AN INVESTIGATION OF GETHODS YOR VITALIZINO HICH SCHOOL CHEMISTEI AND PHYSTCS COURSES

A Theais
Presented to the Faculty of the College of Education The University of Ilouston

In Partial Fulfiliment of the Requirements for the Degree Advanced Master of Education

M. D. ANDERSON MEMORIAL LIBRARY . UNIVERSITY OF HOUSTON
by
Jeanne Levy Gelber
August 1954

127575

PREPACE

I wish to express aincere appreciation to Dr. William J. Yost for his advice and untiring assistance during the progress of this investigation. Thanks are also expressed to the other members of the comaltee, Dr. June Hyer and Dr. W. H: Strevell. Invaluable aid was given by Edith 3. Hodges and Mary E. Bartiett, who critieized the manuscript constructively.

The investigator is Indebted to R. B. Spariss, Baytown; Joseph W. Criggs, Huntaville; V. W. Miller, Pasadena; D. E. Bailey, Beaumont; Clyde Prestwood, Wavasota; Terrell Oge, Treeport; Leslie aichardson, College Station; and John M. Moorman, Hempstead; for making available the data upon which this field study is based. And, finally, cknowledgement is made to the many students, ex-students, and science teachors without whose cooperation this thesis could never have been written.

AN INVESTIGATION OR METHODS FOR VITALIZING HICH SCHOOL CHEMISTRY AND PHYSICS COURSES

An Abstract of a Thesis
Presented to
the Faculty of the College of Education The University of Houston

In Partial Fulfillment of the Requirement for the Degree Advanced Master of Education

by
Jeanne Levy Gelber
August 1954

SCHOOL CHEMISTHY AND PHYSICS COUNSES

Abstract
Statenent of the Problem. The purpose of this field study was (1) to find out if the trend of decrease in per cent of enrollment in chemistry and physics over the United States existed in this area of Texas, and (2) to find out what activities were practiced in those schools which have succeeded in attracting large numbers of students into their physical science courses.

Nethods of Procedure. The procedure followed in this investigation was critical andysis of the research literature on what has been happening in science teaching. The participating schools were selected and their principals interviewed to secure permission for their cooperation in this study. Questionnaires were mailed. The data obtained from the questionnaires were compiled, studied, and analyzed. Activities used in successful science courses were determined. The material was interpreted by tabulation and graphic representation to disclose the true meaning and significance of the data.

Major Pindings. 1. The chemistry enrollment of 9.14 per cent in the participating schools was 20.26 per cent higher than the national matriculation of 7.60 per cent and only 0.96 per cent below the peak enrollment of 1890. The
physics enrollment of 4.25 per cent was 1.16 per cent under the national average of 4.30 per cent. In no school was there over 10 per cent of non-college preparatory students present in physical science class; the average for all schools was 3.25 per cent.
2. The small agricultural achools had the largest per cent enrollment in chemistry and physics. The next largest enrollment was found in college dominated areas, and the smallest in percentage of enrollment was in schools located in industrial areas.
3. The consensus was that "all American youth" need a scientific background.
4. Pupils enjoyed much of what they saw, for demonstrations, field trips, and other visual aids were high on the list of vitalizing activities.
5. Through student approval of talks made by visiting scientists, chemistry and physics were made to come alive. Rapport was estabiished between the community and the classroom.
6. Learners liked teachers' lectures when they contained clear explanations.
7. Boys and giris delighted in both individual work, and work with others where they themselves had opportunity for participating in the activities.
8. poor science teacher could not arouse the interest
of the teen-ager. Pupils confused the dislike for a particular teacher and his methods with dislike for the course. Hence, poorly trained elementary and junior high school acience teachers deterred students from a continued study of science. In the questionnaires, boys and girls constantly reiterated they liked "a grod science teacher" and they disliked "a poor science teacher". Undoubtedly the teacher was a big factor In the size of the enrollment. Students wanted an enthusiastic, sympathetic person, well-trained in the fundamentals of science and in methods of teaching.

TABLE OF CONTENTS

CHAPTER PAGE

1. THE PROBLZ OP VITALIZIKG HIGH SCHOOL COEMTSTEY AND PUYSICS COUnSES 1
statement of the problem 1
Need for the problem 1
Limitations of the study 4
Procedures and techniquea 4
Summary 5
II. HISTORICAL REVIET 7
The early period 7
The niddle period 11
The recent period 13
Sumanary 15
III. 3 HE PIKDINGS 19
Hothods of procedure 19
Data obtained 23
Analysis of data 77
Sumary 81
IV. SUMAART AND CONGLUSIONS, RECOMAENDATIONS, AND NEED FOR FUATHER RESEARCH 84
Summary and conclusions 84
Recommendations 86
Need for further research 89
BIBLIOCRABET 91
CHAPTEA PAGE
APPENDIX 99

LIST OF TABLES

TABLE PACE
I. Type of Community of Paxticipating Schools 20
II. Response to questionnaires 21
III. Enrollments by School: 24
IV. Parcentage of Graduates Going to College,Percentege of Chendstry and PhysicaStudents who are Enrolled in College
Preparatory Course 25
V. Percentag of Failures 26
VI. Techniques in School nhich Popularize Chemistry nnd Physics Courses 28
VII. Principals* Opinion - How Chemistry and Physics Tachers way Improve Their
Courses 29
VIII. Teacherst Opinion - 解at Students Like Best About Chenistry and/or Physics 30
1x. Teachers' Opinion - That Chemistry and/or Physics Students Like Least About These Courses 31
X. Teachers' Opinion - Why wore Students Do Not Enroll in Chenistry and Physies 33

1. Teachors' Opinion - Techniques to Increase Chenistry and Physies Enrollment 34
XII. College Study of $2 x-$ Students 39
TABLE PAGS
XIII. College Study and Occupation of Ex-Students 40
XIV. Ex-Students' Opinion as to Whether or Not Chemistry and Physics Should be Studied in Righ School 41
XV. Opinions of Ex-Students of High School
Chemistry on the Value of Righ
School Chemistry 43
XVI. Opinions of Ex-Students of High School
Physics on the Value of high School
Physics 45
XVII. Suggestions of Ex-Students of Chemistry for Improvements of High School
Chemistry 47
XVIII. Suggestions of Ex-Students of Physicsfor Improvement of High School Physics . . . 48
XIX. Opinions of Ex-Students who Did Not StudyChemistry on the Value of High SchoolChemistry 49
XI. Opinions of Ex-Students who Did Not Study Physics on the Value of High School Physics. 51
XXI. Educational Plan of Participating Students 52
XXII. Factors Influencing Students to Enroll inChemistry and/or Physica 54xXIII. People Influencing Students to Enroll inChemiatry and/or Physics 55
TABLE pagE
XXIV. Occupations Students Enrolled in Chemistry and/or Physics Hope to Enter 57
XXV. What Students Presently Enrolled in
Chemistry and/or Physics Like Best
About the Course 61
XXVI. What Students Not Fresently Earolled in
Chemistry and/or Physics Disliked
About Course 62
XXVII. 1953-54 Chemistry and/or Physies Student
Suggestions for Improvementa in Courses of Chemistry and Physics 70
XXVIII. 1953-54 Chemistry and/or Physics Student
Suggestions for Making Chemistry and Physics More Enjoyable 72
XIIX. Opinions of Studente Enrolled in Chemistry
in 1953-54 on the Value of Kigh School
Chemistry 74
XXX. Opinions of Students Enrolled in Physicain 1953-54 on the Value of High SchoolPhysics 76
XXXI. Heasons for Mot Enrolling in Chemistry
and/or Physics in 1953-54 78

LIST OR PICURES

FICURE PAGE

1. Graduation year of Ex-Students 37
2. College attendance of Ex-Students 38
3. Techniques of Teaching Chemistry
and/or Physics - M 64
4. Techniques of Teaching Chenistry
and/or Physics - 65
5. Techniques of Teaching Chemistry
and/or Physics - 0 66
6. Techniques of Teaching Chemistry
and/or Physics - P 67

Chapter I

THE PROBLEW OF VITALIZNO BIGH SCHOOL CHEMLSTRY AND PRYSICS COURSES

I. STATENENT OF THS PROBLEM

The purpose of this investigation was (1) to find out If the trend of the decrease in the percentage enrollment of chemistry and physics atudents over the United States exiated in this area of Texas, and (2) to find out what activities were practiced in those schools which have succeeded in attracting large numbers of students into their physical science courses.

II. NEED FOZ THE PROBLEM

Many articles have appeared in current periodicals stressing the need for more people trained in science because of the increasing importance of technology and because of the realization by the industrialiat of the value of research. The high school through its chemistry and physics courses is one of the primary sources of science information which is preliminary to training for job opportunities and further studies.

The percentage of enrollment in physics has shown a steady arop from 22.21 per cent in 1890 to 4.30 per cent in 1952. At the same time the chemistry enroliment has dropped
from 10.10 per cent in 1890 to 7.60 per cent in 1952. However, following World Wara I and II, there were slight gains in the percentage of enroliment in chemistry.
$1_{\text {George }}$ Greisen Mallinson, Walter G. Marburger, Davie J. Miller, Gerald Osburn, and David Worth, "Final Report to the Central Association of science and hathemeties Teachers of Its Compittee on the Significance of Matheatics and Science In Education" "School Science end Mathematics, 54:119, February, 1954.

In the face of the aforementioned decrease ${ }^{2}$ in the study of science there has been an unprecedented increase in

[^0]the need for people with science training. The increasing importance of technology affords greater opportunities for better trained people. Industry has seen the value of research in solving the problema of the manufacturer, ${ }^{3}$ the
${ }^{3}$ Carol A. Hochwalt, "The Impact of Chemistry on the World of Science," The seientifie Monthly, 77:48:53. July, 1953.
government has taken many trained scientists into the armed forces and into federal technical service, and knowledge of science is necessary for an understanding of the world around us. In a democracy all citizens must have a science education in order to understand and intelligently use the products of science.

From executive to cleaning crews everybody is benefitted by knowing more about the materials handled and the producta manufactured. Is there anybody who would not be helped by a course in chemistryit

September, 1953. ${ }^{4}$ Who Needs Chemistry?" Chemistry. 27:1,
The high school science curriculum must prepsre every child with the knowledge necessary to live wisely in our scientific age and must at the same time interest enough youth in science as a vocation to give our country a sufficient supply of professional scientists. Although in June, 1953. industry needed 32,000 college trained engineers,5 all of the colleges Fears, " Colliers, 132:65, October 2, 1953. - They Have No

In the United States graduated only 22,500 scientifically trained men and women -- and of these, 10,000 men faced the draft. In this connection it may be well to note that Russia has been educating 30,000 well trained engineers annually. Because the demand for scientifically trained people is greater than the supply, ${ }^{6}$ high school teachers should do all
$6_{\text {Dael }}$ Wolfe, "Future Supply of Science and Mathematics Students," The Seience Teacher, 20:157-160, September, 1953.
they can to interest bright youngsters in science as a vocation. Persistent work by high school chemistry and physics teachers can help insure the United States a sufficient supply
of trained people.

III. LTMITATIONS of THE STuDY

In order to determine whether or not there has been a decrease in the percentage of enrollment in chemistry and physics classes, a arvey was made in eight South Texas areas predominated (2) by industry, (2) by agriculture, and (3) by a college atmosphere. Schools A, B, and C were chosen because they were situated in the centers of vast chemical industries. Schools F, G, and H were chosen as representative of areas predominated by a college atmosphere. Schools D and E represented districte primarily agricultural in nature. The study was limited to (1) juniors and seniors anrolled in chemistry and/or physics for the school year 1953-54, (2) to an equal number of juniors and seniors not enrolled in either of these two courses, (3) to the science teschers under whom these people were studying, (4) one hundred fifty scientifically selected ex-students of one of the achools, and (5) to the principals of the participating schools.
IV. phocedunes and techuroues

The procedure followed in this investigation was critical analysis of the research literature on what has been happening in science teaching. Letters were sent to the Nationsi Education Association; the Mational Science Teachers

Association; the office of Education, Federal Security Agency, United States Government; and Dr. Frederick Eby to ask aid in finding material on the history of the teaching of chemistry and physics. Not one of these agencies or individuals knew of any avaliable material.

The participating schools were selected and their principals interviewed to aecure permisaion for their cooperation in this study. Questionnaires were malled. The data obtained from the questionnaires were compiled, studied, and analyzed. Similarities and dissimilarities were noted. Activities used in successful acience courses were determined. The efforts of the toachers to acquaint their studenta with the possibilities in the field of science were examined. The mater$1 a l$ was interpreted by tabulation and graphic representation to disclose the true meaning and significance of the data. On the basis of the conclusions drawn, recommendations were made.

V. Sumary

Chapter I includes the introduction, statement of the problem, the need for the problen, the limitations of the problem, the procedures, and techniques followed, and the summary. Chapter II gives a background for the problem and a survey of previous investigations made in this Iield. In Chapter III the data obtained from the questionnaires were compiled, studied, and analyzed. Chapter IV contains a
general summary, conclusions, and recomendation for further research needed.

In the introductory portion of this study, the present need for vitalizing high school chemistry and physics courses was discussed. Historichlly science education in the American schools can be divided into three periods. 7 The early period

7Carleton 8 . Preston, The High School Science Teacher and His York (New York and London: Wcaraw - Hill Book Coapany, 19361. Pp. $20-48$.
dated from 1750 until bout 1870; the middle period, charscterized by college domination, lasted until 1905; and the recent period in which the secondary schools have gradually eatablished theaselves as inatitutions for the masses is atill continuing. ${ }^{8}$

> 8, milwood D. Heiss, Ellaworth s. Osborn, and Charles W. Hoffman, Nodern Science Teaching (New York: The MacMillan Company, 2951., Pp. 3-19.

3. THE gARLY PKKIOD

Although natursl philosophy and astronomy were taught in some schools which preceded the acedemy movement, science instruction had its real beginning in the Philadelphia Academy ${ }^{9}$ founded by Benjamin Franklin in 1751. Franklin's conception of education was much like thet of today's educator.

He expressed the belief that young people who intended to become merchants should study nature thit they might better

[^1]understand the comodities they sold. by craftsmen that they might learn to use new meterial, by ministers that they might better understand the proofs of the evidence of God, and by all that they might become better conversationalists. He antedated the laboratory method in that he suggested science be accompanied by actual practice in gardening. He aaid the Acadewy was established
for instructing youth not only in English, but Latin grammar, writing, arithmetic, and those sciences wherein they are comonly taught, but more especibily to learn them the great and real business of life. 10
${ }^{10}$ George V. Hunter, Science Teaching (kew York, Cincinnati, Chicago, Boston, Atlantat American Book Company, 1934). p. 18.

Natural philosophy, forerunner of physics, attempted to acquaint young people with an underatanding of common phenomena which would give them a greater comand of their environment. ${ }^{11}$ Four heademies ${ }^{12}$ taught chemistry prior to
${ }^{11}$ Carleton E. Preston, The Hish School Science Teacher and His Work (New York and London: KeGraw -- Hill Eook Company, 1936). Pp. 21-23.

121bid., p. 24.

1820, and fifteen more added it to their curriculum within the next ten years. Any sctence taught was unsystematized and fragmentary. The aims were descriptive, utilitarian, and religious. Some of the early textbooks were in the form of catechisms. Value was placed on the ability to describe natural phenomena as an end in itself. Instruction was basically organized to facilitate the presentation of factual material in the form of lectures and textbook assignments with a later recitation. There was little regard toward developing relationships or logical thinking.

The first free public high school ${ }^{13}$ in the United States
13A. A. Douglass, "The Junior High School," Fifteenth Yearbook of the National Society for the Study of Education. Fart III. Chicago: University of Chicago Fress, 1916, Ep.
was the English High School established in Boston in 1821. Watural philosophy, natural history, and chemistry were in the curriculum. Natural philosophy which included physics, astronomy, and earth science started as an environmental subject. In 1823 courses of experimental lectures 14 in natural philosophy began to appear. Four years later schools

$$
\text { 14preston, op. cit. p. } 26 .
$$

initiated the practice of buying pparatus. But, science courses remained mainly book courses and little actual laboratory work was done. The first record of the construction
of a high school 1aboratory ${ }^{15}$ was in St. Louls in 1845, but 15ıbid., p. 26.
ten or leven years passed before it was in use by the pupils. In 1857, Massachusetts passed law requiring public high schools to give courses in natural philosophy. In 1860, five per cent of the high schools offered courses in physics.

In the early science courses emphasis wss on memorizing factual material. Most of the teaching was done by the lecture and recitation method. Prior to 1860 there was little or no laboratory work.

Some acquaintance with the subject (chemistry) is now required as part of every good education; but books designed for laboratory use and abounding in technical details are ill suited to those who do not give apecial and thorough attention to the subject. 16

[^2][^3]II. THE MIDOLE PETIOD

Natural philosophy remained in the curriculum until 1872. The great advance made in the physical sciences in the latter part of the nineteenth century gave further impetus to the teaching of physics.

Such are already the vast proportions of the sciences, and such are the enormous rapidity of its growth, that nothing less than works of encyclopediac scope have value for general consultation. 18
${ }^{18}$ Youmans, op. cit.: p. 6.
In 1885, twenty-five percent of the high schools offered courses in physies, while twelve years later the percentege had increased to elghty-seven. Physics was made into a logically organized body of subject matter to prove that the disciplinary values were equal or superior to those of the classics.

A rise in the interest in chomistry paralleled an increase in the knowledge of inorganic and organic substances. The textbooks were largely expository and included series of brief and concise statements of facts paragraphed in logical sequence. At the bottom of the pages were often found questions in small type which served as guides to the students, and were used by the teacher in direct questioning. There were few illustrations.

The growth of the laboratory movement was gradual and
as Late as 1880 the United States Bureau of Educetion reported only four high schools giving a full year course in physics with laboratory work. Ey 1895, laboratory experimentation had been generally adopted.

When Harvard announced in 1872 that high school science courses wer acceptable for college entrance credit, other colleges followed this lead. In 1887, the Harvard Descriptive List was published. This listing reported forty-aix experiments which were acceptable for college entrance material. The high school texts became simplified and condensed college books. Because of the college influence science was lifted to a position of greater importance, and the schools in ttempting to meet requirements brought about high degree of atandardization. During this period it was believed there was virtue in the disciplinary value of difficult subjects. Science, therefore, offered unique opportunity by training the faculty of observation and the concentration of thought. The use of science for formal discipline led to the introduction of too much mathematics and the neglect of its more practical phases. Much stress was laid on accuracy, aelfreliance, and logical thinking, and the memorizing of specific facts. As physics gained in organization it became formal, with the pupil being ignored and resulting in book-centered, highly abstract, college preparatory course.

With the acceptance of chemistry for college entrance,
standards began to be set up. This meant the setting up of laboratories and the beginning of real experimental procedures. By 1885 any high school that offered chemistry made some provision for this type of work. College domination made memorization of factual material the chief sim of the student, and deadened initiative by requiring a certain number of exercises, all of which had to be submitted as evidence of having satisfactorily completed the college requirements. Teaching was carried on with little or no regard for the particular interests or needs of the learner.

III. RECENT PERIOD

The third period represented a reaction gainst the disciplinary ain and against college preparation as the chief functions of science teaching. The first published report on a research investigation ${ }^{19}$ of science teaching, in passaic,

[^4]New Jersey, appeared in 1904. From 1910 until 1920 investigations on the teaching of acience materialized in slowly increasing numbers. Following 1912 many tudies were devoted to the relative value of the individual laboratory method and demonstration, 20 since most of the early studies measured gains in factual information only, the researchers concluded
that the demonstration was superior to individual work, especially in view of the economy in time and money.
$20_{\text {Ralph E. Horton, MMeasureable Cutcomes of Individual }}$ Labwork in High School Chemistry," Science Educstion, 14:311319, November, 1929.

The reports ${ }^{21}$ of the comission on the Reorganization
${ }^{21}$ Clarence D. Kingsley, chairman, "Cardinal Principles of Secondary Education," E Report of the Comm ssion on the Reorganization of Secondary ducation of kational Cucation Society, 1916; Euletin 335 Washington; D.C.i United States Eureau of Education) 32 pp .
of Secondary Education of the N.E.A. in 1918 started the trend toward change in having the high school meet more adequately the newer demands of functional sproach in instruction. This report was an attempt to lead away from the narrow factual disciplinary emphasis to the broad requirements of the learner. A report by the commission ${ }^{22}$ of the Reorganization of Secondary
$22_{\text {Otis }}$ \%. Caldwell, Chairaan Comaittee on Science,
"Report of Subcomittee on Teaching Seience, Bulietin $/ 26$
(washington, D.C.: United States Eureau of Education) $62 \mathrm{pp}$.

Education was the first comprehensive document to deal exclusively with the teaching of science in secondary schools. This report endeavored to show how science instruction could contribute to the cardinal principles of secondary education, and at the ase time give practical help on the selection and organization of materials, and on the teaching of acience in
the high school. This report pointed seience instruction toward larger social goals than previously had been set. In 1927, committee of the American Association for the Advancement of science issued a report ${ }^{23}$ which emphasized the

23 AAAS, Committee Report on the place of science in Education," School Science and wathematics, 28:64,0-664, June, 1928.
importance of thinking as objective of scionce teaching and recomended that studies on national scope be set up on that subject. "音 Frogram for Teaching Science" published in 1932 by the National Society for the Study of Education set up " ilfe enrichwent through participation in democratio aocial order" the aim of education rather than the teaching of laws and theories of pure science. The Forty-Sixth yearbook ${ }^{24}$ entitled "Science Education in American Schools" stressea the

[^5]
IV. SOMMARY

During the first two hundred years of educational history in America three types of secondary schools ceme into
existence. There is no record that science formed a part of the curriculum of the Latin Gremmar School, for 1 its purpose was to prepare students for the ministry. The acaderies catered to the interests of those not going to college and set up courses suited to the needs of the commnity, In 1854, 26.6 per cent of 411 high school students in ohio were enrolled in chemistry. ${ }^{25}$ The early period took no account of

252llwood D. Meiss, Ellsworth S. Osburn, and Charles H. Hoffman, Yodern Science Teaching (New York: The MacMillan Company, 1951]. p. 5.
the development of logical thinking stressed during the later period. Science teaching was simply informative and based on the storage of facts. Education was reserved for the children of the well-tomdo.

Ten years before the turn of the century, 250,000 pupils were enrolled in the last four years of high school, 26

26philip G. Johnson, Noccurrences of Science Courses In American High Schools," The Bulletin of the National Associstion of gecondary-School Erincipals, (Washington, D.C.: Tational hisociation of publie school Frincipals, 2953); p. 25.
and of these 156,726 or 62 per cent went to college. 27 In 1910 only ten per cent of the nation's fourteen to seventeen

> 27statistieal Abstracta of the United States.
year olds were in school, with 75 per cent of them going on to college, while in 1946 between 70 and 75 per cent of this
age group were in high school ${ }^{28}$ with only 25 per cent seeking college education. With the change in the high school popu-

28 Harl R. Douglass, Secondary Educgtion for Life Adjustment of American Youth (New Yorks The Ronald Press Company, 1952). p. 22.
lation from the traditionally aristocratic and exclusive to one from the masses, school curricula have had to keep pace by presenting an opportunity for all American youth. It has been widely accepted that in addition to knowledge of subject matter, the teacher had to know how to organize and present it. The tendency has seemed to be to require less drawing, fewer experimental writeups and less filling in of laboratory manuals. The concept that principles, their understending and interpretation, were of more value than fact mastery has been widely accepted. 29 Physies has departed less from the

> 29 Ibid. Pp. 37-57.
old traditional standards than has chemistry. Yodern chomistry texts have been written by people who understand pupils es well as subject matter.

Science and technology have created the possibility of endless progress toward more secure and pleasant living. Science teaching has equipped boys and girls to succesefully grapple modern problems. The general belief 30 is that science
education should be presented to (1) develop skills in reflective thinking and problem solving, and (2) to stimulate, guide,

30 Francis D. Curtis, MBasic Principles of Science Teaching," The Science Teacher, 20:55-59, March, 1953.
and develop scientific interests, attitudes, and appreciations. Dr. S. S. Schaffer, ${ }^{31}$ Public Relations Manager, Humble 011 and Eefining Company, Baytomn, Texas, in a talk to the Baytown Science Teachers, said, "The object of acience teaching today

31s. S. Schaffer, "Science Trainine, Today's Need," Talk presented to science teachers; Coose Creek Independent Schooi District, November 6, 1953.
is to train youth to think in terms of facts, to keep hia mind open, and to use the scientific method in all things."

CHAPTER III

THE FIVDINOS

I. METHOD OF PROCEDURE

This investigation was undertaken in order to determine whether the trend of decrease in the aitional enrollment in chemistry and physics appeared in the southeast portion of Texas. As shown in Table I, light schools, three in industrial areas, two in agricultural regions, and three in sections cominated by the influence of colleges, were chosen for this field study, In August, 1953, principals of the selected schools ware interviewed to secure permission for the participation of their institutions in this study. Guestionnaires were developed and sent out. These forms, filled in without supervision and unsigned, were returned by eight principals, twelve science teachers, 566 students enrolled in chemistry and/or physics, 185 boys and girls not registered for either chemistry or physics, and 116 ex-students of one of the participating schools. Table II shows the response to these questionnaires. All information has been complied and analyzed. Tables and their accompanying explanations were designed to reflect (1) those activities the students found stimulating, and (2) those activities former students, teachers of science, and administrative personnal believed are interesting and worthwhile.

TABLE I
 TYP: OF CCMMUNITY OF PARTICIPATING SCHOOLS

School
Type of Community

A	Industrial
B	Industrial
C	Incustrial
D	Agricultural
E	
F	College
0	Collega
H	College

TABLE II
RESPONSE TO QUESTIONNAIRES

School	Questionnaires	$\begin{aligned} & \text { Number } \\ & \text { of Cases } \\ & \text { Masled } \end{aligned}$	Number of Cases Returned
A	Principal	1	1
	Science Teachers	2	2
	Ex-atudents	150	116
	Students enrolled in chemistry and/or physics	159	159
	Students not enrolled in chenistry and/or physics	80	80
B	Principal	1	1
	Science Teachers	3	2
	Students enrolled in chemistry and/or physics	150	91
	Students not enrolled in chemistry and/or physics	150	0
c	Principal	1	1
	Science Teachers	2	2
	Students enrolled in chemistry and/or physics	150	132
	Students not enrolled in chemistry and/or physics	150	59
D	Principal	1	1
	Science Teachers	1	2
	Students enrolled in chemistry and/or physics	30	24
	Students not enrolled in chemistry and/or physics	30	27
E	Principal	1	1
	Science Teachera in cheoistry	1	1
	Students enrolled in chenistry and/or physics Students not enrolled in chemistry and/or physics	30 30	8 2

Tabls II (continued)
 RESPONSE TO QUESTIOMNAIRES

School	Questionnaires	lumber of Cases mailed	Number of Cases Returned
F	Principal	1	1
	Science Teachers	2	1
	Students enrolled in chemistry and/or physics	50	17
	Students not enrolled in chemistry and/or physics	50	0
0	Prineipal	1	1
	Science Teachers	1	1
	Students enrolled in chemistry and/or physics	50	14
	Students not enrolled in chemistry and/or physics	50	19
H	Principal	1	1
	Science Teachers	3	2
	Students enrolled in chemistry and/or physics	150	121
	Students not enrolled in chemistry and/or physics	150	0
Totals	Principals	9	9
	Science Teachers	13	12
	Students enrolled in chemistry and/or physics	769	566
	students not enrolled in chemistry and/or physics	690	185

11. Data obtained

The total enrollment of the last three grades of the participating schools varied from 1,388 down to sixty. The total registration by schools together with their chemistry and physies enrollment for the year 1953-54 is shown in Table III. Schools A, B, C, and H scheduled both chenistry and physics courges every year. Schools D, F, and G alternated these courses with D and F having offered physics in odd numbered years, while in 0 , it has been given in even numbered years. School G indicated the enrollment in chemistry and physics has been about the same. School E has scheduled chemistry annually but has not 1isted physies among its offerings.

Information from principmis. Table IV shows the percentage of the total student body who planned to go to college, while colum three indicates that chemistry and physics classes were composed almost entirely of pupils who intend to continue their education beyond high school. Only one school indicated as high as ten per cent of the students in these courses did not propose to enter college, and this school, $G_{\text {, }}$ was in en area dominated by the college influence.

Many students listed fear of fallure as a reason for not signing up for chemistry and/or physics, but as shown in Table V, only one of the eight schools studied had a higher

TABLE III
 ENROLLMENTS BY SCHOOLS

School	Enroliment grades ten through twelve	Chemistry		Physhes	
		number	per cent	number	per cent
A	1.388	148	10.66	32	2.31
B	768	64	8.33	36	4.69
C	1,237	93	7.51	32	2.59
D	170	--	--m	20	11.12
E	60	9	15.00	--*	--0
F	300	---*	---	17	5.66
0	124	26	20.97	--	--m
H	1,150	135	11.74	84	7.34
Totals	5.197	475	9.14	221	4.25

TABL营 IV

PERCENTAOK OF GEADUATES GOTNO TO COLLEAE PERCERTAGE OF CHEMISTRY AND PHYSICS STUDENTS WHO ARE ENROLLED IN A COLLEGE PREPARATORY COURSE

School	$\begin{aligned} & \text { Fer cent of } \\ & \text { graduates } \\ & \text { golng to college } \end{aligned}$	$\begin{aligned} & \text { Fer cent of class } \\ & \text { who are college } \\ & \text { preparatory students } \end{aligned}$
A	55.00	98.00
B	39.00	99.00
C	32.00	99.00
D	40.00	95.00
E	60.00	100.00
F	--	95.00
0	95.00	90.00
H	--	98.00
Totals	53.50	96.75

TABLE ∇

PERCEMTAOE OF FATLURES

School	Per cent of fallures		
	Chemistry	Physies	Entire school
${ }^{\text {a }}$	2.00	10.00	3.00
B	---	---	---
C	12.00	14.00	9.00
D	1.00	1.00	10.00
8	---	---	2.00
F	---	---	--
G	1.00	0.50	1.00
月	3.00	4.00	7.00
Average for all schools	3.80	5.90	4.00

percentage of fallure in the physical sciences than in the school as whole. Two schools reported markedly lower percentage of failure in these courses than in all others. One school recorded a low percentage of fallure in chemistry, but a ten per cent fallure in physics. In the other instancea the percentage of fallure in these two science courses was about the same as in other courses. The false belief that it is difficult to pass science courses may have caused students to reject these courses.

Principals feel that science clubs, field trips, guest spaakers, assembly programs based on science, and other factors popularize their science courses. Table VI lists techniquea found in their schools which tend to make these subjects more inviting. Table VII lists additional techaiques, which if practiced, they believe would add to the attractiveness of these courses.

Information from teachers. Teachers of science are convinced that laboratory work is an incentive for boys and girls to register for chemistry and physics. Most instructors augested that students preferred individual experimentation, while on held that they liked demonstration experiments and lectures. Another teacher of science in college dominated area believed the students are most interested in adequate college preparation. This information is tabulated in Table VIII. Table IX shows the educators interviewed in this study

PRIECIPALS' OPLNIOR OF EGCHEIQUES IR SCHONL WHICH POPULARIZE CRELSTET AED PNYSICS COURSES

Technique	School						
	A	8	6	D	E W	6	II
Science Clubs	Yes	Yes	Yes	Fifo	*o --	Yes	\%
Field trips	No	Yes	Yes	Yes	No ---	Yes	Tes
Vistting scientists	Yes	Yes	76	Yes	No --m	Hes	Yes
Scientific assembly progrems	㛵O	Yes	Ies	Yes	No ---	Yes	Yes
Other factors	Local industry	seed for science Interesting laboratory worle	Industrial area Teacher Clubs	College entrance requirements	College \qquad entrance requirements	気 enthusiastic teacher: well educated in science and teaching methods	College en- trance re- quire- ments

TABLS VII

PRINCIPALS' OPIMION
HOW CHEMTETE AND PRYSICS TeACHERS MAY MPROVE ThEIR coutses

School	Teaching echnique
A	--*
8	--*
C	(More field trips (Mor contects with locel scientists
D	Hak chemigtry and physics more practical
E	--*
$\%$	--*-
0	Teacher show nthuskasm for what is taught
4	--*

TABLE VIII
TEACHERS' OPINION OF NHAT STUDEWTS LIKE BEST ABOUT CHEMISTRY AND/OR PHYSICS

Schools	Best Liked
A	Laboratory work
B	Laboratory work
C	Demonstration and lectures
D	Laboratory work
E	--*
F	-
0	Valuable college preparation
H	Laboratory work

TABLE II

TEACHEAS: OPIAION OF WHat Chemistey and /OR PHYSICS STUDENTS LIKE LEAST ABOUT THESE COURSES

Schoola	Least Liked
A	Written work
B	Home work
c	Comulttee work
D	---
E	- - -
F	\cdots
0	Studying
H	Tests

thought students on the whole disliked work that must be prepared out of class. One teacher found students objected to comattee work.

Chemistry and physics teachers believed that many boys and girla do not sign up for these courses because of their reputation as difficult courses. In smaller schools where only one class is listed, the subject changing in elternating years, much difficulty was encountered in scheduling. Even in the larger schools this problem was sometimes evident. Table x contains a tabulation of the information.

Table $X I$ suggests educators considered demonstration experiments, field trips, and opportunity for individual investigation strong motivating forces in increasing chemistry and physics enrollment. Eleven responding teachers did not think these courses should be presented from the college preparatory point of view only; but they indicated a certain amount of mathematics should be included. However, they did not belleve this should be deterrent for those students who have difficulty with mathematics per se, or have insdequate mathematies backgrounds. The majority of the teachers believed their most effective methods were lectures, demonstrations, and experimentation. One teacher thought his most effective technique was a daily quis. Student responses, however, indicated this device was not popular with them.

TABLE X
 ThACHERS OPIMION AS TO
 WHy monk studeats do not maroll in CHEMISTAY AND PHYSICS

School	Reason
A	Students do not realize need for this knowledge
B	Feel course is too difficult Inability to achedule Home work Fear of subject
c	Reputation as ehard course"
D	Too technical
E	School too small
F	---
G	Difficulty of subject
H	Inability to achedule Too much mathematics Only the more capable encouraged to enroll

TABLE XI
TEACHEAS：ORERTOW
TECHETVUES TO INCREASS CNEASTRT AND PHYSICS ENECLLMEAT

Schools	Demon－ station experi－ ments	$\begin{aligned} & \text { Tield } \\ & \text { trips } \end{aligned}$	Correlated with occu－ pational opportuni－ ties in community	Should course be taught only from college point of view	Should chemis－ try and physies omit mathe－ matics	Should students who have difif： culty with mathema－ tics be encouraged to enroll in chemistry	Oppor－ tunity for original investi－ gation	vost effective teaching nethods
A	Yes	No	Yes	No	等O	Yes	榾	
8	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	narely	$\begin{aligned} & \text { Partiy } \\ & \text { Yas } \end{aligned}$	Tes港	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	No Yes so	$\begin{aligned} & \text { Ye } \\ & \text { Yes } \end{aligned}$	```Lecture/demon- station/experi- mentation/ problems```
c	Tes Yes	Yes Yes	Yes Yes	Yo Yes	Yes	Yes Yes	Yes W0	Lecture／ demonstration Daily quiz
D	Yes	Few	Yes	No	Wo	Chem．Yes Physics E0	No	Laboratory work
E	Yes	$\begin{aligned} & \text { Occas- } \\ & \text { ionall } \end{aligned}$		No	No	Yes	Tes	Knowledge of subject matter／ interest in teach－ ing／sympathy／ kindness

TABLE XI (continued)
TEACHERS: OPIEION
TECHEIGUES TO INCREASE CHEMISTAY AND PHYSICS ENROLIMET

Schools	Demonstration experiments	Field trips	Correlated with ocenpational opportunities in community	Should course be taught only from college point of view	Should cheniscry and physies omit mathematics	Should students who have difficulty with mathematics be encouraged to enroll in chemistry	Oppor- tunity for original investi- gation	Most effective teaching methods
F	Yes	Yes	Yes	No	No	7	Yes	---
G	Tes	Yes	Yes	No	No	Yes	Yes	Seientific analysis
8	Yes	No	Yes	No - segre- gate students accord- ing to need	Ho	No	*o	Lecture/laboratory/home work
	Pew	No	Ho	No	Probably	Yes	Ho	Experimentation/ films/demonstration/explanation

Information from ex-3tudents. Questionnaires were mailed to 150 scientifically selected ex-students of one of the high schools. Of these, 116 were returned. There were seventeen main items with six sub-heads on these forms. Figure 1 shows the range of date of graduation to be from the spring class of 1922 to mid-term, 1954. There was some response from all classes following the year 1930 with the exception of the class of 1939.

Figure 2 and Table XII show the educational background of the responding former students. In regard to place of study the largest number of individuals attended Lee Junior College. In regard to length of atudy the largest group had one year above high school. Next in number were the twenty-nine who had no college training. Lesser numbers in descending order attended the following senior colleges: Bice Institute, University of Houston, Baylor University, and the Univeraity of Texas. The remainder enrolled at various other colleges and universities throughout the United States. Only twentyfive individuals continued their studies until they earned degrees. Among these were ten Bachelor of Science, six Bachelor of Axts, and three Bachelor of Business Administration decrees. As shown in Table XIII, members of the group studied in twenty-five different areas and their occupations ranged through thirty-seven fields, from accountant to welder. Table XIV shows that elght-five of these acults would

```
    Year of hich
school graduation
```


$\begin{array}{llc}0 & 2 & 6 \\ \text { Number of cases }\end{array}$
FIGURE 1
GRADUATION YEAR OF EX-STUDENTS

College attended
Glark Univensity
University OF
Oklahoma
Lamar College John Tarleton College Southwest Texa: State College Wabash College Naval Academy University OF Colorado University Of Arkansas Arkansas Tech Goe Coltege Houston Consenw.
tons of Music
SOUTHWESTERN University
Texp A tM Couse
SAM Houston Sthe
TEngipes College

HMNE Houspon
Rice limuersiny LaBColleg: No College

TABLE XII
 COLLEAE ETUDY OF EX-TTUDENTS

Wumber	Rumber			Degree	
of years	Of	No	Yes	What	Rumber
in college	cases			degree	of cases
0	29	65	25	BS	10
1	33			BA	6
2	25			EBA	3
3	7			DDS	2
4	20			MLT	1
5	4			MS	1
7	1			MA	1
				M	$\frac{1}{2}$
				WD	1

TABLE XIIX
COLLEGE STUDT GND OCCUPATON OF EX-STUDEHTS

Study	Number of cases	Occupation	Number 02 cases
Accounting	2	Accountant	2
Agriculture	1	Accounting clerk	1
Andmal Husbandry	1	Araed Sarvice	1
Art	1	Beauty Operatory	1
Biology	1	Chendit	1
Business Adrinistration	13	Choral Direetor	1
Chemiatry	4	Clork	5
Dentistry	2	Dairy Man	1
Education	10	Dentist	1
Electronics	1	Doetor	1
Engineering	18	Electronic Technician	1
English	4	Engineer	3
Hiatory	1	Heavy Equipment Operator	1
Interior Decorating	1	Housewife	22
Liberal Arts	4	Numble Exployee	3
Mathematics	2	Insurance Business	1
Medicine	5	Laboratory mssistant	1
Musie	3	Laboratory Technician	1
Nursing	1	Laborer	2
Physicel Therapy	2	Machinist	2
Physice	1	Medical Technologist	1
Psychology	1	Medicine	1
Religion	1	Perchant	3
Science	$\frac{1}{2}$	Nevy	3
No College	29	Newapaper Man	1
		薙one	2
		Preacher	1
		Pressman	1
		等eceptionist	1
		Secretary	8
		Sneet Netal worker	1
		Student	23
		Superviaor	1
		Surveyor	1
		Teacher	7
		Television Technician	1
\checkmark		Welder	2

41

TABLE XIV

EX-STUDENTS ORTMION AS TO WHETHER OR NOT CBEMIRTRY AND PAYSICS SHOULD BE STUDIED IN HICH SCHOOL

Opinion	Yes	No
Would you have studied chemistry at high achool student if you had known then what you know now of 1 ts value?	85	17
Would you have studied physics as high school student if you had known then what you know now of its value?	70	24

have studied chemistry as a high school student, had they known then of its value; seventeen did not feel that they would have been belped by its study. Seventy would have studied physics as high school student had they known in high school what they know today; twenty-four thought they would not have been benefited by its study.

Table XV was based on questionnaires answered by sixtynine past high school students who had studied chemistry in high school. It is a tabulation of their opinions on the value of high school chemistry. Most of these persons expressed the belief that this course helped everybody no matter what his place in life. The greatest number were aware of its value in the preparation for further study, but practical information invaluable in every day living was often suggested. Bany considered a atudy of chemistry fundamental to understanding today's technical society. Others believed it had been helpful in making a choice of their vocations. Still othere considered it helpful in securing employment, and in fulfilling their obligations in their occupation. One of the values listed by number of respondents was the stimulation of latent interest, which in some cases led to the choice of a career in science; in other cases it opened new fields for reading and conversation. Other miscellaneous values have accrued.

Nany of the values obtained from the study of chemistry

TABLE XV

ORINIONS OF EX--TUDENTS OF HICH SCHOOL CHBMISTE ON TH: VALUE OF HIGH SCHOOL CHEMISTRY

Preparation for further study 58
Practical information invaluable in everyday life 45
Fundamental to understanding today"s technicel society 19
Helped in occupation 13
Incressed occupational opportunities 11
Stimulated interest in chemiatry as a profession 9
Vocational guidance 7
Taught to organize and study 6
Interesting course 6
Stimulated iatent interests 6
Developed selfoconfidence and stimulated initiative 5
Informative 4
Household duties 4
Practice in logical thinking and reasoning 4
Reading newspapers and periodicals 3
Conversation
Taught to work with hands and mind simultaneously 2
Cooperation with others 2
Credit for eraduation 1
No help 2
Developed use of common sense 1
Helped in enswering children's questions 1
Handilng explosives in armed service 1
Helped in study or English 1
Aroused desire for learning 1Initiated thinking in acientifie terms
also resulted from the study of physics as shown in Table XVI. This table is based on the questionnaires answered by thirtyfour ex-students who had studied high school physics. The values most frequentily mentioned were prerequisite for college study, and knowledge of fundamentals for understanding today's technical society. Next most often cited were exercise in reasoning and vocational guidance. Three persons said that enjoyment engendered from taking the course was reason enough for enrolling in it. One replied that competence in high school physics raised his self-confidence sufficiently that he felt he could do satisfactory work in college.

On the other hand a student who attended junior college found the college course a repetition of the high school course; hence he made the statement that the high school course was waste of time unless college physics were made more advanced. A few held that other courses should be chosen in preference unless the atudents already had a definite interest in science.

Suggested improvements for the teaching of high school chemistry were the increased use of problew solving and additional laboratory exercises. All who entered Rice Institute felt a greater scope of material should be covered and more advanced subject matter should be studied. Those who ontered such schoolas Texas University, Texas Agricultural and Mechanical College, University of Houston, and the Teachers

TABLE XVI
OPINIONS OP EX-STUDENTS OF HIGH SCHOOL PHYSICS ON THE VALUE OP HIOH SCHOOL PHYSICS

Leasons ex-students who studied physies sdvise high school studeats of today to study physics	Number of cases
College prerequisite	22
Fundamental knowledge to understand today's technical society	15
Vocational guidance	7
Helped in oceupation	6
Exereised reasoning ability	6
Explained everyday phenomena	5
Interesting course	3
Experience in problem solving	2
Ceneral knowledge	2
Practical course	2
Taught principles valuable in mechanics	2
L.aboratory techniques	2
Showed the reason for the study of mathematics	1
Arned services	1
Aided in securing employment	1
Stimulated interest in science	1
Easic foundation for later work	1
Challenge	2
Developed confidence in ability to do college work	1
Indicated college not all good times and partiea	1

Colleges expressed the opinion that the course in high school was quite edequate scholastically, but suggested the administration of final examinations would be good experience. Nore field trips; more visual aids of other types, and longer class periods also were suggested. In most instances requests were for more activities of the sort already in use. Two students thought that chemstry should be offered for two years in high school, the first year being general inorganic and the other organic. In only one case was the omitting of enything from the course mentioned. The suggestion was that all material on organic chemistry be omitted. These and other miscelleneous proposals are tabulated on Table XVII.

Table XVIII is based on the opinions of thirty-four exstudents who had studied high school physics. These indicated that a larger number of problems and additional theory should be given. Two wanted the course to include more diffieult material, while one respondent held that the course was too formidable. The giving of final examinations was again suggested by three of the thirty-four who replied. Two advised required use of the slide rule. ${ }^{32}$
${ }^{32}$ In the past, school A gave instruction on the silde rule, but its continued use in the course was optional.

The answers of fifty students who did not study chemistry in high school are the basis for Table XIX. While their

TABLS XVII

SUCGESTIONS OR EX-STUDENTS OF CHEMISTRY FOR IMPROVENENT OF HICH SCHOOL CHBMISTEY

Suggested Improvements	$\begin{aligned} & \text { Iumber } \\ & \text { of } \\ & \text { cases } \\ & \hline \end{aligned}$
Nore mathematics	17
More laboratory work	14
More advanced mork	11
Homogeneous erouping	3
More stress on relation to daily living	2
Final examinations	2
More visual ald	2
Survey course	2
More field trips	1
Omit unit on organic chemistry	2
Give two years of chemistry	2
Pirst year - general inorganic	
Second year - organic	
More time for chemistry class	1
More on industrial processes	1
Smaller classes	1
More explanation	2
Seniors only	,
Teacher more objective	
Less done by students, more by teacher	2
Fewer formula	
Wore formulae	1
Simpler written textbook	1
Projects	1

TABLE XVIII

SUCGESTIONS OF EX-STUDENTS OF PMYSICS FOR IMPROVEMENT OF HIOH SCHOOL PHYSICS

Suggested Improvements			

TABLS XIX

OPINIONS OF EX-STUDENTS WHO DID NOT STUDY CHEMISTRY ON THE VALUE OF HICH SCHOOL CHEMISTRY

heasons ex-etudents who did not study chemistry in high school advise hich Number school atudents of today to study of
chemistry
Basic information invaluable in everycay life 16
occupational opportunities 15
Preparation for further study 13
Wowid not $d v i s e$ study unless interested in science 7
Stimulate latent intereste 4
Interesting course 3
Fundamental to understand today's technical society 2
idvances standard of 11 ving 1
Exercise logieal thinkingHousehold duties
Armed service 22
reasons for study wer different from those of people who continued their education, many were as emphetic in their assertion that it is course of value. One even went so far as to propose that chemistry be made a required course for high school graduation. Some gave more than one reason why it ghould be studied. Sixteen said this course contained information invaluable in overyday life, fifteen iisted increased occupational opportunities as benefit accruing frore its study. This can readily be realized as true in this community overshadowed by the petro-chomical industry. Seven who did not go to college felt that unless the individual were already interested in science, he should not be advised to study high school chemistry.

Table $X X$ is sumary of the data from eighty-five former students who did not study physies in high school. Their opinions were aimilar to those expressed for the study of chemistry. Sixteen aaid the study of physics gave basic information invaluable in everyday living. Eleven listed it as a must for those who plan further study. The demand for trained scientists was mentioned by nine. Two people said physics was course with value for the bright student only. Information from students. Questionnaires were returned from 566 students enrolled in chemistry and/or physics and 185 not arolled in either course. Table XXI is the educational plan of the participating students. It showa the number of

TABLE XX

OPINIOAS OR EX-STUDENTS WHO DID XOT STUDY physics on the value of hioh school physics
geasons ex-students who did not study Number physics in high achool advise high of
school students of today to study physics cases
Basic information invalueble in everyday living 16
Preparation for those who plan further study 11
Demand for trained scientists
Prerequisite for college9Interesting course3
Occupational opportunitiea 3
Stimulate latent interest 3
Value for bright student only 2
Valuable mathematical application 1
Knowledge of electricity 1
Conversation 2
Production of musical sound 1

TABLE XXI
EDUCATIONAL PLAR OF PARTKGIPATENG STUDENTS

School	Fumber of cases	Per cent going to college	$\begin{aligned} & \text { Fer cent in } \\ & \text { college } \\ & \text { preparatory } \\ & \text { courses } \\ & \hline \end{aligned}$		Fer cent not going to college	$\begin{aligned} & \text { Per cent in } \\ & \text { college } \\ & \text { preparatory } \\ & \text { courses } \\ & \hline \end{aligned}$		Per cent undecided about college	$\begin{aligned} & \text { Per cent in } \\ & \text { college } \\ & \text { preparatory } \\ & \text { courses } \\ & \hline \end{aligned}$	
			yes	no		yes	no		yes	no
A^{1}	127	95	95	5	2	50	50	3	50	50
${ }^{2}$	80	64	55	45	30	12	88	6	20	to
B1	83	98	99	1	1	100	--	1	100	--
c $\frac{1}{2}$	84	97	95	5	2	100	--	1	--	100
c	59	75	86	14	16	9	91	9	25	75
D ${ }^{1}$	19	100	84	16	36	-	-200	5	--	100
${ }_{1}{ }^{2}$	27	199	56	4.	36	--	100	5	--*	100
${ }_{\text {E }}$	1					-	---	-	---	-
${ }_{1}$	16	94	80	20	6	---	100	---	---	--
G_{2}	15	100	93	7	-	-		---	---	--
c^{2}	20	65	69	31	35		100			
H^{1}	121	92	92	8	5	83	17	3	100	-
Totals ${ }^{1}$	566	97	91	9	2	84	17	1	83	17
Totals ${ }^{2}$	185	66	67	13	29	11	89	5	23	77

cases registered in each of these courses under discussion and the number not registered in either of the courses. of individuals planning on coing to college it shows the per cent taking college preparatory course and the per cent not taking college preparatory work. of those not enrolled in science it shows the per cent going to college and the per cent not going to college. The per cent undecided about their future completed the table.

Four main reasons influenced students to enroll in chemistry and/or physics. The number of cases motivated by each is given in Table XXII. The college entrance requirement was the incentive causing the largest number of students to enroll in these courses, followed closely by a desire on the part of the studente to know the reasons underlying phenomena they had observed but could not understand. In aix schools, students signed up for these courses to broaden their background. They repeatediy stated that knowledge of science is necessary for living in today's technical society. Many students felt that no reason other than interest inherent in the course justified the time required. Students from two schools iisted retention of membership in science clubs as the reason they signed up for one of these courses. The majority of students believed the decision to study chemistry or physica was their own as is shown in Table xxily. In school E, 30.77 per cent said they were motivated

TABLE XXII

FACTORS INFLUENCING STUDENTS TO EHROLL IH CHEMISTRI AMD/OR PHYSICS

School	Influence	Number of cases
A	Required for college entrance	64
	Wanted to know reason	74
	Vell rounded education	1
	Foundation for later study	6
	Retain membership in science club	2
	Enjoy science	4
	Sounded interesting	4
B	Reguired for college entrance	28
	Wanted to know reason	17
	Foundation for later study	1
	well rounded education	1
	Enjoyment	5
C	Eequired for college entrance	32
	wented to know reason	38
	Well rounded backeround	2
	Enjoyment	4
	Liked seience teacher	4
	Credit for graduation	1
	To be in class with friend	2
	Value for future	1
	Poundation for college	1
D	Required for college entrance	10
	Wanted to know reason	8
	Developed a better understanding	1
	Enjoyment	2
E	Required for college entrance	1
7	Wanted to know reason	3
	Wanted good science background	1
0	Required for college entrance	9
	Wanted to know resson	
H	Required for college entrance	56
	Wanted to know reason	35
	Foundation for college seiences	9
	Develop reasoning ability	$\frac{1}{13}$
	Liked science teacher	2
	Retain membership in science club	1
	Credit for greduation	1
	Interested in learning something new	2

TABLIE KXIII
PEOPLE THFLUENCINO STUDENTS TO ERROLL I CHEMISTRY AND/OR PHYSICS

Schools	Influence				
	Teacher Per cent	Parent Per cent	SHLIng Per cent	Friend Per cent	pade own decision Per cent
A	0.54	12.50	4.34	7.61	74.46
8	4.12	8.24	2.06	4.12	80.41
C	1.18	1.18		2.35	95.29
D	10.00		35.00	5.00	50.00
8	30.77			7.69	61.54
\%	7.14				92.86
G		21.43	7.14		71.43
H	6.19	7.22	1.03	4.12	81.44
Totals	8.56	10.11	9.91	5.17	75.97

by a teacher, in school $D, 35.00$ per cent were influenced by a brother or sister. In school $0,21.43$ per cent admitted they were persuaded by their parents. The percentage who made their own decisions renged frow a low of 50.00 per cent in school D to a high of 95.29 per cent in school C.

There were seventy-eight occupations listed that the students hoped to undertake as shown in Table XXIV. They ranged from accountant through x-ray technician, engineers leading with 117 hopefuls. Pifty-two were undecided on what vocation they would like to follow. Twenty-eight planned to become teachers, with two specifically designating that they hoped to become chendstry teachers. One girl said she would become Dominican nun and one boy wanted to become a priest. Nine listed the general heading of scientists, while seven said chemists, one entomologist, four foresters, seven geologists, one geophysicist, one inventor, two mineralogists, one naturalist, three physicists, and one wanted to go into the field of wild game and fish. Out of a total of 448 occupations 1isted, two hundred twenty-one or 49.33 per cent plan careers of acientific nature. Despite the fact that most teachers of science have felt chemistry and physics should be courses for "all American youth," and despite the fact that ex-studenta and students sald these courses were fundamental to meet intelligentiy the daily problems of ife in this technical age, bout half of the enrollees were people planning a career

TABLE XXIV

OCCUPATIONS STULERTS ENROLLED IN CHEUISTRY AND/OR PHYSICS HOPE TO ENTER

TABLE XXIV (continued)
OCCUPATIONS STUDENTS ENROLLED IN CHEMISTRY AND/OR PEYSICS HOPE TO ENTER

Occupation $\overline{\text { a }}$	School							
	B	c	D	E	F	6	H	Total
Mechanic	2							1
Medical field	1							1
Medical technologizt 2	1							3
Military	1	1	1					3
Mineralogist 1		1						2
Minister	1						1	2
Model		1						1
Mortician		1						1
Musicion 2	1	1						4
Maturalist 1								1
Naval officer		1						1
Mun 1								1
Nurse 9	5	5	1		1		6	27
Office worker			1					1
011 business							1	1
Personnel man	1							1
Pharmacist 8	2	2	1	1			5	15
Physician 9	10	3	1		1	1	5	30
Pipefitter		1						1
Fhotographer		1						1
Physical therapist 1								1
Physicist 1	1	1						3
Pliot							1	1
Priest							1	1
Radio and telerision	2	1					2	
Rancher		1						1
Refinery worker		1						1
Reporter		1						1
$\begin{aligned} & \text { Research } \\ & \text { scientist } \end{aligned}$	2	1						
salesman					1			2
Secretary 1	1	1			2		2	6
Scientist		1					1	5
```Social scientist 2```	2							4
Statistician 2								1
Steel worker 10	5	1	4	1	1		6	${ }^{\frac{1}{8}}$

## TABLE XXIV (continued) occupaticas stutents exnclled in chenistay AND/OR PHYSICS ROFS TO EMTZR

Occupation	A	School					\%		
		8	C	D	E	F	G	H	Total
Undectied	26	10	7	1		1	3	4	52
Veternarian	2					1		3	6
Welder			1						1
Welfare worker					1				1
Wild game and fish	1								1
$\begin{aligned} & \text { x-ray } \\ & \text { technician } \end{aligned}$								1	1

definitely based on science. The majority of the remainder are people who hoped to enter college.

Of the 323 1istings of what students liked best about their science course, experiments led with 142 , or 43.96 per cent, according to Table XXV. The term "interesting" followed second in listing, having been mentioned forty-four times, or 23.69 per cent. Reasons for everyday phenomena, having what the students referred to as good teacher, and explanations were mentioned next most often. Class discussions were enjoyed by eleven individuals, and the same number also made the blanket statement that they liked everything.

In Table XXVI, although students from schools B, E, and $H$ mentioned no dislikes and students from school $F$ made no reply, there were fifty-nine dislikes mentioned. Seven students listed lack of time. This it seemed might be construed favorably as indicating the students wanted more time in chemistry and physics courses. The next dislike was stated by five students in school $D$, who said they were troubled by having too many different teachers. (This particular school was plagued with irequent loss of their acience teachers.) Again this goes deep into the lack of people trained in science rather than being an inherent characteristic of a course. One student disliked experimente, two disliked not having enough experiments, three objected to home work, and two to lack of discussion. One disapproved of research;

## TEBLE XXV

WHAT STUDENTS PKSSERTLY ERROLLED IN CHENISTRY AND/OR PHYSICS LIKED BSST ABOUT THE COURSS

11ked best	Aumber of eases according to schools							
	A	B	C	D	E	$\mathrm{F}^{\text {c }}$	11	Totat
Aroused interest in mathenstics			1					1
Challenge to mind				1	2			3
class discussions		2	8			1		11
Consumer science	1							1
Demonstrations	2		2				1	5
Easy course			1					1
Everythins	3		1	1			6	11
Everyday applicstions			1					1
Experiments	44	16	45	5	1	10	24	142
Explanations	4		6	1		1	4	16
Pield trips			2	2		1		5
Good teacher	1	$\boldsymbol{1}$	9	1	1	1	2	16
Grades			2				1	3
Individual work	4		1					5
Interesting activities	3							3
Interesting new subject matter	7	12	14	7		2	4	46
Lectures	1		7					8
Xothing				3			4	7
Order	1							1
Practical		1						1
Problea solving	2	1	2			3	1	9
Projects		1						1
Research	1							1
Reasoning	$\frac{1}{4}$		3					4
Reasons for everyday phenomena	4		7	1		1	4	17
tsing hands other than for writing	2							2
Variety aids	3							3
Vocational implications					1			1
Visual aids		2						2

## TABL 8 XVI

## WHAT STUDENTS NOT PRESEKTLY SNROLLED IN CHERISTRY AND/OR PHYSICS DESLIKED BEOUT COURSE

pigliked	Number of cases				
	,	C ${ }^{\text {d }}$		G	H Total
Changing teachers too often Dull			5		1
Experiments		1			1
Formula		1			1
Homework	1	2			3
Lack of discussion		2			2
Lack of time		4		3	7
Lectures		1			1
Memorizing unusable facts		1			1
Not enough experiments	1	1			2
Not enough fleld trips		2			
Not enough research			1		1
T00 much research			1		1
Not nough textbook work		1			1
Motebook	1			1	2
Notes		5			5
Poor discipline		1			
Problems	1	7		3	4
Teacher presentation	1				1
Technical vocabulary		2			2
Tests		4			4
Theorles			1		2
Too much work		1		1	2
Uninteresting				1	$\frac{1}{2}$
Workbook	1	1			2

Kote: No dislikes were reported from schools B, E, F, and $h$.
another objected to too much research. Five were opposed to taking notes, and one criticized the course for poor discipline in the class. Four disapproved of problems, while seven, all in one school, disliked the teacher. Four objected to tests, one the instructoris presentation, and one the technical vocabulary. Two objected to the use of a workbook. The findings of the students' likes and dislikes of various methods of teaching are graphically shown in Figures 3, 4, 5, and 6. Students have indicated on the scale from one to nine their preferences for the course to be taught, with the number one indicating the technique liked best and number nine that liked least. They have used the same number as many times as necessary if two or more techniques were liked equally well by them, If any item represented a procedure they would not want in a class they have marked it "dislike". All items in these findings marked "dislike" are graphed as number ten. Any wuch item represents a very strong fealing on the part of the students against its use in the classroom. The largest number of first choices, or 168, indicated they wanted individual laboratory work. One hundred sixty-four gave first choice to teacher explanation of the difficult material with the students learning the easy materlal by themselves. One hundred thirty-four wanted the teacher to select and organize the material to be covered. There were 126 firsts given to lectures by the teacher.





Teachers plan and organize material
Students plan and organize by selecting material for course - - -
Students plan work in committees
Figure 6

## TECHNIQUES OF TEACHING CHEMISTRY AND/OR PHYSICS - P

Ninety-eight gave firsts to students working in pairs to perform their experiments. All five of these techniques were given a large number of second and third choices. Few students gave any of these preceding techniques ratings of more than three. Seventy-eight gave demonstration experiments by the instructor first choice, in contrast to thirty who gave first choice for demonstration experiments by the student. One student comented that he liked demonstrations if he were the student who performed the experiment; otherwise, he did not like them. Fifty said they disapproved of demonstrations done by the teacher while ninety-two objected to them done by students. Forty-four disapproved of lectures by the instructor while thirty-six disapproved the teacher's explaining only the difficult material and leaving the easy subject matter for the boys and girls to Learn on their own. There were afgheen who objected to students working in pairs to do experiments and seventy-two who disiliked individual laboratory exercises where each student performed his own experiment. The fewest firsts, only twenty-two, were given to the technique of the students forming into comittees, planning, and carrying out the work as a committee assignment The next least number of ones, thirty, were given to students selecting the material to be covered in the course. The preceding two techniques led with most dislikes, 168 for the atudents selecting the material, and 180 for the atudents
forming into committeas, planning the work, and carrying it out as comittee ssignments.

Suggestions of the 1953-54 students of chemistry and/or physics for improvements in these courses were tabulated and placed in Table XXVII. More experiments" listed by thirtynine individuals appeared more than twice as often as the next item, more and better laboratory equipment. Since both of these items applied to the leboratory, it seemed that students felt improvement in these high school courses was synonymous with improvement in experimentation. More field trips and more explanation were proposed. Students from five different areas requested that their high achool work be correlated closely with college courses. Seven asked that arrangewents be made for increased time for experimentation, demonstrations, and field trips. Smaller classes, clearer explanation, better discipline, a larger number of movies, and additional lectures appesed equally often. There were requests that added material be covered, and that the subject matter covered be studied in mor detail. Some wanted only the most capable students taught with the less capable or those creating discipline problems not llowed to continue in the course. While few asked for less homework, an equal number requested more outside assignments. About the same number requested more student participation that asked for more teacher demonatrations. Two students requested that the

## TAELE XXVII

## 1953-54 CHEMISTAY AND/OR PHYSICS STUDENT SUGGESTIONS FOR IMPROVBMENTS IN COUREES OF CHEKISTRY AND PHYSICS


instructor prepare written outline of the courge to be given to the boys and girls, while two proposed that time be given at the beginning of the year for the students to plan the activities that should be carried out.

The same items that were suggested to improve the course were also listed to make it more eajoyable. Table XXVIII indicated no differences based on the locality in which the schools were located. Kost frequently mentioned was more experimentation. This appeared twenty-five times each from students in achools A and C and was listed a total of ninetyfour times. More explanation had the next most requests, less than half as many sugesting it as suggested the preceding item. Twenty-six students in four schools requested more field trips. Two of these schools were located in an industrial area, and two in a college area. Nore films, more teacher demonstrations, homogeneous grouping, less homework, better order, and the elimination of the uninterested and the incapable individuals were mentioned about an equal number of times by students from all schools. As classroom equipment, more comfortable chairs were recommended.

Table XXIX was designed to reflect the opinions of 195354 high school chemistry students on the value of this subject. Schools D and F do not schedule chemistry in odd numbered years; hence there appears no information in this table from these schools. Again there seemed to be no clear pattern as

## TABLE XXVIIT

## 1953-54 CHEMISTRY AND/OR PHYSICS STUDENT SUGGESTIONS FOR MAKINO CHEMISTAY AND PHYSICS NOEE ENJOYABLE



TABLE XXVIII (continued)

## 1953-54 CHETISTRY ARD/OR PHYSICS STUDENT SUCGESTONS FOR MAKING CHEMISTRY AND <br> PHYSICS MORE ENJOYABLE



TABL XXIX
OFIMLONS OF STUDEXTS ENROLLED TM CHEMTSTRY IN 1953-54 ON "H2 VALUS OF RICH SCHOOL CHEMISTRT

determined by type of comunity. The greatest value of high school chenistry in the eyes of the teen-ager is its college preparatory value. Eroad bsckground, understanding the principles underlying everyday phenomena, general information, practical everyday applications were next in line in value in their belief. The total times these closely related items were mentioned, which is its value for "all American youth", would far outnumber the college preparatory value. Next most often named was foundation for further study. Then were cited understanding the world in which we live, stimulating thinking, and exercising reasoning. Vocational guidance was suggested by number. One individual said the course showed him he could never become a succesaful engineer, while six said their interest was aroused so they folt for the first time they should like to go into some field of science.

The actual count of the opinion of students earolled In high school physics for 1953-54 on the value of high school physics can be seen in Table XXX. Schools E and a could not be included in this table since E does not have adequate numbers of students to offer more than one physical science end 0 schedules physice in even numbered years. Again the single response leading was college preparation followed by general information and practical course for everyday living. The next most important response as determined by numbers was to broaden background and to understand the

TABLE XX

## OPINIONS OF STUDEMTS ENROLLED IT FHYETCS IN 2953-54 ON THE YALUE OF MICH SCHOOL PHYSTCS

measons students enrolled in physies think it is valuable	Number of ceses					
	School:					
	A 8	C	D	F	H	Total
Dasic information	1					1
Broadens background	4		3			7
Change attitudes		2				2
College preparation	617	3		5	8	39
Creates objective approach to 1ife		1				1
Develops study habita	1	2	2			5
Enable to understand causes					1	
Exercise in reasoning	31			2		6
Foundation for future otudy	41					5
General inforention	6	7	2		1	16
Help in occupation	2		1	1		4
helps meet crisks with level head		1		1		2
Interesting course	2		1	2		4
Necessary for armed services			1			1
Practical course for everyday livine	4	1	4	1		10
Stimulates curiosity		2				2
Stimulates thinking		2	2		2	6
Understanding principals of everyday phenomena	23			1	1	7
Vocational Euidance		1				1

principles of everyday phenomena. To develop desirable study habits was listed as one of the values for this course. Exercise in reasoning and stimulation of thinking were mentioned six times each.

Students not enrolled in chemistry or physics for 1953 . 54 have made many statements to explain why they did not select these courses. These statements have been classified as shown in Table XXXI. Schools B, F, and $H$ did not return questionnaires for pupils not enrolled in science. Thirtythree said they did not enroll for these courses because they Just were not interested. Twenty-five said they were too difficult, an opinion that does not seem valid in view of the findings in this study, which showed that a higher percentage of fallure in physical seience than in the school as whole is the exception according to Table $V$, page 26.

> III. AWALYSIS Or DATA

Teacher personality and enthusiasm seemed to be one of the greatest forces in determining the enrollment in physical science courses. In echool $A$, where the chemistry teachers gave much time to developing an active club, the chemistry enrollment has increased by leaps and bounds simultaneously with the growth of this comeurricular activity. In the same school, where the physics teacher has not sponsored any sort of extra-curricular activity, the enrollment in physics has

## TABLE XXII

## REASONS FOR NOT ENROLLINO IN CHEMISTRY AND/OR PHYSICS IN 1953-54

Measons	Schools			
	${ }_{\text {A }}$	D		Total
Dislike physics teacher	3			3
Dislike teacher	2			2
Did not enjoy science in past	62	3	1	12
Do not know				1
Fear of accident	1			1
Fear of failure	92	1	3	15
Inadequat mathematica	21			3
Inadequate prerequisites	2	2		4
Impossible to schedule	719	3	6	35
Mid-term graduate				3
Not going to college	$4{ }^{1} 1$	$\frac{1}{2}$		6
Yot interested	1814	2	4	38
Not needed	94	1		14
Not planning to enter science field	1			1
Not required for college entrance	1			1
Not required	1			,
Only seniors allowed to enroll				2
Other courses more valuable		4	2	14
Passed all science courses				3
Passed chemistry	1013			23
Flan to schedule next year	34	1	2	10
Prefer other courses	116			17
Science teacher suggested other course	2			2
Teachers not good	2			2
Teachers too hard	1			1
Time for fun in senior year	1			
T00 difficult	119	7	2	29
Too much homework	2			2
Too little time for class	1			1

decreased 60 per cent in the last ten years. In school $C$ where disapproval of the teacher's personality was unistaksble, the percentage enrollment was the lowest of any of the eight school.3. In school H where the fine rapport between the students and teachers was obvious, the largest enrollment was found in physies and the largest earollment of the four blg schools was lound in chemistry.

The highest percentage of enrollment in chemistry and physics was found in the schools located in an agricultural area. These were small schools that were able to schedule only one physical acience each year. These courses in the larger schools hed to maintain their enrollment in the face of competition from numerous other courses in the broad offerings of their secondary curriculum. In all of the small schools, where there could not heve been a wide choice for selection, the enrollment was unusually high. There was a higher enrollment in the college dominated institutions than there was in the districts located in industrial areas.

Fear of failure was given by many students as their reason for not enrolling in these courses. This reputation of difficulty in view of the figures did not seem valid for chemistry. Percentage of fallure in chemistry was 3.80 per cent while for the schools as a whole the percentage of failure was 4.00 per cent. The percentage of failure in physics for all schools was 5.90 per cent. The 2.31 per cent
enrollment in physica in achool A might have well reflected the 10 per cent failures. School C with a 14.00 per cent fallure in physics had 2.59 per cent enrollment. The other schools offering physics had low percentege of failure and a correspondingly higher percentage enrollment.

All schools except the very smallest practice the usually accepted techniques thought to popularize courses. Since the techniques of field trips, clubs, guest speakers, assembly prograns based on science were used in varying degrees in all schools except the smallest, no conclusion on their effectiveness could be drawn.

It seems, perhaps that the graphs representing students' antipathy to pupil planning of courses and committee work by students may not be altogether fair. Nost people have a certain mount of inertia to overcome before ombracing new ideas; and this is particularly true in education, where procedures have continued for generations simply because they were practiced in the past. Again, teachers probably have not had enough experience in these newer techniques to handle them gkillfully. In the investigator's classes of 132 chemistry students there was definite indication that comaittee work was better ccepted in May than had been true in December when the questionnaires were filled in. In these same classes the students seemed to have enjoyed panel discussions thoroughly, although there was no reference to them in the
questionnaires.
Techniques to improve the courses and techniques to make courses more onjoyable seemed to be syonomous terms in the minds of students. About the seme augestions were made for both.

## IV. SUMARY

Despite the fact that students, ex-students, most teachers, and principais believed chemistry and physics were courses for "all American youth", these classes were composed essentially of college preparatory students. Few boys and girls who did not plan continued formal education beyond high school graduation wer Lound in these courses. One of the participating teacher thought physical seiences should be taught only to those students with high aptitude and interest for science and a few of the former atudents concurred in this opinion.

In the four schools where only one of the two physical sciences was offered each year, the onrollment was markedly higher than the average of the four larger participating schools. The chemistry enrollment for all participating achools was 9.14 per cent and the physics enrollment was 4.25 per cent.

The science tencher had a key position in proper motivation. His responsibility to influence the student for or
against continued interest was large.
From the viewpoint of the student, ex-student, teacher, and principal, individual iaboratory exercises were an essential part of chemistry and physics.

Students wanted to understand subject matter in place of just memorizing laws and principles. Projecte which in volved active participation by all members of a class were very satisfying. Pupils liked to talk. If boys and girls were sble to present reports and panels on current science topics they and their classmates enjoyed it more than ilstening to a teacher present the same material. They particularly liked the study of the structure of the atom. The theory of electrons, protons, neutrons, and mesons fascinated them. They objected to writing, particularly notebooks and summaries of experiments. They liked tests administered at short time intervals.

Ex-students believed the use of the slide rule should be included as compulsory part of physies curriculum.

Although fear of failure was listed by many students as reason for not registering for chemistry and physics, the per cent of fallure in chemistry was below that in the schools as whole and only in two schools was failure in physics markedly high.

The largest percentage of enrollment in the physical sciences was found in the small agricultural schools where
physics and chemistry were alternated, the next largest enrollment was found in college dominated areas and the smallest percentage of enrollment was in schools located in industrial areaz.

## CRAFTER IV

SUMRARY AND CONCLUSTONS, FECOMMENDATIONS, AND EEED FOR FURTHER RESEARCH
I. SUMAARY AND CONCLUSIONS

The present investigation was undertaken (1) to determine the enrollment of students in chemistry and physica In southeast Texas, and (2) to learn what procedures were practiced in schools where these courses were attractive to the teen-ager.

1. The chemistry enrollment of 9.14 per cent in the participating schools was 20.26 per cent higher than the national matriculation of 7.60 per cent, and only 0.96 per cent below the peak enrollment of 1890 . The physics registration of 4.25 per cent was 1.16 per cent under the national average of 4.30 per cent. In no school was there over 10 per cent of non-college preparatory students present in a physical science class; the average for all schools was 3.25 per cent.
2. The amall agricultural schools where physics and chemistry were alternated, and where there was a correspondingly smaller choice of electives than in the larger institutions, had the largest percentage of enrollment in these courses. The next largest enrollment was found in college dominated areas, and the mallest percentage of enrollment
was in schools located in industrial areas.
3. The concensus wes that "all Amerlcan youth" need a scientific background in order to live successfully in our technical society. Those who plan formal education beyond the high school level require scientifie background for further study.
4. Students who desired to become proficient in the physical sciences were faced with the almost insurnountable task of mastering a large technical vocabulary, but the majority conquered this because they felt the need for that subject matter for further education and for life in an age of science.
5. Pupils enjoyed much of what they saw, for demonstrations, field trips, and other visual aids were high on the list of vitalizing activities.
6. Through student approval of talks made by visiting scientists, chemistry and physics were made to come alive. Rapport was established between the community and the classroom.
7. Learners liked teachers' lectures when they contained clear explanations.
8. Boys and girls delighted in both individual work and work with others where they themselves had opportunity for participating in the activities.
9. A poor science teacher could not arouse the interest
of the teen-ager. Pupils confused the dislike for a particular teacher and his methods with dislike for the course. Hence, poorly trained elementary and junior high school science teachers deterred students from continued study of science. In the questionnaires boys and girls constantly reitereted they liked "a good science teacher" and they disliked "a poor science teacher". Undoubtedly the teacher was a big factor In the size of the enrollment. Students wanted an eathusiastic, sympathetic person, well trained in the fundamentals of science and in methods of teaching.
II. RECOMENDATIOMS

In so far as the resulta of this investigation may be valid, the following recommendations seem justified:

1. The Texas Education Agency should investigate the feasibility of coordinating scheduling of science coursea so that all schools which alternate chemiatry and physics offer chemistry the same year, and likewise schedule physics the same year.
2. Teacher training institutions should require that all prospective elementery and junior high school science teachers study general science.
3. Encouragement should be given prospective school personnel to enter the field of science teaching.
4. Science teachers should be paid on the same basis
for scientific co-curricular activities as is paid for additional work in athletics.
5. Personnel should be compenseted for necessary work involved in taking care of supplies and equipment, setting up demonstration experiments, preparing for student laboratory experiments, and arranging field trips. They should have time to devise and to organize demonstrations and to think of the best methods for the presentation of subject matter.
6. Teachers have an obligation to their students to acquaint them with occupational opportunities in the field of science, not only the well known ones based on professional training, but also the many non-technical fields open to the secondary school graduate with training only in high sehool science.
7. In order to meet the demands of the atudents, teachers wust not only love their work and be intellectually alert, but they must know their subject matter, be able to devise experiments on the bility level of their students, and know about films and other visual aids - and how to obtain and use them. They must constantly gusrd their vocabularies to substitute simpler synonyms for difficult non-technical words. School personnel should always be willing to keep abreast of current professional information and to try new methods.
8. Today to live successfully and happily a person
needs experience in science along with certain skilla and Information that will enable him to appreciate his acientific environment. To prepare a teen-ager to live intelligently in this technical world, to read newspapers nnd periodicals understandingly, and to enter conversation knowingly, course in physical science should be presented for those students who do not plan to continue their formal education after graduation from high school.
9. Increased efforta are needed to guide non-college preparatory atudents into chemistry and physics.
10. More time should be arranged for science classes to permit field trips, demonstration experiments, and etudent experiments.
11. Better laboratory facilities with equipment and space adequate for interested students to perform individual investigations are to be desired.
12. The textbook should be selected with care. It should be written simply enough for all students to be able to read understandingly, but should have added material that will challenge even the most capable.
13. Pupils should be given aid in learning how to study.
14. Studenta should be given the opportunity for practice in taking semeater examinations.
15. There should be closer cooperation between the school and the community, in order to make it feasible to
bring into the school outstanding local acientists.
III. NEED FOR FURTHER RESEARCH
16. Fesearch studies in the area of subject matter content should be made to determine long term values to be secured by the student.
17. In the face of constant recommendations for more laboratory work, additional field tripa, increased visual alds, added explanations to an already crowded curriculum, subject matter should be appraised and reviewed to find what may be deleted.
18. For every type of methodology approved by one group of students, another group disapproved. Studies need to be carried on to find how chomistry and physics can be better adapted to the individual differences of the learners.
19. Studies are needed to find how facilities and time can be ade avallable for those who wish to use school property for individual research.
S. Investigations are needed to learn how more noncollege preparatory students may be encouraged to study the physical sciences.
20. Studies are needed to find means to induce all teachers to enter in-service training so all may realize the value of science to our country, the United States of America, to industry, and to every individual.
21. Investigations should be made to find proper compensation for science teachers for the additional time necessary for caring for equipment, arranging individual experiments, setting up demonstrations, and taking students on field trips.
22. Research is needed to determine the qualifications for succesaful teachers of junior bigh school science. Additional studies should be made to learn the qualifications for successful teachers of chemistry and physica.

## BIELIOGRAPHY

A. BOOKS

Amiss, John M. and Esther Sherman, New Careers in Industry. New York: McGraw-Hill Book Company, Inc. . 1946. 112 pp.

Butts, Robert F., A Cultural Mstory of Education. New York: NeGraw-H111 Book Company, Inc., 1947. 726 pp.

Cubberly, Eliwood P., History of gducstion. Boston: Roushton Miffiin Company, 1920.849 pp

Cubberly, Eliwood P: Public Educstion $\frac{1 n}{}$ the United Stetes. Boston: Houghton Mifilin Company, 1934. 782 pp.

Curtis, Francis D., Third Digest of Investigations in the Teaching of Science in the Elementary and secondary School. Fhiladelphia! F. Blakiston and Sons, 1939. 419 pp.

Douglass, Harl R., Secondary Education for Life Adjustment of Americen Youth. New York: The Ronald Press Company, 1952. 630 pp .

Douglass, Harl R. and Kubert 1 . Mills, Teaching in High School. New York: The Ronald Press Company, 1948. 627 pp .

Durley, J. G., W. B. Alexander, H. W. Eailey, W. W. Cook, H. A. Edgerton, and X. W. Vughn, The Use of Tests in College. Vashington, D.C.: American Council on Education Studies, December, 1947. 44 pp.

Downing, $E$. R., in Introduction to the Teaching of Science. Chicago: University of Chicago Fress, 1934. 258 pp.

Featherstone, *illiam B., Functional Curriculum for Youth. New York: American Book Company, 1950. 213 pp.

Oreene, Edward B., Heasurements of Human Eehavior. New York: The Odyssey Press, 2941. 777 pp .

Heiss, Elwood D., Ellsworth S. Obourn, and Charles W. Hoffran, Modern science Teaching. Now York: The Nacmillan Company, 2951. 462 pp.

Hoff, Arthur G., Secondary School Science Teaching. Philadelphia: Elakiston and Company, 1947. 303 pp.

Hunter, George W., Science Teaching. Hew York: American Book Company, 1934. 552 pp.

Kahler, Alfred, and Ernest Hamburger, Education for an Industrial Age. New York: Cornell University press, 1948. 334 pp.

Lee, J. Murry, and Doris Nay Lee, The Child and His Curriculut. New York: Appleton-Century-Crofts, Inc., 1950. $354 \mathrm{pp}$.

Pattarson, Margaret E . Science Glubs of America Sponsor Handbook. Vashington, D.C.: Science Service, 1954. 64 pp.

Preston, Carleton E., the High School Science Teacher and H1s York New York and London: MeGraw-Hill book Company, 1936. 272 pp.

Michardson, John S. and Cahoon, Guypert P., yethods and Materials for Teaching General and Physical Science. Now York: Becrew-Hi21 Book Company, 2951. 485 pp.

Spars, Harold, The High School for Today. New York: American Book Company; 2950.264 pp.

Strang, Ruth, Group fetivities in College and Secondary School. Now York and London: harper and Erothers, 1946. $301 \mathrm{pp}$.

Thayer, V. T., Chairman, Commistioner on Secondary School Curriculum, Science in General Education. New York and London: D. Appleton-Century Company, 1931. 591 pp.

Ward, W. W., Chairman, Manufacturing Chemists Association, Inc., The Chemical Industry Pacts Book. Manufacturing Chemists issociation, Inc., 1953. 108 pp.

Wells, Harrington, Secondary Science Education. New York: NcGraw-Hill Company, 1952. 367 pp.

Toumens, E. L., Class-Book of Chemistry. New York: D. Appieton and Company, 1875. 348 pp .

## B. PEATCDICAL ARTICLES

American hasociation for Advancement of Seience, "Committee Report on the Place of seience in Education," School Science and Mathematics, 28:123-127, June, 1928.

Abrahams, Harold J., "Science as 'Benefactor' and as 'Villain'," The Clearing House, 27:218-20, December, 1952.

Allen, Barbara, "Time for Change," School Science and Mathematics, 53:710-712, December, 1953.

Elanc, Sam S., "Vitalizing the Classroom," School Science and Kathematics, $52: 436-438$, June, 1952.

Bloom, Samuel W., Coordinator, "Science Provisions for the Rapid Learner," The Sclence Teacher, 20:243-6, October, 1953.

Bloom, Samuel W., "Science Provisions for the Rapid Learner," The Science Teacher, 20:161-3, 182-4, September, 1953.

Boeck, Clarence H., "Try the Inductive Approach," The Science fescher, 20:236-7, 260, October, 1953.

Buck, Jacqueline V., "Scientific Mriting and Scientific Attitudes," School Science and Mathematies, $53: 560-561$, October, 1953.

Bush, Robert F. The Waning of Science and Matheanatics in Secondary Education," California Journal of Secondary Educstion, 28:242-243, May; 1953.

Buswell, C. T., "Classroom Teachers Can Use Research," National Education Association Journal, 42:355-357, September, 2953.

Cunningham, Harry A., "Some Challenging Problems in Teaching High School Science to Gifted Children," School Science and Mathemstics, 52:373-380, May, 1952.

Culp, D. P., "A Magic Carpet," 登tional Education Association Journal; 41:208-210, Apri1, 1952.

Curtis, Prancis D., "The Implications of Research for the Classroom Teacher," National Educstion Association Journal, 39:209-223, February, 1939.

Curtis, Francis D., Milestones of Research in Teaching of Science," Journal of Educetion Research, 44:161-178, November, 1950.

Curtis, Francis D., "Basic Principles of Science Teaching," The Science Teacher, 20:55-59, March, 1953.

Davie, Watson, and Helen Miles Davis, "Exhibit Techniques," Chemistry, 24:1-112, May, 1951.

Defiurd, Paul, Mid-Century Trends in Science Teaching," Calffomia dournal of Secondary Education, 28:244-50, miay, 1953.

Diekhoff, John S., Mio Place for Privilege," The Educational Forum, 17:169-175, danuary, 1953.

Evans, Hubert Mo, "Some Significant Trends in Science Education, "Teachers College Record, 54:424, May, 1953.

Garford, Gordon G., How Good Bcience Teachers are Helping Superior science Students," The Clearing House, 28:199201, Deceaber, 1953.

Gelber, Jeanne L., and Edith \$. Hodges, Sugar Coated Pills of Betence," school Science and Mathematics, $53: 660-1$, November, 1953.

Golden, Louise Edna, WWashington High Guides Pupils Toward Scholarships," The Clearing Kouse, 26:136-37, November, 1951.

Cordon, Ted, "Tricks of the Trade," The Clearing House, 25:549, May, 1951.

Harmon, Millard, "Science Meed: A Broeder Base In Elementary Grades," The clearing House, 27:169-171, November, 1952.

Hockwolt, Carol A., "The Impact of Chemistry on the World of Science," The Scientific Vonthiy, 77:48-53, July, 1953.

Horton, Ralph E., "Measureable Outcomes of Individual Labwork in High School Chemistry," Science Education, 14:311-319, November, 1929.
$\qquad$ , "How Good is Progressive Education?" Journal of the Amierican Association of University Vomen, 46:34-35, October; 1952.

Howard, Henry M., "Science Bee: Teams Worked So Hard That Grades Went Up," The Clearing House, 26:179-180, November, 1950.

Hunt, Morton M., "Reading, Mriting, and Living," Mation's Business, 4:92-94, 29-31, May, 1952.

Inde, Aaron J., "Learning the scientific Method Through the Historic Approach," School Science and Mathemetics, 53:637-643: November, 1953.
Jacobson, Willard, "helping Young Feople to Deal With Their Problems," The Educationel Forum, 17:219-225, January, 1953.

Kirk, Samuel A., and whiard B. Spaulding, "The Institute for Research for Exceptional children at the University of Illinois," The Educetion Forum, 17:413-22, Kay, 1953.

Lawson, Chester A., "Oeneral Zqucation in the Matural Sciences," The Welch Dieest, 3:7-9, Kovember, 1953.

Lindsay, R. B.. "The Survival of Physical Science," The Scientific yonthly, 74:139-144, Warch, 1952.

NacCurdy, Nobert D., and Sharon Mumford, "A Selentist and Engineer Shortage? What Can tie Do Bbout It?" School Seience and Mathematics, 53:516-18, October, 1953.

Maclean, Archie J., "Science zducation for Todey and Tomorrow," California Journal of secondary Educstion, 27:274-277, bay: 1952.

Mallinson, George Greisen, Walter G. Marburger, Davie J. Miller, Gerald osborn, and David Worth, "Final Report to the Central Association of science and Mathematics Teachers of Its comittee on the significance of Mathematics and Science in Education," chool Science and Mathematics, 54:119-143, February; 1954.

Mallinson, George Oreisen, "How to Use the Textbook in Science Teaching." School Science and Mathematics, 53:593-600, November, 1953.
Maul, Ray C., "Manted: Selence Teachers for Tomorrow," The Seience Teecher, 20:173-175, September, 1953.

Panush, Louis, How to Use Projects in Teaching High School Chemistry, " School Science and yothematics, 53:291-299, April, 1952.

Randall, Roger ${ }^{\text {E. }}$. Preparing Our Students for the Scientific Age, " School Science and Mathematics, 53:427-28, June, 1953.

Rutledge, James A.: Some Opportunities in Chemistry for Problem-Solving," School Science and Mathematics, 53:605-607. November, 1953.

Shannon, J. H., "The Vanishing Vall Between Course and Activities, " The Clearing House, 27:8-12, September, 1952.

Schriftgiesser, Karl, "The Ingineer - They Have No Fears," Colliers, 132:65; 66-68, October, 1953.

Simpson, Elizabeth A., "The Best Tone for Learning, " National Fducation Association Journal, 40:643-644, December, 1951.

Sinclair, John G., "Conservation of Young Scientific Talent,"
The Texas Journal of Science, 4:403-406, Septerber, 1952.
Silverwan, Milton, What Makes a Good Scientist ${ }^{7 \prime \prime}$ California Journal of Secondary Education, 28:173-4, March, 1953.

Smith, Charles C., "Science Fiction, Asset or Liability?" The Science Teacher, 20:233-5, October, 1953.

Stone, C. Walter, "Flying Field Trips," Library Journal, 77:570-571, Apri11, 1952.

Story, M. L.: "Hand-Me-Down Nethods of Teaching," The Clearing House, 27:300-302, February, 1953.

Tead, Ordway, The Goodness of Underatanding," The Educstional Eorum, 17:161-168, Janusry, 1953.

Tompkins, Ellsworth, and Frederick T. Skipp, What Problems Face Activity Sponsors? California Journal of Secondary education, 28:48-50, January, 1953.

Washton, Nathan S., M Scientific Approach to Curriculum Construction, " School Science and Hathematics, 52:285290. Apri1, 1952.

Weaver: J. Richard, How Should Hodern Physies Ee Handled In a General phyaics Course?" 3chool Science and Nathegatics. 52:539-549, October, 1952.
Weisinger, Mart, "Comunity Spirit U. S. A. " Parents' Magazine, 46:92-4, February, 1952.
$\qquad$ *Who Needs Chemistry?", Chemistry, 27:1, September,

Wolfe, Dael, Future Supply of Science and Mathematics Students," The Science Teacher, 20:157-160, September, 1953.

Wood, Q. Congdon, Cherical-Biological Documentation: A New Approach," The American Institute of Biological Sciences, 3:16-18, october, 1953.

2im, Herbert S., Where Are We Now and Where Are Ve Going in Science Education?" The Sclence Teacher, 19:161-167, September, 1952.

## C. PUBLICATIONS OF LEARNED OROANIZATIONS

Barnes, Frank we, The Stake of Eusiness in American Educstion. New York: Standard OII Company. 1952. 10 pp.

Caldwell, otis we: Report of Sub-Commtte on Teaching Science, 1920. Vashington, D.C. ${ }^{\text {t }}$ United States Eureau of Education, 1920. 62 pp.

Eliker, Paul E: Science in Secondary Schools Today, Volume 37. Bulletin 票191. washington, D. C.: National AssociaMational Education Association, January, 1953. 268 pp.

Henry, Nelson B. "Science Education in the American Schools:" Porty-Sixth Iearbook of the National Society for the Study of Educgtion, part I. Chicago: Daiversity of Chicago Presa, 1947. $306 \mathrm{pp}$.

Johnson, Philip G. Science Fgellities for Secondary Schools. United States office or Education Federal Security Agency, Miscellaneous 77 . Mashington, D.C.: United States Covernment Printing Office. 1952. 38 pp.

Johnson, Philip 0. "Occurrences of Seience Courses in Anerican High schoola, "The Bulletin of the Rational Association of Secondary-3chool Principals. washington, D.C.: Kational Association of Public School Principals. 1953. 270 pp .

Johnson, Philip G.g Tesching of Solence in Public High Schools. United States office of Educhtion, Federal Security Agency, Bulletin ${ }^{\text {f } 9 . ~ W a s h i n g t o n, ~ D . C .: ~ U n i t e d ~ S t a t e s ~}$ Government Printing Office, 1950. 48 pp .

# Kingsley, Clarence D., "Cardinal Principals of Secondary Education," A Report of the Commssion on Reorgenizetion of Secondary Education of National Bducution Association, Buletin :35, Washington, D.C.i United States sureau of Education, 1918. 32 pp . 

"Time for Science Instruction, 1946 Yearbook of the National science Teachers Association. Washington, D.C.: Mational Science Teachers Association, department of National Education Association, 1946. 51 pp.

Shall 1 Study Chemistry? Washington, D.C.: American Chemical Society, 1953. 16 pp .

## D. ENCYCLOPEDIA ARTICLES

Monroe, Walter 3., "Science Education, Encyclopedia of Educationsl Research, New York: The Macmillan Company, 1952. Pp. 1133-1145; 305 pp .

## E. UNPUBLISHED MATERIALS

Shaffer, 3. 3., "Science Training, Today's Need." Unpublished paper read before the meeting of the Goose Creek Independent School District science teachers, Baytown, Texas, November 6, 1953.

## APPEMDIX

## QUZSTIOMNAIRE SENT TO PRINCIPALS OF THE PaRTICIPATING SCHOOLS

1. What is the total enrollwent in your school in grades ten through twelve?
2. What per cent of your graduates go to college?
3. What per cent of non-college preparatory students enroll in chemstry and physics?
4. What factors make these science courses popular?
a.
b.
c.
5. What factors make these science courses unpopular?
a.
b.
c.
6. What is the percentage of failures in

7. In order to popularize science does your school _ a. have one or more science clubs?
——b. sponsor field trips to neighboring scientific industries? do you encourage teachers to plan field trips for students?
_ d. bring in scientists from local industries to spesk to students?
-. have assembly programe based on science?
8. Please make suggestions as to how you think chemistry and physics teachers might improve their courses.
9. Should an advanced general science course, the content of which is to make the student conscious of the scientific world in which he lives, be required for all students who do not take either chemistry or physies?
10. Does your school offer applied science courses, such as,
a. consumer chemistry?
$\square$ b. household chemistry?
c. physics?
d. other?
11. Do you think such courses should be scheduled?

QUESTIONHAIRE SENT TO CHEMISTRY AND PHYSICS TEACHRRS OF THE PARTICIPATIMO SCHOOLS

1. What is the total enrollment in the science courses you teach? _ a. Physies

$=$| b. Chemistry |
| :--- |
| e. Blology seience |

d. General selence

- e. Other

2. What do the students like best about the course you offer?
a.
b.
c.
3. What do the studenta like least about the course you offar?
a.
b.
c.
4. What are the reasons more students do not enroll in chemistry?
a.
b.
c.
5. What are the reasons more students do not enroll in physics?
a.
b.
c.
6. Do you do demonstration experiments?
7. Do the students perform individual experimenta?
8. Do you take your studenta on field trips?
9. Do you affiliate with the Texas Junior Academy of Science?
10. Should chemistry and physics be taught only from the college preparatory point of view?
11. Should high schools offer science course above blology eapecially for non-college people?

## ©UESTIONNALEE SEMT TO CHEMISTRY AND PHYSICS

teachers of the participatino schools (continued)
12. Should a high school chemistry and physics course be offered that omits all mathenatics?
13. Should students who have difficulty with algebra be encouraged to enroll in chemistry and physics?
14. Do your atudents have an opportunity to perform original investigations during school hours?
15. Are your courses correlated with the occupational opportunities in your area?
16. List and give the enrollment of the comcurricular activities sponsored by the science department. a. b. c.
17. Wat methods have you found most effective in your science teaching?
a.
b.
c.
18. What else might be cone to increase cheaistry and physics enrollment?
a. c.

## QUESTIONWALEE SERT EX-STUDENTS OF ORE

 OF THE PARTICIPATING HIGH SCHOOLSThere is a greater demand for people trained in science than can be supplied by those presently being trained. Will you help us to find out how we can interest more people in science by answering this questionnaire?

1. What year did you graduate from high school?
$\qquad$ 2. Did you attend college?
_ $\quad$ b. How long?
$\longrightarrow$ C. Degree?
——. What did you study in college?
2. When you were in high school did you study chemistry?
3. When you were in high school did you study physics?
4. Why would you advise high achool student of today to study chemistry?
a.
b.
c.
5. Why would you advise a high school student of today to study physics?
e.
b.
c.
6. In what ways do you think high school chemistry helped you?
a.
c.
7. In what ways do you think high school physics helped you?
a.
b.
c.

## 9. If you had known as a high school student what you know now would you have enrolled in chemistry? 10. Would you have studied physics?

# TUZSTIOMNAIEE SEMT EX-STUDESTS OF ORE <br> OF THE PARTICIPATIXG HIGH SCHOOLS (continued) 

11. In what ways do you think your high school chemistry course could have been changed that would have improved it?
a
b .
c.
12. In what ways do you think that your high school physics course could have been changed that would have improved it?
a.
b.
c.

## CUTSTIONAMEE CENT STULENTS EMROLLED IN CHEMISTEX AND/OR PHYSICS

There is a great demand for trained scientists, but not enough trained people to supply the demand. Will you help to find out what can be done to interest more students in science by filling in the following questionnaire?

Classification: (check one) $\begin{array}{lll}\text { Junior } & \text { Boy } \\ \text { Senior } & \text { Girl }\end{array}$
Check the science courses you have passed: physics general science chemstry other biology

Check the science courses in which you are now enrolled: physics chemistry blology other

1. Are you taking a college preparatory course?
2. Do you plan to enter college?
3. What do you hope to study in college?
4. If you plan to go to college to study in nonscientific field, what value do you think high school physical science courses are for you? a.
b.
c.
5. If you do not plan to go to college, what value do you think high school physical science courses are for you?
a.
b.
c.
6. What occupation do you hope to follow when you go to work?
7. Check the person who influenced you to enroll in chemistry and/or physics:
a. Parent
b: Teacher talked you into it
c. Like a science teacher
d. Brother

## QUESTTONNAIRS SENT STUDENTS ERROLLED IN CHEMISTRY AND/OA PHYSICS (continued)

## - Sister

f. Friend
g. Other
h. Made own decision
8. If you made your own decision, check the reason: a. Wanted to know reason for things you have noticed.
b. Required for college entrance.
c. To retain meabership in science club.
d. Other.
9. Did you enjoy science courses you have had in the past?
10. What did you like best about your science courses?
a.
b.
c.
11. Check one, two, three, etc. in the order of your preference for a course to be taught. If two or more items are liked equally well by you, give them the same number. If any item represents classroom procedure you would not want in a class, mark Dislike beside it.
a. Lecture by teacher.
b. Explanation of difficult material by teacher with students learning easy material on their own.
c. Students select material to be covered in course.
d. Students form into committees, plan work, and carry out as comittee assignment.
e. Material organized and planned by teacher.
f. Individual laboratory work where each student conducts his own experiment.
g. Students work in pairs, but all students perform same experiment on same day.
h. Demonstration experiment performed by student. 1. Demonstration experiment performed by teacher. j. List any other procedures you would enjoy. (1) $\left(\begin{array}{l}2 \\ 3\end{array}\right.$
12. Do you have too many tests in gcience?
13. Do you cover too much material before you have tests?


IN CREMISTRY AND/OR PHYSICS
(continued)
14. What might be done that has not been done to make your science course more enjoyable?
a.
b.
c.
15. What could be done in science courses to make them better fitted to your needs and desires?
a.
b.
c.

If you are junior, do you plan to enroll in the other physical science next year?

If you are funior and you do not plan to enroll in a physical science next year, why not?
(To be filled in by students who have passed chemistry and/or physics)

1. Did you find chemistry or physies difficult?
2. Did you find it necessary to do more homework in chemistry or phyeics? (check one of the following answers?
— b. than inctiar courses?

- c. ebout the same as in other courses?

3. Was your grade in chemistry or physics higher than your average grades?
——. about the same as your average grades?
——b. lower then your average erades?
4. Were you afraid of possible accident in the laboratory?

## GUESTIONNALRE SENT STUDENTS ROT BNROLLED IN

 CHENISTAY OR PHYSICSThere is a great demand for trained scientists, but not enough people to supply the demand. will you help to find out what can be done to interest more students in science by filling in the following questionaaire? In the spaces to the left answer yes or no.

Classification: (Check one) Junior Boy Senior Girl

Do you plan to go to college?
Are you taking a college preparatory course?
Check the science courses you have passed.

$\square$ Physics $\quad$ Chemistry $\quad$| Ceneral Sciance |
| :---: |
| Others |

Did you enjoy the science courses you have had in the past?
2. What did you like best about your science courses?
a. b. c.
2. that did you dislike about your science courses? a. b. c.
3. Why did you not elect chemistry or physica this year?
a.
b.
c.
(To be filled in by students who have passed chemietry or physics)

Did you find chemisery difficult?
Did you find it necessary to do more homework in chemistry of physics than in other courses?

## GUESTIONNAIRE ERUT STUDENTS NO2 EXROLLED IN

 CHEMISTRY OR PHYSICS(continued)
_ Less than in other courses?

- About the same as in other courses?
W. Was your grade in chealstry or physics higher than your average grades?

Lower than your average grades?
_ About the same as your average grades?
_ Kere you afraid of a possible accident in the 1aboratory?

Why did you enroll in chemistry or physics this year?

$$
\mathbf{a}_{\mathbf{*}}
$$

b.
c.


[^0]:    ${ }^{2}$ infred Kahler and Ernest Hamburger, Education for an Industrial Age (New York: Cornell University Fress, 1948), Pp. 24-52.

[^1]:    9V. T. Thayer, Chmirman, Commissioner on Secondary School Curriculum, Science in General Education (New York, London: D. Appleton -- Century Company, 1931). p. 5.

[^2]:    $16_{\mathrm{E}}$. L. Youmens, Clesg-Book of Chemigtry (Wew York: D. Appleton and Company, 18751, p. 5.

    Authors of early textbooks usually introduced each topic with a problem which was not explained, and concluded with the statement of principle. The nineteenth century saw substantial shifts in the character and aims of the secondary school. ${ }^{17}$ The changing pattern in society caused an increase

    27rreeman n. Butts, A Cultural History of Education (New York and London: NcGraw - Hill book Company, Inc.: 1947), p. 506.

[^3]:    in science enrollment.

[^4]:    19Francis D. Curtis, MMestones of Research in Teach ing of Science," Journel of Educational Research, 44:161-178, November, 1950.

[^5]:    ${ }^{24}$ Welson B. Henry, "Science Education in the American Schools," forty-Sixth Yearbook of the Mational Society for the study of education, Part I. Chicago: University of Chicago Fress, 1947, Pp. 137-151.
    importance of science taught for its functional value in alding the adjustment of individuals to the changing world and in the solving of problems at their maturity levels.

