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Abstract

Identification of clusters in spatial or other datasets is of interest in many

applications including epidemiology, medical image processing, landscape ecology,

criminology, archeology, astronomy and many other fields.

In the current work, we propose a general method for clustering individual

entities on the basis of a common feature for both a two- and three-dimensional

spatial region. Specifically, the method is demonstrated on a dataset obtained from

the resolved simulation of falling particles in upward directed fluid flow. These

simulations were conducted in a computational domain in the form of a parallelepiped

with a square cross section and aspect ratio of 3. The boundary conditions on all

six boundaries enforced periodicity. The particle feature on which clustering is based

is the vertical velocity. The clusters identified group particles which have a velocity

larger (in modulus) than a specified multiple of the standard deviation of the vertical

velocity of all the particles in the domain.

The method starts by dividing the region of interest into cells. To capture

clusters that extend over several cells use is made of “masks” including many cells.

The location and size of the masks are randomly generated and their number is such

that each cell of the domain has an approximately equal probability to be covered

by a mask. Masks are labeled as interesting if they contain a sufficient number of

particles with large velocities. Counting the number of times that each cell has been

covered by an interesting mask, each cell is assigned a value which is analogous to the

intensity value of an image pixel. By using a global threshold, the region is binarized

into high intensity and low intensity cells. The high intensity cells are grouped into

clusters by a method which integrates the region growing and region merging methods

of digital image processing. The method is shown to work well properly accounting

for the spatial periodicity of the data and to be able to track the clusters in time.
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Chapter 1

Introduction

This dissertation addresses a particular instance of a general problem that is

encountered in many contexts, namely the identification of clusters of different entities

in a suitable space. The clustering is to be based on one (or more) specific attribute(s)

of the individual entities and the space can be physical (e.g., a geographical space) or

a general metric space, the notion of metric being necessary to appropriately define

clusters. This type of study, which is called spatial clustering in the literature, may

be undertaken for a wide variety of reasons. For example, in criminology, the aim is to

detect and investigate crime ‘hot spots’ and other forms of localized offense patterns,

victims, and offenders. Street robberies may be observed to cluster around bars or

vandalism hot spots are often found at or near public transit stops. Archaeological

artifacts may be found in specific locations, such as close to and with sight of coastal

areas, which implies that the sea may have some symbolic or practical significance.

In astronomy, the placement of galaxies in the cosmos by detecting star clusters is of

interest. Recent studies in economics have drawn attention to the benefits of spatial

clustering. For example, house prices decreasing or increasing in a specific location

will help investigate the growth of a city. In the study of disease surveillance, certain

health indicators for a group of settlements might correlate with their distance and
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direction from possible sources of environmental risk. Examples are the effect of

exposure to atmospheric nitrogen oxides on stroke deaths, the unusual spread of

a disease over a short period of time in a particular geographical area and others.

In ecological processes, the pattern of occurrence of species may be explained by

environmental/habitat features, such as the pattern of trees in a forest. Finding areas

that have similar land-cover types using satellite imagery is a related application of

spatial clustering.

In our study, we propose a method to group the individual events or entities

that happen to be spatially close to each other. While we have developed the method

for a specific purpose, briefly described in section 4.7, its applicability is more general

and can easily be extended to other situations. To introduce the topic, in this chapter

we focus on digital image segmentation as an application of spatial clustering mainly

because our methodology used to identify clusters is similar to the methods used in

digital image segmentation. We then discuss how our method is compared with those

of image segmentation. At the end of the chapter, we will explain the motivation of

our study.

1.1 Digital Image Segmentation

An image may be described as a two-dimensional function, f(x, y), where x

and y are spatial (plane) coordinates. The amplitude of f at any pair of coordinates

(x, y) is called the intensity or graylevel of the image at that point. The picture

is called a digital image when x, y, and the intensity values of f are all finite,

discrete numbers. The field of digital image processing refers to the use of a digital

computer to process digital pictures through algorithms. Pixel is the most often

used word to describe the components of a digital picture. Digital image processing

methods started to be employed in medical imaging, remote Earth resource studies,
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and astronomy in the late 1960s and early 1970s.

One of the most significant milestones in the use of image processing in

medical diagnostics occurred in the early 1970s with the introduction of computerized

axial tomography (CAT), often known as computerized tomography (CT) for short.

X-rays are one of the earliest types of electromagnetic radiation employed in medical

imaging. Some previous works in the field of medical imaging include: comparing and

analyzing different segmentation techniques to isolate a brain tumor from the other

regions of the brain using a set of 2D Magnetic Resonance (MR) images(Gajanayake

et al., 2009), proposing different segmentation techniques for detecting of white matter

in the brain from functional Magnetic Resonance Imaging (fMRI) (Srinivasa et al.,

2008), presenting a combination of different segmentation methods to detect 3D brain

tumors(Narendran et al., 2012), illustrating an image segmentation method to detect

brain tumor which extracts the exact position and shape, specially when the tumor

morphological changes remain subtle, irregular and thus it is difficult to assess by

clinical examination (Dhage et al., 2015), and proposing a method for contactless

palmprint recognition (Suzuki et al., 2020).

Binarization and image segmentation are important steps in image analysis

and processing. As an example, in medical imaging, images need to be divided

into sets of pixels or image objects, also known as segments, for computer-aided

diagnosis. Although the problem of grouping and segmentation has a long history

in computer vision (Wertheimer, 1923) and medical imaging (Yin et al., 1994), it

is still a significant challenge due to the specific nature of medical images. In the

following section, we will discuss the binarization and thresholding, and regional-based

segmentation methods, which are handy tools in digital image segmentation.
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1.1.1 Binarization and Thresholding

Binarization is s simple but effective tool as a pre-processing step in several

image processing applications, where gray levels of pixels belonging to the object,

so-called foreground, are substantially different from the gray levels of pixels belonging

to the background. Therefore, binarization algorithms divide the image into two

classes of pixels, the background and the foreground pixels. The use of binary

images decreases computational load for the subsequent overall applications. The

applications of binarization include optical character recognition (OCR) for document

analysis, scene matching, quality inspection of materials, and identifying the object

of interest in medical imaging.

Classical image binarization techniques usually involve using a global or

a local threshold to binarize the image. Thresholding technique is based on the

assumption that pixels whose value lies within a certain range belong to the same

class (Lim & Lee, 1990). Global thresholding algorithms use a single value over the

entire image to binarize it into two classes, and local thresholding algorithms take

into consideration the neighboring pixels when computing the threshold value. While

thresholding is a widely used technique in image binarization, more advanced forms

of thresholding can be used when an image foreground consists of more than one

object and it is therefore necessary to segment it into more than two classes of pixels

(Gonzalez & Woods, 2017).

Otsu global thresholding is among the first methods in thresholding. For an

8-bit grayscale image there are 256 different possible intensities, and so a grayscale

level histogram graphically displays 256 numbers showing the distribution of the pixels

amongst those grayscale values. Otsu’s thresholding algorithm iterates through all

possible thresholds from 0 to 255, i.e., maximum intensity value, to find a threshold

which minimizes intra-class variance or maximizing inter-class variance. It aims to
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find the minimum value of the weighted sum of the standard deviation for the two

classes by

σ2
ω(t) = ω1σ

2
1 + ω2σ

2
2, (1.1)

where the weights are the probability of classes and are computed from the normalized

histogram (Otsu, 1979). Gajanayake et al. (2009) showed that the Otsu’s thresholding

method is the most suitable image segmentation method to segment a brain tumor

from an MR Image. Saad et al. (2011) used histogram based thresholding techniques

to detect brain lesions from Diffusion-weighted MRI. Phromsuwan et al. (2013) used

Otsu’s thresholding for binarization of magnetic nanoparticles.

The local thresholding algorithms by Niblack (1986) and Sauvola &

Pietikainen (2000) have been used in many image binarization applications. In these

algorithms, the choice for local threshold value is based on calculating the average and

dispersion in neighborhood windows of each pixel. The threshold value is calculated

by these methods using a local window. In Niblack algorithm, the estimation of the

threshold in a local window defined by

TNiblack = µ+ kσ, (1.2)

where µ and σ are the mean and standard deviation of pixel intensity values in local

window and k is a fixed value, usually chosen (empirically) as 0.2 to balance signal

with noise. Sauvola improves the Niblack method by using the dynamic range of

standard deviation R when computing the threshold by

TSauvola = µ[1 + k(
σ

R
− 1)], (1.3)
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where R has the effect of amplifying the contribution of standard deviation in

an adaptive manner. Consider, for example, a dark text on light dirty-looking

back-ground. Senthilkumaran & Vaithegi (2016) proposed an efficient implementation

for threshoding of Niblack and sauvola local thresholding algorithms and compared

them using medical images.

Voting-based image binarization algorithms try to combine the two

thresholding approaches by using them in image areas where they work the best.

The most basic method of voting based image binarization presented in Pruncu

et al. (2018) is the one which democratically chooses the value of a specific pixel,

based on the results of four thresholding algorithms. If most algorithms decided

that a pixel should be a foreground, then the output image will contain this pixel

with value 0 or value 1 otherwise. This method can be further developed by

adding weights to specific algorithms before probing the pixel values. This way, the

solution will have a more personalized result (Pobleanu et al., 2020). Kovacevic et al.

(2002) a weighted based thresholding using local and global thresholding algorithms

for automatic segmentation of brain images. Boiangiu et al. (2016) presented a

voting-based algorithm to image binarization as a solution of Optical Character

Recognition (OCR).

While global thresholding algorithms are high speed in comparison to local

ones, they only perform well in cases where the input image histogram has a

bimodal distribution, i.e., when the histogram contains two local maximum points

(modes), corresponding to either object or background, consider an image with a

good separation between background and foreground, or with a uniform lighting or

contrast. Local algorithms overcome the problems presented by global methods by

calculating pixel threshold values by probing information from neighboring pixels

(Pobleanu et al., 2020), therefore, they provide better results for images with uneven
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lighting, but they are less resistant to the noise. In addition, local algorithms need to

determine the size of the local window manually for each image under consideration

to get better binarization result. A method for binarization of degraded documents

proposed by Kaur et al. (2020) which modifies the Sauvola algorithm by automatically

computing the window size dynamically across the image pixel to pixel. This method

calculates the windows size for the pixel by using the stroke width of the pixel. The

stork width of a pixel is the width of the most likely stroke containing the pixel.

Since the text maintains a nearly constant or low variant stroke width over the entire

image, this method is only useful for extracting the text from an image.

A more improved binarization technique is proposed by Costin-Anton et al.

(2009), where foreground reconstruction-based binarization algorithm converts a

grayscale document to black and white. This method can also be adapted to color

images. This method reconstructs the foreground of the document by scanning

the surrounding of a source point until a border between the foreground and the

background is encountered. A source point is a pixel in the image surrounded in all

directions by pixels having higher or equal values. More precisely, a source point

represents a local minimum from the point of view of the grayscale pixel value.

Shaikh et al. (2013) proposed an iterative partitioning for binarization. This

method starts by determining the peaks of the grayscale histogram of the entire image.

If there are only two peaks, the binarization is trivial because one of the pixel groups

represent the object while the other one represents the background. If there are more

than two peaks, the image is divided into four rectangles and the grayscale peaks of

each one are determined. The process continues until either the partition size has

reached a pre-defined minimum or each partition has two or fewer sharp peaks.
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1.1.2 Regional-Based Segmentation

The regional-based segmentation method in digital image processing is

basically partitioning region R into sub-regions Ri, which are similar based on

a set of logical predicates (Gonzalez & Woods, 2017). Gupta (2018) and Kang

et al. (2009) classified and compare the image segmentation algorithms. Zhang

et al. (2008) presented an evaluation survey on unsupervised image segmentation

techniques. Shankar & Shyry (2021) and Tripathi et al. (2012) reviewed different

image segmentation techniques for medical images. Some modern techniques of

regional-based segmentation are graph-cut (Hochbaum, 2009) and adaptive contour

segmentation (Feng et al., 2013), which are more sophisticated and need high

computational cost. The three main methods for regional-based segmentation

which are still being used by many researchers are region-growth and splitting and

merging segmentation. Also, some methods use a majority voting system for image

segmentation, Boiangiu & Ioanitescu (2013) proposed a voting method that tries to

merge different results of some well-known image segmentation algorithms including

histogram based, graph based and region growing based segmentation.

Region-growth method starts with a seed cell or pixel, then the similar

pixels will be appended to the seed pixel and grouped into the larger regions based

on predefined criteria of growth. The seed cell usually depends on the nature of

the problem. The challenges with region growing method are the rule for stopping

the growth, and finding the seed cell when there is no prior information. However,

the advantage of this method is that there is no need of predefined numbers of

clusters. Fan et al. (2005) proposed a comparison study on seeded region growing

algorithms. Preetha et al. (2012), Zhu et al. (2013) and Kang et al. (2012) modified

the conventional region growing method to segment the image. Several studies

including Hore et al. (2016), (Xu et al., 2011) and (Fan et al., 2001) have developed
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integrated methods with region growing for image segmentation.

Saad et al. (2010) used the split and merge approach to segment brain

lesions. Histogram thresholding technique is then used at each split level to

detect pixels with either hyperintense or hypointense. Several statistical features

are discussed and evaluated to select the best feature as homogeneity criteria.

Hyperintense and hypointense lesions are segmented automatically by merging the

regions that are homogenous according to the criteria.

1.2 Statement and Structure of Present Work

As described in greater details in the next chapter, the problem addressed

in this dissertation concerns a system in which equal particles are suspended in an

upward fluid flow. In the course of the evolution of the system occasionally clusters of

particles form characterized by a faster or slower downward velocity. An analogy can

be established between the particle velocity and the pixels of an image, and in this

sense, our work shares similarities with image segmentation. However, there are also

considerable differences because the particles forming the clusters are not necessarily

very close to each other, but are spread over regions that contain also particles with

velocities closer to the mean. This fact has required several modifications to the

techniques developed in the image processing field.

The structure of this study is as follows: In Chapter 2, we describe the data

that we used in our study and how they are obtained. In Chapter 3, we describe

different attempts that we have made to identify anomalous particles and particle

groups, and we conclude with the description of the method used to find a common

attribute to use for clustering. In Chapter 4 we illustrate the random masks method

that we use as a pre-step to binarizing the region. Then, we illustrate how we use

thresholding to binarize the image based on ‘hits’ of each cell. At the end of the
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chapter, we discuss how we identify the clusters over the entire region and how we

track them over time. In Chapter 5, we show the performance of the method that

we have developed by applying it to the data described in Chapter 2. In Chapter

6 describes the conclusions of this dissertation and indicates possible directions for

future work.
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Chapter 2

Data

In this chapter we describe how the data used to verify our methodology

is obtained, then we describe the different attributes of the data and how they are

correlated. At the end of section, we explain the reason why we choose the location

and the velocity of the particles as the basis for the clustering.

2.1 Physalis Method

The data of our study is obtained from a resolved simulation framework

called “Physalis” method which simulates equal particles suspended in an upward

fluid flow. In this section, we briefly describe the method. The reader is referred to

the more recent studies by Sierakowski & Prosperetti (2016) and Willen et al. (2017)

for a more complete description of the method and details of its implementation.

The Physalis method, focuses on one category of multiphase flow, namely

particulate flows, in which the dispersed phase consists of solid spherical particles.

A typical example is a fluidized bed, where initially stationary particles become

suspended in an upward-directed fluid stream once the flow velocity exceeds the

so-called minimum fluidization velocity.
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The flow of an incompressible fluid is governed by the Navier-Stokes

equations

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u+ g, (2.1a)

∇ · u = 0, (2.1b)

where u is the fluid velocity, p is the pressure, g the gravity force per unit mass, ρ

and ν are the fluid density and kinematic viscosity. These equations are subject to

no-slip and no-penetration boundary conditions at the surfaces of all the particles,

which means that

u = wp +Ωp × (x− xp), on Sp. (2.2)

Here wp is the velocity of the particles, Ωp the angular velocity, xp the position of

the center, and Sp the surface of the particles. The linear momentum equation for

each particle is

ρpvp
dwp

dt
=

∮
Sp

dSσ · n+
∑
j

Fj + ρpvg. (2.3)

Here ρp and vp are particle density and volume, Fj is the direct force force, e.g. due

to collision, from the jth particle to the particle considered. The first term in the

right hand side represents the hydrodynamic force the fluid exerts on the particle,

n is unit the normal pointing outward of the particle surface Sp, and σ is the fluid

stress tensor

σ = −pI+ µ(∇u+∇uT ), (2.4)
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where µ = ρν is the dynamic viscosity of the fluid, and I is the second order identity

tensor. Similarly, the angular momentum balance for each particle can be written as

Ip
dΩp

dt
=

∮
Sp

dSx× (σ · n) +
∑
j

Lj, (2.5)

where Ip is the moment of inertia of the particle, and L is inter-particle torque due to

collisions. Collisions are described by a Hertzian model which includes a coefficient

of restitution and elastic properties of the particles.

Equations 2.1, 2.2, 2.3 and 2.5, together with proper initial conditions

and external boundary conditions, form an initial-boundary-value problem, which

typically can only be solved numerically. The particles represent internal boundaries

for the fluid and therefore, they are intimately connected to the flow. In order to

quantify this connection, the Physalis method uses an analytical solution valid near

the particle surface as a ‘bridge’ from the particle surface to the nearest nodes of the

fixed Cartesian grid on which the Navier-Stokes equations are integrated. The validity

of the analytical solution rests on the no-slip condition, which requires the relative

velocity between the fluid and the particle in the neighborhood of the particle surface

to be very small. This small relative velocity permits to linearize the Navier–Stokes

equations around the state of zero motion in the rest frame of the particle reducing

them, in effect, to the Stokes equations, which are

∇ · ũ = 0, (2.6a)

−∇p̃+ µ∇2ũ = 0. (2.6b)

Here ũ is the velocity field in the particle rest frame and p̃ the corresponding pressure

field which includes contributions arising from the change of reference frame from the

laboratory frame to the particle rest frame. The solution of the above equations 2.6
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over a stationary sphere, expressed in the spherical coordinate system whose origin

is the particle center, x = (r, θ, ϕ), can be synthetically written as

p̃(x) =
µν

a2

∞∑
n=0

L1(pn, ϕn, χn,x, n), (2.7)

ũ(x) =
ν

a

∞∑
n=0

L2(pn, ϕn, χn,x, n), (2.8)

where a is the particle radius, pn, ϕn, χn are solid harmonics of order n, and L1, L2

are operators that apply spatial derivatives to pn, ϕn, χn. The explicit form of them

can be found in Sierakowski & Prosperetti (2016). pn, ϕn, χn have the following form

pn(x) = (
r

a
)n

n∑
−n

pnmY
m
n (θ, ϕ), (2.9)

ϕn(x) = (
r

a
)n

n∑
−n

ϕnmY
m
n (θ, ϕ), (2.10)

and χn(x) = (
r

a
)n

n∑
−n

χnmY
m
n (θ, ϕ), (2.11)

where Y m
n is a spherical harmonic of order n and degree m, and pnm, ϕnm and χnm

are constants referred to as Lamb coefficients. The details of the Lamb coefficients

determination is discussed in Sierakowski & Prosperetti (2016). An advantage of

the Physalis method is that the hydrodynamic force, couple, stresslet, etc. of each

particle are directly obtained from the Lamb coefficients which are a byproduct of

the solution method itself. In particular the stresslet, which is the contribution of the

14



particles to the stress in the fluid particle mixture, is defined by

spij =
1

2

∮
Sp

[(σ · n)ixj + (σ · n)jxi −
2

3
(x · σ · n)δij]ds. (2.12)

2.2 Simulations and Data

In this section, we briefly describe the simulations performed with the

Physalis method to obtain the data used in our study. These simulations were

conducted in a computational domain R in the shape of a parallelepiped with a

square cross section and aspect ratio (vertical/horizontal) = 3. The height of the

domain was 60a while the horizontal size was 20a× 20a, where a is the equal radius

of all the particles. The boundary conditions on all six boundaries were periodicity

conditions. The total number of cells used in the simulation was 480×160×160 with

8 cells per particle radius. A downward pressure gradient was imposed to balance

the gravitational forcing in the vertical direction. Due to this arrangement, the mean

settling velocity of the spheres vanishes. Among the data generated in previous

studies of resolved spherical particles simulations presented in Willen et al. (2017),

we consider here the data of the simulations with 1000 particles having a density ratio

to the fluid given by ρp/ρf = 2 occupying a volume fraction of 17.4%. The particle

volume fraction is defined as the total volume of particles over the total volume of

the box

ϕ =
Np(

4
3
πa3)

60a× 20a× 20a
, (2.13)

where Np is the total number of particles, and 20a × 20a × 20a is the total volume

of the region R. The ratio of inertial to viscus forces is characterized by the Galilei

15



Table 2.1: Simulation parameter values

parameters meaning value
Np number of particles 1000

ρp/ρf density ratio 2
E (MPa) Young’s modulus 0.65

σ Poisson ratio 0.5
edry dry coefficient of restitution 0.98
Ret single-particle Reynolds number 43.27
Ga Galilei number 49.7

a/∆x cells per particle radius 8
Xs/a, Xe/a limits of computational domain in x-direction -21, 21

Xn number of grids in x-direction 160
Ys/a, Ye/a limits of computational domain in y-direction -21, 21

Yn number of grids in y-direction 160
Zs/a, Ze/a limits of computational domain in z-direction -63, 63

Zn number of grids in z-direction 480

νt/(2a)2 duration of the simulation 24.3

number defined by

Ga =
1

ν

√(
ρp
ρf

− 1

)
g(2a)3. (2.14)

The Reynolds number based on the terminal fall velocity wt of an isolated particle is

Ret =
2awt

ν
. (2.15)

Table 2.1 summarize the values of parameters used as the input for both particle and

fluid model to obtain our data.

Initially the particles are randomly arranged in the computational domain

and, before data were recorded, allowed to reach a statistically steady state as revealed

by the average values of the fluid velocity and the pressure drop. After reaching

steady state, at each time step, all the particle attributes such as position, orientation,

velocity, etc. (see list in table 2.3) are recorded.
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Table 2.3: The attributes of our data and the description

attribute meaning name
coordinate of the particle in x-direction Coordinatex
coordinate of the particle in y-direction CoordinateY
coordinate of the particle in z-direction CoordinateZ

particle velocity in x-direction VelocityX
particle velocity in y-direction VelocityY
particle velocity in z-direction VelocityZ

particle acceleration in x-direction AccelerationX
particle acceleration in y-direction AccelerationY
particle acceleration in z-direction AccelerationZ

angular velocity of particle in x-direction AngularVelocityX
the hydrodynamic force exerted on the particle in x-direction HydroForceX
the hydrodynamic force exerted on the particle in y-direction HydroForceY
the hydrodynamic force exerted on the particle in z-direction HydroForceZ

collision and lubrication forces in x-direction InteractionForceX
collision and lubrication forces in y-direction InteractionForceY
collision and lubrication forces in z-direction InteractionForceZ

stress tensor in xx-plane Sxx

stress tensor in yy-plane Syy

stress tensor in zz-plane Szz

stress tensor in xy-plane Sxy

stress tensor in xz-plane Sxz

stress tensor in yz-plane Syz
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Figure 2.1: Time dependence of the fluctuations of the standard deviation of the

particle velocity in the vertical directions with respect to the time-mean

values indicated by the horizontal lines for a) falling particles and b) rising

particles

2.3 Vertical Velocity Description

For the reasons explained in the next chapter, for the purposes of this

study, the data that we have found most useful concerned the vertical velocity of

the particles.

Figures 5.20a and 5.20a show the time dependence of the standard deviations

of the particle velocity split into falling and rising particles, D+ and D−, respectively.

We can see from these figures that the standard deviation of the falling particles

fluctuates more than that of the rising particles.

Figure 2.2 shows the mean upward and downward velocities of all the

particles vs time and compares it with the overall mean velocity which is very close

to zero as expected (recall that the purpose of the applied upward pressure gradient

is indeed to induce a fluid velocity able to suspend the particles on average). It may

be noted that the standard deviation of the vertical velocities is around 0.02 while

the means are around ±0.03. This implies a strongly fluctuating system.
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Figure 2.2: The average particle velocity in the vertical directions for rising particles

(blue line), all particles (gray line) and falling particles (red line) vs time
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Chapter 3

Feature Selection

In the initial phase of this study, we explored whether there was significant

correlation among different attributes of individual particles, or particles existed that

were outlier compared with the remaining ones. For this purposes, we used recent

methods developed in data science.

3.1 Pearson Correlation

Figure 3.1 shows an example of the Pearson correlation coefficient among

all the single particle attributes for a single time step. As can be seen in the figure,

this analysis did not lead to particularly interesting results. For example, one can

notice that the particle acceleration is correlated with the particle interaction force,

which is not surprising because the interaction force is a major contributor to the

total force acting on each particle. Another strong correlation is observed among

the three diagonal components of the particle stresslet. This quantity represents the

contribution of the particles to the effective viscosity of the mixture and, since there is

no preferred direction in the motion of the individual particles, it is not surprising that

all three directions give a similar contribution which manifests itself in an apparent
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Figure 3.1: The correlation coefficients of all attributes in the data
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correlation. Thus, none of these correlations is particularly interesting or unexpected.

Several other attributes have a correlation index in the range around 0.5 or smaller

which is not indicative of a significantly strong correlation.

The table shown in the figure is just one example of many others for different

time steps that we have considered. However, it is quite typical and this type of

analysis leads to the conclusion that there are no interesting correlations among the

different attributes of the same particle.

3.2 Anomaly Detection

The next type of analysis that we embarked on was an attempt to identify

outlier particles, i.e., particles possessing values of some attributes that distinguished

them from the others. There are several different algorithms to pursue this objective,

which are conveniently combined in the Python toolkit called “PyOD” (Zhao et al.,

2019). The reader is referred to PyOD Github for the details of implementation.

Among the methods available, we used Angle-based Outlier Detector

(ABOD), Cluster-based Local Outlier Factor (CBLOF), Feature Bagging,

Histogram-base Outlier Detection (HBOS), Isolation Forest, K Nearest Neighbors

(KNN), Average KNN, Local Outlier Factor (LOF), Minimum Covariance

Determinant (MCD), One-class SVM (OCSVM), Principal Component Analysis

(PCA), Locally Selective Combination (LSCP).

An outlier is a point that is distant from other points, so the outlier score

is defined by distance. The decision function in PyOD calculates the distance or

the anomaly score for each data point. For example, the K Nearest Neighbors

uses the distance and Average KNN uses the average distance to the kth nearest

neighbor as the outlier score. Another example is Principal Component Analysis,

given the sum of weighted projected distances to the eigenvector hyperplanes, the
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data with the larger distance, i.e., larger anomaly score, are assigned to the abnormal

cluster. Thus, by finding the anomaly score the dataset will be binarized into two

clusters abnormal data, so-called outliers and normal data. In our study we use

terms interesting and non-interesting. Zhao et al. (2019) used a benchmark dataset

for selected algorithms to provide an overview of the implemented models. The

dataset has 200 samples randomly uniform generated with 25% of samples generated

in which they are abnormal and labeled as 0 for groundtruth, and the rest of samples

are labeled as 1. Figure 3.2 compares several detection algorithms by plotting decision

boundaries and the number of decision boundaries. An outlier fraction is defined by

the user to calculate the decision scores in order to identify entities possessing the

attributes of interest. The same decision function used to predict the decision scores

is used on the attributes to find the decision boundaries, i.e., the red dashed lined

contours in the figure.

We have applied the algorithms contained in the PyOD toolkit on our data

for different combinations of attributes and outlier fractions for several time steps.

Figure 3.3 shows a case in which the outlier fraction is taken to be 10%. In this

example, we used the particle physical coordinates, velocity components and the

magnitude of the angular velocity and interaction force as an attribute subset at a

single time step. As we can see from this figure the outlier detection algorithms do

not identify abnormal data which prevents them from clustering our dataset.
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Figure 3.2: Comparison of several distance-based anomaly detection algorithms for a

benchmark dataset
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Figure 3.3: Distance-based anomaly detection algorithms implemented on our data

Many distance-based techniques, e.g. KNNs, used for anomaly detection

detecting suffer the curse of dimensionality when they compute distances of every

data point in the full feature space. High dimensionality has to be reduced.

Interestingly, during the process of dimensionality reduction outliers are identified.

Anomaly detection can be a by-product of dimension reduction. Therefore, we used

AutoEncoder algorithm as another technique for anomaly detection.
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Recall that the Principal Component Analysis uses linear algebra to

transform the feature space. In contrast, the AutoEncoder technique can perform

non-linear transformations with their non-linear activation function and multiple

layers. It is more efficient to train several layers with an AutoEncoder, rather

than training one huge transformation with Principal Component Analysis. The

AutoEncoder techniques thus are used when the data problems are complex and

non-linear in nature.

We have used PyOD toolkit to implement AutoEncoder algorithm on a

benchmark dataset and our data. The benchmark dataset includes 1000 samples

with 25 attributes in which 10% of the data are being contaminated. Figure 3.4a, on

the left side, shows two attributes of benchmark dataset plotted against each other

and figure 3.4b, on the right side, shows these attributes transformed on using two first

principal components. The right figure shows that the outliers have been detected.

The model has five layers. The input layer and the output layer has 25 neurons each,

and there are three hidden layers with 10, 2, and 10 neurons respectively. We used a

70%-30% training and testing split on our dataset. Figure 3.5 shows the histogram of

anomaly scores applying the above-mentioned AutoEncoder model on the benchmark

data. We then set a threshold of 10 to binarize the data using the anomaly scores.

We examined that the two clusters show a significantly different mean value for all

the attributes of this benchmark dataset.

Figure 3.6 represents the anomaly scores applying the same algorithm on

our data. As we can see from the figure, setting a threshold of 7, the model has been

only able to detect 0.4% of particles as outliers. Therefore, we conclude that the

AutoEncoder is not able to binarize our dataset on all the features space.
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Figure 3.5: The anomaly scores of the AutoEncoder model implemented on

benchmark dataset

27



0 10 20 30 40 50
Anomaly Scores

0

20

40

60

80

Figure 3.6: The anomaly scores of the AutoEncoder model implemented on our data

3.3 Voronoi Volume

We have implemented Voro++ library (Rycroft, 2009) to calculate the three

dimensional Voronoi cells, i.e., Voronoi Volumes, in physical, velocity, hydrodynamic

and interaction force spaces. We have used four bins to classify the Voronoi volumes

in the physical space. The bins are defined as 0 to 6, 6 to 9, 9 to 12 and 12 to 20.

Each bin results in a pack of particles which is about 59%, 14%, 9% and 18% of all

particles respectively. We compared the standard deviation of vertical velocity over

all time steps for each pack in figure 3.7 and the average of vertical velocity in 3.8.

We cannot observe any specific pattern or correlation between the standard

deviation of vertical velocity and the pack of particles nor the average of vertical

velocity and pack of particles. In addition, the first pack are the particles with the

smallest Voronoi volume, which means these particles are closer to the other particles.

Since the ratio of this pack averaged over time is 59%, we can conclude that this pack

can not be cluster of particles grouped together.
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Figure 3.7: The standard deviation of vertical velocity for four pack of particles

classified on the basis of Voronoi volumes of physical space vs time
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Figure 3.8: The average of vertical velocity for four pack of particles classified on the

basis of Voronoi volumes of physical space vs time
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Figure 3.9: The distance of centroids of two subcategories on the basis of Voronoi

volumes in velocity space vs time

We also classified the Voronoi volume quantity of velocity space into two

subcategory, the particles the Voronoi volume of velocity less than 0.0015 and bigger

than 0.0015. Majority of particles on average, i.e., 98.5%, are assigned to the second

category. Therefore, we can not conclude this category is identified as a cluster. We

have also found the distance of centroid of these categories vs time (see figure 3.9).

We can see from this figure that this distance fluctuates significantly over time that

can not lead us to any conclusion. The distance of these centroid at each time step

from the next time step is also depicted in figure 3.10.
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volumes in velocity space from the next time step

Another investigation on the Voronoi volume is finding the correlation

between standard deviation of all attributes in all time steps, standard deviation of

Voronoi volume in velocity and physical space and the maximum of probability density

of the Voronoi volume in physical space in each time step. Figure 3.11 shows this

correlations using Pearson coefficient. From this figure the only significant correlation

is between standard deviation of the velocity in z- and y- direction with standard

deviation of Voronoi volumes in velocity space. This means when, for example, the

standard deviation of vertical velocities is larger, the variation in velocity is larger

and standard deviation of the Voronoi volume would be larger. This is an obvious

physical fact which does not lead us to any potential clusters for the particles. We

could say the Voronoi volume is a potential means to cluster the particles only if there

was a high correlation between standard deviation of the Voronoi volume in physical

space and the standard deviation of vertical velocity.
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Figure 3.11: The correlation coefficients of standard deviation of all attributes and

Voronoi volumes quantities over time
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Figure 3.12: Time dependence of the fluctuations of the normalized standard

deviation of particle vertical velocity with respect to the time-mean

values indicated by the horizontal lines for all particles

3.4 Vertical Velocity Selection

We showed in a previous section of this chapter that there are no meaningful

correlations between single attributes of individual particles. We then tried to identify

outlier particles by distanced-based methods including different subsets of attributes,

but, we concluded that the data are too random to be cleanly divided into inlier

and outlier groups. We then tried a dimensionality reduction method in the hope of

identifying particularly significant attributes able to differentiate the particles, but,

this attempt also failed. Finally, turning to Voronoi volumes analysis, we studied

whether spatial proximity (in physical or other spaces) promoted similarities among

the attributes of proximal particles, but again, the answer was negative.

These negative results lead us work therefore to investigate whether the

particles form clusters the members of which share anomalous values of some

attributes. The starting point of this idea is similar to that prompted the Voronoi

volumes study. However, that study considered the entire computational domain R,

and therefore, could not reveal the presence of localized clusters. We have therefore

developed a method suitable for this purpose which is described in the next chapter.
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We examine whether particles form spatial clusters the members of which are

animated by larger than average velocity components in the vertical direction. This

study of this particular attribute was prompted by results such as those of figure 3.12

which shows the normalized standard deviation of the particle vertical velocity over

time defined by

√
⟨[w′

z(t)]
2⟩

⟨u2
z⟩

=

√
⟨[wz(t)− ⟨wz⟩]2⟩

⟨u2
z⟩

, (3.1)

where ⟨wz⟩ is the vertical particle velocity averaged over time and over all the particles,

⟨[w′
z(t)]

2⟩ is the time dependent velocity fluctuations averaged over all the particles

and ⟨u2
z⟩ is the mean square vertical fluid velocity. The figure shows that there are

long intervals of time during which the standard deviation of the particle vertical

velocity is significantly above or below the mean value indicated by the horizontal

line. This fact suggest that, during these intervals of time, there may be relatively

large numbers of particles with vertical velocities above or below the mean value.
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Chapter 4

Methodology

As we explained in Chapter 2 and 3, the average vertical velocity of particles

over the entire region is zero. We also showed that the instantaneous fluctuations of

the mean square of the particle velocity during some time intervals significantly differ

from its average value over time. This means that, in those intervals of time, there

is a significant number of particles which have a vertical velocity with a modulus

large enough to affect the mean square fluctuations. (Willen & Prosperetti, 2019)

hypothesized that these particles tend to cluster together. The objective of our study

is to find these clusters in the computational domain which is the region R of our

interest.

In the present study the vertical velocity of the particles is the attribute

that we are interested in. We describe a general method that can identify the spatial

clusters of particles responsible for the observed anomalous fluctuations. The particles

are contained in the region R used for the simulations described in Chapter 2. The

actual computational domain is a three-dimensional parallelepiped but, for ease of

exposition, we will consider a two-dimensional region. Extension of the method from

two to three dimensions is immediate and will be described at the end of the Chapter.

In the tables 4.1 and 4.3, we describe the subscripts and the variables used in this

36



Chapter.

Table 4.1: Nomenclatures of variables used in the current Chapter

variable meaning
R region
L length of region R
l length of random mask
N number of cells

Nparticles number of particles
N number density of particles in the region R
ℓ cell side
c cell
C cell array
i x-coordinate of bottom-left corner of a cell
j y-coordinate of bottom-left corner of a cell
k z-coordinate of bottom-left corner of a cell
m random mask
Nm number of random masks
f(m) logical predicate to find interesting mask

W
±
z average vertical velocity of rising or falling particles in the region R

wz the vertical velocity of rising or falling particles
D± the standard deviation of velocity of rising or falling particles region R
N±

m total number of rising or falling particles in each mask
n±
m total number of interesting rising or falling particles in each mask

fc(l) logical predicate to find interesting cells
h counter value of a cell
T global threshold for finding interesting cells
C cluster

Table 4.3: Subscripts and their meaning

subscripts meaning
x x-direction
y y-direction
z z-direction
l cell label
m random mask
J cluster index
p particle
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4.1 Identifying Interesting Cells

The first step is to divide the region R into equal cells. The next step is

to identify the interesting cells, i.e, the cells that contain particles with a vertical

velocity anomalously large in modulus. We will proceed with ‘random masks’ and

global thresholding to binarize the region R into interesting and non-interesting cells.

After binarizing the region and identifying the interesting cells, we need to establish

the links between these interesting cells to identify the spatial clusters. Thus, we

will use a method which is similar to region growing method integrated with region

merging to find these groups of connected cells and thereby clusters in the domain.

The last step is to track the clusters in time. We will describe the details of our

method in the following sections

In two dimensions, the region R is rectangular with area Lx × Ly, in which

Lx is the length of R in x-direction and Ly is the length of R in y-direction. In

three dimensions there is a length Lz in the z-direction and a corresponding volume

Lx ×Ly ×Lz. The region R contains Nx ×Ny equal square cells with Nx the number

of cells in x-direction, and Ny is the number of cells in y-direction. Correspondingly,

in three dimensions the total cells are cubic with a total number Nx ×Ny ×Nz.

The average number density of particles in the region R is n =

Nparticles/LxLy. Therefore, on average, a cell of side ℓ would be expected on average

to contain ℓ2 × n particles. We have chosen ℓ in such a way that there is one particle

per cell on average.

It is convenient to place the origin of a Cartesian coordinate system at the

bottom-left corner of the region R. In our two-dimensional explanation, the cells

have equal sides which we redefine as the unit of length. Each cell is identified by

the coordinates (i, j) of its bottom-left corner with i the coordinate in the x direction

and j the coordinate in the y direction or, in three dimensions, by the triplet (i, j, k).
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We also label the cells sequentially starting from the one with its bottom

left corner at the origin which is given the label c0, proceeding with the one above

it, labeled c1, then the next one above, labeled c2 and so on to the last cell of the

column at the top left, which is labeled cNy−1. The next cell is the one adjacent to

the cell c0 which is labeled cNy , then the one above, labeled cNy+1 and so on. In this

way each cell receives a label l according to the formula

l = j + i×Ny . (4.1)

Therefore, the cell at the bottom-right of the region R receives the label cNy×(Nx−1),

and the cell in the top-right corner is labeled as cNy×Nx−1. In three dimensions the

rule corresponding to 4.1 is

l = k + j ×Nz + i×Nz ×Ny . (4.2)

Figure 4.1 shows an example of a region R with Lx = 10 and Ly = 15 divided into

10 × 15 cells, in which Nx = 10 and Ny = 15. For instance, using equation 4.1 the

cell with coordinates (5, 10) is labeled as c85. The small circles indicate the particles.
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Figure 4.1: A region with Lx = 10 and Ly = 15 divided into 10× 15 number of cells.

The circles indicate the particles.

We need to store the information of each cell for further implementation.

Therefore, we will store the cell labels and the bottom-left corner coordinates of each

cell in array C

C =



0 0 0

1 0 1

2 0 2

...
...

...

(Nx ×Ny)− 2 Lx Ly − 1

(Nx ×Ny)− 1 Lx Ly


, (4.3)

where the first column is the label assigned to each cell, and the second and third

columns are the x- and y-coordinates of the bottom-left corner of the cell.
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The next step is identifying the interesting cells, i.e., cells that contain

particles with anomalously large (in modulus) velocities. Let W
+

z be the average

velocity of rising particles in the entire region R and W
−
z the corresponding average

velocity of falling particles. Let also D+ be the standard deviation of the velocity of

the rising particles in the region R and, D− the corresponding standard deviation of

the velocity of the falling particles.

Calculating the mean value of the vertical velocity in each cell and then

labeling each cell as interesting or non-interesting on the basis of this quantity

generates a lot of noise. Therefore, we use a procedure which collects a number of cells

and examines them collectively. This objective is achieved by randomly generating

a large number of rectangular masks labeled by an index m each containing several

cells.

Each mask m is a rectangle depending on three parameters, one specifying

the coordinates of its bottom-left corner, (im, jm) according to the rule (4.1), the

other two the length of its sides in the x- and y-directions, lxm and lym . Each of these

parameters is randomly selected. For the bottom-left corner coordinates of each mask,

(im, jm), we generate a random integer between 0 and (Nx×Ny)−1. This integer refers

to the label number of a cell which is located in the bottom-left corner of the mask.

Then using array C defined in equation 4.3, we can find (im, jm). For instance, if the

random integer is 23, then, im = C[23, 1] and jm = C[23, 2] for Nx = 15 and Ny = 10.

The parameter lxm is a random integer between 1 and Lx, and the parameter lym is a

random integer between 1 and Ly. Parameters lxm and lym are integer number of cells,

which means each mask m consists of an integer number of cells equal to lxm × lym .

Finally, using Nm random iterations we create Nm rectangular masks. Figure 4.5

shows four random masks that are generated for the region showed in figure 4.1. For

instance, mask m2 is generated by three random numbers, label number 76, which
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refers to c76, lxm2
= 4 and lym2

= 3. The bottom-left corner coordinates of the mask

m2, i.e., (im2 , jm2), are the bottom-left corner coordinates of the cell c76, which from

array C are (5, 1).

The process of mask generation must not be such as to bias specific

subregions of R, in other words, every cell should be covered approximately an equal

number of times. The vertical coordinate of each data point in figure 4.2 indicates

the number of cells that belong to a mask as many times as the corresponding value

on the horizontal axis. For the example shown the total number of masks generated

was 20000 and the average number of hits is approximately 2764 with a standard

deviation of only 44. A robust measure of the dispersion of the data about the mean

is the coefficient of variation defined by the ration of the standard deviation to the

mean. In this case the coefficient of variation is about 1.6% which is characteristic of

a small dispersion. Figure 4.3 is similar but it has been obtained with a small number

of masks, i.e., 1000. In this case, the average number of hits is 144 with a standard

deviation close to 10 and a coefficient of variation of 7%. On the other hand, figure

4.4 has been obtained with 50000 masks. In this case, the mean number of hits is 6952

with a standard deviation of 62 which is 0.9% of the mean. In view of the marginal

improvement over the results obtained with 20000 masks, we have decided that, for

the purpose of avoiding biases, 20000 masks are sufficient and this is the number that

we have used in our study.
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Figure 4.2: Distribution of total number of cells that have been covered a certain

number of times by generating 20000 random masks
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Figure 4.3: Distribution of total number of cells that have been covered a certain

number of times by generating 1000 random masks
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Figure 4.4: Distribution of total number of cells that have been covered a certain

number of times by generating 50000 random masks

Since each mask can be as large as the entire domain, it may happen that a

mask extends beyond the boundaries of the region R. In this case, we use periodicity

to examine the periodic images of the particles located outside the boundaries of

region R.

Each mask contains a number of cells. For each rising particle i in each one

of these cells, we calculate

|wzp −W
+

z |
D+

, (4.4)

in which wzp is the vertical velocity of the particle i. The number of rising particles

for which this fraction exceeds a pre-assigned value α is denoted by n+
m. The choice

of α is an important aspect of our method because if it is taken too small, too many

particles become potentially interesting whereas, if it is taken too large, there is a

possibility of failing to identify particle clusters. In our work, we have used a trial

and error method which suggested that the optimal value of α is between 1 and 1.5.

Let the total number of rising particles in the mask m be N+
m. If the ratio

n+
m/N

+
m exceeds a pre-assigned value β then the mask m is labeled as interesting and
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the value 1 is assigned to a logical predicate f(m) associated with it; other masks have

f(m) = 0. The same procedure is followed for the falling particles. The parameter

β is another user specified quantity of our method. If it is taken too small, very few

masks would qualify as interesting. Conversely, if it is taken too large, many masks

will qualify as interesting even though they do not contain interesting particles. In

our work, the value β = 0.2 has proven useful.

X

Y

0

1

5

m1 m4

m3

m2
c76

Figure 4.5: Example of some random masks generated for the region shown in figure

4.1

For each cell in the region R we define a counter h±
l which starts at 0 and is

incremented by 1 every time the cell is part of an interesting mask. In other words,

every time cell l is covered by an interesting mask, its counter h±
l is incremented by

1. After Nm iterations, the counter of each cell contains information on the number

of times that cell was part of an interesting mask. This information is included in the
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Figure 4.6: Representation of region R in grayscale after assigning hit values to each

cell

array C by adding two columns as shown here

C =



0 0 0 h+
0 h−

0

1 0 1 h+
1 h−

1

2 0 2 h+
2 h−

2

...
...

...

(Nx ×Ny)− 2 Lx Ly − 1 h+
(Nx×Ny)−2 h−

(Nx×Ny)−2

(Nx ×Ny)− 1 Lx Ly h+
(Nx×Ny)−1 h−

(Nx×Ny)−2


. (4.5)

The counters h±
l can be considered equivalent to the pixel intensity in the procedure

adopted in image processing. The histogram of the counters values is also equivalent

to a grayscale level histogram of an image. The process of generating random masks

in order to assign a value to the counter for each cell can be thought of as converting

the region R into a grayscale image. Figure 4.6 shows an example of the region R

with the color assigned to each cell representing its corresponding hl. The darker the

shade of the cell, the larger the counter value is.
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4.1.1 Binarizing the region R

The next step is to identify the cells with high values of the counters h±
l

because these cells potentially constitute clusters. For this purpose, the important

attribute is not the actual value of h±
l but only whether this value is large enough. In

other words, we need to binarize the region R identifying each cell simply as ‘black‘ or

‘white‘, i.e., interesting or non-interesting. This objective is achieved by introducing

a parameter T which is used as a threshold to identify interesting cells. For each cell

l we define another logical predicate fc which is assigned the value 1 when h±
l exceeds

T and 0 in the opposite case

fc(l) =


1 hl ≥ T

0 otherwise

. (4.6)

This procedure effectively binarizes the cells of the region R into ‘white‘ and ‘black‘

cells (see figure 4.7). We decided to the proper value of T by trail and error.

Figure 4.7: Examle shown in figure 4.6 after binarizing by applying threshold T
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4.2 Identifying Cell Clusters

While the cells identified by this procedure may contain particle clusters,

one cannot draw this conclusion without a further step because if, for example, an

isolated cell has a value fc = 1, this could be simply due to random statistical

fluctuations. Real clusters must be constituted by a number of adjacent interesting

cells. To resolve this point we follow a method inspired by the region growing and

region merging methods of image processing. We start from the cell c0 in the lower

left corner of the region R and examine the value of its logical predicate. If this value

is 0, we move on to the cell c1 and do the same thing until we find a cell, with index l,

say, for which the predicate is 1. This cell is the potential ”seed” for the first cluster

C0 and we assign provisionally the index of this cluster, i.e., 0 in this case, to a new

label J associated with each cell. Next we examine the cells to the left and above

cl. In other words, if the first interesting cell cl has coordinates (i, j), we look at the

two cells with coordinates (i+1, j) and (i, j+1) or, using the cell numbering system,

cells cl+1 and cl+Ny . We next examine the logical predicates of these two cells and, if

they have value 1, we assign them to the same set with cell cl. We then examine the

neighbors of the cell located at (i, j+1), if their logical predicate is 1, we combine them

in a new set which includes the cell located at (i, j + 1). Now we examine whether

there is a non-zero intersection between the two sets. If so, the two sets are merged

into a single set. We move next to the cell located at (i, j+2), examine its neighbors

and, if appropriate, we form a new set including the cell located at (i, j+2). This set

is then compared with the one based on the cells located at cell (i, j + 1) and if the

intersection is non-zero, it is merged with the previous enlarged set. Otherwise, it is a

new cluster. Proceeding this way, a point is reached at which no interesting cells are

contiguous to the last cell. We continue the systematic examination of the cells until

we find one which is labeled interesting. This is the potential seed of a new cluster
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and so on. At each step of forming a new cluster, we find the intersection between

all clusters. This means that if the new cluster intersects with the previously found

clusters, it is merged with them. The reason for this additional step is that, as we

move up in y-direction, we find the initial seeds for new clusters, which we need to put

in the cluster where they have common neighbors, i.e, intersection. We also should

mention that, this way, the clusters that are connected diagonally at a corner will

be identified as distinct clusters. Figures 4.8 and 4.9 illustrate the above-mentioned

process for the clusters shown in figure 4.7.

(a) (b) (c)

(d) (e) (f)

Figure 4.8: Implementation of region growing method for cluster C1 of figure 4.7
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4.9: Implementation of region growing method for cluster C2 and C3
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As shown in figure 4.8a, the first interesting cell is c9 and is located at (1, 1).

Neither one of its two neighbors is interesting which makes it effectively an isolated

cell, but, provisionally we assign it to a cluster C0 with a provisional index 0. Then,

as we move by 1 increment in the y-direction, the next interesting cell is c12 and is

located at (1, 4). Since this cell is not connected to cell c9, we assign it to a new

cluster C1 with the provisional label 1. We then check the logical predicate fc(l) for

the above and the right neighbors of cell c12, i.e., c13 and c20. Since fc(13) = 1, we

create the set [c12, c13], which consists of the cells belonging to cluster C1 (figure 4.8b).

The next interesting cell is c13, starting from which we create a new set [c13, c21] by

checking the logical predicate fc(21) and fc(14) (figure 4.8c). Because the intersection

of the two sets is non-zero, we grow the cluster C1 by adding the cell c21. At this

point the cluster C1 = [c12, c13, c21]. Proceeding in this way, the cells c12, c13, c21, c22

will be assigned to C1 (figures 4.8d and 4.8e). The next interesting cell is c33, which

potentially belongs to a new cluster C2 (figure 4.9a). Using the above procedure

(figures 4.9a - 4.9d), the cells c33, c34, c41, c42, c49 and c50 belong to the cluster C2

and will be provisionally assigned the index 2. The next interesting cell is c46 (figures

4.9e), because the neighbors of this cell does not interesect with cells in the previously

found clusters, this cell belongs to a new cluster C3 and will be provisionally assigned

the index 3. The next interesting cell is c47, which also belongs to C3 (figures 4.9f).

This way, the interesting cells with the green color in figure 4.9g, i.e., c46 and c47, will

be assigned to cluster C3 and will be provisionally indexed as 3. The next interesting

cell is c49 (figures 4.9h), because this cell and its neighbor, i.e., c50, interesect with the

cells in cluster C2, the cells c49 and c50 will be assgined to cluster C2. This is the reason

why it is very important to find the interesection betwwen clusters whenever a new

cluster is formed. Proceeding with the same way, all the cells shown with with red

color in figure 4.9o will be assgined to cluster C2. We append a column to the array C
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which includes the provisional cluster index assigned to each cell. The non-interesting

cells are assigned the label NaN . For the interesting cells of the example shown in

figure 4.9o the array C will now look as shown in 4.8



0 0 0 · · · nan

...
...

...
. . . nan

9 1 1 · · · 0

10 1 2 · · · nan

11 1 3 · · · nan

12 1 4 · · · 1

...
...

...
. . .

...

47 5 7 · · · 3

...
...

...
. . .

...

60 7 4 · · · 2

61 7 5 · · · 2

...
...

...
. . .

...



. (4.7)

The next step is the identification and removal of isolated interesting cells and

trimming the clusters. Trimming the clusters is defined as eliminating the cells of the

clusters that have a number of links to neighboring cells smaller than a pre-assigned

valueK. In order to eliminate the cells with fewer number of links, for each interesting

cell, we look at the 8 neighbors of that cell. If the cell has less than K number of

neighbors, we eliminate it from the cluster, i.e., change its current cluster index to

NaN in the array C. We continue looking for the interesting cells with K number of

links or less until all interesting cells have at least more than K number of links in the

8-adjacent neighborhood. We have chosenK using a trial and error method leading to
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Figure 4.10: Clusters of figure 4.9o after trimming and removing isolated interesting

cells

a optimal value between 4 and 8. For clusters shown in figure 4.9o, first, the isolated

cell c9 which belongs to cluster C0 will be removed. Next, we need to trim the clusters

C1, C2 and C3. For the purpose of the illustration, we use K = 2 in this example.

Thus, the cell c61 will be eliminated from cluster C2. Continuing the trimming process,

the cells c46 and c47 will be removed, which results in removing cluster C3. Figure

4.9o shows the clusters after removing the isolated cells and trimming. Furthermore,
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the array C become



0 0 0 · · · nan

...
...

...
. . . nan

9 1 1 · · · nan

10 1 2 · · · nan

11 1 3 · · · nan

12 1 4 · · · 1

...
...

...
. . .

...

47 5 7 · · · nan

...
...

...
. . .

...

60 7 4 · · · 2

61 7 5 · · · nan

...
...

...
. . .

...



. (4.8)

4.3 Dealing with Periodicity

As explained in Chapter 2, our data is periodic in the two (or three)

dimensions, and it may happen that a cluster straddles the boundary of the region

R. For this reason, the previous procedure needs to be suitably modified.

The problem potentially arises only when an interesting cell lies on the

boundary of R, i.e., if the cell is located at (i, j) with i = 0 or Lx − 1 or j = 0 or

Ly − 1. For example, a cell located at (i, 0), by periodicity, is adjacent to the cell

(i, Ly−1). By the previous procedure, if it is interesting, this latter cell will have been

assigned to a potential cluster (recall that isolated cells are also assigned to clusters).

After having identified all the potential clusters in the manner described, we check

whether the boundary cells of each cluster have periodic neighbors that belong to

other potential clusters. If so, we unify the labels of the connected clusters.
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For example, cell clusters C0 and C1 shown in figure 4.11a are attached by

the hatched cells. Therefore, if such clusters appear for our data, we need to join

them. Specifically, by joining the cell clusters, we adjust the provisional label of the

connected clusters, in this case, C0 become C1 (figure 4.11b). Figure 4.12 shows the

cluster C1 has been translated to the opposite boundary because of the periodicity.

(a) (b)

Figure 4.11: An example of cell clusters that are attached on the opposite boundary

of region R
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Figure 4.12: Cell clusters of figure 4.11 after being joined and translated to the

opposite boundary

The procedure for joining the boundary clusters is as follows: for each

cluster, we start from the first cell of the cluster, i.e., the cell in the bottom-left

corner, and then we loop over all the cells. If there is a boundary cell which is

labeled as cl, and if there is any cell in any other cluster with the index cl±Ny−1 or

cl±(Ny−1)×(Nx−1), we connect these clusters together. Then, we repeat the procedure

for the next cluster.

4.4 Tracking Cell Clusters

Since the objective of present study is to be able to examine the persistence of

clusters over time, it is necessary to track them over time. This requires identifying at

each time step, the new position of previously identified clusters, or the disappearance

of previous clusters or the appearance of new ones. This process is rendered more

complex by the periodicity of the system as we now explain.

Following the description presented in the previous section, we have assigned
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provisional labels to each cluster. For the initial time step, i.e., t0, these labels are

actually final. We, then, consider the next time step, i.e., t1, and assign the provisional

labels by the same method. In order to finalize these labels, we need to examine

whether one or more clusters identified at t1 are translated or modified versions, i.e.,

evolutions, of the clusters of the previous time step. Figure 4.13 shows an example

where clusters at t1 and t0, though clearly related, carry different labels. The process

of tracking clusters requires that labels of a cluster at t1 that is the evolution of a

cluster at t0 be made the same as those of the earlier cluster. The same procedure is

followed to connect the clusters at t2 to those at t1 and so on.

The method by which we carry out this step is based on the premise that

a cluster at t1 which has evolved from a cluster at t0, most likely will be constituted

by many cells which are also part of the earlier cluster. To quantify this notion, for

each pairs of clusters at t0 and t1, we define a membership ratio as the number of

cells that the two clusters have in common divided by the total number of cells of the

earlier cluster. If the number of clusters at t1 is equal to or smaller than the number

of clusters at t0, each cluster at t1 is associated to the cluster at t0 which has the

largest value of the membership ratio. The provisional labels assigned to its cells are

set equal to those of the earlier cluster. These are now the final values of the labels

at time step t1.

If the number of clusters at t1 is larger than that at t0, this means that one

or more new clusters have formed at time step t1. In this case, the previous procedure

needs to be slightly modified to identify the right pairings. The method of identifying

new clusters is as follows. We first find the maximum membership ratio, rMJ
, of each

cluster J at t1 with all the clusters at t0. Then, we find the smallest value of all these

maximum membership ratios, rm. The new cluster is the one the index J is such that

rMJ
= rm. The remaining clusters are the ones that evolved from the previous time
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step t0, and can be paired using the previous procedure.

Figure 4.13 illustrates the above procedure. As we can see from this figure,

a new cluster, i.e., C1 has appeared at time step t1, and the clusters C0 and C2 at

time step t1 have been evolved from clusters C0 and C1 at time step t0, respectively.

Following the procedure, since the number of clusters at t1 is larger than at t0, it

means a new cluster has formed. The new cluster, in this example is C1, and its cells

will be assigned a final label of 2. The remaining clusters at t1, i.e., C0 and C2, will

be renumbered as C0 and C1 and their cells will be assigned the corresponding labels

of the previous time step.

(a) t0 (b) t1

Figure 4.13: An example of cell clusters that are assigned different provisional labels

in time steps t0 and t1
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(a) t0 (b) t1

Figure 4.14: The clusters of figure 4.13 at time step t0 and t1 after assigning the final

labels for clusters at t1

4.5 Identifying Particle Clusters

Now that we have found cell clusters, the final step is to find the clusters of

the rising and the falling particles. To proceed with this step, we take the integer part

of the x- , y- and z-coordinates of each particle p, which give us the coordinates of

the bottom-left corner of the cell to which the particle p belongs. Using equation 4.2

we can find the label number of the cell corresponding to this particle. For example,

from figure 4.15, particle pr is located at (1.7, 1.2), the integer part of the particle pr

coordinate is equal to (1, 1) which corresponds to the cell with the bottom-left corner

coordinates of (1, 1). Using equation 4.1, the label number for this cell is c9. Then,

from array C, we will check if this cell is an interesting cell, which in this case it is not.

Looking at all particles, when a particle is inside an interesting cell, we then assign

a label to that particle which is the same label as that of the cell. At the end of this

process, all groups of particles which have the same label form the particle clusters.

For example, from the figure 4.15, the blue particles will be assigned an index 0 and
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the red particles will be assigned an index 1 as for the label of the corresponding cell

cluster. We can also see from this figure that clusters on the boundary have been

unified and copied on the opposite boundary due to the periodicity.

p
r
 

1.7

1.2

c9

Figure 4.15: Particle clusters in a region R

4.6 Extending to Three Dimensions

In previous sections, for clarity of exposition, we have described our method

in the case of two dimensions assuming R is a two-dimensional region. The extension

to three-dimensional requires some modification, therefore, in this section, we explain

how the various steps are modified to three-dimensional space.

The first step, is identifying the interesting cells. Like the two-dimensional

case, we start by dividing the region R into cells. Therefore, we divide the

three-dimensional region R with volume Lx × Ly × Lz into Nx × Ny × Nz number

of cells. The cell sides ℓx = ℓy = 1/4ℓz are chosen in a such way that, on average,

one particle per cell is expected. In other words, the cell size is chosen in such a way

that ℓx × ℓy × ℓz multiplied by the total number of particles equals the volume of the

region R. We use the equation 4.2 for numbering the cells in which i,j and k are the

bottom-left coordinates of the cell cl. Therefore, for the case of three-dimension, the
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array C is as follows

C =



0 0 0 0

1 0 0 1

2 0 0 2

...
...

...
...

(Nx ×Ny ×Nz)− 2 Lx Ly Lz − 1

(Nx ×Ny ×Nz)− 1 Lx Ly Lz


. (4.9)

The next step is generating Nm number of random masks for which we need to

generate four random numbers from a uniform distribution. The first number which

needs to be a number between 0 and (Nx ×Ny ×Nz)− 1 gives us the label number

of the cell located at the bottom-left corner of the mask. The next three random

numbers which are generated are the lengths of the mask in x-, y- and z- directions,

i.e., lxm , lym and lzm . Then we calculate 4.4 for each rising and falling particle in each

of these three-dimensional random mask m. Using pre-assigned values of α and β, we

can calculate the logical predicate f(m) for each mask. Therefore, if f(m) is 1, the

mask is interesting. Then, we use the same method we described for the case of two

dimensions to find the counter value h±
l of each cell cl. The array C then becomes

C =



0 0 0 0 h+
0 h−

0

1 0 0 1 h+
1 h−

1

2 0 0 2 h+
2 h−

2

...
...

...
...

...
...

(Nx ×Ny ×Nz)− 2 Lx Ly Lz − 1 h+
(Nx×Ny×Nz)−2 h−

(Nx×Ny×Nz)−2

(Nx ×Ny ×Nz)− 1 Lx Ly Lz h+
(Nx×Ny×Nz)−1 h−

(Nx×Ny×Nz)−1


.

(4.10)
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Thus, using threshold T , we binarize the three-dimensional region R into interesting

and non-interesting cells.

The next step is identifying the cell clusters. We utilize the region-growing

and merging method we have described in section 4.2 for the case of two dimensions

with some modifications.

As for the case of two dimensions, we start from the first cell, c0 of the

region R, with the coordinates i = 0, j = 0 and k = 0. The main modification to

three-dimensional space is that when a cell, for example cl, is interesting, we examine

its front, back and left neighbors as well as its above and right neighbors to check if

they are interesting or not. For instance, if the interesting cell cl has the coordinates

of (i, j, k), we examine the five neighbors with the coordinates (i, j, k+1), (i+1, j, k),

(i−1, j, k), (i, j+1, k) and (i, j−1, k), or using cell numbering systems, the neighbors

with the labels cl+1, cl+Nz×Ny, cl−Nz×Ny, cl+Nz and cl−Nz corresponding to the above,

front, behind, right and left neighbors respectively. Repeating the same steps of the

two-dimensional case, we identify the clusters by giving their cell a provisional label.

In order to handle the periodicity in three-dimensional case, we test if any

cluster has at least one boundary cell, i.e., a cell which is located at (i, j) with i = 0

or Lx − 1 or j = 0 or Ly − 1 or k = 0 or Lz − 1. If another cluster has at least

one cell on the opposite boundary, i.e, i = Lx − 1 or i = 0 or j = Ly − 1 or 0 or

k = Lz − 1 or k = 0, these two clusters are indeed one cluster and they need to be

joined by unifying their labels. The piece of the unified cluster with smaller number

of cells is also copied on the other side of the larger piece for visualization purposes.

The procedure for tracking the clusters over time for the case of three

dimensions is exactly the same as for the two-dimensional case, because when tracking

the clusters, we only work with the cell labels to find the membership ratio between

two clusters in two consecutive times steps.
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4.7 Connection with Digital Image Segmentation

In this section, we discuss the connection between our method in

two-dimensional space and image segmentation and how our method is analogos to the

methods we have introduced in Chapter 1. The most significant difference is that in

the case of digital image processing, the location and the intensity values of each pixel

are known, whereas in our case, we don’t have that information a priori. Therefore,

we need to take an additional step to assign the equivalent of graylevel to the cells

into which we have divided the region R. We perform this step by generating Nm

number of random masks with uniformly random generated corners and dimensions,

these masks are equivalent to the pixel local window of local thresholding. Like the

local thresholding methods, by looking at the standard deviation and the mean value

of vertical velocity of particles, we decide if the mask is interesting, if so, we give

each cell in the mask an increment. The significant difference between the masks

in our method and the pixel local windows is that since the masks have different

size and corner coordinate, they overlap in a uniform way, therefore a cell will be

covered more than once if it belongs to the interesting subregion of the region R.

The pixel local windows on the other hand, do not overlap and they have a fixed

size. More importantly, our method first assign an interesting label to the masks

based on the logical predicate, whereas, local thresholding decide if each pixel is

interesting or so-called foreground based on the logical predicate for each stop of

window. Therefore, our method avoids generating noise when assigning a value to

each cell. After a value equivalent to intensity is assigned to each cell, we use a global

threshold over the entire region to binarize it, which means labeling the high intensity

cells as interesting and the rest as non-interesting. Thus, we use an integration of

local and global thresholding to binarize the region.

After binarizing the region and identifying the interesting cells, we need
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to establish the links between these interesting cells. Thus, we use region growing

method integrated with region merging to find the clusters in the domain. The clusters

are the regions that grow from a cell. For our method, we start systematically from

one corner to find the first interesting cell. This is our initial seed in order to start

the growth. However, the initial seed in the region growing image segmentation is

random and is corrected through the growth process. Since we start systematically

from one corner and we check the above and right neighbors, the growth stops when

the algorithm reaches the last cell, i.e., the top-right corner. As for the final step, we

need to merge the clusters into one if they have intersections.

In the next Chapter, we describe the results of the our methodology. Table

4.5 summarized the parameters value, Nm, α, β, K that we use for our study.

Table 4.5: Pre-assigned parameter values used in our study

parameters meaning value
Nm number of random iterations for generating the random masks 20000
α particle velocities distance from mean over the standard dviation 1.5
β ratio of interesting particles in a box 0.2
T Threshold for binarizing the region R 0.02
K number of links in the 8-adjacent neighboors 4
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Chapter 5

Results

In this Chapter, we first present several examples of the cell and the particle

clusters that we have found using our methodology described in Chapter 4. Then, in

the next section, we verify our method by comparing the average vertical velocity of

the falling and rising particle clusters and that of the entire region R. The results are

found using the values described in table 4.5 for parameters, Nm, α, β, T and k.

5.1 Cell and Particle Clusters

Since our data is three-dimensional, we have implemented the methodology

in three-dimensional space to derive the following results. However, for better

understanding, we first present results in a two-dimensional form obtained by

projecting the three-dimensional data onto the xz-plane. We present the same results

in three dimensions. In this section, we demonstrate how our method works in the

various situations that arise in our data. As we described in Chapter 2, for our current

study, the last 501 time steps of the simulation have been selected. Therefore, for an

easier presentation of the results, we number the time steps sequentially 0, 1, 2, . . .,

etc. all the way to 500.
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(a) t=335 (b) t=340 (c) t=345

(d) t=350 (e) t=355 (f) t=360

(g) t=365 (h) t=370 (i) t=375

Figure 5.1: Falling cell clusters in xz-plane for time steps t = 335 to t = 375
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(a) t=335 (b) t=340 (c) t=345

(d) t=350 (e) t=355 (f) t=360

(g) t=365 (h) t=370 (i) t=375

Figure 5.2: Falling particle clusters in xz-plane for time steps t = 335 to t = 375
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Figure 5.3: The falling cell cluster of time step t = 335 in three dimensions

We begin with the simplest situation in which only one cluster exist. As we

explained in Chapter 2, the time steps are small in order for the time integration to be

accurate. Therefore, the particles displacement over a single time step are small. For

this reason, we show the cell clusters every 5 time steps in order to better appreciate

their evolution in time. Another thing to keep in mind in evaluating the results is

that the mean velocity of all the particles is zero so that the clusters undergo limited

displacement either upward or downward. Thus, for example, no cluster will start at

the top of the domain and fall all the way to the bottom because it will disintegrate

long before the time necessary for such a large displacement.

Figures 5.1a to 5.1i show a projection of a falling cell cluster, i.e., C0, in

xz-plane from time step t = 335 to time step t = 375. The gray dots represent the

cell corners. The cluster shape changes with time as the particles constituting it move

and change their velocity. Using the method described in section 4.6, figures 5.2a to

5.2i show the projection of corresponding particle clusters of figures 5.1 in xz-plane.
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Figure 5.4: Average vertical velocity of falling particles in cluster and all falling

particles for time steps t = 335 to t = 375

The gray circles in these figures are the particles inside the cluster shown in black

color.

An example of the three-dimensional rendering of the cell cluster presented

in two dimensions in the previous figure for t = 335 is shown in figure 5.3. The gray

dots in all three-dimensional figures, including this one, represent the corner points

of the cells, and the cells with the gray edge color represent the cell cluster with

the label of 0, i.e., cluster C0. A complete three-dimensional sequence of the particle

clusters of figure 5.2 is shown in figure 5.5. It can be seen here that the number of

particles in the cluster is not constant but fluctuates in time. The average velocity of

the particles constituting this particular cluster is shown vs time in figure 5.4 where

it is compared the mean falling velocity of all the particles in the region R.
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(a) t=335
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(b) t=340
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(c) t=345
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(d) t=350
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(e) t=355
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(f) t=365
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(g) t=365
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(h) t=370
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(i) t=375

Figure 5.5: Evolution of a falling particle cluster in three dimensions
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(a) t=230 (b) t=231 (c) t=232

(d) t=233 (e) t=234 (f) t=235

Figure 5.6: Rising cell clusters in xz-plane for time steps t = 230 to t = 235 before

being joined

Figure 5.6 shows a case of rising cell clusters where two clusters have

appeared on opposite boundaries because of the periodicity from time steps t = 230

to t = 235 in xz-plane.
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(a) t=230 (b) t=231 (c) t=232

(d) t=233 (e) t=234 (f) t=235

Figure 5.7: Rising cell clusters in xz-plane for time steps t = 230 to t = 235 after

being joined

Using our methodology described in the section 4.6, we join these two

clusters into a single one shown in black color in figure 5.7. The evolution of these

clusters over six time steps in xz-plane is presented in figures 5.7a to 5.7f.
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(a) t=230 (b) t=231 (c) t=232

(d) t=233 (e) t=234 (f) t=235

Figure 5.8: Rising particle clusters in xz-plane for time steps t = 230 to t = 235

before copping on periodic boundary

The corresponding particle clusters before and after joining the two pieces

of the cluster are shown in two dimensions in figures 5.8 and 5.9.
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(a) t=230 (b) t=231 (c) t=232

(d) t=233 (e) t=234 (f) t=235

Figure 5.9: Rising particle clusters in xz-plane for time steps t = 230 to t = 235 after

joining and being copied on the periodic boundary
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(a)
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(b)

Figure 5.10: Rising cell clusters in three dimensions for time steps t = 232 before (a)

and after (b) joining

Figure 5.10 shows the cell cluster of time step t = 232 before and after being

joined in three-dimensional representation. The figure on the left shows the clusters

identified by our method before the analysis of boundary cells. After this analysis

is completed, the method identifies the two clusters as being in fact two pieces of a

single cluster which straddles the boundary of the periodic domain. The two pieces

should then be joined with the result shown in the right figure. Figure 5.11 shows a

complete sequence of the particle clusters of figure 5.8 in three dimensions before the

clusters which are on the boundary have been joined and figure 5.12 shows the same

clusters after they have been joined and copied across the periodicity boundary.
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(a) t=230
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(b) t=231
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(c) t=232
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(d) t=233
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(e) t=234
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(f) t=235

Figure 5.11: Rising particle clusters in three dimensions t = 230 to t = 235 before

joining on periodic boundary
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(f) t=235

Figure 5.12: Rising particle clusters in three dimensions t = 230 to t = 235 after

joining and being copied on periodic boundary
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(a) t=475 (b) t=476 (c) t=477

(d) t=478 (e) t=479 (f) t=480

Figure 5.13: Falling cell clusters in xz-plane for time steps t = 475 to t = 480
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(a) t=481 (b) t=482 (c) t=483

Figure 5.14: (continuation of the previous figure) Falling cell clusters in xz-plane for

time steps t = 481 to t = 483

Figures 5.13 and 5.14 show a sequence from t = 475 to t = 483 of a situation

in which multiple clusters are identified. As we can see from these figures, the method

described in section 4.6 is able to correctly track the individual clusters over time.

Figures 5.15a to 5.15i present the projection of corresponding particle clusters in

xz-plane. The colors of the clusters are representative of the final cluster labels. This

means cluster C0 is always colored as black, and clusters C1 and C2 are always colored

as dark blue and dark red respectively.
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(a) t=475 (b) t=476 (c) t=477

(d) t=478 (e) t=479 (f) t=480

(g) t=481 (h) t=482 (i) t=483

Figure 5.15: Falling particle clusters in xz-plane for time steps t = 475 to t = 483
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Figure 5.16: Multiple falling cell clusters at time step t = 480 in three dimensions

Figure 5.16 shows the the cell clusters of time step t = 480. In the following

three-dimensional figures, including this figure, the cells with gray edges represent

the cell cluster with the final label of 0, i.e., C0, and the ones with blue and red

edge colors represent the cell clusters with the final labels of 1 and 2, i.e., C1 and C1

respectively. In addition, the black, blue and red dots represent the corner point for

the cell clusters and the particles for the particle clusters, which belong to the clusters

the with the label 0,1 and 2 respectively. Figures 5.17 visualize the history of cell

clusters of figure 5.13 and of the particle clusters within them in three dimensions.
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(a) t=475
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(b) t=476
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(c) t=477
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(d) t=478
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(e) t=479
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(f) t=480
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(g) t=481
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(h) t=482
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(i) t=483

Figure 5.17: Falling cell clusters and particles clusters within them in three

dimensions from t = 475 to t = 483
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5.2 Average Vertical Velocity of Particles in

Clusters

The purpose of this work was to identify groups of particles which share a

faster-than-average velocity (in modulus). In the previous section, we proved that our

method finds and joins clusters and tracks them over time. In this section, we verify

that those clusters are indeed constituted by particles with larger velocities than the

mean for both falling and rising particles.

The red line in figure 5.18 shows the mean velocities of the falling particles

in the clusters identified by our method. The gray line is the mean fall velocity of

all the particles in the region R. It is evident that the particles in the clusters fall

indeed with a velocity considerably faster than the mean. A similar comparison for

the rising particles is shown in figure 5.19. This comparison enables us to conclude

that our method detects particle clusters on the basis of our desired property.

A comparison of figures 5.18 and 5.19 shows that the velocity of the falling

particles fluctuates more strongly than that of the rising particles. We have already

pointed out in connection with figure 5.20 of Chapter 2, reproduced here in figure

?? for convenience, that the mean velocity of the falling particles exhibits a stronger

fluctuations than that of the rising particles. We may conclude that this attribute is

associated with the stronger fluctuations of the falling particle clusters.

Furthermore, by comparing the average vertical velocity of falling particles

in clusters (figure 5.18) and the fluctuations of the standard deviation of the particle

vertical velocity of falling particles (figure 5.20a), we see a clear connection especially

for the first part of the simulation, for example, the first downward peak in figure 5.18

is responsible for the first upward peak of figure 5.20a. This shows that clustering

has a significant contribution to the standard deviation of the falling particles at
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Figure 5.18: Average vertical velocity of falling particles in clusters and all falling

particles
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Figure 5.19: Average vertical velocity of rising particles in clusters and all rising

particles

least for the first half of the simulation. The same comparison for rising particles

(see figures 5.19 and 5.20b) shows some resemblance between clustering and standard

deviation of particle vertical velocity. For instance, from t = 100 to t = 180 we see a

descending portion in both figures 5.19 and 5.20b, or around t = 400 there is a peak

in both figures. These resemblances suggest that clustering can be responsible for the

fluctuations of the standard deviation. However, a final confirmation needs further

analysis.

As we have described in Chapter 4, not every cell in cell clusters is
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Figure 5.20: Time dependence of the fluctuations of the standard deviation of the

particle velocity in the vertical directions with respect to the time-mean

values indicated by the horizontal lines for a) falling particles and b)

rising particles

interesting. In fact, our method detects the clusters in which their cells are interesting

on average. Following this fact, we do not expect that all particles in a particle cluster

to be interesting. However, we want the majority of them to be interesting as they

form an interesting cluster. To validate our method in this matter, we should check

the interesting particles ratio in a cluster. This means how many falling (or rising)

particles in a falling (or rising) cluster have the falling (or rising) velocity of α = 1.5

standard deviation greater than the average. The ratio of the interesting falling

particles in a falling cluster is between 0.3 to 1, and the same ratio for rising particles

is between 0.4 and 0.95 for all time steps. This is compatible with the pre-assigned

parameter β, i.e., 0.2, which we have used for detecting the interesting masks.
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Chapter 6

Summary and Conclusions

In this work we proposed a general method to binarize the region of interest

into interesting and non-interesting subregions and to identify the clusters in physical

space. The same method can be also applied in other more general spaces. We

verified our method with a dataset which is the result of a resolved simulation on

equal particles obtained by means of the Physalis method. This method solves

the problem of equal particles suspended in an upward fluid flow treating them as

moving boundaries for the fluid. In Chapter 2, we briefly described this method. The

basic idea is to use analytical solutions to Stokes equations that, due to the no-slip

condition, are valid in the immediate neighborhood of the particle surface in the rest

frame of the particle. The simulations for the data used in our work are conducted

in a triply periodic computational domain with a square cross section of dimension

20a× 20a and a vertical extent of 60a, in which a is the radius of the particles with

8 mesh lengths per particle radius. By balancing the gravitational forcing in the

vertical direction with an imposed upward pressure gradient, the simulations were

in effect carried out in a reference frame coincident with the mean vertical particle

motion. The total number of particles is 1000 and the the ratio of particle density to
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fluid density is 2. We have used the last 501 time steps of these simulation for the

purpose of our study.

The initial impulse for this work was to understand whether the simulation

produces particles that are in some sense exceptional, i.e., such that they exhibit

strong correlation between linear and angular velocities, etc. , or particle groups that

share similar values for their attributes. As described in Chapter 3, we have used

several methods for this purpose. However, none of these methods produced any

interesting results. We then developed a new method, described in Chapter 4, to

explore whether the particle groups shared common attributes. This method proved

successful and appears likely to be applicable to many problems of this type.

The first step is dividing the region into cells. We then use 20000 masks

the corner points and dimensions of which are generated using a uniform random

distribution in such a way that each cell of the domain has an approximately equal

probability to be covered by a mask. In order to identify the interesting masks, we

defined a logical predicate which is True if the at least 20% of the particles in the

mask have a vertical velocity which is 1.5 standard deviation from the mean value.

Since each mask contains several cells, by counting the number of times that each

cell is being covered by an interesting mask, each cell was assigned a value which

is equivalent to an intensity value of an image pixel. Using a global threshold, we

labeled high intensity cells as interesting and the rest as non-interesting. We have also

explained in this chapter how we used an integration of region growing and region

merging methods to cluster the interesting cells. In two-dimensional space, we started

with the bottom-left corner cell, then going one increment in upward direction, the

first interesting cell is the initial seed for growth and is assigned to the first cluster.

We examined the above and the right neighbor cells, and if they are interesting, we

merge the cells into the same clusters until there is no cell interesting left without

cluster label. An important step is to check the intersection of each neighbor set and
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each of clusters at every step. The extension to three-dimensional is immediate and

has been explained in the end of the chapter. We then explained how to join the

clusters that are on the boundary due to periodicity and how to track the clusters in

time.

in Chapter 5, we implemented the method on the vertical velocity of particles

and their coordinates. We treated the falling and rising particles separately and found

two different clusters set for each case. We tested the method for different cases where

only a single cluster is formed, multiple clusters are formed on the periodic boundary,

and tracking the multiple clusters which their provisional label has changed at some

time steps. Therefore, we showed that our method first binarizes the region of the

interest in the physical space with small amount of noise, and these regions of interest

are accurately identified and tracked over time. At the end, we showed that the

average velocity of particles in clusters is larger than the average of all in modulus,

therefore, our method identifies clusters of faster or slower particles coorectly. We

have also shown that there is some resemblance of standard deviation of vertical

velocity with the average vertical velocity of the particles in clusters, which needs

further analysis.

In the future, it would be useful to extend the study of the effects of the

parameter choices that we have adopted to better characterize the optimal parameter

range. Furthermore, other data similar to the ones that we have used are available

and it would be interesting to carry out an analysis similar to the one described in this

dissertation on them. Of course, the purpose of the method that we have developed

ultimately is to understand the physics that gives rise to the clusters that we have

identified and to clarify the specific fluid mechanic processes that cause that. However

interesting, an analysis of this type lies beyond the scope of our work.

Remaining within the context of fluid mechanics, it would be interesting to

examine datasets of a different nature. For example, databases exist of fully developed

88



homogeneous single phase turbulence (Wu et al., 2020). One could use our method, for

example, to identify clusters of vortices in these simulations. Beyond fluid mechanics,

our method can be used for identifying the spatial cluster of prevalent disease in a

geographical region, or finding the spatial patterns of a crime in a city or segmenting

a medical image in order to diagnosis tumors.
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