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Results and Conclusions
Key Code lines: Data Visualization

Approach
STEPS on the Code:

Objectives
Persister cells have unique metabolism  
compared to general cancer population [1]  
With our study we aim to:
• Analyze database for metabolic pathways  

associated with persister cells using Python and  
machine learning programming

• Identify specific genes that are up or  
downregulated in persister cells.
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Background
What are persisters?
• Reversible drug-tolerant, slow-growing cells[1]
• Use non-mutational mechanism to survive lethal  

concentration of drug [2-3]
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Fig. 2: Generating persister cells from parent  
(A375) melanoma cells.

Why to study persisters?
• Associated with recurrence and multi-drug  

resistance in cancer cells [1-3]
• Mechanism associated with persistence is  

unclear [1]
• Anti-persister therapies can enhance the

efficacy of current treatment approaches [4]

Method
Where did the data come from?

• The Broad Institute from MIT, in collaboration with  
Harvard, and other leading biotech labs

• Database with cells taken from patients with and  
without cancer

• Cells were cured with different perturbations
• Changes were recorded in Transcriptional Expression  

Data for set of 1000 genes (Landmark Genes, L1000  
assay)

Why did I use Python?
• Database easy access, Data Extraction, Interface  

Customization, and Quick system integration
Data analysis Data Visualization

Linear algebra library

Extremely powerful version of Excel Statistical plotting library

Similar feel to MATLAB
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Key Code lines: Data Analysis
Get the most upregulated and downregulated genes of eachcategory

Lambda function= average of all rows

Use 50 most downregulated/ upregulated genes

UNCLUSTERED

• Optimization of the data: removed non-effective  
signatures

• Columns represent the perturbation and rows  
represent gene signatures.

• Perturbations inducing similar responses were
clustered together.

• Statistical significance test were conducted  
using z-scores.

• Check to see if there  
are any genes that are  
up/down regulated

• Used principal  
component analysis  
(PCA) to reduce  
dimensionality

• Data not well
pixelated; need to  
cluster
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