Development of Organocatalyzed Enantioselective

Conjugate Addition and Application to the Total

Synthesis of Cannabinoids

by
Jirong Luo

A dissertation submitted to the Department of Chemistry,
College of Natural Sciences and Mathematics in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
in Chemistry

Chair of Committee: Dr. Jeremy A. May
Committee Member: Dr. Olafs Daugulis
Committee Member: Dr. Eva Harth

Committee Member: Dr. Barbara Czako
Committee Member: Dr. Arnold Guloy

University of Houston
May 2022

In memory of Jiahua Yang,
You were always a caring and inspiring figure in our family, Your virtues will be remembered, Your legacy will be carried on.

ACKOWNLEDGEMENTS

I would like to acknowledge my advisor, Dr. Jeremy May. Accomplishing the total synthesis of a natural product has always been my dream since college, this dream would never come true without your support and guidance.

I would like to acknowledge my committee, Dr. Olafs Daugulis, Dr. Barbara Czako, Dr. Eva Harth, and Dr. Arnold Guloy for their support and advice. You are all great chemists that I look up to. I have no doubt that everything I've learnt from you will help me succeed in my future career.

I would like to acknowledge all my past and present group members for their support. Especially Dr. Po-An Chen, Dr. Sasha Sundstrom, and Dr. Qinxuan Wang, you have always been good friends to talk to, and good scientists to learn from.

I would like to thank my parents who offered unconditional love and support as I pursued my degree. I would not be able to focus on my research without you taking care of everything back at home.

I would like to thank my grandaunt Jiahuang Ji and granduncle Jiahua Yang for their love during my five years of study in Houston. Thank you for sharing me a taste of home when I'm thousands of miles away from my motherland. My heart was shattered when Jiahua passed. I believe he has found peace by the side of God.

I would like to dedicate my special thanks to the love of my life, Ms. Lining Feng. Your love and gentle encouragement carried me through the most desperate days in my research.

Abstract

$(-)-\Delta^{9}$-Tetrahydrocannabinol (THC) and cannabidiol (CBD) were synthesized via an organocatalyzed tandem enantioselective conjugate addition/enolate alkylation annulation with a novel ambiphilic trifluoroborate in 7 steps (longest linear steps; 10 steps overall with 23% yield for THC and 18% yield for CBD) from inexpensive commercially available starting materials. Both vinyl and aryl ambiphilic trifluoroborates were synthesized and showed great compatibility with various functional group, high yields, and excellent stereoselectivity. To demonstrate how these qualities will facilitate synthesizing THC and CBD analogs that were previously difficult to access with existing methods, we completed the synthesis of a novel benzo-fused A-ring analog of THC. Tandem reaction product containing all-carbon quaternary centers were also obtained with good to excellent enantioselectivity.

Table of Contents

Acknowledgements iii
Abstracts iv
Table of Contents v
List of Figures ix
List of Schemes xi
List of Tables xii
List of Abbreviations xiii
Chapter 1 Organocatalyzed Enantioselective Conjugate Addition Reactions and
Enantioselective Total Synthesis of Cannabinoids 1
1.1 Conjugate Addition Reaction (Michael Addition) 1
1.2 Transition Metal Catalyzed Enantioselective Conjugate Addition Reactions 2
1.3 Organocatalyzed Enantioselective Conjugate Addition with Organoboronates as Nucleophile4
1.3.1 BINOL-derivative Catalyzed Enantioselective Conjugate Addition Reported by J.
Michael Chong 4
1.3.2 Thiourea-derivatives Catalyzed Enantioselective Conjugate Addition Reported by
Takemoto. 5
1.3.3 O-monoacylatartaric Acid Catalyzed Enantioselective Conjugate Addition Reported
by Sugiura 6
1.3.4 Further Reaction Development in the May Group 6
1.4 Introduction to Cannabinoids 9
1.5 Total Synthesis of Cannabinoids via Enantioselective Catalysis Routes 11
1.5.1 Enantioselective Diels-Alder Route Developed by the Evans Group 11
1.5.2 Asymmetric Allylic Alkylation Route Developed by the Trost Group 11
1.5.3 Asymmetric Hydrogenation Route Developed by the Zhou Group 12
1.5.4 Stereodivergent Route Developed by the Carreira Group 13
1.5.5 Enzyme Controlled Reduction Route Developed by the Leahy Group 14
1.5.6 NHC Catalysis Route Developed by the Lupton Group 15
1.7 Limitation of Existing Routes and Proposed Retrosynthetic Analysis 16
1.8 Focus of This Thesis 17
1.9 Bibliography 18
Chapter 2 Development of Ambiphilic Organoboronates 23
2.1 Ambiphilic Molecules and Their Application in Organic Synthesis 23
2.2 Design of Ambiphilic Organoboronates 24
2.3 Synthesis of Type A Ambiphilic Organoboronates 26
2.4 Synthesis of Type B Ambiphilic Organoboronates 29
2.5 Synthesis of Type C Ambiphilic Organoboronates 30
2.6 Conclusion 33
2.7 Experimental 34
2.7.1 Material and Methods 34
2.7.2 Synthesis of Vinyl Ambiphilic Trifluoroborate (2.38) from 3-butyn-1-ol (2.30) 35
2.7.3 Synthesis of Cyclic Ambiphilic Boronates $\mathbf{2 . 4 4}$ and 2.51 38
2.7.4 Synthesis of $\mathbf{2 . 5 4}$ and $\mathbf{2 . 5 5}$ 41
2.7.5 Synthesis of Geminal Ambiphilic Trifluoroborate $\mathbf{2 . 6 0}$ 42
2.7.6 Synthesis of Aryl Ambiphilic Trifluoroborates 2.63, 2.69, 2.77, and $\mathbf{2 . 8 2}$ 45
2.8 Bibliography 52
Chapter 2 Appendix 56
Chapter 3 Conjugate Addition Enolate Alkylation Reaction Development 92
3.1 Reaction Discovery and Optimization 92
3.2 Conjugate Addition Scope 99
3.3 Conjugate Addition Enolate Alkylation Scope 102
3.4 Conclusion 105
3.5 Experimental 106
3.5.1 Material and Methods 106
3.5.2 HPLC Columns 107
3.5.3 Synthesis of the Catalysts 107
3.5.4 Synthesis of Enones 108
3.5.5 General procedure of the BINOL-catalyzed conjugate addition reactions between (Z)-
(4-bromo-2-methylbut-1-en-1-yl)trifluoro- λ^{4}-borane, potassium salt (3.2) and various enones (0.2mmol scale)111
3.5.6 General procedure of the BINOL-catalyzed conjugate addition reactions between (2-(2-bromoethyl)-4-methoxyphenyl)trifluoro- λ^{4}-borane, potassium salt (3.19) and various enones(0.2 mmol scale)120
3.5.7 General procedure of the tandem BINOL-catalyzed conjugate addition enolate alkylation annulation between (Z)-(4-bromo-2-methylbut-1-en-1-yl)trifluoro- λ^{4}-borane, potassium salt (3.2) and various enones (0.2 mmol scale)125
3.5.8 General procedure of the BINOL-catalyzed conjugate addition tandem enolate alkylation annulation between (2-(2-bromoethyl)-4-methoxyphenyl)trifluoro- λ^{4}-borane, potassium salt (3.19) and various enones (0.2 mmol scale).. 133
\qquad
\qquad
Chapter 4 Total Synthesis of Cannabinoids... 247
4.1 Retrosynthetic Analysis... 247
4.2 Total Synthesis of THC (4.1) and CBD (4.2)... 249
4.3 Total Synthesis of Novel THC Analog 4.13 ... 252
4.4 Conclusion.. 253
4.5 Experimental... 254
4.5.1 Material and Methods ... 254
4.5.2 Synthesis of CBD 4.2 ... 255
4.5.3 Synthesis of THC 4.1... 257
4.5.4 Synthesis of Analog 4.13 .. 258
4.6 Bibliography .. 259

Chapter 4 Appendix .. 261

List of Figures

Figure 1.1 Conjugate Addition/Michael Addition/1,4-Addition 1
Figure 1.2 Diastereoselective Conjugate Addition with Enantiopure Starting Materials 2
Figure 1.3 Copper Catalysis for Enantioselective Conjugate Addition 2
Figure 1.4 Copper Oxazoline Thiolate Catalyzed Asymmetric Conjugate Addition 3
Figure 1.5 Palladium-Catalyzed Asymmetric Conjugate Addition 3
Figure 1.6 First Use of Organoboronate Conjugate Addition Reported by Suzuki 4
Figure 1.7 Chong's Report of Organocatalyzed Enantioselective Conjugate Addition 4
Figure 1.8 Thiourea-derived Catalysts Developed by the Takemoto Group 5
Figure 1.9 Tartaric Acid-derived Catalyst Developed by the Sugiura Group 6
Figure 1.10 BINOL Catalyzed Enantioselective Conjugate Addition to Unprotected Indolyl Enone7
Figure 1.11 Expanded Enone Scope 7
Figure 1.12 Expanded Trifluoroborate Salt Scope 8
Figure 1.13 Key Step of Banwell's Synthesis of Discoipyrrole D 8
Figure 1.14 Proposed Key Step for Mucronatin Synthesis 9
Figure 1.15 Selected Natural and Synthetic Cannabinoids 10
Figure 1.16 Dethe Cannabinoid Synthesis via Chiral Pool Strategy 10
Figure 1.17 Key Step of Evans’ THC Synthesis 11
Figure 1.18 Key Transformations in Trost's THC Synthesis 12
Figure 1.19 Key Transformations in Zhou's THC Synthesis 13
Figure 1.20 Stereodivergent Dual Catalysis Strategy in Carreira's THC Synthesis 14
Figure 1.21 Key Transformations in Leahy's THC Synthesis 15
Figure 1.22 Key Step of Lupton's THC Synthesis 15
Figure 2.1 Wittig Reaction 23
Figure 2.2 Corey-Chaykovsky Epoxidation/Cyclopropanation and 1,3-Dipolar Cycloaddition
Reaction 24
Figure 2.3 Catalytic Cycle of BINOL-Derivative Catalyzed Conjugate Addition/Enolate
Alkylation Reaction with Ambiphilic Organoboronate 25
Figure 2.4 Design of Ambiphilic Organoboronates 26
Figure 3.1 Proposed Conjugate Addition Enolate Alkylation Mechanism 94
Figure 3.2 Conjugate Addition with Ambiphilic Aryl Trifluoroborates 100
Figure 3.3 Conjugate Addition Scope with Ambiphilic Vinyl Trifluoroborate 2 101
Figure 3.4 Conjugate Addition/Enolate Alkylation Annulation Tandem Reaction 102
Figure 4.1. Retrosynthetic Analysis of THC (1) and CBD (2) 247
Figure 4.2. Retrosynthetic analysis of novel THC analog 13 249

List of Schemes

Scheme 2.1 Synthesis of Ambiphilic Trifluoroborate 2.34 27
Scheme 2.2 Synthesis of Ambiphilic Trifluoroborate $\mathbf{2 . 3 8}$ 27
Scheme 2.3 Synthesis of Ambiphilic Trifluoroborate $\mathbf{2 . 4 5}$ 28
Scheme 2.4 Synthesis of Ambiphilic Trifluoroborate $\mathbf{2 . 5 2}$ 29
Scheme 2.5 Attempt for the Synthesis of 56. 29
Scheme 2.6 Synthesis of Ambiphilic Trifluoroborate $\mathbf{2 . 6 0}$ 30
Scheme 2.7 Synthesis of Ambiphilic Aryl Trifluoroborate $\mathbf{2 . 6 3}$ 31
Scheme 2.8 Synthesis of Ambiphilic Trifluoroborate $\mathbf{2 . 6 9}$ 31
Scheme 2.9 Synthesis of $\mathbf{2 . 7 3}$ 32
Scheme 2.10 Synthesis of Ambiphilic Trifluoroborate 2.77 32
Scheme 2.11 Synthesis of Ambiphilic Trifluoroborate 82 33
Scheme 3.1 Conjugate Addition with Geminal Trifluoroborate 13 99
Scheme 3.2 Double Alkylation to Form a cis-Decalin with Quaternary Carbon 104
Scheme 3.3 Double Alkylation to Form a Decalin with Aryl Trifluoroborate 105
Scheme 4.1 Synthesis of ambiphilic vinyl trifluoroborate 4 250
Scheme 4.2 Synthesis of enone 4.5 250
Scheme 4.3 Synthesis of key intermediate 4.3 251
Scheme 4.4 Synthesis of THC and CBD 251
Scheme 4.5 Synthesis of ambiphilic aryl trifluoroborate 4.15 252
Scheme 4.6 Syntheis of aryl-fused intermediate 4.14 253
Scheme 4.7 Synthesis of novel THC analog 4.13 253

List of Tables

Table 3.1 Solvent Screen for Conjugate Addition 92
Table 3.2 Catalyst and Time Screen for Conjugate Addition in DCE 93
Table 3.3 Base Screen with Conjugate Addition in DCE 95
Table 3.4 Enolate Alkylation Optimization. 96
Table 3.5 Optimization of the Conjugate Addition in 2-MeTHF 97
Table 3.6 Optimization of Combined Reaction 98

List of Abbreviations

2-MeTHF	2-methyltetrahydrofuran
9-BBN	9-benzobycyclononane
aq	aqueous
Ar	aryl
BINOL	1,1'-bi-2-naphthol
Bn	benzyl
Boc	tert-butoxycarbonyl
Bpin	pinacolborane
t-Bu	tert-butyl
cat.	catalyst
Cbz	carboxybenzyl
DCE	1,2-dichloroethane
LDA	lithium diisopropyl amine
MOM	methoxymethyl
$n-\mathrm{Bu}$	n-butyl
NMR	nuclear magnetic resonance
Nu	nucleophile
PCC	pyridinium chlorochromate
Ph	phenyl
PhMe	toluene
RT	room temperature
SM	starting material

triflate
TFA trifluoroacetic acid
THF tetrahydrofuran
TLC thin layer chromatography
TMEDA tetramethylethylenediamine
TMS trimethylsilyl
Ts tosyl

Chapter 1
 Organocatalyzed Enantioselective Conjugate Addition Reactions and Enantioselective Total Synthesis of Cannabinoids

1.1 Conjugate Addition Reaction (Michael Addition)

Carbon-Carbon bond formation is always a popular topic in organic synthesis. Methods that allow the reaction to take place in a selective manner are highly sought. Conjugate addition (also known as 1,4 addition or Michael addition) is one of the most powerful tools in organic synthesis for forming new carbon-carbon bonds selectively. In 1887, Arthur Michael systematically studied formation of substituted pentanedioic acid diesters in a reaction using diethyl malonate as a nucleophile and α, β-unsaturated ethyl cinnamate as an electrophile (Figure 1.1). ${ }^{1}$ During his study, the diethyl malonate added across the double bond of ethyl cinnamate. Later in 1894, he found that electron-deficient triple bonds would also react in the same fashion. ${ }^{2}$ Consequently, this method became extremely popular in the 1900s for organic synthesis. Today, all reactions that involve the 1,4-addition of any nucleophile (including enolates, Grignard reagents, organolithium reagents, and organoboronates) to activated π systems are referred to as Michael additions. ${ }^{3}$
a) Michael (1887)

b) Michael (1894)

Figure 1.1 Conjugate Addition/Michael Addition/1,4-Addition

1.2 Transition Metal Catalyzed Enantioselective Conjugate Addition Reactions

The original discovery of conjugate additions addressed the regioselectivity as it was a selective 1,4-addition. As the conjugate addition forms new stereocenters in many cases, several approaches were developed to enable the stereoselective formation of the new carbon-carbon bonds. ${ }^{4}$ One classic way to control this type of stereocenter formation was to utilize an existing stereocenter on the starting material to dictate the selectivity of the formation of the second stereocenter (Figure 1.2). ${ }^{5}$

$1.6 R^{1}=H, R^{2}=B n, R^{3}=M e$
1.7 $R^{1}=O B n, R^{2}=B n, R^{3}=M e$
$1.8 R^{1}=$ OTBDPS, $R^{2}=B n, R^{3}=M e$
1.6p, 89\%, 68\% de
1.7p, $94 \%, 87 \%$ de
1.8p, 88\%, 96\% de

Figure 1.2 Diastereoselective Conjugate Addition with Enantiopure Starting Materials
However, applications of these reaction were limited due to their need for enantiopure starting material in the first place. Also, the sizes of substituents on the pre-existing stereocenter had to be different enough to be influenced by one more than the other. Thus, an enantioselective catalysis route would significantly benefit synthesis efforts. One good example of such an apporach is the enantioselective conjugate addition developed by Feringa using a BINOL-derived chiral phosphorous amidite for copper catalysis (Figure 1.3). ${ }^{4}$ In this case, an alkylzinc nucleophile was incorporated with good enantioselectivity.

Figure 1.3 Copper Catalysis for Enantioselective Conjugate Addition

Besides the BINOL-derived ligands, chiral aryl-thiolates also showed good selectivity in a similar system using strong nucleophiles such as the alkyl Grignard reagents (Figure 1.4). ${ }^{5}$

Figure 1.4 Copper Oxazoline Thiolate Catalyzed Asymmetric Conjugate Addition
Other transition metal catalysis systems, such as the widely applied palladium catalysts, also showed outstanding performance for conjugate addition. For example, the Stoltz group developed an all-carbon quaternary center forming method using conjugate addition and a chiral palladium complex (Figure 1.5). ${ }^{6}$ It is worth pointing out that all-carbon quaternary center formation has always been a hot topic in the organic synthesis community due to the difficulty of the reaction. Having such quaternary centers formed in high yield and great selectivity definitely demonstrates the effectiveness of conjugate addition as a tool in stereoselective organic synthesis.

Figure 1.5 Palladium-Catalyzed Asymmetric Conjugate Addition
Notably, an aryl boronic acid was used as the nucleophile in the conjugate addition above. Organoboronate reagents are not only very well-known participants in cross coupling reactions such as the Suzuki coupling, ${ }^{7}$ but are also considered to be chemically stable and selective nucleophiles in conjugate addition reactions. Additionally, they are significantly more stable and easier to synthesize than stronger nucleophiles such as Grignard reagents and organolithium
reagents. ${ }^{8}$ It was first discovered by Suzuki that these organoboronates could add to enone double bonds in an enone (Figure 1.6). ${ }^{9}$

Figure 1.6 First Use of Organoboronate Conjugate Addition Reported by Suzuki
Although the enantioselective conjugate addition were well developed using transition metal catalysis, the toxicity and functional group compatibility of metal catalysts might limit the application of these methods. ${ }^{10,11}$ Thus, developing a route using an organocatalyst in lieu of a transition metal could be extremely beneficial to the organic synthesis community.

1.3 Organocatalyzed Enantioselective Conjugate Addition With Organoboronates as Nucleophile

1.3.1 BINOL-derivative Catalyzed Enantioselective Conjugate Addition Reported by J. Michael Chong

Inspired by Suzuki's pioneering work, J. Michael Chong reported enantioselective conjugate additions with organoboronate nucleophiles and BINOL-derived catalyst (Figure 1.7). ${ }^{12}$ In their proposed mechanism, the reaction started with binding between the BINOL-derived catalyst and a boronic ester. The reactive BINOL-boron complex then formed a new $\mathrm{C}-\mathrm{C}$ bond at the β-position of the enone. The stereoselectivity of the carbon-carbon bond formation was dictated by the chirality of the BINOL-catalyst.

Figure 1.7 Chong's Report of Organocatalyzed Enantioselective Conjugate Addition

While the reaction provided products in high yield and great enantioselectivity, it still suffered from several drawbacks such as limited substrate scope and long reaction times. It did demonstrate the promising potential of BINOL-derived catalysts and organoboronate nucleophiles in enantioselective conjugate addition reactions.

1.3.2 Thiourea-derivatives Catalyzed Enantioselective Conjugate Addition Reported by Takemoto

Besides BINOL-derivatives, other organic molecules, such as the thioureas-derivatives discovered by the Takemoto group, ${ }^{13,14}$ were also found to be good catalysts in conjugate additions. The first Michael reaction they observed with their catalyst was the Michael reaction of malonates to nitroolefins (Figure 1.8a). After further modification of their thiourea catalyst, it could catalyzed enantioselective conjugate addition of alkenyl boronic acids to α, β-unsaturated ketones (Figure 1.8 b). Yield of their conjugate products would be as high as 99% with an excellent enantioselectivity.

b) Michael reaction of boronic acid to α, β-unstaturated ketone

Figure 1.8 Thiourea-derived Catalysts Developed by the Takemoto Group

1.3.3 O-monoacylatartaric Acid Catalyzed Enantioselective Conjugate Addition Reported by Sugiura

In 2014, the Sugiura group reported an enantioselective conjugate addition of boronic acids to dienones catalyzed by O-monoacyltartaric acid catalysts developed in their lab (Figure 1.9). ${ }^{16}$ This catalyst effective catalyzed the conjugate addition of boronic acid to both symmetrical and asymmetrical dienones to provide product in good yields and enantioselectivity. They could selectively synthesized the mono-adduct in good yield and enantioselectivity via modification of the dienone substrate.

Figure 1.9 Tartaric Acid-derived Catalyst Developed by the Sugiura Group

1.3.4 Further Reaction Development in the May Group

The research in the May lab has always been focused on developing methods to access novel structures that would allow further transformation into biologically active natural products. Our initial exploration in organocatalyzed conjugate addition was expected to provide methods to generate stereocenters adjacent to unprotected indole structures (Figure 1.10), which are essential structural components in many biologically active molecules as well as natural products. ${ }^{17}$ In this example, the $3,3^{\prime}-$ bis(pentafluorophenyl)-BINOL was used as the catalyst to enable the conjugate addition of vinyl boronic acid to 3-indolyl-eones in high yields and outstanding stereoselectivity.

Figure 1.10 BINOL Catalyzed Enantioselective Conjugate Addition to Unprotected Indolyl Enone

With this successful precedent, we conducted further investigations and expanded our enone scope to those bearing various heteroaryl substituents (Figure 1.11). ${ }^{18}$ This methodology could generate a stereocenter adjacent to various unprotected sensitive heteroaryl groups, which was a difficult transformation previously.

list of R^{1} :

Figure 1.11 Expanded Enone Scope
In 2015, an elegant method that would allow enantioselective formation of stereocenters bearing two heteroaryl substituents was developed by Jiun-Le Shih (Edward) and Thien Nguyen in the May group (Figure 1.12). ${ }^{19}$ The revolutionary application of trifluoroborate salts in this
reaction proved essential for reliable reproducibility with high yields and excellent enantioselectivity.

selected list of heteroaryl trifluoroborate salts:

Figure 1.12 Expanded Trifluoroborate Salt Scope
This method proved to be extremely useful in natural product synthesis as it was further applied in the total synthesis of a natural product, discoipyrrole D, by the Banwell group (Figure 1.13). ${ }^{19}$

Figure 1.13 Key Step of Banwell's Synthesis of Discoipyrrole D

Today, natural product total synthesis is being conducted using this BINOL-catalyzed enantioselective conjugate addition in the May group. Synthetic routes toward biologically active natural products such as mucronatins A and B are under prompt exploration (Figure 1.14).

1.55, $R=M e$, mucronatin A
1.56, $R=H$, mucronatin B

Figure 1.14 Proposed Key Step for Mucronatin Synthesis

1.4 Introduction to Cannabinoids

Ever since the discovery of Δ^{9}-tetrahydrocannabinol (THC) (47, Figure 1.15) in $1964,{ }^{20}$ it has attracted great interest from both biochemists and synthetic chemists due to its fascinating structure and biological activity (Figure 1.15). The binding between cannabinoids, like THC and cannabidiol (CBD, 1.58), and the central cannabinoid receptors CB1 and CB2 contributes to most of the observed pharmacological effects. ${ }^{21}$ Many analogs, including those containing heterocycles (see 1.59 and $\mathbf{1 . 6 0}$), have been synthesized for use in SAR studies to probe receptor binding interactions (Figure 1.15). ${ }^{22}$ Importantly, the stereochemistry in analogs like $\mathbf{1 . 6 0}$ was found to play an important role in the receptor binding affinities. ${ }^{23}$ This highlights a need for the development of a general strategy to access both natural and synthetic cannabinoids stereoselectively in high yield. Therefore, the cyclohexene ring A that contains two adjacent stereocenters is one of the most intriguing potential sites of modification for both synthetic and biological reasons. The following describes a concise high-yielding enantioselective and
diastereoselective synthesis of THC and CBD via a novel organocatalyzed ambiphilic annulation reaction of a haloalkylated vinylboronate that allows for cyclohexene modification.

$(-)-\Delta^{9}-$ THC (1.57)

JWH-018 (1.59)

CBD (1.58)

1.60

Figure 1.15 Selected Natural and Synthetic Cannabinoids

1.5 Total Synthesis of Cannabinoids via Enantioselective Catalysis Routes

Although the cyclohexene ring of THC and CBD can be installed as a complete unit by Lewis acid catalysis using a chiral pool strategy (Figure 1.16), ${ }^{24}$ enantioselective ring-forming approaches have been investigated by several groups to try and provide synthetic analogs.

Figure 1.16 Dethe Cannabinoid Synthesis via Chiral Pool Strategy

1.5.1 Enantioselective Diels-Alder Route Developed by the Evans Group

In 1997, Evans reported the first catalytic enantioselective route to THC via a chiral bis(oxazoline) $\mathrm{Cu}(\mathrm{II})$ catalyzed enantioselective Diels-Alder reaction (Figure 1.17). ${ }^{25}$ With the catalyst, the Diels-Alder reaction gave the exo-product 1.66 in 57% yield with outstanding enantioselectivity (98% ee). This transformation had very high efficiency as it set two stereocenters in a single step. The only drawback of this reaction was that it also produced a considerable portion of endo-product which could neither be recycled nor used in the next step, causing some waste of the starting material. Nevertheless, they were able to obtain the enantiomer of naturally occurring THC in 7 steps, which has been the shortest enantioselective catalysis route even to today.

Figure 1.17 Key Step of Evans' THC synthesis

1.5.2 Asymmetric Allylic Alkylation Route Developed by the Trost Group

Trost and Dogra installed the correct stereochemistry via a molybdenum catalyzed asymmetric alkylation in 2006 (Figure 1.18). ${ }^{26}$ With the chiral ligand they designed and synthesized, the key intermediate $\mathbf{1 . 6 9}$ could be obtained in high yield and excellent enantioselectivity. However, the subsequent alkylation to add the other tethered alkene for olefin metathesis gave another stereocenter that was not controlled by the previously incorporated stereocenter in the asymmetric allylic alkylation. Consequently, they had to take a detour to close
the cyclohexene ring first using olefin metathesis and then conducting a thermodynamic epimerization to convert the cis-product into the trans-product. It is worth emphasizing that no material was wasted in this synthesis since they were able to transform the disfavored stereoisomer into the favored one.

Figure 1.18 Key Transformations in Trost's THC Synthesis

1.5.3 Asymmetric Hydrogenation Route Developed by the Zhou Group

In 2013, Zhou reported a THC synthesis using asymmetric hydrogenation to set the key stereocenter (Figure 1.19). ${ }^{27}$ They could access enantiopure alcohols using a highly efficient Rucatalyzed asymmetric hydrogenation of racemic ketones via a dynamic kinetic resolution developed in their lab. Their method could efficiently utilize racemic starting materials as shown in the transformation from $\mathbf{1 . 7 5}$ to $\mathbf{1 . 7 7}$ in Figure 1.19. However, in terms of synthesizing THC, this route suffered from the large amount of steps it was taking. For example, the synthesis of the starting material $\mathbf{1 . 7 4}$ required two complicated coupling components, $\mathbf{1 . 7 2}$ and $\mathbf{1 . 7 3}$, which were
very hard to synthesize. Additionally, after setting the first stereocenters, six more steps were needed to set the other stereocenter, which made this route less concise than previous routes.

Figure 1.19 Key Transformations in Zhou's THC Synthesis

1.5.4 Stereodivergent Route Developed by the Carreira Group

Shortly afterwards, Carreira synthesized all four stereoisomers of THC via an elegant stereodivergent dual catalysis strategy (Figure 1.20). ${ }^{28}$ Following their original report of a similar dual system, ${ }^{29}$ they accessed all stereoisomers of THC by simply switching the ligand and amine. This reaction could set two adjacent stereocenters at a time in good yield with high diastereoselectivity and outstanding enantioselectivity. All stereoisomers of naturally occurring THC could be obtained after the same sequence of treatment as in Trost's synthesis, which involved olefin metathesis for cyclohexene ring formation.

Figure 1.20 Stereodivergent Dual Catalysis Strategy in Carreira's THC Synthesis

1.5.5 Enzyme Controlled Reduction Route Developed by the Leahy Group

In 2018, Leahy reported the enantioselective total synthesis of THC using an enzyme controlled ketone reduction followed by an Ireland-Claisen rearrangement (Figure 1.21). ${ }^{30}$ The initial reduction was conducted with CBS oxazaborolidine $\mathbf{1 . 8 6}$,. While it offered almost quantitative transformation from the ketone $\mathbf{1 . 8 4}$ to alcohol $\mathbf{1 . 8 5}$, the enantioselectivity was not ideal. An enzyme controlled reduction could give an excellent enantioselectivity, but it came with a relatively low yield. In modern organic synthesis, stereocontrol is often considered more important than obtaining a higher quantity of the material, but both are better. The Leahy group chose selectivity as their goal, and they moved forward to the Ireland-Claisen rearrangement following the enzyme controlled reduction pathway. The Ireland-Claisen rearrangement followed with typically high levels of stereoselectivity, with the first stereocenter set in extremely high enantiopurity. A serendipitous finding in their research was that intermediate $\mathbf{1 . 8 8}$ could be recrystallized with high enantiopurity, which meant that the low enantioselectivity they obtained from the CBS oxazaborolidine controlled reduction would also be useful in later stages. From intermediate 1.88, THC could be synthesized following a similar sequence to Trost and Carreira's synthesis.

1) NaBH_{4}
2) Savinase 12 T vinyl butyrate 3) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, reflux
1.85, 95\%, 77\% ee

Figure 1.21 Key Transformations in Leahy's THC Synthesis

1.5.6 NHC Catalysis Route Developed by the Lupton Group

Recently, in 2019, Lupton reported an enantioselective total synthesis of THC using asymmetric NHC catalysis (Figure 1.22). ${ }^{31}$ Following their procedure, the key intermediate $\mathbf{1 . 9 2}$ could be obtained in 45% yield with $20: 1 \mathrm{dr}$ and $98: 2$ er. Despite the fact that they successfully formed three stereocenters in one reaction, only the one that was attached to the aryl group was preserved until they finished the synthesis. The other two stereocenters on the lactone were quickly eliminated in subsequent steps of the synthesis

Figure 1.22 Key Step of Lupton's THC Synthesis

1.7 Limitation of Existing Routes and Proposed Retrosynthetic Analysis

While synthetic approaches to Δ^{9}-THC have flourished, many of them require transition metal catalysis to set stereocenters or ring closing metathesis to construct the cyclohexene. In terms of Structure Activity Relationship (SAR) studies, transition metal catalysis can limit analog exploration due to lack of compatibility with heterocycles, halides, and other sensitive groups. ${ }^{10,11}$ Additionally, it would be impossible to make analogs containing a fused aryl/heteroaryl ring in the place of the double bond by all the reported enantioselective catalysis routes. Thus, having a metalfree method to afford key stereocenters would be tremendously beneficial for analog development of cannabinoids. We hypothesized that an organocatalyzed tandem annulation reaction would provide that enantioselective method for synthesizing the cannabinoid core with maximum flexibility.

As previously discussed, the conjugate addition reactions of organoboron nucleophiles to α, β-unsaturated ketones have been rigorously explored in the May group. ${ }^{16-18}$ This metal-free conjugate addition method uses BINOL-derived catalysts (1.26, 1.40, 1.44, Figure 1.23 a) to synthesize tertiary beta-stereocenters with excellent enantioselectivity and outstanding compatibility with heterocycles. The nucleophilic vinyl borate group $\mathbf{1 . 9 3}$ is activated by fluoride loss and then binding first to the chiral BINOL-derived catalyst $\mathbf{1 . 4 4}$ and then to the enone carbonyl. Given the resulting switchable reactivity, we believed that an electrophilic functionality could be incorporated in the nucleophilic organoboronate to provide a novel ambiphilic alkyl halide organoborate reagent (1.93). Such an arrangement is impossible with other strong nucleophiles such as Grignard and organolithium reagents and is typically only seen in transition metal intermediates or 1,3-dipole cycloadditions. ${ }^{32}$ The powerful annulation in Figure 1.23 would
provide rapid access to the cyclohexene (or other-sized) ring in THC and derivatives (Figure 1.23b), including those containing heterocyclic bioisosteres.

b) Proposed convergent retrosynthesis of THC

Figure 1.23 Proposed Conjugate Addition/Enolate Alkylation Reaction and Retrosynthetic Analysis of THC

1.8 Focus of This Thesis

The remainder of this thesis will focus on the development of novel ambiphilic organoboronate reagents and an enantioselective conjugate addition/enolate alkylation annulation
methodology. The total synthesis of natural cannabinoids and a structural analog will also be demonstrated in later chapters.

1.9 Bibliography

1. Michael, A. J. Prakt. Chem./Chem.-Ztg. 1887, 35, 349.
2. Michael, A. Addition of Sodium Acetotate and Sodium Diethyl Malonate to Unsaturated Acids J. Prakt. Chem./Chem.-Ztg. 1894, 49, 20.
3. Kürti, L.; Czako, B. Strategic Applications of Named Reactions in Organic Synthesis. Elsevier, Burlington, MA, USA, 2005.
4. Rossiter, B. E.; Swingle, N. M. Asymmetric Conjugate Addition. Chem. Rev. 1992, 92, 771806.
5. Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L. Catalytic Asymmetric Conjugate Addition and Allylic Alkylation with Grignard Reagents Chem. Rev. 2008, 108, 2824-2852.
6. Shockley, S. E.; Holder, J. C.; Stoltz, B. M. Palladium-Catalyzed Asymmetric Conjugate Addition of Arylboronic Acids to α, β-Unsaturated Cyclic Electrophiles Org. Process Res. Dev. 2015, 19, 974-981.
7. Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds Chem. Rev. 1995, 95, 2457-2483.
8. Molander, G. A.; Petrillo, D. E. Oxidation of Hydroxyl-Substituted Organotrifluoroborates J. Am. Chem. Soc. 2006, 128, 9634-9635.
9. Hara, S.; Hyuga, S.; Aoyama, M.; Sato, M.; Suzuki, A. BF3 Etherate Mediate 1,4-Addition of 1-Alkenyldialkoxyboranes to α, β-Unsaturated Ketones. A Stereoselective Synthesis of γ, δ Unsaturated Ketones. Tetrahedron Lett. 1990, 31, 247-250.
10. Ananikove, V. P. Nikel: The "Spirited Horse" of Transition Metal Catalysis. ACS Catal. 2015, 5, 1964-1971.
11. Zhou, Q-L. Transition-Metal Catalysis and Organocatalysis: Where Can Progress Be Expected? Angew. Chem. Int. Ed. 2016, 55, 5352-5353.
12. a) Wu, T. R.; Chong, J. M. Ligand-Catalyzed Asymmetric Alkynylboration of Enones: A New Paradigm for Asymmetric Synthesis Using Organoboranes. J. Am. Chem. Soc. 2005, 127, 32443245 ; b) Wu, T. R.; Chong, J. M. Asymmetric Conjugate Alkenylation of Enones Catalyzed by Chiral Diols. J. Am. Chem. Soc. 2007, 129, 4908-4909.
13. Okino, T.; Hoashi, Y.; Takemoto, Y. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. J. Am. Chem. Soc. 2003, 125, 1267212673.
14. Inokuma, T.; Takasu, K.; Sakaeda, T.; Takemoto, Y. Hydroxyl Group-Directed Organocatalytic Asymmetric Michael Addition of α, β-Unsaturated Ketones with Alkenylboronic Acids. Org. Lett. 2009, 11, 2425-2428.
15. Sugiura, M.; Kinoshita, R.; Nakajima, M. O-Monoacyltartaric Acid Catalyzed Enantioselective Conjugate Addition of a Boronic Acid to Dienones: Application to the Synthesis of Optically active Cyclopentenones. Org. Lett. 2014, 16, 5172-5175.
16. Lundy, B. J.; Jansone-Popova, S.; May, J. A. The Enantioselective Conjugate Addition of Alkenylboronic Acids to Indole-Appended Enones. Org. Lett. 2011, 13, 4958-4951.
17. Le, P. Q.; Nguyen, T. S.; May, J. A. A General Method for the Enantioselective Synthesis of a-Chrial Hetereocycles. Org. Lett. 2012, 14, 6104-6107.
18. Shih, J.-L.; Nguyen, T. S.; May, J. A. Organocatalyzed Asymmetric Conjugate Addition of Heteroary and Aryl Trifluoroborates: a Synthetic Strategy for Discoipyrrole D. Angew. Chem. Int. Ed. 2015, 54, 9931-9935.
19. Zhang, Y.; Banwell, M. G. A Total Synthesis of the Marine Alkaloid Discoipyrrole D. J. Org. Chem. 2017, 82, 9328-9334.
20. Mechoulam, R.; Gaoni, Y. A Total Synthesis of dl- $\Delta 1$-Tetrahydrocannabinol, the Active Constituent of Hashish. J. Am. Chem. Soc. 1965, 87, 3273-3275.
21. Romero, J.; Lastres-Becker, L.; de Miguel, R.; Berrendero, F.; Ramos, J. A.; Fernández-Ruiz, J. The Eendogenous Cannabinoid System and the Basal Ganglia: Biochemical, Pharmacological, and Therapeutic Aspects Pharmacol. Ther. 2002, 95, 137-152.
22. a) Worob, A.; Wenthur, C. DARK Classics in Chemical Neuroscience: Synthetic Cannabinoids (Spice/K2). ACS Chem. Neurosci. 2020, 11, 3881-3892; b) Banister, S. D.; Moir, M.; Stuart, J.;

Kevin, R. C.; Wood, K. E.; Longworth, M.; Wilkinson, S. M.; Beinat, C.; Buchanan, A. S.; Glass, M.; Connor, M.; McGregor, I. S.; Kassiou, M. Pharmacology of Indole and Indazole Synthetic Cannabinoid Designer Drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADBPINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chem. Neurosci. 2015, 6, 1546-1559.
23. Ametovski, A.; Macdonald, C.; Manning, J. J.; Haneef, S. A. S.; Santiago, M.; Martin, L.;

Sparkes, E.; Reckers, A.; Gerona, R. R.; Connor, M.; Glass, M.; Banister, S. D. Exploring Stereochemical and Conformational Requirements at Cannabinoid Receptors for Synthetic

Cannabinoids Related to SDB-006, 5F-SDB-006, CUMYL-PICA, and 5F-CUMYL-PICA. $A C S$ Chem. Neurosci. 2020, 11, 3672-3682.
24. For representative chiral pool strategy (a) Klotter, F.; Studer, A. Short and Divergent Total Synthesis of (+)-Machaeriol B, (+)-Machaeriol D, (+)- $\Delta^{8}-\mathrm{THC}$, and Analogues. Angew. Chem. Int. Ed. 2015, 54, 8547-8550; (b) Dethe, D. H.; Erande, R. D.; Mahapatra, S.; Das, S.; Kumar B., V. Protecting Group Free Enantiospecific Total Syntheses of Structurally Diverse Natural Products of the Tetrahydrocannabinoid Family. Chem. Commun. 2015, 51, 2871-2873.
25. Evans, D. A.; Shaughnessy, E. A.; Barnes, D. M. Cationic Bis(oxazoline)Cu(II) Lewis Acid Catalysts. Application to the Asymmetric Synthesis of ent- $\Delta 1$-Tetrahydrocannabinol. Tetrahedron Lett. 1997, 38, 3193-3194.
26. Trost, B. M.; Dogra, K. Synthesis of (-)- Δ^{9}-trans-Tetrahydrocannabinol: Stereocontrol via Mo-Catalyzed Asymmetric Allylic Alkylation Reaction. Org. Lett. 2007, 9, 861-863.
27. Cheng, L.-J.; Xie, J.-H.; Chen, Y.; Wang, L.-X.; Zhou, Q.-L. Enantioselective Total Synthesis of $(-)-\Delta^{8}-\mathrm{THC}$ and $(-)-\Delta^{9}-\mathrm{THC}$ via Catalytic Asymmetric Hydrogenation and SNAr Cyclization. Org. Lett. 2013, 15, 764-767.
28. Schafroth, M. A.; Zuccarello, G.; Krautwald, S.; Sarlah, D.; Carreira, E. M. Stereodivergent Total Synthesis of Δ^{9}-Tetrahydrocannabinols. Angew. Chem. Int. Ed. 2014, 53, 13898-13901.
29. Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Enantio- and Diastereodivergent Dual Catalysis: α-Allylation of Branched Aldehydes Science. 2013, 340, 1065-1068.
30. Shultz, Z. P.; Lawrence, G. A.; Jacobson, J. M.; Cruz, E. J.; Leahy, J. W. Enantioselective Total Synthesis of Cannabinoids-A Route for Analogue Development. Org. Lett. 2018, 20, 381-384.
31. Ametovski, A.; Lupton, D. W. Enantioselective Total Synthesis of $(-)-\Delta^{9}-$ Tetrahydrocannabinol via N-Heterocyclic Carbene Catalysis. Org. Lett. 2019, 21, 1212-1215.
32. For reviews on 1,3-dipole cycloadditions, see a) T. Hashimoto, K. Maruoka, Chem. Rev. 2015, 115, 5366; b) K. V. Gothelf, K. A. Jorgensen, Chem. Rev. 1998, 98, 863. For recent development of ambiphilic boron species in transition metal chemistry, see M. Sc. M. Wienhold, J. J. Molloy, C. G. Daniliuc, R. Gilmour, Angew. Chem. Int. Ed. 2021, 60, 685.

Chapter 2
 Development of Ambiphilic Organoboronates

2.1 Ambiphilic Molecules and Their Application in Organic Synthesis

In the world of organic chemistry, the word "ambiphilic" is used when a molecule has both electrophilic and nucleophilic character. Due to such unique properties, ambiphilic reagents are often effective in forming multiple chemical bonds in a single transformation, which largely increases the efficiency in organic synthesis. However, this distinctive type of molecule is very rare due to its conflicted nature. This arrangement is impossible with some well-known strong nucleophiles such as Grignard or organolithium reagents and is typically only seen in bench-stable compounds as ylides. ${ }^{1}$ One representative example can be found in the Wittig reaction, using phosphorus ylide 2.3 (Figure 2.1).

Figure 2.1 Wittig Reaction
Other than bench- and air-stable ylides, ambiphilic reactivity is only available in transient reaction intermediates, such as those in Corey-Chaykovksy epoxidation/cyclopropanation ${ }^{1}$ and 1,3-dipolar cycloaddition reactions (Figure 2.2). ${ }^{2}$

b) 1,3-dipolar cycloaddition reaction

Figure 2.2 Corey-Chaykovsky Epoxidation/Cyclopropanation and 1,3-Dipolar Cycloaddition Reaction

2.2 Design of Ambiphilic Organoboronates

One of the major reasons for the scarcity of stable ambiphilic reagents is chemoselectivity. A non-selective strong nucleophile would target any electrophile in its surrounding environment intermolecularly and/or intramolecularly if conformational geometry permitted. Due to such nonselective reactivity, strong nucleophiles such as Grignard reagents, organolithium reagents, or stabilized enolates are not a good fit for providing the nucleophilic character in an ambiphilic molecule. However, as was found in a mechanistic study, ${ }^{3}$ the nucleophilicity of organoboronates used in organocatalyzed enantioselective conjugate addition reactions is not activated until the effective binding between boron and the BINOL-derived catalyst (Figure 2.3). Additionally, the nucleophile has a specific chemoselectivity toward Michael acceptors after the binding event. Therefore, we hypothesized that an electrophilic functionality could also be incorporated to trap the transient enolate intermediate in the reaction, thus providing a novel bench- and air-stable ambiphilic reagent.

Figure 2.3 Catalytic Cycle of BINOL-Derivative Catalyzed Conjugate Addition/Enolate Alkylation Reaction with Ambiphilic Organoboronate

To provide a concise total synthesis of THC and also rapid access to various analogs, a general model of this ambiphilic organoboronate was established (Figure 4). Possible targets were divided into three major types based on their structure and functional groups. Type A included the most common cyclic and acyclic vinyl organoboronates with an alkyl chain containing up to 3 methylenes and a Z-olefin in order to set the stage for the intramolecular enolate alkylation. Type B contained vinyl organobororates with a slightly different connection, as the alkyl chain containing the electrophilic leaving group was attached to the same carbon as the boron. It was therefore named the "vinyl geminal" type. Type C expanded the ambiphile cope to the aryl/heteroaryl based structures, granting access to novel THC analogs which were inaccessible via synthetic routes using olefin metathesis for the ring closure. ${ }^{4-6}$

Figure 2.4 Design of Ambiphilic Organoboronates

2.3 Synthesis of Type A Ambiphilic Organoboronates

Among all three types of ambiphilic organoboronates, type A had the closest structural similarity to with the natural product target. Therefore, we decided to start with the synthesis of the vinyl trifluoroborate alkyl tosylate $\mathbf{2 . 3 4}$ (Scheme 2.1). Following a procedure reported by Negishi, ${ }^{7}$ the vinyl iodide alcohol $\mathbf{2 . 3 1}$ was successfully obtained in 70% yield. The tosylation was also smooth, giving the tosylated product in 87% yield. Miyaura borylation was troublesome during the first several trials due to an inseparable impurity, which turned out to be an inevitable byproduct, phenyl boronic ester 2.35, generated in the catalytic cycle. After a few examinations of various aqueous washes, it was found that this byproduct would undergo hydrolysis after treatment with 1 N aqueous NaOH solution. Pure vinyl pinacolborane alkyl tosylate $\mathbf{2 . 3 3}$ was then obtained in 50\% yield. After several failed attempts to transform $\mathbf{2 . 3 3}$ into the corresponding trifluoroborate 2.34, ${ }^{8}$ it was hypothesized that the lone pair electrons on the oxygen atom, which was six atoms away from the empty p orbital on boron, could potentially coordinate to boron thus making the molecule more vulnerable to protodeboronation. This type of Lewis acid-base interaction was observed in many systems containing similar elements and geometry., ${ }^{9,10}$

Scheme 2.1 Synthesis of Ambiphilic Trifluoroborate 2.34
We then sought the electrophilic character from a non-oxygen based leaving group, namely bromide or iodide (Scheme 2.2). After obtaining vinyl iodide 2.31, the Appel reaction incorporated the bromide, giving 2.36 in almost quantitative yield. Miyaura borylation successfully delivered the vinyl pinacolborane alkyl bromide 2.37 in 60% yield. The most important transformation from 2.37 to the ambiphilic trifluoroborate 2.38 was not prohibited by protodeboronation at all, and the target molecule was obtained in 95% yield. This successful transformation supported our coordination hypothesis.

Scheme 2.2 Synthesis of Ambiphilic Trifluoroborate 2.38

After successfully obtaining this ambiphilic trifluoroborate, we then tried to expand the substrate scope to include the cyclic vinyl building blocks (Scheme 2.3). The cyclohexenyl bromide alcohol $\mathbf{2 . 4 2}$ was synthesized following reported procedures. ${ }^{11}$ After a sequence of Appel reaction and Miyaura borylation, the cyclic vinyl pinacolborane alkyl bromide $\mathbf{2 . 4 4}$ was obtained. However, the transformation of this pinacolborane to its corresponding trifluoroborate $\mathbf{2 . 4 5}$ was again hindered due to rapid and inevitable protodeboronation.

Scheme 2.3 Synthesis of Ambiphilic Trifluoroborate 2.45
An adjustment from a 6-membered ring to a 5-membered ring didn't help, and protodeboronation still prevented access to the desired trifluoroborate (Scheme 4.4). We then hypothesized that electronic effects might be introduced due to the alignment of orbitals in such a cyclic structure or that the trialkyl substituted alkene was too electron-rich, making it vulnerable to protodeboronation.

Scheme 2.4 Synthesis of Ambiphilic Trifluoroborate 2.52
We also tried to obtain building blocks for THC analogs bearing a cyclopentenyl ring. The iodination of methyl propiolate (2.53) with sodium iodide and acetic acid gave Z-vinyl iodide ester 2.54 in 84% yield. However, using previously successful conditions or even when using less hindered boron sources, the subsequent Miyaura borylation gave only the dimerized product $\mathbf{2 . 5 5}$.

Scheme 2.5 Attempt for the Synthesis of 56

2.4 Synthesis of Type B Ambiphilic Organoboronates

Due to the influence of the allylic substituent on the vinyl iodide, Miyaura borylation was not effective in synthesizing Z-vinyl trifluoroborate alkyl bromides such as $\mathbf{2 . 5 6}$. Additionally, given the reactive nature of the allylic position, methods requiring the use of strong nucleophiles such as lithium were considered unfeasible. We then turned our sights to a potential alternative building block for a THC analog with a 5-membered ring, the type B ambiphilic trifluoroborate 2.60 (Scheme 2.6).

Scheme 2.6 Synthesis of Ambiphilic Trifluoroborate 2.60
After treating 3-butyn-1-ol (2.30) with sodium iodide and TMSCl in a mixture of acetonitrile and water, the idodide was successfully introduced to the same carbon as the alkyl chain. The Appel reaction then incorporated the bromide to give $\mathbf{2 . 5 8}$ in 60% yield. The yield of vinyl pinacolborane compound $\mathbf{2 . 5 9}$ after Miyauara borylation was relatively low due to potential steric hinderance from the geminal alkyl chain. Nonetheless, the geminal ambiphilic trifluoroborate $\mathbf{2 . 6 0}$ was successfully synthesized in 50% yield after treating $\mathbf{2 . 5 9}$ with aqueous KHF_{2} solution.

2.5 Synthesis of Type C Ambiphilic Organoboronates

After exploring vinyl ambiphilic trifluoroborates, we started pursuing aryl ambiphilic trifluoroborates, which could potentially provide access to previously inaccessible THC analogs.

Our first target was ambiphilic trifluoroborate $\mathbf{2 . 6 3}$ because the boronic acid precursor $\mathbf{2 . 6 1}$ was an inexpensive commercially available compound (Scheme 2.7). Surprisingly, the most common method for trifluoroborate synthesis, using methanol as the solvent, was not ideal for this specific substrate. Because the benzylic bromide was too reactive, methanol was a strong enough nucleophile to attack the benzylic bromide giving the methyl benzyl ether 2.62. After switching the solvent to ethyl ether, trifluoroborate $\mathbf{2 . 6 3}$ was successfully obtained in 95% yield.

Scheme 2.7 Synthesis of Ambiphilic Aryl Trifluoroborate 2.63
We then moved on to the synthesis of ambiphilic aryl trifluoroborate $\mathbf{2 . 6 9}$, which was designed with a homo-benzylic bromide (Scheme 2.8). Incorporation of the bromide was successful via Appel reaction from the homo-benzylic alcohol 2.64. The borylation step was somewhat challenging. Instead of pinacolborane, the acetate base was introduced to the aryl ring via the typical Miyaura borylation conditions for aryl substrates. The copper catalysis was more selective toward oxidative insertion into the homo-benzylic bromide, giving the alkyl pinacolborane as the final product while leaving the aryl bromide untouched. We then modified three facets of the Miyaura borylation; using a less reactive catalyst, a less reactive solvent environment, and a bulkier base to prevent the insertion. These modifications turned out to be very effective as the target aryl Bpin alkyl bromide 2.66 was successfully obtained in 70% yield. Recrystallization after treatment with aqueous KHF_{2} solution gave the ambiphilic aryl trifluoroborate $\mathbf{2 . 6 9}$ in 80% yield.

Scheme 2.8 Synthesis of Ambiphilic Trifluoroborate 2.69
With $\mathbf{2 . 6 3}$ and 2.69 in hand, we were concerned that the electron-withdrawing benzylic-/homo-benzylic bromides in these molecules might hurt the nucleophilicity. Consequently, the
decision was made to introduce an electron-donating methoxy group with para relationship. The benzyl alcohol $\mathbf{2 . 7 1}$ was obtained in almost quantitative yield after reducing the ester $\mathbf{2 . 7 0}$ with LAH (Scheme 2.9). Incorporation of bromide via Appel reaction gave 2.72 in 80\% yield. The slight difference in structure turned out to have great impact on the reactivity as the oxidative insertion is much slower on electron-rich aryl rings. The selectivity of Miyaura borylation switched from the aryl bromide to the allylic bromide, giving $\mathbf{2 . 7 3}$ as the borylation product.

Scheme 2.9 Synthesis of 2.73
Based on this observation, we considered altering the order of events by conducting borylation before introducing the bromide leaving group (Scheme 2.10). The aryl Bpin ester $\mathbf{2 . 7 4}$ was synthesized in 75% yield from $\mathbf{2 . 7 0}$ via Miyaura borylation. Reduction of ester $\mathbf{2 . 7 4}$ with LAH gave alcohol 2.75 in 40% yield due to a side reaction between the boronic ester and the hydride. The sequence of Appel reaction and aqueous KHF_{2} treatment was effective and the target trifluoroborate 2.77 was obtained in 50% yield after two steps.

Scheme 2.10 Synthesis of Ambiphilic Trifluoroborate 2.77

Previous explorations clarified the route toward the ambiphilic aryl trifluoroborate with homobenzylic bromide (Scheme 2.11). The homobenzylic alcohol $\mathbf{2 . 8 0}$ was prepared following literature reported procedure in quantitative yield. ${ }^{12}$ Aryl pinacolborane alkyl halide $\mathbf{2 . 8 2}$ was obtained in 57\% yield using another Appel reaction and Miyaura borylation. After treatment with aqueous KHF_{2}, aryl ambiphilic trifluoroborate $\mathbf{2 . 8 3}$ was obtained in 99% yield.

Scheme 2.11 Synthesis of Ambiphilic Trifluoroborate 82

2.6 Conclusion

Eight bench- and air-stable ambiphilic organoboronates were successfully synthesized despite the challenges arising from the conflicted nature of these unique molecules. These ambiphilic coupling partners were applied in conjugate addition reactions (Chapter 3). For those ambiphilic boronic esters that could not be transformed into the corresponding trifluoroborates due to rapid protodeboronation, further investigation will be conducted to overcome the issues using boronic esters and explore their potential application in conjugate addition conditions.

2.7 Experimental

2.7.1 Material and Methods

All reactions were carried out in flame- or oven-dried glassware under a positive pressure of argon unless the reaction contained water as a solvent. Dichloromethane, toluene, THF and acetonitrile were purged with argon and dried over activated alumina columns. 1,2-dichloroethane was freshly distilled from CaH_{2} before use. Flash chromatography was performed using $60 \AA$ silica gel (Sigma Aldrich). Preparative and analytical plate chromatography was performed on Sigma Aldrich silica gel plates, $250 \mu \mathrm{~m}$ thickness, $60 \AA$ pore size, with UV light at 254 nm used to visualize the plates. Chemical names were generated using Cambridge Soft ChemBioDraw Ultra 12.0. Analysis by HPLC was performed on a Shimadzu Prominence LC (LC-20AB) equipped with an SPD-20A UV-Vis detector (190 nm-400 nm) and a Chiralpak or Chiralcel ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$) column (see below for column details). The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{11} \mathrm{~B}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a JEOL ECA-600, ECA-500, or ECX-400P spectrometer using the residual solvent peak as an internal standard $\left(\mathrm{CDCl}_{3}: 7.25 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ NMR and 77.00 ppm for $\left.{ }^{13} \mathrm{C} \mathrm{NMR}\right)$. NMR yields were determined by addition of 1 equivalent of methyl (4-nitrophenyl) carboxylate or trans-stilbene as an internal standard to the crude reaction mixture. IR spectra were obtained using a ThermoNicolet Avatar 370 FT-IR instrument. HRMS analyses were performed under contract by UT Austin's mass spectrometric facility via an Agilent 6546 Q-TOF LC/MS (high res ESI), Agilent 6530 QTOP LC/MS (high resolution CI, APCI or APPI), or Waters Autospec GC/MS (high resolution CI) instrument. Commercially available compounds were purchased from Sigma Aldrich, Acros, Combi-Blocks, Oakwood Chemical, Alfa Aesar, Ambeed, ArkPharm, Beantown Chemical, TCI, and Cambridge Isotope Laboratories and were used without further purification.

2.7.2 Synthesis of Vinyl Ambiphilic Trifluoroborate (2.38) from 3-butyn-1-ol (2.30)

(Z)-4-iodo-3-methylbut-3-en-1-ol (2.31) was synthesized by modifying conditions originally reported by Negishi. ${ }^{7}$ To a flame dried round bottom flask equipped with a stir bar was added zirconocene dichloride ($3.65 \mathrm{~g}, 12.5 \mathrm{mmol}$). 1,2-Dichloroethane (150 mL) was then added to the flask and the solution was cooled to $0^{\circ} \mathrm{C}$ before trimethyl aluminum ($50 \mathrm{~mL}, 2 \mathrm{M}$ solution in toluene) was added dropwise. The solution was allowed to stir for 15 minutes at $0^{\circ} \mathrm{C}$, then 3-butyn-1-ol (2.30, $3.54 \mathrm{~g}, 50 \mathrm{mmol}$) was added dropwise (a considerable quantity of gas is generated, use care to allow its release). This mixture was warmed to room temperature and stirred for 20 hours and then heated to $90^{\circ} \mathrm{C}$ for 3 days. The resulting solution was cooled to $-30^{\circ} \mathrm{C}$ and quenched by the addition of a solution of iodine $(14 \mathrm{~g}, 55 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$. After being stirred at room temperature for 30 minutes, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, and 4 mL water was added dropwise followed by the slow addition of 15% aqueous sodium hydroxide solution (4 mL) and water (10 mL). The resulting suspension was allowed to stir 15 minutes at room temperature followed by addition of anhydrous magnesium sulfate. This mixture was stirred for 15 minutes until the emulsion had dissipated. Filtration followed by chromatography on silica gel (30% ethyl acetate in hexanes) afforded (Z)-4-iodo-3-methylbut-3-en-1-ol (2.31) as a dark red oil in 70% yield $(7.39 \mathrm{~g})$. All spectral data matched literature reports. ${ }^{7}$

(Z)-4-bromo-1-iodo-2-methylbut-1-ene (2.36). In a flame dried round bottom flask equipped with a stir bar, tetrabromomethane ($10.2 \mathrm{~g}, 26 \mathrm{mmol}$) and (Z)-4-iodo-3-methylbut-3-en-1-ol (2.31, $5 \mathrm{~g}, 23.6 \mathrm{mmol})$ were dissolved in dichloromethane $(100 \mathrm{~mL})$. After being cooled to $0^{\circ} \mathrm{C}$, triphenylphosphine ($6.8 \mathrm{~g}, 26 \mathrm{mmol}$) was added in 3 portions. The resulting mixture was allowed to warm up to room temperature and stirred for 1 hour. After completion, the reaction mixture was concentrated and added dropwise to an agitated mixture of silica gel $(20 \mathrm{~g})$ in hexanes, then passed through a silica plug to remove triphenyl phosphine oxide. The filtrate was concentrated and chromatography on silica gel (100\% hexanes) afforded (Z)-4-bromo-1-iodo-2-methylbut-1-ene (2.36) in 95% yield (6.2 g) as a pink oil. ${ }^{\mathbf{1}} \mathbf{H}$-NMR (500 MHz , chloroform-d) δ $6.06(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}$ (126 MHz, chloroform-d) $\delta 144.5,77.4,41.8,28.9,23.5$. IR 3270, 2391, 2274, 1448, 1266, 1200, 1167, 783, 637, $545 \mathrm{~cm}^{-1}$. HRMS-CI m/z calcd. for $\mathrm{C}_{5} \mathrm{H}_{8}{ }^{79} \mathrm{BrI}[\mathrm{M}]^{+}$273.8854, found 273.8852; calcd. for $\mathrm{C}_{5} \mathrm{H}_{8}{ }^{81} \mathrm{BrI}[\mathrm{M}]{ }^{+}$275.8834, found 275.8832.

(Z)-2-(4-bromo-2-methylbut-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.37)

 was synthesized by modifying conditions originally reported by Miyaura. ${ }^{13}$ In a flame dried round bottom flask (Z)-4-bromo-1-iodo-2-methylbut-1-ene (2.36, $2.75 \quad \mathrm{~g}, \quad 10 \mathrm{mmol}$), $\operatorname{bis}\left(\right.$ pinacolato)diboron (aka $\left.\mathrm{B}_{2} \operatorname{pin}_{2}, 3.81 \mathrm{~g}, 15 \mathrm{mmol}\right)$, bis(tripheynylphosphine)palladium(II) dichloride ($210.6 \mathrm{mg}, 0.3 \mathrm{mmol}$), and potassium phenolate ($1.98 \mathrm{~g}, 15 \mathrm{mmol}$) were dissolved in toluene $(60 \mathrm{~mL})$. The reaction mixture was degassed for 10 minutes before being heated to $50^{\circ} \mathrm{C}$, then stirred for 12 hours. Water (100 mL) was added, and the reaction mixture was extracted with$\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with 1 M aqueous sodium hydroxide solution (30 mL), brine (100 mL), then dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure. The crude mixture was purified by chromatography on silica gel (2\% ethyl acetate in hexanes) to yield (Z)-2-(4-bromo-2-methylbut-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($\mathbf{2 . 3 7}, 1.67 \mathrm{~g}, 60 \%$ yield) as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$-NMR (400 MHz , chloroform-d) $\delta 5.26(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.23$ $(\mathrm{s}, 12 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}\right.$, chloroform-d) $\delta 157.2,81.3,37.5,30.3,25.0,23.3 \cdot{ }^{11} \mathbf{B}-\mathbf{N M R}(128$ MHz, chloroform-d) δ 26.9. IR 2976, 2932, 1636, 1442, 1378, 1256, 1141, 968, 850 cm^{-1}. HRMSCI m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{21}{ }^{11} \mathrm{BO}_{2}{ }^{79} \mathrm{Br}[\mathrm{M}]{ }^{+} 275.0818$, found 275.0808; calcd. for $\mathrm{C}_{11} \mathrm{H}_{21}{ }^{11} \mathrm{BO}_{2}{ }^{81} \mathrm{Br}$ $[\mathrm{M}]^{+} 277.0798$, found 277.0800

(Z)-(4-bromo-2-methylbut-1-en-1-yl)trifluoro- λ^{4}-borane, potassium salt (2.38). In a round bottom flask equipped with a stir bar, (Z)-2-(4-bromo-2-methylbut-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.37, $1.1 \mathrm{~g}, 4 \mathrm{mmol}$) were dissolved in methanol (20 mL). Potassium hydrogen fluoride solution ($3.6 \mathrm{~mL}, 4.5 \mathrm{M}$ in water) was added dropwise. The reaction mixture was then stirred vigorously at room temperature for 2 hours. The mixture was concentrated to dryness under reduced pressure then dissolved in acetone (20 mL). The solution was filtered, and the solid was washed with acetone ($3 \times 10 \mathrm{~mL}$). The acetone solution was concentrated to 5 mL , then ether was added until no further precipitation was observed. The crystals were then filtered and washed with ether to yield (Z)-(4-bromo-2-methylbut-1-en-1-yl)trifluoro- λ^{4}-borane, potassium salt (2.38, $970 \mathrm{mg}, 95 \%$ yield) as a white crystal. ${ }^{\mathbf{1}} \mathbf{H}$-NMR (500 MHz , acetone-d6) δ
$5.20(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathbf{N M R}$ (126 MHz, acetone-d6) $\delta 39.5,33.5,25.8 .{ }^{11} \mathbf{B}-\mathbf{N M R}\left(160 \mathrm{MHz}\right.$, acetone-d6) $\delta 1.8,1.5 .{ }^{\mathbf{1 9}} \mathbf{F}$-NMR (470 MHz, acetone-d6) δ-136.9. IR 2963, 2922, 1643, 1449, 1117, 1085, 929, 848, 729, 635, 607 cm^{-1}. HRMS-ESI \mathbf{m} / \mathbf{z} calcd. for $\mathrm{C}_{5} \mathrm{H}_{8}{ }^{11} \mathrm{~B}^{79} \mathrm{BrF}_{3}$ [M] 214.9861, found 214.9861; calcd. for $\mathrm{C}_{5} \mathrm{H}_{8}{ }^{11} \mathrm{~B}^{81} \mathrm{BrF}_{3}[\mathrm{M}]-216.9841$, found 216.9841 (Note: This compound must be tested with very gentle source conditions and injected into a flow of 100% acetonitrile for HRMS.)

2.7.3 Synthesis of Cyclic Ambiphilic Boronates 2.44 and 2.51

2-(2-bromocyclohex-1-enyl)ethanol (2.42) was prepared following literature procedure form cyclohexanone (2.39). ${ }^{11}$ All spectral data matched literature reports. ${ }^{11}$

1-bromo-2-(2-bromoethyl)cyclohex-1-ene (2.43). In a flame dried round bottom flask equipped with a stir bar, tetrabromomethane $(888.8 \mathrm{mg}, 2.68 \mathrm{mmol})$ and 2-(2-bromocyclohex-1enyl)ethanol (2.42) ($500 \mathrm{mg}, 2.44 \mathrm{mmol}$) were dissolved in dichloromethane (15 mL). After being cooled to $0^{\circ} \mathrm{C}$, triphenylphosphine ($702.9 \mathrm{mg}, 2.68 \mathrm{mmol}$) was added in three portions. The resulting mixture was allowed to warm up to room temperature and stirred for 1 hour. After completion, the reaction mixture was concentrated and added dropwise to an agitated mixture of silica gel $(5 \mathrm{~g})$ in hexanes, then passed through a silica plug to remove triphenyl phosphine oxide. The filtrate was concentrated and chromatography on silica gel (100\% hexanes) afforded 1-bromo-

2-(2-bromoethyl)cyclohex-1-ene (2.43) in 90% yield (585.2 mg) as an oil. ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(500 \mathrm{MHz}$, chloroform-d) $\delta 3.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 2 \mathrm{H}), 1.67$ ($\mathrm{s}, 4 \mathrm{H}$).

2-(2-(2-bromoethyl)cyclohex-1-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

was synthesized by modifying conditions originally reported by Miyaura. ${ }^{13}$ In a flame dried round bottom flask 1-bromo-2-(2-bromoethyl)cyclohex-1-ene (2.43) (1.34 g, 5 mmol), bis(pinacolato)diboron (aka $\mathrm{B}_{2} \mathrm{pin}_{2}, 1.9 \mathrm{~g}, 7.5 \mathrm{mmol}$), bis(tripheynylphosphine)palladium(II) dichloride ($175.5 \mathrm{mg}, 0.25 \mathrm{mmol}$), and potassium phenolate ($1.3 \mathrm{~g}, 10 \mathrm{mmol}$) were dissolved in toluene (30 mL). The reaction mixture was degassed for 10 minutes before being heated to $80^{\circ} \mathrm{C}$, then stirred for 12 hours. Water $(50 \mathrm{~mL})$ was added, and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with 1 M aqueous sodium hydroxide solution (30 mL), brine (100 mL), then dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure. The crude mixture was purified by chromatography on silica gel (2\% ethyl acetate in hexanes) to yield 2-(2-(2-bromoethyl)cyclohex-1-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($\mathbf{2 . 4 4}, 787.4 \mathrm{mg}, 50 \%$ yield) as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{H} \mathbf{N M R}$ (400 MHz , chloroform-d) $\delta 3.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.62-$ $1.49(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H})$.

2-(2-bromocyclopent-1-enyl)ethanol (2.49) was prepared following literature procedure form cyclopentanone (2.46). ${ }^{14}$ All spectral data matched literature reports. ${ }^{14}$

1-bromo-2-(2-bromoethyl)cyclopent-1-ene (2.50). In a flame dried round bottom flask equipped with a stir bar, tetrabromomethane $(1.53 \mathrm{~g}, 4.62 \mathrm{mmol})$ and 2-(2-bromocyclopent-1enyl)ethanol (2.49) ($800 \mathrm{mg}, 4.2 \mathrm{mmol}$) were dissolved in dichloromethane (30 mL). After being cooled to $0^{\circ} \mathrm{C}$, triphenylphosphine $(1.21 \mathrm{~g}, 4.62 \mathrm{mmol})$ was added in three portions. The resulting mixture was allowed to warm up to room temperature and stirred for 1 hour. After completion, the reaction mixture was concentrated and added dropwise to an agitated mixture of silica gel (5 g) in hexanes, then passed through a silica plug to remove triphenyl phosphine oxide. The filtrate was concentrated and chromatography on silica gel (100\% hexanes) afforded 1-bromo-2-(2-bromoethyl)cyclopent-1-ene (2.36) in 90% yield (960.3 mg) as an oil. ${ }^{1} \mathbf{H}-\mathbf{N M R}(400 \mathrm{MHz}$, chloroform-d) $\delta 3.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 2 \mathrm{H})$

2-(2-(2-bromoethyl)cyclopent-1-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.44) was synthesized by modifying conditions originally reported by Miyaura. ${ }^{\text {Error! Bookmark not defined. }}$ In a flame dried round bottom flask 1-bromo-2-(2-bromoethyl)cyclopent-1-ene (2.50) (507.0 mg, 2 mmol), bis(pinacolato)diboron (aka $\quad \mathrm{B}_{2} \mathrm{pin}_{2}, \quad 762.0 \quad \mathrm{mg}, \quad 3 \mathrm{mmol}$), bis(tripheynylphosphine)palladium(II) dichloride ($70.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), and potassium phenolate $(528.8 \mathrm{mg}, 4 \mathrm{mmol})$ were dissolved in toluene $(12 \mathrm{~mL})$. The reaction mixture was degassed for 10 minutes before being heated to $80^{\circ} \mathrm{C}$, then stirred for 12 hours. Water (30 mL) was added, and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with 1 M aqueous sodium hydroxide solution $(10 \mathrm{~mL})$, brine $(30 \mathrm{~mL})$, then dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure. The crude mixture was purified by chromatography on silica gel (2-5\% ethyl acetate in hexanes) to yield 2-(2-(2-bromoethyl)cyclopent-1-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.44, $301.4 \mathrm{mg}, 50 \%$ yield) as a colorless oil. ${ }^{1} \mathbf{H}-$ NMR $(500 \mathrm{MHz}$, chloroform-d) $\delta 3.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H})$.

2.7.4 Synthesis of 2.54 and 2.55

(Z)-methyl 3-iodoacrylate (2.54) was prepared following literature procedure. ${ }^{15}$ All data matched the literature reports. ${ }^{15}$

(2Z,4Z)-dimethyl hexa-2,4-dienedioate (2.55). In a flame dried round bottom flask (Z)methyl 3-iodoacrylate ($\mathbf{2 . 5 4}$) ($846.4 \mathrm{mg}, 4 \mathrm{mmol}$), bis(pinacolato)diboron (aka $\mathrm{B}_{2} \mathrm{pin}_{2}, 1.53 \mathrm{~g}, 6$ mmol), bis(tripheynylphosphine)palladium(II) dichloride ($85.8 \mathrm{mg}, 0.12 \mathrm{mmol}$), and potassium phenolate ($1.06 \mathrm{~g}, 8 \mathrm{mmol}$) were dissolved in toluene $(24 \mathrm{~mL})$. The reaction mixture was degassed for 10 minutes before being heated to $50^{\circ} \mathrm{C}$, then stirred for 12 hours. Water (30 mL) was added, and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with 1 M aqueous sodium hydroxide solution $(20 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$, then dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure. The crude mixture was purified by chromatography on silica gel ($2-5 \%$ ethyl acetate in hexanes) to yield (2Z,4Z)-dimethyl hexa-2,4-dienedioate $\mathbf{(2 . 5 5}, 67.7 \mathrm{mg}, 20 \%$ yield) as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$-NMR (400 MHz, chloroform-d) $\delta 7.90(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}$, $6 H$). All data matched the literature reports. ${ }^{16}$

2.7.5 Synthesis of Geminal Ambiphilic Trifluoroborate 2.60

3-iodobut-3-en-1-ol (2.57) was prepared following literature procedure. ${ }^{17}$ All data matched the literature reports. ${ }^{17}$

4-bromo-2-iodobut-1-ene (2.58). In a flame dried round bottom flask equipped with a stir bar, tetrabromomethane ($3.26 \mathrm{~g}, 9.8 \mathrm{mmol}$) and 3-iodobut-3-en-1-ol (2.57) (1.5 g, 7.6 mmol$)$ were dissolved in dichloromethane $(40 \mathrm{~mL})$. After being cooled to $0^{\circ} \mathrm{C}$, triphenylphosphine ($2.58 \mathrm{~g}, 9.8$ mmol) was added in 3 portions. The resulting mixture was allowed to warm up to room temperature and stirred for 1 hour. After completion, the reaction mixture was concentrated and added dropwise to an agitated mixture of silica gel $(10 \mathrm{~g})$ in hexanes, then passed through a silica plug to remove triphenyl phosphine oxide. The filtrate was concentrated and chromatography on silica gel (100% hexanes) afforded 4-bromo-2-iodobut-1-ene (2.58) in 60% yield (1.2 g) as a pink oil. ${ }^{\mathbf{1}} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, chloroform-d) $\delta 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.89$ $(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$.

2-(4-bromobut-1-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.59). In a flame dried round bottom flask 4-bromo-2-iodobut-1-ene (2.58) (1.13 g, 4 mmol), bis(pinacolato)diboron (aka $\mathrm{B}_{2} \operatorname{pin}_{2}, 2.03 \mathrm{~g}, 8 \mathrm{mmol}$), bis(tripheynylphosphine)palladium(II) dichloride ($85.2 \mathrm{mg}, 0.12 \mathrm{mmol}$), and potassium phenolate ($1.33 \mathrm{~g}, 10 \mathrm{mmol}$) were dissolved in toluene (24 mL). The reaction mixture was degassed for 10 minutes before being heated to $50^{\circ} \mathrm{C}$, then stirred for 12 hours. Water (30 mL) was added, and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with 1 M aqueous sodium hydroxide solution (20 mL), brine (40 mL), then dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure. The crude mixture was purified by chromatography on silica
gel (2\% ethyl acetate in hexanes) to yield 2-(4-bromobut-1-en-2-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane ($\mathbf{2 . 5 9}, 271.2 \mathrm{mg}, 25 \%$ yield) as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ (400 MHz , chloroform-d) $\delta 5.91(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.25-$ $1.27(12 \mathrm{H})$.

2-(4-bromobut-1-en-2-yl)trifluoro- λ^{4}-borane, potassium salt (2.60). In a round bottom flask equipped with a stir bar, 2-(4-bromobut-1-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane $\mathbf{(2 . 5 9}, 1.0 \mathrm{~g}, 3.8 \mathrm{mmol})$ were dissolved in methanol $(16 \mathrm{~mL})$. Potassium hydrogen fluoride solution (4.2 mL, 4.5 M in water) was added dropwise. The reaction mixture was then stirred vigorously at room temperature for 2 hours. The mixture was concentrated to dryness under reduced pressure then dissolved in acetone (20 mL). The solution was filtered, and the solid was washed with acetone ($3 \times 10 \mathrm{~mL}$). The acetone solution was concentrated to 2 mL , then ether was added until no further precipitation was observed. The crystals were then filtered and washed with ether to yield 2-(4-bromobut-1-en-2-yl) trifluoro- λ^{4}-borane, potassium salt ($\mathbf{2 . 6 0}, 458.9 \mathrm{mg}, 50 \%$ yield) as a white crystal. ${ }^{1}$ H-NMR (400 MHz, ACETONE-D6) $\delta 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{t}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$.

2.7.6 Synthesis of Aryl Ambiphilic Trifluoroborates 2.63, 2.69, 2.77, and 2.82

2-(bromomethyl)phenyltrifluoro- λ^{4}-borane, potassium salt (2.63). In a round bottom flask equipped with a stir bar, 2-(bromomethyl)phenylboronic acid (2.61, $430.5 \mathrm{mg}, 2 \mathrm{mmol}$) were dissolved in diethyl ether (8 mL). Potassium hydrogen fluoride solution ($1.75 \mathrm{~mL}, 4.5 \mathrm{M}$ in water) was added dropwise. The reaction mixture was then stirred vigorously at room temperature for 2 hours. The mixture was concentrated to dryness under reduced pressure then dissolved in acetone $(20 \mathrm{~mL})$. The solution was filtered, and the solid was washed with acetone ($3 \times 10 \mathrm{~mL}$). The acetone solution was concentrated to 2 mL , then ether was added until no further precipitation was observed. The crystals were then filtered and washed with ether to yield 2-(bromomethyl)phenyltrifluoro- λ^{4}-borane, potassium salt (2.63, $527.1 \mathrm{mg}, 95 \%$ yield) as a white crystal. ${ }^{1} \mathbf{H}-\mathrm{NMR}(400 \mathrm{MHz}$, acetone-d6) $\delta 7.49(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}$, $3 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H})$.

1-bromo-2-(2-bromoethyl)benzene (2.65). In a flame dried round bottom flask equipped with a stir bar, tetrabromomethane $(1.8 \mathrm{~g}, 5.5 \mathrm{mmol})$ and 2-bromophenylethyl alcohol (2.64, 1.00 $\mathrm{g}, 5.0 \mathrm{mmol}$) were dissolved in dichloromethane (30 mL). After being cooled to $0{ }^{\circ} \mathrm{C}$, triphenylphosphine ($1.44 \mathrm{~g}, 5.5 \mathrm{mmol}$) was added in 3 portions. The resulting mixture was allowed to warm up to room temperature and stirred for 1 hour. After completion, the reaction mixture was concentrated and added dropwise to an agitated mixture of silica gel (10 g) in hexanes, then passed
through a silica plug to remove triphenyl phosphine oxide. The filtrate was concentrated and chromatography on silica gel (100\% hexanes) afforded 1-bromo-2-(2-bromoethyl)benzene (2.65) in 85% yield $(1.12 \mathrm{~g})$ as a thick oil. ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}(400 \mathrm{MHz}$, chloroform-d) $\delta 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}-$ NMR (101 MHz, CHLOROFORM-D) $\delta 136.6,131.6,129.8,127.3,126.1,122.9,75.9,75.6,75.3$, 38.1, 29.6

2-(2-(2-bromoethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.66). In a flame dried round bottom flask (1-bromo-2-(2-bromoethyl)benzene (2.65) (527.9 mg, 2 mmol), bis(pinacolato)diboron (aka $\mathrm{B}_{2} \mathrm{pin}_{2}, 761.8 \mathrm{mg}, 3 \mathrm{mmol}$), bis(tripheynylphosphine)palladium(II) dichloride ($42 \mathrm{mg}, 0.06 \mathrm{mmol}$), and potassium phenolate ($528.8 \mathrm{mg}, 4 \mathrm{mmol}$) were dissolved in toluene (12 mL). The reaction mixture was degassed for 10 minutes before being heated to $50^{\circ} \mathrm{C}$, then stirred for 12 hours. Water (20 mL) was added, and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with 1 M aqueous sodium hydroxide solution (20 mL), brine (30 mL), then dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure. The crude mixture was purified by chromatography on silica gel (2-5\% ethyl acetate in hexanes) to yield 2-(2-(2-bromoethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane ($\mathbf{2 . 6 6}, 436.2 \mathrm{mg}, 70 \%$ yield) as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ (400 MHz , chloroform-d) $\delta 7.81(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 3 \mathrm{H}), 3.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}(101 \mathrm{MHz}$, CHLOROFORM-D) δ 144.1, 135.0, 129.7, 128.5, 124.8, 82.2, 75.9, 75.6, 75.2, 38.1, 33.0, 23.4

2-(2-(2-bromoethyl)phenyl)trifluoro- λ^{4}-borane, potassium salt (2.69). In a round bottom flask equipped with a stir bar, 2-(2-(2-bromoethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane $(\mathbf{2 . 6 6}, 622.0 \mathrm{mg}, 2 \mathrm{mmol})$ were dissolved in methanol (8 mL). Potassium hydrogen fluoride solution ($1.8 \mathrm{~mL}, 4.5 \mathrm{M}$ in water) was added dropwise. The reaction mixture was then stirred vigorously at room temperature for 2 hours. The mixture was concentrated to dryness under reduced pressure then dissolved in acetone $(20 \mathrm{~mL})$. The solution was filtered, and the solid was washed with acetone ($3 \times 10 \mathrm{~mL}$). The acetone solution was concentrated to 2 mL , then ether was added until no further precipitation was observed. The crystals were then filtered and washed with ether to yield 2-(2-(2-bromoethyl)phenyl)trifluoro- λ^{4}-borane, potassium salt (2.69, $465.0 \mathrm{mg}, 80 \%$ yield) as a white crystal. ${ }^{1} \mathbf{H}-\mathrm{NMR}(400 \mathrm{MHz}$, acetone-d6) $\delta 7.50(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=$ $8.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}(101 \mathrm{MHz}$, ACETONED6) $\delta 204.1,203.9,140.5,131.1,127.0,123.9,123.2,38.5,33.5,28.0,27.8,27.6,27.4,27.2,27.0$, 26.8

Methyl 5-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (2.74). In a flame dried round bottom flask methyl 2-bromo-5-methoxylbenzoate (2.70, $2.45 \mathrm{~g}, 10 \mathrm{mmol}$), bis(pinacolato)diboron (aka $\left.\mathrm{B}_{2} \mathrm{pin}_{2}, 2.45 \mathrm{~g}, 10 \mathrm{mmol}\right)$, [1,1'-bis(diphenylphosphino)ferrocene]
dichloropalladium (II) ($219.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), and potassium acetate ($1.47 \mathrm{~g}, 15 \mathrm{mmol}$) were dissolved in 1,4-dioxane (60 mL). The reaction mixture was degassed for 10 minutes before being heated to $80^{\circ} \mathrm{C}$, then stirred for 12 hours. Water (100 mL) was added, and the reaction mixture was extracted with $E t_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with 1 M aqueous sodium hydroxide solution $(30 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$, then dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure. The crude mixture was purified by chromatography on silica gel (5\% ethyl acetate in hexanes) to yield methyl 5-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (2.74, $2.18 \mathrm{~g}, 75 \%$ yield) as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , chloroform-d) $\delta 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J=8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, 3.83 (s, 3H), 1.39 (s, 12H).

2-(2-(bromomethyl)-4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

(2.76). In a flame dried round bottom flask equipped with a stir bar, lithium aluminum hydride ($198.8 \mathrm{mg}, 5 \mathrm{mmol}$) was added to THF (6 mL), the suspended mixture was cool to $0{ }^{\circ} \mathrm{C}$. Then a THF (5 mL) solution of methyl 5-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzoate ($\mathbf{2 . 7 4}, 584.3 \mathrm{mg}, 2 \mathrm{mmol}$) was added dropwise. The solution was allowed to warm up to room temperature and stirred for 1 hour. After completion, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL). The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layer was washed with brine (30 mL), dried with anhydrous MgSO_{4}, and concentrated. Chromatography on silica gel (5-10\% ethyl
acetate in hexanes) afforded (5-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)methanol (2.75, 40\% yield calculated based on crude weight and ${ }^{1} \mathrm{H}-\mathrm{NMR}$) as an inseparable mixture with impurities which won't affect the next step. In a flame dried round bottom flask equipped with a stir bar, tetrabromomethane ($656.6 \mathrm{mg}, 1.98 \mathrm{mmol}$) and crude mixture from the previous step were dissolved in dichloromethane (10 mL). After being cooled to $0{ }^{\circ} \mathrm{C}$, triphenylphosphine ($519.3 \mathrm{mg}, 1.98 \mathrm{mmol}$) was added in three portions. The resulting mixture was allowed to warm up to room temperature and stirred for 1 hour. After completion, the reaction mixture was concentrated and added dropwise to an agitated mixture of silica gel $(5 \mathrm{~g})$ in hexanes, then passed through a silica plug to remove triphenyl phosphine oxide. The filtrate was concentrated and chromatography on silica gel (5\% ethyl acetate in hexanes) afforded 2-(2-(bromomethyl)-4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.76) in 98% yield $(573.8 \mathrm{mg})$ as a white solid. ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(500 \mathrm{MHz}$, chloroform-d) $\delta 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ $(\mathrm{s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H})$

2-(2-(bromomethyl)-4-methoxyphenyl)trifluoro- λ^{4}-borane, potassium salt (2.77). In a round bottom flask equipped with a stir bar, 2-(2-(bromomethyl)-4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($\mathbf{2 . 7 6}, 241.0 \mathrm{mg}, 0.74 \mathrm{mmol}$) were dissolved in diethyl ether (3 $\mathrm{mL})$. Potassium hydrogen fluoride solution ($0.65 \mathrm{~mL}, 4.5 \mathrm{M}$ in water) was added dropwise. The reaction mixture was then stirred vigorously at room temperature for 2 hours. The mixture was concentrated to dryness under reduced pressure then dissolved in acetone (5 mL). The solution
was filtered, and the solid was washed with acetone ($3 \times 5 \mathrm{~mL}$). The acetone solution was concentrated to 1 mL , then ether was added until no further precipitation was observed. The crystals were then filtered and washed with ether to yield 2-(2-(bromomethyl)-4-methoxyphenyl)trifluoro- λ^{4}-borane, potassium salt ($2.77,86.9 \mathrm{mg}, 50 \%$ yield) as a white crystal. ${ }^{1} \mathbf{H}-\mathbf{N M R}(400 \mathrm{MHz}$, acetone-d6) $\delta 7.41(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$.

2-(2-bromo-5-methoxyphenyl)ethan-1-ol
 (2.79) was prepared from 3-

methoxyphenylacetic acid (2.77) following a literature procedure. ${ }^{18}$ All spectral data matched literature reports. ${ }^{18,19}$

2-(2-bromo-5-methoxyphenyl)ethyl bromide (2.81). In a flame dried round bottom flask equipped with a stir bar, tetrabromomethane $(5.1 \mathrm{~g}, 13 \mathrm{mmol})$ and 2-(2-bromo-5-methoxyphenyl)ethan-1-ol (2.80, $2.31 \mathrm{~g}, 10 \mathrm{mmol}$) were dissolved in dichloromethane (50 mL). After being cooled to $0^{\circ} \mathrm{C}$, triphenylphosphine ($3.4 \mathrm{~g}, 13 \mathrm{mmol}$) was added in 3 portions. The resulting mixture was allowed to warm to room temperature and stir for 1 hour. After completion, the reaction was concentrated under reduced pressure. Chromatography on silica gel (15% ethyl acetate in hexanes) afforded 2-(2-bromo-5-methoxyphenyl)ethyl bromide (2.81) as a mixture
containing a small amount of bromoform. This mixture was used directly in the following step. A single, pure fraction from the column was isolated and characterized, and all spectral data matched the literature reports. ${ }^{20}$

2-(2-(2-bromoethyl)-4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.82)

 was synthesized by modifying conditions originally reported by Miyaura. ${ }^{21}$ In a flame dried round bottom flask the 2-(2-bromo-5-methoxyphenyl)ethyl bromide (2.81) mixture from the previous step, bis(pinacolato)diboron (aka B2 $\operatorname{pin}_{2}, 3.81 \mathrm{~g}, 15 \mathrm{mmol}$), bis(tripheynylphosphine)palladium(II) dichloride ($210.6 \mathrm{mg}, 0.3 \mathrm{mmol}$), and potassium phenolate ($1.98 \mathrm{~g}, 15 \mathrm{mmol}$) were dissolved in toluene (60 mL). The reaction mixture was degassed for 10 minutes before being heated up to $80^{\circ} \mathrm{C}$ then stirred for 12 hours. Water $(100 \mathrm{~mL})$ was added, and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with 1 M aqueous sodium hydroxide solution (30 mL), brine $(100 \mathrm{~mL})$, then dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure. The crude mixture was purified by chromatography on silica gel (2-5\% ethyl acetate in hexanes) to yield 2-(2-(2-bromoethyl)-4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.82) (1.94 g, 57% yield over 2 steps) as a white solid. ${ }^{\mathbf{1}} \mathbf{H}$-NMR (400 MHz, chloroform-d) $\delta 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}(126 \mathrm{MHz}$, chloroform-d) $\delta 161.9$, $148.0,138.5,116.0,111.5,83.5,55.2,39.8,34.5,24.9 .{ }^{11} \mathbf{B}-\mathbf{N M R}(160 \mathrm{MHz}$, chloroform-d) $\delta 29.9$. IR 2975, 2933, 2836, 1602, 1587, 1366, 1239, 1162, 1074, 964, 926, 892, 858, 753, 658, 595, 584, $457 \mathrm{~cm}^{-1}$. HRMS-CI m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{22}{ }^{11} \mathrm{~B}^{79} \mathrm{BrO}_{3}[\mathrm{M}]^{+} 340.0845$, found 340.0859 ; calcd. for $\mathrm{C}_{15} \mathrm{H}_{22}{ }^{11} \mathrm{~B}^{81} \mathrm{BrO}_{3}[\mathrm{M}]+342.0825$, found 342.0850 .
(2-(2-bromoethyl)-4-methoxyphenyl)trifluoro- λ^{4}-borane, potassium salt (2.83). In a round bottom flask equipped with a stir bar, 2-(2-(2-bromoethyl)-4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($\mathbf{2 . 8 2}, 1.36 \mathrm{~g}, 4 \mathrm{mmol}$) was dissolved in methanol (50 mL). Potassium hydrogen fluoride solution ($3.6 \mathrm{~mL}, 4.5 \mathrm{M}$ in water) was added dropwise. The reaction mixture was then stirred vigorously at room temperature for 2 hours. The mixture was concentrated to dryness under reduced pressure then dissolved in acetone (20 mL). The solution was filtered, and the solid was washed with acetone ($3 \times 10 \mathrm{~mL}$). The acetone solution was concentrated to 5 mL then hexanes was added until there's no more solid crashing out from the solution. The crystal was then filtered and washed with hexanes to yield (2-(2-bromoethyl)-4-methoxyphenyl)trifluoro-λ^{4}-borane, potassium salt (2.83) (1.27 g, 99\% yield) as a white crystal. ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(400 \mathrm{MHz}$, acetone-d6) $\delta 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.62$ $(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathbf{N M R}(101 \mathrm{MHz}$, acetone-d6) $\delta 156.8,142.1$, 132.4, 113.1, 108.8, 52.8, 38.9, 33.6. ${ }^{11} \mathbf{B}-\mathbf{N M R}\left(128 \mathrm{MHz}\right.$, acetone-d6) $\delta 1.6,1.3 .{ }^{19} \mathbf{F - N M R}$ (376 MHz , acetone-d6) δ-138.6. IR 2940, 2836, 1597, 1558, 1484, 1451, 1288, 1241, 1129, 1042, 1009, $920,870,842,767,669,599,522 \mathrm{~cm}^{-1}$. HRMS-ESI \mathbf{m} / \mathbf{z} calcd. for $\mathrm{C}_{9} \mathrm{H}_{10}{ }^{11} \mathrm{~B}^{79} \mathrm{BrF}_{3} \mathrm{O}[\mathrm{M}]^{-}$ 280.9967, found 280.9967; calcd. for $\mathrm{C}_{9} \mathrm{H}_{10}{ }^{11} \mathrm{~B}^{81} \mathrm{BrF}_{3} \mathrm{O}[\mathrm{M}]-282.9947$, found 282.9948

2.8 Bibliography

1. For information regarding Wittig reaction and Corey ylides see Kürti, L.; Czako, B. Strategic Applications of Named Reactions in Organic Synthesis. Elsevier, Burlington, MA, USA, 2005.
2. For reviews on 1,3-dipole cycloadditions, see a) Hashimoto, T.; Maruoka, K. Recent Advances of Catalytic Asymmetric 1,3-Dipolar Cycloadditions. Chem. Rev. 2015, 115, 5366-5412; b) Gothelf, K. V.; Jørgensen, K. A. Asymmetric 1,3-Dipolar Cycloaddition Reactions. Chem. Rev. 1998, 98, 863-910.
3. Thien S. Nguyen, Michelle S. Yang, Jeremy A. May. Experimental mechanistic insight into the BINOL-catalyzed enantioselective conjugate addition of boronates to enones.Tetrahedron Lett. 2015, 56, 3337-3341.
4. Trost, B. M.; Dogra, K. Synthesis of (-)- Δ^{9}-trans-Tetrahydrocannabinol: Stereocontrol via MoCatalyzed Asymmetric Allylic Alkylation Reaction. Org. Lett. 2007, 9, 861-863.
5. Schafroth, M. A.; Zuccarello, G.; Krautwald, S.; Sarlah, D.; Carreira, E. M. Stereodivergent Total Synthesis of Δ^{9}-Tetrahydrocannabinols. Angew. Chem. Int. Ed. 2014, 53, 13898-13901. 6. Shultz, Z. P.; Lawrence, G. A.; Jacobson, J. M.; Cruz, E. J.; Leahy, J. W. Enantioselective Total Synthesis of Cannabinoids-A Route for Analogue Development. Org. Lett. 2018, 20, 381-384.
6. Ma, S.; Negishi, E. Anti-Carbometalation of Homopropargyl Alcohols and Their Higher Homologues via Non-Chelation-Controlled Syn-Carbometalation and Chelation-Controlled Isomerization. J. Org. Chem. 1997, 62, 784-785.
7. Please see Experimental Section for detail.
8. Fritzemeier, R. G.; Medici, E. J.; Szwetkowski, C.; Wonilowicz, L. G.; Sibley, C. D.; Slebodnick, C.; Santos, W. L. Route to Air and Moisture Stable β-Difluoroboryl Acrylamides. Org. Lett. 2019, 21, 8053-8057.
9. Molloy, J. J.; Schäfer, M.; Wienhold, M.; Morack, T.; Daniliuc, C. G.; Gilmour, R. BoronEnabled Geometric Isomerization of Alkenes via Selective Energy-Transfer Catalysis. Science. 2020, 369, 302-306.
10. Bhunia, S.; Ghorpade, S.; Huple, D. B.; Liu, R.-S. Gold-Catalyzed Oxidative Cyclizations of cis-3-En-1-yne to Form Cyclopentenone Derivatives. Angew. Chem. Int. Ed. 2012, 51, 2939-2942.
11. Adams, H.; Gilmore, N. J.; Jones, S.; Muldowney, M. P.; von Reuss, S. H.; Vemula, R. Asymmetric Synthesis of Corsifuran A by an Enantioselective Oxazaborolidine Reduction. Org. Lett. 2008, 10, 1457-1460.
12. Takagi, J.; Takahashi, K.; Ishiyama, T.; Miyaura, N. Palladium-Catalyzed Cross-Coupling Reaction of Bis(pinacolato)diboron with 1-Alkenyl Halides or Triflates: Convenient Synthesis of Unsymmetrical 1,3-Dienes via the Borylation-Coupling Sequence. J. Am. Chem. Soc. 2002, 124, 8001-8006.
13. Iwai, T.; Ueno, M.; Okochi, H.; Sawamura, M. Synthesis of Cyclobutene-Fused EightMembered Carbocycles through Gold-Catalyzed Intramolecular Enyne [2+2] Cycloaddition. Adv. Synth. Catal. 2018, 360, 670-675.
14. Spino, C.; Rezaei, H.; Dupont-Gaudet, K.; Belanger, F. Inter- and Intramolecular [4+1]Cycloadditions Between Electron-Poor Dienes and Electron-Rich Carbenes. J. Am. Chem. Soc. 2004, 126, 9926-9927.
15. Walsh, J. G.; Furlong, P. J.; Byrne, L. A.; Gilheany, D. G. Studies in the Oxidative RingOpening of Catachols and o-Benzoquinones. Lead Tetraacetate Versus the Copper(I) Chloride/Pyridine/Methanol System. Tetrahedron, 1999, 55, 11519-11536.
16. Zheng, J.-S.; Chang, H.-N.; Wang, F.-L.; Liu. L. Fmoc Synthesis of Peptide Thioesters without Post-Chain-Assembly Manipulation. J. Am. Chem. Soc. 2011, 133, 11080-11083.
17. Adams, H.; Gilmore, N. J.; Jones, S.; Muldowney, M. P.; von Reuss, S. H.; Vemula, R. Assymetric Synthesis of Corsifuran A by an Enantioselective Oxazaborolidine Reduction. Org. Lett. 2008, 10, 1457-1460.
18. Snyder, L.; Meyers, A. I. Synthesis of Enantiomerically Pure Hydrinden-2-ones and Benz[e]inden-2-ones via Asymmetric Alkylations of Chiral Bicyclic Lactams. J. Org. Chem. 1993, 58, 7507-7515.
19. Ghosh, A. K.; Mukhopadhyaya, J. K.; Ghatak, U. R. Regioselective Aryl Radical Cyclisation. Part 2.1 Synthesis of Octahydro-1H-dibenzo[a,d]cycloheptenes Through 7-Endo Ring Closure. J. Chem. Soc., Perkin Trans. 1, 1997, 2747-2756.
20. Ishiyama, T.; Murata, M.; Miyaura, N. Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Ester. J. Org. Chem. 1995, 60, 7508-7510.

Chapter 2

Appendix

Chapter 3
 Conjugate Addition Enolate Alkylation Reaction Development

3.1 Reaction Discovery and Optimization

With the ambiphilic vinyl trifluoroborate 3.2 in hand, we started to explore the annulation reaction we designed for THC synthesis (Table 3.1). The enone $\mathbf{3 . 1}$ and 3,3'-perfluorotoluylBINOL catalyst 3.3 could be synthesized in high yield following literature reported procedures. ${ }^{1,2}$ After screening several commonly used solvents in organocatalyzed conjugate additions with catalyst loadings similar to those previously reported by our group, ${ }^{2}$ 1,2-dichloroethane (DCE) was found to be the most effective solvent for this specific system. The conjugate addition in DCE gave 96\% yield of 3.4 with 99:1 er, which were excellent results.

Table 3.1 Solvent Screen for Conjugate Addition

3.1

3.2

entry	solvent	yield a	er b
1	toluene	62%	$99: 1$
2	1,4 -dioxane	54%	N/A
3	chlorobenzene	5%	N/A
4	1,2 -dichloroethane	96%	$99: 1$

${ }^{a}$ Yields determined by integrating ${ }^{1} \mathrm{H}$ NMR peaks relative to 1 equiv of methyl(4-nitrolphenyl) carboxylate as an internal standard. ${ }^{b}$ er determined by HPLC with chiral stationary phase

After finding an effective solvent, we evaluated the performance of several BINOL-derived catalysts under similar conditions (Table 3.2). It was found that the original catalyst $\mathbf{3}$ was the most effective catalyst for this reaction. It not only gave the highest yield for a given reaction time, but also had the fastest reaction rate comparing to other catalysts.

Table 3.2 Catalyst and Time Screen for Conjugate Addition in DCE

$\mathrm{R}=\mathrm{C}_{7} \mathrm{~F}_{7}, \mathrm{C}_{7} \mathrm{~F}_{7}-\mathrm{BINOL}$ (3.3)
$\mathrm{R}=\mathrm{I}$, iodo-BINOL (3.5)
3.4
$\mathrm{R}=1,3$-dinitrophenyl, diNO 2 Ph-BINOL (3.6)
3.2

entry	catalyst	time (h)	yield a
1	$\mathbf{3}$	2	72%
2	$\mathbf{3}$	5	87%
3	$\mathbf{3}$	10	100%
4	$\mathbf{3}$	24	95%
5	$\mathbf{5}$	2	59%
6	$\mathbf{5}$	5	77%
7	$\mathbf{5}$	10	89%
8	$\mathbf{5}$	24	87%
9	$\mathbf{6}$	2	46%
10	$\mathbf{6}$	5	63%
11	$\mathbf{6}$	10	78%
12	$\mathbf{6}$	24	85%

${ }^{a}$ Yields determined by integrating ${ }^{1} \mathrm{H}$ NMR peaks relative to 1 equiv of methyl(4-nitrolphenyl) carboxylate as an internal standard.

Based on our proposed reaction mechanism (Figure 1), it was hypothesized that the transient boron enolate could be trapped by intramolecular alkylation with an electrophilic carbon bearing a good leaving group (see $\mathbf{3 . 1 0}$ to $\mathbf{3 . 1 1}$). However, such a cyclization was not observed during our rigorous screening for the optimal conjugate addition solvent and catalyst. We attributed this to the boron enolate not being strong enough for the enolate alkylation to take place. On the other hand, loss of the bromide was not observed, which indicated a Finkelstein reaction with fluoride was not competitive. With the bromide leaving group still present, the reaction could proceed after completion of conjugate addition by using additional base to activate the enolate for cyclization.

Figure 3.1 Proposed Conjugate Addition Enolate Alkylation Mechanism
Several bases were screened for activation of the enolate by their addition to the solution after completion of the conjugate addition (Table 3.3). For the alkylation to take place and form a 6-membered ring, a thermodynamic enolate had to be generated on the more substituted side of the ketone. Typical strong kinetic bases such as LDA and n-BuLi were tested under thermodynamic conditions, namely adding less than 1 equivalent of base to the conjugate addition mixture at low temperature (entries 1 and 2). No cyclization was observed in those attempts. Using an excess amount of relatively weak bases such as triethylamine and cesium carbonate did not lead to a reactive enolate (entries 3 and 4). KHMDS was examined via direct addition to the reaction mixture at room temperature, and no cyclization product was observed by NMR (Entry 5). A typical thermodynamic base for enolate formation, potassium tert-butoxide, was also examined. However, no desired product was observed with or without 18-crown-6 to amplify the basicity via potassium sequestration (entries 6 and 7). We realized that the solubility of these bases in DCE
might not be good enough for effective enolate activation. Potassium tert-amylate, which was known to be more soluble in non-polar solvents, was examined to address this potential problem, but it still failed to generate the desired product (entry 8). We hypothesized that DCE might have poor compatibility with these bases because halogenated solvents could react with bases. It led us to the testing of other solvents that could allow alkylation.

Table 3.3 Base Screen with Conjugate Addition in DCE

3.1	3.2	
entry	base (equiv)	yield a
1^{b}	$\mathrm{LDA} \mathrm{(0.95)}$	0%
2^{b}	$n-\mathrm{BuLi}(0.95)$	0%
3	$\mathrm{Et}_{3} \mathrm{~N}(3)$	0%
4	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(3)$	0%
5	$\mathrm{KHMDS}(3)$	0%
6	$\mathrm{KO} t$-Bu (3)	0%
7^{c}	$\mathrm{KO} t$-Bu (3)	0%
8	$\mathrm{KO} t$-amyl (3)	0%

${ }^{a}$ Yields determined by integrating 1 H NMR peaks relative to 1 equiv of methyl(4-nitrolphenyl) carboxylate as an internal standard. ; ${ }^{b}$ reaction was cooled to $-78^{\circ} \mathrm{C}$ before addition of base then warmed up to room temperature; ${ }^{c} 3$ equiv 18 -crown- 6 was added.

To assess potential conditions for enolate alkylation, the isolated conjugate addition product was dissolved in THF, and several bases were examined (Table 3.4). Using a strong kinetic base under thermodynamic conditions was not effective in producing the desired product (entries 1 and 2). Interestingly, when KHMDS was used at room temperature with a prolonged reaction time (entries 3 and 4), the cyclization product was isolated in 50% yield with a diastereomeric ratio greater than 20:1. A thermodynamic condition could thus favor this enolate alkylation. An excess of KOt - Bu gave almost quantitative yield after the reaction mixture was stirred for 12 hours at room temperature with full retention of enantiopurity and an outstanding diastereomeric ratio
(entry 5). We were then eager to combine the conjugate addition and enolate alkylation into a single reaction. Due to DCE's poor compatibility with bases, KOt-Bu would not promote the reactivity of the enolate, either in pure DCE or a 1:1 mixture of DCE and THF (entries 6 and 7). Meanwhile, THF would not allow the conjugate addition to take place. Based on our experience with these two process, an ideal solvent would replicate the polar aprotic properties of THF for the enolate alkylation while having the non-coordinating nature and elevated boiling point of DCE or toluene to ensure a good performance in the conjugate addition. 2-Methyl-terahydrofuran (2MeTHF), an ecologically friendly solvent, ${ }^{3}$ was identified to be the perfect bridge between these two solvent characteristics. It proved to be excellent for the enolate alkylation annulation (entry 8) and provided a high yield and enantioselectivity in the conjugate addition (Table 3.5).

Table 3.4 Enolate Alkylation Optimization

- 3.4 -					
entry	base (equiv)	solvent	temperature	time (h)	result
1	LiHMDS (1.1)	THF	$-78{ }^{\circ} \mathrm{C}$ to $23{ }^{\circ} \mathrm{C}$	2	$0 \%{ }^{a}$
2	LDA (0.9)	THF	$-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$	10	0\% ${ }^{\text {a }}$
3	KHMDS (0.9)	THF	$23{ }^{\circ} \mathrm{C}$	8	$0 \%{ }^{a}$
4	KHMDS (0.9)	THF	$23{ }^{\circ} \mathrm{C}$	36	$\begin{aligned} & 50 \%^{b} \\ & \mathrm{dr}>20: 1 \\ & \hline \end{aligned}$
5	KOt - Bu (3.0)	THF	$23{ }^{\circ} \mathrm{C}$	12	$\begin{aligned} & 98 \%^{b}(99: 1 \mathrm{er})^{c} \\ & \mathrm{dr}>20: 1 \end{aligned}$
6	KOt - Bu (3.0)	DCE	$23{ }^{\circ} \mathrm{C}$	12	$0 \%{ }^{a}$
7	KOt - Bu (3.0)	$\begin{aligned} & \text { THF/DCE } \\ & (1: 1) \end{aligned}$	$23{ }^{\circ} \mathrm{C}$	12	0\% ${ }^{\text {a }}$
8	KOt - Bu (3.0)	2-MeTHF	$23{ }^{\circ} \mathrm{C}$	12	$\begin{aligned} & 98 \%^{b}(99: 1 \mathrm{er})^{c} \\ & \mathrm{dr}>20: 1 \end{aligned}$

${ }^{a}$ Yields determined by integrating 1H NMR peaks relative to 1 equiv trans-stilbene as an internal standard. ; ${ }^{b}$ isolated yield; ${ }^{c}$ er determined by HPLC with chiral stationary phase.

While screening various conjugate addition conditions for reaction optimization, ${ }^{4}$ we noticed that the yield would often significantly decrease if the number of equivalents of the nucleophile was lowered (Table 3.5, entries 3 to 11). The potassium trifluoroborate salt had very limited solubility in 2-MeTHF, and molecular sieves were not soluble at. We observed that the amount of insoluble solid in the mixture would also affect the overall yield (entries 12 and 13). We hypothesized that the stirring efficacy of the stirring bar was affected by the presence of the insoluble particles. Meanwhile, a certain amount of molecule sieves must be included to absorb the fluoride salt from reaction (entry 1 and 2). After optimization, the conjugate addition could be conducted at 1 mmol scale with a 1 M concentration with only 1.2 equivalents of the trifluoroborate while consistently delivering high yield (98\%) and outstanding enantioselectivity (99:1).

Table 3.5 Optimization of the Conjugate Addition in 2-MeTHF

entry				
	loading of 2 (equiv)	concentration	molecular sieves/ 0.2 mmol enone	result
1	3.0	0.05 M	250 mg	98\% ${ }^{a}(99: 1 \mathrm{er})^{c}$
2	3.0	0.05 M	50 mg	90\% ${ }^{\text {a }}$
3	3.0	0.1 M	50 mg	98\% ${ }^{\text {a }}$
4	2.5	0.1 M	50 mg	92\% ${ }^{\text {a }}$
5	2.0	0.1 M	50 mg	$89 \%{ }^{\text {a }}$
6	1.5	0.1 M	50 mg	$34 \%{ }^{a}$
7	1.2	0.1 M	50 mg	$53 \%{ }^{\text {a }}$
8	2.0	0.2 M	50 mg	$85 \%{ }^{\text {a }}$
9	2.0	0.4 M	50 mg	98\% ${ }^{\text {a }}$
10	2.0	0.8 M	25 mg	98\% ${ }^{b}(99: 1 \mathrm{er})^{c}$
11	1.5	0.8 M	50 mg	$75 \%{ }^{\text {a }}$
12	1.2	1.0 M	50 mg	86\% ${ }^{\text {a }}$
13	1.2	1.0 M	25 mg	98\% ${ }^{b}(99: 1 \mathrm{er})^{c}$

${ }^{a}$ Yields determined by integrating 1H NMR peaks relative to 1 equiv of methyl(4-nitrolphenyl) carboxylate as an internal standard. ; ${ }^{b}$ isolated yield; ${ }^{c}$ er determined by HPLC with chiral stationary phase.

After securing the optimal conjugate addition conditions, we searched for the most effective way to combine it with the enolate alkylation reaction (Table 3.6). A correlation between the equivalents of trifluoroborate and of base was observed. As the equivalents of trifluoroborate increased, more base was needed for full conversion of the conjugate addition product to the alkylation product (entries 1-6). We hypothesized that the base was partially saturated by the Lewis acidic boron species in the reaction (entry 5). However, those boron species could not be sequestered by Lewis basic additives such as HMPA and DMPU (entries 7 and 8). The reaction still required 2 additional equivalents of base to fully react. Nonetheless, the optimal conditions for the conjugate addition enolate alkylation annulation were successfully defined (entry 6).

Table 3.6 Optimization of Combined Reaction

entry	loading of 2 (equiv)	loading of $\mathrm{KO} t$-Bu (equiv)	additive	result
1	3.0	6.0	N/A	$\begin{aligned} & 98 \%{ }^{a}(99: 1 \mathrm{er})^{c} \\ & \mathrm{dr}>20: 1 \end{aligned}$
2	2.0	5.0	N/A	$\begin{array}{\|l} \hline 98 \%{ }^{a}(99: 1 \mathrm{er})^{c} \\ \mathrm{dr}>20: 1 \\ \hline \end{array}$
3	1.5	4.0	N/A	$99 \%{ }^{\text {b }}$
4	1.5	3.0	N/A	$98 \%{ }^{\text {b }}$
5	1.2	2.5	N/A	$80 \%{ }^{\text {b }}$
6	1.2	3.0	N/A	$\begin{aligned} & 98 \%{ }^{a}(99: 1 \mathrm{er})^{c} \\ & \mathrm{dr}>20: 1 \\ & \hline \end{aligned}$
7	1.2	1.0	$\mathrm{HMPA}^{\text {d }}$	30\% ${ }^{\text {b,e }}$
8	1.2	1.0	DMPU $^{\text {d }}$	$30 \%{ }^{\text {b,e }}$

${ }^{a}$ Isolated yield. ${ }^{b}$ Yields determined by integrating 1H NMR peaks relative to 1 equiv of transstilbene as an internal standard. ${ }^{c}$ er determined by HPLC with chiral stationary phase. ${ }^{d} 2.4$ equiv of each additive was used respectively. ${ }^{e}$ Reaction went to full completion after adding 2 more equivalents of base and stirring for 12 hours.

Satisfyingly, 2-MeTHF produced amazing results for the combined tandem reaction. The key THC intermediate $\mathbf{3 . 1 2}$ was obtained using enone $\mathbf{3 . 1}$ and ambiphilic vinyl trifluoroborate $\mathbf{3 . 2}$ as a single diastereomer in almost quantitative yield (98\%) with an outstanding er (99:1). Ideally, modification of the enone and the trifluoroborate precursors could access analogs bearing various substituents, including those containing aryl or heteroaryl groups.

3.2 Conjugate Addition Scope

With the optimal conditions in hand, various ambiphilic trifluoroborates were tested to potentially modify on the cyclohexene ring of THC. The geminal ambiphilic trifluoroborate $\mathbf{3 . 1 3}$ was first tested in the reaction due to the similarity in its structure compared to trifluoroborate $\mathbf{3 . 2}$ (Scheme 1). However, no reactivity was observed with the optimal conditions, and the enone $\mathbf{3 . 1}$ was recovered. The reaction was considered in the light of a series of mechanistic study conducted by Thien Nguyen, Michelle Yang, Bailey Brooks, and Neomi Hiller in the May lab. ${ }^{5,6}$ According to the proposed mechanism, partial positive charge will form on the terminal sp 2 carbon during the $\mathrm{C}-\mathrm{C}$ bond formation step (Scheme 3.1, 3.15). The reactivity of this trifluoroborate was thus reduced because there was no substituent to stabilize this developing partial positive charge.

Scheme 3.1 Conjugate Addition with Geminal Trifluoroborate 13
The conjugate addition with a series of aryl trifluoroborates was examined next (Figure 3.2). Trifluoroborates $\mathbf{3 . 1 6}$ and $\mathbf{3 . 1 7}$ were first assessed; however, they did not produce any of the corresponding product. In the reaction with trifluoroborate 3.17, significant protodeboronation was observed, indicating that protodeboronation was competing with conjugate addition. This problem
could potentially be addressed by incorporation of an electron donating substituent, such as methoxy group on the aryl ring, to increase the reactivity of the trifluoroborate. Based on this hypothesis, trifluoroborates $\mathbf{3 . 1 8}$ and $\mathbf{3 . 1 9}$ were synthesized and used in the conjugate addition. While the boronate nucleophile $\mathbf{3 . 1 9}$ gave the conjugate addition product $\mathbf{3 . 2 3}$ in 90% yield and 98:2 er, the trifluoroborate $\mathbf{3 . 1 8}$ did not show any sign of reaction in the same reaction setup, presumably due to the electron withdrawing benzylic bromide pulling electron density away from the nucleophilic carbon.

3.17, $R=H, n=2$
3.18, $\mathrm{R}=\mathrm{OMe}, \mathrm{n}=1$
3.19, $\mathrm{R}=\mathrm{OMe}, \mathrm{n}=2$

0\%

90\%, $98: 2$ er

Figure 3.2 Conjugate Addition with Ambiphilic Aryl Trifluoroborates
Various enones were also synthesized and tested to show that these ambiphilic trifluoroborates would enable cannabinoid analog development (Figure 3.3). The conjugate addition worked very well with phenyl and alkyl substituents ($\mathbf{3 . 2 4}$ and $\mathbf{3 . 2 5 b}$). Changing the enone electronics with an electron-withdrawing group on the β-aryl ring to produce ketone $\mathbf{3 . 2 6 b}$ did not cause deviation from a high yield and enantioselectivity. The conjugate addition also showed great tolerance with heteroaryl substituted enones (27-29). Both unprotected and benzyl protected indolyl enones had fast reaction rates, with similar yields and ers (3.27a and 3.27b), which
demonstrated that heteroaryls will be tolerated for analog synthesis. Notably, sufficient stabilization must be provided for the partial positive charge on the β position of the enone, otherwise the reaction would not take place as shown in 3.25a and 3.26a. The aryl trifluoroborate 3.19 also showed promising compatibility with electrophiles containing heteroaryl substituents (3.30a and 3.30b).

3.28 85\%, $96: 4 \mathrm{er}^{b}$

3.27a ${ }^{C} R^{3}=H, 70 \%, 94: 6 e^{b}$ $3.27 \boldsymbol{b}^{C} R^{3}=B n, 80 \%$, $92: 8 e^{b}$

3.30a $a^{C} R^{1}=H 60 \%, 97: 3 e r^{b}$
$3.30 b^{c} \mathrm{R}^{1}=\mathrm{Bn} 60 \%$, 97:3 er^{b}
${ }^{a}$ All yields are average of at least two trials. ${ }^{b}$ er was determined by HPLC with chiral stationary phase. ${ }^{c}$ Reaction completed in 2 hours.
Figure 3.3 Conjugate Addition Scope with Ambiphilic Vinyl Trifluoroborate 2

3.3 Conjugate Addition Enolate Alkylation Scope

The tandem conjugate addition/enolate alkylation annulation conditions were applied to the same array of substrates presented previously, resulting in high stereoselectivity while maintaining compatibility with various functional groups (Figure 3.4).

 phase; ${ }^{\mathrm{c}} \mathrm{dr}$ was determined by crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$; ${ }^{\mathrm{d}}$ reaction times differ due to sensitivity of different substrates under basic conditions.
Figure 3.4 Conjugate Addition/Enolate Alkylation Annulation Tandem Reaction

For the Alkyl, aryl, and electron-poor aryl substrates, the tandem yield and enantioselectivity did not deviate from those obtained in the isolated conjugate addition, even though an additional transformation was incorporated (3.31-3.33). Consequently, the efficiency of this annulation was greatly enhanced in the combined, single-reaction approach. On the other hand, two of the heteroaryl substrates provided additional challenges for the alkylation stage of the annulation. The use of unprotected indolyl and benzofuranyl substrates gave a complex mixture after being treated with base (see 3.34a, 3.36a, and 3.38a). For indolyl substrates, this problem was easily addressed by using a protecting group to prevent deprotonation at the indole $\mathrm{N}-\mathrm{H}$, and both products 3.34b and 3.38b were obtained successfully with good yield and er. Notably, product 3.34b resembles recently developed synthetic cannabinoids in literature ${ }^{7,8}$ but has the THC cyclohexenyl ring incorporated with high enantiopurity. In the case of the benzofuranyl substrate, some formation of an 8-membered ring product was observed, presumably due to kinetic enolate formation on the methyl side of the ketone. Indeed, a phenyl ketone derivative prevented competing enolate formation and $\mathbf{3 . 3 6 b}$ was obtained in 97% yield and $94: 6$ er as a single diastereomer. The benzothiophene substrate also gave a consistent yield and enantioselectivity for the tandem reaction (see 3.35). A precursor for a THC analog that would be inaccessible by prior enantioselective catalysis routes, 3.37, was obtained in 85\% yield and 98:2 er.

Given that the addition of excess KOt - Bu could enable additional enolate formation, subsequent alkylation could occur to furnish polycyclic products containing all-carbon quaternary centers from an enone like $\mathbf{3 . 3 9}$ with a pendent alkyl halide or tosylate (Scheme 3.2). Again, the success of this strategy depended on the compatibility of nucleophilic organoboronates with traditional electrophiles. Conjugate addition in isolation gave β-branched $\mathbf{3 . 4 0}$ in 80% yield and 92:8 er. In the tandem conjugate addition/enolate alkylation, the cis-decalin $\mathbf{3 . 4 1}$ was obtained in
70% yield and 90:10 er with an outstanding dr that was higher than 25:1. The initial stereocenter set by conjugate addition effectively controlled the subsequent alkylations. Apparently, the enolate derived from $\mathbf{3 . 4 0}$ reacts faster with the alkyl bromide than the alkyl tosylate, since the resulting intermediate 3.42 could be isolated in small quantities and identified via ${ }^{1} \mathrm{H}$ NMR.

Scheme 3.2 Double Alkylation to Form a cis-Decalin with Quaternary Carbon
Interestingly, in the reaction between aryl nucleophile $\mathbf{3 . 1 9}$ and enone $\mathbf{3 . 3 9}$ (Scheme 3.3), two arylated products, $\mathbf{3 . 4 3}$ and $\mathbf{3 . 4 4}$ were isolated from the conjugate addition, presumably due to a competing Finkelstein reaction by the bromide in the system. Surprisingly, this Finkelstein reactivity was not observed from the fluoride generated during the reaction, presumably due to the sequestration of fluoride by boron. The annulation afforded benzo-fused decalin $\mathbf{3 . 4 5}$ in a 1:1 ratio of diastereomers in 65% overall yield and $98: 2$ er for each diastereomer. After the tandem annulation and deprotonation to access the putative enolate intermediate 3.46, we hypothesized that the low diastereoselectivity resulted from the similar conformational energies of positioning the flexible alkyl chain in either a pseudoaxial or pseudoequatorial position. The additional steric hinderance from the fused aryl ring and the accompanying allylic strain compared to its vinyl counterpart is likely responsible for the similar conformational energies, leading to a $50 / 50$ chance of electrophilic attack on either the top or the bottom face of the enolate. This steric effect was also
observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 . 3 7}$. The limited rotation of the dimethoxyaryl ring resulted in significant broadening of the methyl ether peaks instead of the sharp peaks observed in the less crowded congener 3.12.

Scheme 3.3 Double Alkylation to Form a Decalin with Aryl Trifluoroborate

3.4 Conclusion

After rigorous exploration, we successfully developed a novel conjugate addition/enolate alkylation annulation reaction enabled by sophisticated ambiphilic organoborate alkyl halides, which selectively set two adjacent stereocenter in a single reaction. By simple modification of trifluoroborate ambiphiles, analogs can be obtained that were inaccessible with prior enantioselective catalytic routes. All-carbon quaternary centers can even be generated with high enantioselectivity. This metal-free method shows high compatibility with various functional groups, including heteroaryl substituents, and its modularity will allow access to novel cannabinoid analogs, such as those with benzo-fused rings. We will conduct further investigation for conditions that would allow outstanding performance from more ambiphilic organoboronates in this type of transformation.

3.5 Experimental

3.5.1 Material and Methods

All reactions were carried out in flame- or oven-dried glassware under a positive pressure of argon unless the reaction contained water as a solvent. Dichloromethane, toluene, THF and acetonitrile were purged with argon and dried over activated alumina columns. 1,2-dichloroethane was freshly distilled from CaH_{2} before use. 2-Methyl-tetrahydrofuran (2-MeTHF) was purchased from Acros Organics MS as "extra dry $99 \%+$ stabilizer free" in an AcroSeal bottle. Flash chromatography was performed using $60 \AA$ silica gel (Sigma Aldrich). Preparative and analytical plate chromatography was performed on Sigma Aldrich silica gel plates, $250 \mu \mathrm{~m}$ thickness, $60 \AA$ pore size, with UV light at 254 nm used to visualize the plates. Chemical names were generated using Cambridge Soft ChemBioDraw Ultra 12.0. Analysis by HPLC was performed on a Shimadzu Prominence LC (LC-20AB) equipped with an SPD-20A UV-Vis detector (190 nm-400 nm) and a Chiralpak or Chiralcel ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$) column (see below for column details). The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{11} \mathrm{~B}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a JEOL ECA-600, ECA-500, or ECX-400P spectrometer using the residual solvent peak as an internal standard $\left(\mathrm{CDCl}_{3}: 7.25 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ NMR and 77.00 ppm for ${ }^{13} \mathrm{C}$ NMR). NMR yields were determined by addition of 1 equivalent of methyl (4-nitrophenyl) carboxylate or trans-stilbene as an internal standard to the crude reaction mixture. IR spectra were obtained using a ThermoNicolet Avatar 370 FT-IR instrument. HRMS analyses were performed under contract by UT Austin's mass spectrometric facility via an Agilent 6546 QTOF LC/MS (high res ESI), Agilent 6530 Q-TOP LC/MS (high resolution CI, APCI or APPI), or Waters Autospec GC/MS (high resolution CI) instrument.

Commercially available compounds were purchased from Sigma Aldrich, Acros, CombiBlocks, Oakwood Chemical, Alfa Aesar, Ambeed, ArkPharm, Beantown Chemical, TCI, and Cambridge Isotope Laboratories and were used without further purification.

3.5.2 HPLC Columns

Chiralpak AY-3: Amylose tris-(5-chloro-2-methylphenylcarbamate) coated on $3 \mu \mathrm{~m}$ silica gel Chiralpak AD-H: Amylose tris-(3,5-dimethylphenylcarbamate) coated on $5 \mu \mathrm{~m}$ silica gel Chiralpak ID: Amylose tris-(3-chlorophenylcarbamate) immobilized on $5 \mu \mathrm{~m}$ silica gel Chiralcel OJ-H: Cellulose tris-(4-methylbenzoate) coated on $5 \mu \mathrm{~m}$ silica gel Chiralcel OD-H: Cellulose tris-(3,5-dimethylphenylcarbamate) coated on $5 \mu \mathrm{~m}$ silica gel Chiralpak AS-H: Amylose tris-[(S)- α-methylbenzylcarbamate) coated on $5 \mu \mathrm{~m}$ silica gel

3.5.3 Synthesis of the Catalysts

3.3

Both (R) - and racemic $3,3^{\prime}-\left(\mathrm{C}_{7} \mathrm{~F}_{7}\right)_{2}$-BINOL catalysts (3.3) were synthesized following a reported procedure from our group. ${ }^{2}$ All data matched the literature report.

Racemic 3,3'-iodo-BINOL catalysts (3.5) were synthesized following a reported procedure from our group. ${ }^{1}$ All data matched the literature report.

Racemic 3,3'-bis(1,3-dinitrophenyl)BINOL catalysts (3.6) were from a batch synthesized by our group alumni Truong N. Nguyen.

3.5.4 Synthesis of Enones

3.47

3.55

3.56

3.39

3.1
3.47 is commercially available from Sigma Aldrich.
3.48, 3.50, 3.51, and $\mathbf{3 . 5 6}$ were prepared were prepared following a literature procedure, and all spectral data matched literature reports. ${ }^{2}$
3.55 was prepared following a literature procedure, and all spectral data matched literature reports. ${ }^{9}$
3.49 was prepared following a literature procedure, and all spectral data matched literature reports. ${ }^{10}$

General Procedure for phenyl enone synthesis via Wittig Reaction

To a flask equipped with a stir bar and a condenser was added the carboxaldehyde (2.0 mmol, 1 equiv), (benzoymethylene)triphenylphosphorane ($456.5 \mathrm{mg}, 2.4 \mathrm{mmol}, 1.2$ equiv), and toluene $(4 \mathrm{~mL})$. The reaction mixture was heated to reflux for 12 hours. After completion, the reaction mixture was concentrated under reduced pressure. The crude mixture was purified via flash column chromatography with an appropriate eluent on silica gel.
3.52 was prepared following the general procedure using the corresponding alkyl aldehyde. It is a known compound. ${ }^{11}$
3.53 was prepared following the general procedure using the corresponding alkyl aldehyde. It is a known compound. ${ }^{12}$
3.54 was prepared following the general procedure using the corresponding alkyl aldehyde. It is a known compound. ${ }^{13}$

(E)-7-oxo-7-phenylhept-5-en-1-yl 4-methylbenzenesulfonate (3.39). Aldehyde 3.59 was prepared following a literature procedure from diol 3.57 and all data matched literature reports. ${ }^{14}$ Compound $\mathbf{3 . 3 9}$ was prepared from aldehyde $\mathbf{3 . 5 9}(5 \mathrm{mmol})$ following the general procedure but requiring a shorter amount of time (2 hours). After silica gel chromatography using 20\% ethyl acetate in hexanes as eluent, the title compound was obtained in 99% yield (1.77 g) as a sticky yellow oil at room temperature (it becomes solid in a $-20^{\circ} \mathrm{C}$ freezer, returning to liquid form after warming back to room temperature). ${ }^{1} \mathbf{H}-\mathbf{N M R}(600 \mathrm{MHz}$, chloroform-d) $\delta 7.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 2H), 7.78 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.55(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}(101 \mathrm{MHz}$, chloroform-d) δ $189.2,147.0,143.4,136.3,131.5,131.3,128.4,127.1,127.1,126.4,124.9,68.6,30.5,26.9,22.6$, 20.2 IR 2925, 1669, 1596, 1352, 1172, 1096, 923, 661, $553 \mathrm{~cm}^{-1}$ HRMS-ESI m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$359.1312, found 359.1312

(E)-4-(2,6-dimethoxy-4-pentylphenyl)but-3-en-2-one (3.1). Aldehyde 3.62 was prepared following a literature procedure. ${ }^{15}$ To a flask equipped with a stir bar and a condenser was added $3.62(1.18 \mathrm{~g}, 5 \mathrm{mmol})$, 1-triphenylphosphoranylidene-2-propanone ($1.91 \mathrm{~g}, 6 \mathrm{mmol}$, 1.2 equiv), and toluene $(20 \mathrm{ml})$. The reaction mixture was heated to $110^{\circ} \mathrm{C}$ for 12 hours. After completion, the reaction mixture was concentrated under reduced pressure. The crude mixture was purified via flash column chromatography with 20% ethyl acetate in hexanes on silica gel. The product was obtained in 99% yield $(1.38 \mathrm{~g})$ as a white to pale yellow solid, and all spectral data matched literature reports. ${ }^{16}$

3.5.5 General procedure of the BINOL-catalyzed conjugate addition reactions between (Z) -(4-bromo-2-methylbut-1-en-1-yl)trifluoro- λ^{4}-borane, potassium salt (3.2) and various enones (0.2 mmol scale)

To a 2-dram vial equipped with a stir bar were added $4 \AA$ powdered molecular sieves (25 mg), and the vial was flamed-dried under high vacuum. The vial was allowed to cool to room temperature and backfilled with argon. The corresponding enone ($0.2 \mathrm{mmol}, 1$ equiv), $(R)-3,3^{\prime}$ $\left(\mathrm{C}_{7} \mathrm{~F}_{7}\right)_{2}$-BINOL ($28.7 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.2$ equiv), (Z)-(4-bromo-2-methylbut-1-en-1-yl)trifluoro-
λ^{4}-borane, potassium salt (3.1) $(102.7 \mathrm{mg}, 0.4 \mathrm{mmol}$, 2 equiv) were then added. Anhydrous 2MeTHF (0.25 mL) was added. The mixture was stirred for 2 minutes at room temperature to form a suspension of fine particulates. The vial was well sealed with Teflon thread tape, and the reaction was heated to $81^{\circ} \mathrm{C}$ in a sand bath. The reaction was monitored by TLC. After the reaction was complete, the solution was filtered through a short celite pad and concentrated. The crude reaction mixture was purified via column chromatography on silica gel with appropriate eluent.

(S,Z)-8-bromo-4-(2,6-dimethoxy-4-pentylphenyl)-6-methyloct-5-en-2-one (3.4). The crude reaction mixture was purified via flash column chromatography with $2-5 \%$ ethyl acetate in hexanes as the eluent. HPLC Chiralpak AD-H (hexane/i-PrOH $=99: 1,0.5 \mathrm{~mL} / \mathrm{min}$, UV-190 detector)

Result 83.4 mg , 98% yield; $99: 1$ er
${ }^{1} \mathbf{H}-$ NMR $(500 \mathrm{MHz}$, chloroform-d) $\delta 6.34(\mathrm{~s}, 2 \mathrm{H}), 5.67(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{td}, J=$ $8.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 3.36-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.87-2.75 (m, 2H), 2.62-2.51 (m, 3H), 2.06 (s, 3H), $1.65(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.30(\mathrm{~m}$, 4H), $0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}-\mathbf{N M R}(126 \mathrm{MHz}$, chloroform-d) $\delta 208.9,157.6,142.9,132.1$, $130.6,117.1,104.5,55.7,48.2,36.6,36.4,31.8,31.2,31.0,30.2,29.6,23.5,22.7,14.2$ IR 2929, $2856,1712,1606,1580,1453,1418,1353,1226,1188,1146,1113,1024,973,823,651,594,533$ cm^{-1} HRMS-ESI \mathbf{m} / \mathbf{z} calcd. for $\mathrm{C}_{22} \mathrm{H}_{33}{ }^{79} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 425.1686$, found 425.1688 ; calcd. for $\mathrm{C}_{22} \mathrm{H}_{33}{ }^{81} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 427.1668$, found 427.1671

This reaction could also be conducted at 1 mmol scale following the procedure below.

To a 2-dram vial equipped with a stir bar was added $4 \AA$ powdered molecular sieves (125 mg), and the vial was flamed-dried under high vacuum. The vial was cooled to room temperature and backfilled with Argon. The enone 3.1 ($276.4 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), $(R)-3,3{ }^{\prime}-\left(\mathrm{C}_{7} \mathrm{~F}_{7}\right)_{2}$ - BINOL (143.5 mg, $0.2 \mathrm{mmol}, 0.2$ equiv), (Z)-(4-bromo-2-methylbut-1-en-1-yl)trifluoro- λ^{4}-borane, potassium salt (3.2, $306 \mathrm{mg}, 1.2 \mathrm{mmol}$, 1.2 equiv) were then added. Anhydrous 2-MeTHF (1 mL) was added. The mixture was stirred for 2 minutes at room temperature to form a suspension of fine particulates. The vial was well sealed by Teflon thread tape, and the reaction was heated to $81^{\circ} \mathrm{C}$ in a sand bath. The reaction was monitored by TLC analysis. After the reaction was complete, the solution was filtered through a short celite pad and concentrated. The crude reaction mixture was purified via flash column chromatography with 2-5\% ethyl acetate in hexanes as the eluent. HPLC Chiralpak AD-H (hexane/i-PrOH $=99: 1,0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-190$ detector)

Result $415.7 \mathrm{mg}, 98 \%$ yield; 99:1 er

(S,Z)-7-bromo-5-methyl-1,3-diphenylhept-4-en-1-one (3.24)The crude reaction mixture was purified via flash column chromatography with $10-30 \%$ dichloromethane in hexanes as the eluent. HPLC Chiralpak ID (hexane/i-PrOH $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result $64.5 \mathrm{mg}, 90 \%$ yield; 97:3 er
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, chloroform-d) $\delta 7.92(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}$,
$J=16.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.25(\mathrm{~m}, 4 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}-\mathrm{NMR}(126 \mathrm{MHz}$, chloroform-d) $\delta 198.4,144.6,137.1,133.2,133.1,130.8,128.8,128.7,128.2,127.3,126.5,46.1$, 39.7, 35.9, 30.6, 23.2 IR 3059, 3325, 2967, 1684, 1588, 1493, 1447, 1355, 1255, 1200, 1022, 1001, 979, 841, 747, 689, $548 \mathrm{~cm}^{-1}$ HRMS-ESI m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{21}{ }^{79} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+} 357.0849$, found 357.0853; calcd. for $\mathrm{C}_{20} \mathrm{H}_{21}{ }^{81} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+} 359.0830$, found 359.0834

(S,Z)-3-(4-bromo-2-methylbut-1-en-1-yl)-1-phenyltridecan-1-one (3.25b). The crude reaction mixture was purified via flash column chromatography with 20-30\% dichloromethane in hexanes as the eluent. HPLC Chiralpak AD-H (hexane/i-PrOH $=99: 1,0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result $70.1 \mathrm{mg}, 83 \%$ yield; $92: 8 \mathrm{er}$
${ }^{1} \mathbf{H}-\mathrm{NMR}(400 \mathrm{MHz}$, chloroform-d) $\delta 7.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.95-2.86(\mathrm{~m}, 3 \mathrm{H}), 2.60-2.52$ $(\mathrm{m}, 2 \mathrm{H}), 1.65(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\operatorname{broad}, 18 \mathrm{H}), 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}-\mathbf{N M R}(126 \mathrm{MHz}$, chloroform-d) $\delta 199.7,137.4,133.0,132.4,132.2,128.7,128.2,44.9,35.9,35.8,34.6,32.0,30.9$, 29.9, 29.8, 29.7, 29.4, 27.5, 23.0, 22.8, 14.2 IR 3186, 2921, 2851, 2259, 1683, 1596, 1580, 1448, 1402, 1377, 1272, 1209, 750, 689, 647, 608, $504 \mathrm{~cm}^{-1}$ HRMS-ESI m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{37}{ }^{79} \mathrm{BrO}$ $[\mathrm{M}+\mathrm{H}]^{+} 421.2101$, found 421.2101 ; calcd. for $\mathrm{C}_{24} \mathrm{H}_{37}{ }^{81} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+} 423.2083$, found 423.2083

(S,Z)-7-bromo-5-methyl-1-phenyl-3-(4-(trifluoromethyl)phenyl)hept-4-en-1-one
(3.26b). The crude reaction mixture was purified via flash column chromatography with 20-30\% dichloromethane in hexanes as the eluent. HPLC Chiralpak ID (hexane $/ \mathrm{i}-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}$, UV-254 detector)

Result $80.5 \mathrm{mg}, 95 \%$ yield; $98: 2$ er
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(500 \mathrm{MHz}$, chloroform-d) $\delta 7.91(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=16.0,6.9 \mathrm{~Hz}$, 1H), 3.45-3.29(m, 4H), $2.71(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}-\mathbf{N M R}(126 \mathrm{MHz}$, chloroformd) $\delta 197.8,148.6,136.9,133.8,133.4,130.0,128.8,128.1,127.8,125.8,125.7,125.7,125.7,45.6$, 39.4, 35.7, 30.4, 23.0 IR 2970, 1684, 1617, 1596, 1448, 1419, 1314, 1256, 1161, 1108, 1066, 1023, 822, 779, 757, 607, $543 \mathrm{~cm}^{-1}$ HRMS-ESI m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{20}{ }^{79} \mathrm{BrF}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 425.0722$, found 425.0723; calcd. for $\mathrm{C}_{21} \mathrm{H}_{20}{ }^{81} \mathrm{BrF}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 427.0704$, found 427.0708

(S,Z)-8-bromo-4-(1H-indol-3-yl)-6-methyloct-5-en-2-one (3.27a). The reaction was quenched and worked up after 2 hours, since decomposition was observed with prolonged reaction time. The crude reaction mixture was purified via flash column chromatography with 5-10\% ethyl
acetate in hexanes as the eluent. HPLC Chiralpak ID (hexane $/ \mathrm{i}-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}$, UV254 detector).

Result $46.5 \mathrm{mg}, 70 \%$ yield; $94: 6 \mathrm{er}$
${ }^{1} \mathbf{H}-\mathbf{N M R}(500 \mathrm{MHz}$, chloroform-d) $\delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J$ $=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=16.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{ddd}, J=44.8,17.3,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.01-2.77$ (m, 4H), $2.09(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}-\mathbf{N M R}(126 \mathrm{MHz}$, chloroform-d) $\delta 208.0,136.6,132.5$, $130.5,126.1,122.2,121.0,119.5,119.4,118.8,111.5,50.3,35.8,31.7,30.8,30.8,23.1$ IR 3407, $2966,1700,1456,1419,1354,1338,1258,1243,1157,1125,1095,1010,739,653,493 \mathrm{~cm}^{-1}$

HRMS-ESI m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{20}{ }^{79} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$334.0810, found 334.0801; calcd. for $\mathrm{C}_{17} \mathrm{H}_{20}{ }^{81} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$336.0782, found 336.0792

(S,Z)-4-(1-benzyl-1H-indol-3-yl)-8-bromo-6-methyloct-5-en-2-one (3.27b). The reaction was quenched and worked up after 2 hours, since decomposition was observed with prolonged reaction time. The crude reaction mixture was purified via flash column chromatography with $5-10 \%$ ethyl acetate in hexanes as the eluent. HPLC Chiralcel OD-H (hexane/i-PrOH $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result $67.7 \mathrm{mg}, 80 \%$ yield; $92: 8 \mathrm{er}$
${ }^{1} \mathbf{H}-\mathbf{N M R}(500 \mathrm{MHz}$, chloroform-d) $\delta 7.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 4 \mathrm{H})$, 7.19$7.08(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 4.42-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.33(\mathrm{~m}$, 2H), 3.02-2.79 (m, 4H), $2.09(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}-\mathrm{NMR}(126 \mathrm{MHz}$, chloroform-d) $\delta 207.9$, $137.7,137.0,132.6,130.6,128.9,127.7,126.8,126.8,125.2,122.0,119.6,119.2,118.0,110.1$, 50.4, 50.0, 35.8, 31.7, 30.9, 30.8, 23.2 IR 3028, 2910, 2886, 1707, 1611, 1559, 1495, 1465, 1354, 1331, 1267, 1212, 1154, 1028, 846, $740,700,552 \mathrm{~cm}^{-1}$ HRMS-ESI m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{26}{ }^{79} \mathrm{BrNO}$ $[\mathrm{M}+\mathrm{Na}]^{+} 446.1090$, found 446.1098 ; calcd. for $\mathrm{C}_{24} \mathrm{H}_{26}{ }^{81} \mathrm{BrNO}[\mathrm{M}+\mathrm{Na}]^{+} 448.1073$, found 448.1079

(S,Z)-4-(benzo[b]thiophen-3-yl)-8-bromo-6-methyloct-5-en-2-one (3.28). The crude reaction mixture was purified via flash column chromatography with 2-5\% ethyl acetate in hexanes as the eluent. HPLC Chiralcel OD-H (hexane/i-PrOH $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result $59.7 \mathrm{mg}, 85 \%$ yield; $96: 4 \mathrm{er}$
${ }^{1} \mathbf{H}-$ NMR $(500 \mathrm{MHz}$, chloroform-d) $\delta 7.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{td}$, $J=8.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.97-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.74$ (s, 3H) ${ }^{13} \mathbf{C - N M R}(126 \mathrm{MHz}$, chloroform-d) $\delta 206.9,140.8,138.9,137.8,134.0,129.4,124.5$, 124.1, 123.2, 122.0, 121.5, 49.8, 35.8, 33.5, 30.8, 30.5, 23.1 IR 2966, 2873, 1711, 1425, 1355, 1268, 1212, 1155, 1020, 989, 833, 759, 730, 711, 656, $558 \mathrm{~cm}^{-1}$ HRMS-ESI m/z calcd. for
$\mathrm{C}_{17} \mathrm{H}_{19}{ }^{79} \mathrm{BrOS}[\mathrm{M}+\mathrm{H}]^{+}$351.0413, found 351.0403; calcd. for $\mathrm{C}_{17} \mathrm{H}_{19}{ }^{81} \mathrm{BrOS}[\mathrm{M}+\mathrm{H}]^{+}$353.0393, found 353.0397

(S,Z)-4-(benzofuran-2-yl)-8-bromo-6-methyloct-5-en-2-one (3.29a). The crude reaction mixture was purified via flash column chromatography with $2-5 \%$ ethyl acetate in hexanes as the eluent. HPLC Chiralpak ID (hexane/i-PrOH $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result $66.1 \mathrm{mg}, 99 \%$ yield; $90: 10$ er
${ }^{1} \mathbf{H}-$ NMR (500 MHz , chloroform-d) $\delta 7.46(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.22-7.15 (m, 2H), $6.39(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=16.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-$ $3.41(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{dd}, J=16.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.70(\mathrm{~m}, 3 \mathrm{H}), 2.12-2.20(3 \mathrm{H}), 1.76(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$-NMR (126 MHz , chloroform-d) $\delta 206.3,159.5,154.7$, 135.2, 128.6, 126.8, 123.6, 122.7, 120.7, 111.0, 102.0, 47.6, 35.7, 33.7, 30.7, 30.5, 23.2 IR 2967, 2855, 1715, 1539, 1453, 1358, 1252, 1213, 1157, 1027, 936, 871, 799, 750, $741,556 \mathrm{~cm}^{-1}$ HRMS-ESI m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{19}{ }^{79} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$335.0641, found 335.0633; calcd. for $\mathrm{C}_{17} \mathrm{H}_{19}{ }^{81} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$337.0622, found 337.0623

(S,Z)-3-(benzofuran-2-yl)-7-bromo-5-methyl-1-phenylhept-4-en-1-one (3.29b). The crude reaction mixture was purified via flash column chromatography with 2-5\% ethyl acetate in hexanes as the eluent. HPLC Chiralpak ID (hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector) Note: It was observed with this example that thoroughly drying the trifluoroborate helped improve the er, presumably due to the competing coordination from any acetone residue retained from before the recrystallization step.

Result $78.2 \mathrm{mg}, 99 \%$ yield; $95: 5 \mathrm{er}$
${ }^{1} \mathbf{H}-$ NMR $(600 \mathrm{MHz}$, chloroform-d) $\delta 7.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dt}, J=23.8,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H})$, $5.44(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=14.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.34(\mathrm{~m}, 4 \mathrm{H}), 2.86-2.71(\mathrm{~m}, 2 \mathrm{H})$, $1.75(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}$-NMR (101 MHz, chloroform-d) δ 197.6, 159.8, 154.8, 136.9, 135.2, 133.4, 128.8, 128.7, 128.2, 127.0, 123.6, 122.7, 120.7, 111.0, 102.1, 42.9, 35.9, 34.1, 30.6, 23.3 IR 3057, 2967, $2880,1684,1596,1580,1453,1355,1252,1217,1178,1001,979,797,755,698,646,612 \mathrm{~cm}^{-1}$ HRMS-ESI m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{21}{ }^{79} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$419.0617, found 419.0619; calcd. for $\mathrm{C}_{22} \mathrm{H}_{21}{ }^{81} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 421.0599$, found 421.0601

(S,Z)-9-bromo-7-methyl-5-(2-oxo-2-phenylethyl)non-6-en-1-yl 4-methylbenzenesulf-
onate (3.40). The crude reaction mixture was purified via flash column chromatography with 5-
15% ethyl acetate in hexanes as the eluent. HPLC Chiralpak ID (hexane/i-PrOH $=90: 10,1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result $81.0 \mathrm{mg}, 80 \%$ yield; $92: 8 \mathrm{er}$
${ }^{1} \mathbf{H}-$ NMR $(400 \mathrm{MHz}$, chloroform-d) $\delta 7.90(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.99(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}$, $3 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 5 \mathrm{H}), 1.44-1.16(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathbf{C}-\mathrm{NMR}(126 \mathrm{MHz}$, chloroform-d) $\delta 199.4,144.8$, $137.2,133.1,132.9,131.6,129.9,128.7,128.2,128.0,70.6,44.6,35.6,35.0,34.1,30.9,29.0,23.3$, 22.8, 21.7 IR 3060, 2920, 2859, 1672, 1596, 1495, 1470, 1448, 1396, 1375, 1343, 1307, 1298, $1269,1235,1219,1204,1190,1168,1119,1107,1097,1074,1046,1021,989,971,949,842,833$, 746, 664, 590, 563, 552, 533, 490, $463 \mathrm{~cm}^{-1}$ HRMS-ESI m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{31}{ }^{79} \mathrm{BrO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 507.1199, found 507.1209; calcd. for $\mathrm{C}_{25} \mathrm{H}_{31}{ }^{81} \mathrm{BrO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 509.1181$, found 509.1191

3.5.6 General procedure of the BINOL-catalyzed conjugate addition reactions between (2-(2-bromoethyl)-4-methoxyphenyl)trifluoro- λ^{4}-borane, potassium salt (3.19) and various enones (0.2 mmol scale).

To a 2-dram vial equipped with a stir bar was added $\mathrm{LiBr}(17.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv), and the vial and salt were flame dried under high vacuum. The vial was allowed to cool to room temperature and backfilled with argon. The corresponding enone ($0.2 \mathrm{mmol}, 1$ equiv), $(R)-3,3$ '$\left(\mathrm{C}_{7} \mathrm{~F}_{7}\right)_{2}$-BINOL ($28.7 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.2$ equiv), (2-(2-bromoethyl)-4-methoxyphenyl)trifluoro-λ^{4}-borane, potassium salt $(\mathbf{3 . 1 9}, 128.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) were then added. Anhydrous 2MeTHF (0.25 mL) was added unless otherwise stated. The mixture was stirred for 2 minutes at
room temperature to form a suspension of fine particulates. The vial was well sealed by Teflon tape, and the reaction was heated to $81^{\circ} \mathrm{C}$ in a sand bath. The reaction was monitored by TLC analysis. After the reaction was complete, the solution was filtered through a short celite pad and concentrated. The crude reaction mixture was purified via column chromatography on silica gel with appropriate eluents.

(S)-4-(2-(2-bromoethyl)-4-methoxyphenyl)-4-(2,6-dimethoxy-4-pentylphenyl)butan-

2-one (3.23). The crude reaction mixture was purified via flash column chromatography with 5$15 \%$ ethyl acetate in hexanes as the eluent. HPLC Chiralcel OD-H (hexane/i-PrOH $=90: 10,1.0$ $\mathrm{mL} / \mathrm{min}, ~ U V-254$ detector)

Result $88.3 \mathrm{mg}, 90 \%$ yield; $98: 2$ er
${ }^{1}$ H-NMR (500 MHz , chloroform-d) $\delta 7.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.7,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.59(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 2 \mathrm{H}), 5.18-5.15(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 3.40-$ $3.35(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{dd}, J=16.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}-$ NMR (126 MHz, chloroform-d) $\delta 208.5,157.8,157.5,143.3,138.8,133.8,129.7,116.8,115.2$, 111.6, 104.8, 55.6, 55.2, 47.2, 36.9, 36.5, 32.4, 31.7, 31.7, 31.2, 30.0, 22.7, 14.2 IR 2929, 2855, 1711, $1605,1576,1449,1453,1303,1226,1114,1042,973,821,661 \mathrm{~cm}^{-1}$ HRMS-ESI m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{35}{ }^{79} \mathrm{BrO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 513.1611$, found 513.1624; calcd. for $\mathrm{C}_{26} \mathrm{H}_{35}{ }^{81} \mathrm{BrO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 515.1594$, found 515.1608

(S)-4-(2-(2-bromoethyl)-4-methoxyphenyl)-4-(1H-indol-3-yl)butan-2-one (3.30a). The reaction was quenched and worked up after 2 hours, since decomposition was observed with prolonged reaction time. The crude reaction mixture was purified via flash column chromatography with $5-15 \%$ ethyl acetate in hexanes as the eluent. HPLC Chiralpak ID (hexane/i$\operatorname{PrOH}=90: 10,0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result $48.1 \mathrm{mg}, 60 \%$ yield; $97: 3 \mathrm{er}$
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, chloroform-d) $\delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, overlapping with chloroform-H), 7.19-7.15(m, 1H), $7.07(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.72(\mathrm{~m}, 3 \mathrm{H}), 4.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.15(\mathrm{~m}, 6 \mathrm{H}), 2.09$ (s, 3H) ${ }^{13} \mathbf{C - N M R}(126 \mathrm{MHz}$, chloroform-d) δ 207.7, 158.0, 138.4, 136.7, 133.6, 128.1, 126.2, $122.4,122.3,119.6,119.3,119.2,116.0,112.5,111.4,55.3,50.1,36.9,33.0,32.3,30.7$ IR 3407, 2934, 1706, 1607, 1499, 1456, 1419, 1355, 1338, 1292, 1247, 1157, 1094, 1042, 907, 818, 734 cm^{-1} HRMS-ESI m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{22}{ }^{79} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 422.0726$, found 422.0732; calcd. for $\mathrm{C}_{21} \mathrm{H}_{22}{ }^{81} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 424.0708$, found 424.071

(S)-4-(1-benzyl-1H-indol-3-yl)-4-(2-(2-bromoethyl)-4-methoxyphenyl)butan-2-one

(3.30b). The reaction was quenched and worked up after 2 hours, since decomposition was observed with prolonged reaction time. The crude reaction mixture was purified via flash column chromatography with $5-15 \%$ ethyl acetate in hexanes as the eluent. HPLC Chiralcel OD-H (hexane/i-PrOH $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result $59.1 \mathrm{mg}, 60 \%$ yield; $97: 3 \mathrm{er}$
${ }^{1} \mathbf{H}-$ NMR (500 MHz , chloroform-d) $\delta 7.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.16-$ $7.13(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{dd}, J=8.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}$, $1 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 4.99-4.96(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.36-3.17(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{~s}$, 3H) ${ }^{13} \mathbf{C}$-NMR (101 MHz, chloroform-d) $\delta 207.6,158.0,138.4,137.6,137.1,133.6,128.8,128.1$, $127.6,126.9,126.6,126.6,122.2,119.4,119.4,118.5,116.0,112.5,110.1,55.3,50.2,50.0,36.9$, 33.1, 32.3, 30.7 IR 2927, 1710, 1635, 1466, 1452, 1355, 1296, 1154, 1094, 1041, 1028, 1013, 966, 803, 738, $423 \mathrm{~cm}^{-1}$ HRMS-ESI \mathbf{m} / \mathbf{z} calcd. for $\mathrm{C}_{28} \mathrm{H}_{28}{ }^{79} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$512.1196, found 512.1196; calcd. for $\mathrm{C}_{28} \mathrm{H}_{28}{ }^{81} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 514.1179$, found 514.1180

(S)-7-bromo-3-(2-(2-bromoethyl)-4-methoxyphenyl)-1-phenylheptan-1-one
(3.43).

This product was isolated from the same reaction that produced 3.44. The crude reaction mixture was purified via flash column chromatography with 5-15\% ethyl acetate in hexanes as the eluent. HPLC Chiralpak ID (hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result $38.5 \mathrm{mg}, 40 \%$ yield; 98:2 er
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, chloroform-d) $\delta 7.88(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.48(\mathrm{~m}, 3 \mathrm{H}), 3.35-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.22(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 3 \mathrm{H})$, 1.62-1.21 (m, 3H) ${ }^{13} \mathbf{C}-\mathbf{N M R}(126 \mathrm{MHz}$, chloroform-d) $\delta 199.0,157.7,138.3,137.1,134.9,133.2$, 128.7, 128.1, 127.2, 115.3, 113.2, 55.3, 45.8, 36.7, 36.2, 34.7, 33.6, 32.9, 32.3, 26.2 IR 2932, 2855, 1700, 1684, 1607, 1596, 1576, 1501, 1447, 1248, 1161, 1001, 457, 428, $417 \mathrm{~cm}^{-1}$ HRMS-ESI m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{26}{ }^{79} \mathrm{Br}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$503.0192, found 503.0198; calcd. for $\mathrm{C}_{22} \mathrm{H}_{26}{ }^{79} \mathrm{Br}^{81} \mathrm{Br} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 505.0173$, found 505.0184 ; calcd. for $\mathrm{C}_{22} \mathrm{H}_{26}{ }^{81} \mathrm{Br}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 507.0156$, found 507.0163

(S)-5-(2-(2-bromoethyl)-4-methoxyphenyl)-7-oxo-7-phenylheptyl 4-methylbenzenes-
ulfonate (3.44). This product was isolated from the same reaction that produced 3.43. The crude
reaction mixture was purified via flash column chromatography with $5-15 \%$ ethyl acetate in hexanes as the eluent. HPLC Chiralpak ID (hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result 34.5 mg , 30\% yield; 98:2 er
${ }^{1} \mathbf{H}-$ NMR $(500 \mathrm{MHz}$, chloroform-d) $\delta 7.88-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-$ $7.52(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.13(1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.6$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.55(\mathrm{~m}, 1 \mathrm{H})$, 3.51-3.44 (m, 2H), 3.21-3.16 (m, 4H), 2.42 (s, 3H), 1.69-1.49 (m, 4H), 1.29-1.09 (m, 2H) ${ }^{13} \mathbf{C}-$ NMR (101 MHz, chloroform-d) $\delta 198.9,157.7,144.8,138.2,137.0,134.8,133.3,133.1,129.9$, 128.7, 128.1, 128.0, 115.3, 113.1, 70.4, 55.3, 45.7, 36.7, 36.5, 32.3, 29.0, 23.5, 21.8 IR 2935, 1684, $1596,1495,1447,1354,1267,1248,1210,1187,1173,1039,1081,1096,1039,1018,1001,815$, 755, 662, 574, 553 cm^{-1} HRMS-ESI \mathbf{m} / \mathbf{z} calcd. for $\mathrm{C}_{29} \mathrm{H}_{33}{ }^{79} \mathrm{BrO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 595.1124$, found 595.1134; calcd. for $\mathrm{C}_{29} \mathrm{H}_{33}{ }^{81} \mathrm{BrO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 597.1108$, found 597.1120
3.5.7 General procedure of the tandem BINOL-catalyzed conjugate addition enolate alkylation annulation between (Z)-(4-bromo-2-methylbut-1-en-1-yl)trifluoro- λ^{4}-borane, potassium salt (3.2) and various enones (0.2 mmol scale)

To a 2-dram vial equipped with a stir bar was added $4 \AA$ powdered molecular sieves (25 mg), and the vial was flame-dried under high vacuum. The vial was cooled to room temperature and backfilled with Argon. The corresponding enone ($0.2 \mathrm{mmol}, 1$ equiv), $(R)-3,3^{\prime}-\left(\mathrm{C}_{7} \mathrm{~F}_{7}\right)_{2-}{ }^{-}$ BINOL ($28.7 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.2$ equiv), (Z)-(4-bromo-2-methylbut-1-en-1-yl)trifluoro- λ^{4}-borane, potassium salt (3.2,102.7 mg, 0.4 mmol , 2 equiv) were then added. Anhydrous 2-MeTHF (0.25 mL) was added unless otherwise stated. The mixture was stirred for 2 minutes at room temperature
to form a suspension of fine particulates. The vial was well sealed by Teflon thread tape, and the reaction was heated to $81^{\circ} \mathrm{C}$ in a sand bath. The reaction was monitored by TLC. After the reaction was complete, the solution was allowed to cool back to room temperature. Potassium tert-butoxide ($112 \mathrm{mg}, 1 \mathrm{mmol}, 5$ equiv) was added in several portions (1 equiv at a time, stirred thoroughly before adding the next portion) unless otherwise stated. The reaction was stirred at room temperature for an additional 3-12 hours. The reaction was diluted with diethyl ether (2 mL), then quenched by adding diluted hydrochloric acid (0.2 M) dropwise until both layers turned clear. The aqueous layer was extracted with diethyl ether (3 mL x 3). The combined organic layer was washed with brine and dried with MgSO_{4} and the solvent was removed under reduced pressure. The crude reaction mixture was purified via column chromatography on silica gel with appropriate eluents.

1-((1R,2R)-2',6'-dimethoxy-5-methyl-4'-pentyl-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2-
yl)ethan-1-one (3.12). This reaction was allowed to stir for 12 hours after adding potassium tertbutoxide ($112 \mathrm{mg}, 1 \mathrm{mmol}, 5$ equiv). The crude reaction mixture was purified via flash column chromatography with $2-5 \%$ ethyl acetate in hexanes as the eluent. HPLC Chiralpak AD-H (hexane/i-PrOH $=99: 1,0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-190$ detector)

Result 67.3 mg , 98% yield; $99: 1 \mathrm{er}$; single diastereomer
${ }^{1} \mathbf{H}-$ NMR $(400 \mathrm{MHz}$, chloroform-d) $\delta 6.33(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.18-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.73$ (s, 6H), 3.30-3.24 (m, 1H), 2.52 (t, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.92-$ $1.86(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=$
$6.9 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$-NMR (101 MHz, chloroform-d) $\delta 213.8,158.5,142.9,131.2,124.9,117.2,104.9$, $56.0,51.2,36.5,34.7,31.8,31.2,29.6,28.7,26.7,23.4,22.7,14.2$

All spectral data match literature report. ${ }^{17}$
This reaction could also be conducted at $1 \mathbf{m m o l}$ scale following the procedure below.
To a 2-dram vial equipped with a stir bar were added $4 \AA$ powdered molecular sieves (125 mg), and the vial was flamed-dried under high vacuum. The vial was cooled to room temperature and backfilled with Argon. The enone 3.1 ($276.4 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), $(R)-3,3^{\prime}-\left(\mathrm{C}_{7} \mathrm{~F}_{7}\right)_{2}$ - BINOL (143.5 mg, $0.2 \mathrm{mmol}, 0.2$ equiv), (Z)-(4-bromo-2-methylbut-1-en-1-yl)trifluoro- λ^{4}-borane potassium salt (3.2, $306 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv) were then added. Anhydrous 2-MeTHF (1 mL) was added. The mixture was stirred for 2 minutes at room temperature to form a suspension of fine particulates. The vial was well sealed by Teflon tape, and the reaction was heated to $81{ }^{\circ} \mathrm{C}$ in a sand bath. The reaction was monitored by TLC analysis. After the reaction was complete, the solution was cooled back to room temperature. Potassium tert-butoxide ($336 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv) was added in several portions (1 equiv at a time, stirred thoroughly before adding the next portion). The reaction was stirred at room temperature for an additional 12 hours. Then the reaction was first diluted with diethyl ether (5 mL) and then quenched by adding diluted hydrochloric acid (0.2 M) dropwise until both layers turned clear. The aqueous layer was extracted with diethyl ether (10 $\mathrm{mL} x$ 3). The combined organic layer was washed with brine then dried with MgSO_{4} and the solvent was removed under reduced pressure. The crude reaction mixture was purified via flash column chromatography with 2-5\% ethyl acetate in hexanes as the eluent. HPLC Chiralpak ADH (hexane $/ \mathrm{i}-\mathrm{PrOH}=99: 1,0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-190$ detector)

Result 336.4 mg , 98% yield; $99: 1$ er; single diastereomer

((1R,2R)-5-methyl-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2-yl)(phenyl)methanone (3.31). Reaction was allowed to stir for 5 hours after adding potassium tert-butoxide ($112 \mathrm{mg}, 1 \mathrm{mmol}, 5$ equiv). The crude reaction mixture was purified via flash column chromatography with 20-30\% dichloromethane in hexanes as the eluent. HPLC Chiralpak ID (hexane $/ \mathrm{i}-\mathrm{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}$, UV-254 detector)

Result $49.7 \mathrm{mg}, 90 \%$; 96:4 er; single diastereomer
${ }^{1} \mathbf{H}-\mathrm{NMR}(500 \mathrm{MHz}$, chloroform-d) $\delta 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{td}, J=5.5,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.56-3.51 (m, 1H), 2.27-1.80 (m, 4H), $1.78(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}-\mathrm{NMR}(126 \mathrm{MHz}$, chloroform-d) δ 203.6, $145.1,137.0,133.9,132.8,128.5,128.4,128.3,128.1,126.4,124.8,50.0,44.2,29.6,27.2,23.7$ IR 3025, 2925, 1671, 1598, 1447, 1340, 1247, 1075. 817. 799, 779, 756, 705, 694, 671, 628, 540, 521, $504 \mathrm{~cm}^{-1}$ HRMS-ESI m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$299.1406, found 299.1404

((1R,2R)-2-decyl-4-methylcyclohex-3-en-1-yl)(phenyl)methanone (3.32). The reaction was allowed to stir for 12 hours after the addition of potassium tert-butoxide ($112 \mathrm{mg}, 1 \mathrm{mmol}, 5$ equiv). The crude reaction mixture was purified via flash column chromatography with 20-30\% dichloromethane in hexanes as the eluent. HPLC Chiralcel OJ-H (hexane/i-PrOH $=99: 1,1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result $54.3 \mathrm{mg}, 80 \%$; $91: 9 \mathrm{er}$; single diastereomer
${ }^{1} \mathbf{H}-\mathbf{N M R}(600 \mathrm{MHz}$, chloroform-d) $\delta 7.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 3.25-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H}), 2.11-1.63(\mathrm{~m}, 7 \mathrm{H}), 1.33-$ $1.15(\mathrm{~m}, 18 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}-\mathrm{NMR}(126 \mathrm{MHz}$, chloroform-d) $\delta 204.3,137.2,133.0$, $132.8,128.7,128.3,125.1,47.2,37.2,35.1,32.0,29.9,29.9,29.7,29.4,27.5,26.8,23.7,22.8$, 14.2 IR 2921, 2852, 1680, 1597, 1580, 1446, 1377, 1203, 1001, 950, 840, 806, 779, 699, 672 cm^{-1} HRMS-ESI m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 341.2839$, found 341.2842

((1R,2R)-5-methyl-4'-(trifluoromethyl)-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2-
$\mathbf{y l}$ (phenyl)met- hanone (3.33). The reaction was allowed to stir for 8 hours after adding potassium tert-butoxide ($112 \mathrm{mg}, 1 \mathrm{mmol}, 5$ equiv). The crude reaction mixture was purified via flash column chromatography with $20-30 \%$ dichloromethane in hexanes as the eluent. HPLC Chiralcel OD-H (hexane/i-PrOH $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result 65.0 mg , 95% yield; 97:3 er; single diastereomer
${ }^{1} \mathbf{H}-$ NMR $(400 \mathrm{MHz}$, chloroform-d) $\delta 7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{q}$, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.29-1.78(\mathrm{~m}, 7 \mathrm{H}){ }^{13} \mathbf{C}-$ NMR (101 MHz, chloroform-d) $\delta 202.7,136.5,134.7,133.1,128.7,128.6,128.1,125.4,125.3$, $123.9,77.4,77.1,76.8,49.9,43.8,29.7,27.3,23.6$ IR 2927, 1674, 1617, 1596, 1448, 1423, 1380, 1323, 1163, 1151, 1111, 1068, 979, 837, 796, 775,, 758, 701, 680, 610, $536 \mathrm{~cm}^{-1}$ HRMS-ESI m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 345.1461$, found 345.1465

1-((1R,2R)-2-(1-benzyl-1H-indol-3-yl)-4-methylcyclohex-3-en-1-yl)ethan-1-one

(3.34b). Conjugate addition completed in 2 hours. Reaction was allowed to stir for 12 hours after adding potassium tert-butoxide ($112 \mathrm{mg}, 1 \mathrm{mmol}, 5$ equiv). The crude reaction mixture was purified via flash column chromatography with 5-15\% ethyl acetate in hexanes as the eluent. HPLC Chiralcel OD-H (hexane/i-PrOH $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result $52.6 \mathrm{mg}, 77 \%$ yield; $93: 7 \mathrm{er}$; single diastereomer
${ }^{1} \mathbf{H}-$ NMR $(500 \mathrm{MHz}$, chloroform-d) $\delta 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H})$, $3.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.93(\mathrm{~m}, 6 \mathrm{H}), 1.86-1.73(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathbf{C}$-NMR (126 MHz, chloroform-d) $\delta 212.7,137.8,137.1,133.1,128.8,127.6,127.0,126.7,126.4,124.6,121.8$, $119.8,119.0,118.1,109.9,77.4,77.1,76.9,53.6,50.0,35.5,29.8,29.3,25.3,23.5$ IR 3029, 2922, 1706, 1611, 1559, 1465, 1452, 1354, 1330, 1160, 1014, 954, 908, 804, 747, $694 \mathrm{~cm}^{-1}$ HRMS-ESI \mathbf{m} / \mathbf{z} calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 344.2009$, found 344.2008

1-((1R,2R)-2-(benzo[b]thiophen-3-yl)-4-methylcyclohex-3-en-1-yl)ethan-1-one (3.35).
The reaction was allowed to stir for 12 hours after adding potassium tert-butoxide ($112 \mathrm{mg}, 1$ mmol, 5 equiv). The crude reaction mixture was purified via flash column chromatography with
$2-5 \%$ ethyl acetate in hexanes as the eluent. HPLC Chiralpak ID (hexane $/ \mathrm{i}-\mathrm{PrOH}=95: 5,1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result 44.1 mg , 82\% yield; 96:4 er; single diastereomer
${ }^{1} \mathbf{H}-$ NMR $(500 \mathrm{MHz}$, chloroform-d) $\delta 7.85-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=6.9,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.36-7.31 (m, 2H), $7.10(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{td}, J=4.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.92$ $(\mathrm{m}, 1 \mathrm{H}), 2.17-1.82(\mathrm{~m}, 7 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}-\mathbf{N M R}(126 \mathrm{MHz}$, chloroform-d) $\delta 211.4,141.1,139.0$, $137.9,134.1,124.3,124.0,123.1,123.1,122.8,122.2,52.3,37.4,29.3,28.9,24.6,23.6$ IR 3392, 2922, 1700, 1496, 1457, 1426, 1352, 1253, 1150, 836, 815, 759, 717, $652 \mathrm{~cm}^{-1}$ HRMS-ESI m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{OS}[\mathrm{M}+\mathrm{Na}]^{+} 293.0971$, found 293.0968

((1R,2R)-2-(benzofuran-2-yl)-4-methylcyclohex-3-en-1-yl)(phenyl)methanone (3.36b). The reaction was allowed to stir for 3 hours after adding potassium tert-butoxide ($112 \mathrm{mg}, 1 \mathrm{mmol}$, 5 equiv). Decompostion was observed for a prolonged reaction time. The crude reaction mixture was purified via flash column chromatography with 2-10\% ethyl acetate in hexanes as the eluent. HPLC Chiralpak ID (hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result 61.0 mg , 97\% yield; 94:6 er; single diastereomer
${ }^{1} \mathbf{H}-$ NMR $(500 \mathrm{MHz}$, chloroform-d) $\delta 7.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H})$, $4.22(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.85(\mathrm{~m}, 1 \mathrm{H}), 2.24-1.79(\mathrm{~m}, 7 \mathrm{H}){ }^{13} \mathbf{C}$-NMR (126 MHz , chloroformd) $\delta 202.4,160.5,154.7,136.4,135.2,133.1,128.7,128.7,128.3,123.4,122.5,120.7,120.5,111.0$, $102.8,77.4,77.1,76.9,45.7,37.8,29.2,26.4,23.7$ IR 3057, 2926, 1676, 1596, 1580, 1472, 1446,

1363, 1290, 1255, 1200, 1159, 1006, 960, 880, 855, 801, 750, 739, 697, 668, $612 \mathrm{~cm}^{-1}$ HRMSESI \mathbf{m} / \mathbf{z} calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 339.1356$, found 339.1356

((4aR,8aR)-7-methyl-1,3,4,5,6,8a-hexahydronaphthalen-4a(2H)-yl)(phenyl)methano-
ne (3.41). The reaction was allowed to stir for 12 hours after adding potassium tert-butoxide (134.4 $\mathrm{mg}, 1.2 \mathrm{mmol}, 6$ equiv). The crude reaction mixture was purified via flash column chromatography with $2-5 \%$ ethyl acetate in hexanes as the eluent. HPLC Chiralcel OJ-H (hexane/i-PrOH $=99: 1$, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result $35.4 \mathrm{mg}, 70 \%$; 90:10 er; dr greater than 25:1. A trace amount of the diastereomer could also be isolated.
${ }^{1}$ H-NMR (500 MHz , chloroform-d) $\delta 7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 1 \mathrm{H}), 2.05-1.72(\mathrm{~m}, 6 \mathrm{H}), 1.63(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 4 \mathrm{H})$, 1.50-1.25 (m, 5H) ${ }^{13} \mathbf{C}$-NMR (126 MHz , chloroform-d) $\delta 211.1,140.3,132.8,130.2,128.5,128.2$, 127.9, 127.2, 126.4, 51.0, 36.8, 30.2, 27.8, 23.4, 22.4 IR 2924, 2853, 1669, 1596, 1443, 1232, 1176, 1018, 1001, 968, 905, 778, 700, 688, $624 \mathrm{~cm}^{-1}$ HRMS-ESI m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 225.1743 , found 225.1743

Less than 10 mg of single alkylation product $\mathbf{3 . 4 2}$ was isolated in a control experiment after adding base to the reaction to synthesis $\mathbf{3 . 4 1}$ and stirring for 3 hours. ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ (400 MHz ,
chloroform-d) $\delta 7.93(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{td}, J=6.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.20-3.14$ $(\mathrm{m}, 1 \mathrm{H}), 2.69-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.73(3 \mathrm{H})$, $1.65-1.07(\mathrm{~m}, 7 \mathrm{H})$
3.5.8
3.5.8 General procedure of the BINOL-catalyzed conjugate addition tandem enolate alkylation annulation between (2-(2-bromoethyl)-4-methoxyphenyl)trifluoro- λ^{4}-borane, potassium salt (30) and various enones (0.2 mmol scale)

To a 2-dram vial equipped with a stir bar was added $4 \AA$ powdered molecular sieves (25 mg), and the vial was flamed-dried under high vacuum. The vial was cooled to room temperature and back-filled with Argon. The corresponding enone ($0.2 \mathrm{mmol}, 1$ equiv), $(R)-3,3{ }^{\prime}-\left(\mathrm{C}_{7} \mathrm{~F}_{7}\right)_{2-}{ }^{-}$ BINOL ($28.7 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.2$ equiv), (2-(2-bromoethyl)-4-methoxyphenyl)trifluoro- λ^{4}-borane, and potassium salt ($\mathbf{3 . 1 9}, 128.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) were then added. Anhydrous 2-methylTHF (0.25 mL) was added unless otherwise stated. The mixture was stirred for 2 minutes at room temperature to form a suspension of fine particulates. The vial was well sealed by Teflon thread tape, and the reaction was heated to $81^{\circ} \mathrm{C}$ in a sand bath. The reaction was monitored by TLC analysis. After the reaction was complete, the solution was cooled to room temperature. Potassium tert-butoxide ($112 \mathrm{mg}, 1 \mathrm{mmol}, 5$ equiv) was added in several portions (1 equiv at a time, stirred thoroughly before adding the next portion) unless otherwise stated. The reaction was stirred at room temperature for an additional 12 hours. The reaction was diluted with diethyl ether (2 mL),
then quenched by adding diluted hydrochloric acid (0.2 M) dropwise until both layers turned clear. The aqueous layer was extracted with diethyl ether (3 mL x 3). The combined organic layer was washed with brine and dried with MgSO_{4} and the solvent was removed under reduced pressure. The crude reaction mixture was purified via column chromatography on silica gel with appropriate eluents.

1-((1S,2R)-1-(2,6-dimethoxy-4-pentylphenyl)-6-methoxy-1,2,3,4-
tetrahydronaphthalen-2-yl)-ethan-1-one (3.37). Reaction was allowed to stir for 12 hours after adding potassium tert-butoxide ($112 \mathrm{mg}, 1 \mathrm{mmol}, 5$ equiv). The crude reaction mixture was purified via flash column chromatography with 5-20\% ethyl acetate in hexanes as the eluent. HPLC Chiralcel OD-H (hexane/i-PrOH $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result $70.1 \mathrm{mg}, 85 \%$; 98:2 er; single diastereomer
${ }^{1} \mathbf{H}-$ NMR (400 MHz, chloroform-d) $\delta 6.59-6.58(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{dd}, J=8.5,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.35(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.44(\mathrm{~m}, 10 \mathrm{H}), 2.99-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.59(2 \mathrm{H})$, $2.07-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.36-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}-\mathbf{N M R}(126 \mathrm{MHz}$, chloroform-d) $\delta 212.9,158.4,156.9,143.3,137.1,132.3,128.3$, $118.1,112.7,111.8,56.0,55.2,52.7,36.6,36.4,31.8,31.1,29.8,28.7,26.9,22.7,14.2$ IR 2928, $2855,1707,1606,1576,1498,1349,1276,1254,1231,1202,1114,1039,972,806,786,723$ cm^{-1} HRMS-ESI m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 433.2349$, found 433.2348

1-((1S,2R)-1-(1-benzyl-1H-indol-3-yl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-

yl)ethan-1-one (3.38b). Conjugate addition completed in 2 hours. Reaction was allowed to stir for 12 hours after adding potassium tert-butoxide ($112 \mathrm{mg}, 1 \mathrm{mmol}, 5$ equiv). The crude reaction mixture was purified via flash column chromatography with 5-15\% ethyl acetate in hexanes as the eluent. HPLC Chiralcel OD-H (hexane/i-PrOH $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector)

Result 42.7 mg , 52\% yield; 97:3 er; single diastereomer
${ }^{1}$ H-NMR (500 MHz , chloroform-d) $\delta 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=23.0,8.1 \mathrm{~Hz}, 3 \mathrm{H})$, 7.15-7.09 (m, 1H), $7.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.66(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}-$ NMR (126 MHz, chloroform-d) $\delta 212.0,157.6,137.7,137.2,136.7,130.7,130.6,128.8,127.8$, $127.6,126.7,126.6,121.8,120.1,119.1,118.1,113.0,112.4,110.0,55.2,54.6,50.0,38.3,30.2$, 29.3, 25.5 IR 2924, 1706, 1608, 1545, 1464, 1452, 1355, 1330, 1254, 1232, 1154, 1029, 965, 909, 856, 811, 784, 726, 698, 643, 559, $523 \mathrm{~cm}^{-1}$ HRMS-ESI \mathbf{m} / \mathbf{z} calcd. for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 432.1934, found 432.1937

(2-methoxy-5,6,7,8,9,10-hexahydrophenanthren-8a(4bH)-yl)(phenyl)methanone
(mixture of cis/trans, 3.45). The reaction was allowed to stir for 12 hours after adding potassium tert-butoxide ($134.4 \mathrm{mg}, 1.2 \mathrm{mmol}, 6$ equiv). The crude reaction mixture was purified via flash column chromatography with 5-15\% ethyl acetate in hexanes as the eluent. HPLC Chiralpak ID (hexane $/ \mathrm{i}-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}-254$ detector). Diastereomers could be separated effectively using this HPLC condition.

Result $41.4 \mathrm{mg}, 65 \%$ yield; 1:1 dr; 98:2 er for each diastereomer
NMR contains a pair of diastereomers. Spectra attached in appendix. IR 2925, 2851, 1700, $1606,1569,1497,1463,1446,1287,1268,1254,1231,1196,1116,1070,1031,911,872,770$, $700 \mathrm{~cm}^{-1}$ HRMS-ESI m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 343.1669$, found 343.1670

3.6 Bibliography

1. Le, P. Q.; Nguyen, T. S.; May, J. A. A General Method for the Enantioselective Synthesis of aChrial Hetereocycles. Org. Lett. 2012, 14, 6104-6107.
2. Shih, J.-L.; Nguyen, T. S.; May, J. A. Organocatalyzed Asymmetric Conjugate Addition of Heteroary and Aryl Trifluoroborates: a Synthetic Strategy for Discoipyrrole D. Angew. Chem. Int. Ed. 2015, 54, 9931-9935
3. a) Pace, V.; Hoyos, P.; Castoldi, L.; de María, P. D.; Alcántara, A. R. 2-Methyltetrahydrofuran (2-MeTHF): A Biomass-Derived Solvent with Broad Application in Organic Chemistry. ChemSusChem, 2012, 5, 1396-1379; b) Pellis, A.; Byrne, F. P.; Sherwood, J.; Vastano, M.;

Comerford, J. W.; Farmer, T. J. Safer bio-based solvents to replace toluene and tetrahydrofuran for the biocatalyzed synthesis of polyesters. Green Chem, 2019, 21, 1686-1694
4. Please see Experimental Section of time screen.
5. Nguyen, T. S.; Yang, M. S.; May, J. A. Experimental Mechanistic Insight Into The BINOLcatalyzed Enantioselective Conjugate Addition of Boronates to Enones. Tetrahedron Lett. 2015, 56, 3337-3341.
6. Brooks, B.; Hiller, N.; May, J. A. Reaction Rate Differences Between Organotrifluoroborates And Boronic Acids in BINOL-catalyzed Conjugate Addition to Enones. Tetrahedron Lett. 2021, 83, 153412.
7. Worob, A.; Wenthur, C. DARK Classics in Chemical Neuroscience: Synthetic Cannabinoids (Spice/K2). ACS Chem. Neurosci. 2020, 11, 3881-3892.
8. Banister, S. D.; Moir, M.; Stuart, J.; Kevin, R. C.; Wood, K. E.; Longworth, M.; Wilkinson, S.
M.; Beinat, C.; Buchanan, A. S.; Glass, M.; Connor, M.; McGregor, I. S.; Kassiou, M. Pharmacology of Indole and Indazole Synthetic Cannabinoid Designer Drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chem. Neurosci. 2015, 6, 1546-1559.
9. Wube, A. A.; Bucar, F.; Hochfellner, C.; Blunder, M.; Bauer, R. Synthesis of N-substituted 2-[(1E)-alkenyl]-4-(1H)-quinone Derivatives as Antimycobacterial Agents Against Non-tubercular Mycobacteria. Eur. J. Med. Chem. 2011, 46, 2091-2101.
10. Nguyen, T. N.; Nguyen, T. S.; May, J. A. Bronsted Acid Catalyzed Homoconjugate Addition of Organotrifluoroborates to Arylated Cyclopropyl Ketones. Org. Lett. 2016, 18, 3786-3789.
11. Altowyan, M. S.; Barakat, A.; Al-Majid, A. M.; Al-Ghulikah, H. A. Spiroindolone Analogues as Potential Hypoglycemic with Dual Inhibitory Activity on α-Amylase and α-Glucosidase. Molecules 2019, 24, 2342.
12. Tan, Y.; Luo, S.; Li, D.; Zhang, N.; Jia, S.; Liu, Y.; Qin, W.; Song, C. E.; Yan, H. Enantioselective Synhtesis of anti-syn-Trihalides and anti-syn-anti-Tetrahalides via Asymmetric β-Elimination. J. Am. Chem. Soc. 2017, 139, 6431-6436.
13. Jiang, Q.; Jia, J.; Xu, B.; Zhao, A.; Guo, C.-C. Iron-Facilitated Oxidative Radical Decarboxylative Cross-Coupling between α-Oxocarboxylic Acids and Acrylic Acides: An Approach to α, β-Unsaturated Carbonyls. J. Org. Chem. 2015, 80, 3586-3596.
14. Borjesson, L.; Welch, C. J. Synthesis of 2-Hydroxymethyl-1-oxaquinolizidine. Tetrahedron, 1992, 48, 6325-6334.
15. Trost, B. M.; Dogra, K. Synthesis of (-)- Δ^{9}-trans-Tetrahydrocannabinol: Stereocontrol via Mo-Catalyzed Asymmetric Allylic Alkylation Reaction. Org. Lett. 2007, 9, 861-863.
16. Ballerini, E.; Minuti, L.; Piermatti, O. High-Pressure Diels-Alder Cycloadditions between Benzylideneacetones and 1,3-Butadienes: Application to the Synthesis of $(R, R)-(-)$ - and $(S, S)-(+)-$ Δ^{8}-Tetrahydrocannabinol. J. Org. Chem. 2020, 75, 4251-4260.
17. Shultz, Z. P.; Lawrence, G. A.; Jacobson, J. M.; Cruz, E. J.; Leahy, J. W. Enantioselective Total Synthesis of Cannabinoids-A Route for Analogue Development. Org. Lett. 2018, 20, 381-384.

Chapter 3

Appendix

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluser\Desktop\Jirong\Data\JL-3-271-ADH-99\%-0.5.Icd
Acquired by	: Admin
Sample Name	: JL-3-271-ADH-99\%-0.5
Sample ID	: JL-3-271-ADH-99\%-0.5
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 5 uL
Data File Name	: JL-3-271-ADH-99\%-0.5.Icd
Method File Name	: pos2-99\%_20min_0.5_D2.Icm
Batch File Name	: Batch table C2_99\%_20min_0.5 D2.lcb
Report File Name	: Default.lcr
Data Acquired	: 7/1/2021 10:40:35 AM
Data Processed	: 7/2/2021 11:04:52 AM

<Chromatogram>

1 PDA Multi 2/190nm 4nm

		PeakTable			
PDA Ch2 190nm 4nm					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	11.042	56791413	2187254	50.104	49.765
2	12.701	56555028	2207935	49.896	50.235
Total		113346441	4395189	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

	C:\UsersluserlDesktop\Jirong\Data\JL-3-249-ODH-90\%-1.0.Icd
Acquired by	: Admin
Sample Name	: JL-3-249-ODH-90\%-1.0
Sample ID	: JL-3-249-ODH-90\%-1.0
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 10 uL
Data File Name	: JL-3-249-ODH-90\%-1.0.Icd
Method File Name	: pos5_90\%_60min_1.0_D2.Icm
Batch File Name	: Batch_table_C5-90_60min_1.0_d2.Icb
Report File Name	: Default.lcr
Data Acquired	: 6/5/2021 12:37:57 PM
Data Processed	: 8/12/2021 11:33:29 AM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PeakTable
PDA Ch1 254 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	6.136	894323	83367	48.905	60.170
2	8.017	934384	55187	51.095	39.830
Total		1828707	138554	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

Acquired by	C:IUsersluser\Desktop\Jirong\Data\JL-3-255-ODH-90\%-1.0.Icd : Admin
Sample Name	: JL-3-255-ODH-90\%-1.0
Sample ID	: JL-3-255-ODH-90\%-1.0
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 10 uL
Data File Name	: JL-3-255-ODH-90\%-1.0.Icd
Method File Name	: pos5_90\%_60min_1.0_D2.Icm
Batch File Name	: Batch_table_C5-90_60min_1.0_d2.lcb
Report File Name	: Default.lcr
Data Acquired	: 6/23/2021 1:13:13 PM
Data Processed	: 6/23/2021 2:01:05 PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm

		PeakTable			
PDA Ch1 254nm 4nm					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	6.745	23071	2209	1.715	3.174
2	8.069	1322128	67381	98.285	96.826
Total		1345199	69590	100.000	100.000

3.23

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluser\Desktop\Jirong\Data\JL-3-197-ADH-99\%-0.5-5.Icd
Acquired by	: Admin
Sample Name	: JL-3-197-ADH-99\%-0.5
Sample ID	: JL-3-197-ADH-99\%-0.5
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 5 uL
Data File Name	: JL-3-197-ADH-99\%-0.5-5.Icd
Method File Name	: pos2-99\%_20min_0.5_D2.Icm
Batch File Name	: Batch table C2_99\%_20min_0.5_D2.lcb
Report File Name	: Default.lcr
Data Acquired	: 5/26/2021 12:04:09 PM
Data Processed	: 6/16/2021 12:13:44 PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PeakTable
PDA Ch1 254 nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	9.903	535413	42140	48.316	65.326
2	10.556	572740	22367	51.684	34.674
Total		1108154	64506	100.000	100.000

$3.25 b$

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluser\Desktop\Jirong\Data\JL-3-242-ADH-99\%-0.5-2
Acquired by	: Admin
Sample Name	: JL-3-242-ADH-99\%-0.5
Sample ID	: JL-3-242-ADH-99\%-0.5
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 5 uL
Data File Name	: JL-3-242-ADH-99\%-0.5-2.Icd
Method File Name	: pos2-99\%_20min_0.5_D2.Icm
Batch File Name	: Batch table C2_99\%_20min_0.5_D2.lcb
Report File Name	: Default.lcr
Data Acquired	: 5/26/2021 2:45:46 PM
Data Processed	: 5/26/2021 3:05:51 PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PDA Ch1 254 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	9.860	1346141	107928	91.473	95.080
2	10.334	125489	5585	8.527	4.920
Total		1471630	113513	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

Acquired by	: Admin
Sample Name	$:$ JL-3-75-ID-95\%-1
Sample ID	$:$ JL-3-75-ID-95\%-1
Tray\#	$: 1$
Vail\#	$: 2$
Injection Volume	$: 10$ uL
Data Filename	$:$ JL-3-75-ID-95\%-1.lcd
Method Filename	$:$ pos3-95\%_60min_1.0_D2.lcm
Batch Filename	$:$
Report Filename	$:$
Date Acquired	$: 12 / 1 / 2020$ 3:56:27 PM
Data Processed	$: 4 / 8 / 202111: 36: 57 \mathrm{AM}$

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Ch1 254 nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	8.821	495454	32197	50.631	53.624
2	10.136	483104	27845	49.369	46.376
Total		978559	60042	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluserlDesktop\Jirong\Data\JL-3-248-ID-95\%-1-6.Icd
Acquired by	: Admin
Sample Name	: JL-3-248-ID-95\%-1
Sample ID	: JL-3-248-ID-95\%-1
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 10 uL
Data File Name	: JL-3-248-ID-95\%-1-6.Icd
Method File Name	: pos3-95\%_20min_1.0_D2.Icm
Batch File Name	: Batch table C3 _95\%_20min_1.0_D2.Icb
Report File Name	: Default.lcr
Data Acquired	5/31/2021 5:19:51 PM
Data Processed	6/1/2021 4:45:38 PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PDA Ch1 254 nm 4nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	8.435	77588	7004	5.943	7.733
2	9.530	1228030	83572	94.057	92.267
Total		1305618	90577	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluserlDesktop\Jirong\Data\JL-3-296-ODH-90\%-1.0-2.Icd
Acquired by	$:$ Admin
Sample Name	$:$ JL-3-296-ODH-90\%-1.0
Sample ID	$:$ JL-3-296-ODH-90\%-1.0
Tray\#	$: 1$
Vail\#	$: 15$
Injection Volume	$: 10$ uL
Data File Name	$:$ JL-3-296-ODH-90\%-1.0-2.Icd
Method File Name	$:$ pos5_90\%_60min_1.0_D.Icm
Batch File Name	: Batch_table_C5-90_60min_1.0_d2.Icb
Report File Name	: Default.Icr
Data Acquired	$: 8 / 9 / 20213: 15: 59$ PM
Data Processed	$: 8 / 9 / 20213: 51: 06$ PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PDA Ch1 254 nm 4nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	12.766	375461	16526	50.327	63.495
2	19.168	370580	9502	49.673	36.505
Total		746042	26028	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

Acquired by	C:IUsersluser\Desktop\Jirong\Data\JL-3-298-ODH-90\%-1.0.Icd : Admin
Sample Name	: JL-3-298-ODH-90\%-1.0
Sample ID	: JL-3-298-ODH-90\%-1.0
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 10 uL
Data File Name	: JL-3-298-ODH-90\%-1.0.Icd
Method File Name	: pos5_90\%_60min_1.0_D2.Icm
Batch File Name	: Batch_table_C5-90_60min_1.0_d2.lcb
Report File Name	: Default.lcr
Data Acquired	: 8/14/2021 3:11:42 PM
Data Processed	: 8/17/2021 4:18:17 PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PDA Ch1 254 nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	12.992	637955	27960	7.920	12.979
2	19.294	7417520	187467	92.080	87.021
Total		8055475	215427	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluserlDesktop\Jirong\Data\JL-3-296-ODH-90\%-1.0-2.Icd
Acquired by	$:$ Admin
Sample Name	$:$ JL-3-296-ODH-90\%-1.0
Sample ID	$:$ JL-3-296-ODH-90\%-1.0
Tray\#	$: 1$
Vail\#	$: 15$
Injection Volume	$: 10$ uL
Data File Name	$:$ JL-3-296-ODH-90\%-1.0-2.Icd
Method File Name	$:$ pos5_90\%_60min_1.0_D.Icm
Batch File Name	: Batch_table_C5-90_60min_1.0_d2.Icb
Report File Name	: Default.Icr
Data Acquired	$: 8 / 9 / 20213: 15: 59$ PM
Data Processed	$: 8 / 9 / 20213: 51: 06$ PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PDA Ch1 254 nm 4nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	12.766	375461	16526	50.327	63.495
2	19.168	370580	9502	49.673	36.505
Total		746042	26028	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluser\Desktop\Jirong\Data\JL-3-240-ODH-90\%-1.0.Icd
Acquired by	: Admin
Sample Name	: JL-3-240-ODH-90\%-1.0
Sample ID	: JL-3-240-ODH-90\%-1.0
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 10 uL
Data File Name	: JL-3-240-ODH-90\%-1.0.Icd
Method File Name	: pos5_90\%_60min_1.0_D2.Icm
Batch File Name	: Batch_table_C5-90_60min_1.0_d2.Icb
Report File Name	: Default.lcr
Data Acquired	: 5/21/2021 4:09:16 PM
Data Processed	: 5/21/2021 4:24:46 PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PDA Ch1 254 nm 4nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	9.448	1150046	90399	95.958	95.862
2	10.226	48449	3902	4.042	4.138
Total		1198495	94301	100.000	100.000

3.28

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluserlDesktop\Jirong\Data\JL-3-185-ID-90\%-1.Icd
Acquired by	$:$ Admin
Sample Name	$:$ JL-3-185-ID-90\%-1
Sample ID	$:$ JL-3-185-ID-90\%-1
Tray\#	$: 1$
Vail\#	$: 8$
Injection Volume	$: 10$ uL
Data File Name	$:$ JL-3-185-ID-90\%-1.Icd
Method File Name	:pos3-90\%_60MIN_1.0_D2.Icm
Batch File Name	: Batch table C3_90\%_60min_1.0_D2.Icb
Report File Name	: Default.Icr
Data Acquired	$: 4 / 10 / 2021$ 12:34:18 PM
Data Processed	$: 4 / 10 / 20211: 36: 39$ PM

<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluserlDesktoplJironglData\JL-3-289-ID-90\%-1.Icd
Acquired by	: Admin
Sample Name	$:$ JL-3-289-ID-90\%-1
Sample ID	$:$ JL-3-289-ID-90\%-1
Tray\#	$: 1$
Vail \#	$: 15$
Injection Volume	$: 10$ uL
Data File Name	: JL-3-289-ID-90\%-1.Icd
Method File Name	: pos3-90\%_60MIN_1.0_D2.Icm
Batch File Name	: Batch table C3_90\%_60min_1.0_D2.Icb
Report File Name	: Default.Icr
Data Acquired	$: 8 / 3 / 20212: 00: 24$ PM
Data Processed	$: 8 / 27 / 20214: 03: 55$ PM

<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluser\Desktop\Jirong\Data\JL-3-292-ID-90\%-1.Icd
Acquired by	: Admin
Sample Name	: JL-3-292-ID-90\%-1
Sample ID	: JL-3-292-ID-90\%-1
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 10 uL
Data File Name	: JL-3-292-ID-90\%-1.Icd
Method File Name	pos3-90\%_10MIN_1_d2.Icm
Batch File Name	Batch table C3 _90\%_10min_1.0_D2.Icb
Report File Name	: Default.lcr
Data Acquired	: 8/6/2021 10:16:43 AM
Data Processed	: 8/6/2021 10:24:03 AM

<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PDA Ch1 254 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	18.311	55152	1522	3.235	3.357
2	19.606	1649700	43819	96.765	96.643
Total		1704852	45341	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

Acquired by	C:IUsersluserlDesktop\Jirong\Data\JL-4-3-ODH-90\%-1.0.Icd : Admin
Sample Name	: JL-4-3-ODH-90\%-1.0
Sample ID	: JL-4-3-ODH-90\%-1.0
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 10 uL
Data File Name	: JL-4-3-ODH-90\%-1.0.1cd
Method File Name	: pos5_90\%_60min_1.0_D2.Icm
Batch File Name	: Batch_table_C5-90_60min_1.0_d2.lcb
Report File Name	: Default.lcr
Data Acquired	: 8/17/2021 3:31:45 PM
Data Processed	: 8/17/2021 4:20:06 PM

<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

Acquired by	C:IUsersluserlDesktop\Jirong\Data\JL-4-4-ODH-90\%-1.0.Icd : Admin
Sample Name	: JL-4-4-ODH-90\%-1.0
Sample ID	: JL-4-4-ODH-90\%-1.0
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 10 uL
Data File Name	: JL-4-4-ODH-90\%-1.0.Icd
Method File Name	: pos5_90\%_60min_1.0_D2.Icm
Batch File Name	: Batch_table_C5-90_60min_1.0_d2.Icb
Report File Name	: Default.lcr
Data Acquired	: 8/20/2021 10:48:30 AM
Data Processed	8/20/2021 12:39:05 PM

<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluser\Desktop\Jirong\Data\JL-3-251-ID-99\%-1.Icd
Acquired by	: Admin
Sample Name	: JL-3-251-ID-99\%-1
Sample ID	: JL-3-251-ID-99\%-1
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 10 uL
Data File Name	: JL-3-251-ID-99\%-1.Icd
Method File Name	: pos3-99\%_60min_1.0_D2.Icm
Batch File Name	: Batch table C3 _99\%_60min_1.0_D2.Icb
Report File Name	: Default.lcr
Data Acquired	6/7/2021 12:53:42 PM
Data Processed	6/7/2021 2:00:24 PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PeakTable
PDA Ch1 254 nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	4.716	1439951	176415	49.716	51.084
2	5.021	1456396	168931	50.284	48.916
Total		2896348	345347	100.000	100.000

3.31

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

Acquired by	C:IUsersluserlDesktop\Jirong\Data\JL-3-261-ODH-90\%-1.0.Icd - Admin
Sample Name	: JL-3-261-ODH-90\%-1.0
Sample ID	: JL-3-261-ODH-90\%-1.0
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 10 uL
Data File Name	: JL-3-261-ODH-90\%-1.0.Icd
Method File Name	: pos5_90\%_60min_1.0_D2.lcm
Batch File Name	: Batch_table_C5-90_60min_1.0_d2.lcb
Report File Name	: Default.lcr
Data Acquired	: 7/12/2021 2:17:31 PM
Data Processed	: 7/13/2021 12:48:35 PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PDA Ch1 254 nm 4nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	4.306	1378201	264395	50.164	52.559
2	4.687	1369181	238646	49.836	47.441
Total		2747381	503042	100.000	100.000

3.33

==== Shimadzu LCsolution Analysis Report ====

Acquired by	C:IUsersluserlDesktop\Jirong\Data\JL-3-279-ODH-90\%-1.0.Icd : Admin
Sample Name	: JL-3-279-ODH-90\%-1.0
Sample ID	: JL-3-279-ODH-90\%-1.0
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 10 uL
Data File Name	: JL-3-279-ODH-90\%-1.0.Icd
Method File Name	: pos5_90\%_60min_1.0_D2.Icm
Batch File Name	: Batch_table_C5-90_60min_1.0_d2.lcb
Report File Name	: Default.lcr
Data Acquired	: 7/13/2021 12:36:27 PM
Data Processed	: 7/13/2021 12:48:52 PM

<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluserlDesktop\Jirong\DatalJL-3-300-ODH-90\%-1.0.Icd
Acquired by	Admin
Sample Name	$:$ JL-3-300-ODH-90\%-1.0
Sample ID	$:$ JL-3-300-ODH-90\%-1.0
Tray\#	$: 1$
Vail \#	$: 15$
Injection Volume	$: 10 \mathrm{uL}$
Data File Name	$:$ JL-3-300-ODH-90\%-1.0.Icd
Method File Name	:pos5_90\%_60min_1.0_D2.Icm
Batch File Name	: Batch_table_C5-90_60min_1.0_d2.lcb
Report File Name	: Default.Icr
Data Acquired	$: 8 / 12 / 2021$ 10:28:50 AM
Data Processed	$: 8 / 27 / 2021$ 11:25:19 AM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PDA Ch1 254 nm 4 nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	9.356	637922	41073	49.598	56.705
2	10.231	648256	31360	50.402	43.295
Total		1286179	72433	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

	C:\UsersluserlDesktop\Jirong\Data\JL-4-15-ODH-90\%-1.0-2.Icd
Acquired by	: Admin
Sample Name	: JL-4-15-ODH-90\%-1.0
Sample ID	: JL-4-15-ODH-90\%-1.0
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 10 uL
Data File Name	: JL-4-15-ODH-90\%-1.0-2.Icd
Method File Name	: pos5_90\%_60min_1.0_D2.Icm
Batch File Name	: Batch_table_C5-90_60min_1.0_d2.lcb
Report File Name	: Default.lcr
Data Acquired	: 9/2/2021 3:03:12 PM
Data Processed	: 9/2/2021 3:24:12 PM

<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

Sample Name	$:$ JL-3-252-ID-95\%-1
Sample ID	$:$ JL-3-252-ID-95\%-1
Tray\#	$: 1$
Vail \#	$: 15$
Injection Volume	$: 10$ uL
Data File Name	$:$ JL-3-252-ID-95\%-1.Icd
Method File Name	$:$ pos3-95\%_20min_1.0_D2.Icm
Batch File Name	$:$ Batch table C3_95\%_20min_1.0_D2.Icb
Report File Name	$:$ Default.Icr
Data Acquired	$: 6 / 5 / 20211: 04: 17$ PM
Data Processed	$: 6 / 5 / 20212: 13: 00$ PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PDA Ch1 254nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	3.968	2357209	405350	49.802	50.826
2	4.200	2375908	392170	50.198	49.174
Total		4733117	797520	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluserlDesktoplJironglData\JL-4-23TEST2-ID-90\%-2.Icd
Acquired by	$:$ Admin
Sample Name	$:$ JL-4-23TEST2-ID-90\%-1
Sample ID	$:$ JL-4-23TEST2-ID-90\%-1
Tray\#	$: 1$
Vail \#	$: 15$
Injection Volume	$: 10$ uL_
Data File Name	$:$ JL-4-23TEST2-ID-90\%-2.Icd
Method File Name	$:$ pos3-90\%_10MIN_1_d2.Icm
Batch File Name	: Batch table C3_90\%_10min_1.0_D2.Icb
Report File Name	$:$ Default.Icr
Data Acquired	$: 9 / 17 / 2021$ 11:06:07 AM
Data Processed	$: 9 / 17 / 2021$ 11:16:10 AM

<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluserlDesktop\Jirong\Data\JL-3-294-ODH-90\%-1.0.Icd
Acquired by	: Admin
Sample Name	: JL-3-294-ODH-90\%-1.0
Sample ID	: JL-3-294-ODH-90\%-1.0
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 10 uL
Data File Name	: JL-3-294-ODH-90\%-1.0.Icd
Method File Name	: pos5_90\%_60min_1.0_D2.Icm
Batch File Name	: Batch_table_C5-90_60min_1.0_d2.lcb
Report File Name	: Default.lcr
Data Acquired	: 8/12/2021 11:49:11 AM
Data Processed	: 8/12/2021 12:14:19 PM

<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluserlDesktop\Jirong\DatalJL-3-283-ODH-90\%-1.0.Icd
Acquired by	$:$ Admin
Sample Name	$:$ JL-3-283-ODH-90\%-1.0
Sample ID	$:$ JL-3-283-ODH-90\%-1.0
Tray\#	$: 1$
Vail \#	$: 15$
Injection Volume	$: 10 \mathrm{uL}$
Data File Name	$:$ JL-3-283-ODH-90\%-1.0.Icd
Method File Name	:pos5_90\%_60min_1.0_D2.Icm
Batch File Name	: Batch_table_C5-90_60min_1.0_d2.lcb
Report File Name	Default.Icr
Data Acquired	$: 8 / 12 / 20212: 32: 23$ PM
Data Processed	$: 8 / 12 / 20212: 42: 03$ PM

<Chromatogram>

3.37

==== Shimadzu LCsolution Analysis Report ====

Acquired by	C:IUsersluserlDesktop\Jirong\Data\JL-4-5-ODH-90\%-1.0.Icd
Sample Name	: JL-4-5-ODH-90\%-1.0
Sample ID	: JL-4-5-ODH-90\%-1.0
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 10 uL
Data File Name	: JL-4-5-ODH-90\%-1.0.Icd
Method File Name	: pos5 90\% 60min 1.0 D2.lcm
Batch File Name	Batch_table_C5-90_60min_1.0_d2.lcb
Report File Name	: Default.lcr
Data Acquired	: 8/19/2021 10:37:51 AM
Data Processed	: 8/19/2021 11:21:03 AM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PDA Ch1 254 nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	13.338	2887295	101146	50.298	56.973
2	15.803	2853128	76388	49.702	43.027
Total		5740423	177534	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

	C:\UsersluserlDesktop\Jirong\Data\JL-4-15-ODH-90\%-1.0-2.Icd
Acquired by	: Admin
Sample Name	: JL-4-15-ODH-90\%-1.0
Sample ID	: JL-4-15-ODH-90\%-1.0
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 10 uL
Data File Name	: JL-4-15-ODH-90\%-1.0-2.Icd
Method File Name	: pos5_90\%_60min_1.0_D2.Icm
Batch File Name	: Batch_table_C5-90_60min_1.0_d2.lcb
Report File Name	: Default.lcr
Data Acquired	: 9/2/2021 3:03:12 PM
Data Processed	: 9/2/2021 3:24:12 PM

<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

	:IUsersluserlDesktop\Jirong\Data\JL-3-119-ID-90\%-1.Icd
Acquired by	: Admin
Sample Name	: JL-3-119-ID-90\%-1
Sample ID	: JL-3-119-ID-90\%-1
Tray\#	: 1
Vail \#	: 1
Injection Volume	: 10 uL
Data File Name	: JL-3-119-ID-90\%-1.Icd
Method File Name	: pos3-90\%_60MIN_1.0_D2.Icm
Batch File Name	: Batch table C3 _90\%_60min_1.0_D2.Icb
Report File Name	: Default.lcr
Data Acquired	4/15/2021 3:15:00 PM
Data Processed	: 4/15/2021 5:02:25 PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm

PDA Ch1 254 nm 4 nm							
PeakTable							
$\|c\|$ Hea Height $\%$ Peak\# Ret. Time Area Height Area Heig. 1 24.594 1239643 30753 50.139 53.625 2 26.886 1232760 26595 49.861 46.375 Total 2472403 57348 100.000 100.000							

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluserlDesktop\Jirong\DatalJL-3-253-OJH-99\%-1.Icd
Acquired by	: Admin
Sample Name	$: \mathrm{JL}-3-253-O J H-99 \%-1$
Sample ID	$: \mathrm{JL}-3-253-O J H-99 \%-1$
Tray\#	$: 1$
Vail\#	$: 15$
Injection Volume	$: 10 \mathrm{uL}$
Data File Name	$: \mathrm{JL}-3-253-O J H-99 \%-1 . I c d$
Method File Name	: pos4_99\%_60min_1_D2.Icm
Batch File Name	: Batch_table_C4-99_60min_1_D2.Icb
Report File Name	: Default.Icr
Data Acquired	$: 6 / 9 / 2021$ 12:20:52 PM
Data Processed	$: 6 / 9 / 2021$ 1:37:26 PM

<Chromatogram>

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Ch1 254 nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	13.165	979650	36776	49.011	52.971
2	14.748	1019185	32650	50.989	47.029
Total		1998835	69426	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluserlDesktop\Jirong\Data\JL-3-258-OJH-99\%-1-2.Icd
Acquired by	: Admin
Sample Name	: JL-3-258-OJH-99\%-1
Sample ID	: JL-3-258-OJH-99\%-1
Tray\#	: 1
Vail \#	: 15
Injection Volume	: 10 uL
Data File Name	: JL-3-258-OJH-99\%-1-2.Icd
Method File Name	: pos4_99\%_30min_1_D2.Icm
Batch File Name	: Batch_table_C4-99_30min_1_D2.lcb
Report File Name	: Default.lcr
Data Acquired	: 6/21/2021 3:11:06 PM
Data Processed	: 6/21/2021 4:10:08 PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PDA Ch1 254 nm 4 nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
2	13.130	822315	32143	90.458	92.395
Total	15.358	86744	2646	9.542	7.605

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluserlDesktop\Jirong\Data\JL-3-225a-ID-90\%-1.Icd
Acquired by	: Admin
Sample Name	$:$ JL-3-225a-ID-90\%-1
Sample ID	$:$ JL-3-225a-ID-90\%-1
Tray\#	$: 1$
Vail \#	$: 15$
Injection Volume	$: 10$ uL
Data File Name	: JL-3-225a-ID-90\%-1.Icd
Method File Name	: pos3-90\%_10MIN_1_d2.Icm
Batch File Name	: Batch table C3_90\%_10min_1.0_D2.Icb
Report File Name	: Default.Icr
Data Acquired	$: 6 / 25 / 2021$ 12:07:42 PM
Data Processed	$: 6 / 25 / 2021$ 12:17:27 PM

<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

	C:IUsersluserlDesktop\Uirong\Data\JL-3-256a-ID-90\%-1.Icd
Acquired by	: Admin
Sample Name	$:$ JL-3-256a-ID-90\%-1
Sample ID	$:$ JL-3-256a-ID-90\%-1
Tray\#	$: 1$
Vail \#	$: 15$
Injection Volume	$: 10$ uL
Data File Name	: JL-3-256a-ID-90\%-1.Icd
Method File Name	: pos3-90\%_10MIN_1_d2.Icm
Batch File Name	: Batch table C3_90\%_10min_1.0_D2.Icb
Report File Name	: Default.Icr
Data Acquired	$: 6 / 26 / 2021$ 12:10:57 PM
Data Processed	$: 6 / 26 / 2021$ 1:06:19 PM

<Chromatogram>

3.43

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

Chapter 4
 Total Synthesis of Cannabinoids

4.1 Retrosynthetic Analysis

Based on the successful development of the enantioselective conjugate addition/enolate alkylation annulation method described in Chapter 3, a concise and convergent retrosynthetic analysis of (-)- Δ^{9}-tetrahydrocannabinol (THC, 4.1) and cannabidiol (CBD, 4.2) was proposed (Figure 4.1).

4.1

4.2

Figure 4.1. Retrosynthetic Analysis of THC (1) and CBD (2)
Both THC (4.1) and CBD (4.2) could be synthesized from a common intermediate, cyclohexene 4.3, through methyl magnesium iodide treatment followed by Lewis acid promoted etherification or Wittig olefination followed by the deprotection of phenolic hydroxyls, respectively. Cyclohexene 4.3 could be prepared from building blocks 4.4 and 4.5 via the novel enantioselective conjugate addition/enolate alkylation annulation reaction as demonstrated in the
previous chapter. The synthesis of the unique ambiphilic vinyl trifluoroborate 4.4 was proposed to start from an inexpensive starting material, 3-butyn-1-ol (4.9). That synthesis would require alkynyl methylation, Appel reaction, Miyaura borylation, and recrystallization after aqueous KHF_{2} treatment. The enone functionality in 4.5 could be constructed via a Wittig olefination from aldehyde 4.10, which would be obtained from 4.11 using lithiation chemistry. It was anticipated the ether formation from resorcinol 4.12 should give high yield of 4.11.

To demonstrate the potential of the annulation for THC analogs that were difficult to synthesize via previous routes, the retrosynthetic analysis of a novel benzofused THC analog $\mathbf{4 . 1 3}$ was also proposed (Figure 4.2). We anticipated that a global deprotection of intermediate 4.14 would also remove the methyl group from the ether on the nucleophile aryl ring, then Lewis acid promoted etherification would form 4.13 in a similar manner as it did in the synthesis of THC (4.1). The key benzannulated intermediate 4.14 could be obtained from building blocks 4.15 and 4.5 via enantioselective conjugate addition/enolate alkylation annulation reaction. The novel ambiphilic aryl trifluoroborate 4.15 could be obtained by recrystallization after treating arylboronate $\mathbf{4 . 1 6}$ with aqueous KHF_{2} solution. Aryl bromide 4.17 could be transformed into $\mathbf{4 . 1 6}$ via a modified Miyaura borylation. Appel reaction would provide a reliable route for incorporation of electrophilic functionality to alcohol 4.18 , which would be synthesized by a sequence of bromination of carboxylic acid 4.20 followed by treatment with a strong reductant. Enone 4.5 was proposed to be prepared from olivetol 4.12 as in Figure 4.1.

4.5

Figure 4.2. Retrosynthetic analysis of novel THC analog 13

4.2 Total Synthesis of THC (4.1) and CBD (4.2)

The total syntheses of THC (4.1) and CBD (4.2) both commenced with the synthesis of the novel ambiphilic vinyl trifluoroborate 4.4 (Scheme 4.1). The vinyl iodide alkyl alcohol 4.8 was successfully obtained from 3-butyn-1-ol in 70\% yield using conditions modified from the original report by Negishi. ${ }^{1}$ The following Appel reaction efficiently incorporated the electrophilic bromide, transforming alkyl alcohol 4.8 into alkyl bromide 4.7 in 95% yield. After applying modified Miyaura borylation conditions to $4.7,{ }^{2}$ the vinyl boronate 4.6 was obtained in 60% yield. Recrystallization after treating 4.6 with aqueous KHF_{2} solution gave the desired ambiphilic vinyl trifluoroborate 4.4 in 95% as white crystalline solid.

Scheme 4.1. Synthesis of ambiphilic vinyl trifluoroborate 4
Enone 4.5 was prepared following literature procedures (Scheme 4.2). ${ }^{3,4}$ From commercially available olivetol (4.12), methyl protection of the both hydroxyls gave bis-ether 4.11 in almost quantitative yield. Aldehyde $\mathbf{4 . 1 0}$ was obtained in 87% yield from bis-ether $\mathbf{4 . 1 1}$ after lithiation and a DMF quench. Enone 4.5 was synthesized via Witting olefination of aldehyde 4.10 quantitatively.

Scheme 4.2. Synthesis of enone 4.5
The key cyclohexene 4.3 was then rapidly generated from 4.4 and 4.5 via the $3-3^{\prime}$ perfluorotoluyl BINOL catalyzed enantioselective conjugate addition/enolate alkylation annulation reaction. This reaction was extremely effective: 4.3 was obtained as a single
diastereomer in 98% yield with $99: 1$ ee. Notably, this reaction could be scaled up to 1 mmol with only 1.2 equivalent of trifluoroborate 4.4 in 1 M concentration while continuing to provide consistently high yields and selectivity.

Scheme 4.3. Synthesis of key intermediate 4.3
The last step of the THC synthesis was then completed in 62% yield and high enantiopurity after treatment of 4.3 with and excess of methyl magnesium iodide and ZnBr_{2} (Scheme 4.4). Error! Bookmark not defined.,5 This synthetic route provided an overall yield of THC in 23% yield for the 7 step longest linear sequence, tying the shortest synthesis reported by the Evans group ${ }^{6}$ and doubling their overall yield. CBD was also synthesized from 4.3 by the deprotection of the methoxy groups after a Wittig olefination (Scheme 4.4). ${ }^{\text {Error! Bookmark not defined. }}$

Scheme 4.4. Synthesis of THC and CBD

4.3 Total Synthesis of Novel THC Analog 4.13

In an approach similar to the syntheses of THC and CBD, the synthesis of analog $\mathbf{4 . 1 3}$ commenced with ambiphilic aryl trifluoroborate 4.15 (Scheme 4.5). Starting with commercially available carboxylic acid $\mathbf{4 . 2 0}$, aryl bromide acid 4.19 was obtained in almost quantitative yield via bromination. Reduction with borane gave the alcohol 4.18 in 99% yield. Another Appel reaction and Miyaura borylation gave aryl pinacolborane alkyl bromide 4.16 in 57% yield. Treatment with aqueous KHF_{2} synthesized ambiphilic aryl trifluoroborate $\mathbf{4 . 1 5}$ in 99% yield.

Scheme 4.5. Synthesis of ambiphilic aryl trifluoroborate 4.15
The ambiphilic aryl trifluoroborate 4.15 was then combined with readily synthesized enone 4.5 and utilized in the 3-3'-perfluorotoluyl BINOL catalyzed enantioselective conjugate addition/enolate alkylation annulation reaction (Scheme 4.6). The aryl-fused intermediate 4.14 was obtained as a single diastereomer in 90\% yield with 98:2 ee.

Scheme 4.6. Syntheis of aryl-fused intermediate 4.14
To complete the synthesis of the analog 4.13, conditions similar to those utilized in the synthesis of THC were applied to the aryl-fused intermediate 4.14 (Scheme 4.7). Because the nucleophile also bore a methyl ether group, we anticipated that it would be deprotected and produce the phenolic hydroxyl. The reaction worked as planned, and the novel THC analog was obtained in 25% yield. This was the first time this analog had ever been made, demonstrating the potential of our methodology to access various analogs that were inaccessible via previous routes.

Scheme 4.7. Synthesis of novel THC analog 4.13

4.4 Conclusion

The total synthesis of THC and CBD was accomplished in high efficiency via a novel conjugate addition/enolate alkylation annulation reaction enabled by sophisticated ambiphilic organoborate alkyl halides, which set two adjacent stereocenters in a single reaction with incredibly high selectivity. This novel arrangement of nucleophilic and electrophilic functionality is impossible for most other nucleophiles, but these ambiphilic boronates are readily synthesized
and bench stable. By simple modification of trifluoroborate ambiphiles, analogs of cannabinoids that were previously inaccessible by prior enantioselective catalytic routes can now be obtained in good yields and excellent enantiopurities. We anticipate more novel analogs will be obtained via this method and we will work promptly to test the potency of their biological activities.

4.5 Experimental

4.5.1 Methods and Materials

All reactions were carried out in flame- or oven-dried glassware under a positive pressure of argon unless the reaction contained water as a solvent. Dichloromethane, toluene, THF and acetonitrile were purged with argon and dried over activated alumina columns. 1,2-dichloroethane was freshly distilled from CaH_{2} before use. 2-Methyl-tetrahydrofuran (2-MeTHF) was purchased from Acros Organics MS as "extra dry $99 \%+$ stabilizer free" in an AcroSeal bottle. Flash chromatography was performed using $60 \AA$ silica gel (Sigma Aldrich). Preparative and analytical plate chromatography was performed on Sigma Aldrich silica gel plates, $250 \mu \mathrm{~m}$ thickness, $60 \AA$ pore size, with UV light at 254 nm used to visualize the plates. Chemical names were generated using Cambridge Soft ChemBioDraw Ultra 12.0. Analysis by HPLC was performed on a Shimadzu Prominence LC (LC-20AB) equipped with an SPD-20A UV-Vis detector (190 nm-400 nm) and a Chiralpak or Chiralcel ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$) column (see below for column details). The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{11} \mathrm{~B}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a JEOL ECA-600, ECA-500, or ECX-400P spectrometer using the residual solvent peak as an internal standard $\left(\mathrm{CDCl}_{3}: 7.25 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ NMR and 77.00 ppm for ${ }^{13} \mathrm{C}$ NMR). NMR yields were determined by addition of 1 equivalent of methyl (4-nitrophenyl) carboxylate or trans-stilbene as an internal standard to the crude reaction mixture. IR spectra were obtained using a ThermoNicolet Avatar 370 FT-IR instrument. HRMS analyses
were performed under contract by UT Austin's mass spectrometric facility via an Agilent 6546 QTOF LC/MS (high res ESI), Agilent 6530 Q-TOP LC/MS (high resolution CI, APCI or APPI), or Waters Autospec GC/MS (high resolution CI) instrument. Optical rotation was measured by ATAGO PIKAX-2L equipped with a 589 nm light source, and the sample solution was loaded in a 50 mm quartz observation tube.

Commercially available compounds were purchased from Sigma Aldrich, Acros, CombiBlocks, Oakwood Chemical, Alfa Aesar, Ambeed, ArkPharm, Beantown Chemical, TCI, and Cambridge Isotope Laboratories and were used without further purification.

Experimental procedures for compounds 4.4, 4.6, 4.7, 4.8, 4.15, 4.16, 4.17, 4.18, and 4.19 have been reported in experimental section of Chapter 2.

Experimental procedures for compounds 4.3, 4.5, 4.10, 4.11, and 4.21 have been reported in experimental section of Chapter 3.

4.5.2 Synthesis of CBD 4.2

In a flame-dried 50 mL round bottom flask equipped with a stir bar, iodo(methyl)triphenylphosphorane ($626.2 \mathrm{mg}, 1.55 \mathrm{mmol}, 2.5$ equiv) was dissolved in THF (25 mL). Potassium tert-butoxide (174 mg . $1.55 \mathrm{mmol}, 2.5$ equiv) was added in one portion. The reaction was stirred at room temperature to form a fine suspension before $(R, R)-4.3(213 \mathrm{mg}, 0.62$ mmol, 1 equiv) was added. The reaction was then heated to reflux for 12 hours and then cooled to room temperature and quenched by the addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL).

The aqueous layer was extracted with ethyl acetate ($10 \mathrm{ml} \times 3$), and the combined organic layers were washed with brine (30 mL) and dried over anhydrous MgSO_{4}. The solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography using 5\% ethyl acetate in hexanes to provide ($\boldsymbol{R}, \boldsymbol{R}$)-4.22 ($180.8 \mathrm{mg}, 85 \%$ yield) as a light yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, chloroform-d) $\delta 6.32(\mathrm{~s}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (s, 1H), 3.99-3.96(m, 1H), 3.72 (s, 6H), $2.89(\mathrm{td}, J=11.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.20-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.58(\mathrm{~m}, 5 \mathrm{H})$, 1.35-1.28(m, 4H), $0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. All spectral data match literature report. ${ }^{\text {Error! Bookmark }}$ not defined.

In a flame-dried 20 mL round bottom flask equipped with a stir bar, $(\boldsymbol{R}, \boldsymbol{R})-\mathbf{S I}-\mathbf{2 4}(140 \mathrm{mg}$, $0.4 \mathrm{mmol}, 1$ equiv) was added in anhydrous ether (4 mL) before being cooled to $0 \mathrm{C}^{\circ}$. Methyl magnesium iodide ($1.17 \mathrm{~mL}, 3.5 \mathrm{mmol}, 3 \mathrm{M}$ in ether, 8 equiv) was added dropwise. The reaction was allowed to warm up to room temperature and stir for 20 minutes. Then the reaction was heated to $160 \mathrm{C}^{\circ}$ under reduced pressure (150 mbar) for 1.5 hours. After completion, the reaction was warmed up to room temperature then cooled to $0 \mathrm{C}^{\circ}$ before being quenched by addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5 \mathrm{~mL})$. The aqueous layer was extracted with ether (10 mL x 3). The combined organic layer was washed with brine (15 mL) and dried over anhydrous MgSO_{4}. The solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography using 5-10\% ethyl acetate in hexanes to provide (-)-2 (72.5 mg, 58\% yield)
as a light yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, chloroform-d) $\delta 6.27-6.14(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.56$ $(\mathrm{s}, 1 \mathrm{H}), 4.65-4.54(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.26-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.10-$ $2.06(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 5 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, chloroform-d) $\delta 149.4,143.1,140.2,124.2,113.8,111.0,109.8$, $108.1,46.3,37.2,35.6,31.6,30.8,30.5,28.5,23.8,22.6,20.5,14.2 .[\alpha]^{20}{ }_{D}=-130(c=1.0, \mathrm{EtOH})$, lit. $[\alpha]^{19}{ }_{D}=-129(\mathrm{c}=0.49, \mathrm{EtOH}) .{ }^{7}$ All spectral data match the literature report. ${ }^{\text {Error! Bookmark not defined. }}$

4.5.3 Synthesis of THC 4.1

In a flame-dried 10 mL round bottom flask equipped with a stir bar, $(R, R)-4.3(86 \mathrm{mg}$, 0.25 mmol , 1 equiv) was added to anhydrous ether $(1.25 \mathrm{~mL})$ before being cooled to $0^{\circ} \mathrm{C}$. Methyl magnesium iodide ($0.85 \mathrm{~mL}, 2.55 \mathrm{mmol}, 3 \mathrm{M}$ in ether, 10 equiv) was added dropwise. The reaction was allowed to warm to room temperature and stirred for 20 minutes. The reaction was heated to $160{ }^{\circ} \mathrm{C}$ under reduced pressure (150 mbar) for 50 minutes. After completion, the reaction was allowed to cool to room temperature, then cooled to $0^{\circ} \mathrm{C}$ in an ice bath before being quenched by the addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5 \mathrm{~mL})$. The aqueous layer was extracted with ether ($10 \mathrm{~mL} x$ 3). The combined organic layers were washed with brine (15 mL) and dried over anhydrous MgSO_{4}. The solvent was removed under reduced pressure. The crude product was dissolved in $\mathrm{DCM}(3 \mathrm{~mL})$, and then ZnBr_{2} ($81.1 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.4$ equiv) and anhydrous MgSO_{4} ($120 \mathrm{mg}, 1 \mathrm{mmol}, 4$ equiv) were added. The resulting suspension was allowed to stir at room temperature for 4 h . The reaction was quenched by the addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$
solution $(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{DCM}(10 \mathrm{~mL} x 3)$. The combined organic layers were washed with brine (20 mL) and dried over anhydrous MgSO_{4}. The solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography using 5% ether in hexanes to provide (-) $\mathbf{- 4 . 1}(48.4 \mathrm{mg}, 62 \%$ yield) as a light yellow oil. ${ }^{1} \mathbf{H}$-NMR (400 MHz , chloroform-d) $\delta 6.31(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}$, $1 \mathrm{H}), 3.20(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.89(\mathrm{~m}, 1 \mathrm{H})$, $1.72-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H})$, $0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathbf{N M R}(101 \mathrm{MHz}$, chloroform-d) $\delta 154.8,154.3,142.9,134.5,123.8$, $110.1,109.1,107.7,45.9,35.6,33.7,31.6,31.3,30.8,27.7,25.1,23.5,22.7,19.4,14.1 .[\alpha]^{20}{ }_{D}=-$ $150\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$ lit. $[\alpha]^{25} \mathrm{D}^{=}=-152\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{8}$ All spectral data match the literature reports. Error! Bookmark not defined.

4.5.4 Synthesis of Analog 4.13

In a flame-dried 10 mL round bottom flask equipped with a stir bar, $(R, R)-4.14(144 \mathrm{mg}$, 0.43 mmol , 1 equiv) was added to anhydrous ether (2 mL) before being cooled to $0^{\circ} \mathrm{C}$. Methyl magnesium iodide ($2.15 \mathrm{~mL}, 3 \mathrm{mmol}, 3 \mathrm{M}$ in ether, 15 equiv) was added dropwise. The reaction was allowed to warm up to room temperature and stir for 20 minutes. Then the reaction was heated to $160{ }^{\circ} \mathrm{C}$ under reduced pressure (150 mbar) for 50 minutes. After completion, the reaction was allowed to cool to room temperature, and then it was further cooled to $0^{\circ} \mathrm{C}$ in an ice bath before
being quenched by addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5 \mathrm{~mL})$. The aqueous layer was extracted with ether ($10 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine (15 mL) and dried over anhydrous MgSO_{4}. The solvent was removed under reduced pressure. The crude product was dissolved in $\mathrm{DCM}(3 \mathrm{~mL})$, and then $\mathrm{ZnBr}_{2}(135.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.4$ equiv) and anhydrous MgSO_{4} ($207 \mathrm{mg}, 1.72 \mathrm{mmol}, 4$ equiv) were added. The resulted suspension was allowed to stir at room temperature for 4 h . The reaction was then quenched by the addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL). The aqueous layer was extracted with $\mathrm{DCM}(10 \mathrm{~mL} \times 3)$. The combined organic layer was washed with brine (20 mL) and dried over anhydrous MgSO_{4}. The solvent was removed under reduced vacuum. The crude product was purified by silica gel column chromatography using 15-20\% ether in hexanes to provide $(R, R)-4.13$ ($39.6 \mathrm{mg}, 25 \%$ yield) as a light yellow sticky oil. This compound will be very quickly oxidized by atmospheric oxygen if not stored in the freezer under an atmosphere of inert gas. ${ }^{1} \mathbf{H}-$ NMR (400 MHz , chloroform-d) $\delta 6.85$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{broad}, 2 \mathrm{H}), 3.43(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.33$ (broad, 7 H), 1.19 (broad, 3 H), $0.89(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathbf{N M R}(101 \mathrm{MHz}$, chloroform-d) $\delta 155.1,154.4$, $154.3,144.0,140.5,132.0,124.7,115.5,112.3,110.8,108.3,106.8,48.0,35.8,34.0,31.7,30.7$, 27.5, 27.2, 22.7, 22.3, 18.5, 14.2. HRMS-ESI \mathbf{m} / \mathbf{z} calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{-} 365.2122$, found 365.2119.

4.6 Bibliography

1. Ma, S.; Negishi, E. Anti-Carbometalation of Homopropargyl Alcohols and Their Higher Homologues via Non-Chelation-Controlled Syn-Carbometalation and Chelation-Controlled Isomerization. J. Org. Chem. 1997, 62, 784-785.
2. Please see Experimental Section in Chapter 2 for details.
3. Trost, B. M.; Dogra, K. Synthesis of (-)- Δ^{9}-trans-Tetrahydrocannabinol: Stereocontrol via MoCatalyzed Asymmetric Allylic Alkylation Reaction. Org. Lett. 2007, 9, 861-863.
4. Shultz, Z. P.; Lawrence, G. A.; Jacobson, J. M.; Cruz, E. J.; Leahy, J. W. Enantioselective Total Synthesis of Cannabinoids—A Route for Analogue Development. Org. Lett. 2018, 20, 381-384.
5. Schafroth, M. A.; Zuccarello, G.; Krautwald, S.; Sarlah, D.; Carreira, E. M. Stereodivergent Total Synthesis of Δ^{9}-Tetrahydrocannabinols. Angew. Chem. Int. Ed. 2014, 53, 13898-13901.
6. Evans, D. A.; Shaughnessy, E. A.; Barnes, D. M. Cationic Bis(oxazoline)Cu(II) Lewis Acid Catalysts. Application to the Asymmetric Synthesis of ent- Δ^{1}-Tetrahydrocannabinol. Tetrahedron Lett. 1997, 38, 3193-3194.
7. Petrzilka, T.; Haefliger, W.; Sikemeier, C.; Ohloff, G.; Eschenmoser, A. Synthese und Chiralität des (-)-Cannabidiols Vorläufige Mitteilung Helv. Chim. Acta 1967, 50, 719-723.
8. Choi, Y. H.; Hazekamp, A.; Peltenburg-Looman, A. M. G.; Frédérich, M.; Erkelens, C. NMR assignments of the major cannabinoids and cannabiflavonoids isolated from flowers of Cannabis sativa Phytochem. Anal. 2004, 15, 345-354.

Chapter 4

Appendix

