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Abstract

Several active faults are reported from southeast Texas. These faults have been studied
in great detail in Harris County, but little work has been done in Fort Bend County where
there are at least four known fault systems. These are the Long Point, Needville, Arcola,
and the Addicks fault systems. This study focuses on the Needville and Arcola fault
systems in an effort to determine the continuity and displacement along these two fault
systems. The purpose of this study is to build on the previous work with the use of the
latest tools to identify and understand the faulting mechanisms in the Fort Bend County.
This study used Light Detection and Ranging (LiDAR), aerial photographs, Ground
Penetrating Radar (GPR), 2D Seismic, Global Positioning System (GPS), gravity, and well
logs which proved to be complementary, and work very efficiently together. The LiDAR
produced a comprehensive surface model that revealed four faults never reported
before, and extended previously recognized faults. The GPR data show disturbance in
the fault zone, and provided a link of LiDAR to 2D Seismic data. The 2D Seismic stacked
profile displayed a comprehensive vertical section that allowed the Needville Fault to be
interpreted to approximately 800 meters. The Well logs provided a source of
information to produce a subsurface model that helped identification of the fault
locations. The gravity data confirmed that there is a low gravity anomaly in the Needyville
Fault Zone. GPS suggested movement of 9 cm over 4 years for the Arcola Fault. All these
complementary datasets helped create a comprehensive 3D model that demonstrates

complex geology in this passive margin of the Gulf Coast.
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Chapter 1

1.1 Introduction

Southeast Texas is known to have many normal faults that run parallel to the
coast of the Gulf of Mexico, as can be seen in Figure 1-1(Chowdhury & Turco, 2006).
Within southeast Texas lies the Houston area which has had multiple studies done that
has revealed both regional and local faults. These studies include those of (Ruhl, 1991)
and (Engelkemeir & Khan, 2008). These faults that have been found in the Houston area
include three major faults through Fort Bend County. They are the Long Point Fault,
Arcola Fault, and the Needville Fault, as can be seen in Figure 1-2. These faults cause
different kinds of problems than many people consider when thinking of faults. The
faults in Fort Bend County move in a relatively continuous sliding motion which can
cause areas to slowly grow apart. Also due to this relatively slow continuous motion the
faults can be unnoticeable which leads to people building such things as homes right on
top of the fault. This relatively slow, continuous movement of the faults is due to the
stratigraphy of this region comprising of clay-rich sediments. A surface map of the
sediments can be seen in Figure 1-3. The sediments in the area with the lack of rock
allows for the aseismic movement along the faults, since the faults have the ability to

slide rather than develop strain on hard lithographic beds.
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Figure 1-1: Fault location and orientation across southeast Texas. It is evident that there
are a large number of normal faults that run parallel and are dipping toward the Texas
Gulf Coast. There are also to a lesser extent antithetic faults that run parallel and are
dipping away from the Texas Gulf Coast. (Chowdhury & Turco, 2006)
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Figure 1-2: Digital Elevation Model (DEM) of study area with location of major faults and
salt domes.



This lack of development of a pressure build up means that there will not be any sudden
releases of strain, which is what people feel in earthquakes. For this reason most people
that live in the Houston area do not even realize that faults are present all along the
Texas Gulf Coast. This can be very costly to property owners, since some people or
organizations buy their property on top of faults and construct homes, business
buildings, and even schools. There have been previous studies done in Fort Bend
County, such as Ruhl in 1991, but since the previous studies new technology has been
developed that are better able to detect the faults (Ruhl, 1991). Recent studies have
been conducted in Harris County using newer technology such as Light Detection and
Ranging (LiDAR), Ground Penetrating Radar (GPR), and Global Positioning System (GPS).
The use of LiDAR has led to a higher accuracy of mapping faults in the Houston area
(Engelkemeir & Khan, 2008). GPS has been used in the Houston area to help monitor
surface deformation (Engelkemeir, et al., 2010). For Fort Bend County, this new
technology will allow for the faults to be better identified at the surface and then allow
the faults to be better tracked through the subsurface. The current technology should
be sufficient enough to produce a full cross sectional image of the faults. This will be
done by combining multiple techniques to produce a better understanding of the
subsurface in Fort Bend County including the mechanisms for why the faulting is
occurring. The techniques that will be utilized in this study include LiDAR, GPR, GPS,

seismic, gravity, and well logs.
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1.1.1 Attributes of Active Surface Faults

Active faults along the Texas Gulf Coast are different than what people typically
think of when they consider faults. Normally when the word fault is brought up the first
thing that pops into people’s heads is earthquakes and immediate destruction. This
however is not the case for the Texas Gulf Coast. Active surface faults have typically
been most noticeable when people inadvertently build a structure on top of one. Even
when this happens it can be five to ten years before anyone knows that the structure is
on top of an active fault. This has to do with the relative slow continuous slip of the
faults. Earthquakes are caused from a slow build up of pressure on hard rock formations
that instantly break and give way to an abrupt movement. However in the Houston area
there is none of these hard rock formations and thus the faulting is more like a very slow
moving landslide into the Gulf of Mexico. With this slow movement of the faults there
are no fault scarps to speak of in the Houston area, but rather fault inclinations or fault
ramps. These fault inclinations occur do to the erosion of the higher fault block, as the

lower fault block continues to slide down.

1.2 Objectives

The work focused on the surface and subsurface faulting in Fort Bend County. The
primary area of Fort Bend County that was studied is the area south of the Brazos River
through south of the city of Needville (Figure 1-2). The main objective was to find the

faults on the surface. Then, depending on what data became attainable, it would be
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determined how the faults are oriented in the subsurface, and how the subsurface
correlates to the surface. This was handled through the use of LiDAR, aerial
photographs, GPR, gravity, GPS, seismic, and well logs. Fort Bend County is very
characteristic of the geology of the Texas Gulf Coast, and therefore the results from this
study provide an idea for what may be found throughout other passive margin regions.
This work also provides a methodology for future studies to improve on data
integration, and therefore can lead to fewer misinterpretations. A more detailed outline

of the objectives can be seen below.

1. Process LiDAR in order to reveal areas of surface faulting and use multiple LiDAR

datasets to see rate of displacement along these faults

2. See change in surface faulting using aerial photographs

3. Acquire GPS data from Subsidence district on the up and down thrown sides of

the faults and estimate rate of displacements

4. Acquire and process seismic data in order to map the faults at depth

5. Gravity numbers potentially show different content of the ground. This may
include that salt uplifts in the area may be a cause or a mechanism for some of

the faulting.



6. GPR was conducted perpendicular to a fault to image the faults in subsurface.
The GPR helps to connect the surface image of the fault produced through the
LiDAR processing and the subsurface image of the faults found through the

seismic processing.

7. Obtained well logs and correlated them together in an effort to produce cross

sections and structure maps of the area.

8. After all of the data was gathered and processed it was combined to reveal the
neotectonic activity of the area. This produces a more understandable image of
the area in an effort to bring greater knowledge about the geologic activity that

has happened or is still happening in Fort Bend County.



Chapter 2

2.1 Background of Area

In the Houston area there are many active faults. Presently the location of the
surface faulting is widely known in Harris County due to decades of mapping of the
larger faults, and by more recent efforts of mapping of the smaller faults through the
use of the latest technologies. The faulting in the Houston area is commonly believed to
be the result of both subsidence and salt diapers throughout the area (Verbeek &

Clanton, 1981).

Perhaps one of the most devastating examples of the effect of subsidence would
be what happened to the Brownwood Subdivision. The Brownwood subdivision was
developed in the late 1930’s at about ten feet or less above sea level southeast of
Houston. By the late 1970’s the area had subsided more than eight feet and was subject
to frequent flooding. The subdivision was eventually abandoned after Huricane Alicia in

1983 (Figure 2-1) and turned into a nature center (Coplin & Galloway, 1999).

With the amount of ground deformation that has been observed around the
Brownwood Subdivision and places in Harris County it is only logical that Fort Bend
County must be experiencing deformation also since it is located mainly southwest of
Houston. Much of Fort Bend has been shaped by the Brazos River and the evolution of
its meandering across the county as can be seen in Figure 2-2. This meandering history

9



is very prominent throughout the county with the presence of horseshoe lakes, and
many creeks that at one point may have been the main channel for the Brazos River.
This meandering has played a key factor in the urbanization of Fort Bend County as most
neighborhoods are built behind levees to protect themselves from the Brazos. With Fort
Bend County rapidly urbanizing the importance of understanding the geology is

becoming greater every day in order to recognize the potential hazards.

(Kehgman =008 ¢ £ = . L A
[ I SRR Wics 1ML PEWL P . . oL SR

Figure 2-1: Image from (Coplin & Galloway, 1999) which shows the Brownwood
subdivision in 1983 after hurricane Alicia.
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Figure 2-2: Map of Fort Bend County, Texas that shows the locations of rivers and creeks

throughout the county.(TIGER, 2012)
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2.2 Previous Studies

There have been many studies carried out across Southeast Texas in an effort to
better understand the geomorphology of the region. However the largest focus of these
studies has been in Harris County with fewer studies in the surrounding areas. Harris
County is continuously studied with the newest technologies available. An example of
these studies would be that of Engelkemeir (2008). However, Fort Bend County has not
been thoroughly studied since 1991 when John Ruhl worked on his Masters thesis (Ruhl,
1991). There have been a lot of new technologies since 1991 that are able to more
clearly distinguish the active faulting. Another study was conducted in Brazoria County

in 1989 by Justine Boccanera (Boccanera, 1989).

2.2.1 Goldstone 0Oil Corporation

Greenman and Gustafson finished a study in 1953 on the startigrpahy of Fort
Bend County. In this report there is a stratigraphic section correlated to a well log
(Figure 2-3), a structure contour map of the top of the Frio Formation (Figure 2-4), and a

cross section compiled from eleven well logs (Figure 2-5).

The stratigraphic section in Figure 2-3 ranges from approximately 1200 meters to
2100 meters in depth and reveals what is expected from a Gulf Coast setting. The
section shows that there are undifferentiated formations of Miocene age from the top
of the section to a depth of approximately 1375 meters. At this depth Oligocene age

formations appear starting with the Anahuac, which is clay that ranges from
12



approximately 1375 meters to 1525 meters. Then the next named formation is the Frio,
which is shale with interbedded sand that ranges from approximately 1525 meters to
2015 meters. Then the next formation is the Vicksburg, which is a lignitic shale that

ranges from the base of the Frio to off the bottom of the statigraphic section.

The structure contour map of the Frio (Greenman & Gustafson, 1953) reveals
that there are many faults passing though the Needville Field. All of these faults are
trending in a northeast to southwest orientation, which is expected since this conforms
to the regional scale faulting that is seen in Figure 1-1. One thing that is interesting to
note is that there are both antithetic and normal faulting occurring through the
Needville Field. This is important in that the regional scale normal and antithetic faulting

in Figure 1-1 can also be seen in the much more local scale of Needuville Field.

From the cross section that was created from the correlation of eleven well logs
it becomes very clear of the complexity of the faulting through the Needbville Field.
There are numerous normal and antithetic faults that have produced significant offsets
in the strata of what appears to be as much as 90 meters for the Anahuac, and as much

as much as 240 meters for the Vicksburg.
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Figure 2-4: Structure contours of the top of the Frio formation with interpreted
faulting.(Greenman & Gustafson, 1953)
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Figure 2-5: Cross section compiled from eleven well logs. (Greenman & Gustafson, 1953)
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2.2.2 Engelkemeir

In 2008 Engelkemeir finished a PhD Dissertation on evaluating Houston area
neotectonics using GIS and remote sensing techniques. In this dissertation Engelkemeir
used LiDAR, seismic, GPR, and GPS in an effort to better identify the faulting throughout
Houston. His study suggested that with the newer technologies the faults around the
Houston area can be better identified and understood in relation to movement

(Engelkemeir, 2008).

2.2.3 Boccanera

Boccanera (1989) finished a Masters Thesis on surface faulting through the use
of aerial photograph reconnaissance, field investigations, interpretation of well log and
seismic data, and application of predictive models to better identify the faulting
throughout Brazoria County. This study provided evidence of 130 faults in Brazoria
county. Of these faults approximately 70% were found to follow the regional faulting
trend with the remaining 30% comprised of faulting associated with the radial faulting

from salt tectonics (Boccanera, 1989).

2.2.4 Harris Galveston Subsidence District and Fort Bend Subsidence District
Subsidence plays a large role in faulting in the Houston area. Luckily the Harris

Galveston Subsidence District (HGSD) conducts ongoing studies in Harris and Galveston

Counties along with a partnership with the Fort Bend Subsidence District (FBSD). These

two organizations use Continuously Operating Reference Stations (CORS) along with
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Port-A-Measure (PAM) stations in order to monitor the subsidence around the Houston
area. The CORS are permanent stations that have a permanent GPS located at them. A
PAM is a permanent location that has a portable GPS stationed at the location on a
rotating basis (Harris Galveston Subsidence District). From these stations along with
other information the HGSD was able to produce a subsidence map of the Houston area
as seen in Figure 2-6. From this figure it is noticeable that the largest amount of

subsidence is to the east and southeast of Houston.

2.3 Importance of this Study

By combining the multiple technologies a clearer understanding of the area can
be determined and therefore can help in understanding some of the mechanisms that
are behind the faulting. This will also allow more knowledge for the area as it continues
to urbanize and produce oil and gas. By having this knowledge it may lead to better city
planning in order to avoid possible hazards or to allow for better engineering design of

any structures that must be placed across a faulting zone.

One possible hazard is that of drilling through faults. This can cause multiple
problems such as tension, lateral compression, axial compression, shear, and bending of

the well bore and casing (Fjaer et al., 2008).
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Figure 2-6: Subsidence map of the Houston area from the Harris Galveston Subsidence
District.
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Chapter 3

3.1 Techniques Used in this Study

The techniques used in this study include Aerial Photographs, LiDAR, GPS, well
logs, seismic, gravity, and GPR. The reasoning for using so many different types of
technologies all in one survey is to be able to obtain a greater understanding of what is
happening. If only one type of technology is used you may think you know a great deal
about what you are observing, when actually you are just seeing an illusion or noise.
Think about seeing a huge fault scarp. You see it in person, with LiDAR, and aerial
photographs so you may assume it to be a fault. Then you look at well logs and seismic
and nothing is actually there, so who knows what you are actually looking at but at least

you now know it may not be as straight forward as initially imagined.

LiDAR provides a very precise surface model of which aerial photographs can be
draped over. GPR then provides information about the near subsurface. Seismic
provides information deeper below what GPR can see. Well logs provide sparse
horizontal data, but offer a complete vertical section at their locations. GPS can provide
rate and directions of movement. Gravity can provide information about possible

composition of the ground throughout the area on a large scale basis.

The techniques that were used in this study to confirm the presence of faulting
for each fault system in Fort Bend County can be seen in the following Table 3-1. The
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techniques used for each fault was dependant on multiple factors. These factors include

data availability, computing capacity, land access, and time constraint of this study.

Fault GPS | LiDAR | GPR | Seismic | Well Gravity | DOQQ | Field
Logs Observation
Needville X X X X X X X
Arcola X X X X
Addicks X
Long Point X
Pleak X
Thompsons X X

Table 3-1: Type of data used for each fault that was mentioned observed in this study.

3.1.1 GPS

GPS data from the Harris Galveston Subsidence District and the Fort Bend
Subsidence District was used in order to visualize the ground movement in Fort Bend
County. Rate of movement for faults is estimated from the difference of GPS data on the

hanging wall and footwall of faults.

One unique aspect of the faulting along the Texas Gulf Coast is that typically
both the hanging and footwalls are moving down in elevation. This is partially an effect
of the relatively soft and looser sediments of the coastal areas that are constantly
compacting. Another cause of this around urban areas is due to water withdrawal and

to a lesser extent hydrocarbon withdrawal.

3.1.2 LiDAR

LiDAR is a fairly new technology that’s potential is still being realized. The

purpose of LiDAR in this study was to create a surface image of Fort Bend County in
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order to reveal areas in which the faults are visible on the surface. The ideal place for
LiDAR to work is in areas that are undisturbed by human activity, and that has no trees
or vegetation. This is due to the nature of how LiDAR works in that the laser shot down
to the first object it hits, and then reflects back to the sensor on the plane. This is great
if a 3D elevation model of a city or trees is required, but bad for having a bare earth
surface model. Also with the raw LiDAR data you will find that there are outliers that
have to be removed. One reason for these outliers has to deal with the fact that when
the laser hits an object on earth, the signal may not bounce directly back, but may be
diffracted and bounce around a little before getting picked back up by the sensor on the
plane. To help with all of this confusion and noise produced from the multiple problems
is partially why the LiDAR data is quantified into multiple levels of returns. The ideal
situation rarely occurs though, and therefore there are workarounds for producing a
bare earth model in areas that have been altered from their natural state, or that have
trees present. For this there are many filters you can create to classify the LiDAR data.
These filters include such things that are based on geometric shape, earth’s curvature,
and elevation difference from one point to the nearest surrounding points. With all
filters and processing comes a downside of reducing detail in data. For this reason it is
very important to think of the scale at which the faulting is occurring in Fort Bend
County. For people that are familiar with the Houston area it is obvious that there are

no large scale cliff faces that have formed in the area due to the faulting. Most people
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visiting or living in the Houston area would never even realize that a fault is present due
to how small the surface deviations are between the up thrown and downthrown sides
of the faults. This small deviations in the surface elevations produces a difficulty in that
by looking at Fort Bend County as one bare earth DEM LiDAR image would reveal very
little, since the topography changes in Fort Bend County range from close to sea level to
around fifty eight meters above sea level, and the fault displacements that are trying to

be identified are on the scale of centimeters.

The LiDAR used in this study was acquired by Merrick & Company in 2005 using
the North American 1983 Harn state plane coordinate system. The metadata for the
LiDAR notes that the data has a vertical positional accuracy of 0.27 feet or 8.23 cm. The
LiDAR was obtained in LAS format, which in order for this to be a workable format in
ArcGIS requires the repetition of a few steps, and much time. To simplify the process of
converting from LAS to a more usable and manipulative format model builder was used
to create a new ArcGIS tool as seen in Figure 3-1. This model took forty five hours and

fifty minutes to complete for the 2005 Fort Bend LiDAR data.
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Figure 3-1: ArcGIS model builder model that converts LiDAR .las files to multipoint
ArcGIS shapefiles, and then to singlepart ArcGIS shapefiles.

From the resulting file format the LiDAR data points can then be analyzed in a
point cloud cluster. From doing this reveals that there are still many outliers in the data.
To identify and remove these required the use of height information from each point.
Another new tool was created using model builder as seen in Figure 3-2. This model

took seventy hours and twelve minutes to complete for the 2005 Fort Bend LiDAR data.

N

Add Z Information

Figure 3-2: ArcGIS model builder model which adds z information to singlepart ArcGIS
shapefiles.

Once the Z information was added it was necessary to create a tin and then a
raster image of the data while excluding the outlier data points. To simplify the process
the model in Figure 3-3 was created. This model took twenty five hours and nine

minutes to complete for the 2005 Fort Bend LiDAR data.
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Figure 3-3: ArcGIS model builder model which converts singlepart ArcGIS shapefiles to
triangulated irregular networks (TIN) and then to a raster.

A combined version of the models in Figure 3-1, Figure 3-2, and Figure 3-3 can be

seen in Figure 3-4.

Figure 3-4: A combined version of the previously mentioned ArcGIS model builder tools
which ultimately converts LiDAR in .las format to digital elevation models (DEM) in a
raster format.

After creating the raster images it was found necessary to produce hillshades of
the images. To simplify this process the model in Figure 3-5 was created. Unfortunately
the time for running this model was not recorded for the 2005 Fort Bend LiDAR data.

The most useful hillshade parameters that can be used for Fort Bend County were found
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to be using an azimuth of 315° and an altitude of 45°. This means that an image will be
created that emulates the effect of a light being shined on the area from the northwest
at an angle of 45° from the horizon. The azimuth of 315° is ideal for the faults that trend
in a northeast to southwest orientation, but does nothing to help in the distinguishing of
the faults that run in a northwest to southeast orientation. Therefore this setting for the
azimuth should reveal the major faulting through the area, but will nothing to help in
distinguishing the smaller faults that radiate around the salt domes. The altitude of 45°
was determined due to the typical length of the faults in the area, along with the typical
relief that is found from these faults. If the relief from the faults was much greater and
the straightness of the surface faults was much greater, then a higher altitude could be
used than 45°. The same is true in the other direction. For this reason an altitude of 45°

degrees is a fair comprise between the two extremes of 0 and 90 degrees.

J

Iterate
Rasters

s

output

Hillshade hillshade

Figure 3-5: ArcGIS model builder model which takes the DEMs produced from the
previous models and interprets hillshade images.

By creating a hillshade of the entire Fort Bend County it allowed the fault scarps
to be more distinguishable than that of just the DEM, but not at the Fort Bend County

scale. This can be seen in Figure 3-6. Looking at this figure you can see that there were
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some technical problems that were encountered which created blank lines in the
hillshade. Many different attempts were made to lessen the extent of these flaws in the

hillshade, but no solution was determined.

Overlaying the hillshade with thirty three percent transparency on the DEM
makes for an interesting result of even more clarity, but once again not at the Fort Bend

County scale. This can be seen in Figure 3-7.

For this reason it is necessary to create subsets of Fort Bend County in which
these details can become clear. By mosaicing smaller sections of Fort Bend County, it
allows for the colors in the DEM to be spread out over smaller amounts of elevation,
and therefore enhances the ability to distinguish smaller amounts of elevation change.
For this reason DEM subsets were made of the Needville, Arcola, Addicks, Long Point,

Pleak, and Thompsons faults.

From the mosaiced subset of the Needville fault in Figure 3-8, it is easily seen

that the northwest side is at a higher elevation that the southeast side.

From the mosaiced subset of the Arcola fault in Figure 3-9, it is easily seen that

the northwest side is at a higher elevation that the southeast side.
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Figure 3-6: Fort Bend County Hillshade produced from the DEM that was produced from
2005 LiDAR data.
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Figure 3-7: Fort Bend County with a hillshade overlaid on a DEM to better reveal areas
of faulting.
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Figure 3-8: Needville DEM produced from 2005 LiDAR data.
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Figure 3-9: Arcola DEM produced from 2005 LiDAR data.
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The Addicks fault is a little harder to see in Fort Bend County in this set of LiDAR
than that of the Needville and Arcola faults, but it is still visible and clear that the

northwest side is higher than the southeast side. This can be seen in Figure 3-10.

The Long Point fault is much like the Addicks fault in terms of visibility as seen in

Figure 3-11, but the Northwest is still higher than the Southeast.

The Pleak faults as seen in Figure 3-12 is on a much smaller scale than that of the
other faults and is in a far less developed area than the Addicks or Long Point fault. For
these reasons the LiDAR displays these two faults very clearly and that on both of them
the northwest side is higher than the southeast side. The Pleak faults were not able to
be confirmed from aerial photography, or by field observation. As the Pleak faults were

not a focus in this study no further attempts were made to confirm this fault.

Around Thompsons there are multiple faults. This is the effect of the Thompsons
salt dome. For this reason the faulting in this area becomes very difficult to distinguish,
because there is so much faulting occurring in all different directions with both normal

and antithetic faulting outcropping at the surface as can be seen in Figure 3-13.

Also by creating the smaller subsets the hillshades become much more
interesting as seen in Figure 3-14, Figure 3-15, Figure 3-16, Figure 3-17, Figure 3-18, and

Figure 3-19.

31



1HO0 15

Addicks ,.@i
7

) |Legend

N
| Roads Addicks DEM

Major Roads Meters

S0
| - High - 49 33

4 ,.‘; S

| Y

’ T\\

—_—
4«_"—# - Low :20.91
.f T et T L3

Figure 3-10: Addicks DEM produced from 2005 LiDAR data.
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Figure 3-11: Long Point DEM produced from 2005 LiDAR data.
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Figure 3-12: Pleak DEM produced from 2005 LiDAR data.
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Figure 3-13: Thompsons DEM produced from 2005 LiDAR data.
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Figure 3-14: Needbville hillshade produced from the DEM that was produced from 2005
LiDAR data.
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Figure 3-15: Arcola hillshade produced from the DEM that was produced from 2005
LiDAR data.
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Figure 3-16: Addicks hillshade produced from the DEM that was produced from 2005
LiDAR data.
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Figure 3-17: Long Point hillshade produced from the DEM that was produced from 2005
LiDAR data.
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Figure 3-18: Pleak hillshade produced from the DEM that was produced from 2005
LiDAR data.
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Figure 3-19: Thompsons hillshade produced from the DEM that was produced from
2005 LiDAR data.
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The result of overlaying the hillshade with thirty three percent transparency on
the DEM becomes even more interesting in the subsets as can be seen in Figure 3-20,

Figure 3-21, Figure 3-22, Figure 3-23, Figure 3-24, and Figure 3-25.

Fort Bend County is the only place that LiDAR was used to produce the bare
Earth DEM. For the rest of the Texas Gulf Coast a DEM was created from Texas Natural
Resources Information System Stratmap Elevation Spots(TNRIS, 2012). These data are a
lot less dense, and therefore produces a lower resolution DEM. The resolution of this
DEM is approximately 3,000 meters, which is lower than that which is required to be
able to interpret the low relief fault scarps that are present along the Texas Gulf Coast

as can be seen in Figure 3-26.
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Figure 3-20: Needville with a hillshade overlaid on a DEM to better reveal areas of
faulting.
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Figure 3-21: Arcola with a hillshade overlaid on a DEM to better reveal areas of faulting.
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Figure 3-22: Addicks with a hillshade overlaid on a DEM to better reveal areas of
faulting.
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Figure 3-23: Long Point with a hillshade overlaid on a DEM to better reveal areas of
faulting.
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Figure 3-24: Pleak with a hillshade overlaid on a DEM to better reveal areas of faulting.
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Figure 3-25: Thompsons with a hillshade overlaid on a DEM to better reveal areas of
faulting.
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Figure 3-26: DEM of the Texas Gulf Coast which was produced from TNRIS Stratmap
Elevation Spots.
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3.1.3 GPR

Through the use of LiDAR and satellite imagery, locations were chosen that are
ideal for conducting GPR surveys. These surveys must be conducted at a high angle to
the fault strikes as are the seismic surveys. Also ideally the surveys were to be done on a
smooth surface that has had little man made interference. For this reason a survey was
conducted on an older road crossing the Needbville fault at a very high angle to the
strike. The GPR provides the link between the surface faulting revealed through LiDAR
and the faulting that is revealed in the available seismic sections. For this reason the
GPR was conducted at the same location in which seismic was collected. GSSI SIR 3000
GPR with 100 & 400 MHz shielded antenna systems were used. It is very important to
use a shielded system at this location due to the presence of multiple power lines that

run both parallel and perpendicular to the survey.

The 400 MHz shielded antenna system is able to penetrate a depth of up to four
meters depending on the soil conditions (GSSI, 2012). It is important to note that with a
400 MHz frequency has a wavelength of 0.75 meters, and therefore the highest
resolution possible would be approximately one fourth the wavelength which is 0.19
meters. This means that bedding lithologies of approximately 19 centimeters or greater
in thickness can be determined in approximately the uppermost 4 meters. This is very
useful since LiDAR cannot see below the surface, and seismic cannot easily determine

any bedding at this shallow of depth. Therefore the GPR is able to produce a possible
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link between the LiDAR and the seismic. With the survey being located in Fort Bend
County with its moist clay soils it is also important to remember dielectric constant of
water compared to other materials. This is important because moister essentially acts as
a barrier in which GPR cannot penetrate. The below Table 3-2 of dielectric constants is

modified from GSSI.

Material Dielectric Material Dielectric
Constant Constant

Air 1 Wet Sandstone 6

Snow Firm 1.5 Wet Granite 6.5

Dry Loamy/Clayey Soils 2.5 Travertine 8

Dry Clay 4 Wet Limestone 8

Dry Sands 4 Wet Basalt 8.5

Ice 4 Tills 11

Coal 4.5 Wet Concrete 12.5

Asphalt 5 Volcanic Ash 13

Dry Granite 5 Wet Sands 15

Frozen Sand & Gravel 5 Wet Sandy Soils 23.5

Dry Concrete 5.5 Dry Bauxite 25

Dry Limestone 5.5 Saturated Sands 25

Dry Sand & Gravel 5.5 Wet Clay 27

Potash Ore 5.5 Peats 61.5

Dry Mineral/Sandy Soils 6 Organic Soils 64

Dry Salt 6 Sea Water 81

Frozen Soil/Permafrost 6 Water 81

Syenite Porphyry 6

Table 3-2: Common dielectric constants modified from GSSI (GSSI, 2012).

The 2-D GPR surveyed line stretched from the 500 meter mark to the 610 meter
mark of the seismic line as can be seen in Figure 3-27. Unfortunately the GPR survey was
not conducted across the main location of the fault. The recorded data from the GPR
survey was processed with the use of RADAN 7.0. Processing steps included position

correction, range gain, lIR filter, spatial F-K Filter, deconvolution, and migration. The
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detailed processing for both the 100MHz and 400MHz can be seen in the below Table

3-3.

Function

Purpose

100MHz

400MHz

Position Correction

Removes air wave,
correcting first
reflection to time
zero

Corrected the first
peak to time zero

Corrected the first
peak to time zero

IIR Filter (Bandpass)

Removes data with
frequencies higher
and lower than
entered range

High pass: 25 MHz
Low pass: 100 MHz

High pass: 100 MHz
Low pass: 400 MHz

Deconvolution

Removes multiples

Operator length: 31
Range Gain: 3
Prediction lag: 5

Operator length: 31
Ranger Gain: 4
Prediction lag: 5

Migration

Removes diffractions

Type: Kirchoff
Width: 63
Velocity: auto-pick
Range Gain: 4

N/A

Table 3-3: Steps that were taken to process the 100MHz and 400MHz GPR data that was

collected along Bushnell Rd.

44




Fort Bend County -

95°5254W <

OGPR line
— Faults 2012

e weesssmw——————— Kilometers

0 0.01 0.02 0.04 0.06 —— Roads

Figure 3-27: The green line represents the locations of the GPR sections along Bushnell
road, while the red line represents the interpreted location of the Needville fault as it
appears from the result of the LiDAR interpretation.
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3.1.4 Seismic

No professional seismic sections are shown in this report due to legal reasons;
however | was allowed to view a few seismic sections acquired by Seitel. From these
sections | was able to confirm that the faulting is present along the eastern end of the

Needyville Fault.

Many aspects were considered for selecting the ideal location to shoot a seismic
line. These include location and orientation of the fault, identifying locations where a

survey is possible, and accessibility to the location.

The target for this research was anywhere from the far southwest end of the
Needville fault to the furthest northeast end of the Arcola fault. Since both of these
faults trend in a southwest to northeast orientation the best direction for the seismic
line was considered to be oriented in a northwest to southeast direction, perpendicular

to strike, to see the dip of the fault more clearly.

Available seismic equipment allowed max one kilometer length for the seismic
line. The vibroseis truck weighs approximately 12,000 kg, and the truck’s sweep can be
felt around 100 meters away. This eliminates the possibility of conducting the survey
within 100 meters of any housing or commercial buildings in order to ensure no damage

is done. Also the vibroseis cannot be used on top of any pipelines for safety reasons.
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Landowners were identified throughout the area through the use of the Fort
Bend County Appraisal District website. Many land owners were contacted, and several
declined to allow us on their property. However several were very interested, and
provided permission. These include the George Ranch Foundation, Fort Bend County
right of ways, and a few local property owners. The location that was chosen for the
above reasons is along the southwest side of Bushnell road that is a few kilometers west
of Needville. The location which can be seen in Figure 3-28 met all of our requirements
for the survey. However this location does still have certain dangers that needed to be
addressed. The road has multiple pipelines that cross under it as can be seen in Figure
3-29. The road also has a load limit wood bridge at the end of it that is restricted to

10,000 lbs, or approximately 4,536 kg.

The survey was conducted by laying out a 960 meter 2-D seismic line. The
seismic line consisted of vertical geophones planted at 5 meter intervals for 955 meters
for a total of 192 receivers. Every 24 geophones are connected to a geode through the
use of a geophone cable. Then every geode is connected to the previous geode until it
reaches back to the first geode which is connected back to the computer. A schematic of

the seismic line layout can be seen in Figure 3-30.
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Figure 3-28: Green dots represent locations of geophones along Bushnell road, while the
red line represents the interpreted location of the Needville fault as it appears from the
result of the LiDAR interpretation.
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Figure 3-29: Photo of 2D seismic survey being conducted on Bushnell Rd. with pipelines
illustrated in red further down the road in front of the vibroseis truck.
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Figure 3-30: Schematic of the layout of the 2D shallow seismic survey conducted along

Bushnell road.
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The vibroseis truck ran a 12 second linear sweep of 10Hz to 150Hz. The shot
interval from the vibroseis truck consisted of both 5 meter and 10 meter intervals. The
reasoning for this is that due to time constraints due to weather about a third of the
way through the survey the shot interval had to be changed from 5 meter to 10 meter in
order to complete the survey in a shorter time span. The recording was done with a

sampling rate of 1 milisecond for a record length of 4 seconds.

Once the data were collected, they then had to be processed before any
interpretation could be conducted. The seismic was processed with the use of Vista
Seismic Processing Software. The processing was conducted multiple times in order to
determine the best processing steps and parameters to be used in order to reduce the
noise and thus reveal the geologic structure. The processing steps can be seen in Table

3-4.

Unfortunately | was not able to obtain enough well log data close enough to our
seismic section to perform a seismic to well log correlation. Only SP logs were obtained
that were close enough, and therefore | was not able to correlate to the seismic. This
correlation would have been very useful in being able to convert the time seismic to
depth seismic and also to create meaningful lithology horizons on the seismic. Since this
was not possible an assumption was made based on the average velocities of the area

that every 1ms of time is equal to 1 meter of depth, and random horizons were picked.
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Process Description Parameters
Load Data Load data into Vista

Compute Geometry description

Geometry for receivers, shots

Trace Statistics

Eliminate traces that
are bad

Input Data
Scaling Exponential Time Exp.: 1.000000
Power
Scaling Data Scaling Scale: 1.000 Mean Scale

Input Time Gate File

Deconvolution

Surface Consistent
Deconvolution Apply

Type: Spiking Decon

Operator Length: 60.000
Pre-Whitening: 1.000
Components to Apply:

1 - Line Component
1-SHOT_SEQUENCE_NUMBER : 4
comp

2 - RECV_SEQUENCE_NUMBER : 4
comp

Scaling

Data Scaling

Scale: 1.000 Mean Scale
Input Time Gate File

Output Data

Input Data

2D Transforms

Apply F-K Designed
Filter File

F-K File

Power: 1.00 TrcSmooth: 7 FreqSmooth:
5

F-K Filter Operation: REJECT

Apply removable Agc 250.00 ms

Scaling

Data Scaling

Scale: 1.000 Mean Scale
Input Time Gate File

Deconvolution

Time-Variant
Spectrum Balancing

BandWidth. 10.00 HZ Slope: 5.00 HZ
Start Frequency 0.00 HZ

Top Frequency to 120.00 HZ

Single Scalar AGC Window: 100.00 ms
Scale: 1.0000

AGC Start Gate File

Scaling

Data Scaling

Scale: 1.000 Mean Scale
Input Time Gate File
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Process

Description

Parameters

Trace Edit

Muting

Interp, Offset[Trace] Dependent
e Mute File
e Taper Mute Zones by 4 Samples

Output Data

Input Data
True Surface True Surface Normal e Velocity Referenced: True Surface
Velocity Move-Out e NMO File
e Velocity Percent: 100.00 %
e Stretch Mute: 30.00 Linear Ramp: 4
e Mute Velocity Inversions
Scaling Automatic Gain e L1/L2 Norm Equalization
Control (AGC) e AGC Length: 100.00 Scale: 1.000 Norm
Eqg: L1 Ignore Hard-Zero
e Apply Signal Bandpass Filter:
25.00/35.00 120.00/150.00 Hz
Stack Common Mid-Points e Stack:1/(N+1)
Stack e CMP Stack Geometry Header Update:
OFF
Filtering Ormsby Band-Pass e 25.00/35.00-120.00/150.00 Hz
e Domain Filter Application: Frequency
Scaling Automatic Gain e L1/L2 Norm Equalization

Control (AGC)

e AGC Length: 100.00 Scale: 1.000 Norm
Eqg: L1 Ignore Hard-Zero

e Apply Signal Bandpass Filter:
25.00/35.00 120.00/150.00 Hz

Output Data

Input Data
Signal 2D F-X Deconvolution e FXFilter [Levinson-Durbin]: 3 Design:
Enhancement 100 End Freq: 100.0 Hz(Taper: 10.0 Hz]
Power: 1.000000 factor: 1.000000
e Restore Trace Mutes
Scaling Automatic Gain e L1/L2 Norm Equalization

Control (AGC)

e AGC Length: 500.00 Scale: 1.000 Norm
Eqg: L1 Ignore Hard-Zero

Output Data

Table 3-4: Above is a table of the steps that were taken to process the 2D seismic data
that was collected along Bushnell Rd.
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3.1.5 Well Logs

Well Logs were obtained from GeoMap, E P Energy, and the Texas Railroad
Commission. In addition to acquiring well logs from GeoMap, | was also permitted to
view the structure contour maps, but these GeoMap structure maps are not presented
in this report for legal reasons. | obtained paper copies of well logs from GeoMap, while
the logs obtained from E P Energy and the Texas Railroad Commission were received in
Tiff format. In order for the well logs to be correlated and placed into a presentable
format | requested assistance from Neuralog. Neuralog is a company that specializes in
producing well log printers, scanners, and software. Neuralog assisted by providing me
with the following software: NeuraMap, NeuralLog, NeuraSection, and NeuraScanner.
Neuralog also provided me with a NeuraScanner in order to scan in all of the paper logs |

retrieved from GeoMap.

Well logs were initially obtained in what were hoped to be near perpendicular
lines to the surface faults that were found in the LiDAR. With these initial logs rough
cross sections were made that confirmed that the faults found on the surface are also

visible at depth.

With the knowledge of the faults seen in these initial well logs many more well
logs were obtained from additional locations. Many reports were also located that have
stratigraphic cross sections that were formed from the use of well logs and other data.

The cross sections and well location overview maps from these reports can be seen in
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the Appendix. From these reports the overview maps were georeferenced in ArcGIS in
order to determine the location of the wells used to create the cross sections. Then by
examining the well logs in the cross sections, stratigraphic tops were located and the
well logs were then either brought into Neuralog, or the statigraphic tops were brought
directly into a shapefile in ArcGIS. The idea behind this is that if a high enough density of
well logs could be obtained, then some rough structure maps of the Needville and
Arcola areas could be formed. With these structural maps salt domes and faults were

identified.

Although the primary focus is on the Needville and Arcola areas it was important
to go beyond these areas with the well correlations. This is important in order to
minimize the effects of individual well log interpretations on the regional structure. For
example before the regional well log correlations were added there were a few well logs
that were located near the edge of the extent of the core group of well logs in Fort Bend
County that were over salt domes. These few wells cause the structure of the area to be

unclear without wells that are further out to produce a regional structure for the area.

3.1.6 Gravity

Some gravity data was obtained through GeoNet, which is a gravity and
magnetic database that is run by the University of Texas at El Paso (UTEP). Unfortunatly
this gravity is too sparse in locations to be able to be useful in this study as can be seen

in Figure 3-31. The majority of these data appears to have been collected along the
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major roads, with lesser importance on the locations as the usage of the roads
decreases. This was identified by the fact that Interstate 10 is very easily distinguished
by the locations of the gravity readings, and then the rest of the readings to the south

appear to be located mostly in a grid.

Attempts were made at trying to obtain higher density data through multiple
organizations, but were found to be unsuccessful. Since for this study it would require a
much higher resolution of data than what is obtainable in the public domain it became
necessary for a gravity study to be conducted. For this reason gravity data were
collected with a Scintrex CG-5 Autograv gravimeter along Bushnell road. This study was
conducted by taking two measurements every twenty meters along the side of Bushnell
road as can be seen in Figure 3-32, which is where the seismic and GPR surveys were

also conducted.

There are several steps that are necessary when conducting a gravity survey.
First the measurements must be made, and the location of the measurement in latitude,
longitude, and elevation must be recorded. Then the raw gravity data must have several
corrections applied in order to have data that means anything. These steps include the
Tidal, Drift, Latitude, Free Air, Bouguer, and Terrain corrections. The result of these
corrections is the relative Bouguer Anomaly. In order for this to be an absolute Bouguer

Anomaly an additional step of calibrating the Scintrex CG-5 Autograv with a known
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gravity reference point would be required. For this survey it is not necessary to have an

absolute Bouguer Anomaly, and therefore this calibration was not conducted.
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Figure 3-31: Locations of gravity measurements displayed in ArcGIS as downloaded
through GeoNet by the United States Geological Survey (USGS) through the University
of Texas Elpaso (UTEP)
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Chapter 4

4.1 Results

4.1.1 GPS

There are enough GPS data available in Fort Bend County to be able to draw a
conclusion about the Arcola fault as can be seen in Figure 4-1. Unfortunately for the
Needville and Thompsons faults GPS stations are available only on the north side of the
two faults. For Arcola GPS station PAM 40 is approximately one kilometer south of the
fault, and GPS station PAM 16 is approximately seven kilometers north of the fault. GPS
station PAM 14 is located north of the Thompsons fault and could also be associated
with being on the north side of the Arcola fault. This amount of GPS data does not
provide multiple GPS stations on each side of the fault in order to make sure that these

GPS stations are reliable.

For the Arcola fault it can be seen in Figure 4-1 that PAM 40 south of the fault
has decreased in elevation from 1997-2011 by approximately 18 centimeters. During the
same time span PAM 16 north of the fault only decreased in elevation by approximately
13 centimeters. Also PAM 14 during the same time span decreased in elevation by
approximately 9 centimeters. These three decreases in elevation all agree with the idea
that the south side of the Arcola fault is decreasing in elevation more than the north

side of the fault.
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GPS Elevation Difference From 2007-2011
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Figure 4-1: CORS and PAMS GPS elevation differences from 2007 to 2011.
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In addition to the amount of deformation another analysis was conducted based
on the rate of deformation. This was done by using the past elevation reading from the
PAM and COR GPS stations on a varying span of three to fifteen years depending on the
amount of data available for each location. The result of this can be seen in Figure 4-2.
From rate of deformation it can be seen that PAM 40 south of the Arcola fault has been
decreasing in elevation by approximately 18 millimeters per year from 2007-2010. The
rate of deformation for PAM 16 is a decrease in elevation by approximately 12
millimeters per year from 2001-2010. Then for PAM 14 which is north or the Thompsons
fault has a decrease in elevation of approximately 9 millimeters per year from 2001-
2010. These rates of deformation confirm that the south side of the Arcola fault is

decreasing in elevation at a greater rate than that of the north side of the fault.

4.1.2 LiDAR

The LiDAR proved to be very effective in the mapping of the faults on the
surface. Many of the faults that were found using LiDAR were also confirmed by trips to
the field. In the DEM overview map in Figure 4-3, it can be seen that multiple faults are
present in Fort Bend County. These faults are the Needville, Arcola, Addicks, and Long
Point faults as they are identified in Figure 4-2. However at this scale it is impossible to
see the full extent of the faults and the many other relatively smaller faults that appear

in the Fort Bend.
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3 to 15 Years GPS Elevation Change Rates
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Figure 4-2: CORS and PAMS three to fifteen year GPS elevation change rates.
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Figure 4-3: Fort Bend County DEM produced from 2005 LiDAR data.
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By examining the previous figures along with a more in depth analysis of each

area, surface fault picks were chosen as can be seen in Figure 4-4 to Figure 4-9.

From these surface fault picks, several profiles were produced for the Needville

and Arcola Faults. These profiles can be seen in Figure 4-10 to Figure 4-31.

By combining all of these fault picks along with others not displayed above, the
fault map in Figure 4-32 was created. This is the first geologic fault map of Fort Bend
County that is created from the use of LiDAR. One of the hypotheis to be tested in this
study included that is it possible that the Needville fault and Arcola fault are in fact the
same fault. This connection had never been made between the two faults because of
the extent of the Brazos River meandering plan has eroded away any possible
correlation between the faults. However after creating the Fort Bend fault map from the
LiDAR data it has become clear that these are probably two separate and distinct faults.
This is apparent by the way that both the Needville fault and Arcola fault curve toward
the south on their east and west ends respectively. The argument could be made that
this curve is caused by the lower elevations at the two respective ends from erosion
caused by the meandering of the Brazos River. This would mean that if the elevation
remained constant then the faults would possibly not have this curve and that the curve
is probably just an illusion due to not looking at the true strike and dip of the faults.
Another possibility could be that if you were to create a trend line of the surface faulting

with a one degree polynomial fit with each of the two faults, the resulting two lines do
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not line up. This does not mean that these two faults are two separate faults, but | am
unable to produce any evidence that they are the same fault. To do this would probably
require a paleo-flow history of the meandering of the Brazos River, along with several
northwest to southeast oriented seismic lines, and many well logs throughout the
Brazos Rivers meandering plane. It is also still a possibility that the Brazos River lies on a

strike slip fault zone between the Needville and Arcola faults.

While this shows that faulting is present in Fort Bend County, it does not show all
of the faults that are present, and most likely does not even show the entire surface
faulting that is present. However from this map there is enough faults found that show
that the faulting in Fort Bend County not only is highly influenced with the regional scale
faulting along the Texas Gulf Coast, but also that more local events are occurring that
are driving mechanisms for the faulting. For example, the influence of local geologic
events is evident by looking at the impact that the Thompson Salt Dome has on the
area. As the Arcola Fault approaches the Thompson Salt Dome from both sides, the fault
begins to fade out, while the formation of several other faults begin to appear. This
produces a radiating effect of faulting emerging around the Thompson salt dome. This

can be seen in Figure 4-32.

Through the use of ArcScene a 3D surface model has been created from the
Digital Elevation Models. The 3D surface models have had elevation exaggeration done

to them in an effort to make the faults very clear. Unfortunately the best way to
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examine these models is to digitally fly through the model, and therefore it is not

possible to provide a decent figure of this amazing model. However attached is a video

of a fly through of the model is on the attached CD.
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Figure 4-4: Needville Fault displayed in red that was interpreted from the DEM.
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Figure 4-6: Addicks Fault displayed in red that was interpreted from the DEM.
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Figure 4-8: Pleak Fault displayed in red that was interpreted from the DEM.
68



Legend

= Faults 2012 Thompsons DEM

Roads Meters
- High 37
Major Roads -_ Igh=R5
—
M , - Low :8.37
[ -
0 05 1 2 3 4

Figure 4-9: Thompsons Fault displayed in red that was interpreted from the DEM.
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Figure 4-10: Needbville Fault displayed in red that was interpreted from the DEM. Blue
lines represent locations of elevation profiles.
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Figure 4-11: Elevation profile across Needville Fault which was interpreted from A to A’
from a DEM created with 2005 LiDAR data.
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Figure 4-12: Elevation profile across Needville Fault which was interpreted from B to B’
from a DEM created with 2005 LiDAR data.
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Figure 4-13: Elevation profile across Needville Fault which was interpreted from Cto C’
from a DEM created with 2005 LiDAR data.
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Figure 4-14: Elevation profile across Needville Fault which was interpreted from D to D’
from a DEM created with 2005 LiDAR data.
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Figure 4-15: Elevation profile across Needville Fault which was interpreted from E to E’
from a DEM created with 2005 LiDAR data.
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Figure 4-16: Elevation profile across Needville Fault which was interpreted from F to F’
from a DEM created with 2005 LiDAR data.
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Figure 4-17: Elevation profile across Needville Fault which was interpreted from G to G’
from a DEM created with 2005 LiDAR data.
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Figure 4-18: Elevation profile across Needville Fault which was interpreted from H to H’
from a DEM created with 2005 LiDAR data.
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Figure 4-19: Elevation profile across Needville Fault which was interpreted from | to I
from a DEM created with 2005 LiDAR data.
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Figure 4-20: Arcola Fault displayed in red that was interpreted from the DEM. Blue lines
represent locations of elevation profiles.
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Figure 4-21: Elevation profile across Arcola Fault which was interpreted from A to A’
from a DEM created with 2005 LiDAR data.
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Figure 4-22: Elevation profile across Arcola Fault which was interpreted from B to B’
from a DEM created with 2005 LiDAR data.
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Figure 4-23: Elevation profile across Arcola Fault which was interpreted from Cto C’
from a DEM created with 2005 LiDAR data.
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Figure 4-24: Elevation profile across Arcola Fault which was interpreted from D to D’
from a DEM created with 2005 LiDAR data.
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Figure 4-25: Elevation profile across Arcola Fault which was interpreted from E to E’
from a DEM created with 2005 LiDAR data.
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Figure 4-26: Elevation profile across Arcola Fault which was interpreted from F to F’
from a DEM created with 2005 LiDAR data.
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Figure 4-27: Elevation profile across Arcola Fault which was interpreted from G to G’
from a DEM created with 2005 LiDAR data.
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Figure 4-28: Elevation profile across Arcola Fault which was interpreted from H to H’
from a DEM created with 2005 LiDAR data.
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Figure 4-29: Elevation profile across Arcola Fault which was interpreted from I to I’ from
a DEM created with 2005 LiDAR data.
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Figure 4-30: Elevation profile across Arcola Fault which was interpreted from J to J' from
a DEM created with 2005 LiDAR data.
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Figure 4-31: Elevation profile across Arcola Fault which was interpreted from K to K’
from a DEM created with 2005 LiDAR data.
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overlaid on the DEM produced from 2005 LiDAR.
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4.1.3 GPR

GPR data were collected on a section of the seismic line that was believed to be
correlative to the location of the fault using both the 100 MHz and 400 MHz antennas.
This exact location along the line for the GPR survey is from flag number 201 to 223. The
100 MHz results did not produce any valuable information that was not present in the
400 MHz and therefore was left out of the final results. The 400 MHz produced very
clear images for the top couple meters, but show very little disturbance in the layering
of the sediments as can be seen in Figure 4-33. There is a small deformation that
appears to coincide with the dip direction of the Needville fault around the 65 meter
mark as can be seen in the non-interpreted Figure 4-34 and the interpreted Figure 4-35.
This small amount of deformation was very disappointing until it was realized that the
GPR section was not located over the main fault location. This was identified when
creating a 3D visualization of the area through the use of ARCScene. With the proper
location of the main part of the fault identified as being off the end of the GPR section
the GPR results became very satisfactory. This GPR section confirms that there is
consistent relatively non-deformed sediment near the fault with the only disturbance
being a possible very small fault that is part of the Needville fault system. It is
unfortunate that when this error was realized that there was not enough time to
perform another GPR survey. Since GPR provides a link between the LiDAR and the

seismic a full image of the fault is therefore no longer possible to produce.
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Figure 4-33: Ground Penetrating Radar (GPR) cross section across Needville fault which
was collected along Bushnell road in Needville, Texas.
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Figure 4-34: Ground Penetrating Radar (GPR) cross section across Needville fault which

was collected along Bushnell road in Needville, Texas. This GPR section is focused in on
an area of disturbance.
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Figure 4-35: Ground Penetrating Radar (GPR) cross section across Needville fault which
was collected along Bushnell road in Needville, Texas. This GPR section is focused in on
an area of disturbance as can be seen by the picked horizon.

4.1.4 Seismic

The 2D seismic line proved to be successful in revealing the complexity of the
faulting near Needville as can be seen in Figure 4-36, and with horizons picked in Figure
4-37. As you can see there is not really a sharp and distinct fault, but rather a faulting
zone that starts at the surface around the 550 meter mark, and can be followed
relatively easily to time of 800ms at the 300 meter mark. Not only do the seismic
reflections reveal the fault, but also the fault can be seen in the velocity data as a low
velocity zone as is seen in Figure 4-38. Adjusting the aspect ratio on the seismic line to

where the y-axis is 1000ms another feature displays clearer as can be seen in Figure
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4-39 and Figure 4-40. This might be an antithetic fault that seems to start at around
450ms at about the 425 meter mark, and is still visible until about time of 850ms at the

625 meter mark.

From these observations the Needville Fault was interpreted along with a
possible second fault. This interpretation can be seen in Figure 4-41 with no horizons,
and in Figure 4-42 with the horizons. The yellow line identifies the Needville Fault, and

the red line identifies what may be an antithetic fault.
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Figure 4-36: Seismic reflections section along Bushnell Rd. in Needville, Texas.

85



1s| CMP 50 100 150 200 250 300 350

*| XR 5p 100 150 200 250 3p0 350 4p0 450 00 750 800 850 900

30 e e

200

“Ampiitude
£ B :
TIME (ms)
|
)
I
I
I

1000

25| 1200

4| 1400 [+ = = —

Figure 4-37: Seismic reflections section with horizons picked along Bushnell Rd. in
Needville, Texas.
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Figure 4-38: Velocity model derived from seismic section acquired along Bushnell Rd. in
Needville, Texas.
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Figure 4-39: Seismic reflection section along Bushnell Rd. in Needville, Texas.
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Figure 4-40: Seismic reflection section with horizons picked along Bushnell Rd. in

Needville, Texas.
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Figure 4-41: Seismic reflection section along Bushnell Rd. in Needville, Texas with
Needville fault displayed in yellow, and a possible antithetic fault displayed in red.
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Figure 4-42: Seismic reflection section with horizons (in green) picked along Bushnell Rd.
in Needville, Texas with Needbville fault displayed in yellow, and a possible antithetic
fault displayed in red.
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4.1.5 Well Logs

The well logs provided results that were expected in that they confirmed the
presence of both the Needville and Thompsons faults at the location of the cross
sections as indicated in Figure 4-43 and Figure 4-45 respectively. The Needville and
Thompsons cross sections can be seen in Figure 4-44 and Figure 4-46 respectively. Not
enough well logs were able to be collected around the Arcola fault in order to conclude
any presence of a fault or to even be able to produce a reliable cross section. This lack of
well logs from the Arcola area is partially because of the greater number of salt domes
in the area which caused many of the obtainable well logs to be affected by the
presence of a salt dome. This salt dome presence enhances the difficulty in well log

correlation from a well log near the salt dome to a well log unaffected by the salt dome.

The well logs from Needville clearly reveal a normal fault with approximately 75
meters of vertical offset that is dipping to the southeast, but also reveals a second fault
that is slightly further to the southeast. | was unable to obtain enough well logs to be
able to fully understand how this second fault is oriented. The well logs from
Thompsons clearly show a fault that has approximately 75 meters of vertical
displacement closer to the surface, and has closer to 69 meters of vertical displacement

deeper, and is dipping to the southeast.

The ability to view the GeoMap structure maps proved to be very valuable in

confirming that they were similar to the structure contour maps | produced from my
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well correlations. However, they do not look the same since GeoMap has much more
data, and therefore has a much higher density of which to form their contours. When
picking correlation points for the well logs it was very clear that the most consistent
formations across all the well logs from oldest to youngest were the Vicksburg (Figure
4-47), Frio (Figure 4-48), Anahuac (Figure 4-49), and R (Figure 4-50) Formations. The
formation R is a mostly sand layer that is approximately 67 meters thick, and lies directly

on top of the Anahuac Formation.

90



Fort Bend County

S5 5TTW 54N S5 4TW S5 LEHW S5 4ETW S5 4TIW
= 1 1 1 1 1 1
g 3 '
&
]
wme
nee
=
o / L2
; \Qrb / g
& 279
a
F
B
= T
z ;
i a
]
=
=]
z E
£
a
F
M
z / =] i
B a
K ®
]
.
‘?\.
&
A’
=
b
= / B
£
.ﬂ 1 . T 1 1 1 1
S5TS0TW S5T4TI0W S5 4TTW S5 4EIIW S5 4BTW G5 ATIW
Legend
® wels

- e meeesss s Kilometers

0 025 05

Figure 4-43: Location of Needville cross section produced from correlated well logs.
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Figure 4-44: Needville cross section produced from correlated well logs.
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Figure 4-46: Thompsons cross section produced from correlated well logs.
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Figure 4-47: Structure contour map of the Vicksburg formation as picked from the
collected well logs along the Texas Gulf Coast.
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Figure 4-48: Structure contour map of the Frio formation as picked from the collected
well logs along the Texas Gulf Coast.
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Figure 4-49: Structure contour map of the Anahuac formation as picked from the
collected well logs along the Texas Gulf Coast.
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Figure 4-50: Structure contour map of the R formation as picked from the collected well
logs in Fort Bend County, Texas.
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4.1.6 Gravity

The collected gravity data produced a result that was unexpected, but makes
sense. The expectation was for there to be higher gravity on one side of the fault as
compared to the other. The result of the gravity survey shows that there are no gravity
anomalies on either side of the fault. The gravity values only have a range of less than
0.2 mGal and therefore appear to be very noisy over a distance of 960 meters. It is
expected that the gravity value range would be very small on the scale of within 1 mGal
due to the soil types in the area, and the lack of great differences in density contrast if
salt does not cross a part of the survey. The gravity did produce a positive result in
confirming the fault location. This is because the gravity shows only one anomaly, which
happens to be a gravity low of approximately 0.05 mGal directly corresponding to the
location of the fault. This result can be seen in Figure 4-51, and an elevation profile for

the gravity profile can be seen in Figure 4-52.
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Figure 4-51: Relative Bouguer Anomaly profile along Bushnell Rd. in Needville, Texas.
Fault indicated by arrow.
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Figure 4-52: Relative Elevation profile along Bushnell Rd. in Needville, Texas.

4.1.7 Combination

All of the techniques used in this study proved to be complimentary in their
respective results. The combination of all the data into a single software proved to be a
challenge but was a success. This combination allows for a much easier viewing of the
data, and therefore reduces the likelihood of interpretation mistakes due to lack of 3D
spatial recognition of the interpreter. The fully integrated data can be seen in the

attached video. A screen shot of the integrated 3D model can be seen in Figure 4-53.
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Figure 4-53: Screenshot of the integrated 3D model of Fort Bend County.
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Chapter 5

5.1 Conclusions

This study provides a link between older technologies with new technologies in a
way that demonstrates that each technology on its own cannot reveal the geologic
activity of any area, but by combining multiple technologies a much better
understanding can be reached. With the combined technologies the interpreted result is
also a lot more reliable than making an interpretation based purely on a single data set.
The knowledge that can be gained by combining multiple technologies into a single
compilation for easier viewing is a task that should be practiced more often in order to
reduce errors in interpretation of data. These blind errors are evident with the
interpretation of the GPR data before integrating the GPR data with the other data sets.
As more data integration occurs in the future, greater knowledge will be obtained from

the same amount and quality of data there is at the present.

The methodologies used in this study proved to be complementary, and work
very efficiently together. The LiDAR produced a comprehensive surface model that
revealed faulting never recorded before. The GPR while not acquired in the right
location did reveal the power it has to link LiDAR to seismic data. The seismic data
displayed a comprehensive vertical section that allowed the fault to be interpreted

deeper than was possible with the GPR and well logs. The well logs provided a source of
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information to produce a widespread subsurface model, while they lack the detail that
seismic produces. Then the gravity data were able to confirm that there is an anomaly in
the location of the fault. GPS also agreed with there being differences in displacement
rates on either side of the fault. With this amount of integration of the technologies in
Fort Bend County this study produced a comprehensive 3D model that represents a

typical example of how complex the geology is of the passive margin of the Gulf Coast.
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Chapter 6 Disclaimer

All of the results featured in this thesis that are construed as my own represent
my personal conclusions, and therefore aforementioned companies and individuals
should not be held responsible for any conclusions that were drawn from their donated

services or data.
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Chapter 8 Appendix A

The Following figures were were digitized as well logs, and well locations in order to

better produce a 3D model of the Texas Gulf Coast.

8.1 (Baker, Stratigraphic and Hydrogeologic Framework of Part of the

Coastal Plain of Texas, 1978)
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Figure 8-1: Map of the locations of regional cross sections. (Baker, 1978)
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Figure 8-2: Regional cross section A to A’(Baker, 1978)
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Figure 8-3: Regional cross section B to B’(Baker, 1978)
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Figure 8-4: Regional cross section C to C’'(Baker, 1978)
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Figure 8-5: Regional cross section D to D’(Baker, 1978)
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Figure 8-6: Regional cross section E to E’(Baker, 1978)
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Figure 8-7: Regional cross section F to F'(Baker, 1978)
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Figure 8-8: Regional cross section G to G’(Baker, 1978)
113



ot G T | Py

Figure 8-9: Regional cross section H to H’(Baker, 1978)
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Figure 8-10: Regional cross section | to I'(Baker, 1978)
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Figure 8-11: Regional cross section J to J’(Baker, 1978)
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Figure 8-13: Regional cross section L to L'(Baker, 1978)
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Figure 8-14: Regional cross section L’ to L”(Baker, 1978)



8.2 (Baker, Stratigraphic Nomenclature and Geologic Sections of the

Gulf Coastal Plain of Texas, 1995)
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Figure 8-15: Map of the locations of regional cross sections.(Baker, 1995)
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Figure 8-23: Regional cross section F to F’'(Baker, 1995)
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8.3 (Bebout, Luttrell, & Seo, 1976)

Figure 8-24: Map of the locations of regional cross sections.(Bebout, Luttrell, & Seo,
1976)
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Figure 8-25: Regional cross section B to B’(Bebout, Luttrell, & Seo, 1976)
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Figure 8-26: Regional cross section E to E’(Bebout, Luttrell, & Seo, 1976)
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Figure 8-27: Regional cross section H to H’(Bebout, Luttrell, & Seo, 1976)
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Figure 8-28: Regional cross section K to K’(Bebout, Luttrell, & Seo, 1976)
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Figure 8 Regonsl cross secton W W'

Figure 8-29: Regional cross section W to W’(Bebout, Luttrell, & Seo, 1976)
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Figere 7 Regonal cros secewon ¥ Y

Figure 8-30: Regional cross section Y to Y’(Bebout, Luttrell, & Seo, 1976)
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8.4 (Ellisor, 1994)
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Figure 8-31: Map of the locations of regional cross sections.(Ellisor, 1994)
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Figure 8-32: Regional cross section from wells 1 to 8(Ellisor, 1994)
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Figure 8-33: Regional cross section from wells 9 to 14.(Ellisor, 1994)
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8.5 (Greenman & Gustafson, 1953)
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Figure 8-34: Statigraphic section of Needville Field.(Greenman & Gustafson, 1953)
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Figure 8-35: Structure Contour of the top of the Frio Formation at Needville
Field.(Greenman & Gustafson, 1953)

140



0122 01
ss0L a1
oo -
s woRkdd €89 QL
i VRIS 1S Dyt AR ows a1
" 00 GN38 1¥04 'a71314 3ITTIAQ3AN
| _.i NV NOILD3S-SSO¥D
o
1 2 H 1529 a1 ¥s290L cam gL
._ri .
J 5 o 4 Rl
: I 4
- | &=
E
= >
L
= -
z =
— A =
s o —
- TR
T i =
s
R i - g 3 iF
- 3
F =
7 o P |- _ mea
= TRy
i
cou s o
I —
H D
9001 i -
...... U U 3
v v
J¥oom YINWVSI T MINYVE D3 ZINVYANIT VLUK PP NOSNIGOY UV 103LSNIVH 11 LUVN NYNITANIM NYNININHIS
NO1SOT08 WY ¥E NOLSTI0® NOL§0709 NOLSaI08 Snua10e sN¥a109 SYINT=NYNKSIO snyatoe sn¥aloe NI W

Figure 8-36: Cross section produced from eleven well logs in Needville Field.(Greenman
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8.6 (Hovorka, Holtz, Sakurai, & Knox, 2003)

Location map

Figure 8-37: Location map of cross section.(Hovorka, Holtz, Sakurai, & Knox, 2003)
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Figure 8-38: Cross section B to B’(Hovorka, Holtz, Sakurai, & Knox, 2003)
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8.7 (McCarter & O'Bannon, 1933)
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F16. 4—Sugarland oil field structural contour map on top of Discorbis zone of Middle Oligocene. Dotted contour( —3,800), outline of
edge water, Broken contour (~3,400), outline of free-gas area. Well symbols, same as Figure 3.

Figure 8-39: Sugarland field structure contour map. (McCarter & O'Bannon, 1933)
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Figure 8-40: Sugarland field cross section A-A’. (McCarter & O'Bannon, 1933)
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8.8 (Pollack, 1953)
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Figure 8-41: Sugarland field structure map. (Pollack, 1953)
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Figure 8-42: Sugarland field cross section. (Pollack, 1953)

Chapter 9 Appendix B

See CD in pocket for video.
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