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ABSTRACT

Presented, is the theoretical basis for reconstruction 

of 2-d.imensional signals in the Fourier plane from pro­

jection data. Three algorithms are studied in detail: the 
Hankel transform method, the 2-dimensional interpolation 
method, and the concentric squares raster method. Each al­
gorithm is programmed and applied to simulated projection 
data. The results are compared.

The applicability of these techniques to mapping 
ultrasonic fields is considered, and the use of mini­
computers discussed.
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CHAPTER I
INTRODUCTION

1

1.1 Opening Remarks
There are many instances in life when it is desired 

to map some n-dimensional object. Often a direct mapping 

is impractical so indirect approaches must be taken. One 

such approach is the use of n-1 dimensional images. If a 
number of these images, or projections as we shall call 

them, can be obtained, then a reasonable estimate of the 

original signal can be derived.

The mathematician J. Radon (1) established the theo­

retical foundation for this, but the first practical use 
came in 1956 when Bracewell (2) searched for those areas 

of the sun which emit microwave radiation. By pointing 
his radio-telescope in several directions, Bracewell was 
able to obtain sufficient data to map the sun.

One of the best known applications in current tech­

nology is in the field of medicine. Computer-Aided- 

Tomography is used to reconstruct slices of the human 

brain. The input data are X-ray photographs called CAT- 

Scans, each taken at a different angle. A good intro­
duction to this subject is given by Scudder (5).

Sound fields can be reconstructed from their pro­
jections. Such projections are recorded by using light 
beans. A specific case is the mapping of a transducer field 
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as discussed, by Cook and Berlinghieri (4). As a matter of 

fact, this case is of particular interest since it is 

necessary to acquire data from but one projection to cal­

culate the total field. This can be done by using elemen­
tary scalar wave theory as described by Cook (5). (See 

figure 1).

As one might expect, many other reconstruction ex­

amples exist in the medical and physical sciences. Appli­

cations in fields ranging from nuclear medicine to geo­

physics are surveyed in reference (6).

But just how can signals be recovered from projection 

data? Actually several avenues exist, but this paper shall 

concern itself with only one - digital reconstruction in 

Fourier space. Furthermore this study will tailor itself 

to the mapping of ultrasonic fields from acousto-optical 
data and the plausibility of doing so with mini-computers.



*5

transducer reconstructed slice acoustic field

Fii^ure 1 Reconstruction of an acoustic field
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1 .2 Theoretical Background

For this present work, we will he interested only in 

signals of 2 dimensions. The theory in general^however, 
can be extended to any finite dimension.

1,2,1 The Continuous Fourier Transform (CFT)

The definition of the 2-dimensional Fourier transform 

and its inverse is given by

F(w) = f (x)e"‘^W*x^x (1)

Si CM Al 
SPACEand

f(x) = ■ ) F(w)e^w*x^dw (2)
4-rr )

FOURIER 
SPACE.

where x = (xpX2) is the vector in signal space, w = (wpW2) 

the vector in Fourier space, and w*x" the dot product of 

the two. These equations can of course be expanded into the 

more familiar forms

F(w^,W2) y f(xpX2)e“^w1x1 + w2x2^dx^dx2

- CO -aO
(la)

and

(2a)

f(x1,x2
F(w1 ,w2)e^w1x1 + w2x2^dw1dw2
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We have assumed here that the variables and are 

continuous.

When x^ and x^ are discrete, the Fourier transform 

takes a different foim as we shall next see.
1,2.2 The Discrete Fourier Transform (DPT)

Since we will be using the digital computer, all con~ 
tinuous functions will have to be digitized. This restricts 

us to using only band-limited functions.

The function ftx^Xg) is said to be band-limited if 

there exists a 2-tuple (spS^ such that F(wpW2) is zero 
whenever |wi|>2’ns1 or ]w2[ > 2TTs2.

When we sample f(x^,x2) we must be sure to have a sam­

pling frequency f^ in each dimension x^ such that f^ 2s^. 
Since = 27Tf^# this is equivalent to saying w^ > 4TFs£» 

This will result in a rectangular lattice of data points; 

and by the n-Dimensional Sampling Theorem, the continuous 
function f(x^,x^) will be completely recoverable from 

this lattice.
The DFT is a transfoim in its own right, with many of 

its properties analogous to those of the OFT. The exact 

form of the DFT is most easily understood in 1-dimension:

N - 1
_ 1 22 + ---12TT knwk ” 21Tn:0 V N k-0,1,..., (1T-1)

(3)

where w^ is the k'*'11 frequency sample and t the n^ sig­

nal sample. For dimensions higher than the first, the 
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equation becomes considerably more complicated. There is 
no need to elaborate further here, but the interested 
reader is referred to Mersereau and Oppenheim (8).

There are several ways to program the LET, but none 

surpass the fast Fourier transform algorithms in terms of 

speed and economy. These FFT techniques have understand­

ably received much attention in recent literature. See 
references (9), (10), and (11).

1.2.3 Projections and the Projection-Slice Theorem

The input to the reconstruction routines considered 

in this study is a special class of images. An understanding 

of how these images relate to the original signal is cen­
tral in the development of these routines.

To this end, let f(x^,X2) define some 2-dimensional 
object. (See figure 2). By integrating f along lines which 

are parallel to the axis, we obtain a 1-dimensional 
function denoted by p. (See figure 3).

oo
Px2^xp = J f(x1,x2)dx2 . (4)

— 06

If we take the 1-dimensional Fourier transform of p, 

we get:

Px (W1 “ J y f (^1 ,x2)e"^w1xPdx2dx1

Vf* XjLtee*
where w2 - 0



X, 7

2 Signal to be reconstructed

Figure 3 Lines of integration for obtaining

a projection



F(w ,w )1 2* w2 = 0 (5)

where FCw^Wg) is the 2-dimensional Fourier transform of 
f. That is, the 1-dimensional Fourier transform of p is 
the slice in the Fourier plane, F, evaluated along the 
line w2 = 0. This is displayed in figure (4).

Now let us integrate f in some other direction. Let 

the lines of integration be those v/hich are perpendicular 

to the ’ axis as shown in figure (5). To perform this 

integration, we merely have to rotate the coordinate axes 

(back) by the angle - 0, and then integrate as before.

Recall that

’ = x^ cos 6 4- x2 sin 6

x2* - -x^ sin 64 x2 cos 6 . (6)

In matrix form this is

(
xi /cos 6 sineWx.N

I- I 1/1
x2 7 \-sin9 0080/^X2/ , (6a)

or more succinctly

x* - Ax (6b)

where A is the rotation matrix in the +0 direction



Fifnxre 4 Slice in Fourier domain obtained by

transforming a projection

Figure 5 lines of integration for obtaining 
another projection
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Thus

•o
= J f(x)dx2* (7)

- eO

= j f(A“1x')dx2’ (7a)
• 
ep

= f (x,1 cose - sin 6 , x^ ’ sin 6 + x2r cos 6 )dx.

(7b)

Equation (7b) is the general definition of a projection 

in 2 dimensions. 1.7e see that p is the 1-dimensional image
e

of the 2-dimensional function f, obtained by integrating f 

along lines which are perpendicular to an axis which is 
moved an angle 9 from the horizontal. This axis is called 

the projection axis.
V/e note that equation (4) describes a projection of 

f obtained with 0=0.

As before let us take the 1-dimensional Fourier trans­

form of p:e
•o

P(wi')= j Pe(x1')e-d(wl'zi,)aXi. (8)

= J $ f(x)e“^w1 ’X1 ’^dx2’dx1 * (9)

= j C f(z)e-j(wl'2l’ 4 w2’x2')dx2'dz1'

where w2* = 0

(10)



<3“ »0
= j f f(x)e-i(6'1$,,llz2'dx]'

-eO -oO

1 1

where * 0

(11)

There is a useful theorem which states that if f(x) 

and F(w) are a Fourier transform pair, and if Q is an or­
thogonal transformation, then f(Qx) and F(Qw) also form a 

Fourier transform pair. Thus by rotating the vector "x 

through the angle 6 to get x’, we are also rotating the 
vector w through 6 to get w*. This coupled with the fact

that dot products are invariant to rotations implies that
w»x = w’.x*. Now since dxjdx2 •= dx-|,dx2, ,
Jacobian cos 6 sin 6

-sin0 cos0
being equal to 1,

with the 
we can rewrite

equation (11) to obtain
oO oO

Pe ^wl’^ f(^)e*’^w*x^dx2dx1

—**° v/here w2’ - 0 (12)

Equation (12), of course, is just the 2-dimensional
Fourier transform of f(x) evaluated along the line w2‘ = 0;

P- (w’)=F(w) v I
w2‘ = 0 (12a)

Figure (6) illustrates this fact.
What this means is that by talcing the projection of 

signal f at an angle 6 , and then performing the

1-dimensional Fourier transform on it, we obtain a slice 

of the Fourier plane, F. Furthermore this slice is also
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FiCTtre 6 Slice of Fourier domain obtained 
from projection in figure (5) 
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oriented at the angle 6 • This important fact is known as 
the Projection-Slice Theorem. The implications of this are 
that the complete Fourier plane can be determined by taking 

enough projections in the signal plane. Once this has been 
done, the original signal can be recovered. One obvious 
way of doing this would be to take the 2-dimensional in­

verse Fourier transform of F.

In most cases however, the Fourier plane cannot be 

specified in its entirety since only a finite number of 

projections can be obtained. Thus a number of digital al­

gorithms have arisen. The next few chapters discuss the 
theory and application of three such techniques.
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1.3 ;\n Overview
The methods studied here all start in a similar 

fashion - transformation of projection data from signal 

to Fourier domain. By virtue of the Projection-Slice 
Theorem, the Fourier data points are arranged in a polar 

raster. (See figure 7).

Chapter II deals with a reconstruction technique which 

makes use of the data in this form. Chapters III and IV 

deal with methods which require the Fourier data be arranged 
in a Cartesian raster. Indeed the primary thrust of these 
schemes is conversion from the one raster to the other.

A word is in order now about the projection data. For 
each of the three applications, these data points are 
generated in a separate simulation program. Although any 
number of sample points can be output, only a modest num­

ber are actually produced. This reflects the capabilities 
of moderate acousto-optical apparatus that would be used 

to collect actual acoustic projection data. Furthermore 

it is desired to study the feasibility of programming 
these reconstruction algorithms on small computers. Thus 
the number of sample points is restrained by the size of 

computer memory.
Throughout the study therefore, 16 projection angles 

are used with 32 samples per projection. Extra data points 

of zero amplitude are added at the ends of each projec­

tion, bringing the total number of points per angle to 64.* 

This is equivalent to desampling the data in reciprocal 

space, improving continuity. This padding of zeroes also
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Fifflire 7 Polar raster
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reduces problems caused by the cyclic nature of the DFT,

The specimen which is simulated in the following case 

studies is a square of unit density measuring 2 units to a 
side. A diagram of this specimen is shown in figure (8),

In the case of the Hankel Transform Method (Chapter 

II), a disk of unit density and unit radius is also 

modeled. This is portrayed in figure (9).
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9 Circular specimen of unit density
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CHAPTER II

THE HANKEL TRANSFORM METHOD

2.1 Theory

From the definition of the 2-dimensional OFT v;e have

F(w) = f(x)e~5^el)dt .

SlGMAL 
SPACE.

The definition of the dot product of two vectors im­

plies that :

!■(«)= \ cos«aS (13)

S1GMAL 
SPACE

where <x is the angle between vectors w and x. Figure (10) 

illustrates the relationships among <|>, 6, and . Since 
e( s 6 - <#> , we get:

F(w) = J f($)e”j|w||x| cos(6-*)d^ , (u)

Signal 
space

If polar coordinates are used, the Fourier transform

pair appears like so:
7T oO

f(r3)e~yr cos(e-*)r dr d^

-IT 0
(15)

F(yo,e)

and



Figure 10 The directional relationship between 
vectors w and "x
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TT * 20

f(r,f) = -4} ) 4e

° (16)

where we have set r = |x[ and. p - |w| .
Since f(r,$) is necessarily a periodic function in 4* 

with period 271 , it can he expressed in a Fourier series:

f(r,f) = Z fn(r)ein,f‘ (17)

where

n

TT

r, f(r,4.)e-in,|‘d4

-TT

(18)

Substituting equation (16) into equation (18), we 

get:

dyode

(20)

Using Appendix A this becomes
v oo

J P(/».e)/>[2ne-i11(6-ir/2>Jn(/lr),

-75 0

de

(21)
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which implies

f n (r)
ejnn/2Jn(yor)^(^

(22)

But since F(/>,e) is periodic v/ith period 2TT , it too 

can he expressed in a Fourier series:

eO
Ft/’.e) = Z F Med"8 (23)

where
ir

Fn(/o) = J F(^,0)e“3nede . (24)

-IT

Substituting equation (24) into equation (22) yeilds
oo

fn(r) = ~k j I'n(i/0)eJnTr/2jnt/>r)/’d/0 (25)

0

or

fn(r) = _L. j (26)

0

where

Fn(/o) 5
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By inspection we see that fn(r) and. Fny)) form a 

Hankel transform, pair:

and

A \Fn^) ” J fn(r)Jn(/or)rdr 
o

(26)

(28)

V/e now have everything we need to outline a recon­

struction algorithm.

1. Collect the projection data.
2. Take the Fourier transform of these pro­

jections to obtain F(yO,e).

3. Calculate Fn(yo) from F(^,6) by using 
equations (24) and (27).

A
4. Take the Hankel transform of F^(/>) to getfn(r). n r

5. Find f(r ,4>), the reconstructed signal, 
by using equation (17).
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2.2 ^Bli.(Lat4._Q2i_^d__^surtg

The above algorithm, as applied in this study, can 
be represented schematically:

projection data Hankel reconstructed
(simulated) transform signal

p(G,u)----- F(n,^))—-— f(n,r)----- f(^>,r)

As can be seen, the FFT is used whenever possible. More 

specifics will be given later, but let us now look at some 
results.

The first case presented here is that of the disk. 
Fortunately, study shows that there is no need to apply 
an anti-alias filter to these projection data since there 

are no appreciable amplitudes above the Nyquist frequency. 

Thus reconstruction can begin from the raw input sample 

points.

By nature of the Hankel transform method, reconstructions 
represent diametric slices of the original signal. Since 
a disk has radial symmetry, all slices appear the same. An 

example slice is shown in figure (11).
The next specimen is the square. Again the data are 

already band-limited. Reconstructions for various angles 
are presented in figures (12), (13), and (14).
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Figure 11a Orientation of output slice

Figure 11b Ideal reconstruction

Figure 11c Actual reconstruction
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Fi^re 12a Orientation of output slice

Figure 12c Actual reconstruction



<6
26

13,8; Orientation of output slice

Zi/iu-2'ell 1Actual reconstruction
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Figure 14c Actual reconstruction
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2,3 Discussion

The Hankel transform method is convenient in that it 

makes ready use of the Fourier data in polar form. Vflien 

programming this technique however, a number of serious 

drawbacks were observed.

Many Hankel transforms had to be taken, and each one 
required a different Bessel function. These functions 

varied widely in order and argument. Since no one algorithm 

could be found which would converge for each case, several 
methods had to be used. Exponent overflows and underflows 
were everpresent problems. In addition, excessive demands 

TJ were made on OP time. Eventually these problems were 

circumnavigated by generating a large table of Bessel 
functions in a separate program. This table was then input 
to the reconstruction program and functions were linearly 

interpolated as needed.

In calculating the Hankel integral itself, a routine 

was needed which would converge quickly. Enough terms were 

needed to keep truncation error at a minimum, yet too many 

terms would cause round-off'error to explode. Neither the 

trapezoid rule nor Simpson’s rule were adequate. It was 

found that Romberg integration performed reasonably well, 

but only if the optimum number of terms were used. A lucid 

development of Romberg integration is given in reference 
(12).
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CHAPTER III

2-DIMENSIONAIi LINEAR INTERPOLATION FROM POLAR ■
TO SQUARE RASTER IN THE FOURIER DOMAIN

3.1 Theory

One would, think that once the data in the Fourier plane 

is determined, the most straightforward way to reconstruct 

the signal would be to take the 2-dimensional inverse Fourier 

transform. Indeed the simplicity of this approach is ap­
pealing. However there is.one obstacle that must first be 

overcome.

In order to use the 2-dimensional inverse FFT, the 

data must be arranged in a Cartesian or rectangular raster 
(figure 15). As mentioned before however, by virtue of the 

Projection-Slice Theorem, the sample points in the Fourier 
plane are oriented in a polar raster (figure 7).

Consequently before the inverse FFT can be taken, the 

data in the Fourier plane must be rearranged. Interpolation 

schemes abound, but the most familiar one of course is the 

technique of linear interpolation.

Using this method,, we approximate the value at an inter­
polated point by the weighted average of the four surrounding 

data points. See figure (16). The formula for this inter­
polation is:

1111F(Pint) - ** cl2F(P2) 4 d3F(P3) +d4F(P4)

1 + 1 + 1 + 1
d1 d2 d3 d4 (29)
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Pigure 15 Cartesian raster

FOURIER FEME

the Fourier plane
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Thus v/e have the following reconstruction algorithm:

1. Collect the projection data.
2e Transform each projection to the Fourier 

plane to obtain a polar raster.

3. Linearly interpolate the points to a 
Cartesian raster.

4. Use the 2-dimensional inverse transform 
to go back to the signal domain.
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3.2 Application and Results

The TTT is again used wherever possible for the sake 

of efficiency. With this technique, the reconstructed signal 

is specified in Cartesian form, rather than polar form as 

in the case of the Hankel transform method.

The primary specimen here is a square of unit density. 

Some reconstructions are presented below.
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Fi^re 17c Actual reconstruction
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Figure 18b Ideal reconstruction

Figure 18c Actual reconstruction
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Fi^re 19b Ideal reconstruction

Fi/?ure 19c Actual reconstruction
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3.3 Discussion

Since there are no lengthy calculations to be made, 

this technique runs quite quickly on the computer. Due to 

the interpolation approximations though, a certain amount 

of error is inherent in this method, especially on the 

perimeter of the Fourier plane. Near the origin, the data 
points are closely packed giving rise to accurate inter­
polations. Far from the origin however, the sparcity of 

the data points makes good approximations difficult. Figure 
(20) shows this graphically.
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linear interpolation poor 

here due to sparcity of 

data points

linear interpolation 

good here

Figure 20 Interpolation from a polar raster
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CHAPTER IV

CONCENTRIC SQUARES RASTER

4.1 Theory
It is possible to simplify the previous chapter’s in­

terpolation in the Fourier plane. If the input sampling 

frequency is varied, according to the projection angle in 
some specific manner, one can produce an arrangement in 

the Fourier domain which approximates a Cartesian raster. 

This configuration is known as the concentric squares raster 
and is shown in figure (21).

By using only 1-dimensional interpolation, it is pos­

sible to fill in the missing points (figure 22). In figure 

(23), for instance, data points A and B are used for the 

interpolation of points C and D.

It would seem that 1-dimensional interpolation could 
have an advantage over 2-dimensional interpolation since 

fewer calculations would be necessary. Run time and round­

off error would thus diminish.

Here then is the algorithm:

1. Collect the data, varying the sampling 
frequency such that

2. a concentric squares raster is formed after 
transformation to the Fourier domain.

3. Use 1-dimensional interpolation to com­
plete the Cartesian raster.
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4. Take the 2-dimensional inverse Fourier 

transform of the Fourier plane to get 
the reconstructed image.
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FiCTire 21 Concentric squares raster in the
Fourier plane

• 0 0- 0 o •

0 • o • o • o
o o • ♦ • o o

e o • * . o o
o • o • o - o
• 0 0 * 0 0*

data point..• 
interpolated point... 0

Fi/?ure 22 Cartesian raster

• B
. oD

. OC
» • • A

Figure 23 1-Dimensional interpolation from
concentric squares raster to 
Cartesian raster
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4.2 Application and. Results

Following are some reconstructions of the 2-inch 
square specimen.
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Fiigure 24a Orientation of output slice

Figure 24b Ideal reconstruction

Figure 24c Actual reconstruction
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Fi/yure 25c Actual reconstruction
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Figure 26c Actual reconstruction
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4.3 Discussion

This program, too, runs quickly; making repeated use 

of the FFT. The results are relatively poor however. It 
appears the interpolation in only 1 dimension does not 

compensate in efficiency for the lack of input data 
available to 2-dimensional interpolation.
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CHAPTER V

A FINAL WORD

5.1 Conclusions

There are two ways to evaluate the results of this 

study. First, the performance of each routine can be ex­

amined in a comparative sense. Is one routine better than 

another? Second, the results can be judged in an absolute 

mode. Are the methods cost effective? Do they measure up 

to expectations? Some of these.points were discussed in 

previous chapters, but here we will take a broader look.

5.1.1 Comparison

The criteria by which we will compare the schemes 
should be stated at the outset. They are^run time, hard­

ware requirements, and quality of output.
The 1-dimensional interpolation scheme runs a little 

faster then the 2-dimensional one, but both are consider­
ably faster than the Hankel transform method. In fact if 
the Bessel functions must be generated for each Hankel 

transform, run times for that method can be prohibitive. 

By making a table of functions available to the program, 

this problem can be somewhat alleviated, however.

All three techniques require the input and output ar­

rays be present in the computer at the same time. For the- 

interpolation routines this means an array of 16 X 64 

complex elements as well as one of 64 X 64 complex 
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elements must be on board. This reflects the fact that the 

input consists of 16 projections with 64 samples each, while 
the output consists of 64 rows and 64 columns from the 

Cartesian raster. Note here that complex numbers must be 

used since we are dealing with phasor quantities. The mini­

mum requirements for the Hahkel transform method are some­
what less - a 16 X 64 matrix on input as well as output. 

Remember here though that in addition, many memory locations 
must be reserved if a table of Bessel functions is to be 

input.

Apart from the size of computer memories, there is 

another hardware factor to be considered. The Hankel trans­

form technique, in its interim steps, generates many large 

and small numbers. Depending on the machine, overflows and 

underflows can often result. This does not seem to be a 

problem with the interpolation routines.

The poorest reconstruction displays are produced by 
the 1-dimensional interpolation method. It apparently is 

severely handicapped by not being able to use all the data 
in the neighborhood of a point to be interpolated. At its 

best, the Hankel transform method can equal the 2-dimen- 

sionaJ. interpolation scheme in output quality, but this 

is very dependent on how well the Hankel integrals are cal- 

ulated.

It is believed then, that the 2-dimensional inter­

polation method produces the best results and is the most 
cost effective.



48

5.1.2 Judgement

Now we ask the difficult question, "Are the findings 

satisfactory?" The reconstruction displays presented in 
this paper indeed reveal the general geometry of the 
simulated signals. Y/hether the accuracy and resolution is 

sufficient for practical purposes depends of course on the 

needs of the individual cases.

It is disturbing that the amount of memory required 

seems to rule out the use of mini-computers. Y/hat is worse, 
if it were desired to improve the calibre of results, even 
more data would have to be handled.
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5.2 Suggestions

The problems and limitations encountered in this study- 

do not lead into a dead end street however. Rays of hope 

do exist.

First, more sophisticated programming techniques might 

alleviate memory problems. Possibly the large arrays could 
be stored on some auxilliary disc while small parts of them 

would be shuffled in and out of the central processor.

Second, reconstruction algorithms could be amended.to 
take advantage of any symmetries that might be known to 

exist in the object signal. Radial symmetry, for instance, 

can allow for dramatic reductions in memory usage and run 

time.
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To show

r cos

ot — 4*- 6 4 "*t/2. This impliesLet

4 =

Since the cosine function is even, we have

cos (<t>-0)

Therefore

r cos(9-<#>) cos(ot~-n r

-r-e (30)

(31)

vzhere we have made use of the identity

cos(

= cos(e-4>)

= cos(<X - Tr/2)

F-6

APPENDIX A

- 27T

6 = o< -IT/2 , 

«. *e - tt/2 ) 
and 

d(/> = doc .

. e-jn(6- tt sino(-n(xj

dot



By using basic trigonometric identities, it can be 

easily shown that the integrand of equation 31 is periodic 

with period 27T, Consequently the value of the integral is

r sin 0/ - net.

-ir
(32)

cos(e-4>) -n4>Jd(£

the same over any range of 2 7T, Therefore changing the 
limits in that equation, we get

e-jn(e)-TT/2)J

-IT

Expansion of the exponential function reveals

The integrand of the first term is an even function;

-TT (34)

the integrand of the second, odd. This implies then that

21T e-jn(8-ir/2) \ 1 cosGflr sin*-n<x)d# 
o K

(35)

But the integral in equation 35 is one of the well
known representations of the Bessel function. Thus

IT
Cej[/>r cos(e-*) _ 2TTe-:in(e-'n/2)Jn(^r)

-TT (36)


