance. A new type of technology is emerging that uses the

magnetic-field gradients of the MR scanner to maneuver ferromagnetic agents for

local delivery of therapeutics. With this approach, MRI is both a sensor and forms a

closed-loop controlled entity that behaves as a robot (we refer to them as MRbots).

The objective of this thesis is to introduce a computational framework for preopera-

tive planning using MRI and modeling of MRbot maneuvering inside tortuous blood

vessels. This platform generates a virtual corridor that represents a safety zone in-

side the vessel that is then used to access the safety of the MRbot maneuvering. In

addition, to improve safety we introduce a control that sets speed based on the local

curvature of the vessel. The functionality of the framework was then tested on a

realistic operational scenario of accessing a neurological lesion, a meningioma. This

virtual case study demonstrated the functionality and potential of MRbots as well

as revealed two primary challenges: real-time MRI (during propulsion) and the need

of very-strong gradients for small MRbots for maneuvering inside narrow cerebral

vessels. Our ongoing research focuses on further developing the computational core,

MR tracking methods, and on-line interfacing to the MR scanner.
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Chapter 1

Introduction

As minimally invasive procedures with real-time image guidance are emerging in the

clinical realm, an ever-growing body of literature supports the potential of magnetic

resonance targeting (MRT) to maneuver tiny tetherless therapeutic entities inside

natural body pathways (such as vessels) to a targeted pathologic locus. MRT offer

unparalleled potential to improve patient outcome. It is based on using the mag-

netic field gradients of an MRI scanner, used for signal spatial encoding and image

generation, to propel and accurately maneuver a ferromagnetic object [17, 27, 69].

The fundamental benefit of MRT is its tetherless nature: no catheters, guidewires

or other mechanical support that can harm tissue is needed; this is of paramount

importance especially for paths inside small vessels (brain arteries) or quickly mov-

ing vessels (coronary arteries). The potential success of MRT can be transformative

and eventually a paradigm shift for a plethora of interventions. This argument is

eloquently stated by Sitti et al. [97]: “One of the highest potential scientific and
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Figure 1.1: MR-based servoing of the MRbots (a) From the segmented vessel
OBJ(2, r) is extracted the Path P (r); the virtual guidance corridor GC(r) (dashed
circle) is generated with a safety zone SZ . (b) The GC(r) imposes a forbidden bound-
ary beyond which the MRbot should not stray. (c) The gradient exerted force FG

analyzed in two components, a propulsion FP and a correction transverse FT .

societal impacts of small-scale (millimeter and submillimeter size) untethered mo-

bile robots would be their healthcare and bioengineering applications”. We have a

system that operates in a closed loop using the MR scanner (i.e., its gradients and

data acquisition) in this dual role to propel and track these entities. This system

behaves and can be described as a robotic system. If we consider that we often

have an assembly of such entities then we have a unique paradigm of robotic swarms

driven by a single source [9]. For simplicity in this article we will refer to them as the

MRbots. As it is well recognized by the pioneers in MRT [15, 40, 63, 75, 77, 106, 114]

the most critical aspects are relating to the MRI modality: (i) as a sensor, the nu-

clear magnetic-resonance phenomenon is inherently of low-signal sensitivity, and (ii)
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the imaging gradients are used for both propulsion and sensing. The result of the

former is a practical trade-off between temporal and spatial resolution and both are

essential for maneuvering inside vessels, especially in tortuous vessels, as well as in

moving anatomies, such as the heart and the coronary arteries.

The above-mentioned clinical paradigms have the potential to highly benefit from

this robotic technology. To ensure safety and accuracy, such procedures require

continuous on-the-fly imaging (to both track the MRbots and image the pathway)

and propulsion. For the purpose of MRbot control, this challenge can be appreciated

considering that even a high resolution MRI, e.g., pixel sizes 0.25 to 0.5 mm, may not

be sufficient to accurately image a 1-2 mm diameter vessel; this is highly demanding

considering that in vivo the vessel is a 4D structure. In the absence of propulsion,

practical real-time MRI (rt-MRI) can be achieved even with multislice MRI as was

shown in cardiovascular procedures [2, 110]. The challenge is that with MRbots the

gradients are also used for propulsion and there is a priority conflict: one needs

to safely maneuver, which in turn requires continuous MRbot tracking and path

imaging.

Prior groundbreaking in vivo and in vitro works have controlled the MRbots

along a path between waypoints, for example [67]. Recently a study described a

fast method to combine the propulsion and tracking [26]; still we are lacking intra-

operative path imaging and the need to follow a trajectory without knowledge of

consequences of an error. Alternative approaches need to be considered paving the

way toward such in vivo interventions. A method complementary to trajectory plan-

ning, which requires accurately following a well predefined path to ensure safety, is to
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control the MRbot to maneuver inside the tubular corridor defined by the vessel it-

self. Maneuvering inside a corridor that is narrower than the vessel offers a margin of

error without colliding or perforating the vessel wall. This concept has been explored

before in catheter-based vascular and cardiac interventions introducing virtual fix-

tures (VF), i.e., imaging-based software-generated virtual constraints, for improving

safety and accuracy of telemanipulation systems [13,15,40,75,94,106,114]. Such an

approach can address the limited spatial resolution of preoperative and intraopera-

tive MRI as shown before in cardiac interventions [15,40,75]. From the large number

of pioneering works in VF robot guidance, we review a small pertinent sample. Park

et al. first introduced the innovative concept of VF for cardiac surgeries (coronary

artery bypass graft procedures) using computed tomography (CT) images [106]. An

important contribution was by Ren et al. that introduced the concept of dynamic

virtual fixtures, generated by creating a visual/haptic model from preoperative dy-

namic MR/CT images and registering it using intraoperative ultrasound images, for

minimally invasive robot assisted cardiac surgeries [114]. Yeniaras et al. described

the generation of dynamic deformable volumes inside the left ventricle of the heart for

safe access to the aortic root using pre-operative and single slice rt-MRI [15]. Navkar

et al. introduced the use of multislice rt-MRI to update a 4D virtual corridor on-the-

fly [40] and force-feedback interactive control [77] for intracardiac surgeries, that was

then combined into an integrated framework for rt-MRI/VF-based robot control [63].

These, as well as other works in medicine or other control domains, demonstrated the

value of virtual cues generated from imaging to guide a manual or robotic procedure.
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This work is a first step toward buiding a system for performing tetherless MR-

bot interventions from the MRI servoing perspective. It focuses on implementing a

prototype computational framework for MRI/VF-based visual-servoing of tetherless

MRbots. It introduces the use of VF, extracted from pre-operative multi-contrast

MRI, to generate virtual guidance cues for maneuvering MRbots inside tortuous ves-

sels: 1) a guidance path along the centerline of the vessel which act as the preferred

trajectory, and 2) a virtual guidance corridor that follows the guidance path with

diameter adjusted to be smaller than the vessel diameter locally (within which the

MRbot can safely maneuver, see Fig. 1.1). The guidance cues are then used by (1)

the gradient generation module to calculate the needed magnetic force exerted onto

the MRbot and generate the corresponding gradient waveforms and (2) the closed-

loop speed and position controller. Those cues are in a format ready to provide visual

cues to the operator via a display or augmented reality devices. Since on-line access

to an MRI scanner was not available, this prototype framework was tested in silico

simulating the maneuvering of a hollow sphere from an entrance location to a tar-

geted lesion for the clinical paradigm of brain meningioma. Section 3 describes the

implemented framework, Section 4 introduces the pseudo-code of the major methods

used in this project, Section 5 describes and presents results from the in silico studies

and Section 6 discusses the system and its limitations and concludes and discusses

future works.
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Chapter 2

Background

In this thesis we will explore a multi-disciplinary framework to plan and operate

medical interventions using a Cyber-Physical System (CPS). Used as an alternative

to conventional minimally-invasive operations and open-surgery, the frameworks op-

erates in the field of computer and robot assisted interventions. A large number of

methods were presented using robotic manipulators [4–6,15,16,18,28,32,38–40,44,45,

47,54,55,61,63,68,75,77,90,106,110,111,114], computational systems [2,13,94,110]

and haptic devices [11,105,110].

The system shown here and on which we will focus is used in the case of a brain

tumor treatment through localized drug delivery, but could be extended to other

applications including, but not limited to, remote biopsy, radiofrequency ablation,

etc.
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2.1 MRI-driven devices

Using the MRI scanner as both imaging machine and actuator would allow to per-

form surgery with a depth of visual feedback and precision not yet allowed with

conventional open or minimally invasive surgery, or a safety unobtainable through

X-ray guided surgery. The applications would range from minimally invasive surgery

[10, 70, 117, 119] to drug and material delivery to specific and sensitive parts of the

anatomy [14, 21, 30, 33, 34, 65, 66, 71, 104]. Driving tools using controlled magnetic

fields introduced a new set of devices both for diagnostic and surgical procedures.

Such tools were guided using different field generators coupled with various imaging

techniques [107, 108, 119], from permanent magnet to control endoscope to survey

localized destination [107,118] to more complex electromagnetic actuators directing

microrobots within vessels or fragile regions [19,108,119]. If these customized systems

allow more freedom for development, they lack the duality the MRI has to offer to act

both towards driving the tool and visualizing in near-real time the result. Moreover,

an MRI machine allows fine tissue imaging without the danger of radiation inherent

in X-rays systems. The electromagnetic fields of the MRI can be used to directly

apply forces on ferromagnetic material through gradient manipulation [17,27,69], by

inducing a current within embedded micro-coils allowing the robots to swim to their

designated target [53, 67], or even steering catheter to its destination [57].

However, the nature of MRI raised several issues regarding image-guided opera-

tions [29, 41, 67, 112, 113]: Magnetic interactions between ferrous devices due their

magnetization, heat generation through induced current in permissible metals, and

imaging artifacts. Restricted by such complications, the cost of MR-compatible
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robots was impacted and resulted in high-priced devices that need to be tethered to

the external control systems [89,99,102].

2.2 Image segmentation

The scope of medical image segmentation, due to the numerous applications possible,

results in a high number of proposed methods [79, 85, 87, 92]. Such techniques are

improved every day to help physicians and surgeons reach faster decisions concern-

ing diagnosis and prognostics. Whether built to quicken the detection of emerging

disease on the anatomy scale [22–24, 48, 101, 115] or the cellular level [72, 84, 93], to

guide the planning of a difficult operation [20,62,64,109], or to follow a patient and

prevent post-surgery complication [12, 50, 64], medical image processing can inter-

vene in various stages of the curing process, allowing a substantial gain of time and

information enhancing the patient healthcare.

Imaging of the brain to detect tumor is no exception to this rule [8, 35] and new

and improved methods are introduced every week [3, 78, 82] to tackle this disease.

If either mono- [76, 81] or multi-modality [46, 52, 83] imaging is crucial to diagnose

brain tumor, MR-scans have become the prime visualization technique to facilitate

its detection. Commonly used by radiologists and surgeons, these digitized sliced

volumes allow a rapid or more precise analysis of the brain and the possible anoma-

lies. However, if the visual detection of the tumor can be quickly perceived by any

trained eye thanks to the contrast agent, as seen on Figure 2.1, a more-advanced

study of the brain tumor and the potential edema to evaluate the type of tumor and
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give a prognostic is time consuming.

Image processing then tends to impact the clinical process in distinct phases. First,

it helps facilitating the detection and segmentation through machine learning either

unsupervised [49,91] or supervised [7,37,86], or through more conventional methods

such as active contours [42,88,116], or watershed [73]. Second, machine learning can

be used to classify the types of tumor between Glioma, High-grade and Low-grade,

and Meningioma [58, 95, 96], as much as separating the edema from the actual tu-

mor [116]. Finally, a post processing steps allow the surgeons to find the best entry

point to either program a biopsy or extract mutated cells [74].

The process remains the same for the blood-vessel segmentation [51, 56, 103], where

this time the applications and the scale variate from sub-millimeters in the eye for

example [43, 98, 100] to arteries feeding directly from the heart, with a diameter of

around 2 to 3 centimeters [59, 60].
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Figure 2.1: Contrasted MR imaging of a patient with a brain tumor: it appears in
bright intensity on left side, while the edema results in a darker intensity, surrounding
the tumor up and right on the image.
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Chapter 3

Methods

3.1 Overview of the VF approach

In a typical scenario of a procedure performed via a vascular access, a tetherless

MRbot is introduced into the vessel at an inlet location In(r), for example via an

intravascular (IV) cannulation, and maneuvered toward a targeted location T (r)

where r is the MR coordinate system location. Generation of the guidance cues

is based on two criteria: (1) assurance that the MRbot does not harm the vessel

(e.g., perforation or rubbing), and (2) accurately reach the targeted anatomy. In

this work we made two assumptions. First, all structures are static; this is in a first

approximation appropriate to describe the vascular tree in the clinical paradigm of

interventions in the brain. However, this is not the case in other organs, for example

in the coronary arteries or in the heart blood chambers in which cases the guidance

cues are dynamic (for example as shown before in [15,40]). Second, the MRbot size is
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such that it can maneuver inside the entire length of the vessel of interest; in practice

spherical MRbots can be produced in different sizes (that does have consequences as

discussed in Section 5.2 ). Figures 1(a)-1(b) illustrate the proposed approach. The

magnetic resonance angiography (MRA) is segmented to generate the vascular tree

OBJ(1, j). The index j refers to the digitized form of the MRA 3D vascular path.

The centerline P (j) and a guidance corridor GC(j) are generated so that the radius

RGC(j) of the GC(j) is smaller than the diameter RV (j) of the segmented structure

OBJ(1, j). An MRbot can safely maneuver in the 3D cylinder with radius RGC(j)

surrounded by a ring-like safety zone SZ(j) = RV (j)−RGC(j) within which no motion

is allowed. The operation of this control scheme can be appreciated considering that

the force FG(j) applied to the MRbot at location j has a “forward” propulsion FA

and a transverse correction component FT ; they are synchronously adjusted to keep

the MRbot always inside GC(j) and as close to P (j) as possible.

3.2 Computational framework

In the computational core the 3D vascular path is represented as a (6, NP ) matrix

where NP is the digitization number after processing the MRA data: 3 coordinates

[X(j), Y (j), Z(j)] of the centerline point, the radius of the vessels RV (j), the radius

of the guidance corridor RGC(j), and the curvature κ(j); as illustrated in Fig. 2(a)

the path is visualized as a linear entitiy [X(j), Y (j), Z(j), RV (j), RGC(j), κ(j)]; 1 ≤

j ≤ NP . In the prototype version, the computational core is composed of four task-

dedicated software modules, as illustrated in Fig. 3.1. Parameters of the routines are

12



Figure 3.1: Architecture of the core (refer to Table 1 for definitions) of the system
depicting processes and data flow paths among them. PIPm: Preoperative imaging
processing module; PLm: Planner module; CNRm: control module; VISm: visual-
ization module.

accessible via the graphic tools of the GUI shown on the LCD and/or of a HoloLens.

Table 1 reviews the parameters for ease of reference. In each current form, the

core was developed and tested on Matlab for the flexibility in testing image-based

processes; but it does not offer the benefits of C/C++ and associated libraries.

3.3 Preoperative imaging processing module

The input to the Preoperative Imaging Processing module (PIPm) are the preopera-

tive MRI data that are processed to render the anatomical structures of interest that

will then be used by the Planner and the Visualization modules. Currently, the PIP

module includes three routines for segmentation of the tumor, the skin and vessels.

Due to the small amount of data we had available, it was decided to use a toolbox

approach: building an algorithmic process to perfectly fit only one set of medical

13



Table 3.1: Data used by the computational core.

Entity Description Source Used by file
MR(c) MR data MRI PIPm, VISm .dcm
In(r), T (r) Inlet and Target PIPm
{OBJ(j, r)} Segmented objects PIPm VISm .jpg

P (j) Path PLm
CNRm
VISm

(*)

GC(j) Guidance corridor PLm
CNRm,
VISm

.srt

κ(j) Curvature PLm CNRm (*)

V (j) Velocity profile PLm
CNRm
VISm

(*)

G(r, t) Gradient waveform CNRm MRI
PIPm: Preoperative Imaging Processing module;
PLm: Planner module;
CNRm: control module;
VISm: visualization module;
(*) elements of the matrix.
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data is bound to fail. In fact, the same way a machine-learning method can overfit,

the method created will behave as expected for the data set it was built for but will

have more chances to misbehave as new data sets are added. This can be due to var-

ious external parameters, such as the unique anatomy of each patient, the intrinsic

imaging value of the MR-scanners or even the timing at which the contrast agent is

injected. A partial solution is thus to create a toolbox of segmentation algorithms

that can be used interactively, allowing the surgeon or medical personnel to quickly

extract the desired region: tumor, vascular tree, and skin.

As discussed in Section 6 and to better fit the final desired system, this set of com-

puting tools will be improved to match the model of the MR-scanner to which it will

be attached to, but to keep the versatility and interactivity of the current version.

Extraction of Tumor : The tumor, OBJ(1, r), was extracted from the multislice

set of Post-Contrast T1-weighted Fast Field Echo (post-T1FFE). A region-growing

algorithm was manually seeded by creating a few polygons inside the tumor. The

tumor was then segmented based on the criterion introduced by Pohle et al. in [80]:

at step t, all voxels connected to the existing region R(t − 1) are added to R(t) if

their value is included in I(t) where:

I(t) = [v − α · σ−; v − α · σ+] (3.1)

with v being the median of all the values of the voxels included in R(t−1), α a user-

selected parameter set visually, σ+ the standard deviation of the values of R(t − 1)

that are greater than v and σ− the standard deviation of the values of R(t − 1)

that are lower than V . Two voxels are connected if they have at least one vertex in

common.
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Figure 3.2: Representative input and output data of the PIPm showing a zoomed
in area of the original DICOM image (95th slice of the TOF-MRA set that depicts
three cerebral vessels (1)-(3)). The solid line is the output of the PIPm segmentation
and the dashed circle is the maximum CG circle for vessel (1). Vessel (1) is the one
that reaches the lesion and inside which the MRbot maneuvers. (b) Output of the
PLm showing the segmented vessels and the CG mesh for vessel (1); this output
is sent to the CNRm and VISm. No smoothing or interpolation was used, clearly
demonstrating the challenge with native limited resolution of MR data.
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Upon completion of the region growth step, the surface is smoothed using a morpho-

logical closing with a sphere mask to erase small gaps due to noise. In our case, an

α of 1.5 allowed us to segment the tumor.

Extraction of Blood Vessels : Arteries OBJ(2, r) were extracted from the mul-

tislice set of Time Of Flight (TOF) magnetic resonance angiography (MRA). Seg-

mentation was based on a simple signal intensity high-pass filtering algorithm, i.e.,

thresholding. Two combined manual thresholds were used: the first was directly

applied on the value of the voxels, while the second used the results of the Frangi

filter to allow finer vessels to appear [31]. The filter allows the user to be less restric-

tive when applying the threshold on the value of the voxels by favoring the detected

tubular structures. Once the thresholds are visually set, various segmented volumes

corresponding to the wanted artery trees were selected, hence cutting any unwanted

noise that passed through both thresholds. The Frangi filter was used on different

scales s ranging from 0.3 to 5. For extracting vessels there are many superior meth-

ods. However, we selected the simple filter-based approach because the next stage

of this framework will have to run in real-time using a customized TOF sequences.

Extraction of Skin: The skin was extracted primarily for visualization purposes,

as proposed by our collaborating neurosurgeons. It generates two skins, OBJ(3, r)

and OBJ(4, r), one from the TOF MRA and the other from the post-contrast T1w-

FFE, as shown in Fig. 3.4, that can be used in case the patient moved during the

scanning process to register the different MR data sets; this was not needed in the

two studies we processed. In either data set, skin extraction entailed the following

steps. First, a threshold was visually applied to the image stack, segmenting at best
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Figure 3.3: Comparison between the manual results obtained without (in blue) and
with the help of the Frangi filter (in cyan)
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the whole visible skin. Then, a morphological closing was applied using a spherical

mask to eliminate the segmented Rician distributed noise surrounding the skin [36].

The noise here does not need to be completely eliminated through more extensive

filtering as the skin is used as a visual marker for the surgeons. Thus, the radius of

the mask sphere is high enough to hide the noise. The operators have access to set

the parameters in the PIPm routines, such as the thresholds in region growing and

the Frangi filter.

3.4 Planner module

The input to Planner module (PLm) is the segmented vascular tree OBJ(2, r) that

is processed by the following three routines that upload their corresponding outputs

to the data pipeline: (1) extraction of path P (r), (2) generation of guidance corridor

GC(r), and (3) generation of velocity profile V (r), where r is the MR coordinate

system location (onto which all entities of the AoP are inherently co-registered).

These tasks are: Extraction of Path P (r): A first path approximation, between the

inlet and the target, is generated from the previously extracted artery volumes as 26-

connected graphs: each voxel is connected by two unilateral edges to its 26 neighbors.

The weight of each incoming edge to the voxel v is the input to the energy function

E(v). The path is then the shortest one from the inlet to the target voxel, calculated

using Dijkstra’s algorithm. In this work, the energy function was:

E(v) = exp

{
max
u∈A

(d(u)− d(v))

}
, (3.2)
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Figure 3.4: Registered skin from both the TOF MRA scan in blue and the post-
contrast T1w-FFE scan in green.
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Figure 3.5: (a-b) 3D scene showing (a) 3D rendered vessels and meningioma and (b)
the extracted path P (r) from the inlet to the targeted sites. All 3D structures are
inherently registered and scaled to the MR scanner coordinate system. No smoothing
or interpolation was used.
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where A is the set of segmented voxel in the artery tree and d(v) is the distance from

the voxel v to the closest voxel in the matrix not in A. This energy function was

selected so the generated path approximates the center-line of the vessel and forces

the shortest path through bifurcations and other imperfections along the arteries.

Figure 3.6 shows the difference between our path and the geometrical center-line on

a manufactured volume. The center-line is found using the 3D Voronoi diagram of

the surfaces voxels: each vertex of the diagram is considered a node in a graph and

is connected to the other vertices of the cells it belongs to, if and only if they are on

the same surface. Thus, two vertices of the same cell are not neighbors if the line

joining them goes through the convex hull of the cell. Each Voronoi cell is a convex

volume. We use Dijkstra’s algorithm on this graph, but this time using the following

energy:

E2(v) =
1

d(v)
(3.3)

The search is restricted to the vertices inside the volume of the vascular tree and each

point of the center-line is the furthest from the surface due to the diagram nature.

The path generated is situated in the matrix system, which does not take into

account the position of each voxel in the Reference Coordinate System (RCS). To

correct this, the path is first translated into the RCS using the DICOM information

present in the header of the MRI slices: the position of each slice, and the pixel size

in each slice. The same is done for a narrow band B of voxels around the set A

found earlier. B is found by dilating A using a 3×3 voxel cube and then subtracting

A: B is thus the first 6-connected layer of voxels surrounding A. Two voxels are

6-connected if they have at least one face in common.
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Figure 3.6: Comparison of deformation due to imperfection between the shortest-
path algorithm in blue, and the geometrical center-line in red.
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Figure 3.7: Comparison between the original path in blue and the generated corrected
path using the b-spline in red.

Generation of Guidance Corridor(s): The path given by Dijkstra’s algorithm is

restricted to the voxels themselves and may thus have sharp turns or may contain

saw-like parts. The first step following the RCS translation is then to smooth the

path by approximating it with a high-order B-spline as shown in Figure 3.7. Finally,

the radius of the tube is the distance between the points of the B-spline and the

closest point in B. The result is a set of points representing a path along with a

radius value describing a corridor that can be used as a virtual fixture. This corridor

can then be reduced, either using a constant safety margin, or a percentage of the

initial corridor to create the safety guidance corridor ensuring that any object going

through will not touch the inner walls of the vessels.
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Figure 3.8: Image showing the different layers of the path planning. From bottom
left to top right: Vascular tree, feeding artery, tube, safety corridor, path

Generation of velocity profile: This routine generates a targeted velocity profile

V (r) along the path P (r), calculating its vector for each one of the points of the

path. V (r) is assigned to zero at In(r) and T (r) while for any other location V (r)

is calculated with:

V (r) =
V0

1 + κ(r)/κ0
· Rs −RGC(r)

R0

(3.4)

where Rs is the radius of the MRbot and V0, κ0 and R0 are constants allowing to

adjust the velocity profile.
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3.5 Control module

The controller performs a control of the velocity Vs of the MRbot as well as its

position Ps. A setpoint needs to be generated first. The point of P(r) that is the

closest to Ps is selected. This point (denoted Pc) is taken as the reference point.

The desired velocity at this point is Vc. Errors on the position and velocity can be

calculated with:

Position error = |Ps −Pc| (3.5)

V elocity error = |Vs −Vc| (3.6)

A block diagram of the controller is presented in Figure 3.9. The controller is

composed of a PID regulator and a feedforward component that directly outputs the

optimal control. The optimal control Fopt corresponds to the gradient that allows

compensating for the drag produced by the blood on the sphere:

Fopt =
1

2
· Cd · ρ · A · |Vblood −Vc| (3.7)

with Cd being the drag coefficient, ρ the density of blood (1025 Kg/m3), A the

reference area and Vblood the blood velocity vector.

The PID regulator takes as input the sum of the velocity error and the position

error. The position error is multiplied by a coefficient k that sets the importance of

the position control with respect to the velocity control. In a practical application,

the velocity can be obtained from the position measurement by using a Kalman filter.
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Figure 3.9: Diagram presenting the architecture of the trajectory controller.

3.6 Visualization module

The purpose of the Visualization module (VISm) is to generate and update a virtual

reality environment that simulates the Area of the Procedure (AoP). The VISm can

display any combinations of the following objects: MR images, the segmentation

contours, the 3D guidance corridor GC, and/or the current position of the sphere

while a simulation is running. All objects in the AoP are registered and scaled to

the coordinate system of the MR scanner, which offers a natural space of visualizing

3D geometric structures. The update rate of the AoP is the same as that of the

simulation, and if rt-MRI is used, it is the rate of MR data collection [15, 77]. The

AoP can be accessed by a HoloLens that polls the Host PC for updated versions of

the virtual scene.
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Chapter 4

Algorithms

In this section are presented the main algorithms used in the PIP module, the PL

module, as well as the Control module.

4.1 PIP module – Region-Growing algorithm

The Region-Growing algorithm takes as input three parameters:

• The volume data D, an n×m× o matrix of values

• The initialization region I, an n×m× o boolean matrix were true represents

the seeding region

• The criterion C, a function C(S, v)

– taking a set of value S and the value of a voxel v as input
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– returning true if the voxel fits the criterion over the values of S.

Let A be a generic matrix. Let p be a voxel within the boundaries of A, A(p) is the

value of A at the voxel p location. The result of this algorithm is the grown region

Data: Data D, Initialization I, Criterion C
Result: n×m× o boolean matrix
Let R be I;
repeat

Let S =
{
D(p) | I(p) is true

}
;

Q← R ;
foreach Voxel n k-connected to R do

if C(S,D(n) then
D(n)← true ;

end

end
R← Q ;

until R has stopped growing ;

Algorithm 1: Region-growing algorithm

produced by the seed and criterion: it is an n × m × o boolean matrix were true

represents the inside of the region.

4.2 PL module – Dijkstra’s algorithm

Dijkstra’s algorithm or Fast Marching Method in our case, takes four parameters as

input:

• The graph Gr and respective energy E of the edges per node. In our case,

we simply use the 3D morphology of the matrix to define the k-connected
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neighbors for the path, or the set of cells and respective vertices for the Voronoi

center-line.

• The entry node vin being the closest Gr node to In(r) shown in Table 3.1

• A list of nout exit nodes Vout. In this case, nout = 1 and Vout contains only the

closest Gr node to T (r) shown in Table 3.1.

Let Lmin be an adapted sorting data-structure that will contain a ascending list of

energy. Inserting an element into Lmin returns the index i to which position this new

element was inserted.

Internally, we change the structure of Gr so it can contain a status visited or not, and

a parent linking to another node of Gr. The parent can be empty. This algorithm

returns a set of nout path P in a form of an ordered list of nodes: each path can have

a different number of nodes, as the exit nodes in Vout are not at the same distance

from the inlet vin.
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Data: Graph Gr, energy E, inlet vin, targets Vout
Result: a set of n ≤ nout paths from vin to each reachable vertices of Vout
Let Lv = {vin} the list of vertex to expand from;
Change Gr(vin) status as visited ;
Initialize all the parents in Gr as ∅;
Insert the energy 0 of vin into the previously empty Lmin;
while ∃v ∈ Vout such as the parent in Gr(v) = ∅ AND Lmin 6= ∅ do

Let v be the first element of Lv. It is removed from Lv;
Let e the first value of Lmin. It is removed from Lmin;
foreach Node u connected to v in Gr AND not yet visited do

Insert e+ E(u) in Lmin. It is inserted in ascending order at index i;
Insert u in Lv at index i;
Change Gr(u) status as visited ;
Change Gr(u) parent as v;

end

end
foreach Node vout in Vout do

Let Pvout the path associated with vout;
Let u = vout;
while Gr(u) parent is not ∅ do

Add u at the end of Pvout ;
Let u be its parent;

end
Inverse the order of the path;

end

Algorithm 2: Pseudocode of the path finding algorithm

31



4.3 Control module

The trajectory controller algorithm takes as input the various parameters, such as

the patient’s anatomy, the sphere parameters, the MRI machine parameters, and the

planned path The output of this algorithm is:

Data: The planned path, environment parameters
Result: A timeline of gradients amplitude needed to actuate the sphere
while Procedure is ongoing do

Get Ps and Vs;
Search jc such as |Ps(jc)−P(jc)| = minimum;
Calculate the inputs to the PID regulator;
Calculate the output from the PID regulator;
Calculate the optimum control;
Calculate and update the output of the controller;

end

Algorithm 3: Pseudocode of the trajectory controller.

• In case of the simulation: a step-by-step 3D gradient G(t) array where each

step happens δt after the previous one. The result is then an array of vectors

defined for an integer k = 0 to the number of steps it took to reach the target,

such as the vector at index k represents G(kδt).

• In case of the live procedure, the algorithm will output in real-time t the

gradient G(t) to use to actuate the sphere inside the vascular tree.
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Chapter 5

Modelization, simulation, and

results

5.1 Modelization of the physical system

The force applied to the ferromagnetic sphere is proportional to its magnetization

(5.1). The magnetic field B0 of an MRI machine is strong enough to saturate steel

magnetically. The magnetization of the sphere was thus considered to be constant

and equal to the maximum magnetization steel can have. The saturation flux density

of 4750 steel is approximately 1.6 T which is equivalent to a magnetization M of

1.27E6 A/m. The force vector applied on the sphere Fs is calculated using eq. 5.1,

G being the gradient vector and Vol the volume of the sphere.
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Fs = G ·M · Vol (5.1)

The modelization of the field produced by the MRI scanner is straightforward. MRI

scanners produce almost uniform gradients inside the uniformity sphere. The gradi-

ent is therefore considered to be constant in the model.

The drag produced by the blood on the sphere was included in the model. It was

assumed that the flow is separated, i.e., the drag is proportional to the square of the

relative speed. The drag coefficient Cd of a sphere is equal to 0.47 for a Reynolds

number equal to 104. The drag can be calculated with eq. 5.2. This equation is

similar to eq. 3.7, except that the velocity of the sphere Vs is used in place of the

velocity setpoint Vc that was used to calculate the optimal control. It was assumed

that the blood flows at a constant velocity Vblood equal to 1 mm/s and that the flow

is collinear to P (r). See equation 3.7 for Cp, ρ and A notation.

Fdrag =
1

2
· Cd · ρ · A · |Vblood −Vs| (5.2)

5.2 Simulation Results

The model and the controller were implemented in Matlab. Results of simulations

are presented in Fig. 5.1 and 5.2. The parameters used for the PID controller

are Kp=0.3, Ki=0.2 and Kd=0.01. The constant k weighting the regulation of the
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Figure 5.1: Results of the simulation of the system. (a), (b) and (c) present the
gradients generated by the MRI scanner for each axis. (d) is a plot of the curvature
of the path. (e) shows the velocity of the MRbot and (f) compares the positioning
error (red curve) with the maximum acceptable error (blue curve). The sphere is
inside the guidance corridor when the red curve is below the blue curve. The MRbot
stays in the corridor during the complete navigation.
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Figure 5.2: 3D plot of the trajectory of the sphere. The graph shows the planed
trajectory P (r) (blue line) and the actual trajectory (red line).

position is equal to 0.3 and allows us prioritize the control over the velocity rather

than the position. In the case of a closed-loop control where the surgeon supervises

the procedure with a haptic device, the slow speed of the sphere will allow ample

correction time from the operator in detected problematic sections (intersection,

sharp turns, etc). This constant factor will be subject to changes depending on the

simulation desired and will be tuned more finely once more data is acquired. The

diameter of the sphere was 0.6 mm.

As shown in Fig. 5.2, the sphere closely follows the planned path. It is slightly
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off the centerline at the beginning of navigation. There, the vessel is large enough

to tolerate a few millimeters of positioning error. The PLm thus automatically

increased the velocity of the MRbot in this area (see Fig. 5.1 (e)). The curvature of

the trajectory (see Fig. 5.1 (d)) also affects the planned velocity (see Section 3.4). A

plot of the error on the position of the sphere is shown in Fig. 5.1 (f). The maximum

tolerable error corresponds to the radius of the safety corridor minus the radius of

the sphere. The sphere is within the error tolerance during the complete trajectory.

To increase the tolerable error, a smaller sphere can be used. However, when the

sphere becomes smaller, the gradient needs to increase to produce enough force to

move the sphere. With a sphere having a diameter of 0.6 mm like in the presented

simulations, the gradient needs to reach a value of 4.05 T/m. This value is larger

than the gradient produced by current commercial MRI scanners which are usually

limited to values below 0.02 T/m.

37



Chapter 6

Conclusion

MRI actuated and guided MRbots, as carriers of therapeutic agents or even as minia-

ture intervention effectors, are a highly promising area in the field of interventional

medicine. In addition they are an intriguing platform to develop new approaches in

visual servoing, intelligent sensor control and integrating sensing and control in the

same entity (the MR scanner). However, the potential impact and fate of this tech-

nology will be addressed in the field: in vivo animal studies and, eventually, human

trials. Identification of meritorious clinical paradigms and appropriate evolution of

this robotic technology is of paramount importance. As an alternative to catheter

based interventions, maneuvering inside the cerebral vasculature to deliver an in-

tervention is an area with potentially high merit. This work is a first step toward

assessing the feasibility of such procedures and implementing computational frame-

work for such procedures with emphasis of how to use the pre-operative MRI data.

Two primary novel features of this framework were the implementation of MRI-based
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virtual guidance cues and the inclusion of a trajectory-based velocity profile. The

virtual guidance corridor defined a safety zone within the vessel that was then used

for visual inspection and identification of areas along the path of potential safety

concern (i.e., the MRbot was coming close to the vessel wall). The velocity profile

used a simple approach encountered in mobile robots: the speed is reduced locally

when the curvature of the path is high. This provided an additional parametric

control for optimizing and modifying anatomy-based motion profiles.

The described prototype version of the computational framework was evaluated

for in silico simulation of accessing a brain meningioma via the tortuous vessels

of the cerebral vasculature. The velocity was adjusted during the navigation as a

function of the local curvature and the radius of the guidance corridor. The PID

regulator had therefore more time to correct and stabilize the trajectory when in

more tortuous segments of the vessel, ensuring that the MRbot remained within the

guidance corridor.

The simulations further revealed that the procedure (i.e., MRbot dimensions and

velocity profile) can be adjusted, for example, increasing velocity and/or decreasing

the MRbot ferromagnetic mass require higher strength gradients to execute the ma-

neuver. In the particular clinical paradigm, the smallest vessel was 0.7 mm diameter,

and thus a 0.6 mm diameter MRbot was used. When this small entity was moved

with a maximum velocity of 2.8 mm/s, the calculated control from the simulation

module required a maximum gradient strength of 4 T/m. This is significantly larger

than the gradient currently available in commercial MRI scanners (0.02 T/m). For

this particular paradigm, possible solutions are (i) to reduce the speed of the MRbot
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and/or (ii) make the MRBot with higher magnetization saturation material (such as

Holmium, rather than steel), (iii) incorporate special gradient inserts.

The described work has certain limitations. First, the system was not connected

and tested on-line with an MRI scanner. As a consequence, rt-MRI was not included

for MRbot tracking and on-the-fly imaging of the path forward to its motion. This

is a work-in-progress based on prior work in MRbot [1, 25, 26], on-the-fly-control of

the MRI scanner by the control software of a robot [16], and fast MR-sensing with

modified k-space trajectories [68]. Second, the core was implemented on Matlab

for streamlining development, testing and processing the output; however, Matlab

is slow and memory-management is inefficient for running such a system. Upon

completion of its development, the code will be converted to C/C++, incorporating

appropriate libraries (e.g., ITK/VTK/OpenGL), and optimized as we did before

with multithread implementation [75] and GPU acceleration [47]. In that previous

work on dynamic VF extracted from MRI for cardiac interventions, the code for

the generation of 4D guidance corridors was refreshed with a delay of less than 0.50

ms [75]. In that work it was also recognized that the bottleneck was the speed of

MRI collection. We expect that, if appropriate MR pulse sequences are developed,

the system can run the MRbots with virtually no latency at the computational core

level. Third, the control module (CNRm) used a constant blood flow. A future

version is planned to include a numerical approach in modeling flow [38]. Moreover,

the material used to build such sphere needs to be magnetically susceptible enough

and have a high magnetization saturation to be driven by the MR machine, while

remaining safe for injection into the patient’s blood stream. Finally, we selected
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certain algorithms for processing the preoperative data in the PIPm. Although

many other algorithms exist, the particular choice of MR data algorithms does not

affect this work.

As a concluding remark, we wish to underscore the challenging proposition of us-

ing MRI to guide such entities inside complex and narrow access paths. Motivated by

the inherent low sensitivity of MRI modality that prevents collecting high SNR, and

often high CNR, images in real-time, we describe a computational approach that uses

MR-based virtual fixtures to set an access corridor that offers an operator assigned

safety margin (for a more or less conservative approach) for visual servoing, image-

based MRbot control, or force-feedback-assisted manual control. The next step is to

develop special MR pulse sequences that will allow faster tracking of the MRbot, as

well as refreshment of the path forward its motion. Only with improved real-time

sensing may we claim that this robotic technology can contribute to interventional

medicine.
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