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Abstract

Marcus theory predicts electron transfer rates between donor and acceptor systems.

Since its inception in the 1950’s, this theory has been widely applied to topics in

many disciplines and has become an instrumental model in describing the efficien-

cies of photovoltaics. A key aspect of this theory requires knowledge of the nuclear

reorganization of system and solvent alike and computation of energies associated

with such nuclear motions is often difficult or impossible for systems with large num-

ber of degrees of freedom. We develop here a mixed quantum mechanical/molecular

dynamics model to investigate charge transfer dynamics in a set of large organic

Donor-Bridge-Acceptor triad molecules. Specifically, we are interested in the differ-

ences in electron and nuclear behavior relating to small changes in the molecular

makeup of Carotenoid-Porphyrin-Fullerene triads.

Our model approximates excitation energies on the order of 1.9 eV which agrees

with absorption spectra for these triads and isolated porhyrins. Via electron popula-

tion analysis, we monitor charge migration to the acceptor in time. Approximations

of the charge transfer rates reveal ultrafast (picosecond scale) electron dynamics con-

sistent with experimental literature. We then correlate nuclear dynamics with the

charge transfer process using the Short-Time Fourier Transform technique. Broadly,

the porphyrins undergo higher energy vibrations, whereas the fullerenes see low en-

ergy modes. Aryl side groups exhibit torsional motions relative to the porphyrin.

Aryl linkers between bridge and acceptor are restricted from such motions and there-

fore express ring distortion modes. Finally, we find an amide linker mode that is

directionally sensitive to electron motion.

This work supports the notion of vibrationally coupled ultrafast charge transfer

found in both experimental and theoretical studies and lays a foundational method for

identifying key vibrational modes for parameterizing future theoretical models.
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Chapter 1

Introduction

In the mid-1950s, Rudolph Marcus published what would become the standard model

for predicting rate constants in electron transfer (ET) mechanisms[1, 2]. In his origi-

nating work, he considers the self-exchange reaction between pairs of small Iron and

Magnesium complexes. In particular, he wanted to reconcile the Franck-Condon Prin-

ciple (FCP) and energy conservation in the context of these nonradiative reduction-

oxidation reactions[3]. Under the FCP, an electron would jump from one ion to

another instantaneously without an immediate response from slower nuclei. The re-

sulting products are the same two ions (Fe2+ + Fe3+ 
 Fe3+ + Fe2+), but each ion

is now in a foreign, non-equilibrium environment. With larger ionic complexes, the

change in the local electric fields is smaller after electron transfer, eliciting less re-

sponse from the solvent. However, the nature of the bond between metal ion and

ligand changes, and this becomes the foreign environment. Nuclear coordinates and

their coupling to the electronic state are, therefore, an integral part of the potential

energy description.

While the original work focused on small metal ions and complexes, the resulting

1



Figure 1.1: Selection of topics related to electron transfer. Reproduced with permis-
sion from Springer Science and Bus Media B V.

theory is widely predictive in many current topics as electron transfer is at the heart

of the vast majority of chemical and biochemical processes. Figure 1.1 depicts a small

subset of related topics and illustrates the ubiquity of this theory.

Marcus aimed to describe the rate of ET in the Arrhenius (kinetic) sense, k ∝

e−∆G‡/RT . Here, ∆G‡ is the activation energy between an initial and final electronic

state. Figure 1.2 plots the parabolic form (2nd order Taylor expansion) of the free

energy surfaces along a single normal coordinate for such states. With this approx-

imation, one can relate the activation energy to two parameters, λ and ∆G0. With

exponential prefactor from the Fermi Golden Rule, one can then elegantly write the

2



transition rate as

kET =
2π |V |2

~
1√

4πλkBT
exp

[
−(∆G0 + λ)2

4λkBT

]
(1.1)

where V is the electronic coupling between the initial and final states; λ is the reor-

ganization energy associated with the nuclear relaxation from the minima of the first

state to the minimum of the final state along the surface of the final state; and ∆G0

is the free energy offset (driving force) between the states. The reorganization energy

term includes both the rearrangement of the ions of interest and solvent molecule

reorientation as a result of the redistribution of charge. Many experimental compar-

isons highlight the predictive power of this theory[4], and it remains as a comparison

point for new theoretical models[5, 6, 7].

The Gaussian-like exponential term dictates that the rate is maximal, for a given

V , when −∆G0 = λ. Most electron transfer reactions lie within the normal Marcus

regime, where −∆G0 < λ, as depicted in Figure 1.2. For −∆G0 > λ, this is the

inverted regime. In this region, while the driving force becomes increasingly favor-

able, the wavefunction overlap between the considered states vanishes, and therefore

reaction rate drops[8]. Evidence of this case was found 30 years later by Miller and

coworkers[9].

While it is possible to compute ∆G, λ, and V in smaller or ordered systems, the

task becomes much more formidable when considering large or non-rigid systems.

Computation of ∆G0 and λ require not only geometry optimization and energy cal-

culations for the ground state, but also those for multiple excited states, which are

significantly more involved. One can approximate such parameters from diabatic

surfaces, but they are not uniquely defined. One can uniquely define the adiabatic

3
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Figure 1.2: Schematic representation of Marcus electron transfer theory. Parabolas
represent the energy surfaces of the initial (blue) and final (orange) states with respect
to an arbitrary reaction coordinate, where the minima correspond to an equilibrium
geometry. Terms depicted are ∆G0, the free energy offset, and λ, the reorganization
energy.
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q

EA

EB

V0

V1

q

2VAB>>|EA-EB|

q

2VAB≲|EA-EB|

Figure 1.3: Schematic figure of adiabatic (blue) potentials surfaces (arbitrary energy
unit) as a function of arbitrary coordinate q. These are one dimensional cross-sections
of an otherwise high dimensional coordinate space. (Top) Adiabatic surfaces plotted
with resulting diabatic surfaces (orange). (Bottom, left) Adibatic potentials under
strong coupling regime. (Bottom, right) Adiabatic potentials in weak coupling regime.

potentials along a given nuclear coordinate via Born-Oppenheimer Approximation

Vn(R) = 〈ψn(q)|Hel(q) |ψn(q)〉 (1.2)

giving rise to a series of potentials Vn(q) visualized in Figure 1.3. Such potentials

may come arbitrarily close but will not cross, unless allowed by symmetry.

Diabatization involves assuming that away from the avoided crossing, each adia-

batic state can be written as a linear combination of some other states such that in

this basis

H =

EA(q) VAB

VAB EB(q)

 (1.3)

5



and the eigenvalues ofH are the same as those of the Born-Oppenheimer Hamiltonian.

EA(q) and EB(q) are the “diabatic” potentials. So long as |EA − EB| > 2VAB, the

diabatic potentials provide a robust and accurate description. In this limit, a pertur-

bative expansion of the states in terms of VAB

|EA−EB |
converges rapidly. However, close

to the avoided crossing, the diabatic states become strongly mixed and perturbation

theory is no longer valid.

Furthermore, free energy surfaces are not dependent on merely one dimension

or normal coordinate as pictured; they are multivariate with respect to the system

under study. Nevertheless, if these obstacles can be overcome, this theory remains

not only viable for determining electron transfer rates for inorganic, organometallic,

and organic molecules but stands as a comparison point for new models[4, 5, 6, 7].

The reorganization energy encapsulates any nuclear dynamics that occur as a result

of changes in the electronic state. As the term is a significant factor this description

of electron transfer, identifying which normal coordinates of a given system are sig-

nificant to the transition will not only give insight into better molecular construction

but can also reduce the number of degrees of freedom considered in models.

1.1 Vibronic Transitions

Each electronic state contains numerous vibrational levels, which in turn contain ro-

tational levels. Often, these rotational degrees of freedom are ignored as their energy

scale is negligible in the context of electronic energies. A description of these vibra-

tional states can be derived from first assuming the Born-Oppenheimer approximation

(electronic and nuclear degrees of freedom can be separated).

|Ψtotal〉 = |Ψelec〉 ⊗ |Ψnuc〉 (1.4)

6



The Franck-Condon Principle then assumes nuclear motion is slow compared to elec-

tron motion and therefore photoexcitations are instantaneous relative to nuclear mo-

tion. Thus, a transition probability can be calculated:

Pf←i =
∣∣∣〈Ψf

total| µ̂ |Ψ
i
total〉

∣∣∣2 =
∣∣〈Ψf

nuc|Ψi
nuc〉
∣∣2 ∣∣∣〈Ψf

elec| µ̂ |Ψ
i
elec〉

∣∣∣2 (1.5)

where µ̂ is the dipole operator. The probability has dependence on the nuclear wave-

function and only with significant overlap can the transition occur.

Figure 1.4 plots a pair of displaced harmonic oscillators. In this example, the

ground state vibrational mode has overlap with the fourth vibrational overtone of

the excited state. The spectral amplitude for electronic transitions depends on this

amplitude of the overlap. Note, that between the two electronic states, the energy

minima are at two different normal mode coordinates. The final state resulting from

the electronic transition begins at a nonequilibrium geometry with some vibrational

energy, hence, the portmanteau “vibronic”.

Following electronic excitation, the system can then vibrationally relax. When

the wavefunction of a lower vibrational state has significant overlap with another in

the electronic ground state, the system can emit a photon and electronically relax.

The outgoing photon is of less energy than the initial excitation input energy (fluores-

cence). However, the system need not always electronically relax with photoemission.

If there is significant wavefunction overlap with a different excited electronic state,

the system can relax nonradiatively (Figure 1.2). The new excited state will likely

have a different equilibrium nuclear configuration and electronic wavefunction distri-

bution such that the electron density may be localized in a different spatial region

(charge transfer), as discussed previously. This nonradiative transition is very much

in line with the work of Marcus and an accurate description faces the same chal-

lenges. Where two electronic states coincide, electronic coupling becomes large and

7
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Figure 1.4: Schematic diagram of a vertical transition between a ground state (blue)
and excited state (orange). Parabolic curves represent the potential energy surface of
the respective electronic states. Strata within the parabolic curves are the amplitudes
of the vibrational wavefunctions.
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the Born-Oppenheimer approximation breaks down.

The Fewest Switches Surface Hopping (FSSH) method approaches electronic tran-

sitions from a dynamics perspective[10]. Within this method, multiple adiabatic

states are propagated via the time-dependent Shrödigner equation and the system

is in exactly one of these states at any given time. The system can hop to another

adiabatic state with a probability computed from the electronic coupling between its

current state and some other adiabatic state. An ensemble of propagated trajectories

averages out the random aspect of “choosing” to hop against a probability. Adjusting

nuclear velocities following a hop conserves angular momenta and total energy. Nu-

clei are purely classical, responding to mean-field potential (Ehrenfest[11] dynamics),

and therefore no vibrational wavefunction overlap is considered for the purposes of

electronic transitions. The original proposition of this method accurately described

a collision reaction between H+ and D2[12]. Further developments apply more rig-

orous considerations, namely towards the ad hoc nuclear momentum rescaling and

lack of quantum decoherence treatment[13, 14, 15, 16, 17]. FSSH and related meth-

ods have been applied to model electronic transitions in larger systems reproducing

experimental results and, in some cases, with better accuracy than exact quantum

mechanical calculations[18, 19]. FSSH is not entirely without faults, however. Large

coupling value relative to the energy difference between two electronic states drives

up the switching probability. In systems where low-lying states are densely packed,

trajectories will rapidly hop about these surfaces, leading to unphysical results.
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1.2 Charge Transfer in Organic Semiconductors

As the looming threat of global warming and climate change begins to manifest,

the need to undo global energy dependence on fossil fuels and non-renewable energy

sources becomes increasingly apparent. Solar energy is a viable alternative as there

is enough radiation to power human energy consumption many-fold[20]. It becomes

a crucial task, then, to understand the optoelectronic properties of photoactive ma-

terials and optimize their construction. In particular, comprehensive knowledge of

electron/energy transfer in such materials lays a strong foundation towards this end.

As such, the charge transfer problem has been the subject of an enormous amount of

effort in well over the last half-century, including the works of many Nobel laureates.

Figure 1.5 shows the progress towards high photoconversion efficiency for vari-

ous kinds of photovoltaic materials. The current record holders are multi-junction

inorganic photovoltaics that now boast up to 46% photoconversion efficiency. These

materials, however, often require caustic components and are costly to produce. On

the lower side of the efficiency chart, the organic semiconductors have enjoyed two

decades of growth, reaching just over 16% efficiency[21]. Despite this difference in ef-

ficacy, organic photovoltaics (OPV’s) have many desirable properties. Namely, they

are significantly cheaper and easier to produce, and the amorphous nature of the

active photovoltaic layer lends to flexible devices suitable for applications on even

non-rigid surfaces. Furthermore, vast knowledge of synthetic organic chemistry af-

fords polymer scientists an enormous variation in cell construction. The efficiency

of OPV’s relies on the successful transfer of photoexcited electrons across the active

layer. Complex morphology of most OPV’s and their low dielectric constants make

this a non-trivial phenomenon.

10
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1.2.1 The Bulk Heterojunction

Figure 1.6 depicts the cross-section of an OPV cell. At the top sits a glass layer which

allows light to travel in. Sandwiched between two electrode layers (gray) is the active

layer consisting of separated donor and acceptor phases. In an OPV of this type,

a photon will excite an electron in the donor or acceptor phase generally forming

a Frenkel exciton (a tightly bound electron and hole pair on the same molecule) or

charge transfer exciton (electron and hole are on different molecules, yet Coulombi-

cally bound). This exciton will either undergo recombination (radiative for singlet

excitons, nonradiative for triplet) back to the ground state or dissociate into a loosely

bound electron-hole pair wherein the electron finds itself in the acceptor phase and its

positively charged vacancy in the donor phase. These separated charges eventually

migrate to opposite electrodes generating current. Binding energies for these exci-

tons range between ∼ 0–1 eV[23]. This interaction is particularly strong relative to

inorganic semiconductors as a result of the low dielectric constant of organic media,

making the separation process all the more difficult. This binding energy must be

overcome by the combination of ambient thermal energy and energetic offset of the

acceptor and donor materials.

Characterizing these electron dynamics provides insight into the photophysical

properties of the semiconducting material and may lead to the design of improved

or novel materials. However, it is exceptionally difficult to atomistically simulate the

optoelectronic properties of a full-scale bulk heterojunction given that modern quan-

tum computational techniques increase exponentially with system size1. The energetic

offset between acceptor and donor materials constitutes the driving force for charge

1Hartree-Fock (HF) treatments scale as O(n4) and Density Functional Theory (DFT) as O(n3)
for n basis functions.
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Figure 1.6: Depiction of an organic photovoltaic device. Blue and orange represent
donor and acceptor phases of the bulk heterojunction.
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separation and, therefore, one can simplify the problem by studying interactions at

the interface between semiconductor phases.

Previous work by Kelley, Patel, and Bittner used a mixed quantum mechanical/-

molecular mechanics approach model a PPV:PCMB bulk heterojunction in which

preselected interfacial molecules were determined to be “quantum active” leaving the

remaining molecules treated as a classical solvent[24]. By “quantum active”, we mean

π electrons of this subset of molecules are treated quantum mechanically and the rest

treated with force fields. Our simulations describe that low lying excited states form

a dense band spanning about 0.5 eV; as previously discussed, FSSH under this sce-

nario undergoes rapid switching between propagated surfaces producing unphysical

results. We show, via Fourier Transform of bandgap time-series, that excitation en-

ergy is modulated by lower energy torsional modes, mid-range C=C bond stretching,

and, to a lesser extent, high energy C-H modes. Such vibrations, though perhaps

only weakly coupled to electronic states, provide enough energetic overlap between

electronic states such that rapid transitions occur between excitonic, charge transfer,

and (long-range) charge-separated state.

In general, an excitation can occur in any molecular phase of the system. Pho-

toexcitation of the donor requires subsequent migration of the excited electrons to the

acceptor along LUMO orbitals to form the CT state. In contrast, photoexcitation of

the acceptor should be followed by hole migration to the donor through HOMO or-

bitals. In certain model systems, charge transfer can be mediated by a bridge moiety.

Large energetic offset decreases overlap between donor and acceptor states. However,

bridge states provide both intermediate energetic and spatial pathways for much more

efficient electron transfer. Distortions arising from vibrations, solvent effects, or other

14
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energetic proximity helps facilitates electronic transitions.

noise fluctuate the energy differences between these states and alter the charge trans-

fer rate as a consequence. Figure 1.7 depicts an alternative sequence of the charge

transfer mechanism wherein a bridge electron is excited, followed by two localized

transitions: bridge to acceptor along LUMO’s and donor to bridge along HOMO’s.

We discussed such models in the proceeding subsection.

1.2.2 Artificial Photosynthesis

Additionally, one can look to nature for inspiration for another solar energy conversion

method. For billions of years, phototrophic lifeforms have used light as the primary

source of energy to drive anabolic processes. Photosynthesis is initiated by photoab-

sorption in the light-harvesting complex (LHC). Figure 1.8 depicts the structure of

light-harvesting complex I (LH-I) and the reaction center (RC) of purple bacteria[25].

Within LH-I, 32 bacteriochlorophyll (BChl, green square with yellow carotenoid tail)

absorb light and funnel the excitation energy to the RC encompassed within.
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Figure 1.8: Structure of the LH-I–RC complex. (a) Side view of the LH-I–RC complex
with three LH-I αβ-heterodimers on the front side removed to expose the RC in the
interior. The α-helices are represented as cylinders with the L, M, and H subunits
of the RC in yellow, red, and gray, and the α-apoprotein and the β-apoprotein of
the LH-I in blue and magenta. BChls and bacteriopheophytins are represented as
green and yellow squares, respectively. Carotenoids (spheroidenes) in a yellow licorice
representation, and quinone QB is rendered by gray van der Waals spheres. QB

shuttles in and out (as QBH2) of the LH-I–RC complex. (b) Arrangement of BChls
in the LH-I–RC complex. The BChls are represented as squares with B875 BChls of
LH-I in green, and the special pair (PA and PB) and the accessory BChls (BA and
BB) of the RC in red and blue, respectively; cyan bars represent the Qy transition
moments of BChls.[25] Image courtesy of National Academy of Sciences. Copyright
(1998) National Academy of Sciences, U.S.A.
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However, this complex does not sufficiently collect enough light alone and requires

antennae in the form of light-harvesting complex II (LH-II) and, in some bacteria,

light-harvesting complex III (LH-III)[26, 27, 28, 29]. LH-II and LH-III are struc-

turally similar to LH-I but contain less BChl units and have no reaction center. Each

LH-I complex can be surrounded by up to ten LH-II antennae with the exact ratio

depending on the bacteria itself and growth conditions[30]. Absorption studies of

these LH complexes have found that LH-III absorbs at higher energies than LH-II,

which in turn absorbs at higher energy than LH-I. The succession of energies drives

photoexcitation energy from LH-III through LH-II to LH-I[31] and finally ending at

a pair of strongly interacting BChls (red squares in Figure 1.8(b)) in the RC. This

final pair, termed the special pair, drives the high energy electron into quinone ac-

ceptors. In purple bacteria, the system recovers the lost electron from the oxidation

of H2, elemental sulfur, or sulfur compounds, completing the electron processes in

Photosystem II. In cyanobacteria and higher plants, the process concludes with the

oxidation and splitting of water.

Scientists have long since attempted to understand and replicate the photophys-

ical processes occurring within photosynthetic bacteria. Efficient splitting of water

provides a viable means of hydrogen production for energy storage. Three key fac-

tors have been identified for developing artificial reaction centers. Systems must (1)

have quantum yield near unity, (2) have slow recombination rates, and (3) store large

amounts of energy[32].

The final electron transfer reaction in Photosystem II (special pair to quinone

transfer) precedes the water-splitting step and is therefore an important precursor

process to study. The photosynthetic complex fixes the special pair into optimal

positions for electron transfer to bound quinones. For experimental study, porphyrin
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Figure 1.9: Basic construction of the Donor-Bridge-Acceptor triad composed of a
carotenoid donor (blue), porphyrin bridge (red), and fullerene (green) derivative ac-
ceptor (green). Alternative structures include addition of side groups to the porphyrin
in β or meso positions, increasing distance between subunits via methylene units, or
a different fullerene derivative.

molecules are photophysically similar to Bchl, but have the added benefit of facile

synthesis and stability. Thus, early models considered covalently bound porphyrin

and quinone[33, 34].

Tom and Anna Moore and coworkers have experimentally investigated a wide

array of dyads (donor/acceptor) and triads (donor/bridge/acceptor) that mimic the

photosynthetic processes of bacterial light harvesters[35, 36, 37, 38, 39, 40, 41, 42,

43]. They have shown that porphyrin-quinone and porphyrin-C60 dyad systems can

maintain charge separation for time scales up to hundreds of picoseconds[37, 40]. The

addition of a carotenoid polyene moiety increases lifetimes, in some cases by three

orders of magnitude, by increasing the physical separation of the charges. A readily

detectable transient absorption band of the carotenoid radical cation[44] and large

detected dipole moment[42] support this claim.
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Triadic systems of this design undergo a multistep electron transfer process (de-

picted in Figure 1.10). First, the porphyrin bridge, retaining its chromophoric func-

tion from BChls and the dyads, is photoexcited into a singlet excited state. Following

this, the excited electron migrates to the acceptor moiety (k2), driven by the energetic

offset between the exciton and first charge transfer state (CP+C−60). An electron from

the donor then relaxes (k4) into the vacancy in the bridge forming the final CT state.

This state can undergo a decay process into the carotenoid triplet state[45] (k6) and

finally relax down to the ground state. Incidentally, this triplet state, which provides

photoprotection from singlet oxygen, is not seen in many other biomimetic materials

but is seen in natural photosynthetic systems[40].

Each charge transfer process competes with a corresponding recombination process

(not shown) that relaxes the system to the ground state. By comparing the rate

constants (kx) of each forward process to other competing relaxation processes, one

can ascribe a quantum yield value to each step

Φ =
kforward

kforward + kothers

(1.6)

Large kforward values (faster process) compared to competing processes push Φ to-

wards unity. Experimental studies of the formation of first CT state in Carotenoid-

Porphyrin-Fullerene (CPF) triads indicate the quantum yield for this process lies

around Φ > 0.85).

Rozzi and corkers have combined experimental and theoretical techniques on a

study of one CPF triad[46]. Their experimental work studies the triad in Figure 1.9

with the addition of mesitylene molecules at the porphyrin meso positions. Their

theoretical work considers only the basic construction of the triad. In this work,

they claimed coherent ultrafast charge transfer occurs at the sub-100 femtosecond

scale. Differential transmission spectra showed the rise of a few bands following
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Figure 1.10: Energies of transient states for M1. Energies levels will vary with
triads M2-4 but are relatively similar. Arrows indicate electronic transitions with
even numbers labeling charge transfer processes and odd numbered rates labeling
relaxation processes. Republished with permission from Wiley and Sons.
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system photoexcitation in the neighborhood of 550 nm. Each of these bands exhibited

oscillatory behavior in intensity with a period of about 30 fs.

Their theoretical study involved a Time-Dependent Density Functional Theory

(TDDFT)[47] excited state dynamics simulation of a similarly structured triad. By

spatially integrating the electron density around the fullerene moiety, they measured

the charging of the acceptor in time. A full electron of charge migrated to the fullerene

with the charging shape also having some oscillatory behavior (roughly 30 fs period).

As this is close to the conjugated carbon-carbon bond stretching period, they con-

cluded that such nuclear vibrations are fundamental to CT. They performed addi-

tional TDDFT simulations freezing various subsets of nuclei. Each of these dynamics

simulations showed mitigated charge transfer at some level and freezing all nuclei

suppressed CT entirely.

Note, Ref. [46] only considered the results of a single trajectory which may not

represent the actual CT dynamics within these triads. Furthermore, the molecule

presented in the supplementary media of simulations does not reflect the molecule

presented for their experimental work. Differences include lack of pyrolle methyl

group on fullerene derivative (which extends the π conjugation towards acceptor), a

reversal of the amide linker, and para versus ortho connectivity on an aryl linker, all

of which have known effects on electronic current and charge transfer[48, 49].

Cheung et. al. have approached computation of CT rates of the basic CPF triad

(Figure 1.9) via the Fermi Golden Rule expression[50]. They applied the linearized

semiclassical (LSC) approximation, developed by Geva[51], which has been shown to

reproduce rate constants so long as the donor and acceptor potential energy surfaces

are sufficiently parabolic and otherwise identical save for some difference in equilib-

rium coordinate and energy. The FGR expression reduces to a form reminiscent of
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the Marcus expression via second-order cumulant approximation. Here, the various

parameters in the Marcus expression can be related to the dynamical statistics of

the donor-acceptor energy bandgap. With this approach and parameterization from

molecular dynamics simulations with explicit solvent, their results indicate the for-

mation of the first CT state at the picosecond scale and second state at far longer

times with little difference resulting from rigid or flexible triad nuclei. They further

identify a fundamental amide mode (1700 cm−1, C=O stretching) that is highly sen-

sitive to the electronic state and triad conformation. This mode exhibits a blue shift

of about 25 cm−1 between the π-π∗ and first CT states. Despite this sensitivity, there

seems no imminent correlation between the mode position and the local electric field.

Thereby, this mode is more likely to be affected by changes in the conjugations over

other effects. With the dramatic shift in frequency, they propose that this mode can

be probed to visualize or monitor the CT process.

1.2.3 Charge Transfer Rate Dependence on Molecular Con-

struction

Charge transfer rates depend on the molecular system. It is surprising, however, just

how sensitive they are to seemingly minor changes in moiety linkers and even side

substituent groups. For example, in triads with donor-bridge units linked by an amide

group, reversal of the amide direction changes the rate of formation of the final CT

state by a factor of ∼ 30[37]. A number of studies on the rectification behavior of

small molecules and linkers substantiate this directional bias[52, 48, 53] and primarily

attribute this effect to asymmetry in electronic structure.

Choice of side groups on the bridge can affect the electronic coupling between
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the bridge and the acceptor. Several studies of CPF triads consider the porphyrin

bridge linked to fullerene acceptor via an aryl group. Fluctuations of the dihedral

angle between this linker and porphyrin not only modulate the electronic coupling

to the acceptor but also perhaps affect the energy difference between excited and

charge transfer states. Large aliphatic side groups in the β positions sterically hinder

the accessible angles the linker can sample. Small dihedral angles increase the pz

orbital overlap where angles closer to π/2 close the overlap. Therefore bridges with

smaller side groups should allow better electronic overlap and result in faster CT

rates. However experimental measurements prove otherwise: triads with aliphatic

groups proved an order of magnitude faster[39, 43]. The absorption spectrum of the

triads is remarkably close to a linear combination of spectra of the individual moieties

[39, 46] indicating that when covalently linked, the moieties are nearly electronically

independent; covalent bonding in the triad form only weakly perturbs the electronic

structure of each moiety. Bahr and coworkers argue, in the framework of Marcus

theory, that the thermodynamic driving force, ∆G0, has a much more significant

effect on the CT rate than the electronic coupling.

1.3 Dissertation Overview

We are interested in identifying the principle vibronic motions that couple and mod-

ulate electron transfer processes in a class of molecules that model photosynthetic

reaction centers in biological systems. In agreement with the literature, the present

work confirms the crucial role vibrational dynamics play in the process of electron

transfer in Donor-Bridge-Acceptor triads. Specifically, we identify particular vibra-

tional modes of various Carotenoid-Porphyrin-Fullerene (CPF) systems that strongly
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correlate to charge transfer following photoexcitation. Our investigations employ a

density matrix formalism in the time-dependent Hartree-Fock (TDHF) schema in

conjunction with molecular dynamics simulations to analyze vibrational modes of

the system and assess the dependence of charge transfer on the smallest details of

molecular structure.

This dissertation is structured in the following way. Chapter 2 details the deriva-

tion of the methodology with which we perform our investigations, including the

density matrix formalism and its connection to TDHF through the Liouville-von

Neumann equation. Further, we explain structure preparation and simulation setup.

Chapter 3 presents, first, the results of the electron dynamics and charge transfer

rate approximation and, second, an in-depth vibrational mode analysis of the CPF

triads and detailed discussions of what charge-transfer depends on in these systems.

We conclude by outlining immediate areas of improvement as well as speculations on

the possible directions this project can take. The reader can find in Appendix A a

multitude of Fortran and Python codes used in the development and analysis of this

work.
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Chapter 2

Methods

2.1 Dynamical Simulations

In highly conjugated organic systems, the electronic properties of interest primar-

ily happen within the closely packed π and π∗ molecular orbitals. We suspect that

treating π-electrons quantum mechanically should sufficiently reproduce the charge

transfer dynamics while significantly reducing computational cost. Therefore we as-

sume negligible orbital overlap between σ- and π-states and separate their degrees of

freedom. The semiempirical Pariser-Parr-Pople (PPP)[54, 55] model readily reflects

this paradigm and is implemented in the TINKER software[56].

The TINKER code employs a modified version of the PPP Hamiltonian wherein a

specified number of atoms (sites), predesignated in the input, contribute a pz orbital

and an appropriate number of electrons to the quantum system depending on expected

atomic orbital hybridization. These site localized orbitals form the basis set for the

quantum calculations and π molecular orbitals. All other electronic interactions (σ-

system) are then treated with molecular mechanics (force fields). The ground state
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is calculated via self-consistent field (SCF) iterations of the restricted Hartree-Fock

(HF) equations

Fij = Hij +

N/2∑
k

N∑
lm

clkc
∗
mk [2 (ij|ml)− (il|mj)] (2.1)

Hij is the Hartree-core (one particle) term which encapsulates the electron’s kinetic

energy and Coulombic interaction with the nuclei (in atomic units):

Hij = 〈i| − 1

2
∇2 −

∑
A

ZA
r1A

|j〉 (2.2)

where A iterates through the nuclei. The second term is the two particle matrix

and corresponds to Coulomb and exchange terms[57]. Indices i, j, l, and m iterate

through the basis (site) orbitals centered on the nuclei; the matrix element clk is the

contribution of site orbital l to molecular orbital k (the eigenvector matrix). The form

of Equation 2.1 can be simplified with two steps. First, define a density matrix in the

usual sense under closed-shell restricted (all electrons are spin paired and molecular

orbitals are doubly occupied) Hartree Fock

ρij =

N/2∑
k

∑
lm

2clkc
∗
mk (2.3)

Here, the coefficient of 2 denotes doubly occupied molecular orbital k. We generalize

this expression as

ρij =
N∑
k

∑
lm

ηkclkc
∗
mk (2.4)

where ηk is some population count (2 for closed-shell, 1 for open-shell). In this form,

the density matrix is simply a unitary transform of the state occupations (a diagonal

matrix) into site basis.

ρsite = C · ρstate·C† (2.5)

Here, the matrix C is the modal matrix (molecular orbital) of the Fock matrix.

Second, apply Complete Neglect of Differential Overlap (CNDO) approximation to
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the two-particle integrals.

(ij|kl) =

∫
dr1dr2χ

∗
i (r1)χj(r1)r−1

12 χ
∗
l (r2)χl(r2)

= Jikδijδkl

(2.6)

(for atomic orbitals χ). This reduces the HF equations to

Fij = Hij +

N/2∑
k

ρijJim

[
δijδml −

1

2
δilδmj

]
(2.7)

In this expression, terms Hij and Jim are approximated using semi-empirical param-

eters and are also dependent on the geometry of the system.

2.1.1 Nuclear-Electron Coupling

Electronic degrees of freedom are coupled to the molecular dynamics calculation by

adjusting equilibrium bond lengths, bond force constants, and torsional barriers as a

function of the site representation density matrix. The density matrix here is inter-

preted as a bond-charge matrix where diagonal elements represent site populations,

and off-diagonal terms represent the π-bond order between two sites. The equilib-

rium bond length is calculated using a linear interpolation between idealized single

and double bond lengths. Thus, for bonded atoms i and j, the equilibrium bond

length is

l = l1 + δl(1− ρij) (2.8)

where l1 is the idealized bond length for the double bond ρij = 1. The bond force

constant is similarly interpolated

k = k1 − δk(1− ρij) (2.9)

as is the torsional barrier

t = ρijt1 (2.10)
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In general off-diagonal elements of the density matrix have non-zero imaginary value,

but the matrix must remain Hermitian (ρij = ρ∗ji). For molecular mechanics param-

eters, we drop the imaginary value and use only the real part. It is clear to see that

increasing the bond order (π-bond character), the equilibrium length decreases while

bond force constant and torsional barrier increases.

At each time step, SCF iterations recalculate the ground state Fock matrix, gen-

erating a new density matrix, and the above parameters are adjusted accordingly.

Nuclear integration follows the new forces and the process repeats. In the context of

harmonic oscillators, the vibrational energy of a normal mode depends on the mode’s

reduced mass and the force constant. In units of wavenumbers (cm−1):

ν̃ =
1

2πc

√
k

µ
(2.11)

where c is the speed of light, µ is the reduced mass, and k is the force constant taking

into account the above computation. As a system undergoes thermal fluctuation,

the electronic structure, and therefore elements of the density matrix, should not

fluctuate wildly. However, an impulsive excitation causes significant deviation from

the ground state and the collective changes in these force constants will change the

overall dynamical behavior of the nuclei. In short, as the electronic state undergoes

any form of transition, there will be a corresponding change in the vibrational modes.

2.1.2 Excited States from Configuration Interaction-Singles

Our first modification to this framework comes in the form of implementing an elec-

tronically excited state using Configuration Interaction-Singles (CI-S). In general, the

CI method uses the HF states as input and generates a wavefunction composed of a
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large number of elementary excitation states.

|Φ〉 =

C0 |Ψ0〉 +
∑
ar

Cr
a |Ψr

a〉 +
∑
a<b
r<s

Crs
ab |Ψrs

ab〉 +
∑
a<b<c
r<s<t

Crst
abc |Ψrst

abc〉 + . . .

Ground State Singles Doubles Triples . . .

(2.12)

In this notation, coefficients C represent the contribution of the particular elemen-

tary excitation and |Ψr
a〉 implies moving an electron from occupied HF state a to

unoccupied HF state r (b to s, c to t,. . . ).

Even for a reasonable number of electrons, the full formulation quickly becomes

intractable. We, therefore, dismiss double excitations and higher as well as trun-

cate the input to the highest 20 occupied HF states and lowest 20 unoccupied HF

states (amounting to 400 single excitations considered). Then, diagonalizing the CI

Hamiltonian produces the excitation energies and excited states. We only consider

singlet excitations and therefore restrict the possible excitations to the promotion of

an α-spin electron to another α-orbital.

2.1.3 Density Matrix Formalism

For increasingly larger systems, repeating the SCF iterations at each time-step be-

comes computationally cumbersome (despite already ignoring non-π electrons). The

same holds for diagonalizing the CI Hamiltonian. The next modification changes

the method by which we propagate a system in time. We take a time-dependent

Hartree-Fock (TDHF) approach choose to evolve the density matrix in time via the

Liouville-von Neumann equation. We briefly revisit the derivation from Ref [58] here.
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We define the time-dependent density matrix by the outer product:

ρ(t) = |ψ(t)〉 〈ψ(t)| (2.13)

The time derivative of this expression gives:

i~
∂

∂t
ρ(t) =

(
i~
∂ |ψ(t)〉
∂t

)
〈ψ(t)|+ |ψ(t)〉

(
i~
∂ 〈ψ(t)|
∂t

)
(2.14)

We apply the time-dependent Schrödinger equation and its adjoint

i~ ∂
∂t
|ψ(t)〉 = Ĥ |ψ(t)〉

i~ ∂
∂t
〈ψ(t)| = −〈ψ(t)| Ĥ

(2.15)

to equation 2.14, giving:

i~ ∂
∂t
ρ(t) = Ĥ |ψ(t)〉 〈ψ(t)| − |ψ(t)〉 〈ψ(t)| Ĥ

=
[
Ĥ, ρ

] (2.16)

The above equation is often compactly written as:

∂

∂t
ρ(t) = − i

~
Lρ(t) (2.17)

where L is the Liouvillian super-operator that commutates the Hamiltonian and den-

sity matrices. In the time-dependent Hartree-Fock schema, we replace the Hamilto-

nian operator with the Fock operator

i~
∂ρ

∂t
= [F , ρ] = iLFρ (2.18)

We choose to expand the time propagator as a series of imaginary Chebyshev poly-

nomials: (
e−iLdt

)
ρ(t) =

(
N∑
k=0

akTk(−iLdt/R)

)
ρ(t) (2.19)

where Tk is the kth Chebyshev polynomial of the first kind. The value

R = dt(Emax − Emin)/2 (2.20)
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normalizes the super-operator eigenspectrum to range [-1,1] as this is the region where

the Chebyshev polynomials are defined. The coefficient ak is defined as such:

ak = ei(R+G)CkJk(R) (2.21)

where Ck = 1 for k = 1 and Ck = 2 for k > 1. Jk are the Bessel functions of the first

kind of order k.

We use the Chebyshev expansion of the exponential is generally considered to

be stable and converges rapidly. More importantly, this expansion scheme is norm

preserving[59, 60]: the total magnitude of ρ is conserved. This property ensures that

the trace of the density matrix (Tr[ρ] = number of electrons) is also preserved. All of

these traits are highly beneficial for maintaining accuracy and stability during long-

time propagation. Finally, the recursive definition of the polynomials makes their

computation trivial, even for a large number of expansion terms. For a normalized

operator X̂, the Chebychev polynomials are generated using the recursion relation

T0(X̂) = 1̂

T1(X̂) = X̂

Tk(X̂) = 2X̂Tk−1(X̂) + Tk−2(X̂)

(2.22)

Within our implementation of this scheme, we truncated the recursion at 9th order

giving a typical numerical error of 1 : 10−10 (unitless) which we consider sufficiently

accurate.

The Fock matrix (Eq. 2.7) is calculated at each time-step based on the current

nuclear geometry and the previous electronic density matrix.

F = F (R(t+ dt), ρ(t)) (2.23)

The density matrix is propagated with the new Fock matrix, force field parameters

are adjusted based on new bond orders, nuclei are iterated according to classical
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mechanics, and the iteration process repeats. At time t = 0, the ground state SCF

computation and CI excited states must still be computed; implementing the time

evolution removes the need for subsequent diagonalizations. However, it is perhaps

wise to occasionally diagonalize the Fock matrix and collect the eigenspectrum to

ensure the Liouvillain remains within the limit where the Chebychev polynomials are

well behaved.

2.1.4 Hartree Core Coupling Term

The implementation of the PPP Hamiltonian is a nearest neighbors model: for the

calculation of the Hartree core term, only matrix elements of bonded π-active atoms

are non-zero. Then for systems with multiple molecules (e.g., stacked benzene rings)

or sp3 hybridized atoms between π-systems (e.g., diphenylmethane), the matrix is

block diagonal. Despite the two-particle matrix, Jim, being densely populated, the

shape of Hij dominates in the SCF procedure. As a result, the final Fock matrix

is block diagonal leading to localized molecular orbitals, and therefore, a block di-

agonal density matrix, as shown in figure 2.1. What this implies is that there is

no electronic communication between these separated systems and, during the time

evolution described previously, no charge can migrate between these systems.

We remedy this by lifting the nearest neighbors restriction and allow interaction

between non-bonded sites. However, the original formulation of the one-particle term

is calculated by the Whitehead and Lo formula[61]:

Hij =
3

2
(Eb − Ee)−

3

8
γ11 +

5

12
γ12 −

1

24
γ14 (2.24)

where Eb (Ee) is the bond energy of carbon-carbon bond in benzene (ethylene) calcu-

lated using a semiempirically parameterized Morse potential, γ11 is the average of the
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Figure 2.1: Matrix plots of the Fock (left, units in eV) and density (right, unitless)
matrices for a ground state calculation of stacked benzene and naphthalene. Indices 1-
6 correspond to benzene carbons and indices 7-16 correspond to naphthalene carbons.
Here, interactions are limited to nearest neighbors.

atomic repulsion energies of atomic orbitals i and j, γ12 =
(
r2
ij + γ2

11

)−1/2
(for atomic

orbital center distance rij), and γ14 =
(
4r2

ij + γ2
11

)−1/2
. The formula does not decay to

zero at long distances due to the γ11 term being distance independent. In the nearest

neighbors approximation, this is acceptable as interaction distances between bonded

sites are expected to remain within normal covalent bond lengths (1-2 Å). Therefore,

we introduce a Yukawa-like screening factor to the one particle calculation between

non-bonded sites:

H ′ij =


Hij i, j bonded

Hij × exp
[
− rij
rcr

] a0

rij
i, j non-bonded

(2.25)

where rcr is an adjustable coupling radius and a0 is the Bohr radius. At large rij, the

interaction energy between sites i and j vanish and the SCF-minimized Fock matrix,

and consequently density matrix, are no longer block diagonal (as seen in figure 2.2).

As a result, discrete π-systems now interact. Coupling values are between non-bonded

atoms are small relative to that of bonded atoms, but importantly non-zero. As a

consequence of enabling this interaction, the π orbitals now overlap and the electronic
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Figure 2.2: Matrix plots of the Fock (left, units in eV) and density (right, unitless)
matrices for a ground state calculation of stacked benzene and naphthalene. Indices 1-
6 correspond to benzene carbons and indices 7-16 correspond to naphthalene carbons.
Here the adjustable coupling parameter is turned on (rcr = 2.0Å).

energy is lowered in the given example.

2.1.5 Excited State Density Matrix

Thus far, our formulation is exact, but in principle does not provide a means for

propagating the system in an excited state. We now formulate an expression for the

density matrix in the excited state. First, consider the population matrix in equation

2.5. Näıvely, we might simply move some population from a lower orbital into a higher

one. For example, in the following six state system, we can create an excitation by

promoting an electron from occupied orbital #3 into unoccupied orbital #4.

ρ
(ex)
state =


2

2
1

1
0

0

 (2.26)

ρ
(ex)
site = C ρ

(ex)
state C

† (2.27)

where we transform ρ
(ex)
state to the site basis via unitary transform C. Note, in the state

basis, both the Fock and density matrices are diagonal (all off-diagonal elements are
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zero). This construction proves problematic in the context of equation 2.19. Recalling

that the C diagonalizes the Fock matrix and CC† = C†C = 1̂:

i~
∂ρsite
∂t

= [Fsite, ρ(ex)
site ]

= Fsiteρ(ex)
site − ρ

(ex)
siteFsite

= CFstateC†Cρ(ex)
stateC

† − Cρ(ex)
stateC

†CFstateC†

= CFstateρ(ex)
stateC

† − Cρ(ex)
stateFstateC†

= C
(
Fstateρ(ex)

state − ρ
(ex)
stateFstate

)
C†

= C
[
Fstate, ρ(ex)

state

]
C†

= 0

(2.28)

where, in the final step, two diagonal matrices necessarily commute. Since the time

derivative of the density matrix is zero, the matrix is stationary, will not evolve, and

no electrodynamics will occur.

We, instead, define an excitation operator

A†N =
∑
p,h

z∗phφ
†
pφh (2.29)

where z is the contribution of the elementary excitation from h → p for excitation

N . The operators φ are state operators which are further broken down as a linear

combination of site operators, a

φ†n =
∑
j

C∗jna
†
j (2.30)

Again, matrix C is the unitary transform that changes from state to site basis. Op-

erator A†N acts on the HF ground state to produce the N th excited state.

A†N |HF 〉 = |N〉 (2.31)

The ground state reduced density matrix is given by

ρrs = 〈a†sar〉 = 〈HF | a†sar |HF 〉 (2.32)
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where the HF ground state is generated by populating the lowest energy states from

the vacuum state

|HF 〉 = φ†1 . . . φ
†
n |0〉 (2.33)

for n number of electrons. Using equation 2.30,

ρrs =
∑
ij

〈HF |φ†iφj |HF 〉 c∗sicrj

=
∑
ij

δij 〈HF |φ†iφi |HF 〉 c∗sicri

=
∑
i≤n

c∗sicri

(2.34)

where we have now restricted i to only the occupied orbitals. We now write the

density matrix for singly excited state N in the same fashion.

γNrs = 〈N | a†sar |N〉

=
∑
nm

〈N |φ†nφm |N〉 c∗sncrm

=
∑
nm

∑
p′h′

∑
ph

c∗sncrmz
∗
p′h′zph 〈HF |φ

†
h′φp′φ

†
nφmφ

†
pφh |HF 〉

(2.35)

Indices p and p′ span over unoccupied orbitals; indices h and h′ span over occupied

orbitals in the ground state; and indices m and n span all state orbitals, occupied

and unoccupied. We now turn our efforts to simplifying the integral

I = 〈HF |φ†h′φp′φ
†
nφmφ

†
pφh |HF 〉 (2.36)

Note, fermion orbitals operators must anti-commute

{φn, φ†m} = φnφ
†
m + φ†mφn = δnm (2.37)

Rearrangement gives

φnφ
†
m = δnm − φ†mφn (2.38)
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Furthermore, we can use the properties of |HF 〉. Namely, a creation on an occupied

orbital and annihilation on an unoccupied orbital both destroy the ket.

We start by moving φp′ to the right.

I = 〈HF |φ†h′φp′φ
†
nφmφ

†
pφh |HF 〉

= δnp′ 〈HF |φ†h′φmφ
†
pφh |HF 〉 − 〈HF |φ

†
h′φ
†
nφp′φmφ

†
pφh |HF 〉

= δnp′ 〈HF |φ†h′φmφ
†
pφh |HF 〉+ 〈HF |φ†h′φ

†
nφmφp′φ

†
pφh |HF 〉

= δnp′ 〈HF |φ†h′φmφ
†
pφh |HF 〉+ δpp′ 〈HF |φ†h′φ

†
nφmφh |HF 〉 − 〈HF |φ

†
h′φ
†
nφmφ

†
pφp′φh |HF 〉

= δnp′ 〈HF |φ†h′φmφ
†
pφh |HF 〉+ δpp′ 〈HF |φ†h′φ

†
nφmφh |HF 〉+ 〈HF |φ†h′φ

†
nφmφ

†
pφhφp′ |HF 〉

= δnp′ 〈HF |φ†h′φmφ
†
pφh |HF 〉+ δpp′ 〈HF |φ†h′φ

†
nφmφh |HF 〉

= δnp′I1 + δpp′I2

(2.39)

In I1 move φh′ to the right.

I1 = 〈HF |φ†h′φmφ
†
pφh |HF 〉

= δh′m 〈HF |φ†pφh |HF 〉 − 〈HF |φmφ
†
h′φ
†
pφh |HF 〉

= δh′m 〈HF |φ†pφh |HF 〉+ 〈HF |φmφ†pφ
†
h′φh |HF 〉

= δh′m 〈HF |φ†pφh |HF 〉+ δh′h 〈HF |φmφ†p |HF 〉 − 〈HF |φmφ†pφhφ
†
h′ |HF 〉

= δh′m 〈HF |φ†pφh |HF 〉+ δh′h 〈HF |φmφ†p |HF 〉

(2.40)

φ†p can be interpreted as annihilating to the left. Therefore the first term vanishes

and I1 reduces to

I1 = δh′hδmp (2.41)
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I2 follows similarly.

I2 = 〈HF |φ†h′φ
†
nφmφh |HF 〉

= −〈HF |φ†nφ
†
h′φmφh |HF 〉

= 〈HF |φ†nφmφ
†
h′φh |HF 〉 − δh′m 〈HF |φ

†
nφh |HF 〉

= δh′h 〈HF |φ†nφm |HF 〉 − 〈HF |φ†nφmφhφ
†
h′ |HF 〉 − δh′m 〈HF |φ

†
nφh |HF 〉

= δh′h 〈HF |φ†nφm |HF 〉 − δh′m 〈HF |φ†nφh |HF 〉

(2.42)

Take φh to create to the left. Then I2 reduces to

I2 = δh′h 〈HF |φ†nφm |HF 〉 − δh′mδnh (2.43)

Since the HF ground state only has the lowest orbitals occupied, the remaining inte-

gral reduces to

〈HF |φ†nφm |HF 〉 = δnocc,mocc (2.44)

where n and m here span only the occupied orbitals. Finally, the integral simplifies

to

I = 〈HF |φ†h′φp′φ
†
nφmφ

†
pφh |HF 〉

= δhh′δnp′δmp − δpp′δmh′δnh + δpp′δhh′δnocc,mocc

(2.45)

As expressed in the above equation, the density matrix is in the state space.

That is, h, h′, p, p′, m, and n iterate through the system’s molecular orbitals. We

examine these terms independently to interpret their physical meaning. The first

term iterates m and n through the unoccupied orbitals and adds magnitude to the

population and coherence terms. The second term iterates m and n through the

occupied orbitals and subtracts magnitude. The third term accounts for the otherwise

unaffected populations of the ground state.

Figure 2.3 plots these three terms for a six-state system (for which the first three
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Figure 2.3: Matrix plots of each term in equation 2.45 for a sample six state system in
the HF state basis. Plots are normalized to unity where orange represents an added
quantity and blue represents a subtracted quantity. Values are unitless.

states are occupied in the ground state). The third term resembles the state popu-

lation matrix of the näıve approach. The former two terms, however, not only shift

populations to the excited states but also introduce coherences in the form of off-

diagonal matrix elements. The final excited density matrix is not diagonal in this

formulation but represents a pure state. The commutation of the generating Fock

matrix and this excited state matrix is non-zero and, therefore, electron dynamics

can occur.

2.1.6 Simulation Parameters

We are interested in studying the charge transfer properties of four DBA triad sys-

tems studied by Moore and coworkers[40, 43]. Figure 2.4 shows the breakdown of

each molecule. Each molecule has the same acceptor (C60 derivative) and polymeric

donor (carotenoid) is are differentiated by their side groups on porphyrin bridges.

In Molecule 1 (M1), the porphyrin ring is dressed by tri-substituted aryl groups.

Molecule 2 (M2) is identical to M1 except for the two methyl substitutions on the

aryl groups. Molecule 3 (M3) has methyl and n-butyl groups on the pyrrole sites.

39



Molecule 4 (M4), similar to M3, replaces the longer chain with ethyl groups. Addi-

tionally, the amide group is reversed on M4 relative to those of M1-3.

The four molecules are constructed and pre-optimized using external software,

AVOGADRO[62]. Note, one can easily convert a standard PDB file to TINKER’s

version of XYZ via the provided routine PDBXYZ. Each optimized structure thermalized

with a Nosé-Hoover thermostat set to T = 300 K in vacuum for 10 ps at a time step

of 0.01 fs (106 time steps). This temperature was chosen as an expected operating

temperature for these systems in a real environment. The time-step must be chosen

to capture electron dynamics adequately and should be shorter than the oscillation

period of the time evolution operator. We therefore want δt < ~/E or E < ~/δt, and

our choice allows for the Liouvillian eigenspectrum to range between ± 1.2 Hartrees.

The adjustable coupling parameter was set to 1.5 Å as it is slightly larger than the

carbon-carbon bond distance of benzene. Figure 2.5 shows the molecules quickly

achieve the target temperature and stay within a range of 20 K. From the last 5

ps, we sample 50 geometries (every 100 fs) as the basis for the ensemble. (Note, we

retain the coordinates and velocities of each sample.) We parameterize the molecular

mechanics and semiemperical quantum mechanics with the MM3 parameter set[63].

We perform a single point calculation on each of these samples to determine the

correct excited state to choose. For these triads, the excitation should resemble an

exciton localized to the porphyrin bridge. We determine the correct excitation using

the eigenvectors of the Fock and CI matrices in the following way. Let Ci,j be the

contribution of atomic orbital i to molecular orbital j and zNhp be the contribution of

elementary excitation (from molecular orbital h to p) to the N th excited state. Then,

for any CI excitation, N , we calculate the percentage of the hole density localized to
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Figure 2.4: Breakdowns of the four molecules simulated in this study. Each molecule
have a common acceptor (Fullerene derivative, top left) and donor (carotenoid, top
right) moiety. The bridging moieties differentiate the molecules (labeled 1-4).
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Figure 2.5: Temperature vs time plot of the thermalization of each molecule.

the bridge as

Phole(N) =
∑
i∈Brg

∑
h∈occ

|Ci,h|2
∣∣zNh ∣∣2 (2.46)

where i sums over atoms in the bridge moiety and h over the occupied molecular

orbitals. Correspondingly, the percentage of electron density can be calculated as

Pelec(N) =
∑
i∈Brg

∑
p∈unocc

|Ci,p|2
∣∣zNp ∣∣2 (2.47)

for p over the unoccupied molecular orbitals. We choose the lowest energy excitation

which has Phole and Pelec larger than 0.75 (at least 75% of the exciton density is

localized to the bridge). For most configurations, this corresponds to the first excited

state (≈ 2.0 eV). Each geometry is excited at t = 0 and then freely relaxes given an

energy kick for 10 ps. The thermostat and time step are retained at 300 K and 0.01

fs respectively.

This procedure essentially recreates the scenario of a molecule undergoing thermal

fluctuations at operational temperatures, becoming photoexcited, and then undergo-

ing electronic and nuclear relaxation.
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2.2 Analysis

2.2.1 Rate Approximation

The diagonal terms of the density matrix (bond-charge matrix) give the occupation

number for an orbital. Thus in the site-basis, ρii represents an electron count on

orbital i centered on some π-active nucleus. Then, a partial trace of the density

matrix, choosing for atoms assigned to a particular moiety, accounts for the total

number of electrons localized to that moiety; the full trace of the density matrix

reflects the total electron count of the system. The effective charge (population gain)

is this partial trace of the density matrix at time t subtracted by the ground state

charge. For the acceptor moiety,

qAcc(t) =
∑
i∈Acc

(ρii(t)− ρgsii ) (2.48)

For multi-molecular systems, this calculation can be extended to consider the charging

of whole molecules. We measure charge transfer by following the excess population

in acceptor moiety in time for each trajectory. Fitting the charge transfer plots from

each trajectory to a logistic growth function provides an approximate form:

q(t) =
qmax

1 + exp[−k(t− tc)]
+ q0 (2.49)

where qmax is the long-time maximal charge transferred, k is a steepness factor, tc is

the function center (50% completion time), and q0 is an initial charge amount. Non-

zero q0 represents some partial charge transfer character in the initial excited state.

From these regressions, the fractional completion time can be computed as

tf = t0 +
1

k
ln

[
f

1− f

]
(2.50)

We take the 95% (f = 0.95) completion time to represent a charge transfer time-scale;

the inverse of this is interpreted as the reaction rate.
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2.2.2 Time-Frequency Analysis

We are interested in evaluating the nuclear dynamics that occur during the charge

transfer process. For this, we use the velocity autocorrelation function

Cvv(τ) =
T−τ∑
t=0

N∑
i=1

~vi(t) · ~vi(t+ τ) (2.51)

where, τ is the lag time, T is the total time, N is the number of particles considered,

and ~vi(t) is the velocity of particle i at time t. Fourier transform of the correla-

tion function will give a power spectrum, a distribution of energy across frequencies

which here is analogous to a vibrational spectrum. However, this only provides a

time-averaged description and is only well suited for a stationary signal; it does not

decode information about transient signals. We suspect that certain nuclear modes

activate and deactivate during the charge transfer process. A time-frequency spec-

trogram of a nonstationary time-series will resolve evolution of the vibrational power

spectrum[64]. We apply the Short-Time Fourier Transform (STFT) method on the

velocity autocorrelation function to visualize the evolution of the nuclear dynamics

in time:

S(τ, ω) =

∫ ∞
−∞

f(t)g(t− τ)e−i2πωtdt (2.52)

g(t− τ) =


1
2
− 1

2
cos(π(τ−t+T )

T ) |τ − t| ≤ T

0 |τ − t| > T
(2.53)

where T is the window radius of the Hanning window function g(t), defined in equa-

tion 2.53. Nakai and coworkers have used this technique for the analysis of ab initio

dynamics simulations of collision reactions on small molecules[65, 66, 67, 68, 69, 70].

STFT resolution is restricted to the Heisenberg-Gabor limit such that wider window

functions resolve frequencies better, but sacrifice time resolution whereas thinner win-

dows give better time resolution but sacrifice frequency resolution[71, 72]. For a given
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window radius, uncertainty in frequency can be computed as ∆ω ≈ (2cT )−1. STFT

was performed with a Hanning window of width T = 600fs (∆ω ≈ 28 cm−1). At this

resolution, we may not be able resolve finer details of the vibrational spectrograph,

but it sufficiently suitable for our needs. Edge effects occur as a result of this analysis

on finite time-series. At the temporal extrema, less information is available resulting

in an overall smoothing and diminishing of the spectral intensity. To mitigate this,

we include dynamics from 2 ps prior to the photoexcitation.

2.2.3 Screening Vibrational Modes

The discrete STFT process returns a 2-dimensional array in time and frequency. By

plotting the spectrogram, we can visually inspect for and pick out modes that seem

to correspond to the charge transfer time. Figure 2.7 follows the time-series of three

modes (ω1, ω2, ω3) from an example spectrogram where the vertical axis is the power

spectrum intensity of a particular mode. In this example, we say the system undergoes

charge transfer between t = 1ps and t = 5ps (gray region). The first mode (blue)

has intensity only during the CT period, but no intensity before or after. The second

mode (orange) behaves exactly opposite. It has intensity (activity) before and after

CT, but not during CT. The third mode (green) is relatively active during the entire

example simulation.

We find a correlation value between the spectral intensity of a mode and the

charge transfer regime through the following steps. First, shift the intensities down

for a mode’s (ωk) spectral time series such that its average lies at 0,

S̃(τ, ωk) = S(τ, ωk)− sk (2.54)

46



ω1 ω2 ω3

-2 0 2 4 6 8

Time / ps

In
te
ns
ity

/
a.
b.
u.

ω1 ω2 ω3 Rect

-2 0 2 4 6 8

Time / ps

In
te
ns
ity

/
a.
b.
u.

Figure 2.7: (Left) Spectral Intensity vs Time of three example modes. The gray region
represents the time span where charge actively migrates to the acceptor. (Right)
Down shifted intensities with shifted rectangle function.

for some sk ∫ t2

t1

S̃(τ, ωk)dτ = 0 (2.55)

where t1 and t2 are the temporal limits of the vibrational time considered. Then

define a rectangle function that is unity in the gray region and zero otherwise and

again shift it down so that its average value is 0 (fig 2.7 (right)).∫ t2

t1

Rect(τ)dτ = 0 (2.56)

The result of these shifts is plotted in Figure 2.7 (right). The inner product of the

shifted spectral time-series, S̃, and the shifted rectangle function

C(ωk) =

∫ t2

t1

S̃(τ, ωk)Rect(τ)dτ (2.57)

gives a correlation strength between the mode and the charge transfer process. A

large positive value indicates direct correlation: the mode is specifically active during

the charge transfer. A large negative value indicates the mode is inactive during

charge transfer and it is active otherwise. Small correlation values indicate either

poor correlation or low spectral amplitude, either of which implies the mode is of no

interest. Thus, this analysis gives a compact value that relates the activity of a mode

to the charge transfer process.
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Chapter 3

Charge Transfer Dynamics in

Model Triad Systems

3.1 Ensemble Configurations

Given the non-trivial construction of the molecules of interest and their high number

of vibrational degrees of freedom, we must introduce a statistical component to our

investigations. Generally, a large selection of random configurations will result in a

distribution around an average case. However, given constraints in time and resources,

we are limited to a finite number of configurations to simulate. To produce these initial

configurations, we uniformly sample ground state thermal fluctuations. Despite this

uniform sampling, we can show the configurations are sufficiently random. The time

correlation function, Cqq(t) = 〈q(t)q(0)〉, of the geometries shows the correlation

strength between two configurations separated in time. We plot in Figure 3.1 both

the correlation function and exponential decay fit. The correlation time can be found
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Figure 3.1: Geometry correlation plot (light) and exponential decay fit (dark) of the
ground state dynamics for each molecule. Correlation functions are normalized to the
initial value: C̃qq(t) = Cqq(t)/Cqq(0).

from the integral

τc =

∫ ∞
0

Cqq(t)

Cqq(0)
dt (3.1)

The results from these ground state dynamics reveal a correlation time of about 3 fs.

Consequently, the system does not retain memory from a previous configuration and

samplings separated in time by the correlation time, τc, or longer can be considered

uncorrelated. Our sampling time is tsamp ∼ 30 τc and we can consider the initial

geometries to represent random thermal configurations.

Thermal fluctuations in the molecular configuration modulate the excitation en-

ergy and we need to check that the distribution of excitation energies of our initial

geometries match that of the full configurational space. We assume in the last 5
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Figure 3.2: Energy distributions for the first excited singlet state for each molecule.
Smooth distributions represent the distribution of excitation energies from 5000
ground state samplings each. Discrete histograms represent the 50 initial configu-
rations chosen for the ensemble.

ps of the ground state dynamics, each system samples operational temperature con-

figurations and that a selection of 5000 geometries adequately represents the full

configurational space. Figure 3.2 compares the energy distributions of the selected

initial geometries and subset of 5000 geometries. We find that not only the exci-

tation energies not only match the distribution of the broader configuration space,

but the average excitation energies also are in excellent agreement with experimental

absorption spectra of the lowest excitation energy for the porphyrin moieties (∼1.9

eV)[40, 43] as well as spectra computed using higher theory levels[73, 74].

50



3.2 Approximated Charge Transfer Rates

Recently, coherent dynamics have been used to explain charge transfer at the sub-

picosecond time scale[75, 76, 77]. In this strong electronic coupling regime, construc-

tive interference of CT pathways opens up the possibility of rapid transfer despite

large physical separation between chromophores in photosynthetic proteins[78, 79, 80].

Conversely, low electronic coupling typically entails electron hopping from site to site

and results in a much slower transfer process. Figure 3.3 shows the excess electron

population in (charge transferred to) the C60 moieties for each trajectory. In most

cases, CT does not begin until after 2 ps and completes at various times. The simula-

tions indicate longer than picosecond timescales and therefore low electronic coupling

between bridge and acceptor.

Following excitation at t = 0, most trajectories do not immediately begin the CT

process. Some excited state dynamics almost always ensues as the system responds

to the impulsive vertical excitation before the initiating charge transfer. Once CT has

completed, the charge separation is stable and long lived. We have not evolved the

trajectories passed 10 ps; formation of the second charge transfer state (C+-P-C−60) is

expected to be on the order of tens to hundreds of picoseconds with a lifetime into

the nanosecond scale.

All four molecules successfully undergo some amount of charge transfer within 10

ps. This implies that charge transfer itself is determined by the offset between HOMO

and LUMO energy levels of the donor and acceptor moieties. Additionally, this agrees

with experimentally observed quantum yield of unity. However, the amount and rate

of CT depend on the finer details of the molecular structure. We see the range of total

charge transferred, between 0.05-0.35 q is consistent through all molecules, while the
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Figure 3.3: Charge accumulation plots for each trajectory in M1-4. Plots generally
follow a logistic growth regression excluding one anomalous trajectory in M1.
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distributions of the CT curves differ among them.

Charge accumulation follows a logistic growth function quite well (R2 > 0.99), ex-

cluding one errant trajectory in M1. Further investigation of this simulation shows

the lowest energy porphyrin excitation ∼ 3 eV producing an extremely “hot” exciton.

This excitation is anomalously high compared to the 1.9 eV for all other trajectories.

Therefore, we deem this a significant outlier and exclude it from further analysis. We

approximate the CT rate constant as the inverse of the 95% completion time (using

the logistic fits) which are plotted. Figure 3.4 adds crucial information about the CT

rates, which are difficult to assess from the multitude of trajectories in Figure 3.3.

From Figure 3.4, we can clearly see that difference in chemical structure, even subtle

ones, alter CT rates and their distribution. While our approach overestimates rates

for M1 and M2 as compared to experiment, the rates for M3 and M4 are in good

agreement with experimental results[42, 43] (dashed lines). However, the overestima-

tion is systematic between the pair of molecules and we are able to reproduce their

relative similarity of rates seen in experiment. Furthermore, our results differ from

the LSC approach by less than a factor of 10[6, 50].

Interestingly, trajectories that take the longest to initiate the charge transfer pro-

cess tend to have a proportionately lower total amount of charge transferred. M2-4

have prominent examples of such where CT does not begin until about 4 ps after

excitation and ultimately settles at 0.1 q of charge transferred. In these instances,

the system undergoes vibrational relaxation during the delay time. In the frame work

of the potential energy surfaces, the system relaxes into an energy well and cannot

make the transition into a charge transfer state. Such trajectories may be examples

of cold excitons. Here, excess excitation energy is lost and dissociation occurs along

low energy paths resulting in slower CT[81].
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Figure 3.4: Histogram of the charge transfer rates of each ensemble. Averaged rates
for M1-4 are 0.28 ± 0.04 ps−1, 0.28 ± 0.07 ps−1, 0.26 ± 0.06 ps−1, and, 0.23 ± 0.06
ps−1 respectively. Dashed lines indicate experimentally reported values with rate for
M4 reported as a maximum[43].
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Figure 3.5: Charge accumulation plots for select trajectories in M1 (M1, blue), tra-
jectories with frozen side groups (M1-Frz, purple), and trajectories with no π contri-
bution from side groups (M1-No π, pale green).

We further explore the electronic effect of the aryl side groups in M1. We take

the subset of 10 initial configurations that were chosen for vibrational analysis (dis-

cussed in the next chapter) and resimulate the excitation and relaxation dynamics

with two variations. In the first, we freeze the aryl group atoms while maintaining

their electronic contribution to the π-system (“quantum active”). In the second, side

group atoms are free to move but provide no quantum contribution (“quantum inac-

tive”). Figure 3.5 plots the charge accumulation in the acceptor for these trajectories,

including the original ten.

Within each sub-ensemble, CT behavior remained similar to one another, however,

imposing these exclusions mitigates CT. Computed as previously, CT rate constants

are 0.29 ps−1, 0.20 ps−1, and 0.16 ps−1 for M1, M1-Frz, and M1-No π sub-ensembles,

respectively. Freezing side aryl group nuclei causes nearly a 30% reduction in CT rate

and slightly diminishes the quantity of charge transferred, qualitatively agreeing with

results from simulations of similar motifs in Ref [46]. Disabling the π contribution
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from the side aryl groups further reduces the CT rate and quantity. Notably, the

CT curves this sub-ensemble are smooth relative to the other two. Very little excited

state electronic dynamics occurs until the actual CT process is initiated. This is

also seen in the CT plots for M3 and M4. The aryl groups modulate the electronic

structure of the bridge at a small level. Furthermore, including the side groups into the

conjugated system provides a relaxation pathway where the system can funnel excess

electronic energy until energetic overlap becomes suitable for CT. This is consistent

with M3 and M4 as their bridge side groups are not conjugated and overall these

systems have slower CT according to our simulations. However, this does not agree

with experimental results which indicate that formation of the initial CT state in M1

and M2 be much slower than that of M3 and M4. As a final remark, these results

indicate bridge side groups provide electronic and vibrational relaxation pathways

that improve the charge transfer rate in such DBA triads.
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Chapter 4

Transient Vibrational Dynamics

Related to Charge Transfer in

Model Triads

The compact form of the Marcus expression suggests that only few degrees of freedom

are involved in the CT process. However, it is not altogether obvious how to deter-

mine these motions. Here, we propose the Short Time Fourier Transform (STFT) of

the velocity autocorrelation function to resolve vibrational modes in both frequency

and time, visualizing how the nuclear modes evolve over the course of the charge

transfer process. By examining at each trajectory individually, some noise will be

inherent. Examining the entire ensemble collectively will reduce the noise and am-

plify common modes in the wavenumber dimension. However, trajectories within an

ensemble are not all temporally similar. Even if two trajectories exhibit similar vi-

brational information independently, the dissimilarities in charge transfer time-frame

may dilute spectral intensity in the time dimension.
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To avoid this, we choose a sub-ensemble of trajectories for each molecule that

exhibit similar temporal charge transfer character. To choose these, we compute a

pairwise difference squared integral to calculate the “distance” between two trajecto-

ries. Let qi(t) and qj(t) be two logistic regressions (per Equation 2.49) for trajectories

indexed i and j of the same molecule. We define a quantitative measure as the

“distance” between trajectories i and j,

εij =

∫ t2

t1

(q1(t)− q2(t))2 dt (4.1)

for t1 and t2 defining a given time window considered. Identical functions result in a

vanishing integral and deviations results in increasingly larger ε. We choose the set of

10 trajectories which mutually give the smallest collective difference integral. Since

the Fourier Transform and STFT are linear operations, the average spectrogram can

be achieved by averaging the autocorrelations of the trajectories chosen and then

performing the transform.

Each molecule simulated contains between 238-272 atoms which leads to over

700 (3N − 6) vibrational modes. The entire triad is a highly conjugated system

whose moieties themselves are conjugated subsystems. Naturally, these subsystems

have overlapping vibrational spectra wherein spectral intensity from some modes of

one moiety could be washed out by that of another moiety. While this indicates

such modes are weaker relative to the total system, they still may be relevant to

the CT process. Analysis of the entire molecule as a whole may obscure crucial

results. By considering where the differences in construction between molecules lie or

crucial points in the molecule (linkers), we can isolate the necessary atomic subsets,

perform an autocorrelation of their velocities, and then perform the STFT to reveal

the underlying dynamics. We then screen the resulting spectrograms for modes with

temporal behavior aligned to the charge transfer process. The temporal limits for
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screening, t1 and t2, are defined by the 5% and 95% CT completion times, respectively,

to sufficiently encapsulate the region of interest.

4.1 M1 and M2 Bridge Aryl Substituent Groups

We first consider molecules M1 and M2. Here, the major difference between the two

is the number of methyl groups on the meso aryl side groups attached to the por-

phyrin. In Figure 4.1 we present the STFT spectrograms for these two. Immediately

noticeable, modes of energies higher than 700 cm−1 are of low intensity or absent alto-

gether. Typical vibrational spectra for mesitylene and toluene consist of out-of-plane

ring distortions at 700-800 cm−1 and C=C stretches at 1500 cm−1. The low energy

vibrations in Figure 4.1 are torsional modes with the side aryl rings rotating across

the bond linking them to the porphyrin bridge. We confirm this by computing the

time series of the dihedral angle of these groups to the porphyrin. Fourier Transform

of these time-series reveals spectral intensities centered at the same frequency in the

STFT spectrograms (Figure 4.2, top).

Regarding M1, two modes at 190 and 425 cm−1 appear in all three visualizations,

confirming both the torsional dynamics and relevance to the CT process. The dihedral

angle here modulates the amount of pz orbital overlap and therefore has an effect on

the local electronic structure of the bridge. A previous calculation gives the first

excitation energy dependence on the dihedral angle of an idealized configuration of

an isolated diaryl porphyrin, plotted in Figure 4.3. This calculation was performed at

the PPP theory level rotating the side benzene rings maintaining D2 symmetry. The

computation reveals only a 0.1 eV difference in excitation energy for dihedral angles

between 0◦ (full pz overlap) and 90◦ (no pz overlap). However, given the amount
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Figure 4.1: STFT spectrograms for M1 (top) and M2 (bottom) aryl side groups on
the bridge.
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Figure 4.2: (Top) Fourier Transform of the dihedral angle time-series between the
bridge and its aryl side groups for M1 and M2. (Bottom) Screened STFT modes for
the same subunits in M1 and M2. Both figures here are featureless over 800 cm−1.
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of steric hindrance experienced, the accessible angle space is constrained between

72◦ (± 4◦) and the excitation energy accordingly differs by about 6 meV. Thus, for

practical purposes, the dihedral angle of these conjugated side groups has little effect

on the bridge electronic structure and therefore CT. Despite this, we can conclude

there is still some interplay between the CT process and this particular mode: in

the context of vibronic transitions, excitation of this mode certainly accompanies the

π-π∗ electronic excitation.

With less steric hindrance, M2 has a much stronger response from the 360 cm−1

torsional mode; however, this mode is generally active throughout the simulation

time and therefore does not pass screening. Conversely, the strong 600 cm−1 mode

correlates to CT but is not prominent in the dihedral spectrum and therefore this

is likely to be some low energy ring distortion. Charge transfer in M2, then, seems

unaffected by torsional motions of the aryl side groups. We make the same arguments

as with M1; these modes are activated during the initial excitation but do not play

an essential role in electronic relaxation of the system into a charge transfer state.

4.2 M3 and M4 Bridge/Acceptor Aryl Linker

We next consider M3 and M4. The bridge side groups here are not π active and,

similar to the previous molecules, do not have a significant impact on the electronic

structure of the bridge directly. From an experimental standpoint, aliphatic sub-

stituents like these are included to control the solubility of the molecule. However,

as pointed out by Bahr, the longer chains in the β positions sterically interfere with

and force the linker aryl groups into perpendicular orientations[39]. Recent DFT

computations on these triads showed that optimized structures have dihedral angles
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dependence on dihedral angle, φ. Inset is a rendering of a planar porphyrin with one
meso aryl substituent. Hydrogens have been removed for clarity. φ indicates dihedral
(small) angle between porphyrin and benzene planes. Points correspond to calculated
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Figure 4.4: Distribution of dihedral angles sampled by the aryl linker between the
bridge and acceptor moieties during dynamics for M1-4.

that agree with this notion[82]. The dihedral angle of these linkers to the porphyrin

should have a much larger impact on CT the side aryl groups. Increased orbital over-

lap between porphyrin and these linkers extends the molecular π orbital towards the

fullerene acceptor and therefore increases the electronic interaction between the two

subsystems. Figure 4.4 plots a smooth histogram distribution of the dihedral angles

sampled by these linkers (for molecules M1-4). Curiously, our dynamics results show

a contrary trend. The linker in M3 is constrained to a smaller angle space, but does

not sample angles perpendicular to the porphyrin and instead stays in the region of

just over 60◦. The linker in M4 accesses a wider angle space and, although sterically

allowed to have a more planar angle, tends to remain closer to perpendicular to the

porphyrin plane. However, our dynamics indicate aryl linkers in M1 and M2 oscillate

around 61◦, the ground state orientation observed in DFT calculations[82].

STFT spectrograms for these subunits are found in Figures 4.5. The low fre-

quency modes (390 and 600 cm−1) are muted in M3. These frequencies appear in

the dihedral angle times-series analysis (Figure 4.6, top) and we define both torsional
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modes. When screened, the former mode is of no interest, but the latter mode shows

as strongly anticorrelated. Low spectral intensity in STFT is consistent with the

narrow distribution of angles sampled. We argue here that as electron density travels

through the linker, the angle with the bridge plane is relatively locked in place. The

mode at 950 cm−1 has strong response at early time then slowly decays. This mode

accompanies the initial photoexcitation but diminishes once CT begins. Furthermore,

it does not appear in the dihedral analysis and therefore we define this as a ring dis-

tortion mode. Of lower overall intensity, the 1010 cm−1 mode shows some response

following excitation, then increased activity during CT, and finally decaying after

that. Weaker still, the 1570 cm−1 mode shows as highly correlated. We determine

these last two modes as ring vibrations as they do not appear in the dihedral angle

analysis.

Spectra for the aryl linker in M4 reveal the presence of similar modes to that of

M3. The 390 cm−1 mode appears anticorrelated but has a far too weak intensity

to have significance. Contrary to M3, the 600 cm−1 mode is not only highly active,

strengthens the anticorrelation. Intense activity of this mode before CT corroborates

with large angle space the wide range of angles sampled; however, torsion is restricted

once current flows through the linker. Temporal shape of the 950 cm−1 mode in largely

mimics that of the 600 cm−1 mode in M3 but with larger intensity: this mode is active

at photoexcitation, but absent after that. Two final vibrational modes at 1120 and

1600 cm−1 are relatively weak in the STFT spectrogram, however, still correlated to

CT.
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Figure 4.5: STFT spectrograms for aryl linker between bridge and acceptor in M3
(top) and M4 (bottom).
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Figure 4.6: (Top) Fourier Transform of the dihedral angle time-series between the
bridge and the aryl ring which links bridge and acceptor moieties for M3 and M4.
Figure is featureless above 1500 cm−1. (Bottom) Screened STFT modes for the same
subunits in M3 and M4.
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4.3 Donor/Bridge Amide Linker

Amide linker STFT spectrograms are plotted in Figures 4.7 and 4.8. Prevalent for

all four molecules are intense features at 700, 1000, 1200, and 1300-1400 cm−1. Upon

screening these modes in time, only the 700 and 1200 cm−1 appear to play significant

roles. Vibrational computation on formamide suggests the 700 cm−1 mode corre-

sponds to a twisting motion along the C-N bond. In M1 and M2, this mode is

sporadically activated and deactivated. However, there is a stark difference with M3

and M4, recalling that direction of this linker is reversed between the two. According

to rectification studies, the amide favors current travelling from the nitrogen side to

the carbon side[48]. Thus, the linker in M3 has favorable orientation to allow electron

density to pass from the donor to the bridge. In our studies, this mode correlates

extremely well with CT to the acceptor. Naturally, the net positive charge in the

bridge will begin to attract electron density from the donor. In M4, the amide is in

the unfavorable orientation and we show here that the 700 cm−1 mode is deactivated

during CT from bridge to acceptor. It is reasonable to believe that this particular

mode is highly sensitive to the direction of current passing through the amide. The

mode in the region of 1200 cm−1 (Amide III: C-N stretch, C-N-H bend) is universally

deactivated during CT in all four molecules indicating this mode is not conducive to

CT. In contrast to the findings published in Ref. [50], we see no activity in amide

modes above 1500 cm−1.

4.4 Bridge and Acceptor

We turn our attention now to the porphyrin bridge moiety. STFT spectrograms

are found in Figures 4.10 and 4.11. Mode screening for the four bridges are found
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Figure 4.7: STFT spectrograms for the amide linker in M1 (top) and M2 (bottom).
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Figure 4.8: STFT spectrograms for the amide linker in M3 (top) and M4 (bottom).
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Figure 4.9: Screened vibrational modes for the amide linker in M1-4.

in Figure 4.12. What is immediately obvious between the four spectrograms is the

general absence of features under 500 cm−1 and above 1500 cm−1. This featureless

region is line with ground state experimental and computational vibrational studies

of water solvated free base (and select derivatives of) porphryrin[83, 74]. M1 and

M2 exhibit some low energy modes at 500 and 600 cm−1, respectively, that strongly

correlate with CT. These macromolecular modes are note present in M3 or in M4,

thus we can speculate these modes resemble macro-ring twisting with nodes at the

meso position. Such modes would alter the aromaticity of ring (breaking planarity,

and therefore having a marked impact on electronic structure) but would be far

more restricted by the heavier alkyl β substitutions in M3 and M4. The 720 cm−1

mode, likely some alternative ring deformation, is active in all four molecules and

is anticorrelated with CT, excluding M3 where it is uncorrelated. The intensity of

this mode is oscillatory throughout the dynamics, activated universally at the time
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of excitation then progressing with seemingly inconsistent behavior.

In the 950-1050 cm−1 vibrational region, M1 and M4 show CT correlation while

M2 and M3 show anticorrelation with spectral intensities differing between all four

molecules. M1 solely sees a strongly anticorrelated mode at 1110 cm−1. This mode

in both M1 and M2 is activated at excitation then decays in time; however, the

mode reemerges after CT in M1. The same frequency in M3 and M4 is almost

entirely nonexistent lending to the idea this mode is ring torsion with nodes at meso

carbonds. Most nuclear displacement would occur at the pyrolle rings which would

be inhibited by heavy β substituents. Finally, a mode in the mid 1400 cm−1 range

shows as correlated in M2, anticorrelated in M3, and decorrelated in M1 and M4.

These modes are of low intensity overall and temporal behavior is universally noisy,

perhaps only coincidentally aligned (misaligned) with CT in M2 (M3).

We finish here with examination of the acceptor moiety. STFT spectrograms for

the fullerene dynamics can be found in Figures 4.13 and 4.14. The mode screening

for the acceptors can be found in Figure 4.15. Contrary to the bridge counterparts,

the acceptors have much more activity in the low-frequency range and relatively

subdued activity at higher frequencies. In general, the spectrograms reveal that most

of the dynamical activity is in breathing or other macromolecular modes as opposed

to local carbon-carbon stretches. Density Functional Theory (B3LYP level) studies

of C60 and C−60 indicate ionic forms have larger overall radii and distortion of the

spherical geometry versus the neutral molecule[84]. We expect to see breathing modes

accompany electronic charging of this moiety. Indeed, all four molecules show some

level of correlation to CT with a mode between 200-250 cm−1 with M4 having a strong

correlation. A multitude of other modes show strong correlation in either direction

(e.g., 500, 700, 1000-1200, 1500 cm−1) but are not consistent between systems.
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Figure 4.10: STFT spectrograms for the porphryin bridge in M1 (top) and M2
(bottom).
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Figure 4.11: STFT spectrograms for the porphryin bridge in M3 (top) and M4
(bottom).
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Figure 4.12: Screened vibrational modes for the porphyrin moiety in M1-4.

Vibrational energy within the porphyrin is primarily distributed amongst higher

frequency modes, which is likely associated with the large electronic excitation energy

pumped into a localized region. The fullerene, conversely, has most of its vibrational

energy distributed among low energy modes. Outside of the modes mentioned above,

no other modes seem to behave consistently across these triads, at least temporally.

The inconsistency in vibrational behavior could be due to a few reasons. Our subset

for STFT analysis chooses only 10 trajectories, which may be an insufficient number

for analyzing larger structures. Analysis of linker and bridge side groups involved

at most 12 atoms, limiting the total number of normal coordinates, whereas the

same analysis of full moieties requires the consideration of 30 atoms and upwards. A

large number of degrees of freedom gives rise to more vibrational modes that are both

energetically similar (possibly degenerate) and energetically accessible. Alternatively,

the dynamics of the triads depends heavily on the initial conditions, and this is easily

75



0 500 1000 1500 2000
-2

0

2

4

6

8

Wavenumber / cm-1

T
im
e
/
p
s

M1 Acceptor

0 500 1000 1500 2000
-2

0

2

4

6

8

Wavenumber / cm-1

T
im
e
/
p
s

M2 Acceptor

Figure 4.13: STFT spectrograms for the fullerene acceptor in M1 (top) and M2
(bottom).
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seen in Figures 3.3 and 3.4. Variations in the geometries necessarily result in varying

excitation energies and excited electronic structures which in turn give diverse charge

transfer characteristics. Therefore, averaging more trajectories would either reduce

the vibrational noise resulting from the increase in accessible modes or, if noise is not

reduced, give further credence to the sensitivity to initial conditions.

An additional effect of the dynamical evolution of force constants with the elec-

tronic structure is the blue- or red-shifting of the vibrational modes, most prominently

in the amide STFT spectrograms. Within the harmonic oscillator approximation, the

frequency of a mode is proportional to the square root of the force constant which

is modulated by the π bond order (off-diagonal elements of the site basis density

matrix). The most extreme case of this shift is around 50 cm−1 seen in the 1000

cm−1 mode in Figure 4.1 (bottom) whereas this effect is less pronounced in other

spectrograms. While this shift should be an indicator of fluctuating electronic state,

our choice of time-frequency analysis and window function width in this work gives a

frequency uncertainty of about 28 cm−1 and, consequently, we reserve detailed discus-

sion of the effect in the present results. The trade-off between uncertainty in temporal

or frequency resolution is unavoidable. However, the wavelet transform technique of

time-frequency analysis does provide better resolution than STFT and future analyses

will benefit from this approach[71, 68, 85].
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Figure 4.14: STFT spectrograms for the fullerene acceptor in M3 (top) and M4
(bottom).

78



M1

M2

M3

M4

0 500 1000 1500 2000
-30

-20

-10

0

10

20

30

40

Wavenumber / cm-1

C
(ω

k
)
/
a
.b
.u
.

Figure 4.15: Screened vibrational modes for the acceptor moiety in M1-4.

79



Chapter 5

Conclusion

We have presented here the results of mixed quantum mechanical/molecular me-

chanics simulations modeling electron and nuclear dynamics in four Donor-Bridge-

Acceptor triads, each with slightly differing bridge constructions. By taking a sta-

tistical approach, we ensure our simulations are representative of the average charge

transfer behavior of these systems. Our model can reproduce experimentally accurate

excitation energies for a localized excitation on the porphyrin bridge. Electron pop-

ulation analysis indicates initial charge transfer from porphyrin bridge to fullerene

acceptor occurs at the picosecond scale. While we systematically overestimate charge

transfer rates in M1 and M2, we reasonably reproduces rates in M3 and M4 when

compared to experimental findings[43].

We further provide a time-resolved vibrational power spectrum which character-

izes the nuclear vibrations occurring in our simulations. Our mode filtering technique

provides a qualitative correlation of vibrational modes to the initial charge transfer

process. By considering a subset of atoms from each triad, we can pinpoint which
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nuclear motions have the strongest coupling to the electronic states. We find that con-

jugated aryl side groups on the porphyrin undergo dihedral rotations (lower energy)

over ring breathing and ring distortions (higher energy). Despite a strong response

to CT, we show these motions have very little effect on the electronic structure of the

porphyrin at large. Conversely, aryl rings which link the bridge and acceptor units are

shown to have little torsional behavior, and instead, nuclear motions take the form of

ring distortions. Although this work focuses on charge migration from the bridge to

acceptor, we still analyze the vibrations of the amide linking bridge and donor units.

Here we find with M3 and M4 a torsional mode that is sensitive to the direction

of electron flow. Finally, our analysis of bridge and acceptor moieties sees very little

commonalities in nuclear dynamics between triads specific to the CT, despite the

level of similarity in chemical structure. Nuclear energy is broadly distributed among

high energy ring distortion modes in the bridge and low energy breathing modes in

the acceptor.

Within our considerations in this work, we limit discussion to a qualitative rela-

tionship between vibrational modes and the electron transfer process without nec-

essarily indicating dependency. Exploration via full quantum mechanical models

would give detailed insight into the interplay between electronic and nuclear dynam-

ics. Modes which show strong correlation may drive the CT process. We interpret

anticorrelated modes here as having no activity during CT (perhaps even deactivated

by CT). Recent experiments show the reverse occurring in systems with acetylide

bridges. Selective vibrational excitation effectively disables CT in these DBA sys-

tems entirely[86].

Several quantum models implemented by Bittner et. al. study OPV’s and charge

transfer properties[87, 81]. Such models consider electronic states accompanied by
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a small set of vibrational modes for acceptor, bridge (if included), and donor units

and can reasonably recreate certain photophysical phenomena seen in experiment.

With the vibrational analysis presented here, we begin the work to parameterize

these models in a more robust sense, expanding the number of modes considered

and differentiating the modes for each molecular unit. Furthermore, we can separate

modes which have a marked effect on the electronic structure of the system versus

modes which can be relegated to a phonon bath. What remains missing is the electron-

vibration coupling parameter which is certainly a non-trivial computation.

Future Work

Marcus postulated that for larger ions, the change in electric field associated with

charge transfer is smaller as the new charges are distributed over a larger volume

of space[3]. As a result, there is less energy associated with the reorganization of

solvent molecules, but the local system must undergo a more extensive rearrangement

in response to new charges. For this work, we assumed solvent response would be

minimal with respect to this charge transfer process and therefore excluded them.

This not only eases computation but allows us to observe the vibrational response of

the triads without interference.

We do, however, recognize the importance of inclusion of solvents. The addition

of nuclear degrees of freedom provides an energy sink that can pull vibrational energy

out of the system. This will either reduce some vibrational noise (modes associating

with CT will remain active) or restrict the system from specific modes (torsional and

breathing, for example) due to crowding. Polar molecules would stabilize any charge

that emerges and the associated drop in energy may provoke more charge transfer
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than the 0.35 q that we see. Inclusion of this interaction proves to be a non-trivial

task in the TINKER software, however, as there is no explicit interaction term in the

PPP Hamiltonian with solvent dipoles or external electric fields. Such interactions

are currently only indirect: MM force fields of the solvent interact with those of the

system. Direct interaction of the electronic structure with solvent molecules can be

done if the choice of solvent has π conjugation. This would entail quantum mechanical

treatment of π electrons in explicit solvent molecules and while this will increase

computational cost, it is still a feasible computation in the TINKER software.

In the previous chapter, we briefly discuss an increase in ensemble size for the

purpose of reducing vibrational noise and producing more consistent mode correlation

from STFT. In our limited sample size here, choosing temporally similar trajectories

required that we poll around the average case (the most populous region in the rate

distribution). Vibrational analysis of this set allows us to qualitatively discuss modes

which are relevant to CT. However, an increase in the ensemble size would give rise to

even more trajectories which exhibit slow or fast CT. We can then analyze the extreme

case sub-ensembles and investigate vibrational mode involvement in the retardation

or hastening of CT.

The overall CT behavior for each trajectory is highly sensitive to initial config-

uration, and an exhaustive examination over every degree of freedom would require

enormous computation effort. A large enough ensemble size would also present a

sufficient training data set for the development of a machine learning model. Such

a model could determine whether the charge transfer behavior in these triads is pre-

dictable and if so, identify key features (initial geometries, dihedral angles, excitation

energies, and vibrational modes) that lead to optimal charge transfer properties.
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Appendix A

Codes

A.1 Added Keywords

EXCITES [int] - Perform CI-S singlet excitations. Integer indicates the

excitation number.

EXCITET [int] - Perform CI-S triplet excitations. Integer indicates the

excitation number. (Experimental)

TDHF - Use Time-Dependent Hartree-Fock and density matrix

evolution.

TDHFCR [real] - Sets the screening radius for Yukawa-like interaction in

Hartree-Core calculation.

TDHFDEBUG - Increase verbosity of TDHF output.

USEURHF - Use unrestricted Hartree-Fock method. By default,

THDF will use restricted HF. (Experimental)

PRINTEVERY [int] - Output frequency of TDHF. Integer defines number of

iterations between TDHF data outputs.
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PROBCURR - Compute the probability current at each quantum-active

site. (Experimental)

RESUME - Import data from previous calculation and resume from

there. (Experimental)

A.2 cicalc.f

1 !

! ####################################################

! ## ##

! ## subroutine cicalc -- Calculates CI ##

! ## energies and states ##

6 ! ## ##

! ## Originally written by Bittner for an older ##

! ## version of Tinker , Rewriten by Kush Patel ##

! ## for Tinker 7.1.2. ##

! ## ##

11 ! ####################################################

subroutine cicalc

use sizes

16 use atoms

use bndstr

use civars

use iounit

use piorbs

21 use units

!----------------------------------
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! to see if TDHF is requested

use tdhfvars

!----------------------------------

26

implicit none

! cicalc variables

! index variables

31 integer i,j,k,l,m,ma ,iip ,iorb ,jorb ,iir

integer ih ,ie

integer nv ,nc ,nci ,nci_max ,nl ,nu

! nv - num valence orbitals

36 ! nc - num condunting orbitals

! nci - total CI interactions

! nci_max - maximum calculated CI interactions

! nl - lower limit (for systems w/ <10 oribtals)

! nu - upper limit (for systems w/ <10 orbitals)

41 parameter(nv = 20, nc = 20, nci_max = nv*nc)

integer iconfig(nci_max ,2)

! keeps track of configurations

! (n-9,n+1)

! (n-9,n+2)

46 ! ...

! (n-9,n+10)

! (n-8,n+1)

! ...

! (n,n+10)

51 ! real*8 hfoc(norbit)

! real*8 exciton(norbit),tranvect(norbit)

! real*8 hodens(norbit),eldens(norbit)
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! real*8 nco1(norbit ,norbit),nco2(norbit ,norbit)

! real*8 nco3(norbit ,norbit),nco4(norbit ,norbit)

56 real*8 nhf(norbit),nh(norbit),ne(norbit)

real*8 dens(norbit ,norbit)

real*8 cibcm(norbit ,norbit)

real*8 hcst(norbit ,norbit),gst(norbit ,norbit)

61

! Summation and Integral Variables

real*8 qx(nci_max),qy(nci_max),qz(nci_max)

real*8 qxsum ,qysum ,qzsum ,Jint ,Kint

real*8 s1,s2,qtot ,fosci ,sume ,sumh

66 real*8 sum1 ,sum2 ,sum3 ,sum4

real*8 sum ,p

! CI Hamiltonian matrices

real*8, allocatable :: sing (:,:)

71 real*8, allocatable :: trip (:,:)

real*8, allocatable :: A1(:,:),A2(:,:)

! LAPACK/BLAS work variables

76 real*8, allocatable :: d(:)

real*8, allocatable :: work (:)

real*8, allocatable :: evec (:,:)

integer lwork ,info

! d - eigenvalues of CI hamiltonian

81 ! work - work variable

! Density matrix (State Rep)

real *8 stds(norbit ,norbit)
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! New Coherences variables

86 integer r,s,o,kd

nl = max(ci_nfill - nv + 1, 1)

nu = min(ci_nfill + nc , norbit)

nci = (ci_nfill - nl + 1)*(nu - ci_nfill)

91 lwork = 32*nci

307 format(X,A9 ,I3)

write(ciout ,307) ’ci_nfill: ’, ci_nfill

write(ciout ,307) ’nl:       ’, nl

96 write(ciout ,307) ’nu:       ’, nu

write(ciout ,307) ’norbit:   ’, norbit

write(ciout ,307) ’nci:      ’, nci

write(ciout ,307) ’iex:      ’, iex

write(ciout ,*)

101

if(iex.lt.1 .or. iex.gt.nci) then

write(ciout ,*) ’Invalid excitation number ’

call fatal

end if

106

! Allocate orbitals according to the CI interactions

allocate (sing(nci ,nci))

allocate (trip(nci ,nci))

allocate (d(nci))

111 allocate (work(lwork ))

allocate (evec(nci ,nci))

!-----Test Print 10/8/16----------

write(ciout ,*) ’Input Energies (ci_en)’
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116 do i=1,norbit

write(ciout ,*) i, ci_en(i)

end do

!-----End Test Print --------------

121 ! sum over molecular orbitals

m = 0

do i = nl , ci_nfill

do j=ci_nfill+1, nu

m = m+1

126 iconfig(m,1) = i

iconfig(m,2) = j

qxsum = 0.0d0

qysum = 0.0d0

131 qzsum = 0.0d0

! transitions before CI

qx(m) = 0.0d0

qy(m) = 0.0d0

qz(m) = 0.0d0

136

do iip = 1,norbit

iorb = iorbit(iip)

qxsum = qxsum + ci_v(iip ,i)*ci_v(iip ,j)*x(iorb)

qysum = qysum + ci_v(iip ,i)*ci_v(iip ,j)*y(iorb)

141 qzsum = qzsum + ci_v(iip ,i)*ci_v(iip ,j)*z(iorb)

end do

qx(m) = qxsum

qy(m) = qysum

qz(m) = qzsum

146

89



ma = 0

! construct CI Hamiltonian for singlet and triplet

do k = nl,ci_nfill

151 do l = ci_nfill+1,nu

ma = ma + 1

Jint = 0.0d0

Kint = 0.0d0

156 do iip=1,norbit

s1 = 0.0d0

s2 = 0.0d0

do iir = 1,norbit

s1 = s1 + ci_gamma(iip ,iir)*ci_v(iir ,j)*

161 > ci_v(iir ,l)

s2 = s2 + ci_gamma(iip ,iir)*ci_v(iir ,k)*

> ci_v(iir ,l)

end do

Jint = Jint + ci_v(iip ,i)*ci_v(iip ,k)*s1

166 Kint = Kint + ci_v(iip ,i)*ci_v(iip ,j)*s2

end do

sing(m,ma) = -Jint + 1.0d0*Kint

! Original sing(m,ma) = -Jint + 2.0d0*Kint

sing(ma ,m) = sing(m,ma)

171 trip(m,ma) = -Jint

trip(ma ,m) = -Jint

end do

end do

sing(m,m) = sing(m,m) + (ci_en(j)-ci_en(i))

176 trip(m,m) = trip(m,m) + (ci_en(j)-ci_en(i))

end do
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end do

!-----Test Print --------

! Need to see what all the values in iconfig mean

181 write(ciout ,*) "  m     i   j"

999 format(i5 ,i5 ,’ -> ’,i5)

do i=1,m

write(ciout ,999) i, iconfig(i,1), iconfig(i,2)

end do

186 write(ciout ,*) ’’

!-----End Test Print ----

!

191 ! Print the CI Hamiltonians

!

302 format(E13.5)

if(usesinglet) then

write(ciout ,*) "CI Singlet Hamiltonian"

196 do i=1,nci

do j=1,nci

write(ciout ,302, advance=’no’) sing(i,j)

end do

write(ciout ,*) ’’

201 end do

end if

if(usetriplet) then

write(ciout ,*) "CI Triplet Hamiltonian"

do i=1,nci

206 do j=1,nci

write(ciout ,302, advance=’no’) trip(i,j)

end do
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write(ciout ,*) ’’

end do

211 end if

write(ciout ,*)

!

! Get the eigensystem , print

!

216 if(usesinglet) then

call dsyev(’V’,’U’,nci ,sing ,nci ,d,work ,lwork ,info)

! At this point ’sing ’ holds the eigenvectors

! Copy them to ’evec ’

do i=1,nci

221 do j=1,nci

evec(i,j) = sing(i,j)

end do

end do

226 write(ciout ,*) ’CI Singlet Energies (ev)’

end if

if(usetriplet) then

call dsyev(’V’,’U’,nci ,trip ,nci ,d,work ,lwork ,info)

! At this point ’trip ’ holds the eigenvectors

231 ! Copy them to ’evec ’

do i=1,nci

do j=1,nci

evec(i,j) = trip(i,j)

end do

236 end do

write(ciout ,*) ’CI Triplet Energies (ev)’

end if
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241 ! Print out the energies

303 format(i5 ,2f12.6)

do i=1,min(20,nci)

write(ciout ,303) i,d(i)*evolt

end do

246 write(ciout ,*)

!

! Analyse CI states

!

if(usesinglet) then

251 write(ciout ,*) ’Analysis of Singlet States ’

else if(usetriplet) then

write(ciout ,*) ’Analysis of Triplet States ’

end if

256 ! do i=1,min(20,nci)

do i=1,nci

qxsum = 0.0d0

qysum = 0.0d0

qzsum = 0.0d0

261

do j=1,nci

qxsum = qxsum + evec(j,i)*qx(j)

qysum = qysum + evec(j,i)*qy(j)

qzsum = qzsum + evec(j,i)*qz(j)

266 end do

qtot = qxsum*qxsum + qysum*qysum + qzsum*qzsum

fosci = 0.0875161* qtot*d(i)

if(fosci.lt .10.0d0**( -90)) fosci = 0.0d0
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271

write(ciout ,304) i,d(i)*evolt ,fosci

304 format(’E(’,i3 ,’) = ’,f12.6,2x,’fosci = ’,e12.6)

write(ciout ,305) qxsum ,qysum ,qzsum ,sqrt(qtot)

305 format(’qx = ’,e12.6, 2x, ’qy = ’,e12.6, 2x, ’qz = ’,e12.6,

276 > 2x,’qtot = ’,e12 .6)

write(ciout ,*) ’v -> !          Ec-Ev          coef’

do j=1,nci

if(evec(j,i)**2.gt .0.1) then

281 write(ciout ,’(i3 ," ->",i3 ,3x,f12.6,3x,f12.6)’)

> iconfig(j,1), iconfig(j,2),

> (ci_en(iconfig(j,2))- ci_en(iconfig(j ,1)))* evolt ,

> evec(j,i)

end if

286 end do

write(ciout ,*)

end do

!

291 ! Modify electron densitites for excitations.

! He were use the assumption that the CI(S)

! state add and subtract single electron

! density from the ci_ed(i,j) matrix

!

296 ! May need iex here.

!

! First construct the density matrix using

! the CI coefficients for iex in MO basis

!

301 sum1 = 0.0d0
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do i=1,norbit

do j=1,norbit

dens(i,j) = 0.0d0

end do

306 end do

do m=1,nci

i = iconfig(m,1)

j = iconfig(m,2)

311 dens(i,j) = evec(m,iex)

end do

write(ciout ,*) ’CI Eigenvectors ’

do i=1,nci

316 write(ciout ,306) (evec(i,j),j=1,nci)

end do

write(ciout ,*)

306 format (8f12.6)

321 write(ciout ,*) ’CI expansion coefficients ’

do i=1,norbit

write(ciout ,306) (dens(i,j),j=1,norbit)

end do

write(ciout ,*)

326 ! At this point , we have the CI density matrix in the local orbital basis.

! Now we need to write the populations in the orbital basis. For this , we

! first determine the orbital population changes

!

331 do i=1,norbit

nhf(i) = 0.0d0
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nh(i) = 0.0d0

ne(i) = 0.0d0

if(i.le.ci_nfill) then

336 if(usetdhf) then

nhf(i) = 1.0d0

else

nhf(i) = 2.0d0

end if

341 end if

end do

do ih = nl ,ci_nfill

sum = 0.0d0

346 do ie = ci_nfill+1,nu

sum = sum + dens(ih ,ie)**2

end do

nh(ih) = sum

end do

351 do ie=ci_nfill+1,nu

sum = 0.0d0

do ih=nl ,ci_nfill

sum = sum + dens(ih ,ie)**2

end do

356 ne(ie) = sum

end do

! Check: write the occupations over the range nl->nu

308 format(I3 ,4F13.5)

361 write(ciout ,*) "State Populations Post -CI over CI range"

write(ciout ,*) " k      nhf          nh           ne          adj"

do k=nl ,nu
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write(ciout ,308) k,nhf(k),nh(k),ne(k),nhf(k)+ne(k)-nh(k)

end do

366

!-----Test Code 20 Nov 2017---------------------------------

! The state populations might be inherently included

! in the CI eigenvectors. So lets take the eigenvector

371 ! and use that to populate coherences and diagonals.

! start with the state representation

do o=1, norbit ! state

do m=1, norbit ! state

376 sum1 = 0.0d0

stds(o,m) = 0.0d0

do i=nl,ci_nfill ! hole 1

do j=ci_nfill+1,nu ! elec 1

do k=nl,ci_nfill ! hole 2

381 do l=ci_nfill+1,nu ! elec 2

kd = 0

if(l.eq.o .and. i.eq.k .and. m.eq.j) then

kd = kd+1

end if

386 if(l.eq.j .and. k.eq.m .and. o.eq.i) then

kd = kd -1

end if

if(l.eq.j .and. i.eq.k .and. o.eq.m) then

if(o.le.ci_nfill) kd = kd+1

391 end if

sum1= sum1 + float(kd)*dens(i,j)*dens(k,l)

end do

end do
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end do

396 end do

stds(o,m) = sum1

end do

end do

401 ! unitary transform into site represenation

do r=1,norbit

do s=1,norbit

sum = 0.0d0

do o=1,norbit

406 do m=1,norbit

sum = sum + stds(o,m)*ci_v(r,o)*ci_v(s,m)

end do

end do

cibcm(r,s) = sum

411 end do

end do

write(ciout ,*) ’Density Matrix (State Rep)’

do i=1,norbit

416 do j=1,norbit

write(ciout ,309, advance=’no’) stds(i,j)

end do

write(ciout ,*) ’’

end do

421 write(ciout ,*) ’’
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426 ! Print out the CI density/bond -charge matrix

309 format(F13.5)

write(ciout ,*) ’Density/Bond -Charge Matrix ’

do i=1,norbit

do j=1,norbit

431 write(ciout ,309, advance=’no’) cibcm(i,j)

end do

write(ciout ,*) ’’

end do

write(ciout ,*) ’’

436

! As a check , take a look at the changes in the bond -orders.

! These will go in to the forcefield calculation next.

write(ciout ,*) ’bond   i  j  old new’

do k=1, nbpi

441 p = pnpl(k)

i = ibpi(2,k)

j = ibpi(3,k)

if(usetdhf) then

if(useurhf) then

446 pnpl(k) = realpart(cibcm(i,j) + tdhfedb(i,j))

else

pnpl(k) = realpart(cibcm(i,j) + 0.5d0*tdhfed(i,j))

end if

!-----Test 03.20.17----

451 pbpl(k) = pnpl(k)* ci_hc(i,j)/( -0.0757d0)

!----------------------

else

pnpl(k) = cibcm(i,j)

!-----Test 03.20.17----

456 pbpl(k) = cibcm(i,j)* ci_hc(i,j)/( -0.0757d0)
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!----------------------

end if

i = ibnd(1,ibpi(1,k))

j = ibnd(2,ibpi(1,k))

461 write(ciout ,’(5i5 ,2f12.2)’) k,ibpi(2,k),ibpi(3,k),i,j,p,pnpl(k)

end do

write(ciout ,*)

466 !------------------------------------------------------------------------

! If needed , update the TDHF electron density matrix

if(usetdhf) then

write(ciout ,*)

write(ciout ,*) ’Updating TDHF electron density matrix ’

471 write(ciout ,*)

do i=1, norbit

do j=1, norbit

if(useurhf) then

tdhfeda(i,j) = cibcm(i,j)

476 else

tdhfed(i,j) = cibcm(i,j) + 0.5d0*tdhfed(i,j)

end if

end do

end do

481 end if

!------------------------------------------------------------------------

call flush(ciout)

486 end subroutine

100



A.3 ciinnit.f

!

2 ! ###################################################

! ## Written by Kush Patel - 2/29/16 ##

! ###################################################

!

! ##############################################################

7 ! ## ##

! ## subroutine ciinit -- checks for keyword "EXCITES" or ##

! ## "EXCITET" for single or triplet ##

! ## calculations respectively , then ##

! ## initializes necessary values ##

12 ! ## ##

! ##############################################################

!

! "ciinit" checks for the keyword "EXCITES" or "EXCITET" which

! decides whether to do excited state calculations

17 ! ’EXCITES ’ - singlet

! ’EXCITET ’ - triplet

subroutine ciinit

use sizes

22 use keys

use civars

logical exist

integer i, next , freeunit

character *20 keyword

27 character *120 record , string

character *120 cifile
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usesinglet = .false.

usetriplet = .false.

32 do i=1,nkey

next = 1

record = keyline(i)

call gettext (record ,keyword ,next)

call upcase (keyword)

37 if(keyword (1:8) .eq. ’EXCITES ’) then

usesinglet = .true.

usetriplet = .false.

ciout = freeunit ()

cifile = ’ci.sing.debug’

42 string = record(next :120)

iex = 0

read(string ,*,err=10,end =10) iex

10 continue

else if(keyword (1:8) .eq. ’EXCITET ’) then

47 usesinglet = .false.

usetriplet = .true.

ciout = freeunit ()

cifile = ’ci.trip.debug’

string = record(next :120)

52 iex = 0

read(string ,*,err=11,end =11) iex

11 continue

end if

end do

57

! open the CI debug file

if(usesinglet.or.usetriplet) then

inquire(file=cifile ,exist=exist)
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if(exist) then

62 open(unit=ciout ,file=cifile ,status=’old’)

rewind(ciout)

else

open(unit=ciout ,file=cifile ,status=’new’)

end if

67 end if

write(ciout ,*) ’ci sing: ’, usesinglet

write(ciout ,*) ’ci trip: ’, usetriplet

72

return

end

A.4 civars.f

1 !

! #############################################################

! ## ##

! ## module civars -- contents of the CI singlet and ##

! ## triplet calculations ##

6 ! ## ##

! #############################################################

!

!

! maxkey maximum number of lines in the keyword file

11 !

! nkey number of nonblank lines in the keyword file

! keyline contents of each individual keyword file line

!
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!

16 module civars

implicit none

logical usetriplet ,usesinglet

integer ciout

21 ! copy variables from other calculations

integer ci_nfill , iex

real*8, allocatable :: ci_gamma (:,:)

real*8, allocatable :: ci_v (:,:)

real*8, allocatable :: ci_en (:)

26 real*8, allocatable :: ci_ed (:,:)

real*8, allocatable :: ci_hc (:,:)

save

end

A.5 fullpi.f

1 !

!

! ################################################################

! ## ##

! ## subroutine fullpi -- replaces subroutine pical! ##

6 ! ## because the given routine does not ##

! ## include the whole pi system ##

! ## together in one calculation ##

! ## ##

! ################################################################

11 !

!

! "picalc" performs a modified Pariser -Parr -Pople molecular
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! orbital calculation for each conjugated pi-system. The

! implication here is that the pi-systems , then , do not

16 ! interact with each other except by force fields (MM). As a

! result , there are no population dynamics between pi-systems.

!

! "fullpi" does the same calculation , but treats all pi orbitals

! as a single large pi-system

21 !

subroutine fullpi

use sizes

use bndstr

26 use couple

use inform

use iounit

use piorbs

use tors

31 !--------------------------

! for tdhf calculations

use tdhfvars

! for CI calculations

use civars

36 !--------------------------

use atoms

!

implicit none

integer i,j,k,m,ib ,i!

41 integer ii ,jj ,kk

integer iorb ,jorb

integer ncalls

data ncalls / 0 /
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save ncalls

46 real*8 xij ,yij ,zij ,rij

! write(iout ,*) "Full Pi called"

! write(iout ,*) "Status: ", tdhffirst

51 !

!

! only needs to be done if pisystem is present

!

if (norbit .eq. 0) return

56 !

! compute MOs for full pisystem

!

norbit = 0

do i = 1, nconj

61 do j = iconj(1,i), iconj(2,i)

norbit = norbit + 1

iorbit(norbit) = kconj(j)

end do

end do

66 ! write(iout ,*) ’norbit:’, norbit

!

! find and store the pisystem bonds for this pisystem

!

!---------old code --------------------------------------------

71 nbpi = 0

kk = iconj(2,i) - iconj(1,i) + 1

do ii = 1, norbit -1

iorb = iorbit(ii)

do jj = ii+1, norbit
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76 jorb = iorbit(jj)

do k = 1, n12(iorb)

if (i12(k,iorb) .eq. jorb) then

nbpi = nbpi + 1

do m = 1, nbond

81 if (iorb.eq.ibnd(1,m) .and.

& jorb.eq.ibnd(2,m)) then

ibpi(1,nbpi) = m

ibpi(2,nbpi) = ii

ibpi(3,nbpi) = jj

86 goto 10

end if

end do

10 continue

end if

91 end do

end do

end do

!--------------------------------------------------------------

!-------------new code -----------------------------------------

96 ! Point of this code is to find pi-atoms within a certain

! distance of each other and consider them pi-bonded.

! This will allow for inter -pisystem coupling and therefore

! population dynamics therewithin. This should hold for

! molecular systems with unconnected pisystems and

101 ! pairs of molecules that are within proximity.

!

! nbpi = 0

! do i = 1, norbit -1

! iorb = iorbit(i)

106 ! do j = i+1, norbit
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! jorb = iorbit(j)

! nbpi = nbpi + 1

! do m = 1, nbond

! ibpi(1,nbpi) = m

111 ! ibpi(2,nbpi) = i

! ibpi(3,nbpi) = j

! end do

! end do

! end do

116 ! Notes:

! bohr - ratio of Bohr/Angstrom

!--------------------------------------------------------------

121 c

! find and store the pisystem torsions for this pisystem

c

ntpi = 0

do ii = 1, ntors

126 ib = itors(2,ii)

ic = itors(3,ii)

if (listpi(ib) .and. listpi(ic)) then

do jj = 1, nbpi

k = ibpi(1,jj)

131 if (ib.eq.ibnd(1,k).and.ic.eq.ibnd(2,k) .or.

& ib.eq.ibnd(2,k).and.ic.eq.ibnd(1,k)) then

ntpi = ntpi + 1

itpi(1,ntpi) = ii

itpi(2,ntpi) = jj

136 goto 20

end if
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end do

20 continue

end if

141 end do

!

! print a header for the molecular orbital calculation

!

if (verbose) then

146 if (nconj .eq. 1) then

write (iout ,30)

30 format (/,’ Modified Pariser -Parr -Pople Molecular ’,

& ’ Orbitals :’)

else

151 write (iout ,40) i

40 format (/,’ Modified Pariser -Parr -Pople MOs for’,

& ’ Pi-System ’,i4,’ :’)

end if

end if

156 !

! get SCF -MOs , then scale bond and torsional parameters

!

! need to see if TDHF is requested

161 if(usetdhf .and. .not. tdhffirst) then

if(useurhf) then

call pitduhf

else

call pitdrhf

166 end if

else

call fullpiscf
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! if CI calculations are requested

if(usesinglet.or.usetriplet) call cical!

171

tdhffirst = .false.

end if

call pialter

176 ! end do

return

end

181 !

!

! ###############################################################

! ## ##

! ## subroutine fullpiscf -- SCF molecular orbital ##

186 ! ## calculation ##

! ## ##

! ###############################################################

!

!

191 ! "piscf" performs an SCF molecular orbital calculation for a

! pisystem to determine bond orders used in parameter scaling

!

!

! "fullpiscf" is a modificaion of "piscf" that fills in

196 ! off diagonal terms that allow for intermolecular/interpisystem

! interactions

!

subroutine fullpiscf
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use sizes

201 use atomid

use atoms

use bndstr

use couple

use inform

206 use iounit

use orbits

use piorbs

use pistuf

use units

211

!---------------------------------------------

! for the initialization of tdhf variables

use tdhfvars

use civars

216 !---------------------------------------------

implicit none

integer i,j,k,m

integer iter ,maxiter

221 integer iatn ,jatn

integer iorb ,jorb ,nfill

real*8 delta ,converge

real*8 xij ,yij ,zij ,p

real*8 hcii ,gii ,gij

226 real*8 g11 ,g11sq ,g12 ,g14

real*8 rij ,erij ,brij

real*8 ovlap ,covlap

real*8 cionize

real*8 iionize ,jionize
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231 real*8 rijsq ,hcij ,qi

real*8 total ,totold

real*8 ebeta ,aeth ,abnz

real*8 ebe ,ebb ,ble ,blb

real*8 eebond ,bebond

236 real*8 s1,s2,gjk

real*8 vij ,vik ,vmj ,vmk

real*8 xi,xj,xk,xg

real*8, allocatable :: povlap (:,:)

real*8, allocatable :: en(:)

241 real*8, allocatable :: ip(:)

real*8, allocatable :: fock (:,:)

real*8, allocatable :: hc(:,:)

real*8, allocatable :: v(:,:)

real*8, allocatable :: gamma (:,:)

246 real*8, allocatable :: ed(:,:)

character *6 mode

!-----Testing Variables ---------------------

real*8, allocatable :: FR(:,:)

real*8, allocatable :: RF(:,:)

251

integer testout

allocate (FR(norbit ,norbit ))

allocate (RF(norbit ,norbit ))

256 !-------------------------------------------

!

!

! initialize some constants and parameters

!

261 ! mode planar or nonplanar pi-calculation

112



! maxiter maximum number of SCF iterations

! converge criterion for SCF convergence

! ebeta value of resonance integral for ethylene

! cionize ionization potential of carbon (Hartree)

266 !

mode = ’PLANAR ’

maxiter = 500 ! default is 50

converge = 0.00000001 d0

ebeta = -0.0757d0

271 cionize = -11.16d0 / evolt

!

! set the bond energies , alpha values and ideal bond length

! parameter for carbon -carbon pibond type parameters

!

276 ! ebe equilibrium bond energy in ethylene

! ebb equilibrium bond energy in benzene

! aeth the P-P-P constant "a" in ethylene

! abnz the P-P-P constant "a" in benzene

! ble equilibrium bond length in ethylene

281 ! blb equilibrium bond length in benzene

!

ebe = 129.37 d0

ebb = 117.58 d0

aeth = 2.309 d0

286 abnz = 2.142 d0

ble = 1.338d0

blb = 1.397d0

!

! perform dynamic allocation of some local arrays

291 !

allocate (povlap(norbit ,norbit ))
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allocate (en(norbit ))

allocate (ip(norbit ))

allocate (fock(norbit ,norbit ))

296 allocate (hc(norbit ,norbit ))

allocate (v(norbit ,norbit ))

allocate (gamma(norbit ,norbit ))

allocate (ed(norbit ,norbit ))

!

301 ! assign empirical one -center Coulomb integrals , and

! first or second ionization potential depending on

! whether the orbital contributes one or two electrons

!

nfill = 0

306 do i = 1, norbit

iorb = iorbit(i)

gamma(i,i) = emorb(iorb)

ip(i) = worb(iorb) + (1.0d0 -qorb(iorb ))* emorb(iorb)

nfill = nfill + nint(qorb(iorb))

311 end do

nfill = nfill / 2

!

! calculate two -center repulsion integrals

! according to Ohno ’s semi -empirical formula

316 !

do i = 1, norbit -1

iorb = iorbit(i)

gii = gamma(i,i)

do j = i+1, norbit

321 jorb = iorbit(j)

g11 = 0.5d0 * (gii+gamma(j,j))

g11sq = 1.0d0 / g11**2
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xij = x(iorb) - x(jorb)

yij = y(iorb) - y(jorb)

326 zij = z(iorb) - z(jorb)

rijsq = (xij**2 + yij**2 + zij **2) / bohr **2

g12 = 1.0d0 / sqrt(rijsq+g11sq)

gamma(i,j) = g12

gamma(j,i) = g12

331 end do

end do

!

! zero out the resonance integral values

!

336 do i = 1, norbit

do j = 1, norbit

hc(j,i) = 0.0d0

end do

end do

341 !

! the first term in the sum to find alpha is the first

! or second ionization potential , then the two -center

! repulsion integrals are added

!

346 do i = 1, norbit

hcii = ip(i)

do j = 1, norbit

if (i .ne. j) then

jorb = iorbit(j)

351 hcii = hcii - qorb(jorb)* gamma(i,j)

end if

end do

hc(i,i) = hcii
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end do

356 !

! ----Original Code -----------

!

! get two -center repulsion integrals via Ohno ’s formula

!

361 ! do k = 1, nbpi

! i = ibpi(2,k)

! j = ibpi(3,k)

!c do i = 1, norbit -1

!c do j = i+1, norbit

366 ! iorb = iorbit(i)

! jorb = iorbit(j)

! iatn = atomic(iorb)

! jatn = atomic(jorb)

! xij = x(iorb) - x(jorb)

371 ! yij = y(iorb) - y(jorb)

! zij = z(iorb) - z(jorb)

! rij = sqrt(xij**2 + yij**2 + zij **2)

! rijsq = rij**2 / bohr **2

! g11 = 0.5d0 * (gamma(i,i)+gamma(j,j))

376 ! g11sq = 1.0d0 / g11**2

! g12 = gamma(i,j)

!

! compute the bond energy using a Morse potential

!

381 ! erij = aeth * (ble -rij)

! brij = abnz * (blb -rij)

! eebond = (2.0d0*exp(erij)-exp (2.0d0*erij)) * ebe / hartree

! bebond = (2.0d0*exp(brij)-exp (2.0d0*brij)) * ebb / hartree

!
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386 ! compute the carbon -carbon resonance integral using

! the Whitehead and Lo formula

!

! g14 = 1.0d0 / sqrt (4.0d0*rijsq+g11sq)

! hcij = 1.5d0*(bebond -eebond) - 0.375 d0*g11

391 ! & + (5.0d0/12.0 d0)*g12 - g14 /24.0 d0

!

! if either atom is non -carbon , then factor the resonance

! integral by overlap ratio and ionization potential ratio

!

396 ! if (iatn.ne.6 .or. jatn.ne.6) then

! call overlap (iatn ,jatn ,rij ,ovlap)

! call overlap (6,6,rij ,covlap)

! hcij = hcij * (ovlap/covlap)

! iionize = ip(i)

401 ! if (qorb(iorb) .ne. 1.0d0) then

! if (iatn .eq. 7) iionize = 0.595 d0 * iionize

! if (iatn .eq. 8) iionize = 0.525 d0 * iionize

! if (iatn .eq. 16) iionize = 0.89d0 * iionize

! end if

406 ! jionize = ip(j)

! if (qorb(jorb) .ne. 1.0d0) then

! if (jatn .eq. 7) jionize = 0.595 d0 * jionize

! if (jatn .eq. 8) jionize = 0.525 d0 * jionize

! if (jatn .eq. 16) jionize = 0.89d0 * jionize

411 ! end if

! hcij = hcij * (iionize+jionize )/(2.0 d0*cionize)

! end if

!

! set symmetric elements to the same value

416 !
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! hc(i,j) = hcij

! hc(j,i) = hcij

! end do

! end do

421

!-----Test Code 11.04.16--------------------------------------

! Check if a particular pair is bonded. If so, do hc calcs

! as normal. If not , apply the calculation and scale it

426 ! by Yukawa.

!-------------------------------------------------------------

! do k = 1, nbpi

! i = ibpi(2,k)

! j = ibpi(3,k)

431 do i = 1, norbit -1

do j = i+1, norbit

iorb = iorbit(i)

jorb = iorbit(j)

iatn = atomic(iorb)

436 jatn = atomic(jorb)

xij = x(iorb) - x(jorb)

yij = y(iorb) - y(jorb)

zij = z(iorb) - z(jorb)

rij = sqrt(xij **2 + yij**2 + zij **2)

441 rijsq = rij**2 / bohr **2

g11 = 0.5d0 * (gamma(i,i)+ gamma(j,j))

g11sq = 1.0d0 / g11**2

g12 = gamma(i,j)

!

446 ! compute the bond energy using a Morse potential

!
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erij = aeth * (ble -rij)

brij = abnz * (blb -rij)

eebond = (2.0d0*exp(erij)-exp (2.0d0*erij)) * ebe / hartree

451 bebond = (2.0d0*exp(brij)-exp (2.0d0*brij)) * ebb / hartree

!

! compute the carbon -carbon resonance integral using

! the Whitehead and Lo formula

!

456 g14 = 1.0d0 / sqrt (4.0d0*rijsq+g11sq)

hcij = 1.5d0*(bebond -eebond) - 0.375d0*g11

& + (5.0d0/12.0 d0)*g12 - g14 /24.0 d0

!

! if either atom is non -carbon , then factor the resonance

461 ! integral by overlap ratio and ionization potential ratio

!

if (iatn.ne.6 .or. jatn.ne.6) then

call overlap (iatn ,jatn ,rij ,ovlap)

call overlap (6,6,rij ,covlap)

466 hcij = hcij * (ovlap/covlap)

iionize = ip(i)

if (qorb(iorb) .ne. 1.0d0) then

if (iatn .eq. 7) iionize = 0.595d0 * iionize

if (iatn .eq. 8) iionize = 0.525d0 * iionize

471 if (iatn .eq. 16) iionize = 0.89d0 * iionize

end if

jionize = ip(j)

if (qorb(jorb) .ne. 1.0d0) then

if (jatn .eq. 7) jionize = 0.595d0 * jionize

476 if (jatn .eq. 8) jionize = 0.525d0 * jionize

if (jatn .eq. 16) jionize = 0.89d0 * jionize

end if

119



hcij = hcij * (iionize+jionize )/(2.0 d0*cionize)

end if

481 !

! See if this pair of orbitals is bonded.

!

bonded = .false.

do k=1, nbpi

486 iorb = ibpi(2,k)

jorb = ibpi(3,k)

bonded = (iorb.eq.i .and. jorb.eq.j) .or. bonded

end do

if(.not.bonded) then

491 hcij = hcij*(exp(-1.0d0*rij/tdhfcr ))/ rij

900 format (2i3 ,L5 ,E12.5)

end if

!-------------------------------------------------

!

496 ! set symmetric elements to the same value

!

hc(i,j) = hcij

hc(j,i) = hcij

end do

501 end do

!-------------------------------------------------------------

!

506 ! construct an initial guess to the Fock matrix

!

do i = 1, norbit

do j = 1, norbit
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fock(j,i) = hc(j,i)

511 end do

end do

do i = 1, norbit

fock(i,i) = 0.5d0 * ip(i)

end do

516 !

! make the SCF -MO computation; do it twice , for a planar analog

! of the actual system and for the actual (nonplanar) system

!

!-----Test Code 31-Mar -18-----------------------------------

521 ! We’re looking at convergence issues with deviant parameter

! sets. Print out iteration number , energy , and delta

testout = 99

open(unit=testout ,file=’SCF.out’)

526 do while (mode.eq.’PLANAR ’ .or. mode.eq.’NONPLN ’)

if (mode .eq. ’NONPLN ’) then

call fulltilt (povlap)

! do k = 1, nbpi

! i = ibpi(2,k)

531 ! j = ibpi(3,k)

do i = 1, norbit -1

do j = i+1, norbit

hc(i,j) = hc(i,j) * povlap(i,j)

hc(j,i) = hc(i,j)

536 end do

end do

end if

!

! perform SCF iterations until convergence is reached; diagonalize
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541 ! the Fock matrix "f" to get the MOs , then use MOs to form the

! next "f" matrix assuming zero differential overlap except for

! one -center exchange repulsions

!

546 !-----Test Code 31-Mar -18----------------------------------------

write(testout ,*) mode

write(testout ,*) ’Iter   Energy     Delta ’

910 format(I4 ,E12.5,F17.5)

!----------------------------------------------------------------

551

iter = 0

delta = 2.0d0 * converge

do while (delta.gt.converge .and. iter.lt.maxiter)

iter = iter + 1

556 call jacobi (norbit ,fock ,en ,v)

do i = 1, norbit

do j = i, norbit

s1 = 0.0d0

s2 = 0.0d0

561 gij = gamma(i,j)

do k = 1, nfill

s2 = s2 - v(i,k)*v(j,k)*gij

if (i .eq. j) then

do m = 1, norbit

566 s1 = s1 + 2.0d0*gamma(i,m)*v(m,k)**2

end do

end if

end do

fock(i,j) = s1 + s2 + hc(i,j)

571 fock(j,i) = fock(i,j)
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end do

end do

!

! calculate the ground state energy , where "xi" sums the

576 ! molecular core integrals , "xj" sums the molecular coulomb

! repulsion integrals , "xk" sums the molecular exchange

! repulsion integrals , and "xg" sums the nuclear repulsion

!

xi = 0.0d0

581 xj = 0.0d0

xk = 0.0d0

xg = 0.0d0

do i = 1, nfill

do j = 1, norbit

586 vij = v(j,i)

do k = 1, norbit

vik = v(k,i)

gjk = gamma(j,k)

xi = xi + 2.0d0*vij*vik*hc(j,k)

591 do m = 1, nfill

vmj = v(j,m)

vmk = v(k,m)

xj = xj + 2.0d0*vij*vij*vmk*vmk*gjk

xk = xk - vij*vmj*vik*vmk*gjk

596 end do

end do

end do

end do

do i = 1, norbit -1

601 iorb = iorbit(i)

qi = qorb(iorb)
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do j = i+1, norbit

jorb = iorbit(j)

xg = xg + qi*qorb(jorb)*gamma(i,j)

606 end do

end do

total = xi + xj + xk + xg

if (iter .ne. 1) delta = abs(total -totold)

totold = total

611 !-----Test Code 31-Mar -18------------------------------------

write(testout ,910) iter ,total ,delta

!------------------------------------------------------------

end do

616 !

! print warning if SCF -MO iteration did not converge

!

if (delta .gt. converge) then

write (iout ,10)

621 10 format (’ PISCF  --  The SCF Molecular Orbitals have’,

& ’ Failed to Converge ’)

! call fatal

end if

!

626 ! calculate electron densities from filled MO’s

!

do i = 1, norbit

do j = 1, norbit

ed(i,j) = 0.0d0

631 do k = 1, nfill

ed(i,j) = ed(i,j) + 2.0d0*v(i,k)*v(j,k)

end do
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end do

end do

636

!

! print out results for the SCF computation

!

if (verbose) then

641 if (mode .eq. ’PLANAR ’) then

write (iout ,20)

20 format (/,’ SCF -MO Calculation for Planar System :’)

else

write (iout ,30)

646 30 format (/,’ SCF -MO Calculation for Non -Planar ’,

& ’ System :’)

end if

write (iout ,40) total ,norbit ,delta ,iter

40 format (/,’ Total Energy ’ ,11x,f12.4,

651 & /,’ Number of Orbitals ’,5x,i12 ,

& /,’ Convergence ’ ,12x,d12.4,

& /,’ Iterations ’ ,13x,i12)

write (iout ,50) xi,xj,xk,xg

50 format (/,’ Core Integrals ’,9x,f12.4,

656 & /,’ Coulomb Repulsion ’,6x,f12.4,

& /,’ Exchange Repulsion ’,5x,f12.4,

& /,’ Nuclear Repulsion ’,6x,f12.4)

write (iout ,60)

60 format (/,’ Orbital Energies ’)

661 write (iout ,70) (en(i),i=1,norbit)

70 format (8f9.4)

write (iout ,80)

80 format (/,’ MolecularOrbitals ’) ! Intentionally removed
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! space for easier grep ’ing

666 do i = 1, norbit

write (iout ,90) (v(i,j),j=1,norbit)

90 format (8f9.4)

end do

write (iout ,100)

671 100 format (/,’ Fock Matrix ’)

do i = 1, norbit

write (iout ,110) (fock(i,j),j=1,norbit)

110 format (8f9.4)

end do

676 write (iout ,120)

120 format (/,’ Density Matrix ’)

do i = 1, norbit

write (iout ,130) (ed(i,j),j=1,norbit)

130 format (8f9.4)

681 end do

write (iout ,140)

140 format (/,’ H-Core Matrix ’)

do i = 1, norbit

write (iout ,150) (hc(i,j),j=1,norbit)

686 150 format (8f9.4)

end do

write (iout ,160)

160 format (/,’ Gamma Matrix ’)

do i = 1, norbit

691 write (iout ,170) (gamma(i,j),j=1,norbit)

170 format (8f9.4)

end do

end if
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696 !

! now , get the bond orders (compute p and p*b)

!

if (verbose) then

write (iout ,180)

701 180 format (/,’ Pisystem Bond Orders ’)

end if

do k = 1, nbpi

i = ibpi(2,k)

j = ibpi(3,k)

706 p = 0.0d0

do m = 1, nfill

p = p + 2.0d0*v(i,m)*v(j,m)

end do

if (mode .eq. ’PLANAR ’) then

711 pbpl(k) = p * hc(i,j)/ ebeta

else if (mode .eq. ’NONPLN ’) then

pnpl(k) = p

end if

if (verbose) then

716 i = ibnd(1,ibpi(1,k))

j = ibnd(2,ibpi(1,k))

write (iout ,190) i,j,p

190 format (3x,2i6 ,2x,f10 .4)

end if

721 end do

!

! if we have done planar calculation , do the nonplanar;

! when both are complete , alter the pisystem constants

!

726 if (mode .eq. ’PLANAR ’) then
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mode = ’NONPLN ’

else if (mode .eq. ’NONPLN ’) then

mode = ’      ’

end if

731 end do

!-------------------------------------------

close(unit=testout)

!-------------------------------------------

736

!-------------------------------------------------

! If using tdhf , we need to allocate and copy

! over the matrices for propagation

! write(iout ,*) "usetdhf: ", usetdhf

741 if(usetdhf) then

tdhf_nfill = nfill

if(.not.allocated(tdhfhc )) then

allocate (tdhfhc (norbit ,norbit ))

end if

746 if(.not.allocated(tdhfgamma )) then

allocate (tdhfgamma(norbit ,norbit ))

end if

if(useurhf) then

751 if(.not.allocated(tdhfeda )) then

allocate (tdhfeda(norbit ,norbit ))

end if

if(.not.allocated(tdhfedb )) then

allocate (tdhfedb(norbit ,norbit ))

756 end if

if(.not.allocated(tdhffocka )) then
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allocate (tdhffocka(norbit ,norbit ))

end if

if(.not.allocated(tdhffockb )) then

761 allocate (tdhffockb(norbit ,norbit ))

end if

else

if(.not.allocated(tdhffock )) then

allocate(tdhffock(norbit ,norbit ))

766 end if

if(.not.allocated(tdhfed )) then

allocate(tdhfed(norbit ,norbit ))

end if

end if

771

do i=1,norbit

do j=1,norbit

tdhfhc(i,j) = hc(i,j)

tdhfgamma(i,j) = gamma(i,j)

776

if(useurhf) then

tdhfeda(i,j) = ed(i,j)*0.5d0

tdhfedb(i,j) = ed(i,j)*0.5d0

tdhffocka(i,j) = fock(i,j)

781 tdhffockb(i,j) = fock(i,j)

else

tdhfed(i,j) = ed(i,j)

tdhffock(i,j) = fock(i,j)

end if

786 end do

end do

end if
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!-------------------------------------------------

! If using CI theory , we need to allocate and

791 ! copy over matrices: {gamma ,v,en} to use

if(usesinglet.or.usetriplet) then

!----------------------------------------------------------

if(usetriplet) then

write(iout ,*) ’Sorry , CI-triplets not available right now.’

796 call fatal

end if

!----------------------------------------------------------

write(ciout ,*) "Allocating CI matrices"

if(.not.allocated(ci_gamma )) allocate (ci_gamma(norbit ,norbit ))

801 if(.not.allocated(ci_v)) allocate (ci_v(norbit ,norbit ))

if(.not.allocated(ci_en)) allocate (ci_en(norbit ))

if(.not.allocated(ci_ed)) allocate (ci_ed(norbit ,norbit ))

if(.not.allocated(ci_hc)) allocate (ci_hc(norbit ,norbit ))

806 ci_nfill = nfill

write(ciout ,*) "Populating CI matrices"

do i=1,norbit

ci_en(i) = en(i)

do j=1,norbit

811 ci_v(i,j) = v(i,j)

ci_gamma(i,j) = gamma(i,j)

ci_ed(i,j) = ed(i,j)

ci_hc(i,j) = hc(i,j)

end do

816 end do

write(ciout ,*) ’’

end if

!-------------------------------------------------
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821 !

! perform deallocation of some local arrays

!

deallocate (povlap)

deallocate (en)

826 deallocate (ip)

deallocate (fock)

deallocate (hc)

deallocate (v)

deallocate (gamma)

831 deallocate (ed)

return

end

836 !

!

! ###############################################################

! ## ##

! ## subroutine fulltilt -- direction cosines for pisystem ##

841 ! ## ##

! ###############################################################

!

!

! "fulltilt" calculates for each pibond the ratio of the

846 ! actual p-orbital overlap integral to the ideal overlap

! if the same orbitals were perfectly parallel

!

! performs the exact same calculation as PiTilt , but applies it

! for all pi-atom pairs.
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851 !

!

subroutine fulltilt (povlap)

use sizes

use atomid

856 use atoms

use couple

use piorbs

implicit none

integer i,j,k,m

861 integer iorb ,jorb

integer list (8)

real*8 ideal ,cosine ,rnorm

real*8 xij ,yij ,zij ,rij

real*8 a1,b1,c1,a2,b2 ,c2

866 real*8 x2,y2,z2,x3,y3 ,z3

real*8 xr(8),yr(8),zr(8)

real*8 povlap(norbit ,norbit)

!

!

871 ! planes defining each p-orbital are in "piperp "; transform

! coordinates of "iorb", "jorb" and their associated planes

! to put "iorb" at origin and "jorb" along the x-axis

!

! do k = 1, nbpi

876 ! i = ibpi(2,k)

! j = ibpi(3,k)

do i=1, norbit -1

do j=i+1, norbit

iorb = iorbit(i)

881 jorb = iorbit(j)
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list (1) = iorb

list (2) = jorb

do m = 1, 3

list(m+2) = piperp(m,iorb)

886 list(m+5) = piperp(m,jorb)

end do

call pimove (list ,xr ,yr ,zr)

!

! check for sp-hybridized carbon in current bond;

891 ! assume perfect overlap for any such pibond

!

if (( atomic(iorb).eq.6 .and. n12(iorb).eq.2) .or.

& (atomic(jorb).eq.6 .and. n12(jorb).eq.2)) then

povlap(i,j) = 1.0d0

896 !

! find and normalize a vector parallel to first p-orbital

!

else

x2 = xr(4) - xr(3)

901 y2 = yr(4) - yr(3)

z2 = zr(4) - zr(3)

x3 = xr(5) - xr(3)

y3 = yr(5) - yr(3)

z3 = zr(5) - zr(3)

906 a1 = y2*z3 - y3*z2

b1 = x3*z2 - x2*z3

c1 = x2*y3 - x3*y2

rnorm = sqrt(a1*a1+b1*b1+c1*c1)

a1 = a1 / rnorm

911 b1 = b1 / rnorm

c1 = c1 / rnorm
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!

! now find vector parallel to the second p-orbital ,

! "a2" changes sign to correspond to internuclear axis

916 !

x2 = xr(7) - xr(6)

y2 = yr(7) - yr(6)

z2 = zr(7) - zr(6)

x3 = xr(8) - xr(6)

921 y3 = yr(8) - yr(6)

z3 = zr(8) - zr(6)

a2 = y2*z3 - y3*z2

b2 = x3*z2 - x2*z3

c2 = x2*y3 - x3*y2

926 rnorm = sqrt(a2*a2+b2*b2+c2*c2)

a2 = -a2 / rnorm

b2 = b2 / rnorm

c2 = c2 / rnorm

!

931 ! compute the cosine of the angle between p-orbitals;

! if more than 90 degrees , reverse one of the vectors

!

cosine = a1*a2 + b1*b2 + c1*c2

if (cosine .lt. 0.0d0) then

936 a2 = -a2

b2 = -b2

c2 = -c2

end if

!

941 ! find overlap if the orbitals were perfectly parallel

!

xij = x(iorb) - x(jorb)
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yij = y(iorb) - y(jorb)

zij = z(iorb) - z(jorb)

946 rij = sqrt(xij**2 + yij**2 + zij **2)

call overlap (atomic(iorb),atomic(jorb),rij ,ideal)

!

! set ratio of actual to ideal overlap for current pibond

!

951 povlap(i,j) = ideal*a1*a2 + b1*b2 + c1*c2

end if

end do

end do

return

956 end

A.6 pitdrhf.f

! #########################################################

! ## This code is written by Kush Patel. ##

3 ! ## ##

! ## Prints various matrices and calls the TDHF ##

! ## iterator to update rho according to the ##

! ## equation: ##

! ## ##

8 ! ## (ih)(d rho/dt) = <[F(rho),rho]> = i L rho ##

! ## ##

! #########################################################

subroutine pitdrhf

13 use sizes

use atoms

use atomid
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use files

use iounit

18 use orbits

use piorbs

use bndstr

use units

use tdhfvars

23

implicit none

! pitdhf variables

integer i,j,k,m

28 integer info

complex *16 tau(norbit),work (8* norbit),fockcopy(norbit ,norbit)

real*8 d(norbit),e(norbit -1), p

! variables for reconstructing fock

integer iorb ,jorb

33 integer iatn ,jatn

complex *16 s1 ,s2 ,s3 ,sf4

real*8 hcii , hcij

real*8 brij ,erij

real*8 bebond ,eebond

38 real*8 ebb ,ebe ,abnz ,aeth ,ble ,blb

real*8 xij ,yij ,zij ,rij ,rijsq

real*8 gii ,gij ,g11 ,g11sq ,g12 ,g14

real*8 ovlap ,covlap

real*8 cionize ,iionize ,jionize

43 real*8 ip(norbit)

! variables for population analysis

real*8 Smatrix(norbit ,norbit), pop(norbit)

! variables for iterative output
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integer lext

48 character *7 ext

integer freeunit

logical exist

! variables for total energy calculation

complex *16 energy

53 ! Dipole calculation

real*8 hcom (3)

real*8 ecom (3)

real*8 qii

real*8 dipl (3)

58 !-------Testing -----------

! Seeing if original method of calculating energy

! results in regular fluctuations

complex *16 xi ,xj ,xk ,xg ,xcor

complex *16 pii ,pjj ,pij

63 !-------------------------

! Electron current

real*8 currax , curray , curraz

real*8 currbx , currby , currbz

real*8 cc1 ,cc2 ,cc3

68

300 format (2E17.6, 3X)

301 format (8E16.5)

! open an output file

73 outiter = outiter + 1

printq = mod(outiter ,outfreq ).eq.0

printq = printq.or.( outiter.eq.1)

lext = 6

if(printq) then
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78 call numeral(outiter ,ext ,lext)

tdhfout = freeunit ()

inquire(file=filename //’.tdhf.’//ext (1: lext),exist=exist)

if(exist) then

open(unit=tdhfout ,

83 & file=filename (1: leng )//’.tdhf.’//ext(1: lext),status=’old’)

rewind(unit=tdhfout)

else

open(unit=tdhfout ,

& file=filename (1: leng )//’.tdhf.’//ext(1: lext),status=’new’)

88 end if

309 format(A18 ,E16.5)

write(tdhfout ,*) ’## Build -Date 20-Mar -18 ##’

write(tdhfout ,*) ’## Begin piTDHF iteration ##’

93 write(tdhfout ,*) ’’

write(tdhfout ,309) ’ Coupling radius: ’, tdhfcr

write(tdhfout ,309) ’ Time Step:       ’, tdhfdt

write(tdhfout ,*) ’’

end if

98

!----------------------------------------------------------

! Following code develops the gamma matrix as well

! as the hc matrix. These are the various integrals

! and the Hatree Core matrix

103 ! Taken straight from the piscf subroutine

! of picalc.f

!----------------------------------------------------------

! initialize some constants and parameters

cionize = -11.16d0 / evolt

108
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! set the bond energies , alpha values and ideal bond length

! parameter for carbon -carbon pibond type parameters

ebe = 129.37 d0

ebb = 117.58 d0

113 aeth = 2.309 d0

abnz = 2.142 d0

ble = 1.338d0

blb = 1.397d0

118 ! assign empirical one -center Coulomb integrals , and

! first or second ionization potential depending on

! whether the orbital contribures one or two electrons

do i = 1, norbit

iorb = iorbit(i)

123 tdhfgamma(i,i) = emorb(iorb)

ip(i) = worb(iorb) + (1.0d0 -qorb(iorb ))* emorb(iorb)

end do

! calculate two -center repulsion integrals

128 ! according to Ohno ’s semi -empirical formula

do i = 1, norbit

iorb = iorbit(i)

gii = tdhfgamma(i,i)

do j = i+1, norbit

133 jorb = iorbit(j)

g11 = 0.5d0 * (gii+tdhfgamma(j,j))

g11sq = 1.0d0 / g11**2

xij = x(iorb) - x(jorb)

yij = y(iorb) - y(jorb)

138 zij = z(iorb) - z(jorb)

rijsq = (xij**2 + yij**2 + zij **2) / bohr **2
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g12 = 1.0d0 / sqrt(rijsq + g11sq)

tdhfgamma(i,j) = g12

tdhfgamma(j,i) = g12

143 end do

end do

! the first term in the sum to find alpha is the first

! or second ionization potential , then the two -center

148 ! repulsion integrals are added

do i = 1, norbit

hcii = ip(i)

do j = 1, norbit

if(i.ne.j) then

153 jorb = iorbit(j)

hcii = hcii - qorb(jorb)* tdhfgamma(i,j)

end if

end do

tdhfhc(i,i) = hcii

158 end do

! get two -center repulsion integrals via Ohno ’s formula

! do k = 1, nbpi

! i = ibpi(2,k)

163 ! j = ibpi(3,k)

do i = 1, norbit -1

do j = i+1, norbit

iorb = iorbit(i)

jorb = iorbit(j)

168 iatn = atomic(iorb)

jatn = atomic(jorb)

xij = x(iorb) - x(jorb)
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yij = y(iorb) - y(jorb)

zij = z(iorb) - z(jorb)

173 rij = sqrt(xij **2 + yij**2 + zij **2)

rijsq = rij**2 / bohr **2

g11 = 0.5d0 * (tdhfgamma(i,i) + tdhfgamma(j,j))

g11sq = 1.0d0 / g11**2

g12 = tdhfgamma(i,j)

178

! compute the bond energy using a Morse potential

erij = aeth * (ble -rij)

brij = abnz * (blb -rij)

eebond = (2.0d0*exp(erij)-exp (2.0d0*erij)) * ebe / hartree

183 bebond = (2.0d0*exp(brij)-exp (2.0d0*brij)) * ebb / hartree

! compute the carbon -carbon resonance integral using

! the Whitehead and Lo formula

g14 = 1.0d0 / sqrt (4.0d0*rijsq+g11sq)

188 hcij = 1.5d0*(bebond -eebond) - 0.375d0*g11

& + (5.0d0/12.0 d0)*g12 - g14 /24.0 d0

! if either atom is non -carbon , then factor the resonance

! integral by overlap ratio and ionization potential ratio

193 if(iatn.ne.6 .or. jatn.ne.6) then

call overlap(iatn ,jatn ,rij ,ovlap)

call overlap (6,6,rij ,covlap)

hcij = hcij * (ovlap/covlap)

iionize = ip(i)

198 if(qorb(iorb) .ne. 1.0d0) then

if(iatn .eq. 7) iionize = 0.595d0 * iionize

if(iatn .eq. 8) iionize = 0.525d0 * iionize

if(iatn .eq. 16) iionize = 0.890d0 * iionize
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end if

203 jionize = ip(j)

if(qorb(jorb) .ne. 1.0d0) then

if(jatn .eq. 7) jionize = 0.595d0 * jionize

if(jatn .eq. 8) jionize = 0.525d0 * jionize

if(jatn .eq. 16) jionize = 0.890d0 * jionize

208 end if

hcij = hcij * (iionize+jionize )/(2.0 d0*cionize)

end if

!-----Test Code 11.04.16--------------------------------------

! This code is the pitdhf copy of the similar thing in fullpi.f.

213 ! Applies Yukowa scaling to hcij terms of nonbonded atoms

!-------------------------------------------------------------

bonded = .false.

do k=1, nbpi

iorb = ibpi(2,k)

218 jorb = ibpi(3,k)

bonded = (iorb.eq.i .and. jorb.eq.j) .or. bonded

end do

if(.not.bonded) then

hcij = hcij*(exp(-1.0d0*rij/tdhfcr ))/ rij

223 end if

!-------------------------------------------------------------

! set symmetric elements to the same value

tdhfhc(i,j) = hcij

228 tdhfhc(j,i) = hcij

end do

end do

c! reconstruct the Fock matrix
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233 ! do i=1, norbit

! do j=1, norbit

! gij = tdhfgamma(i,j)

! s1 = (0.0d0 ,0.0d0)

! s2 = -1.0d0*tdhfed(i,j)*gij

238 c

! if(i.eq.j) then

! do k=1, norbit

c! s1 = s1 + 2.0d0*tdhfgamma(i,k)* tdhfed(k,k) original

! s1 = s1 + 1.0d0*tdhfgamma(i,k)* tdhfed(k,k)

243 ! end do

! end if

! tdhffock(i,j) = tdhfhc(i,j) + s1 + s2

! end do

! end do

248

! reconstruct the Fock Matrix

do i=1, norbit

do j=1, norbit

s1 = 0.0d0

253 if(i.eq.j) then

do k=1,norbit

s1 = s1 + tdhfed(k,k)* tdhfgamma(i,k)

end do

end if

258 s2 = 0.5d0*tdhfed(i,j)* tdhfgamma(i,j)

tdhffock(i,j) = tdhfhc(i,j) + s1 - s2

end do

end do

263
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! diagonalize the fock matrices to obtain eigenvalues

! for the superoperator

c

268 c

! print density matrices

c

if(printq) then

write(tdhfout ,*) ’TDHF Electron Density Matrix ’

273 do i=1, norbit

do j=1, norbit

write(tdhfout ,300, advance=’no’) tdhfed(i,j)

end do

write(tdhfout ,*) ’’

278 end do

write(tdhfout ,*) ’’

! Print the diagonal elements

307 format (2E20.9,3X)

283 write(tdhfout ,*) ’TDHF Density Matrix Diagonal ’

s1 = (0.0d0 ,0.0d0)

do j=1, norbit

s1 = s1 + tdhfed(j,j)

if(printq) write(tdhfout ,307) tdhfed(j,j)

288 end do

302 format(A12 ,2F17.6)

write(tdhfout ,*) ’’

write(tdhfout ,302) ’Trace: ’, s1

293 write(tdhfout ,*) ’’

end if
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c

! copy fock matrix to tdhfcopy

298 c

if(printq) write(tdhfout ,*) ’Fock matrix ’

do i=1, norbit

do j=1, norbit

fockcopy(i,j) = tdhffock(i,j)

303 if(printq) then

write(tdhfout ,300, advance=’no’) tdhffock(i,j)

end if

end do

if(printq) write(tdhfout ,*) ’’

308 end do

if(printq) write(tdhfout ,*) ’’

c

! occasionally recalculate the eigenvalues

313 c

if(mod(outiter ,100). eq.1 .or. res1) then

res1 = .false.

if(tdhfdebug) then

write(debugout ,*) ’Recalculating Super Eigenvalues ’

318 end if

c

! tridiagonalize

!

call zhetrd(’U’,norbit ,fockcopy ,norbit ,d,e,tau ,

323 & work ,8*norbit ,info)

if(tdhfdebug) then

write(debugout ,*) ’Info: ’, info
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write(debugout ,*) ’’

write(debugout ,*) ’Post Tridiagonal Fock’

328 do i=1,norbit

do j=1, norbit

write(debugout ,300, advance=’no’) tdhffock(i,j)

end do

write(debugout ,*)’’

333 end do

write(debugout ,*)’’

write(debugout ,*) ’tri -diagonal matrix ’

write(debugout ,*) ’diagonal     superdiagonal ’

338 do i=1, norbit

write(debugout ,301, advance=’no’) d(i)

if(i.ne.norbit) then

write(debugout ,301, advance=’no’) e(i)

end if

343 write(debugout ,*) ’’

end do

write(debugout ,*) ’’

end if

348 ! get the eigenvalues

superevmax = 0.0d0

superevmin = 0.0d0

call zsteqr(’N’,norbit ,d,e,’null’,norbit ,’null’,info)

353

if(printq) then

write(tdhfout ,*) ’Fock Eigenvalues: ’

write(tdhfout ,301) (d(i),i=1,norbit)
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write(tdhfout ,*)’’

358 end if

superevmax = max(superevmax ,d(norbit)-d(1))

superevmin = min(superevmin ,d(1)-d(norbit ))

if(printq) then

363 write(tdhfout ,*) ’Supereigenvalues: {’, superevmin ,’, ’,

& superevmax , ’}’

write(tdhfout ,*) ’’

end if

superevmax = 1.5d0*superevmax

368 superevmin = 1.5d0*superevmin

end if

c

373 ! calculate total electronic energy

c

if(printq) then

energy = (0.0d0 ,0.0d0)

do i=1, norbit

378 do j=1, norbit

pij = tdhfed(i,j)

energy = energy + 0.5d0*pij*( tdhfhc(j,i)+ tdhffock(j,i))

end do

end do

383 305 format(A25 ,2E16.5)

write(tdhfout ,305) ’Total Electronic Energy: ’, energy

write(tdhfout ,*) ’’

end if
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388 if(probcurr .and. printq) then

write(tdhfout ,*) ’Probability Current ’

write(tdhfout ,*) ’ qx   qy    qz    ax     ay   az bx by bz’

do i=1 , norbit

iorb = iorbit(i)

393 currax = 0.0d0

curray = 0.0d0

curraz = 0.0d0

do j=1, norbit

jorb = iorbit(j)

398 cc1 = 2.0d0*tdhfhc(j,i)* aimag(tdhfed(j,i))

currax = currax + cc1* (x(jorb)-x(iorb))

curray = curray + cc1* (y(jorb)-y(iorb))

curraz = curraz + cc1* (z(jorb)-z(iorb))

end do

403 306 format (9E16.5)

write(tdhfout ,306) x(iorb),y(iorb),z(iorb),currax ,curray ,

& curraz ,currbx ,currby ,currbz

end do

end if

408

! call tdhfiterate and update rho

call tdhfiterate(tdhfed ,tdhffock ,superevmax ,

& superevmin ,tdhfdt ,norbit ,9)

413 !-----Test Code 13 Jan 18-----------------------------------

! Test fock and density matrices for Hermiteness

! s1 = 0.0d0 ! Density

! s2 = 0.0d0 ! Fock

! do i=1,norbit

418 ! do j=1,norbit
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! s3 = abs(realpart( tdhfed(i,j) - tdhfed(j,i) ))

! s3 = abs(aimag( tdhfed(i,j) + tdhfed(j,i) ))

! s1 = s1 + s3 + s4

! s3 = abs(realpart( tdhffock(i,j) - tdhffock(j,i) ))

423 ! s4 = abs(aimag( tdhffock(i,j) + tdhffock(j,i) ))

! s2 = s2 + s3 + s4

! end do

! end do

! 308 format(A4 ,2X,2E16.5)

428 ! write(tdhfout ,*) ’Hermiteness: ’

! write(tdhfout ,308) ’Dens ’,s1

! write(tdhfout ,308) ’Fock ’,s2

! write(tdhfout ,*) ’’

!-----------------------------------------------------------

433

! Impose zero for imaginary parts on diagonal

do i=1,norbit

tdhfed(i,i) = realpart(tdhfed(i,i))

end do

438

! update the nonplanar pi bond orders (pnpl)

! this is the same code that ’s at the end of picalc

443 401 format (5i5 ,2f12.2)

402 format (3A5 ,2A15)

if(printq) write(tdhfout ,402) ’Bond’,’i’,’j’,’old’,’new’

do k=1, nbpi

i = ibpi(2,k)

448 j = ibpi(3,k)

p = pnpl(k)
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! take just the real part of electron density

! pnpl(k) = realpart( tdhfed(i,j) )

453 ! take the real part of the electron density

! pnpl(k) = zabs( tdhfeda(i,j) + tdhfedb(i,j))

pnpl(k) = realpart( tdhfed(i,j) )

pbpl(k) = pnpl(k) * tdhfhc(i,j)/( -0.0757d0)

458 i = ibnd(1,ibpi(1,k))

j = ibnd(2,ibpi(1,k))

if(printq)

& write(tdhfout ,401) k,ibpi(2,k),ibpi(3,k),i,j,p,pnpl(k)

end do

463 if(printq) write(tdhfout ,*)’’

!-------------------------

if(printq) then

xi = 0.0d0

468 xj = 0.0d0

xk = 0.0d0

xg = 0.0d0

xcor = 0.0d0

473 write(tdhfout ,*) ’Original Type Energy Calculation ’

do i=1, norbit

do j=1, norbit

pii = tdhfed(i,i)

pjj = tdhfed(j,j)

478 pij = tdhfed(i,j)

xi = xi + pij*tdhfhc(i,j)

xj = xj + 0.50d0*pij*tdhfgamma(i,j)
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xk = xk - 0.25d0*pij*tdhfgamma(i,j)

xcor = xcor - 0.5d0*(pij*pij - pii*pjj)* tdhfgamma(i,j)

483 end do

end do

do i=1, norbit -1

do j=i+1, norbit

xg = xg + tdhfgamma(i,j)

488 end do

end do

write(tdhfout ,*) ’OEnergy:  ’, xi+xj+xk+xg+xcor

write(tdhfout ,*) ’Core:     ’, xi

write(tdhfout ,*) ’Coulomb:  ’, xj

493 write(tdhfout ,*) ’Exchange: ’, xk

write(tdhfout ,*) ’Nuclear:  ’, xg

write(tdhfout ,*) ’Xcorrect: ’, xcor

!-------------------------

498 write(tdhfout ,*)

write(tdhfout ,*)’## End of piTDHF iteration ##’

write(tdhfout ,*)’’

write(tdhfout ,*)’’

503 ! Close the output file

flush(tdhfout)

close(unit=tdhfout)

! Write restart information

508 call writerestart ()

end if
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513 end subroutine

518

! ##############################################################

! ## This code is written by Kush Patel based off of the ##

! ## methods described in the following reference ##

523 ! ## ##

! ## An accurate and efficient scheme for propagating the ##

! ## time dependent Schrodinger equation ##

! ## H. Tal -Ezer and R. Kosloff ##

! ## The Journal of Chemical Physics ##

528 ! ## 81, 3967 (1984); doi: 10.1063/1.448136 ##

! ##############################################################

subroutine tdhfiterate(rho0 ,oper ,emax ,emin ,dt,m,Np)

! rho0 - complex *16, input/output , matrix size m*m

533 ! Density operator

! input is the state at time t

! output is the state at time t+dt

!

! oper - complex *16, input , matrix size m*m

538 ! Fock Matrix

! operator Exp(-i O dt)

!

! emax - real*8, input

! largest eigenvalue of oper
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543 !

! emin - real*8, input

! smallest eigenvalue of oper

!

! dt - real*8, input

548 ! time step

!

! m - integer , input

! dimension of rho0 and oper

!

553 ! Np - integer , input

! Chebyshev polynomial expansion limit

! code will expand to polynomials J_0 to J_Np

use sizes

558 use tdhfvars

implicit none

integer i,j,k,m,Np ,c(Np+1)

563 real*8 dt,emin ,emax ,R,G,hToEvPS ,dta

complex *16 ii ,sum ,a(Np+1)

complex *16 oper(m,m),X(m,m)

complex *16 phi(Np+1,m,m),rho0(m,m)

complex *16 FR(m,m),RF(m,m),temp(m,m)

568 real*8 v1,v2

dta = dt *41341.48 d0 ! dt in atomic units

! tdhfdebug = .false.

573 ! Debugging prints
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111 format (2E17.6,3X)

if(printq.and.tdhfdebug) then

write(tdhfout ,*) ’##### TDHFITERATE START ##### ’

write(tdhfout ,*) ’emax = ’, emax

578 write(tdhfout ,*) ’emin = ’, emin

write(tdhfout ,*) ’dt   = ’, dt

write(tdhfout ,*) ’dta  = ’, dta

write(tdhfout ,*) ’m    = ’, m

write(tdhfout ,*) ’Np   = ’, Np

583 write(tdhfout ,*) "operator"

do i=1, m

do j=1, m

write(tdhfout ,111, advance=’no’) oper(i,j)

end do

588 write(tdhfout ,*) ’’

end do

write(tdhfout ,*) ’rho0 in’

do i=1, m

do j=1, m

593 write(tdhfout ,111, advance=’no’) rho0(i,j)

end do

write(tdhfout ,*) ’’

end do

end if

598

! initialize some values

ii = (0.d0 ,1.d0)

R = 0.5* dta*(emax -emin)

G = dta*emin

603

! define X matrix
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! write(tdhfout ,*) ’X(i,j)’

do i=1,m

do j=1,m

608 X(i,j)= -1*ii*dta*oper(i,j)/R

! write(tdhfout ,111, advance=’no ’) X(i,j)

end do

! write(tdhfout ,*) ’’

end do

613 ! write(tdhfout ,*) ’’

! phi is a 3 index array that acts as a temporary

! container for values. Better visualized as a list

! of matrices.

618 ! these values will be summed up

! phi is indexed as:

! phi(expansion_number ,density_matrix_row ,

! density_matrix_column)

!

623 ! the next 2 do loops populate phi(1) and phi(2)

! phi (1)=rho0 , phi (2)=[ oper ,rho]=oper.rho -rho.oper

! note: phi(k) refers to the (k-1)th expansion

! write(tdhfout ,*) ’phi(1,i,j)’

c

628 ! Note: Fortran starts counting indices at 1

! Therefore , index (k) refers to the (k-1)th

! expansion. This is applicable to phi ,a, and c

do i=1,m

633 do j=1,m

phi(1,i,j) = rho0(i,j)

! write(tdhfout ,*,advance=’no ’) phi(1,i,j)
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end do

! write(tdhfout ,*) ’’

638 end do

! write(tdhfout ,*) ’’

! matrix dot product of X and rho0

FR = matmul(X,rho0)

643 RF = matmul(rho0 ,X)

!d do i=1,m

!d do j=1,m

!d print *, FR(i,j)

!d print *, RF(i,j)

648 !d end do

!d print *,""

!d end do

do i=1,m

653 do j=1,m

phi(2,i,j) = FR(i,j)-RF(i,j)

! assign values to temp to be used as phi(k-1)

temp(i,j) = phi(2,i,j)

658 !d print *, phi(2,i,j)

end do

!d print *,""

end do

663 ! C(k) coefficients

! c(0) = 1,

! c(k>1) = 2

c(1)=1
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do k=2,Np+1

668 c(k)=2

!d print *, c(k)

end do

if(printq.and.tdhfdebug) then

write(tdhfout ,*) ’!-coeffs ’

673 do k=1,Np+1

write(tdhfout ,*) c(k)

end do

end if

678 ! use the recursion relation to populate phi

do k=3,Np+1

FR = matmul(X,temp)

RF = matmul(temp ,X)

do i=1,m

683 do j=1,m

phi(k,i,j) = 2*FR(i,j)-2*RF(i,j)+phi(k-2,i,j)

temp(i,j) = phi(k,i,j)

end do

end do

688 end do

if(printq.and.tdhfdebug) then

do k=1,Np+1

write(tdhfout ,’("phi(",i3 ,")") ’) k

do i=1,m

693 do j=1,m

write(tdhfout ,111, advance=’no’) phi(k,i,j)

end do

write(tdhfout ,*) ’’

end do
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698 end do

end if

! populate a(k) integrals

do k=1,Np+1

703 a(k) = CDEXP(ii*(R+G))*c(k)*besjN(k-1,R)

!d print *, a(k)

end do

if(printq.and.tdhfdebug) then

write(tdhfout ,*) ’alpha coeffs ’

708 do k=1,Np+1

write(tdhfout ,111) a(k)

end do

end if

713 ! perform final multiplication , sum up the expansions

! and store values in rho0

do i=1,m

do j=1,m

sum = (0.d0 ,0.d0)

718 do k=1,Np+1

sum = sum + a(k)*phi(k,i,j)

end do

rho0(i,j) = sum

end do

723 !d print *,rho0(i,j)

end do

!-----Test Code 20 Mar 18---------------

! Long -time iterations accrue lots of error and we start

728 ! getting non -Hermitian matrices.
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! Here we’ll just average transposed elements (and make

! sure imaginary sign is preserved ).

do i=1,m

do j=1,m

733 v1 = 0.5d0*( realpart( rho0(i,j)+rho0(j,i) ))

v2 = 0.5d0*( imagpart( rho0(i,j)-rho0(j,i) ))

rho0(i,j) = v1 + ii*v2

rho0(j,i) = v1 - ii*v2

end do

738 end do

if(printq.and.tdhfdebug) then

write(tdhfout ,*) "rho0 out"

743 do i=1, m

do j=1, m

write(tdhfout ,111, advance=’no’) rho0(i,j)

end do

write(tdhfout ,*) ’’

748 end do

end if

if(printq.and.tdhfdebug) then

write(tdhfout ,*) "##### TDHFITERATE END #####"

753 write(tdhfout ,*) ’’

write(tdhfout ,*) ’’

write(tdhfout ,*) ’’

end if

758

159



return

end

763

! ##############################################################

! ## ##

! ## This code is written by Kush Patel based off of the ##

768 ! ## methods described in the following reference ##

! ## ##

! ## Population Analysis (Mulliken , Lowdin) ##

! ## Modern Quantum Chemistry ##

! ## Attila Szabo , Neil S. Ostlund ##

773 ! ## ##

! ##############################################################

subroutine popanal(ml,N,rho ,S,pop)

778 ! ml - character , input , length 1

! ’M’ for Mulliken Poplation Analysis

! ’L’ for Lowdin Population Analysis

!

! N - integer , input

783 ! dimension of square matrices rho and S

!

! rho - complex *16, input , matrix size N*N

! Electron Density Matrix

!

788 ! S - real*16, input , matrix size N*N

! Overlap Matrix

!
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! pop - real*16, output , vector size N

! will contain the electron populations on exit

793

use sizes

use tdhfvars

implicit none

798 character *1 ml

integer N,i,j,lwrk ,info

real*8 S(N,N), pop(N),wrk(N*34), evals(N)

real*8 SevecsT(N,N), Ssqrt(N,N)

complex *16 rho(N,N), rho2(N,N)

803

! Mulliken Population Analysis is most simple.

! P’ = P.S

! Check for this first

if(ml .eq. ’M’) then

808 rho2 = matmul(rho ,S)

do i=1,N

pop(i) = zabs(rho2(i,i))

end do

return

813 end if

!--------------------------------------------------------------

! At this point , Mulliken was not chosen , default to Lowdin

818 ! Diagonalize the overlap matrix to get its Eigensystem

lwrk = 34*N

call dsyev(’V’,’U’,N,S,N,evals ,wrk ,lwrk ,info)

write(tdhfout ,*) ’dsyev called ’
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write(tdhfout ,*) ’info:   ’, info

823 write(tdhfout ,*) ’wrk (1): ’, wrk(1)

write(tdhfout ,*) ’’

401 format(E12.5,’  ’)

write(tdhfout ,*) ’Overlap Eigenvalues ’

828 do i=1, N

write(tdhfout ,401) evals(i)

end do

write(tdhfout ,*) ’’

833 write(tdhfout ,*) ’Overlap Eigenvectors ’

do i=1,N

do j=1,N

write(tdhfout ,401, advance=’no’) S(i,j)

end do

838 write(tdhfout ,*) ’’

end do

write(tdhfout ,*) ’’

! S is now the eigenvector matrix.

843 ! Populate the diagonal elements of Ssqrt with the square roots

! of the eigenvalues. Simultaneously populate SevecsT as the

! transpose of the eigenvector Matrix.

do i=1,N

do j=1,N

848 SevecsT(i,j) = S(j,i)

Ssqrt(i,j) = 0.0d0

end do

Ssqrt(i,i) = sqrt(evals(i))

end do
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853

write(tdhfout ,*) ’Overlap Root Eigenvalues ’

do i=1,N

do j=1,N

write(tdhfout ,401, advance=’no’) Ssqrt(i,j)

858 end do

end do

write(tdhfout ,*) ’’

! Recover the overlap matrix root

863 ! S^(1/2) = V.s^(1/2).V^T

Ssqrt = matmul(Ssqrt ,SevecsT)

Ssqrt = matmul(S,Ssqrt)

write(tdhfout ,*) ’Overlap Root Matrix ’

868 do i=1,N

do j=1,N

write(tdhfout ,401, advance=’no’) Ssqrt(i,j)

end do

write(tdhfout ,*) ’’

873 end do

write(tdhfout ,*) ’’

! Perform final matrix multiplication according to

! Lowdin Population Analysis

878 ! P’ = S^(1/2) . P . S^(1/2)

rho2 = matmul(rho ,Ssqrt)

rho2 = matmul(Ssqrt ,rho2)

do i=1, N

883 pop(i) = zabs(rho2(i,i))
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end do

return

888 end subroutine

893

! ##############################################################

! ## ##

! ## writerestart - subroutine to save information for ##

! ## resuming an old dynamics simulation ##

898 ! ## ##

! ##############################################################

subroutine writerestart

903 use iounit

use orbits

use piorbs

use tdhfvars

implicit none

908

integer rout , freeunit

integer i,j

logical exist

character *20 fname

913

fname = ’restart/restart.data’
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rout = freeunit ()

inquire(file=fname ,exist=exist)

918

if(exist) then

open(unit=rout ,file=fname ,status=’old’)

rewind(rout)

else

923 call system(’mkdir restart ’)

open(unit=rout ,file=fname ,status=’new’)

end if

501 format(A10 ,2X,I8)

928 502 format(A10 ,2X,L1)

write(rout ,501) "Iter: ",outiter

write(rout ,502) "Use URHF: ", useurhf

write(rout ,*) ""

933 503 format (8E17 .6)

if(useurhf) then

write(rout ,*) ’Density Matrix (alpha , RE)’

do i=1,norbit

write(rout ,503) (realpart(tdhfeda(i,j)),j=1,norbit)

938 end do

write(rout ,*) ’Density Matrix (alpha , IM)’

do i=1,norbit

write(rout ,503) (aimag(tdhfeda(i,j)),j=1,norbit)

end do

943

write(rout ,*) ’Density Matrix (beta , RE)’

do i=1,norbit
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write(rout ,503) (realpart(tdhfedb(i,j)),j=1,norbit)

end do

948 write(rout ,*) ’Density Matrix (beta , IM)’

do i=1,norbit

write(rout ,503) (aimag(tdhfedb(i,j)),j=1,norbit)

end do

953 else

write(rout ,*) ’Density Matrix (RE)’

do i=1,norbit

write(rout ,503) (realpart(tdhfed(i,j)),j=1,norbit)

end do

958 write(rout ,*) ’Density Matrix (IM)’

do i=1,norbit

write(rout ,503) (aimag(tdhfed(i,j)),j=1,norbit)

end do

end if

963

flush(rout)

close(unit=rout)

968

end subroutine writerestart

973

! ##############################################################

! ## ##

! ## tdhfloadold - subroutine to load old information ##
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! ## from previous dynamics simulation ##

978 ! ## ##

! ##############################################################

subroutine tdhfload

983 use iounit

use files

use orbits

use piorbs

use tdhfvars

988 implicit none

character *20 fname

character *120 line

993 integer io ,freeunit ,i,j

real*16, allocatable :: temp1(:,:), temp2 (:,:)

complex *16 II

logical exist

998 ! check if *.dyn exists. If not do not resume

fname = filename (1: leng) // ’.dyn’

inquire(file=fname ,exist=exist)

if(.not.exist) then

write(iout ,*) ’ Could not find old dynamics file’

1003 return

end if

II = (0.0d0 ,1.0d0)

fname = "restart/restart.data"
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1008 io=freeunit ()

open(unit=io,file=fname ,action=’read’)

501 format(A10 ,2X,I8)

502 format(A10 ,2X,L1)

1013 read(io ,501) line ,outiter

read(io ,502) line ,useurhf

! if(useurhf) print *, ’Use unrestricted ’

! if(.not.useurhf) print *,’Use restricted ’

1018 read(io ,*) line

allocate(temp1(norbit ,norbit ))

allocate(temp2(norbit ,norbit ))

1023 if(.not.allocated(tdhfhc )) then

allocate (tdhfhc(norbit ,norbit ))

end if

if(.not.allocated(tdhfgamma )) then

allocate (tdhfgamma(norbit ,norbit ))

1028 end if

503 format (8E17 .6)

if(useurhf) then

if(.not.allocated(tdhffocka )) then

1033 allocate(tdhffocka(norbit ,norbit ))

end if

if(.not.allocated(tdhffockb )) then

allocate(tdhffockb(norbit ,norbit ))

end if

1038 if(.not.allocated(tdhfeda )) allocate(tdhfeda(norbit ,norbit ))
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if(.not.allocated(tdhfedb )) allocate(tdhfedb(norbit ,norbit ))

do i=1,norbit

read(io ,503) (temp1(i,j),j=1,norbit)

1043 end do

read(io ,*) line

do i=1,norbit

read(io ,503) (temp2(i,j),j=1,norbit)

end do

1048 do i=1,norbit

do j=1,norbit

tdhfeda(i,j) = temp1(i,j)+II*temp2(i,j)

end do

end do

1053

read(io ,*) line

do i=1,norbit

read(io ,503) (temp1(i,j),j=1,norbit)

end do

1058 read(io ,*) line

do i=1,norbit

read(io ,503) (temp2(i,j),j=1,norbit)

end do

do i=1,norbit

1063 do j=1,norbit

tdhfedb(i,j) = temp1(i,j)+II*temp2(i,j)

end do

end do

else

1068 if(.not.allocated(tdhfed )) allocate(tdhfed (norbit ,norbit ))

if(.not.allocated(tdhffock )) allocate(tdhffock(norbit ,norbit ))
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do i=1,norbit

read(io ,503) (temp1(i,j),j=1,norbit)

1073 end do

read(io ,*) line

do i=1,norbit

read(io ,503) (temp2(i,j),j=1,norbit)

end do

1078 do i=1,norbit

do j=1,norbit

tdhfed(i,j) = temp1(i,j)+II*temp2(i,j)

end do

end do

1083 end if

tdhffirst = .false.

deallocate(temp1)

1088 deallocate(temp2)

close(io)

1093 end subroutine

A.7 pitduhf.f

1 ! #########################################################

! ## This code is written by Kush Patel. ##

! ## ##

! ## Prints various matrices and calls the TDHF ##
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! ## iterator to update rho according to the ##

6 ! ## equation: ##

! ## ##

! ## (ih)(d rho/dt) = <[F(rho),rho]> = i L rho ##

! ## ##

! #########################################################

11

subroutine pitduhf

use sizes

use atoms

use atomid

16 use files

use iounit

use orbits

use piorbs

use bndstr

21 use units

use tdhfvars

implicit none

26 ! pitdhf variables

integer i,j,k,m

integer info

complex *16 tau(norbit),work (8* norbit),fockcopy(norbit ,norbit)

real*8 d(norbit),e(norbit -1), p

31 ! variables for reconstructing fock

integer iorb ,jorb

integer iatn ,jatn

complex *16 s1a ,s2a ,s1b ,s2b

real*8 hcii , hcij
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36 real*8 brij ,erij

real*8 bebond ,eebond

real*8 ebb ,ebe ,abnz ,aeth ,ble ,blb

real*8 xij ,yij ,zij ,rij ,rijsq

real*8 gii ,gij ,g11 ,g11sq ,g12 ,g14

41 real*8 ovlap ,covlap

real*8 cionize ,iionize ,jionize

real*8 ip(norbit)

! variables for population analysis

real*8 Smatrix(norbit ,norbit), pop(norbit)

46 ! variables for iterative output

integer lext

character *7 ext

integer freeunit

logical exist

51 ! variables for total energy calculation

complex *16 energy , paij , pbij

! Dipole calculation

real*8 hcom (3)

real*8 ecom (3)

56 real*8 qii

real*8 dipl (3)

!-------Testing -----------

! Seeing if original method of calculating energy

! results in regular fluctuations

61 complex *8 xi ,xj ,xk ,xg ,xcor

complex *8 pii ,pjj ,pij

!-------------------------

! Electron current

real*8 currax , curray , curraz

66 real*8 currbx , currby , currbz
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real*8 cc1 ,cc2 ,cc3

300 format (2E17.6, 3X)

301 format (8E16.5)

71

! open an output file

outiter = outiter + 1

printq = mod(outiter ,outfreq ).eq.0

76 printq = printq.or.( outiter.eq.1)

lext = 6

if(printq) then

call numeral(outiter ,ext ,lext)

tdhfout = freeunit ()

81 inquire(file=filename //’.tdhf.’//ext (1: lext),exist=exist)

if(exist) then

open(unit=tdhfout ,

& file=filename (1: leng )//’.tdhf.’//ext(1: lext),status=’old’)

rewind(unit=tdhfout)

86 else

open(unit=tdhfout ,

& file=filename (1: leng )//’.tdhf.’//ext(1: lext),status=’new’)

end if

91 309 format(A18 ,E16.5)

write(tdhfout ,*) ’## Begin piTDHF iteration ##’

write(tdhfout ,*) ’’

write(tdhfout ,309) ’ Coupling radius: ’, tdhfcr

write(tdhfout ,309) ’ Time Step:       ’, tdhfdt

96 write(tdhfout ,*) ’’

end if
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!----------------------------------------------------------

! Following code develops the gamma matrix as well

101 ! as the hc matrix. These are the various integrals

! and the Hatree Core matrix

! Taken straight from the piscf subroutine

! of picalc.f

!----------------------------------------------------------

106 ! initialize some constants and parameters

cionize = -11.16d0 / evolt

! set the bond energies , alpha values and ideal bond length

! parameter for carbon -carbon pibond type parameters

111 ebe = 129.37 d0

ebb = 117.58 d0

aeth = 2.309 d0

abnz = 2.142 d0

ble = 1.338d0

116 blb = 1.397d0

! assign empirical one -center Coulomb integrals , and

! first or second ionization potential depending on

! whether the orbital contribures one or two electrons

121 do i = 1, norbit

iorb = iorbit(i)

tdhfgamma(i,i) = emorb(iorb)

ip(i) = worb(iorb) + (1.0d0 -qorb(iorb ))* emorb(iorb)

end do

126

! calculate two -center repulsion integrals

! according to Ohno ’s semi -empirical formula
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do i = 1, norbit

iorb = iorbit(i)

131 gii = tdhfgamma(i,i)

do j = i+1, norbit

jorb = iorbit(j)

g11 = 0.5d0 * (gii+tdhfgamma(j,j))

g11sq = 1.0d0 / g11**2

136 xij = x(iorb) - x(jorb)

yij = y(iorb) - y(jorb)

zij = z(iorb) - z(jorb)

rijsq = (xij**2 + yij**2 + zij **2) / bohr **2

g12 = 1.0d0 / sqrt(rijsq + g11sq)

141 tdhfgamma(i,j) = g12

tdhfgamma(j,i) = g12

end do

end do

146 ! the first term in the sum to find alpha is the first

! or second ionization potential , then the two -center

! repulsion integrals are added

do i = 1, norbit

hcii = ip(i)

151 do j = 1, norbit

if(i.ne.j) then

jorb = iorbit(j)

hcii = hcii - qorb(jorb)* tdhfgamma(i,j)

end if

156 end do

tdhfhc(i,i) = hcii

end do
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! get two -center repulsion integrals via Ohno ’s formula

161 ! do k = 1, nbpi

! i = ibpi(2,k)

! j = ibpi(3,k)

do i = 1, norbit -1

do j = i+1, norbit

166 iorb = iorbit(i)

jorb = iorbit(j)

iatn = atomic(iorb)

jatn = atomic(jorb)

xij = x(iorb) - x(jorb)

171 yij = y(iorb) - y(jorb)

zij = z(iorb) - z(jorb)

rij = sqrt(xij **2 + yij**2 + zij **2)

rijsq = rij**2 / bohr **2

g11 = 0.5d0 * (tdhfgamma(i,i) + tdhfgamma(j,j))

176 g11sq = 1.0d0 / g11**2

g12 = tdhfgamma(i,j)

! compute the bond energy using a Morse potential

erij = aeth * (ble -rij)

181 brij = abnz * (blb -rij)

eebond = (2.0d0*exp(erij)-exp (2.0d0*erij)) * ebe / hartree

bebond = (2.0d0*exp(brij)-exp (2.0d0*brij)) * ebb / hartree

! compute the carbon -carbon resonance integral using

186 ! the Whitehead and Lo formula

g14 = 1.0d0 / sqrt (4.0d0*rijsq+g11sq)

hcij = 1.5d0*(bebond -eebond) - 0.375d0*g11

& + (5.0d0/12.0 d0)*g12 - g14 /24.0 d0
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191 ! if either atom is non -carbon , then factor the resonance

! integral by overlap ratio and ionization potential ratio

if(iatn.ne.6 .or. jatn.ne.6) then

call overlap(iatn ,jatn ,rij ,ovlap)

call overlap (6,6,rij ,covlap)

196 hcij = hcij * (ovlap/covlap)

iionize = ip(i)

if(qorb(iorb) .ne. 1.0d0) then

if(iatn .eq. 7) iionize = 0.595d0 * iionize

if(iatn .eq. 8) iionize = 0.525d0 * iionize

201 if(iatn .eq. 16) iionize = 0.890d0 * iionize

end if

jionize = ip(j)

if(qorb(jorb) .ne. 1.0d0) then

if(jatn .eq. 7) jionize = 0.595d0 * jionize

206 if(jatn .eq. 8) jionize = 0.525d0 * jionize

if(jatn .eq. 16) jionize = 0.890d0 * jionize

end if

hcij = hcij * (iionize+jionize )/(2.0 d0*cionize)

end if

211 !-----Test Code 11.04.16--------------------------------------

! This code is the pitdhf copy of the similar thing in fullpi.f.

! Applies Yukowa scaling to hcij terms of nonbonded atoms

!-------------------------------------------------------------

bonded = .false.

216 do k=1, nbpi

iorb = ibpi(2,k)

jorb = ibpi(3,k)

bonded = (iorb.eq.i .and. jorb.eq.j) .or. bonded

end do

221 if(.not.bonded) then
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hcij = hcij*(exp(-1.0d0*rij/tdhfcr ))/ rij

end if

!-------------------------------------------------------------

226 ! set symmetric elements to the same value

tdhfhc(i,j) = hcij

tdhfhc(j,i) = hcij

end do

end do

231

! reconstruct the Fock Matrix

do i=1, norbit

do j=1, norbit

s1a = (0.0d0 , 0.0d0) ! Total Density matrix element

236 s1b = (0.0d0 , 0.0d0) ! rho(k,k)*J(i,k)

s2a = -1.0d0*tdhfgamma(i,j)* tdhfeda(i,j)

s2b = -1.0d0*tdhfgamma(i,j)* tdhfedb(i,j)

if(i.eq.j) then

241 do k=1, norbit

s1a = tdhfeda(k,k) + tdhfedb(k,k)

s1b = s1b + s1a*tdhfgamma(i,k)

end do

end if

246

tdhffocka(i,j) = tdhfhc(i,j) + s2a + s1b

tdhffockb(i,j) = tdhfhc(i,j) + s2b + s1b

end do

end do

251

!
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! diagonalize the fock matrices to obtain eigenvalues

! for the superoperator

!

256 do m=1,2

!

! print density matrices

!

if(printq) then

261 if(m.eq.1) then

write(tdhfout ,*) ’TDHF Electron Density Matrix (alpha)’

else

write(tdhfout ,*) ’TDHF Electron Density Matrix (beta)’

end if

266 do i=1, norbit

do j=1, norbit

if(m.eq.1) then

write(tdhfout ,300, advance=’no’) tdhfeda(i,j)

else

271 write(tdhfout ,300, advance=’no’) tdhfedb(i,j)

end if

end do

write(tdhfout ,*) ’’

end do

276 write(tdhfout ,*) ’’

! Print the diagonal elements

307 format (2E20.9,3X)

if(m.eq.1) then

281 write(tdhfout ,*) ’TDHF Density Matrix Diagonal (alpha)’

else

write(tdhfout ,*) ’TDHF Density Matrix Diagonal (beta)’

179



end if

end if

286 s1a = (0.0d0 ,0.0d0)

do j=1, norbit

if(m.eq.1) then

s1a = s1a + tdhfeda(j,j)

if(printq) write(tdhfout ,307) tdhfeda(j,j)

291 else

s1a = s1a + tdhfedb(j,j)

if(printq) write(tdhfout ,307) tdhfedb(j,j)

end if

end do

296

if(printq) then

302 format(A12 ,2F17.6)

write(tdhfout ,*) ’’

write(tdhfout ,302) ’Trace: ’, s1a

301 write(tdhfout ,*) ’’

s1a = (0.0d0 ,0.0d0)

do i=1, norbit

s1a = s1a + tdhfeda(i,i) + tdhfedb(i,i)

306 end do

if(m.eq.2) then

303 format(A19 ,2F17.6)

write(tdhfout ,303) ’Trace (full): ’, s1a

311 write(tdhfout ,*) ’’

end if

end if

!
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! copy fock matrix to tdhfcopy

316 !

if(m.eq.1) then

if(printq) write(tdhfout ,*) ’Fock matrix (alpha)’

do i=1, norbit

do j=1, norbit

321 fockcopy(i,j) = tdhffocka(i,j)

if(printq) then

write(tdhfout ,300, advance=’no’) tdhffocka(i,j)

end if

end do

326 if(printq) write(tdhfout ,*) ’’

end do

else

if(printq) write(tdhfout ,*) ’Fock matrix (beta)’

do i=1, norbit

331 do j=1, norbit

fockcopy(i,j) = tdhffockb(i,j)

if(printq) then

write(tdhfout ,300, advance=’no’) tdhffockb(i,j)

end if

336 end do

if(printq) write(tdhfout ,*) ’’

end do

end if

if(printq) write(tdhfout ,*) ’’

341 !

! occasionally recalculate the eigenvalues

!

if(mod(outiter ,100). eq.1 .or. res1) then

res1 = .false.
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346 if(tdhfdebug) then

write(debugout ,*) ’Recalculating Super Eigenvalues ’

end if

!

! tridiagonalize

351 !

call zhetrd(’U’,norbit ,fockcopy ,norbit ,d,e,tau ,

& work ,8*norbit ,info)

if(tdhfdebug) then

write(debugout ,*) ’Info: ’, info

356 write(debugout ,*) ’’

write(debugout ,*) ’Post Tridiagonal Fock’

do i=1,norbit

do j=1, norbit

if(m.eq.1) then

361 write(debugout ,300, advance=’no’) tdhffocka(i,j)

else

write(debugout ,300, advance=’no’) tdhffockb(i,j)

end if

end do

366 write(debugout ,*)’’

end do

write(debugout ,*)’’

write(debugout ,*) ’tri -diagonal matrix ’

371 write(debugout ,*) ’diagonal     superdiagonal ’

do i=1, norbit

write(debugout ,301, advance=’no’) d(i)

if(i.ne.norbit) then

write(debugout ,301, advance=’no’) e(i)

376 end if
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write(debugout ,*) ’’

end do

write(debugout ,*) ’’

end if

381

! get the eigenvalues

if(m.eq.1) then

superevmax = 0.0d0

superevmin = 0.0d0

386 end if

call zsteqr(’N’,norbit ,d,e,’null’,norbit ,’null’,info)

if(printq) then

if (m.eq.1) then

391 write(tdhfout ,*) ’Fock (alpha) Eigenvalues: ’

else

write(tdhfout ,*) ’Fock (beta) Eigenvalues: ’

end if

write(tdhfout ,301) (d(i),i=1,norbit)

396 write(tdhfout ,*)’’

end if

superevmax = max(superevmax ,d(norbit)-d(1))

superevmin = min(superevmin ,d(1)-d(norbit ))

if(printq) then

401 write(tdhfout ,*) ’Supereigenvalues: {’, superevmin ,’, ’,

& superevmax , ’}’

write(tdhfout ,*) ’’

end if

superevmax = 1.5d0*superevmax

406 superevmin = 1.5d0*superevmin
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end if

!

411 ! calculate total electronic energy

!

if(printq) then

if(m.eq.2) then

energy = (0.0d0 ,0.0d0)

416 s1a = (0.0d0 ,0.0d0)

s1b = (0.0d0 ,0.0d0)

do i=1, norbit

do j=1, norbit

paij = tdhfeda(i,j)

421 pbij = tdhfedb(i,j)

s1a = s1a + 0.5d0*paij*( tdhfhc(j,i)+ tdhffocka(j,i))

s1b = s1b + 0.5d0*pbij*( tdhfhc(j,i)+ tdhffockb(j,i))

end do

end do

426 energy = s1a + s1b

305 format(A25 ,2E16.5)

write(tdhfout ,305) ’Total alpha Energy: ’, s1a

write(tdhfout ,305) ’Total beta Energy: ’ , s1b

write(tdhfout ,305) ’Total Electronic Energy: ’, energy

431 write(tdhfout ,*) ’’

end if

end if

if(m.eq.2 .and. probcurr .and. printq) then

436 write(tdhfout ,*) ’Probability Current ’

write(tdhfout ,*) ’ qx   qy    qz    ax     ay   az bx by bz’

do i=1, norbit
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iorb = iorbit(i)

currax = 0.0d0

441 curray = 0.0d0

curraz = 0.0d0

currbx = 0.0d0

currby = 0.0d0

currbz = 0.0d0

446 do j=1, norbit

jorb = iorbit(j)

cc1 = 2.0d0*tdhfhc(j,i)* aimag(tdhfeda(j,i))

cc2 = 2.0d0*tdhfhc(j,i)* aimag(tdhfedb(j,i))

currax = currax + cc1* (x(jorb)-x(iorb))

451 curray = curray + cc1* (y(jorb)-y(iorb))

curraz = curraz + cc1* (z(jorb)-z(iorb))

currbx = currbx + cc2* (x(jorb)-x(iorb))

currby = currby + cc2* (y(jorb)-y(iorb))

currbz = currbz + cc2* (z(jorb)-z(iorb))

456 end do

306 format (9E16.5)

write(tdhfout ,306) x(iorb),y(iorb),z(iorb),currax ,curray ,

& curraz ,currbx ,currby ,currbz

end do

461 end if

end do

! call tdhfiterate and update rho

call tdhfiterate(tdhfeda ,tdhffocka ,superevmax ,

466 & superevmin ,tdhfdt ,norbit ,9)

call tdhfiterate(tdhfedb ,tdhffockb ,superevmax ,

& superevmin ,tdhfdt ,norbit ,9)
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471 !-----Test Code 10 Dec 17-----------------------------------

! Impose zero for imaginary parts on diagonal

do i=1,norbit

tdhfeda(i,i) = realpart(tdhfeda(i,i))

tdhfedb(i,i) = realpart(tdhfedb(i,i))

476 end do

!-----------------------------------------------------------

!

! update the nonplanar pi bond orders (pnpl)

481 ! this is the same code that ’s at the end of picalc

!

401 format (5i5 ,2f12.2)

402 format (3A5 ,2A15)

if(printq) write(tdhfout ,402) ’Bond’,’i’,’j’,’old’,’new’

486 do k=1, nbpi

i = ibpi(2,k)

j = ibpi(3,k)

p = pnpl(k)

491 ! take just the real part of electron density

! pnpl(k) = realpart( tdhfed(i,j) )

! take the real part of the electron density

! pnpl(k) = zabs( tdhfeda(i,j) + tdhfedb(i,j))

pnpl(k) = realpart( tdhfeda(i,j) + tdhfedb(i,j) )

496 pbpl(k) = pnpl(k) * tdhfhc(i,j)/( -0.0757d0)

i = ibnd(1,ibpi(1,k))

j = ibnd(2,ibpi(1,k))

if(printq)
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501 & write(tdhfout ,401) k,ibpi(2,k),ibpi(3,k),i,j,p,pnpl(k)

end do

if(printq) write(tdhfout ,*)’’

!-------------------------

506 if(printq) then

xi = 0.0d0

xj = 0.0d0

xk = 0.0d0

xg = 0.0d0

511 xcor = 0.0d0

write(tdhfout ,*) ’Original Type Energy Calculation ’

do i=1, norbit

do j=1, norbit

516 pii = tdhfeda(i,i) + tdhfedb(i,i)

pjj = tdhfeda(j,j) + tdhfedb(j,j)

pij = tdhfeda(i,j) + tdhfedb(i,j)

xi = xi + pij*tdhfhc(i,j)

xj = xj + 0.50d0*pij*tdhfgamma(i,j)

521 xk = xk - 0.25d0*pij*tdhfgamma(i,j)

xcor = xcor - 0.5d0*(pij*pij - pii*pjj)* tdhfgamma(i,j)

end do

end do

do i=1, norbit -1

526 do j=i+1, norbit

xg = xg + tdhfgamma(i,j)

end do

end do

write(tdhfout ,*) ’OEnergy:  ’, xi+xj+xk+xg+xcor

531 write(tdhfout ,*) ’Core:     ’, xi
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write(tdhfout ,*) ’Coulomb:  ’, xj

write(tdhfout ,*) ’Exchange: ’, xk

write(tdhfout ,*) ’Nuclear:  ’, xg

write(tdhfout ,*) ’Xcorrect: ’, xcor

536 !-------------------------

write(tdhfout ,*)

write(tdhfout ,*)’## End of piTDHF iteration ##’

write(tdhfout ,*)’’

541 write(tdhfout ,*)’’

! Close the output file

flush(tdhfout)

close(unit=tdhfout)

546

! Write restart information

call writerestart ()

end if

551

end subroutine

A.8 redirects.f

! The following lines of code must be inserted into the indicated

! files. This code is written for TINKER version 7.1.2. Users must

3 ! ensure compatibility with newer versions.

!========================

! dynamic.f

!========================
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8 ! insert this section in the header to inlude usage of variables

!-------------------

use tdhfvars

use civars

!-------------------

13

! insert this section before the integration steps are started

!-----------------------------------------------------------------------

! call tdhfinit to see if TDHF is requested and initialize necessary

! parameters

18 !

call tdhfinit

! Copy dt to a variable TDHF will use

if(usetdhf) then

tdhfdt = dt

23 end if

!-----------------------------------------------------------------------

! call ciinit to see if CI theory/excited calculations are requested

! and initialize the necessary parameters

c

28 call ciinit

!-----------------------------------------------------------------------

!========================

33 ! picalc.f

!========================

! insert this section in the header to inlude usage of variables

!-------------------

use tdhfvars

38 use civars
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!-------------------

! insert this section immediately after the number of calls to the

! picalc routine is incremented and before quantum calculations

43 ! begin

!-----------------------------------------------------------------------

! If using TDHF or CI theory call fullpi instead

if(usetdhf.or.usesinglet.or.usetriplet) then

call fullpi

48 return

end if

!-----------------------------------------------------------------------

A.9 tdhfinit.f

!

! ###################################################

! ## Written by Kush Patel - 2/01/16 ##

! ###################################################

5 !

! ##############################################################

! ## ##

! ## subroutine tdhfinit -- checks for keyword tdhf and ##

! ## and initializes necessary ##

10 ! ## values ##

! ## ##

! ##############################################################

!

! "tdhfinit" checks for the keyword "TDHF" which decides

15 ! whether the tchebychev propagator will be used or not

!
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subroutine tdhfinit

use sizes

use keys

20 use tdhfvars

logical exist , resumeq

integer i, next , freeunit

character *20 keyword

character *120 record , string

25

usetdhf = .false.

tdhfdebug = .false.

printq = .false.

30 probcurr = .false.

useurhf = .false.

resumeq = .false.

res1 = .false.

outiter = 0

35 outfreq = 1

do i=1,nkey

next = 1

record = keyline(i)

40 call gettext (record ,keyword ,next)

call upcase (keyword)

if(keyword (1:5) .eq. ’TDHF ’) then

usetdhf = .true.

tdhffirst = .true.

45 else if(keyword (1:7) .eq. ’TDHFCR ’) then

string = record(next :120)

tdhfcr = 0.0d0
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read(string ,*,err=10,end =10) tdhfcr

10 continue

50 else if(keyword (1:10). eq.’TDHFDEBUG ’) then

tdhfdebug = .true.

debugout = freeunit ()

! open the debugging output

inquire(file=’tdhf.debug’,exist=exist)

55 if(exist) then

open(unit=debugout ,file=’tdhf.debug’,status=’old’)

rewind(unit=debugout)

else

open(unit=debugout ,file=’tdhf.debug’,status=’new’)

60 end if

else if(keyword (1:8). eq.’USEURHF ’) then

useurhf = .true.

else if(keyword (1:11). eq.’PRINTEVERY ’) then

string = record(next :120)

65 read(string ,*,err=20,end =20) outfreq

if(outfreq.lt.1) outfreq = 1

20 continue

else if(keyword (1:9). eq.’PROBCURR ’) then

probcurr = .true.

70 else if(keyword (1:8). eq.’RESUME ’) then

resumeq = .true.

res1 = .true.

end if

end do

75

if(resumeq) call tdhfload ()

return
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end

A.10 tdhfvars.f

1 !

! #############################################################

! ## ##

! ## module tdhfvars -- contents of the PITDHF ##

! ## calculation ##

6 ! ## ##

! #############################################################

!

!

! maxkey maximum number of lines in the keyword file

11 !

! nkey number of nonblank lines in the keyword file

! keyline contents of each individual keyword file line

!

! usetdhf logical that indicates whether TDHF is used

16 ! tdhffirst logical switch that indicates whether the dynamics

! are in the first time step

! tdhfdebug logical for deciding whether to print debugging

! information

! tdhfdt time step for dynamics

21 ! tdhfout output file unit number

! tdhf_ nfill fill level for the orbitals (# of electrons / 2)

! tdhfeda tdhf electron density matrix (spin up)

! tdhfedb tdhf electron density matrix (spin down)

! tdhffocka tdhf fock matrix (spin up)

26 ! tdhffockb tdhf fock matrix (spin down)

! tdhfgamma tdhf gamma matrix
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! tdhfh! tdhf core matrix

! bonded logical that indicates whether a pair of atoms

! are bonded

31 ! tdhfcr coupling radius for the exponetial scaling term (Angstrom)

module tdhfvars

implicit none

36 logical usetdhf , tdhffirst , tdhfdebug , printq

logical probcurr , useurhf , res1

integer tdhfout , debugout , tdhf_nfill , outiter

integer outfreq

real*8 tdhfdt , superevmin , superevmax

41 complex *16, allocatable :: tdhfeda (:,:)

complex *16, allocatable :: tdhfedb (:,:)

complex *16, allocatable :: tdhffocka (:,:)

complex *16, allocatable :: tdhffockb (:,:)

complex *16, allocatable :: tdhfgamma (:,:)

46 complex *16, allocatable :: tdhfhc (:,:)

logical bonded

real*8 tdhfcr

51 complex *16, allocatable :: tdhfed (:,:)

complex *16, allocatable :: tdhffock (:,:)

save

end

A.11 mpacf.py
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"""

Program for computing velocity autocorrelation of TINKER

files (multiprocessor)

5 Written by Kush Patel , May 2019

Tinker velocity files have names in the form:

root .###v

10

Input for this program is a JSON file with the following

parameters defined:

root (string)

- Root title of the TINKER coordinate file

15 outtag (string)

- User defined output label for section of system

autocorrelated

- output file will be named "[root ].[ outtag ].acf"

atoms (array of integers)

20 - Indices of atoms to consider in autocorrelation

Example:

[{

"root": "TPP",

25 "outtag ": "diaryl",

"atoms: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,

57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67]

}]

30

-------------------------------------------------------------
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! This code is non -general and written for use in a specific

! directory and ensemble nomenclature. Furthermore , it

! includes velocity files of a prior calculation for

35 ! pre -excitation dynamics. Users should adjust this code to

! their directory setup.

-------------------------------------------------------------

"""

40

#!/usr/bin/env python

import multiprocessing as mp

45 import time

import os

import glob

import sys

import numpy as np

50 import json

def autocorr( tau ):

sm = 0.0

for i in range(0,nfiles -tau):

55 for j in atomlist:

sm += np.sum( vels[i,j]*vels[i+tau ,j] )

return sm/(nfiles -tau)

def importvel(fn):

60 tfn = "temp.vel."+str(os.getpid ())

os.system(’cp ’+fn+’ ’+tfn )

os.system("sed -i ’s/D/e/g’ "+tfn)
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vels = np.loadtxt(tfn ,skiprows=1,usecols =(2 ,3,4))

os.remove(tfn)

65 return vels

if __name__ == ’__main__ ’:

print("Loading parameters ..")

jsonfile = sys.argv [1]

70 with open(jsonfile) as jf: jstr = jf.read()

prms = json.loads(jstr )[0]

try:

root = prms["root"]

75 except KeyError:

print("No root name found")

sys.exit()

try:

alst = prms["atoms"]

80 except KeyError:

alst = -1

try:

outtag = "."+prms["outtag"]

except KeyError:

85 outtag = ""

print("parameters found:")

print("root         : " + root)

90 try:

nprocs = int(os.environ["SLURM_JOBS_CPUS_PER_NODE"])

except KeyError:

nprocs = 16
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print( "nprocs       : "+ str(nprocs) )

95

simdirs = glob.glob("../"+root+"/sim0*/")

simdirs = [ str(sd) for sd in simdirs ]

100 timefiles = [ str( root+"."+str(i).zfill (3)+"v" )

for i in range (1 ,10001) ]

for sd in simdirs:

simitr = sd.split(’/’)[2]

105 simitr = int(simitr [4:])

shortitr = str(simitr /100)

outfile = root+"/"+root+"."+shortitr+outtag+".acf"

110 # check if the output file exists

# if so, proceed. (notify main out)

# otherwise , perform the ACF

if os.path.isfile(outfile ):

print( outfile + " already exists. Skipping ..." )

115 continue

prefiles = [ str( root+"pre/"+root+"."+str(i).zfill (5)+"v" )

for i in range(simitr -2000 , simitr) ]

localfiles = [ sd+f for f in timefiles ]

120 velfiles = prefiles + localfiles

global vels

t1 = time.time()

p = mp.Pool(processes=nprocs)
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125 vels = np.asarray(p.map( importvel , velfiles ))

p.terminate ()

t2 = time.time()

print(’load time    : ’ + str(t2-t1))

130

natoms = len(vels [0])

print("natoms       : " + str(natoms ))

global atomlist

135 if alst==-1 or len(alst)<1:

atomlist = range(natoms)

else:

atomlist = alst

print("atomlist     : ")

140 print(np.asarray(atomlist ))

global nfiles

nfiles = len(vels)

145 p = mp.Pool(processes=nprocs)

acf = p.map(autocorr , range(nfiles ))

p.terminate ()

wrtr = open(outfile ,"w")

150 for i in range(nfiles ):

wrtr.write("%7i %15.6e\n" % (i,acf[i]/acf [0]) )

wrtr.close()
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