Gene Expression Data Analysis of Persister Cancer Cells

UNIVERSITY of HOUSTON

CULLEN COLLEGE of ENGINEERING

Tahimy Landestoy, Juan C. Mier, Prashant Karki, Dr. Vahideh Angardi, Dr. Mehmet Orman **Department of Chemical and Biomolecular Engineering**

Background

What are persisters?

- Reversible drug-tolerant, slow-growing cells[1]
- Use non-mutational mechanism to survive lethal

Fig. 1 Resistant cells vs. Persister cells

Untreated Day 3

VFM Treatment Day 3

Fig. 2: Generating persister cells from parent (A375) melanoma cells.

Why to study persisters?

- Associated with recurrence and multi-drug resistance in cancer cells [1-3]
- Mechanism associated with persistence is unclear [1]
- Anti-persister therapies can enhance the efficacy of current treatment approaches [4]

Objectives

Persister cells have unique metabolism compared to general cancer population [1] With our study we aim to:

- Analyze database for metabolic pathways associated with persister cells using Python and machine learning programming
- Identify specific genes that are up or downregulated in persister cells.

- without cancer
- assay)

NumPy Linear algebra library

Approach

_								Get the most upregulated a
In	n [62]:]: from cmapPy.pandasGEXpress.parse import parse import pandas as pd import numpy as np				Libraries		import numpy as np
In	In [63]: = "GSE70138_Braod_Level5_COMPZ.gctx" geneX_gcto0 = parse()					Downloaded data		<pre>def getMostAndLeastUpregulated(gene_data, numberOfGe if numberOfGenes == None: numberOfGenes = len(gene data.index)</pre>
In	[64]:	: geneX_gctoo.data_df.shape : (12328, 118050)				Data shape/size		<pre>gene_regulation = pd.DataFrame(data=np.zeros(ler</pre>
Ou	ıt[64]:							
In [125]:	 CID ("Column ID") := Gene Signatures RID ("Row ID") := Genes In [125]: [geneX,df.head() 					Defining rows= genes columns= drugs		<pre>for gene in gene_data.index: gene_regulation.loc[gene,'Regulation'] = met gene_regulation.sort_values(by='Regulation',inp)</pre>
Out[125]:	cid REP.A001_A375_24H		REP.A001_A375_24H:A04 REI	P.A001_A375_24H:A05 REP.	EP.A001_A375_24H:A06	REP.A001_A375_24H:A07	REP.A001_A375_24H:A08	<pre>return gene_regulation.iloc[:numberOfGenes,:],</pre>
	rid							
	780	4.264143	-0.382211	-0.571711	0.584376	0.658348	-0.004232	
	7849	0.057249	0.304313	-0.754999	-0.589973	-0.226854	-0.363419	
	2978	-1.012480	-0.674992	0.414515	-0.227603	0.287899	0.239820	Lambda function= average o
	2049	0.308898	-0.335931	-0.502323	-1.//524/	-0.666601	0.080279	-
	5 rows × 118050 columns				-0.107543	-0.091924	0.6430/4	Use 50 most downregulated

