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ABSTRACT 

In this dissertation, I theorize and propose a new astronomical phenomenon, called tidal-

seismic resonance for a solid planet-moon system. To fully study the resonance, I develop an 

open-source modeling code, AstroSeis, to model seismic waves in a planet excited by the 

tidal force of the orbiting moon.   

Tidal seismic resonance happens when a tidal force frequency of an orbiting moon 

matches a free-oscillation frequency of the planet. Here I show that when the moon is close to 

the planet, the tidal-seismic resonance can cause large-amplitude seismic waves, which can 

change the shape of the planet and in turn, exert a negative torque on the moon causing it to 

fall rapidly toward the planet. I present this main finding in the last chapter, Chapter 6. 

However, I present the necessary preliminaries to understand this major conclusion and 

development of the modeling tool in the preceding chapters.  

After introductory materials in Chapter 1, I give a detailed analysis of tidal forces for a 

co-rotating planet-moon system in Chapter 2. In Chapter 3, I present the basics and 

preliminaries of the normal modes and free-oscillation frequencies of a solid planet. 

I present my newly developed seismic modeling tool, AstroSeis, in Chapter 4. This tool is 

a 3D seismic wavefield modeling code using the boundary element method. It can handle 

arbitrary surface topography of a planet or an asteroid and allow for a liquid core. Because 

AstroSeis is formulated in the frequency domain, it is particularly suited to model seismic 

wavefield caused by long-term forcing such as periodical tidal forces. I also show AstroSeis 

could be used to study interior and surface processes of planets and asteroids. 

In Chapter 5, I use the seismic displacement computed by AstroSeis to numerically 

calculate the traditional tidal torque. The tidal torque is important because it causes the orbital 

decay of the orbiting moon.  
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The tidal-seismic resonance could also be an important mechanism in other settings such 

as in the planetary accretion process. On the other hand, AstroSeis can be used to study a 

wide range of planetary phenomena in particular planetary/asteroid surface processes due to 

seismic shaking.  
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Chapter 1  Introduction 

I will first introduce the idea of tidal-seismic resonance (Tian and Zheng, 2019) and the 

history and development of other coupling effects between tidal force and seismic wavefields 

in the planet. In order to study the tidal-seismic resonance, I need to model seismic fields in a 

planet with topography. To do so, I created a 3D modeling code, AstroSeis, for the modeling 

and I will differentiate my approach from other existing seismic modeling methods. Finally, I 

will briefly discuss future potential research topics and the application of my seismic 

modeling code in understanding other planetary processes. 

1.1 Idea of tidal-seismic resonance 

Darwin (1898a) first proposed the idea of a gravity-seismic coupled resonance of a fluid 

planet to explain the Moon formation. He argued that the violent vibration of the planet at 

resonance “… shook the planet to pieces, detaching huge fragments which ultimately were 

consolidated into the Moon.” While Darwin’s idea of moon formation theory has been 

largely discarded, very little work has been done to investigate possible consequences of the 

tidal-seismic resonance for a planet-moon system, in particular for a solid planet.  

Tidal force frequencies are usually out of the range of planet free oscillation (or normal 

mode) frequencies. Even the tidal force of the very fast orbiting Phobos around Mars does not 

produce a significant effect on the Martian free oscillation in the current orbital configuration 

(Lognonné et al., 2000).  

However, in some cases, tidal force frequencies can intrude into the frequency range of 

the planet’s normal modes. For example, the tidal force on a rapidly rotating planet can excite 

the normal modes of the planet (Braviner and Ogilvie, 2014a; b; Barker et al., 2016). 

Interaction between Saturn’s ring and Saturn can excite the acoustic free oscillation of Saturn 
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(Marley, 1991; Marley and Porco, 1993; Marley, 2014). Fuller (2014) used the tidal force to 

detect the acoustic free oscillation frequencies by observing density waves in the Saturn ring. 

Furthermore, Fuller et al. (2016) also studied the resonance between tidal force and the 

acoustic free oscillation of gas giants (e.g., Saturn and Jupiter) which could change the 

migration of the moons. 

My goal here is to perform theoretical and numerical analysis to investigate first-order 

effects of tidal-seismic resonance for a solid planet.  

1.2 Seismic wavefield modeling for asteroid and small bodies 

To model seismic waves in an asteroid, we need to address two issues. First, we must be able 

to consider surface topography because asteroids are irregular in geometry and topography 

can influence seismic waves significantly. Secondly, some seismic sources are periodic and 

long in duration such as the tidal force, we need the ability to model in the frequency domain 

and to incorporate a frequency-dependent Q. For these reasons, we develop a 3D frequency-

domain elastic boundary element method (BEM). In addition, my BEM can also include a 

liquid core for a geologically differentiated body. 

There are many widely used numerical methods to model seismic wavefields in Earth or 

other celestial bodies. For a 1-D spherical model, we can use the normal mode method (Ben-

Menahem and Singh, 1981; Dahlen and Tromp, 1998; Aki and Richards, 2002). This method 

is the exact solution to model seismic wavefields. The package, MINEOS (Masters et al., 

2011), is a publicly available software used to model normal mode synthetic seismograms. 

However, its ability to model waves higher than 166mHz is limited for the Earth. The direct 

solution method (DSM) (Cummins et al., 1994a; Cummins et al., 1994b; Geller and 

Takeuchi, 1995; Takeuchi et al., 1996; Kawai et al., 2006) is also a 1-D model based code 

which can compute high frequency (e.g. > 1 Hz) synthetic data. In principle, DSM can also 
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handle irregular topographies (Geller and Ohminato, 1994). However, the code released by 

Takeuchi (Kawai et al., 2006) can only handle 1-D spherical models. Other numerical 

methods can model seismic wavefields in a more complex model, for example, the finite 

difference method (FD) (Boore, 1972; Fang et al., 2014; Zhan et al., 2014). FD is known to 

have difficulties in modeling wave scattering by irregular topographies. Recent progress by 

Zhang et al. (2012) added the topography modeling capabilities at local scales however its 

application in global scales remains to be demonstrated. The spectral element method (SEM) 

(Komatitsch and Tromp, 1999) is a powerful numerical method in modeling waves in 3-D 

Earth. However, its domain meshing will need specialized software and training. Both FD 

and SEM are implemented in the space-time domain by discretizing 3-D space into small 

grids and time into small marching steps. A frequency-dependent Q is not straightforward to 

be incorporated in FD and SEM. The grid dispersion can be another issue if the modeled 

seismic field is long in time duration (e.g., due to cyclic tidal forces). To avoid the grid 

dispersion in FD and SEM, usually very fine grids and a small time-step should be used. 

However, this method is computationally expensive. On the other hand, if the source location 

is changed, we need to compute the wavefield again for FD and FEM.  However, it is not true 

for BEM as it can simultaneously handle multiple sources with little added computation. Note 

that there is no ‘best’ modeling method universally. Each modeling method, under certain 

circumstances, can be more or less advantageous than others, depending on the objectives.  

 

My BEM is based on the boundary integral equation (e.g., Sánchez-Sesma and Campillo, 

1991; Ge et al., 2005; Ge and Chen, 2008; Zheng et al., 2016). BEM only discretizes the 

model on the boundaries and interfaces, which represents a dimension reduction by one. 

Therefore, BEM can be less computationally intensive than the other 3-D numerical seismic 

modeling method (Stamos and Beskos, 1996; Chaillat et al., 2009). Here, I present the BEM 
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method and the associated code to model seismic wavefield in asteroids and small bodies in 

space. The BEM code is named AstroSeis. It is easy to set up and use in MATLAB.  

 

1.3 Future research topics  

Building upon the current development in this thesis, I anticipate a new set of analyses can be 

done in the future.  

 

1.3.1 Understanding asteroid surface processes  

The open source code, AstroSeis, developed in this thesis will be very useful in probing the 

interior and understanding the surface features of an asteroid in a future asteroid mission with 

or without a seismological payload. Asteroids and meteorites provide clues to understanding 

the formation of planetesimals in the solar system. The internal elastic structure of asteroids 

is poorly constrained (Johansen et al., 2015; Walsh, 2018).  Murdoch et al. (2017) showed 

that the passive seismic activity on the asteroid, Didymoon, could be used to distinguish 

different proposed internal models. On the other hand, many astronomical/planetary 

processes are related to seismic waves or shaking. For example, seismic shaking can reshape 

an asteroid surface because they can exert large stresses exceeding the low gravity  (Asphaug 

et al., 1996). AstroSeis can be used to analyze the asteroid Bennu’s OSIRIS-REx images 

(DellaGiustina et al., 2019) and lidar for clues in features like run-outs, slopes, particle 

sorting to infer internal compositions and physical properties. We can also examine the 

resurfacing event caused by the impact on the Ryugu asteroid (Arakawa et al., 2020). Similar 

work can be done for the future Martian Moon eXploration (MMX) mission to Phobos. 

Future seismic exploration of asteroids should consider fiber optical sensing. An optical fiber 
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cast out from a “fishing pole” type device can wrap around a small asteroid to continuously 

monitor the vibration.  

 

AstroSeis can also be used to study planetary processes. For example, the antipodal 

geological disruption on Mercury has been hypothesized to be formed by seismic focusing 

from the Caloris basin impact (Schultz and Gault, 1975; Lu et al., 2011).  A second potential 

AstroSeis application example is the ongoing InSight mission, which is about the seismic 

exploration of Mars where several prominent topographic features are around the InSight 

seismometer (Banerdt et al., 2020; Giardini et al., 2020; Lognonné et al., 2020).  

 

1.3.2 Potential role of tidal-seismic resonance in planetary accretion  

The tidal-seismic resonance is more likely to occur for a smaller rocky planet (radius < 1000 

km) than a larger planet because of the matching of seismic normal mode frequencies of the 

planet and possible tidal frequencies caused by an orbiting object. It can be postulated that 

during planetary accretion, particles swirling around the accreted portion of the planet can 

experience tidal-seismic resonance and rapidly fall to accelerate during the accretion process.  

 

 

1.4 Summary 

In this chapter, I have introduced the initial hypothesis and some development of interaction 

between the tidal force and the free oscillation of a plane. We propose a new phenomenon 

“tidal-seismic resonance” for solid planets and orbiting moons. I also introduce the 

importance of seismic modeling in asteroids study. I compare the advantages and limitations 

of the AstroSeis code that is based on the boundary element method with other seismic 
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modeling methods. Finally, I introduce some future applications on asteroids using the 

AstroSeis. 
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Chapter 2  Planet deformation by tidal force 

In tidal-seismic resonance, tidal forces of an orbiting moon excite seismic waves in a planet. 

In this chapter, I will first show how to compute tidal forces for an orbiting moon around the 

planet. The word “tidal” was usually understood as regular and persistent alternations of rise 

and fall of the sea-level (Darwin, 1898b). Here, I consider the solid tides raised on the planet 

surface by an external gravitational field (Murray and Dermott, 1999). To describe and 

analyze the effect of the tidal force, it is convenient to use tidal potential.  

2.1 Tidal force and tidal potential 

The tidal force of the orbiting moon can be understood following Newton’s law of universal 

gravitation. We can obtain the formula of the tidal force acceleration, g, at a location  

inside the planet: 

 𝐠(𝐱!, 𝑡) =
𝐺𝑚"##$
|𝐱𝐦 − 𝐱!|&

[𝐱'(𝑡) − 𝐱!] + 𝒇()(𝐱!, 𝑡), (2.1) 

where  is the position of the moon at the time  on a circular orbit with a constant 

angular speed, .  is the universal gravitational constant (~ 6.674	 ×	10*++	𝑚&𝑘𝑔*+𝑠*,). 

is the mass of the moon.  is the centrifugal force at . We can use this 

formula to calculate the excitation of the seismic field for our seismic wavefield modeling 

later in section 4.4. 

 

Because the gravity force acceleration 𝒇𝒈 of the moon is the gradient of its gravitational 

potential 𝑉(𝐱, 𝑡): 

 𝒇𝒈(𝐱, 𝑡) = −∇	𝑉(𝐱, 𝑡),	 (2.2) 

x'

xm(t) t

ω0 G

mmoon fcf (x ',t) x '
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We can analyze the frequencies of the gravitational potential to observe the frequencies of 

tidal forces. The moon’s orbital frequency is 𝜔(, but it can also generate other higher 

harmonic frequencies. To observe them, we can analyze the first term in (2.1) by looking at 

the moon’s gravitational potential (Taylor and Margot, 2010) 

 
	𝑉(𝐱, 𝑡) = −

𝐺𝑚"
|𝐱"(𝑡) − 𝐱|

= −=
𝐺𝑚"|𝐱|$

𝑟"$.+
𝑃$[cos𝜓(𝑡)]

/

$0+

, (2.3) 

where  is n-th order Legendre polynomial, 	𝜓(𝑡) is the angle between vectors  and 

, and  is the radius of the moon’s circular orbit along the planet’s equatorial plane. 

For a point in the planet, the gravity potential is changing with time because of the term in 

the Legendre polynomial, . If the orbit frequency is , 𝑃)[cos𝜓(𝑡)] has the 

term , whose frequency is (n=0, 1, 2, …). Therefore, the tidal force frequencies 

of the moon are discrete and have higher order harmonics. We note that the centrifugal force 

can cancel the term 𝑛 = 1 of the gravitational potential 𝑉. Therefore, 𝑛 should start from 2, 

and the tidal potential is: 

 𝑉1234(𝐱, 𝑡) = −D 5"!|𝐱|"

8!"#$
𝑃$[cos𝜓(𝑡)]

/

$0,
. (2.4) 

We can truncate the angular order to any order in equation (2.4) for different purposes. We 

consider the case that the mass of the moon is much smaller than the planet; therefore, the 

center of the planet is almost the same as the center of mass of the two-body system.  

 

 

 

 

 

Pn x

xm(t) rm

x

Pn[cosψ (t)] ω0

cos(nω0t) nω0
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2.2 Tidal deformation – equation of motion  

2.2.1 Planet with self-gravitation 

To derive the analytical tidal deformation, I consider a spherical planet model that is in 

hydrostatic equilibrium under the self-gravitation. The displacement can be obtained by 

solving the following equations which do not have the particle acceleration term 𝒖̈ due to 

seismic waves: 

 -𝜌∇𝑉1234 + ∇ ∙ σ − ∇(ρ𝐮 ∙ 𝐠𝟎) + 𝜌∇K + ρ𝐠𝟎∇ ∙ 𝐮 = 𝟎, 

∇,𝐾 − 4𝜋𝐺𝜌∇ ∙ 𝐮 = 0, 
(2.5) 

where 𝐮 is the displacement field within the planet caused by the tidal force and ρ is the 

density. Here, 𝑉*+,- is the tidal potential field of the moon that causes the deformation,	𝜎 is 

the 2nd rank elastic stress tensor field, 𝐾 is the gravitational potential field caused by the 

density perturbation due to seismic waves, and 𝐠( is the vector gravitational acceleration of 

the planet:  

 𝐠((𝐫) =
.
"
𝜋𝐺𝜌	𝑟𝒆𝒓, (2.6) 

where 𝒆𝒓 is the unit vector along the outward radial direction and r is the distance from the 

point to the center of the planet. When the moon is not too close to the planet (i.e. more than 

2 times of the planet radius) we can just consider the degree-2 (𝑙 = 2) tidal potential in 

equation (2.4). The planet is spherical. It is convenient to use spherical coordinates in this 

study. Here, we use spherical coordinate 𝑟, 𝜃, 𝜙 to write the degree-2 tidal potential: 

 
𝑉*+,-(𝑟, 𝜃, 𝜙) = −

2𝐺𝑚0𝑟!

𝑟0"
e
𝜋
5 𝑌!

0(𝜃, 𝜙), (2.7) 

where 𝑌!0(𝜃, 𝜙) is degree-2 normalized spherical harmonics. We can have three components 

of the tidal force 𝒈*+,- in terms of spherical coordinates: 

 
𝑔*+,-1 =

4𝐺𝑚0ρr
𝑟0"

e
𝜋
5 𝑌!

0(𝜃, 𝜙), (2.8) 
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𝑔*+,-2 =
2𝐺𝑚0ρr

𝑟0"
e
𝜋
5
𝜕𝑌!0(𝜃, 𝜙)

𝜕𝜃 	,	 

 

𝑔*+,-3 =
2𝐺𝑚0ρr

𝑟0"
csc(𝜃)e

𝜋
5
𝜕𝑌!0(𝜃, 𝜙)

𝜕𝜙 , 

The divergence of elastic stress tensor 𝜎 can be written using two Lame’ constants μ and λ: 

 ∇ ∙ σ = (𝜆 + 2𝜇)∇∇ ∙ 𝐮 − µ∇ × (∇ × 𝐮). (2.9) 

To express displacement in spherical coordinates, we introduce three surface harmonics for 

spherical coordinates: 

  𝑹4𝒎(𝜃, 𝜙) = 𝑌40(𝜃, 𝜙)𝒆𝒓, 

𝑺4𝒎(𝜃, 𝜙) =
1

q𝑙(𝑙 + 1)
r
𝜕𝑌40(𝜃, 𝜙)

𝜕𝜃 𝒆𝜽 +
1

sin(𝜃)
𝜕𝑌40(𝜃, 𝜙)

𝜕𝜙 𝒆𝝓t, 

𝑻40(𝜃, 𝜙) =
1

q𝑙(𝑙 + 1)
r−
𝜕𝑌40(𝜃, 𝜙)

𝜕𝜃 𝒆𝝓 +
1

sin(𝜃)
𝜕𝑌40(𝜃, 𝜙)

𝜕𝜙 𝒆𝜽t. 

(2.10) 

 

We can write the seismic displacement field 𝒖 in the spherical coordinate as: 

 𝒖(𝑟, 𝜃, 𝜙) = 𝑈(𝑟)𝑹4𝒎(𝜃, 𝜙) + 	𝑉(𝑟)𝑺4𝒎(𝜃, 𝜙) +𝑊(𝑟)𝑻40(𝜃, 𝜙). (2.11) 

By substituting equation (2.6), (2.8), (2.9) and (2.11) into equation (2.5), we can get four 

differential equations system with respect to 𝑟, 𝜃, 𝜙 for angular order 𝑙 = 2 (degree-2): 
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 2𝐴𝑟"𝜌 +
4
3𝐺𝜋𝑟

!𝜌!𝑈(𝑟) − 10𝜇𝑈(𝑟) − 2𝐵𝜇𝑈(𝑟) − 8𝐺𝜋𝑟!𝜌!𝑉(𝑟) + 18𝜇𝑉(𝑟)

+ 6𝐵𝜇𝑉(𝑟) + 𝑟!𝜌𝐾$(𝑟) + 4𝑟𝜇𝑈$(𝑟) + 2𝐵𝑟𝜇𝑈$(𝑟) − 6𝑟𝜇𝑉$(𝑟)

− 6𝐵𝑟𝜇𝑉$(𝑟) + 2𝑟!𝜇𝑈$$(𝑟) + 𝐵𝑟!𝜇𝑈$$(𝑟) = 0,		 

𝐴𝑟"𝜌 + 𝑟𝜌𝐾(𝑟) −
4
3𝐺𝜋𝑟

!𝜌!𝑈(𝑟) + 4𝜇𝑈(𝑟) + 2𝐵𝜇𝑈(𝑟) − 12𝜇𝑉(𝑟)

− 6𝐵𝜇𝑉(𝑟) + 𝑟𝜇𝑈$(𝑟) + 𝐵𝑟𝜇𝑈$(𝑟) + 2𝑟𝜇𝑉$(𝑟) + 𝑟!𝜇𝑉$$(𝑟)

= 0,	 

−6𝐾(𝑟) − 8𝐺𝜋𝑟𝜌𝑈(𝑟) + 24𝐺𝜋𝑟𝜌𝑉(𝑟) + 2𝑟𝐾$(𝑟) − 4𝐺𝜋𝑟!𝜌𝑈$(𝑟) + 𝑟!𝐾$$(1)

= 0, 

(2.12) 

 

where 𝐴 is a constant, 𝐴 = !:0!
1!"

e;
<
.  𝐵 is the ratio between Lame’ constants, 𝜆 = 𝐵𝜇. To 

solve equation (2.12), we need to add boundary condition to it. Because of the free surface 

condition, we can have zero surface traction: 

 3𝐾(𝑎)
𝑎 − 4𝐺𝜋𝜌𝑈(𝑎) + 𝐾(𝑎) = 0,	 

2𝑈(𝑎) − 6𝑉(𝑎) + 3𝑎𝑈$(𝑎) = 0, 

𝑈(𝑎) − 𝑉(𝑎) + 𝑎𝑉$(𝑎) = 0, 

(2.13) 

 where 𝑎 is the radius of the planet. Combining equation (2.12) and (2.13), we can 

numerically solve for the degree-2 radial functions, 𝑈(𝑟), 𝑉(𝑟) and 𝐾(𝑟), in my thesis.  

2.2.2 Planet without self-gravitation 

 
When we do not consider the effect of self-gravitation, the equation of motion becomes: 
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 −𝜌∇𝑉*+,- + ∇ ∙ 𝜎 = 0. (2.14) 

With the same traction-free boundary conditions on the planet surface, we can also get the 

differential equations system to solve for the seismic displacement field. In the equation 

(2.12), we can see the terms involving 𝐠( and K are due to the planet self-gravitation. These 

terms can be ignored if we do not consider the self-gravitation effect. A much simpler 

differential equation system for a non-self-gravitating planet is: 

 2𝐴𝑟"𝜌 + 10𝜇𝑈(𝑟) − 2𝐵𝜇𝑈(𝑟) + 18𝜇𝑉(𝑟) + 6𝐵𝜇𝑉(𝑟) + 4𝑟𝜇𝑈$(𝑟)

+ 2𝐵𝑟𝜇𝑈$(𝑟) − 6𝑟𝜇𝑉$(𝑟) − 6𝐵𝑟𝜇𝑉$(𝑟) + 2𝑟!𝜇𝑈$$(𝑟)

+ 𝐵𝑟!𝜇𝑈$$(𝑟) = 0, 

𝐴𝑟"𝜌 + 4𝜇𝑈(𝑟) + 2𝐵𝜇𝑈(𝑟) − 12𝜇𝑉(𝑟) − 6𝐵𝜇𝑉(𝑟) + 𝑟𝜇𝑈$(𝑟) + 𝐵𝑟𝜇𝑈$(𝑟)

+ 2𝑟𝜇𝑉$(𝑟) + 𝑟!𝜇𝑉$$(𝑟) = 0.	 

(2.15) 

To solve for this differential equation system, we need to also add zero surface traction 

condition: 

 2𝑈(𝑎) − 6𝑉(𝑎) + 3𝑎𝑈$(𝑎) = 0, 

𝑈(𝑎) − 𝑉(𝑎) + 𝑎𝑉$(𝑎) = 0. (2.16) 

Combining equation (2.15) and (2.16), we can solve for the radial function 𝑈(𝑟) and 𝑉(𝑟). 

The analytical solutions for angular order 𝑙 = 2 of (2.15) are:  

 
𝑈(𝑎) = 𝐶%𝑎 + 𝐶!𝑎" −

𝐴(10 + 3𝐵)
35(2 + 𝐵)𝜇 𝑎

", 

𝑉(𝑎) = |3
2𝐶%𝑎 +

}7√6 + 5√6𝐵�𝐶!
6𝐵 𝑎" −

e32𝐴(12 + 5𝐵)

35(2 + 𝐵)𝜇 𝑎", 

(2.17) 

 
where the coefficients 𝐶% =

!=#>("?.@)
(%.?%A@)B

, 𝐶! = − .C>D@?@#E
"<(!?@)(%.?%A@)B

. 
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2.3 Love numbers 

2.3.1 Self-gravitation case  

The tidal Love number ℎ! is defined as a ratio of the radial displacement on the solid planet 

surface caused by the moon’s degree-2 tidal potential and the tidal height raised on a 

hypothetical fluid planet due to the same degree-2 tidal potential. Another tidal Love number 

is 𝑘!, which is the potential Love number defined as the ratio of the additional potential 

produced by the deformation of the moon’s degree-2 tidal potential. Assuming the moon is 

orbiting the planet on the planet’s equatorial plane, the tidal Love number is defined as, 

 ℎ! = 𝑢1/(𝑉*+,-/|𝐠((𝑎)|	), (2.18) 

where 𝑢1 is the radial displacement on the equator caused by 𝑉*+,- which is the degree-2 tidal 

potential, and 𝐠((𝑎) is the gravitational acceleration on the planet surface.  

From the solution of differential equation system (2.12) and (2.15), we get: 

 𝑢1 = 𝑈(𝑎)𝑌!0(𝜃, 𝜙). (2.19) 

Taking a ratio between equation (2.19) and equation (2.7), we get: 

 𝑢1
𝑉*+,-

=	
𝑈(𝑎)𝑟0"

2𝐺𝑚0𝑎!
|5
𝜋. 

(2.20) 

Therefore, we get the Love number:  

 
ℎ! =

2√5𝜋
3 𝜌

𝑈(𝑎)𝑟0"

𝑎𝑚0
. (2.21) 

The Love number	ℎ! of the planet has an analytical expression if the planet is homogeneous 

and incompressible (𝜆/𝜇 → ∞) (see Love, 1911, p109): 

 	ℎ! =
<
!
�1 + %AB

!FG$=
�
H%

, (2.22) 

where 𝜇 is the shear modulus of the planet, 𝜌 the density of the planet, 𝑔(	is the planet’s 

gravity on its surface, and 𝑎 is the planet’s radius. This number agrees with the number from 

the solution of (2.12). For example, in a planet model with the compressional wave velocity 
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𝑣I = 3 km/s, the shear wave velocity 𝑣J = 1.2 km/s and the density 𝜌 = 2840	𝑘𝑔/𝑚", the 

Love number from solution of (2.12) is ℎ! = 0.483.  The analytical Love number from (2.22) 

is ℎ!∗ = 0.471. In the following, I numerically calculate ℎ! for compressible media for 

different 𝜆/𝜇 ratios when we keep 𝜇 as the same (Table 1) (Figure 1). We can see as the 𝜆/𝜇 

ratios increase, the Love number ℎ! is approaching the asymptotic value for infinite 𝜆/𝜇 

Love number ℎ!∗ = 0.471. We can conclude the proposed numerical method should be 

consistent with the analytical solution. 

Table 1 Numerical values of Love number for different 𝜆/𝜇 ratios. 

𝜆/𝜇 1.0 2.0 4.0 8.0 10.0 

Love number 
(h2) 

0.511 0.494 0.484 0.478 0.476 

 

 

Figure 1 Love numbers of different 𝜆/𝜇 values. The asymptotic value for infinite 𝜆/𝜇 is 
plotted in red horizontal line, the vertical axis is the Love number ℎ!.  
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2.3.2 Non self-gravitation case  

We can have an analytical solution for Love number in non self-gravitation planet model. We 

choose a model with the compressional wave velocity 𝑣I = 3 km/s, the shear wave velocity 

𝑣J = 1.2 km/s and the density 𝜌 = 2840	𝑘𝑔/𝑚". The Love number calculated from this 

model using the analytical solution (2.17) and its definition (2.21). The result ℎ!∗ = 0.5877, 

will be used in the tidal torque calculation in chapter 5. The Mathematica script to get this 

number can be found in the Appendix. 

 

 

2.4 Summary 

In this chapter, I have introduced the basic theoretical formulation of the tidal force and tidal 

deformation. I also introduced the Love number that help us understanding tidal deformation 

without knowing the planet interior. I have compared the influence of the self-gravitation on 

the tidal deformation. 

  



 

16 

Chapter 3  Free oscillations of a planet and normal 

mode frequencies  

A planet can resonate as a whole at certain discrete frequencies and spatial patterns. These 

vibrational modes are called seismic normal modes (p. 337, Aki and Richards, 2002) or free 

oscillations. We can consider normal modes as the basis functions whose linear combination 

can represent any seismic wavefield in a planet (Ben-Menahem and Singh, 1981). In this 

chapter, I will show how to model seismic wavefields in a homogenous solid planet using the 

normal mode summation.  

3.1 Governing equations and boundary conditions  

To simplify the problem, we consider a planet as a homogeneous, non-gravitating, elastic 

sphere. The homogenous equation of motion in the frequency domain can be written as: 

 𝛼,∇∇ ∙ 𝐮 − 𝛽,∇ × ∇ × 𝐮 + ω,𝐮 = 𝟎, (3.1) 

where 𝒖 = 𝒖𝛂 + 𝒖𝜷, with 𝒖𝛂 being the irrotational part and 𝒖𝜷 the solenoidal part of the 

displacement vector, ∇ × 𝒖𝛂 = 0, ∇ ∙ 𝐮𝛃 = 0. 

The general solution can be written as (P. 357 eq 6.2,  Ben-Menahem and Singh, 2012): 

 𝒖(𝑟, 𝜃, 𝜙) =�𝛼4,0	
4,0

𝑴4,0(𝑟, 𝜃, 𝜙) + 𝛽4,0𝑵4,0(𝑟, 𝜃, 𝜙) + 𝛾4,0𝑳4,0(𝑟, 𝜃, 𝜙)	, (3.2) 

where l, m and n are integer numbers. 𝛼4,0, 𝛽4,0 and  𝛾4,0 are constants. The M, L, N are 

known as Hansen vectors, representing different free-oscillation patterns: 

 
𝑳4,0(𝑟, 𝜃, 𝜙) =

∇[𝑗4(𝑘P𝑟)𝑌40(𝑟, 𝜃)]
𝑘P

, 

𝑴𝒍,𝒎(𝑟, 𝜃, 𝜙) = ∇ × �𝒓	𝑗4}𝑘R𝑟�𝑌40(𝑟, 𝜃)�, 

𝑵4,0(𝑟, 𝜃, 𝜙) = ∇ × 𝐌
T%

. 

(3.3) 
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The superposition of M modes is the SH wave motion of this sphere. Similarly, N indicates 

SV wave and L indicates P wave motion. These three Hansen vectors are orthogonal to each 

other in space. 𝑌40(𝜃, 𝜙) is the normalized spherical harmonics. 𝑗4(𝑘U𝑟) is a spherical Bessel 

function. 𝛼4,0, 𝛽4,0 and 𝛾4,0are the independent coefficients. The subscript, l, represents the 

integer angular order which has a range from 0 to positive infinity. The subscript m is also an 

integer and varying from -l to l. 𝑟 is the distance from the arbitrary point to the center of the 

planet. In the spherical coordinates, 𝜃 and 𝜙 are representing an azimuthal location on the 

sphere which radius is r. 

The expansion of the equation (3.3) in terms of spherical unit vector 𝒆𝒓, 𝒆𝜽, 𝒆𝝓 is: 

 
𝑳4,0(𝑟, 𝜃, 𝜙) =

∇[𝑗4(𝑘P𝑟)𝑌40(𝑟, 𝜃)]
𝑘P

= r
𝑙	𝑗4(𝑘P𝑟)
𝑘P𝑟

− 𝑗4?%(𝑘P𝑟)t 𝑌40(𝑟, 𝜃)𝒆𝒓 +
	𝑗4(𝑘P𝑟)
𝑘P𝑟

𝜕𝑌40(𝜃, 𝜙)
𝜕𝜃 𝒆𝜽

+
1

sin(𝜃)
	𝑗4(𝑘P𝑟)
𝑘P𝑟

𝜕𝑌40(𝜃, 𝜙)
𝜕𝜙 𝒆𝝓, 

	𝑴𝒍,𝒎(𝑟, 𝜃, 𝜙) = ∇ × [𝒓	𝑗4(𝑘P𝑟)𝑌40(𝑟, 𝜃)]

= −𝑗4}𝑘R𝑟�
𝜕𝑌40(𝜃, 𝜙)

𝜕𝜃 𝒆𝝓 +
1

sin(𝜃) 𝑗4}𝑘R𝑟�
𝜕𝑌40(𝜃, 𝜙)

𝜕𝜙 𝒆𝜽,	 

𝑵4,0(𝑟, 𝜃, 𝜙) = ∇ × 𝐌
T%
= 𝑙(𝑙 + 1) V&

DT%1E

T%1
𝑌40(𝑟, 𝜃)𝒆𝒓 + �(𝑙 + 1)

V&DT%1E

T%1
−

𝑗4?%}𝑘R𝑟��
WX&

!(2,3)
W2

𝒆𝜽 + �(𝑙 + 1)
V&DT%1E

T%1
− 𝑗4?%}𝑘R𝑟��

%
J+)(2)

WX&
!(2,3)
W3

𝒆𝝓, 

(3.4) 

where 𝑘R = 𝜔/𝑣R, 𝑘P = 𝜔/𝑣P. 𝑣P is the propagation velocity of the P wave. 𝑣R is the 

velocity of the S wave. Therefore, we can rewrite the M, L, N as following by using surface 

normalized spherical harmonic vectors R, S, T from equation (2.10): 

 
𝑳:,"(𝑟, 𝜃, 𝜙) = T

𝑙	𝑗:(𝑘<𝑟)
𝑘<𝑟

− 𝑗:.+(𝑘<𝑟)W 𝑹:𝒎(𝜃, 𝜙) + Y𝑙(𝑙 + 1)
	𝑗:(𝑘<𝑟)
𝑘<𝑟

𝑺:𝒎(𝜃, 𝜙),	 
(3.5) 
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𝑴𝒍,𝒎(𝑟, 𝜃, 𝜙) = Y𝑙(𝑙 + 1)𝑗:\𝑘?𝑟]𝑻:"(𝜃, 𝜙),	 

𝑵:,"(𝑟, 𝜃, 𝜙) = 𝑙(𝑙 + 1)
𝑗:\𝑘?𝑟]
𝑘?𝑟

𝑹:𝒎(𝜃, 𝜙)

+ Y𝑙(𝑙 + 1) T(𝑙 + 1)
𝑗:\𝑘?𝑟]
𝑘?𝑟

− 𝑗:.+\𝑘?𝑟]W 𝑺:𝒎(𝜃, 𝜙). 

 

By substituting equation (3.5) into (3.2) and compare the coefficients of spherical harmonic 

vectors R, S, T, we can express the radial function 𝑈(𝑟), 𝑉(𝑟) and 𝑊(𝑟) using undetermined 

coefficients 𝛼4,0, 𝛽4,0 and  𝛾4,0: 

 𝑈(𝑟) = 𝛾:," b
:	A%(C&8)
C&8

− 𝑗:.+(𝑘<𝑟)c + 𝛽:," d𝑙(𝑙 + 1)
A%EC'8F
C'8

e, 

 

𝑉(𝑟) = Y𝑙(𝑙 + 1) f𝛾:," T
𝑗:(𝑘<𝑟)
𝑘<𝑟

W + 𝛽:," T𝑙(𝑙 + 1)
𝑗:\𝑘?𝑟]
𝑘?𝑟

− 𝑗:.+\𝑘?𝑟]Wg, 

 

𝑊(𝑟) = Y𝑙(𝑙 + 1)𝛼:,"	𝑗:\𝑘?𝑟]. 

(3.6) 

  

Here, we have successfully separated the radial part and azimuthal part of normal modes. The 

rest of the work is only to determine the coefficients, 𝛼4,0, 𝛽4,0 and  𝛾4,0, using the boundary 

conditions (zero surface traction).  

 

We assume the planet has a perfect free surface condition, which is traction 𝑻𝒓 is zero in 

all three components. In a homogeneous elastic medium, we apply the constitutive relation 

which only have two independent constants to get the surface traction: 

 𝑻𝒓 = σ ∙ 𝐞𝒓 = 𝜆∇ ∙ 𝐮	𝕀 ∙ 𝐞𝒓 + 𝜇(∇𝐮 + 𝐮∇) ∙ 𝐞𝒓,	 (3.7) 

 

where σ is the traction tensor. 𝕀 is an identity matrix. 𝐞𝒓 is the unit vector along the radial 

direction. 𝜆	and 𝜇 are Lamé constants.  
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By substituting equation (3.6) into (3.7), we can get 

 𝑻𝒓(𝑟, 𝜃, 𝜙) = b𝜆 m,	H(8)
8

− 𝑙(𝑙 + 1) I(8)
8
+ 3H(8)

38
n + 𝜇 3H(8)

38
c 𝑹:𝒎(𝜃, 𝜙) +

Y𝑙(𝑙 + 1) bH(8)*I(8)8
+ 3I(8)

38
c 𝑺:𝒎(𝜃, 𝜙) + Y𝑙(𝑙 + 1) b

3J(8)
38

− J(8)
8
c 𝑻:"(𝜃, 𝜙). 

(3.8) 

 

By letting the surface traction inequation (3.8) to zero, we can get three equations: 

 
𝛽:,"

2𝜇𝑙(𝑙 + 1)p(𝑙 − 1)𝑗:\𝑘?𝑟] − 𝑘? 	𝑟	𝑗:.+\𝑘?𝑟]q
𝑘?𝑟,

+ 𝛾:,"
[2𝑙(𝑙 − 1)𝜇 − (𝑘<𝑟),(𝜆 + 2𝜇)]𝑗:(𝑘<𝑟) + 4𝜇𝑘<𝑟𝑗:.+(𝑘<𝑟)

𝑘<𝑟,
= 0,	 

(3.9) 

 

 
𝛽:,"

KLM*,.,:(*EC'8F
(NA%EC'8F.,C'	8	A%#$EC'8FO

C'8(
− 𝛾:,"

,K[(+*:)A%(C&8).C&8A%#$(C&8)]
C&8(

= 0, (3.10) 

  

 
𝛼:,"	𝜇

(𝑙 − 1)𝑗:\𝑘?𝑟] − 𝑘? 	𝑟	𝑗:.+\𝑘?𝑟]
𝑘?𝑟,

= 0 (3.11) 

 

In the above equations we can replace the 𝜇 and 𝜆 by 𝑣P and 𝑣R by the following relation: 

 𝜇 = 𝜌𝑣?,, 

𝜆 = ρ\𝑣<, − 2𝑣?,]. 
(3.12) 

In equation (3.9), (3.10) and (3.11), the coefficients 𝛼4,0, 𝛽4,0, 𝛾4,0 are non-trivial only for a 

particular set of discrete eigenfrequencies, 𝜔’s, embedded in 𝑘Rand 𝑘P . These frequencies are 

called normal mode frequencies, which will be solved in the next section.  
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3.2 Eigen-frequencies and normal modes 

3.2.1 Toroidal modes 

There are two kinds of normal modes, one is called spheroidal modes, the other is called 

toroidal modes. They have two different sets of frequencies. We can use equation (3.9) and 

(3.10) to solve the frequencies for the spheroidal modes, and use (3.11) to solve for the 

toroidal frequencies. First, to solve eigen-frequencies of toroidal modes, we transform 

equation (3.11) into: 

 
(𝑙 − 1)𝑗4 �

𝜔
𝑣R
𝑎� −

𝜔
𝑣R
	𝑎	𝑗4?% �

𝜔
𝑣R
𝑎� = 0, (3.13) 

where 𝑎 is the radius of the planet, 𝑗4 is the spherical Bessel function of the angular order 

𝑙	(𝑙 = 0,1,2… ), 𝑘P and 𝑘R are the P and S wavenumbers respectively, and 𝜏 = 𝑘R/𝑘P. The 

temporary frequencies are included in wavenumbers as, 𝑘P =
Y
Z'
, 𝑘R =

Y
Z(

. As an example, we 

can solve equation (3.13) to get the frequencies of toroidal modes (Figure 2). 
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Figure 2 The toroidal modes frequencies at different angular orders. The planet has 

2000km in radius, the compressional wave velocity of the planet is 𝑣I = 3 km/s, the shear 

wave velocity 𝑣J = 1.2 km/s and the density of the planet is 2840 𝑘𝑔/𝑚". 

3.2.2 Spheroidal modes 

The second kind of oscillations is known as spheroidal mode. To find the eigen-frequencies 

for the spheroidal modes, we let equation (3.9) and (3.10) be zero and eliminate 𝛽4,0 and 

𝛾4,0: 

 2		(1 − 𝑙 + 𝑘<𝑎	𝑆R)

b−2 + 2𝑙, − \𝑘?𝑎]
,
+ 2𝑘? 	𝑎𝑆Sc

−
[2𝑙(𝑙 − 1) − (𝑘<𝑎),𝜏, + 4𝑘<𝑎𝑆R]
2𝑙(𝑙 + 1)p(𝑙 − 1) − 𝑘? 	𝑎	𝑆Sq

= 0, (3.14) 

 

where  is the planet radius, 𝑆P = 𝑗4?%(𝑘P𝑎)/𝑗4(𝑘P𝑎), 𝑆R = 𝑗4?%(𝑘R𝑎)/𝑗4(𝑘R𝑎),  is the 

spherical Bessel function of the angular order (l=0,1,2…), 𝑘P and 𝑘R are the P and S 

wavenumbers respectively, and 𝜏 = 𝑘R/𝑘P. The temporary frequencies are included in 

wavenumbers as, 𝑘P =
Y
Z'
, 𝑘R =

Y
Z(

. For example, we can solve equation (3.14) to get the 

frequencies of spheroidal modes (Figure 3). 

a jl

l
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Figure 3 The spheroidal modes frequencies at different angular orders. The planet has 

2000km in radius, the compressional wave velocity of the planet is 𝑣I = 3 km/s, the shear 

wave velocity 𝑣J = 1.2 km/s and the density of the planet is 2840 𝑘𝑔/𝑚". 

 

3.3 Normalization of normal modes 

We used three constants 𝛼4,0, 𝛽4,0, 𝛾4,0 to represent the excitation coefficients of the modes. 

To make the modes “unit vectors”, we need to normalize the normal modes. We need to 

make sure the inner product of the same modes is 1 and the inner product of different modes 

is 0: 

 〈ρ𝒖𝒊, 𝒖𝒋〉 = 𝛿2A, (3.15) 

where  𝛿+V = 1 if 𝑖 = 𝑗, 𝛿+V = 0, if 𝑖 ≠ 𝑗. 

We can first normalize the spheroidal modes. As we defined before in equation (2.10) and 

(2.11), we calculate the inner product as a volume integral in the space domain of the planet: 
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 ∭𝜌p 𝑈:$ (𝑟)𝑹:𝒎(𝜃, 𝜙) +	 𝑉:$ (𝑟)𝑺:𝒎(𝜃, 𝜙)qp 𝑈:!$! (𝑟)𝑹:!𝒎!(𝜃, 𝜙) +

	 𝑉:!$! (𝑟)𝑺:!𝒎!(𝜃, 𝜙)q
∗
𝑟, sin(𝜃) 𝑑𝑟𝑑𝜃𝑑𝜙. 

(3.16) 

 Because of the orthogonality of spherical harmonic vectors R, S: 

 ~𝑹:𝒎(𝜃, 𝜙)𝑹:)
*𝒎)

(𝜃, 𝜙) sin(𝜃)𝑑𝜃𝑑𝜙 = 𝛿"")𝛿::) ,	 

~𝑺:𝒎(𝜃, 𝜙)𝑺:)
*𝒎)

(𝜃, 𝜙) sin(𝜃) 𝑑𝜃𝑑𝜙 = 𝛿"")𝛿::) , 

~𝑹:𝒎(𝜃, 𝜙)𝑺:)
*𝒎)

(𝜃, 𝜙) sin(𝜃) 𝑑𝜃𝑑𝜙 = 0, 

~𝑺:𝒎(𝜃, 𝜙)𝑹:!*𝒎!(𝜃, 𝜙) sin(𝜃) 𝑑𝜃𝑑𝜙 = 0.	 

 

(3.17) 

The equation (3.16) can be simplified to: 

 
�p 𝑈:$ (𝑟) 𝑈:)$) (𝑟) + 𝑉:$ (𝑟) 𝑉$) (𝑟)q
R

W

𝜌𝑟,𝑑𝑟𝛿"")𝛿::) , (3.18) 

where a is the radius of the planet. If 𝑛 ≠ 𝑛′ or 𝑙 ≠ 𝑙′ the term will be automatically vanished, 

(3.18) can be further reduced to  

 
�p 𝑈:,$ (𝑟) + 𝑉:,$ (𝑟)q
R

W

𝜌𝑟,𝑑𝑟 = 1. (3.19) 

Here we use equation (3.14) to first solve eigen-frequencies 𝜔4,) where 𝑛 (the number of zero 

crossings along the radial direction) indicates the index of the eigen-frequencies ranging from 

0 to positive infinity. Next, we can determine the ratio 𝜖4,) =
R&,!,*
[&,!,*

 by using (3.9) or (3.10): 

 
𝜖4,) =

𝛽4,0,)
𝛾4,0,)

=
2	𝑘R 	(1 − 𝑙 + 𝑘P𝑟	𝑆=)𝑗4(𝑘P𝑟)

𝑘P �−2 + 2𝑙! − }𝑘R𝑟�
! + 2𝑘R 	𝑟𝑆\� 𝑗4}𝑘R𝑟�

, 

𝜖4,) =
𝛽4,0,)
𝛾4,0,)

=
𝑘R[2𝑙(𝑙 − 1) − (𝑘P𝑟)!𝜏! + 4𝑘P𝑟𝑆=]𝑗4(𝑘P𝑟)
2𝑘P𝑙(𝑙 + 1)�(𝑙 − 1) − 𝑘R 	𝑟	𝑆\�𝑗4}𝑘R𝑟�

. 

(3.20) 

 

Now, we can replace 𝛽 with 𝛾𝜖 in equation (3.6): 
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 𝑈:$ (𝑟) = 𝛾:,",$ b
:	A%(C&8)
C&8

− 𝑗:.+(𝑘<𝑟)c + 𝛽:,",$𝜖:,$ d𝑙(𝑙 + 1)
A%EC'8F
C'8

e, 

 

𝑉:$ (𝑟) = Y𝑙(𝑙 + 1) f𝛾:,",$ T
𝑗:(𝑘<𝑟)
𝑘<𝑟

W + 𝛽:,",$𝜖:,$ T𝑙(𝑙 + 1)
𝑗:\𝑘?𝑟]
𝑘?𝑟

− 𝑗:.+\𝑘?𝑟]Wg. 

 

(3.21) 

 

 By substituting equation (3.21) into equation (3.19), we can solve for 𝛾4,0 for every 𝑙 and 𝑚: 

 
𝛾:,",$ = 1/∫ �b:	A%(C&8)

C&8
− 𝑗:.+(𝑘<𝑟)c + 𝜖:,$ d𝑙(𝑙 + 1)

A%EC'8F
C'8

e
𝟐
+ 𝑙(𝑙 +R

W

1) �bA%(C&8)
C&8

c + 𝜖:,$ d𝑙(𝑙 + 1)
A%EC'8F
C'8

− 𝑗:.+\𝑘?𝑟]e�
,
. � 𝜌𝑟,𝑑𝑟. 

(3.22) 

 

 𝛽4,0,) can be simply calculated by 𝛽4,0,) = 𝜖4,)𝛾4,0,).  

 

Similarly, we can normalize the toroidal modes from equation (3.15): 

 〈ρ𝒖𝒊, 𝒖𝒋〉 = 1 =�𝜌p 𝑊:$ (𝑟)𝑻:"(𝜃, 𝜙)qp 𝑊:!$! (𝑟)𝑻:!"!(𝜃, 𝜙)q
∗
𝑟, sin(𝜃) 𝑑𝑟𝑑𝜃𝑑𝜙. 

 

(3.23) 

Because the orthogonality of spherical harmonic vectors T: 

 ~𝑻:𝒎(𝜃, 𝜙)𝑻:!*𝒎!(𝜃, 𝜙) sin(𝜃) 𝑑𝜃𝑑𝜙 = 𝛿""!𝛿::!, (3.24) 

 

equation (3.23) can be simplified as: 

 
� 𝑊:

,
$ (𝑟)

R

W

𝑟,𝑑𝑟 = 1. (3.25) 

In short, we use equation (3.13) to solve for the toroidal eigen-frequencies and we solve for 

the coefficients 𝛼4,0 in equation (3.6) as: 
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𝛼:,",$ = 1/� bY𝑙(𝑙 + 1)	𝑗:\𝑘?𝑟]c
,

R

W

𝑟,𝑑𝑟. 
(3.26) 

In conclusion, the fully normalized normal modes of a homogenous spherical planet can be 

written as: 

spheroidal: 

 𝒖$ :
"\𝑟, 𝜃, 𝜙, 𝜔:,$] = 𝑈:$ (𝑟)𝑹:𝒎(𝜃, 𝜙) + Y𝑙(𝑙 + 1)	 𝑉:$ (𝑟)𝑺:𝒎(𝜃, 𝜙), (3.27) 

toroidal: 

 𝒖$ :
"\𝑟, 𝜃, 𝜙, 𝜔:,$] = Y𝑙(𝑙 + 1) 𝑊:$ (𝑟)𝑻:"(𝜃, 𝜙), (3.28) 

where 𝑈4) (𝑟), 𝑉4) (𝑟) and 𝑊4) (𝑟) are containing the fully normalized coefficients 𝛼4,0,), 

𝛽4,0,) and 𝛾4,0,). 

 

3.4 Normal mode summation for making synthetic seismograms  

The linear superposition of normal modes could form any dynamic motion interior of an 

elastic sphere. In this section of the dissertation, I will demonstrate how to synthesize 

seismogram using summation of the normal modes.  

 With a force acting on a unit space in the homogeneous planet, the equation of motion in 

the time domain is: 

 
−(𝜆 + 2𝜇)∇∇ ∙ 𝐮 + 𝜇∇ × ∇ × 𝐮 + ρ

d,𝐮
dt𝟐

= 𝐅(t). (3.29) 

 

In the frequency domain, it becomes: 

 −(𝜆 + 2𝜇)∇∇ ∙ 𝐮 + 𝜇∇ × ∇ × 𝐮 − ρω,𝐮 = 𝐅(ω), (3.30) 
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where 𝐅(ω) is the force in Newton per unit volume in the frequency domain. For 

simplification we write the displacement field of the placement in the frequency domain 

using the summation of the normal modes as: 

 𝐮 =D𝑎2𝒖𝒊
𝒊

, (3.31) 

where 𝑎+ is the coefficient of the i-th mode 𝒖𝒊. This expression is equivalent to equation (3.2).  

We define an operator 𝑳: 

 𝑳(𝒖𝒊) = −(𝜆 + 2𝜇)∇∇ ∙ 𝒖𝒊 + 𝜇∇ × ∇ × 𝒖𝒊,	 (3.32) 

we can get: 

 D𝑎2(𝑳(𝒖𝒊) − ρωY,𝐮𝐢)
𝒊

= 𝐅(ω2). (3.33) 

 

However, using the operator	𝑳, we can write the equation of motion (3.1) as: 

 𝑳(𝒖𝒊) − ρωY,𝐮𝐢 = 𝟎. (3.34) 

 

The solution of this equation is the normal mode we obtained earlier and should be 

normalized by: 

 〈ρ𝒖𝒊, 𝒖𝒋〉 = 𝛿2A. (3.35) 

We can multiply 𝒖𝒋	on both sides of the equation (3.34) and transform it to: 

 〈𝑳𝒖𝒊, 𝒖𝒋〉 − ωY,𝛿2A = 0. (3.36) 

 

The seismic displacement wavefield of the planet in time domain can be written as: 

 𝒖(𝑡) =D𝑎2 	𝐮𝐢	𝑒*2	[*	1
𝒊

, (3.37) 

where	𝑡 is the time. Its Laplace transformed form is: 

 𝒖(𝑠) =D𝑎2
𝐮𝐢

𝑠 + 𝑖𝜔
𝒊

. (3.38) 
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To determine the coefficient 𝑎+, we insert (3.38) into (3.29) and get the equation of motion in 

the Laplacian domain: 

 ρ	s,∑ 𝑎2
𝐮𝐢

].2[𝒊 + ∑ 𝑎2
𝑳(𝒖𝒊)
].2[𝒊 = 𝐅(s), (3.39) 

 

where 𝐅(s) is 𝐅(t) in the Laplacian domain. If we let 𝐮𝐣 do an inner product with (3.39), we 

can get the following equation using the relation (3.36): 

 
s,D𝑎2

𝛿2A
𝑠 + 𝑖𝜔

𝒊

+D
ωY,𝛿2A
𝑠 + 𝑖𝜔

𝒊

= 〈𝐅(s), 𝒖𝒋〉. (3.40) 

We can get the expression of 𝑎V: 

 
𝑎A =

	(𝑠 + 𝑖	𝜔)
s, +ω`,

〈𝐅(s), 𝒖𝒋〉. (3.41) 

We insert (3.41) into (3.38),we can get: 

 
𝒖(𝑠) =D𝑎2

𝐮𝐢
𝑠 + 𝑖𝜔

𝒊

=D
〈𝐅(s), 𝒖𝒊〉𝐮𝐢
(s, +ωY,)𝒊

. (3.42) 

If the source time force is a delta function: 

 𝛿(𝑡) = 0	𝑖𝑓	𝑡 ≠ 0; 

𝛿(𝑡) = 1	𝑖𝑓	𝑡 = 0. 
(3.43) 

We write the single force at location 𝒓𝒔 as: 

 𝐅(t) = 𝑭𝛿(𝑡)𝛿(𝒓 − 𝒓𝒔), (3.44) 

where 𝑭 is a single force vector. Its Laplacian transformation is 𝐅(s) = 𝐹𝛿(𝒓 − 𝒓𝒔). If we 

insert it to (3.42), we can get: 

 
𝒖(𝑠, 𝒓) =D

(𝑭 ∙ 𝐮(𝒓𝒔)𝐢∗)𝐮(𝐫)𝐢
(s, +ωY,)𝒊

, (3.45) 

 

We can transform (3.45) back to time domain: 
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 𝒖(𝑡, 𝒓) =D(𝑭 ∙ 𝐮(𝒓𝒔)𝐢∗)𝐮(𝐫)𝐢sin	(𝜔2𝑡)
𝒊

. (3.46) 

The attenuation effect can be included by adding Q factor as: 

 𝒖(𝑡, 𝒓) =D(𝑭 ∙ 𝐮(𝒓𝒔)𝐢∗)𝐮(𝐫)𝐢e
*[*,bc sin(𝜔2 	𝑡)

𝒊

. (3.47) 

For a moment tensor source	𝑴, we can get the solution of seismic displacement field as: 

 𝒖(𝑡, 𝒓) =D(𝑴: 𝐞(𝒓𝒔)𝐢∗)𝐮(𝐫)𝐢e
*[*,bc sin(𝜔2 	𝑡)

𝒊

, 

	𝒆 =
𝛁𝒖 + 𝒖𝜵

2
, 

(3.48) 

where 𝒆 is the strain tensor. 

 

 

 

3.5 Summary  

From first principles, I derived the spheroidal and toroidal modes along with their frequencies 

for a homogenous planet. The modes frequencies will be compared with the tidal force 

frequencies in Chapter 2 to determine whether resonance can occur. I also showed how to use 

normal mode summation to generate synthetic seismogram for a single force source and a 

moment tensor source.  I will use this analytical solution to benchmark the proposed 

boundary element method in Chapter 4. 
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Chapter 4  Boundary element method for irregular 

bodies seismic modeling 

I will introduce a 3-D elastic Boundary Element Method (BEM) computer code, called 

AstroSeis. I will show its ability to model seismic wavefields in a body with an arbitrary 

shape, such as an asteroid, or a planet with very complex topography. I will benchmark 

AstroSeis against other existing methods such as normal mode summation (Chapter 3) and 

the direct solution method (DSM)(Kawai et al., 2006). This open-source AstroSeis will be a 

useful tool to study the interior and surface processes of asteroids and planets. 

4.1 Method and boundary integral equations 

4.1.1 A solid asteroid with topography 

First, I will show how to use BEM to model seismic wavefield in a solid asteroid. We assume 

the asteroid is a homogenous solid body with an irregular boundary. In BEM, we only need to 

know the wavefield on the boundary and we can then compute the wavefield in the entire 

model. 

The boundary integral equation governs the surface seismic displacement field, 𝐮 for an 

interior domain Ω	 (Figure 4a), reads,  

 χ(𝐱)ua(𝐱) = u(𝐧(𝐱) +∬ �Gac(𝐱$, 𝐱, ω)𝑡c(𝐱$) −d

uc(𝐱$)Ccefg(𝐱$)Gaf,g(𝐱$, 𝐱, ω)ne�d𝐱$𝟐.  
(4.1) 

In this equation, 𝑆 is the surface of the elastic body including topography. χ(𝒙) = 1	if	𝒙 ∈

Ω	and	χ(𝒙) = 𝟏
𝟐
if	𝒙 ∈ S. The surface integral should be understood in the sense of the 

Cauchy principal value if 𝒙 is on the boundary. In BEM, 𝒙′ and 𝒙 are points on S; 𝑛V is the 

outward surface normal at 𝒙′; 𝐶+VT4(𝒙$) is the elastic tensor at 𝒙′. Here, we assume the 
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medium is isotropic and that there are only two independent Lamé parameters in 

Cijkl.	𝐺)T(𝒙$, 𝒙, 𝜔) is the Green’s function, the displacement wavefield along the k-th 

direction recorded at 𝒙′ caused by a single-force source at 𝒙 with the force direction along the 

n-th direction. 𝐺T),4(𝒙$, 𝒙, 𝜔) is the spatial directional derivative of the elastic Green’s 

function with respect to 𝒙$ along the -th direction in the frequency domain. All subscripts 

(n, i, j, k, l) in equation (4.1).take a value of 1, 2, or 3 to indicate the component of the 

vector/tensor field. Because the surface traction, 𝑡+(𝒙$), is zero on the free surface, we can 

neglect it in equation (4.1). 

In equation (4.1), 𝑢(𝒏 is the incident field. For a single-force source 𝒇, we can directly 

use Green’s function to calculate the incident field: 

 u(𝐧(𝐱) = ∭ fc(𝐱′)δ(𝐱′ − 𝐱𝟎)Gac(𝐱, 𝐱$, ω)d𝐱$"𝜴 , (4.2) 

where Ω is the space enclosed by surface S, 𝒙 is a point on surface S, 𝒙′ is a point in Ω. 𝑓+(𝒙′) 

is the single force at 𝒙′along the i-th direction. 𝒙𝟎 is the location of the source within Ω 

(Figure 4a).  

If the source is a 3-by-3 moment tensor, 𝑀+V, the incident field is calculated as follows: 

 u(𝐧(𝐱) =∭ Mceδ(𝐱′ − 𝐱𝟎)Gac,e	(𝐱, 𝐱$, ω)d𝐱$"n . (4.3) 

We can solve equation (4.1) for 𝒖(𝒙)	on the boundary, 𝒙 ∈ 𝑆. We partition the surface 

into small triangles. Each triangle is called a boundary element. The 𝐼-th element is called Σ# 

(Figure 4a). We assume the seismic wavefield 𝒖(𝒙) on each surface element is constant. We 

can then discretize equation (4.1) and get a system of linear equations: 

 �%
!
𝕀 + T� [u] = [u(], (4.4) 

 [𝑢] is a column vector containing the 3-component surface displacements (i.e., the total field 

including the incident field and scattered fields) on all the elements. 𝕀	is an identity matrix. 

l
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[𝑢(] is a column vector containing the incident field on all surface elements excited by a 

single-force or a moment tensor source calculated using equation (4.2) or (4.3). 

We define a matrix representing the pair-wise field interaction between elements: 

 T(𝐼, 𝐼$) = ∬ (𝐱$)Ccefg(𝐱$)Gaf,g(𝐱$, 𝐱𝐈, ω)ned𝐱$𝟐p+$
.  (4.5) 

where 𝐼 and 𝐼$ are boundary element indices on 𝑆. They are also representing row index and 

column index of 𝑇 matrix. 

In the BEM method, we first obtain the surface displacement [𝑢] on each element by 

solving the linear algebraic equation (4.4). The wavefield at any interior point can be 

calculated using equation (4.1) using χ(𝒙) = 1	 for any interior point 𝒙 in Ω. 
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Figure 4 Geometry used in BEM. (a) A solid asteroid. The domain in gray is the solid 
medium 𝛺. 𝑆 is the surface of this domain. We partition the surface into M small triangles. 𝛴# 
and  𝛴

#′
 are boundary elements on 𝑆 with indices 𝐼 and 𝐼′, respectively. 𝑥# is the collocation 

point on the element 𝛴# which is defined as the center of the inscribed circle on 𝛴#. 𝑥( is the 
location of the source. 𝑛 is the surface normal on 𝑆. (b) A solid body with a liquid core 
schematic. 𝛺% is representing the solid medium which is the space in gray. 𝛺! is representing 
the liquid medium which is the space in blue. 𝐽 and 𝐽′ are element indices on 𝑆!. 

 

4.1.2 Solid body with a liquid core 

In this section, we show the BEM modeling for a solid body with a liquid core (Figure 4b). 

Because of the liquid core in the solid body, we now have two boundaries. We refer to the 

outer free surface as 𝑆%, and the interface between liquid and solid as 𝑆!. Because we divide 

the surfaces into discrete triangles or boundary elements, we define the I-th and I’-th 

boundary element on 𝑆% as Σ#
(%) and Σ#,

(%), respectively. We also define the J-th and J’-th 

boundary element on 𝑆! as Σq
(!) and Σq,

(!) (Figure 4b), respectively.  

 

For a seismic wavefield in a liquid medium, the Green’s function is simply 𝐺r =

𝑒+T-𝒓/(4𝜋𝑟), where 𝑘P = 𝜔/𝑣I is the wavenumber in the liquid,  𝜔 the angular frequency, 
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and 𝑟 the source-receiver distance. We have the boundary integral equation in the liquid 

medium: 

 𝜒(𝐱)P(𝐱) = P((𝐱) − ∬ [Ws.D𝐱
,,𝐱E

u𝐧(𝟐)(𝐱$)
P(𝐱′) − Gv(𝐱$, 𝐱)

uv(𝐱$)
u𝐧(𝟐)(𝐱$)

]d𝐱$𝟐d#
,  (4.6) 

where χ(𝒙) = 1	if	𝒙 ∈ Ω!	and	χ(𝒙) =
𝟏
𝟐
if	𝒙 ∈ 𝑆!. 𝑃 is the total pressure field and 𝑃( is the 

incident pressure field on the fluid boundary, S2. 𝒙′ is a point on 𝑆!. 𝒙 can be either on 𝑆! or 

inside the domain Ω!. 𝐧(𝟐)(𝒙′) is the outward surface normal at 𝒙′. We can discretize 

equation (4.6) using the following matrices (see Figure 4b for the meaning of the symbols):   

 
𝐴(𝐽, 𝐽$) = »

𝜕Gv}𝐱$, 𝐱q�
∂𝐧(!)(𝐱$)

p
2,
(#)

d𝐱$𝟐, 𝐱$ ∈ Σq,
(!),	 

𝐵(𝐽, 𝐽$) = ∬ Gv}𝐱$, 𝐱q�p
2,
(#) d𝐱$𝟐, 𝐱$ ∈ Σq,

(!). 

(4.7) 

 

In the solid domain, we write the BIE as  

 𝜒(𝒙)𝑢$(𝒙) = 𝑢W𝒏(𝒙)

+~ p𝐺$2(𝒙!, 𝒙, 𝜔)𝑇2(𝒙!)
e$∪e(

− 𝑢2(𝒙!)𝐶2AC:(𝒙!)𝐺$C,:(𝒙!, 𝒙, 𝜔)𝑛A(𝒙!)q𝑑𝒙!𝟐, 

(4.8) 

where χ(𝒙) = 1	for	an	interior	point	𝒙 ∈ Ω%	and	χ(𝒙) =
𝟏
𝟐
if	𝒙 ∈ 𝑆% ∪ 𝑆!. In the boundary 

element method, both 𝒙 and 𝒙′ are on  𝑆% ∪ 𝑆!. We can discretize the equation (4.7) using 

matrices defined below (see Figure 4b for symbols):    

 
T(%%)(𝐼, 𝐼′) = » Ccefg(𝐱$)Gfa,g(𝐱$, 𝐱w, ω)ne

(%)d𝐱$𝟐
p
+,
(3)

, 𝐱$ ∈ Σ#,
(%); 

T(%!)(𝐼, 𝐽′) = » Ccefg(𝐱$)Gfa,g(𝐱$, 𝐱w, ω)(−ne
(!))d𝐱$𝟐

p
2,
(#)

, 𝐱$ ∈ Σq,
(!), 

(4.9) 
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G(%!)(𝐼, 𝐽$) = » Gca(𝐱$, 𝐱w, ω)d𝐱$𝟐
p
2,
(#)

, 𝐱$ ∈ Σq,
(!), 

T(!%)(𝐽, 𝐼$) = » Ccefg(𝐱$)Gfa,g}𝐱$, 𝐱q, ω�ne
(%)d𝐱$𝟐

p
+,
(3)

, 𝐱$ ∈ Σ#,
(%), 

T(!!)(𝐽, 𝐽$) = » Ccefg(𝐱$)Gfa,g}𝐱$, 𝐱q, ω�(−ne
(!))d𝐱$𝟐

p
2,
(#)

, 𝐱$ ∈ Σq,
(!), 

G(!!)(𝐽, 𝐽$) = » Gca}𝐱$, 𝐱q, ω�d𝐱$𝟐
p
2,
(#)

, 𝐱$ ∈ Σq,
(!). 

We can obtain the final form of discretized boundary integral equations system for solid-

liquid core model by combining BIE in both liquid and solid medium: 

 1
2 �u

(%)� = �u(
(%)� − T(%%)�u(%)� − T(%!)�u(!)� + G(%!)�t(!)�, 

1
2 �u

(!)� = �u(
(!)� − T(!%)�u(%)� − T(!!)�u(!)� + G(!!)�u(!)�, 

%
!
[P] = [P(] − A[P] + B[q], 

(4.10) 

where �𝑢(%)� is a vector containing the 3-component surface displacements for the elements 

on 𝑆%. Similarly, �𝑢(!)� is a vector containing the 3-component surface displacements for the 

elements on 𝑆!, �𝑡(!)� is the column traction vector on 𝑆!. �𝑢(
(%)� and �𝑢(

(!)� are vectors 

containing the incident field for the elements on 𝑆% and 𝑆!, respectively. [𝑃] is a vector 

containing the pressure field for the elements on 𝑆%. [𝑃(] is a vector containing incident 

pressure field for the elements on 𝑆!. By including boundary condition on the solid-liquid 

boundary: 

 uv(𝐱)
u𝐧(𝟐)(𝐱)

= ρω!𝐮(𝟐)(𝐱) ∙ 𝐧(𝟐)(𝐱), 𝐱 ∈ S!, 

𝐭(!)(𝐱) = P(𝐱)𝐧(𝟐)(𝐱), 𝐱 ∈ S!	, 
(4.11) 



 

35 

where 𝐧(𝟐)(𝒙) is the surface normal at 𝒙 on 𝑆!, 𝒕(!) is the surface traction in the solid region 

on 𝑆!. We can now solve equation (4.10) for 𝒖(%), 𝒖(!), and 𝑃(𝒙) which are the field values 

on the boundaries. Finally, we can use equations (4.6) and (4.8) to calculate the displacement 

wavefield at any interior point in Ω% or Ω!. 

For BEM modeling mesh building, I first partition the surface by creating an 

approximately uniform triangular tessellation on a unit sphere by minimizing generalized 

electrostatic potential energy of a system of charged particles using the code by Semechko 

(2015). We can magnify or shrink the unit sphere mesh to any size we need. We can also 

directly add the height of the topography to the vertex of the mesh to achieve topography on 

our model. To implement surface integration on a boundary element (e.g., equations (4.7) and 

(4.9)), I use quadrature integration using a MATLAB program from Xiao and Gimbutas 

(2010). 

 

4.2 Benchmark of BEM 

4.2.1 Benchmark example 1 - Homogenous solid sphere with a single force source 

First, I benchmark the seismic wavefield caused by a single force source in a 3D homogenous 

elastic and spherical solid. I set the compressional wave velocity as 𝑣I = 6𝑘𝑚/𝑠 and the 

shear wave velocity 𝑣J = 3 km/s. I set the density as 3000	𝑘𝑔/𝑚". The spherical body is 

20km in radius without topography.  The single force source is given as 𝒇 = [1,1,1]𝑁. The 

location of the source is at depth of 10km, 180° in longitude and 0° in latitude (Figure 5a).  

I also included attenuation by applying Q values for the P and S wavenumbers, 

 kx =
y
z4
È1 + +

!{4
É, 

k| =
y
z5
�1 + +

!{5
�, 

(4.12) 
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where 𝜔 is the angular frequency. The S-wave attenuation is given as 𝑄J = 200 and the P 

wave attenuation is given as 𝑄I = 2.5𝑄J. To avoid the wrap-around effect (Bouchon et al., 

1989), I add an imaginary part to the angular frequency, 𝜔 → (𝜔 + +
}!
), where 𝑇0 is the 

duration of the recording.  

I generate a mesh for BEM for the spherical elastic body with a radius of 20km (Figure 

5b). 
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Figure 5. A Homogenous model with a single-force source. (a) The source and receivers are 
on the equatorial plane. The solid body is 20 km in radius. We placed the source (indicated 
by a red star) at depth of 10 km, 180° in longitude and 0° in latitude. The direction of the 
force is given by the yellow arrow. All the receivers are placed on the equator, spaced at an 
interval of 5°. (b) 3D view of the boundary mesh. The red star is the source location. The blue 
circle in the middle is the equator. The yellow line is the axis through the poles.  

 

Using the AstroSeis code, we can model the surface seismic displacement. I compare the 

modeled seismogram of AstroSeis with that of the normal mode summation method for the 
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single force source. I find that the root-mean-squares (RMS) error of the waveform difference 

is only 0.88% (Figure 6). 

  



 

39 

 

 

 

Figure 6 Seismic displacement (vertical component) waveform of the model in Figure 5 using 
two different methods: BEM and normal modes summation, for a single force source. (a) 
Wiggle-to-wiggle comparison of seismic waveforms due to a single force source shown in 
Figure 5. (b) A common source gather by BEM; (c) Common source gather by the normal 
mode summation method.  
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4.2.2 Benchmark example 2- Homogenous solid sphere with explosion source 

To test whether the AstroSeis code can work with an explosion source, I use the same model 

as in Figure 5. I only change the source to an explosion source (Figure 7). The moment tensor 

of the explosion source is given as 𝑀 = Ë
1 0 0
0 1 0
0 0 1

Ì 	𝑁 ∙ 𝑚. By comparing the BEM result 

with the normal mode summation method, the RMS error of the waveform difference is only 

0.48% (Figure 8). 
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Figure 7 An explosion source in a homogeneous model. (a) The source and receivers are on 
the equatorial plane. The solid body is 20 km in radius. We placed the source indicated by a 
red star at depth of 10 km, 180° in longitude and 0° in latitude (on the equator plane). All the 
receivers are also placed on the equator, spaced at an interval of 5°. (b) 3D view of the 
boundary mesh. The red star is the location of the source. The orange circle is the equator. 
The red line is the axis through the poles. 
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Figure 8 Seismic displacement fields (vertical component) for the model in Figure 7 
computed by BEM and the normal mode summation for an explosion source. (a) Wiggle-to-
wiggle comparison of seismic waveforms due to an explosion source shown in Figure 7. (b) 
Common source gather computed by BEM; (c) Common source gather by the normal mode 
summation method.  

 

4.2.3 Benchmark example 3 - Solid sphere with a liquid core 

In the third example, I benchmark the code for a liquid core model (Figure 9). The source is 

the same explosion source used in example 2. The solid medium is the same as the model in 

example 1 and 2. The liquid part has a compressional wave velocity of 8	𝑘𝑚/𝑠, and density 
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is 4000	𝑘𝑔/𝑚".  I calculated seismic wavefields using our BEM and DSM. These results 

also show good agreement and the RMS error of the waveforms difference between the two 

methods is 1.45% (Figure 10). 
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Figure 9 A solid sphere with a liquid core model with an explosion source. (a) The source 
(red star) and receivers (orange triangles) shown on the equatorial plane. The solid body is 20 
km in radius. The liquid core is 10km in radius. We placed the source at depth of 4km, 180° 
in longitude and 0° in latitude (on the equator plane). All the receivers are on the equator, 
spaced at an interval of 5°. (b) 3D view of the boundary mesh. The red star is the location of 
the source. The orange circle is the equator. The red line is the axis through the poles. 
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Figure 10 Seismic displacement (vertical component) comparison between BEM and DSM 
for an explosion source. (a) Wiggle-to-wiggle comparison of seismic waveforms (BEM 
versus DSM). (b) Common source gather by BEM; (c) Common source gather by DSM 
(Kawai et al., 2006).  
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4.3 Numerical examples 

Here, I show several numerical examples that I can compute with the proposed codes. First, I 

show that our code can model seismic wavefield for a body with a liquid core at an arbitrary 

location. 

Second, I show that I can model seismic wavefield in Phobos with its real topography 

(Willner et al., 2014). 

 

4.3.1 Shifted-core model 

I can use the BEM code to model the seismic wavefields in two models: a solid body with a 

liquid core (the centered-core model), and a solid body with a shifted core. In the shifted-core 

model, the core is shifted along the y-direction by 2km from the center (Figure 11a). I use 

AstroSeis to compute seismic displacement (vertical component) wavefields in these two 

models (Figure 11b). We can clearly see a lack of focusing for the seismic field at the 

antipode caused by the shift of the core (Figure 11c). 
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Figure 11 The seismic wavefield (vertical displacement) in a solid sphere with a shifted liquid 
core. (a) The mesh of a solid sphere with a shifted liquid core to calculate seismic 
displacement wavefield. The core is shifted along the y direction by 2km. The explosion 
source is given as an identity matrix. The source location is indicted by a red star, at a depth 
of 4 km, 180° in longitude, and 0° in latitude (on the equator plane). All the receivers are 
placed on the equator at an interval of 5°. In this solid medium, we set the compressional 
wave velocity 𝑣I = 6	𝑘𝑚/𝑠 and the shear wave velocity 𝑣J = 3 km/s, the density 𝜌 =
3000	𝑘𝑔/𝑚"; in the liquid medium, we set compressional wave velocity 𝑣I = 8000	𝑚/𝑠, 
density 𝜌 = 4000	𝑘𝑔/𝑚". (b) Common source gather for the shifted-core model in (a). (c) 
Common source gather from a solid sphere with a centered liquid core (i.e., no shift). 
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4.3.2 Seismic modeling for Phobos 

In this example, we model seismic fields in Phobos, the closer moon of Mars. Phobos has a 

very irregular topography (Figure 12a). I compute the seismic displacement wavefield of 

Phobos with an explosion source at depth of 4km on the Phobos’ equator plane (Figure 12b). 

To see how topography modifies the seismic wavefield, I also compute the seismic field for a 

homogenous spherical model with a similar size. We can observe that topography has greatly 

changed the vertical component seismic displacement wavefield.  
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Figure 12. Seismic wavefield in Phobos. (a) The topography model of Phobos with the 
surface mesh. We define the positive x-axis is 0° in longitude, the positive y-axis is 90° in 
longitude. The source location is indicated by a blue star, at depth of 4km, 180° in longitude 
and 0° in latitude (on the equatorial plane). All the receivers are placed on the approximated 
equator with an interval of 5°. In this model, I set the compressional wave velocity 𝑣I =
3	𝑘𝑚/𝑠 and the shear wave velocity 𝑣J = 1 km/s, the density 𝜌 = 1880	𝑘𝑔/𝑚". And the 
explosion source is given as an identity matrix. (b) Common source gather from the model 
shown in (a). (c) Common source gather from an elastic sphere with 10.9 km in radius. 

4.3.3 Seismic exploration of Phobos  

Because of the complex topography features of Phobos, I analyze the seismic displacement 

wavefield at different frequencies to investigate whether certain topography features can be 
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excited (Figure 13). I use the same model and source location as shown in Figure 12. The 

source is at depth of 4km and a longitude of  180°. The source is a monofrequency 

source/shaker. We can observe that the pronounced topography feature, Stickney crater, has a 

strong response and ‘resonates’ at ~0.18Hz for the P- and S-wave speeds used in the 

modeling. The P- and S-wave velocities are very important to understand the asteroid internal 

structure. Unfortunately, they unknown in asteroids. However, we can use this resonance 

phenomenon to constrain the seismic wave speeds. We can burrow a shallow hole in Phobos 

and deploy a seismic shaker into it to actuate vibrations at any frequency we want. In the 

meantime, we place a seismic sensor at the rim of the Stickney crater, we can study the 

frequency dependent seismic displacement field to determine the average P and S wave 

speeds for Phobos. The seismic sensor could also be an optical fiber.  

 

 

Figure 13 Snapshot of modeled seismic wavefield patterns on the surface of Phobos at 
different frequencies. The value shown (red/blue color) is the signed square root of real part 
of the seismic displacement to enhance contrast for visualization. 
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4.4 Incident field from tidal force 

The conventional way to calculate the tidal deformation using Love numbers have limitations. 

We can easily calculate Love number for a simple 1-D planet model, but it is hard to 

analytically calculate Love number for 3-D models or models with topography which is known 

for affecting tidal response. We can use BEM to solve this problem numerically. To apply 

BEM, we need to calculate the incident field using tidal force. 

The incident field on a planet, , excited by the tidal force of a moon orbiting the 

planet (see equation (2.1)) along the -th direction in the frequency domain can be computed 

as: 

 
𝑢Wg(𝐱, 𝜔) =�𝜌(𝐱!)gY(𝐱!, 𝜔)𝐺2g(𝐱, 𝐱!, 𝝎)𝑑𝒙!𝟑,

I

 
(4.13) 

where  and  are points in the planet, 𝑉 is the space occupied by the planet.  is 

the Green’s function in a homogeneous unbounded elastic medium.  is the tidal force 

of the moon at along the i-th direction in the frequency domain. The value of  at 

each frequency is the Fourier coefficient of equation (2.1): 

 
𝐠(𝐱!, 𝜔) =

1
𝑇
�𝒈(𝐱!, 𝑡)𝑒2[1𝑑𝑡
i

W

 (4.14) 

where T is the orbital period. The frequency  takes discrete values ( ) as shown section 

2.1, where 𝑛 = 1,2,3…. Once we have 𝑢( as the incident field, we can insert it into equation 

(4.1) to perform the BEM modeling. The surface displacement wavefields will be solved 

numerically.  
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4.5 Summary 

I have presented the theory and developed a numerical seismic modeling package, AstroSeis, 

based on the boundary element method. This package can handle complex arbitrary surface 

topography, solid-liquid interfaces, frequency-dependent seismic attenuation, and various 

source types such as a single force or a moment tensor source. I have verified the validity of 

the code with the analytical solution (normal mode summation) for a homogenous solid 

model. I have also benchmarked the code against DSM for modeling seismic waves for a 

liquid core model. I showed the capability of the code in modeling seismic waves in Phobos. 

I expect this code will be a useful tool in future seismic exploration for asteroids and other 

planets. Besides, we can use this code to calculate surface deformation of a planet induced by 

an orbiting moon. We can further calculate the tidal torque on the moon from the surface 

deformation 
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Chapter 5  Tidal torque and orbital decay rate 

An orbiting moon exerts a cyclic tidal force for every point in the planet. Therefore, this tidal 

force can cause seismic displacement in the planet, which leads to the deformation of the 

planet. The change of the figure of the planet can alter the planet’s gravitational field to exert 

a net torque on the moon. I use the boundary element integral equation approach (Zheng et 

al., 2015) (also see Chapter 4) to compute the deformation of the planet caused by the tidal 

force from the moon. To focus on the tidal-seismic resonance effect, I did not consider the 

effect of gravity on the propagation of the seismic wave (Dahlen and Tromp, 1998) in my 

calculation. Once we obtain the seismic wavefield, we can compute the time-dependent 

torque on the moon and the orbital decay rate of the moon. To verify the proposed numerical 

approaches, I compare the numerical torque results with the analytical torque calculation for a 

homogeneous planet model. I find that the two results are in excellent agreement. 

 

 

5.1 Methods 

5.1.1 Numerical torque from BEM 

Once we obtain seismic displacement,  from BEM, we can calculate the excessive 

mass on the surface of the planet caused by the tidal force. The excessive mass will exert a 

time-t dependent torque on the moon: 

 
𝑴(𝑡) = £𝜌𝒓"(𝑡) × 𝐺𝑚"

𝐱 − 𝐱𝒎(𝑡)
|𝐱 − 𝐱"(𝑡)|&

[𝐮(𝐱, t) ∙ 𝐞j]𝑑𝐱𝟐, (5.1) 

where, 𝐱0 is the location of the orbiting moon;  is the density of the planet; and  is the 

surface normal at x.  

 

u x,t( )

ρ er
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We can derive the orbital decay rate of the moon ( ) by using Newton’s 

second law: 

 
|𝑟̇"(𝑡)| =

2¥𝑴(𝑡)¦¦¦¦¦¦¦¥
𝑚'kkl

§
r'(t)
𝐺𝑚m:

	, 
(5.2) 

 

where  is the average torque on the moon in one orbital period,  is the universal 

gravitational constant,  is the mass of the moon, and  is the mass of the planet. 

 

I have shown that both  and  are proportional to the mass of the moon in 

Chapter 2. In equation (5.2), the orbital decay rate is divided by the mass of the moon . 

Therefore, the orbital decay rate is proportional to the mass of the moon. If the mass of the 

moon changes, the orbital decay rate will change accordingly. 

 

5.1.2 Analytical torque from Love number  

The tidal torque  can be computed as (p.164 of Murray and Dermott, 1999): 

 
Γ =

9
10
ℎ,
𝐺𝑚
𝑟m
¬
𝑎
𝑟m
­
n

sin2𝜀, 2𝜀 = 𝑄*+, 
(5.3) 

 

where m is the mass of the moon,  is the moon’s orbit radius, and  is the shear quality 

factor, 𝜀 is the lagging angle.  
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5.2 Comparison between analytical torque and BEM numerical torque 

Since the proposed BEM modeling does not consider the self-gravitation of the planet, I 

need to use the Love number under the same condition. In Chapter 2, I calculated the 

analytical tidal Love number using equation (2.17), (2.21)  and obtained  for a 

planet with a  2000km radius, a compressional wave velocity of  𝑣I = 3 km/s, a shear wave 

velocity of 𝑣J = 1.2 km/s, and a density of 2840 𝑘𝑔/𝑚". The numerical torque calculation 

using equation (5.1), based on the boundary element modeling and the same planet model, 

agrees well with the analytical calculation based on  (Figure 14). We expect discrepancies 

at low orbit heights (Figure 14), because the tidal potential is no longer degree 2.  

I also note that the torque is inversely proportional to Q. As expected, we see a factor of 4 

for the numerical torque values for two different Q values, Q=50 and Q=200, at the same 

orbit radius.  

5.3 Summary 

In this chapter, I have proposed a numerical way to calculate the tidal torque from the surface 

deformation. I have verified the result with the analytical torque. 

h2 = h2
* = 0.5877

h2
*
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Figure 14. Comparison of analytical torque and numerical torque (based on the boundary 
element modeling, see equation (5.1) for different orbital radii and Q values. The analytical 
torque is computed using equation (2.21) and (5.3) with .  is the planet’s 
radius equal to 2000 km.  
 

 

  

h2 = 0.5877 Rpl
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Chapter 6  Tidal-seismic resonance 

In this chapter, I will introduce a new kind of mechanism between a planet and its moon. 

Although, an initial idea of this phenomenon had been brought out by Darwin (1898a) more 

than 120 years ago, I currently can use numerical simulation to predict when it can occur and 

how it can occur. I name this phenomenon “tidal-seismic resonance”. I also show the effect 

of tidal-seismic resonance, and some potential application of tidal-seismic resonance. 

6.1 Model setup 

In this analysis, it is better to make some simplifications and approximations to focus on the 

tidal-seismic resonance effect. We consider a planet-moon system as a binary rotating system 

in an inertial reference frame. We assume the moon is a point mass and we do not consider 

potential fragmentation of the moon at the Roche limit (Aggarwal and Oberbeck, 1974; 

Asphaug and Benz, 1994; Black and Mittal, 2015). The modeled planet does not spin with 

respect to the reference frame. We assume that the moon’s orbit is circular along the planet’s 

equatorial plane. The orbiting period of the moon can be computed using Kepler’s laws. I 

compute the moon’s tidal force for every point inside the planet by subtracting the centrifugal 

force from the gravitational attraction force for the moon.  

We consider two planetary models: model-1 with no topography, and model-2 with 

topography. In model-1, the planet is a homogeneous, elastic, and spherical solid with no 

topography. I set the compressional wave velocity in the solid as 𝑣I = 3 km/s, the shear wave 

velocity as 𝑣J = 1.2 km/s, and the radius of the planet as 2000 km. I use the mass-radius 

relation (Chen and Kipping, 2017) to set the planet density as 𝜌 = 2840	𝑘𝑔/𝑚". For this 

planet, the shear modulus is low in the model which could represent an icy body known to 

have low shear modulus (e.g., Nimmo et al., 2007) or a planet with a liquid core which can 
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effectively lower the entire shear modulus. The mass of the moon is taken as, 10%& kg (as a 

reference, this is similar to the mass of an object like Phobos), which is about 10H~ times of 

the mass of the planet. I consider the effect of Q, which captures the dissipation effect of the 

planet. Previous researchers showed that Q could cause a tidal phase lag and was important in 

calculating the orbital decay of the moon (Zharkov and Gudkova, 1997; e.g., Bills et al., 

2005; Nimmo and Faul, 2013; Zheng et al., 2015). I also build a second planetary model of 

the same material (model-2), but with a randomly generated topography to study how planet 

topography can also play a role in the tidal-seismic resonance 

 

6.2 When tidal-seismic resonance can happen 

To see when the tidal-seismic resonance can occur, we can compute the planet’s normal-

mode frequencies and tidal force frequencies. Because the moon orbits around the planet 

periodically, the tidal force is periodic at any point in the planet. If the orbital frequency is 

designated as 𝜔(, we also expect to see higher-order harmonics such as 𝑛𝜔( where n=2, 3, 

4, …. The tidal-seismic resonance occurs when a tidal force frequency is the same as a 

normal-mode frequency (Figure 15). The tidal force preferentially excites the fundamental 

spheroidal normal mode, 0Sn, where n is the degree in the surface spherical harmonic 

function.  
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Figure 15. Tidal force and planet normal mode frequencies for model-1. The solid lines are 
tidal force frequencies calculated for a point on the planet equator. The vertical dashed lines 
are the planet free-oscillation frequencies for the spheroidal 0Sn normal modes (n=2, 3, 4, …). 
The tidal-seismic resonance occurs when tidal force frequencies intersect the planet free 
oscillation frequencies at the red circles.  

 

6.3 Effect of tidal-seismic resonance 

6.3.1 Tidal-seismic resonance at low orbits 

At low orbits, we observe that the orbital decay rate overall increases as the moon approaches 

the planet and the that the tidal seismic effect punctuates/accelerates this trend locally at 

several distinct orbital radii (“peaks” in Figure 16). The locations of the “peaks” correspond 

to special orbital radii at which tidal-seismic resonance exerts a strong on the orbiting moon. 

Because of their uncommon significance, we call these orbital radii 𝑟)∗, where 𝑛 = 	2, 3…. At 

𝑟)∗, the planet 0Sn normal mode frequency is exactly 𝑛 times the moon’s orbital frequency. In 

these cases, both the tidal force and the 0Sn mode have degree-𝑛 spatial patterns within the 

planet. Therefore, it is a simultaneous coupling for both the temporary and spatial frequencies 

(i.e., degree-𝑛) at 𝑟)∗, which can cause a very strong excitation of seismic displacement inside 

the planet (Figure 16).  
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 I then compute orbital decay rates for several different Q values (see section 5.2). In 

general (i.e., no tidal-seismic resonance), the decay rate is small if Q is large because the tidal 

phase lag proportional to 1/Q is small (see Bills et al., 2005). However, at 𝑟)∗ where tidal-

seismic resonance happens, the opposite is true because a large Q yields a large induced 

seismic displacement, which gives a large torque and causes a large decay rate (Figure 16). 

Among all 𝑟)∗’s, the 𝑟!∗ is special. At 𝑟!∗ where the degree-2 normal mode (i.e., the gravest 

“football-shaped” mode) is excited by the tidal force, the orbital decay rate is computed and 

found to be on the order of ~1-10 cm/s for different Q values (Figure 16) for this particular 

planet/moon model (i.e., model-1) considered here. At the tidal-seismic resonance orbit, the 

orbital decay rate is 2 orders of magnitude more than that for a neighboring orbit that has no 

resonance.  

 I note that the exact numerical value for orbit decay may vary from model to model. 

However, the tidal-seismic resonance can significantly accelerate the orbital decay (“peaks” 

in Figure 16 compared to the smooth background trend). The greater the Q value is, the 

sharper the peaks are. To verify whether these peaks are indeed caused by the tidal-seismic 

resonance effect, I analytically calculate the normal mode 0Sn frequencies of the planet (See 

chapter 3). I then calculate the corresponding 𝑟)∗ whose orbital frequency is 1/n times that of 

the 0Sn frequency. I found that the calculated 𝑟)∗ based on the 0Sn frequency corresponds to the 

“peaks” of the moon orbital decay rate (Figure 16). In conclusion, the rapid falling of the 

moon is caused by the tidally excited seismic normal modes of the planet. When the moon’s 

orbit radius is large (e.g., >2.5 × 10& m or > 1.25 𝑅I4), the tidal-seismic resonance effect is 

not pronounced. In this case, a smaller Q value gives a larger orbital decay rate which is 

consistent with the tidal drag due to the anelasticity effect (Bills et al., 2005).  
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Figure 16. Calculated moon orbital decay rates at different orbital radii and for different Q 
values for model-1. The horizontal axis is the radius of the moon orbit. The radius of the 
planet 𝑅I4 is 2 × 10&m. I also label excited normal modes, 𝑆)( , 𝑛 > 2, expected to be seen 
for the tidal-seismic resonance. 

 

6.3.2 Topography induced tidal-seismic resonance 

At higher orbits (orbital radius greater than 2.5 × 10&	𝑚 or 1.25 𝑅I4 in this case), the tidal 

seismic resonance can occur when  matches the 𝑆)(  frequency, where both m and n are 

integers and typically .  

 

In principle, a degree-m tidal force field cannot excite degree-n normal mode for a purely 

spherical and homogeneous planet (i.e., model-1) because these two fields are orthogonal to 

each other in space. However, if the planet is not spherical (i.e., model-2), the tidal-seismic 

resonance can still exist because topography could couple modes of different spatial degrees. 

My purpose here is to investigate the topography-induced tidal-seismic effect.  

  

  mω0

m > n
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Figure 17. A model with topography (model-2) for the planet. I have exaggerated the plotting 
of the topography by 20 times. Colors indicate topography relative to the mean radius of the 
planet with size given in meters. The thick red line is the equator. The blue vertical thick line 
is the axis through the poles.  

 
For model-2, I generate the surface topography for the planet using spherical harmonics up to 

and including order 6 (Figure 17) Specifically, the topography, h, is generated by the 

summation of spherical harmonics, ℎ(𝜃, 𝜙) = ∑ ∑ 𝑐40𝑌40(𝜃, 𝜙)4
0�H4

&
4�( , where h is the 

height of the topography from the reference sphere, 𝜃	 and 𝜙 are the angular positions on the 

surface, and 𝑌40 represents the fully normalized spherical harmonics. I generate random 

numbers for the coefficients, 𝑐40 to construct the topography for model-2. I use the same 

numerical procedure laid out in Section 3.1 to compute the seismic wavefield for model-2, 

along with the torque on the moon and the orbital decay rate of the moon. To see the 



 

63 

topography effect on the tidal seismic resonance, I take the derivative of the orbital decay rate 

with respect to the orbital radius and several localized changes at some radii show up (Figure 

18a). These changes are caused by topography induced tidal-seismic resonance. To validate 

this claim, I run a seismic wavefield modeling using the two models (model-1 and model-2) 

and obtain histories of orbital decay rates for both models. I then calculate the derivative of 

the orbital decay rate with respect to the orbital radius for the two models (Figure 18 a &b). I 

observe localized changes for the topography model, model-2 (Figure 18a). In contrast, I 

observe a smooth curve (no localized changes) for the orbital decay rate derivative using 

model-1 with no topography (Figure 18b). Hence, topography can indeed induce tidal-

seismic resonance at higher orbits.  

 

 

Figure 18. The derivative of the orbital decay rate with respect to the orbital radius for (a) 
model-2 with topography and (b) model-1 with no topography. Here, fa is the frequency of 
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the normal mode 𝑆)( . A dashed line shows the orbit whose orbital frequency is fa/𝑚, where 
n and m are integers and labeled accordingly next to the dashed line. The radius of the planet 
𝑅I4 is 2 × 10& m. 

 

6.4 Mars-Phobos system 

Tidal forces play an important role in the orbital evolution of the Martian moon, Phobos 

(Black and Mittal, 2015; Hesselbrock and Minton, 2017) because Phobos is below the 

synchronous orbit.  Phobos is spiraling towards Mars because of tidal torque. Will the 

proposed tidal-seismic resonance effect play a role in this system? Presently, Phobos’ orbit 

radius is about 2.77 times the Mars radius (𝑅𝑚), which is too far to induce a significant tidal-

seismic resonance. However, when Phobos’ orbit decays to about 1.97 × 𝑅𝑚, the topography 

induced tidal-seismic resonance will occur, provided Phobos is strong enough and is not 

fragmented by Mars gravity field at the Roche limit. The strength of Phobos depends on the 

internal friction angle of the material in Phobos. The Roche limit of 1.97 ×Rm orbit 

corresponds to an internal friction angle of 40° (Holsapple and Michel, 2006). If the angle is 

larger than 40° (Holsapple and Michel, 2006) or a stronger Phobos, the tidal seismic 

resonance can occur before Phobos reaches the Roche limit. When Phobos’ orbit is at 1.97 

× 𝑅𝑚, I estimate the orbital decay rate to be about 10H%(	𝑚/𝑠 based on the present-day 

Martian topography using an approximate homogenous Mars model (P-wave velocity 𝑣I =

7.4	𝑘𝑚/𝑠, S-wave velocity 𝑣J = 3.6	𝑘𝑚/𝑠, density 𝜌 = 4000	𝑘𝑔/𝑚"	to match a 0S2 period 

of about 2300 s (Zheng et al., 2015). This rate is about 8% of the current orbital decay rate of 

Phobos, which is approximately 1.28 × 10HA	𝑚/𝑠 (Bills et al., 2005). As Phobos continues 

falling towards Mars, the effect of tidal-seismic resonance will be more and more powerful in 

pulling Phobos towards Mars. Because of the tidal-seismic resonance, I note that Phobos 
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cannot stay at low orbits for a long time even if it is below the Roche limit and not 

fragmented.  

 

 

6.5 Summary 

The tidal-seismic resonance effect can be important in understanding planet-moon evolution 

if the moon is below the synchronous orbit. Planet topography can excite tidal-seismic 

resonance even if the moon is far away from the planet. The tidal seismic resonance can 

result in a large negative torque on the orbiting moon, which can increase the orbital decay 

rate of the moon toward the planet it is orbiting by one order of magnitude. It is also 

conceivable that the tidal-seismic resonance may also significantly accelerate the planetary 

accretion and formation process. The tidal-seismic phenomenon may also provide us with a 

potential method for interrogating the structure and compositional information of a planet 

without having to land an instrument on its surface. By precisely measuring the orbital decay 

rate as a function of radii, we can infer the normal mode frequencies of the planet, which can 

convey a wealth of information about the planet’s interior.  
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Appendix 

Analytical non self-gravitation Love number calculation Mathematica script 

 

 

������� ClearAll["Global`*"]

������� subs1 = �Y(2,0)[�, �] � -Csc[�]2 Y(0,2)[�, �] - Cot[�] Y(1,0)[�, �] - L Y[�, �] �

subs2 = �Y(0,1)[�, �] � I m Y[�, �], Y(1,1)[�, �] � I m Y(1,0)[�, �]�

subs3 = �Y(0,2)[�, �] � - m m Y[�, �], Y(1,2)[�, �] � - m m Y(1,0)[�, �]�

��	���� �Y(2,0)[�, �] � -L Y[�, �] - Csc[�]2 Y(0,2)[�, �] - Cot[�] Y(1,0)[�, �]�

��	���� �Y(0,1)[�, �] � � m Y[�, �], Y(1,1)[�, �] � � m Y(1,0)[�, �]�

��	���� �Y(0,2)[�, �] � -m2 Y[�, �], Y(1,2)[�, �] � -m2 Y(1,0)[�, �]�

������� vecR [r_, �_, �_] := U[r] {Y[�, �], 0, 0}
vecS[r_, �_, �_] := V[r] {0, D[Y[�, �], �], 1 / Sin[�] D[Y[�, �], �] } / Sqrt[L]
vecT[r_, �_, �_] := W[r] {0, 1 / Sin[�] D[Y[�, �], �], -D[Y[�, �], �] } / Sqrt[L]

������� (* strain *)

u = vecR[r, �, �] + vecS[r, �, �](*+vecT[r,�,�]*)

��	���� �U[r] × Y[�, �], V[r] Y(1,0)[�, �]

L
, Csc[�] V[r] Y(0,1)[�, �]

L
�

������� ur = u[[1]]; (* radial displ *)

u� = u[[2]] ; (* theta displ *)

u� = u[[3]];
(* phi displ *)

������� (* compute strain tensors *)

err = D[ur, {r}];
e�� = D[u�, {�}] / r + ur / r;
e�� = D[u�, {�}] / (r Sin[�]) + 1 / r u� Cot[�] + ur / r;
er� = D[u�, {r}] - u� / r + D[ur, {�}] / r;
er� = D[ur, {�}] / (r Sin[�]) + D[u�, {r}] - u� / r;
e�� = D[u�, {�}] / r - u� Cot[�] / r + D[u�, {�}] / r / Sin[�];

������� � = B �

��	���� B 	
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������� F0 = �

L0 = �

N0 = �

A0 = � + 2 �

C0 = � + 2 �

��	���� B �

��	���� �

��	���� �

��	���� 2 � + B �

��	���� 2 � + B �

������� (* compute stress tensors *)

�rr = C0 err + F0 (e�� + e�� );
�rr = �rr /. subs1 /. subs2 /. subs3 // Simplify;
��� = F0 err + A0 (e�� + e��) - 2 N0 e��;
��� = ��� /. subs1 /. subs2 /. subs3 // Simplify;
��� = F0 err + A0 (e�� + e��) - 2 N0 e�� ;
��� = ��� /. subs1 /. subs2 /. subs3 // Simplify;
�r� = L0 er� ; �r� = �r� /. subs1 /. subs2 /. subs3 // Simplify;
�r� = L0 er� ; �r� = �r� /. subs1 /. subs2 /. subs3 // Simplify;
��� = N0 e��;
��� = ��� /. subs1 /. subs2 /. subs3 // Simplify;;

������� (* equations of motion *)

compr = (*� �^2 ur *)+ D[�rr, {r}] + 1 / r D[�r�, {�}] + 1 / (r Sin[�]) D[�r�, {�}] +

1 / r (2 �rr - ��� - ��� + Cot[�] �r�);
compt = (*� �^2 u�*) + D[�r�, {r}] + 1 / r D[���, {�}] + 1 / (r Sin[�]) D[���, {�}] +

1 / r (3 �r� + (��� - ���) Cot[�] );
compp = (*� �^2 u� *)+ D[�r�, {r}] + 1 / r D[���, {�}] + 1 / (r Sin[�]) D[���, {�}] +

1 / r (3 �r� + 2 ��� Cot[�] );

������� eq1 = compr /. subs1 /. subs2 /. subs3 // FullSimplify
eq2 = compt /. subs1 /. subs2 /. subs3 // FullSimplify
eq3 = compp /. subs1 /. subs2 /. subs3 // FullSimplify

��	����
1
r2

� Y[�, �] �-(4 + 2 B + L) U[r] + (3 + B) L V[r] +

r �2 (2 + B) U�[r] - (1 + B) L V�[r] + (2 + B) r U��[r]��

��	����
1
L r2

� �2 (2 + B) L U[r] - (2 + B) L V[r] + r �(1 + B) L U�[r] + 2 V�[r] + r V��[r]�� Y(1,0)[�, �]

��	���� -
1
L r2

� m � Csc[�] Y[�, �]

�-2 (2 + B) L U[r] + (2 + B) L V[r] - r �(1 + B) L U�[r] + 2 V�[r] + r V��[r]��
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������� l = 2

��	���� 2

������� (* tidal force *)

������� Vtidal = A r^2 Y[�, �]

��	���� A r2 Y[�, �]

������� force1 = rho D[Vtidal, r]

��	���� 2 A r rho Y[�, �]

������� force2 = rho D[Vtidal, �] / r

��	���� A r rho Y(1,0)[�, �]

������� force3 = rho D[Vtidal, �] / (r Sin[�])

��	���� A r rho Csc[�] Y(0,1)[�, �]

������� fac = Sqrt[5 / 4 / Pi]

��	����

5
�

2

������� eq11 = (force1 + eq1) / Y[�, �] // Simplify

��	����
1
r2

�-(4 + 2 B + L) � U[r] + (3 + B) L � V[r] +

r �2 (2 + B) � U�[r] - (1 + B) L � V�[r] + r (2 A r rho + (2 + B) � U��[r])��

������� eq22 = (eq2 + force2 ) � Y(1,0)[�, �] // Simplify

��	����
1
L r2

�2 (2 + B) L � U[r] - (2 + B) L � V[r] +

r �A L r2 rho + (1 + B) L � U�[r] + 2 � V�[r] + r � V��[r]��

������� eq3 /. {m � 0}

��	���� 0

������� �rr

��	����
� Y[�, �] �2 B U[r] - B L V[r] + (2 + B) r U�[r]�

r

������� Trr = �rr / Y[�, �]

��	����
� �2 B U[r] - B L V[r] + (2 + B) r U�[r]�

r

������� Trtheta = �r� � Y(1,0)[�, �]

��	����
� � L U[r] - V[r] + r V�[r]�

L r
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������� Vs = 1200; Vp = 6000; rho = 2840;
mu = rho* Vs^2 ;
lambda = rho* Vp^2 - 2 * mu ;

������� ra = 2000 000 (* planet radius *)

��	���� 2 000 000

������� moon = 10^16 (*moon mass*)

��	���� 10 000000000000000

������� rp = 10 ra

��	���� 20 000000

������� Mplanet = 4 / 3 * Pi * ra^3 * rho

��	����
90880000000000000000000 �

3

������� G = 6.67408× 10^(-11)

��	���� 6.67408× 10-11

������� gplanet = G Mplanet/ ra^2

��	���� 1.58792

������� Anum = G * moon / rp^3 / fac

��	���� 1.32258× 10-16

������� sub10 = {� � lambda, � � mu, A � Anum}

��	���� �B � � 94060800000, � � 4089600000, A � 1.32258× 10-16�

������� eq11

��	����
1
r2

�-(4 + 2 B + L) � U[r] + (3 + B) L � V[r] +

r �2 (2 + B) � U�[r] - (1 + B) L � V�[r] + r (5680 A r + (2 + B) � U��[r])��

������� eq22

��	����
1
L r2

�2 (2 + B) L � U[r] - (2 + B) L � V[r] +

r �2840 A L r2 + (1 + B) L � U�[r] + 2 � V�[r] + r � V��[r]��

������� eqns = {eq11 � 0, eq22 � 0}

��	���� �
1
r2

�-(4 + 2 B + L) � U[r] + (3 + B) L � V[r] +

r �2 (2 + B) � U�[r] - (1 + B) L � V�[r] + r (5680 A r + (2 + B) � U��[r])�� 	 0,
1
L r2

�2 (2 + B) L � U[r] - (2 + B) L � V[r] +

r �2840 A L r2 + (1 + B) L � U�[r] + 2 � V�[r] + r � V��[r]�� 	 0
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������� DSolve[eqns, {U, V}, r] // Simplify

��	���� DSolve�� 1
r
�-(4 + 2 B + L) � U[r] + (3 + B) L � V[r] +

r �2 (2 + B) � U�[r] - (1 + B) L � V�[r] + r (5680 A r + (2 + B) � U��[r])�� � 0,
1
L r2

�2 (2 + B) L � U[r] - (2 + B) L � V[r] +

r �2840 A L r2 + (1 + B) L � U�[r] + 2 � V�[r] + r � V��[r]�� � 0�, {U, V}, r�

������� Ur = -
568 A (10 + 3 B) r3

7 (2 + B) �
+ r C3 + r3 C4

��	���� C3 r + C4 r3 -
568 A (10 + 3 B) r3

7 (2 + B) �

������� Vr = -
284 6 A (12 + 5 B) r3

7 (2 + B) �
+

3

2
r C3 +

�7 6 + 5 6 B� r3 C4

6 B

��	����
3
2

C3 r +
�7 6 + 5 6 B� C4 r3

6 B
-
284 6 A (12 + 5 B) r3

7 (2 + B) �

������� Trr

��	����
� �2 B U[r] - B L V[r] + (2 + B) r U�[r]�

r

������� Trrsurface = �2 6 B Ur - 6 B Vr + 6 (2 + B) r D[Ur, r]� /. {r � a} // Simplify

��	����
1
7

6 a 	14 C3 + a2 	-7 C4 -
2272 A (15 + 8 B)

(2 + B) �




������� Trtheta

��	����
� � L U[r] - V[r] + r V�[r]�

L r

������� Trthetasurface = � 6 Ur - Vr + r D[Vr, r]� /. {r � a} // Simplify

��	����
1
7

2
3

a 21 C3 +
a2 �-3408 A B (11 + 4 B) + 7 �14 + 23 B + 8 B2� C4 ��

B (2 + B) �

������� sol = Solve[{Trrsurface � 0, Trthetasurface � 0}, {C3, C4}]

��	���� ��C3 �
5680 a2 A (3 + 4 B)

(14 + 19 B) �
, C4 � -

27264 �A B + A B2�
7 (2 + B) (14 + 19 B) �

��
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������� C3 = C3 /. sol[[1]]

��	����
5680 a2 A (3 + 4 B)

(14 + 19 B) �

������� C4 = C4 /. sol[[1]]

��	���� -
27264 �A B + A B2�

7 (2 + B) (14 + 19 B) �

������� a = ra

��	���� 2000000

������� A = Anum

��	���� 1.32258× 10-16

������� B = lambda / mu

��	���� 23

������� � = mu

��	���� 4089600000

������� C3

��	���� 1.54773× 10-10

������� C4

��	���� -6.16672× 10-24

������� Ura = Ur /. {r � a}

��	���� 0.000193874

������� Vra = Vr /. {r � a}

��	���� 0.000141669

������� Vnorthpole = G moon / rp^3 a^2

��	���� 0.000333704

������� hhydro = Vnorthpole / gplanet

��	���� 0.000210152

������� h2 = Ura/ hhydro

��	���� 0.922542

������� (* hydrostatic tidal height;
verification with another experession below *)

������� h2 * fac // N

��	���� 0.581924
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