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ABSTRACT

The rationale behind the next generation wireless networks is the handling of

the recent massive surge in wireless traffic, especially due to the advent of the Internet

of Things (IoT) ecosystem. Tremendously high data rates, extremely low latency, and

significantly high Quality of Service (QoS) are among the key objectives of the forth-

coming fifth generation (5G) standard. Some of the concepts which act as the driving

forces behind realizing these goals are network virtualization, fog computing, hetero-

geneous networks, and spectrum sharing. Taking these into account, a few efficient

resource allocation frameworks for these techniques are proposed in this dissertation.

Considering the distributed behaviors of the different sets of entities involved and their

interrelationships, we incorporate the potentials of game theory and Machine Learn-

ing (ML) as powerful mathematical tools for strategic decision making. Firstly, two

resource allocation frameworks for network virtualization based on matching theory

are proposed: a three-sided matching based model involving radio resources, physi-

cal infrastructure, and mobile users for wireless network virtualization, and a similar

model involving Tracking Areas (TAs), Virtual Network Function (VNF) instances,

and Cloud Networks (CNs) for Network Function Virtualization (NFV). Secondly,

an Equilibrium Problem with Equilibrium Constraints (EPEC) and a many-to-many

matching based framework is proposed for NFV integrated IoT fog computing: a

large-scale model for the optimization of resource pricing for the Data Service Opera-

tors (DSOs), as well as for the optimization of resource allocation from the Fog Nodes

(FNs) as per the requirements of the Authorized Data Service Subscribers (ADSSs).

Thirdly, a resource allocation framework for heterogeneous networks based on Re-

inforcement Learning (RL) and EPEC is proposed: a multi-hop data transmission

route determination model for an indoor Visible Light Communication (VLC) and

Device-to-Device (D2D) heterogeneous network. Finally, a framework to enhance the
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spectrum utilization of a Cognitive Radio Network (CRN) is proposed: a classifi-

cation approach to detect Primary User Emulation (PUE) attacks using Generative

Adversarial Networks (GANs), which are effective ML models to train classifiers in

a semi-supervised manner. In this dissertation, a comprehensive discussion of these

frameworks is performed, followed by the validation of their effectiveness through

extensive simulations.
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Chapter 1

Introduction

1.1 Next Generation Wireless Networks

The Internet of Things (IoT) is a paradigm that connects people, things, data,

and processes together in this information-centric era [1]. An increase in the number

of smart devices connected to the internet leads to the expansion of the IoT. The

number of Machine-to-Machine (M2M) connections is expected to grow from just

below a billion in 2017 to 3.9 billion by 2022 globally, which is a four-fold growth

in five years. The monthly global mobile data traffic is expected to increase to 77

exabytes by 2022, and the annual traffic is predicted to reach an epic amount of one

zettabyte [1].

The evolution of wireless devices used in different aspects of our daily life,

which depend on mobile networks for communication worldwide, has fueled the huge

growth in mobile data traffic. Moreover, due to the increasing popularity and usage

of video streaming platforms, more than half of the mobile data traffic is accounted

for by video [1]. This tremendous growth of mobile broadband has resulted in a

Radio Frequency (RF) spectrum crunch in wireless communications across the globe.

The next generation of mobile networks is designed with the intention of handling

the current and expected mobile traffic surge and the resultant crunch in available

wireless resources.

The fifth generation (5G) of mobile networks which started getting deployed

by the end of 2018, is a revolution in wireless technology. 5G is expected to be

the backbone of a vast IoT ecosystem that can meet the communication demands of

billions of connected devices [2]. The key specification requirements of 5G are shown

in Fig. 1.1. 5G aims at delivering a peak data rate of 10 Gbps, which is a 10×
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Figure 1.1: Objectives of 5G mobile networks [2].

improvement over the fourth generation (4G) networks. Latency as low as 1 ms, and

100× the number of connected devices per unit area as compared to 4G Long-Term

Evolution (LTE) networks are among the other major highlights.

The use cases of 5G networks span from Vehicle-to-Everything (V2X) and Vir-

tual Reality (VR) applications which demand ultra low latencies, to cloud based big

data processing applications which demand extremely high data rates [2]. In order

to meet these requirements and to ensure Quality-of-Experience (QoE) to the users

in next generation networks, the integration and smooth co-existence of a variety of

technologies is inevitable. A multi-service architecture based on network slicing and

edge computing has been proposed to improve network flexibility and reduce service

latency, as well as the Device-to-Device (D2D) technology to extend coverage [3]. In

addition, dynamic spectrum management techniques and enhanced energy efficiency

optimization can help better achieve the objectives of next generation networks.
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As 5G deployments have started gaining momentum worldwide, efficient re-

source allocation algorithms are indispensable. However, considering the diversity in

use cases and applications, as well as the variety of devices and entities in the IoT

ecosystem, distributed algorithms are more desirable than centralized approaches. In

order to design such algorithms, we need powerful mathematical tools that can model

the strategic decision making of different sets of autonomous entities. To that end,

this dissertation draws from the potentials of game theory and Machine Learning

(ML), which have attracted a lot of attention in the recent past, as two promising

mathematical frameworks that can model strategic decision making scenarios.

1.2 Game Theory for Next Generation Wireless

Networks

Game theory consists of a set of tools that help us analyze the rational objectives

of decision makers while strategically considering the behaviors of other decision mak-

ers [4]. It came into existence as a separate field when John von Neumann published

his paper on game theory in 1928. This was followed by his book in 1944, co-authored

with Oskar Morgenstern, which dealt with finding solutions for two-person zero-sum

games. In 1950, John Nash developed the Nash equilibrium, a criterion for the mu-

tual consistency of the strategies of players. He proved that for every non-zero-sum

non-cooperative finite n-player game, an equilibrium solution concept called the Nash

equilibrium exists in mixed strategies [5].

Game theory flourished as a field in the following years, which saw extensive

development in the theoretical aspects as well as in its application in various fields. A

standard example of a game analyzed in game theory is the prisoner’s dilemma, which

examines the conflict of interest between two rational individuals. In this classical

example, a good decision which is acceptable to both individuals, requires coopera-

3



tion between them [5]. A lot of real world situations can be modeled by the prisoner’s

dilemma, and many other games like Bayesian games, differential games, evolution-

ary games, etc. Game theoretic frameworks help represent many real life situations

due to their potential in modeling logical decision making scenarios, and hence, find

applications in numerous fields like politics, economics, psychology, sociology, and

computer science, to name a few.

The global reach of Internet for communication and the seamless availability

of mobile broadband in different parts of the world have triggered the development

of distributed and heterogeneous communication networks across the globe. This

decentralized nature of communication systems has resulted in the emergence of a

large number of autonomous entities with their own selfish and diverse objectives. In

this light, research on the scope of game theory in modeling wireless communication

scenarios has seen a massive surge in the past years.

The scope and applications of game theory in wireless communications and

networking have been discussed comprehensively in [5]. Modeling the power control

problem in mobile networks using a non-cooperative game and solving it by find-

ing the Nash equilibrium, is an example. A lot of similar and other kinds of issues

in wireless networks, which involves strategic interactions between decision making

entities, can be modeled using game theory. Considering the need for efficient dis-

tributed frameworks for modeling the interactions between different sets of entities in

the next generation networks, we utilize the potentials of game theoretic models in

this dissertation.
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1.3 Machine Learning for Next Generation Wire-

less Networks

Another set of powerful mathematical tools which has attracted a lot of at-

tention in the past decade is ML. ML is the science of programming computers to

perform tasks based on the patterns from past experience or sample data [6]. The

pioneering work on ML set off in the 1950s, and the term Machine Learning was

coined in 1959 by Arthur Samuel. The first learning machine that was capable of

learning and becoming artificially intelligent was proposed in 1950 by Alan Turing.

The following years saw a monumental growth in the development of ML con-

cepts and algorithms like Recurrent Neural Networks (RNNs), Reinforcement Learn-

ing (RL), and Support Vector Machines (SVMs), to list a few. ML algorithms are of

different types based on their learning approach like supervised learning, unsupervised

learning, self learning, feature learning, etc. ML has significant overlap with opti-

mization, in the sense that many learning problems are modeled as the minimization

problem of a loss function. ML also shares some aspects with data mining, which

deals with finding unknown properties in the data, in the sense that data mining

methods are employed in ML as unsupervised learning.

The applications of ML are ubiquitous in the current big data era, ranging

from computer vision and natural language processing, to user behavior analytics

and brain-machine interfaces (BMI). The applications and scope of ML in wireless

communications is underlined in [7], specifically for the next generation networks. The

role of supervised and unsupervised learning in Cognitive Radio Networks (CRNs),

that of unsupervised learning in heterogeneous networks, and that of RL in D2D

communication have been discussed in detail. Inspired from the myriad of possibilities

presented by ML models as emphasized in [7], this dissertation exploits the potential

of ML as a powerful tool for decision making from data or experience.
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Figure 1.2: Dissertation contribution areas in 5G networks research.

1.4 Game Theory and Machine Learning for Re-

source Allocation

Keeping in mind the objectives of 5G networks as mentioned in Section 1.1, and

the possibilities of game theory and ML as discussed in Section 1.2 and Section 1.3,

respectively, this dissertation aims to contribute some efficient algorithms for wireless

resource allocation. Specifically, this dissertation focuses on some pivotal concepts

mentioned in Section 1.1, and employs the attributes of game theory and ML to the

dimensions of next generation networks shown in Fig. 1.2, as follows:

• Network virtualization: A number of virtual networks exist on a single physical

network, and leads to better flexibility and utilization through network slic-

ing. The interrelationships between different slices can be modeled using game

6



theory, by considering their localized conditions.

• Fog computing : A number of small-scale but flexible computing devices are

deployed close to the users, providing low latency and transmission costs. Game

theoretic models can be used to represent the strategic interactions between the

computing devices and the users, and to achieve distributed allocation of the

computing resources.

• Heterogeneous networks : The traffic congestion in wireless networks is mini-

mized by offloading some traffic to other kinds of networks. The potential of

ML can be employed for learning routing optimization in dynamic heteroge-

neous network scenarios.

• Spectrum sharing : The spectrum usage efficiency is improved by the dynamic

management and allocation of spectrum resources. ML based classification

approaches can be employed to identify spectrum usage inefficiencies.

1.5 Dissertation Contributions and Organization

This dissertation makes use of the virtues of the game theoretic and ML tech-

niques for achieving efficient resource allocation solutions for some of the key aspects

of next generation networks, as mentioned in the previous section. The main contri-

butions of this dissertation can be summarized as follows:

• A distributed resource allocation solution for wireless network virtualization: A

three-sided resource allocation approach for wireless network virtualization is

proposed by considering the user requirements and the virtual network slices.

• A distributed resource allocation solution for Network Function Virtualization

(NFV) in 5G networks : A three-sided resource allocation approach for NFV is

7



proposed by considering the user demands of various network functionalities as

well as their deployments in 5G networks.

• Large-scale IoT fog computing pricing and revenue optimization while consider-

ing NFV resource requirements : A large-scale optimization of resource pricing

for operators and resource purchasing for users is performed, along with the

optimization of fog resource allocation, as per the user demands of network

functionalities.

• Heterogeneous network routing optimization while considering revenue optimiza-

tion for D2D users : Data transmission routing optimization for a heterogeneous

network involving D2D communication is performed, while simultaneously op-

timizing the revenue of the mobile users.

• Enhancing spectrum efficiency of Dynamic Spectrum Access (DSA) by identify-

ing attackers pretending as legitimate users of the spectrum: An attack detection

model for DSA is proposed, to identify malicious users seizing spectrum oppor-

tunities from legitimate users, thus improving the spectrum usage efficiency.

Specifically, in Chapter 2, a matching theory based wireless network virtual-

ization resource allocation mechanism is proposed, which is a distributed three-sided

matching between radio spectrum, physical infrastructure, and mobile users. A Re-

stricted Three-sided Matching with Size and Cyclic preference (R-TMSC) model is

implemented, and is solved by the proposed spectrum-oriented and user-oriented

R-TMSC algorithms. The effectiveness of the proposed algorithm is further vali-

dated through simulations. Simulation results show that the proposed spectrum-

oriented and user-oriented algorithms outperform the traditional resource allocation

schemes. The spectrum-oriented algorithm enhances the user throughput and satis-

faction within a smaller algorithm run time. Furthermore, as the number of users

increases, the proposed algorithms serve more users than traditional methods.
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In Chapter 3, we propose a three-sided matching based framework for resource

allocation in NFV. We utilize the R-TMSC problem to model the relationships be-

tween the Tracking Areas (TAs), Virtual Network Functions (VNFs), and Cloud

Networks (CNs) in a 5G Core network. The simulation results clearly demonstrate

the superior performance of the proposed framework in terms of the data rates and

user satisfaction, compared to a centralized random allocation approach.

In Chapter 4, the competitions between the Data Service Operators (DSOs)

and the Authorized Data Service Subscribers (ADSSs) in an IoT fog computing sce-

nario is modeled as an Equilibrium Problem with Equilibrium Constraints (EPEC).

As the size of a typical fog computing network is large, the Alternating Direction

Method of Multipliers (ADMM) algorithm which has been recognized as a large-scale

optimization tool, is invoked to solve the EPEC. This results in the optimization of

resource pricing for the DSOs as well as the amount of resources to be purchased by

the ADSSs. Further, the resource requirements for different VNFs to be deployed to

serve the ADSSs are obtained, and are utilized in a matching theory based approach

to allocate the fog computing resources, in a distributed manner. The effectiveness

of the proposed framework is then demonstrated through simulations. Simulation

results show that the optimization of the utility functions of DSOs and ADSSs can

be achieved within a few iterations of the ADMM. The simulations also show that

the matching based approach minimizes the cost of fog resource allocation compared

to a centralized approach.

In Chapter 5, an RL based approach to determine multi-hop data transmission

routes in an indoor Visible Light Communication (VLC)-D2D heterogeneous network

is proposed. The rewards for the RL based method is obtained dynamically, by

formulating the interactions between the D2D users as an EPEC and using ADMM

to solve it. The proposed technique can achieve optimal data transmission routes in a

distributed manner. Simulation results demonstrate the effectiveness of the proposed
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approach, showing that transmission routes with low delays and high capacities can

be achieved through the application of RL and EPEC.

In Chapter 6, the competition between Secondary Users (SUs) and Primary

User Emulation (PUE) attackers in a CRN is modeled as a minimax zero-sum game.

Thereafter, a Wasserstein Generative Adversarial Network (WGAN) based frame-

work is employed for efficient PUE attack detection in a CRN. The proposed ap-

proach determines the cyclostationary features of the signals sensed by SUs, which

are input into a Convolutional Neural Network (CNN) based GAN for classification.

The performance of the proposed framework is evaluated through simulations. The

convergence of the proposed classification model highlights the potential of GAN for

the detection of PUE attacks in CRNs.

Finally, the conclusions and some possible directions for future research are

discussed in Chapter 7.
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Chapter 2

Cyclic Three-Sided Matching Game Inspired

Wireless Network Virtualization

2.1 Introduction

Virtualization is becoming an increasingly popular concept, applied in many

areas such as virtual memory, virtual machines, and virtual data centers [8]. Network

virtualization is the technology in which there exists a number of virtual networks,

each of which is a partition or aggregation of the underlying physical substrate net-

work [9]. It involves the abstraction, isolation, and sharing of resources among dif-

ferent entities. This enables supporting heterogeneous applications, without having

to modify the existing fundamental architecture. As a result, network virtualization

offers great network flexibility, maximizes network utilization, and inspires innovation

in products and services [10].

The implementation of virtualization in wired networks, such as in virtual pri-

vate networks, has prevailed for decades. With the current tremendous growth in

mobile wireless traffic, due to the massive user numbers and diverse communication

content, it is reasonable to extend virtualization to wireless networks. In wireless

networks, virtualization involves the sharing of both infrastructure and spectrum re-

sources [11]. Multiple virtual networks can dynamically share the physical substrate

networks, leading to better management of resources and lower operational expenses.

This paradigm is commonly referred to as wireless network virtualization [8].

Wireless network virtualization decouples the functionalities in networks by sep-

arating the roles of infrastructure and service, thus improving the network utilization.

In addition, since resource allocation and management are flexible and more dynamic

with virtual resources than physical resources, new network technologies can be de-
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ployed easily. However, in spite of the vast potential of wireless network virtualization,

several design challenges remain to be addressed, which include the isolation, discov-

ery and allocation of resources, mobility and network management, security and so

on [8]. In particular, the resource allocation challenge calls for comprehensive efforts,

as it decides how the virtual networks are embedded on top of the physical networks,

and thus, directly affecting the network utilization.

A popular way of defining the different roles in wireless network virtualization is

by classifying them into Infrastructure Providers (InPs), Mobile Virtual Network Op-

erators (MVNOs), Service Providers (SPs), and end users. Even though [8] discusses

the role of Mobile Virtual Network Providers (MVNPs), which lease the physical net-

work resources from the InPs and create virtual resources (and may possess spectrum

resources as well), along with the MVNOs who operate and assign these virtual re-

sources to the SPs, MVNOs has been discussed as a term used collectively to include

both MVNPs and MVNOs. Hence, for brevity and to avoid any confusion, we have

used the term MVNOs in the latter sense. That is to say, the InPs own the infras-

tructure resources, while the MVNOs own the spectrum resources and are responsible

for creating and managing the virtual resources (including both infrastructure and

radio resources). The SPs then rent/purchase virtual resources from the MVNOs in a

wholesale way, and provide specific services such as VoIP, video streaming, etc., to the

end users. In short, virtual resources which exist on physical network infrastructures

owned by InPs, are created and managed by MVNOs, and are requested by SPs to

serve end users.

A traditional resource allocation solution in wireless network virtualization is

to configure the virtual resource/service packages first and then offer the off-the-rack

services to the users [12]. Such an approach decouples the virtual service generation

procedure, which is accomplished by the MVNOs, from the user service management

procedure, which is accomplished by the SPs. A wireless network virtualization con-
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troller acts as a centralized entity through which the MVNOs manage the virtual

resources. Henceforth, we will refer to the wireless network virtualization controller

as the wireless network controller for brevity, as this work deals only with wireless

network virtualization. The centralized allocation of the virtual resources using the

wireless network controller lacks the flexibility needed to meet user specific require-

ments and user mobility. Furthermore, resource allocation solutions are moving from

the traditional centralized approaches to more distributed methods, considering the

high density, mobility, and self-organizing features of next generation wireless net-

works like device-to-device (D2D) communication, Long-Term Evolution-Unlicensed

(LTE-U), and so on. Traditional centralized optimization [13] results in high compu-

tational complexity and communication overhead, and hence, results in the need for

less complex and distributed solutions.

Matching theory has emerged as a promising approach for future wireless re-

source allocation, by overcoming some limitations of optimization and game the-

ory [14–17]. The major advantages of matching theory are that we are able to consider

individual utilities for the users and the SPs, and that it provides a distributed solu-

tion while considering the localized preferences of all the entities [17]. Reference [14]

also emphasizes on how the users have preferences on resources and vice versa based

on local information, and how the distributed nature of matching takes this into ac-

count. It is also highlighted how for every resource allocation problem, there exists

at least one stable matching (determined using the Gale-Shapley algorithm) due to

the deferred acceptance method [18]. Reference [15] highlights the stability aspect

of matching theory for a non-regulated scenario, and also how it provides a stable

resource allocation compared to competitive methods based on game theory.

Matching is a framework that is based on the formation of mutually beneficial

relationships between two sets of entities [19–21], and provides mathematically yield-

ing solutions based on the preferences of these entities. The advantages of matching
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infrastructure slices, spectrum 

slices and users

Figure 2.1: System model for wireless network virtualization.

theory in wireless resource allocation have been discussed in detail in [22], which in-

clude characterizing the behavior of heterogeneous nodes by suitable models, defining

general preferences that can manage Quality-of-Service (QoS) related considerations,

obtaining stable and optimal solutions satisfying the system objectives, and imple-

menting efficient algorithms at a faster rate.

In this chapter, we make use of these advantages of matching theory to inte-

grate the dynamics between all the three elements of abstraction in wireless network

virtualization, unlike most of the previous works which dealt mainly with SPs and

InPs [23]. Accordingly, we propose a matching-based resource allocation framework

for wireless network virtualization, which matches three network elements: spectrum,

infrastructure, and end users, simultaneously. The three-sided matching framework

and the corresponding matching-based solution, which have been proposed in this

chapter, have the following advantages: (a) the conventional centralized resource al-

location decouples the virtual service generation procedure by the MVNOs from the

user service management procedure by the SPs, which can yield non-optimal results

compared to our coupled three-sided matching framework, where all three entities are

considered simultaneously; (b) the time-varying nature of spectrum behavior and the

changing user requirements demand continuous adjustments in resource allocation,

which can be efficiently achieved by the distributed nature of the matching algorithm.

The major contributions of this chapter are briefly summarized as follows:
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• We propose a distributed resource allocation framework for wireless network

virtualization, in which unlike the conventional decoupled virtual service gen-

eration and user service management, we tackle the problem by modeling it

as a three-sided matching between radio spectrum, physical infrastructure, and

mobile users.

• With joint consideration of user satisfaction, SP revenue, and system cost-

performance, we formulate the three-sided matching as an optimization prob-

lem, which is nondeterministic polynomial time (NP)-hard. Consequently, we

model the optimization problem by exploiting the Three-Dimensional Stable

Marriage model with Cyclic Preferences (3DSM-CYC), in which each type of

agent ranks the other type of agent in its order of preference, and such three

preference lists form a cycle1.

• In order to accommodate virtualization, we consider a variant of the 3DSM-

CYC model, the Three-sided Matching with Size and Cyclic preference problem

(TMSC), as it allows each agent to have multiple partners. However, since the

process of determining whether a stable matching exists for a TMSC model

itself is NP-complete, we transform it into a Restricted Three-sided Matching

with Size and Cyclic preference problem (R-TMSC) by adding a few plausible

restrictions. The R-TMSC model can be solved by the proposed spectrum-

oriented and user-oriented R-TMSC algorithms, and a stable solution is always

guaranteed. The effectiveness of the proposed algorithm is validated through

simulations.

The rest of this chapter is organized as follows. We discuss some of the im-

portant previous work relevant to our research in Section 2.2. In Section 2.3, we

present the system framework and assumptions for addressing the resource allocation

1For example, spectrum ranks only user, user ranks only infrastructure and infrastructure ranks
only spectrum.
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problem in wireless network virtualization. Here, two important performance metrics

are discussed in Section 2.3.1 and Section 2.3.2. Then, in Section 2.4, we formulate

the proposed model as an optimization problem, with the objective of maximizing

the system cost-performance. The three-sided matching-based approach to solve the

optimization problem in a distributed way is explained in Section 2.5. In this sec-

tion, we discuss the concept of stability in Section 2.5.1, the TMSC model in Section

2.5.2, the R-TMSC model in Section 2.5.3, the spectrum-oriented R-TMSC model

in Section 2.5.4, and the user-oriented R-TMSC model in Section 2.5.5. We discuss

the performance of the proposed algorithm through simulation results in Section 2.6.

Finally, conclusions are drawn in Section 2.7.

2.2 Related Work

Since wireless network virtualization is considered to be a feasible method to

achieve better spectrum efficiency, higher data rate, and lesser cost per bit in fifth

generation (5G) networks [13, 24], a great amount of related research on resource

allocation has been going on [25–33]. A Software Defined Networking (SDN) based

framework for resource allocation in wireless network virtualization is proposed in [34],

where the allocated resources are adjusted dynamically according to the service re-

quirement and network status variations. A Network Virtualization Substrate (NVS)

for optimal virtualization of wireless resources in cellular networks is designed and

implemented in [35]. In [36], network slicing in 5G is discussed, where the issue of

network resource allocation is dealt with using an algorithm for handling network

slice requests. References [37], [38] and [39] also discuss network slicing in 5G, fo-

cusing on enabling end-to-end network slicing, and on an auction based model for

maximizing the network revenue, and on dynamic allocation of network resources to

different slices, respectively. Network slicing for Content Delivery Networks (CDN)
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is discussed in [40].

Due to the tremendous potential of matching theory in wireless resource allo-

cation scenarios as discussed in [22], methods to attain optimal resource allocation in

wireless network virtualization using matching theory have been prevalent. A novel

two-level hierarchical matching algorithm to separately achieve revenue maximization

for the InPs and MVNOs has been proposed in [41], by formulating service selection

and resource purchasing as a combinatorial optimization problem. The associations

between users and Base Stations (BSs) have been formulated as a one-to-many match-

ing game, and a distributed algorithm has been proposed, that results in stable user-

BS matchings [42]. Reference [43] also proposes a matching game based resource

allocation scheme, simultaneously taking into account the objectives of the InPs and

the multiple network operators. In [44], the stable marriage model was employed

in the resource allocation problem, to attain matchings between multiple repeaters

and vehicle antennas. Reference [45] utilizes matching theory to arrive at stable two-

sided matchings between different kinds of files generated by source nodes and relay

nodes that forward these files, in Delay Tolerant Networks (DTN). A framework was

proposed to find stable matchings of users and resources based on the channel and

context aware preference lists in [14]. A route level resource allocation algorithm

was proposed for dynamic topology, through a stable and fair allocation utilizing the

stable matching algorithm [46]. A framework utilizing matching theory, for Cogni-

tive Radio Networks (CRNs), was proposed in [47], for content-caching was proposed

in [48], and for LTE-U was proposed in [49].

Even though all of the above mentioned works discussed the application of

matching theory in wireless network virtualization resource allocation, the optimiza-

tion for only two sets of entities have been considered at a time for resource allocation:

InPs and MVNOs, users and BSs, and so on. Therefore, in this chapter, we are moti-

vated to address resource allocation in wireless network virtualization by taking into
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account the three entities of abstraction: radio spectrum, physical infrastructure,

and mobile users. This calls for a three-sided matching model, unlike the two-sided

matching game that has been exploited mostly in the literature. Consequently, we

will be able to couple the virtual service generation by the MVNOs with the user

service management by the SPs.

Three-sided matching succeeds in modeling many real life situations like the

supplier-firm-buyer model [50] etc. A cyclic three-sided stable matching approach

for networking services has been discussed for the first time in [51], where a three-

sided matching problem has been formulated, by considering the cyclic three-sided

preferences in computer networking systems. The NP-completeness of determining

the existence of stable matching has been proved, and a restricted version of the

three-sided matching algorithm has been designed. This restricted algorithm has

been proved to arrive at stable matchings, and the effectiveness of the algorithm has

been shown through simulations in [51].

As discussed above, many of the existing research works have considered two-

sided matching games to achieve optimal resource allocation in wireless network vir-

tualization. However, according to my knowledge, a three-sided matching based ap-

proach considering the preferences of three sets of entities has not been considered

for resource allocation in wireless network virtualization. Therefore, along the lines

of the cyclic three-sided matching discussed in [51], we model the typical wireless

network virtualization scenario as a three-sided matching game between radio spec-

trum, physical infrastructure, and mobile users. We propose a restricted three-sided

formulation in order to always achieve stable results, and propose spectrum-oriented

and user-oriented algorithms to arrive at stable matchings.
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2.3 System Model

As already discussed, in wireless network virtualization, the MVNOs create

virtual resources from the physical infrastructure and radio spectrum resources, which

are then allocated to the SPs to serve the end users. The infrastructure and radio

resources are abstracted and split into slices by the MVNOs to facilitate virtualization

[11]. These slices are then utilized to serve the users by the SPs, thus ensuring

isolation from the underlying physical networks. Traditionally, the virtual resource

allocation and management are centrally handled by the wireless network controller,

as mentioned in Section 2.1, which decouples the virtual service generation from the

user resource management. Therefore, we propose a distributed resource allocation

framework which addresses this issue by modeling the virtual resource allocation as a

three-sided matching between the radio spectrum slices, physical infrastructure slices,

and mobile users. Even though the proposed approach gives a distributed solution

by considering the localized preferences of the parties involved, the wireless network

controller can still act as the entity to run the three-sided matching algorithm once

the preferences are collected, thus managing the virtual resources.

To this end, we consider a wireless network virtualization scenario as shown

in Fig. 2.1, with a set of K spectrum band slices, S = {s1, s2, ..., sK}, and a set of

N physical infrastructure slices, B = {b1, b2, ..., bN}. For brevity, the spectrum band

slices will be referred to as spectrum bands and the physical infrastructure slices will

be referred to as infrastructures henceforth. All the spectrum bands are assumed

to have identical bandwidth, and the infrastructures include BSs, access points, core

network elements and so on. The set of subscribed mobile users is represented by U =

{u1, u2, ..., uM}, where M is the number of all users subscribed to one particular SP.

The three-sided matching between S, B and U can be represented byM⊆ S×B×U .

Henceforth, we call S, B and U , the matching agents.
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Each spectrum band can be shared between multiple infrastructures, and is

limited by its maximum capacity, qsk = qs,∀k ∈ {1, 2, . . . , K} in its allocation to the

users. On the other hand, each infrastructure is shared between multiple spectrum

bands, and is limited by its maximum capacity, qbj = qb,∀j ∈ {1, 2, . . . , N}. In

addition, any particular spectrum band assigned to any particular infrastructure can

be shared between multiple users. In other words, the matching between the spectrum

bands, S, and the infrastructures, B, is a many-to-many matching, while the matching

between the (spectrum band (S), infrastructure (B)) pairs and the users, U , is a one-

to-many matching.

We begin by defining the performance metrics from the following two perspec-

tives: user experience and SP revenue.

2.3.1 User Experience

One of the most important aspects of wireless services, which the SPs are con-

cerned about is the user satisfaction or user experience. In order to enhance user

satisfaction, we can consider the users’ Signal to Interference Noise Ratio (SINR)

as the key metric, as it decides the bounds of the channel capacity, and hence, the

quality of the wireless service. Since the channel condition primarily depends on the

transmitter and the receiver rather than the characteristics of the utilized frequency

band, we define user experience as the SINR between the user and the infrastructure.

In this chapter, we specifically deal with the uplink transmission from the user to the

infrastructure. Hence, the SINR will be that received at the infrastructure. It can be

represented as

Γi,j =
Pi,jgi,j
σ2
I + σ2

N

, (2.1)

∀i ∈ {1, 2, . . . ,M}, and ∀j ∈ {1, 2, . . . , N}, where Γi,j is the received SINR of infras-
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tructure bj from user ui. Pi,j and gi,j are the transmitted power and the channel gain

between ui and bj, respectively. σ2
I represents the channel interference from the other

mobile users due to channel reuse, and σ2
N represents the channel noise.

2.3.2 SP Revenue

Another factor that we use to measure the system performance is the revenue

that the SPs earn from the users. The mandatory revenue is the incentive that

motivates SPs to provide better service to their subscribed users. We assume that

each user offers a price based on its desired rate and requirements. Hence, SPs would

naturally prefer serving the users with higher offers. We define the SP’s revenue,

RSP , as the summation of prices offered by the matched users minus the summation

of the costs paid to the MVNOs for the matched spectrum resources, which can be

represented as

RSP =
∑
ui∈U

Oi −
∑
sk∈S

Ck =
∑
ui∈U

αri −
∑
sk∈S

Ck, (2.2)

∀i ∈ {1, 2, . . . ,M}, and ∀k ∈ {1, 2, . . . , K}, where Oi is the price that user ui offers

to all spectrum bands, based on its desired transmission rate ri, α is the price per

Mbps, Ck is the price paid to the MVNO for spectrum band sk.

2.4 Problem Formulation

In the previous section, we discussed two performance metrics, which are both

essential for a good resource allocation scheme in wireless virtual networks. The

system objective in this chapter is designed as a combination of both performance

metrics. We define our system objective as the cost-performance under the three-sided

matching, CPsys, which is represented as
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CPsys =

∑
CP (i)

M
, (2.3)

∀i ∈ {1, 2, . . . ,M}. Here, the cost-performance of the system, CPsys, is the average

of the cost-performance values of all the users, where the cost-performance value of

user ui, CP (i), is given by

CP (i) =

∑
ρi,j,ksk log(1 + Γki,j)

Oi

, (2.4)

∀i ∈ {1, 2, . . . ,M}, ∀j ∈ {1, 2, . . . , N}, and ∀k ∈ {1, 2, . . . , K}. Here ρi,j,k is a binary

value, which is equal to 1, if user ui is utilizing frequency band sk for its downlink

transmission through infrastructure bj, and 0, otherwise. Γki,j represents the actual

SINR of user ui, if matched with infrastructure bj and spectrum sk (also considering

the interference from other users that share the same sk and bj), which is represented

as

Γki,j =
Pi,jgi,j
σ2
I + σ2

N

=
Pi,jgi,j∑

i′ 6=i ρi′,j,kPi′,jgi′,j + σ2
N

. (2.5)

Taking (2.3), (2.4) and (2.5) into consideration, we formulate the optimization

problem for our scenario, which is expressed as

max
ρi,j,k

CPsys, (2.6)

s.t.
∑
i,j

ρi,j,k ≤ qs, (2.7)

∑
i,k

ρi,j,k ≤ qb, (2.8)

Γi,j ≥ Γmin, and (2.9)

ρi,j,k ∈ {0, 1}, (2.10)
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∀i ∈ {1, 2, . . . ,M}, ∀j ∈ {1, 2, . . . , N}, and ∀k ∈ {1, 2, . . . , K}. Here (2.6) is the sys-

tem objective, which aims at maximizing the overall cost performance of the system,

which is equivalent to the data rate attained per unit price paid by user ui. (2.7) and

(2.8) satisfy the capacity constraints for spectrum sk and infrastructure bj, respec-

tively, where ρi,j,k is the binary value indicating downlink transmission, and qs and qb

are the maximum capacities of each spectrum and each infrastructure, respectively.

(2.9) states the minimum SINR requirement for the selection of infrastructure bj by

user ui, where Γmin is the minimum SINR threshold.

Obviously, this optimization problem is a Mixed Integer Non-Linear Program-

ming (MINLP) problem2, which is generally NP-hard to solve [52]. This motivates us

to adopt a feasible suboptimal solution. Therefore, we introduce the matching-theory

based distributed approach, the 3DSM model, which will be discussed in the next

section.

2.5 Three-sided Stable Matching Game

Three-sided relationships are very common in the social and economic domains,

e.g., the supplier-firm-buyer relationship, the kidney exchange problem, and so on.

Generally, the three-sided matching can be treated as the three-dimensional general-

ization of the Stable Marriage (SM) model [20], where the three types of matching

agents can be considered as men, women and dogs. This three-dimensional variant

of SM is usually referred to as a 3DSM problem. The 3DSM problem, also referred

to as the Three Gender Stable Marriage problem, was introduced by Knuth [53].

Primarily, there are two models of the 3DSM problem, depending on the nature

of the agents’ preference lists. For the first model, each agent might rank in the order

of preference, the pairs of other agents that they are ready to form triples with. In

2The nonlinearity is caused by Γk
i,j in the system objective.
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the second model, the preference lists of each type of agents include only one type of

agents (e.g., men rank only women in the order of preference, women’s lists contain

only dogs, and dogs rank only men), and is referred to as the 3DSM-CYC problem.

The 3DSM-CYC model was introduced by Ng and Hirschberg [54], as a re-

striction on the 3DSM model. As an intriguing variant of 3DSM, the 3DSM-CYC

problem refers to the case in which the matching agents’ preference lists comprise of

only one type of agents (instead of pairs of agents). However, the problem of deter-

mining whether a given instance of 3DSM-CYC admits a strongly stable matching is

NP-complete as studied by [55].

2.5.1 Stability

Consider the matching M, as mentioned in Section 2.3. Let T = S × B × U

denote the set of all possible triples. Hence, the matching M⊆ T , is a set of triples

from T . In order to understand the concept of stability for a three-sided matching,

we need to understand the idea of a blocking triple, which is as given in Definition

3.1.

Definition 2.1. Blocking Triple in 3DSM: A triple (sk, ui, bj) 6∈ M, but (sk, ui, bj) ∈

T , in which each of sk, ui, and bj, prefers triple (sk, ui, bj) to at least one of their

current matched partners.

To elaborate, a blocking triple consists of a spectrum, a user and an infrastructure,

each of which has the desire to get matched with each other as a triple, instead of

staying with the current matched partners inM. A matchingM is said to be stable

if there exists no blocking triple for M [51].
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2.5.2 TMSC Model

In [51], Cui and Jia studied an interesting variant of the 3DSM-CYC model, the

TMSC problem for three-sided networks. TMSC is different from traditional three-

sided matching problems, in that it allows each agent to have multiple partners.

We use our spectrum-user-infrastructure instance to explain the TMSC model.

In this instance, we assume that spectrums only rank users, users only rank infrastruc-

tures, and infrastructures only rank spectrums in their orders of preferences. Each

agent can be matched up to a limited number of the other type of agents, that it

ranks in the order of preference. The detailed definition of the TMSC model is given

in Definition 2.2.

Definition 2.2. Three-sided Matching with Size and Cyclic Preference

Problem: The three-sided matching problem of TMSC is to find a matching M =

{(sk, ui, bj)} with the maximum cardinality:

max |M|, (2.11)

s.t. N (M, sk) ≤ qs, (2.12)

N (M, ui) ≤ qu, and (2.13)

N (M, bj) ≤ qb, (2.14)

∀i ∈ {1, 2, . . . ,M}, ∀j ∈ {1, 2, . . . , N}, and ∀k ∈ {1, 2, . . . , K}, where N (M, x)

represents the number of partners that x has in the matching M3. (2.11) represents

the cardinality of the matchingM (the number of (sk, ui, bj) triples in the matching).

(2.12), (2.13) and (2.14) represent the constraints due to the maximum capacities of

spectrum, user and infrastructure, sk, ui and bj, respectively. Here, qs and qb are as

mentioned in Section 2.3. qu can be considered as the maximum budget of each user,

to purchase services from the SPs.

3Here partner refers to an agent of the type of agents in x’s preference list.
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TMSC is however, NP-hard [51]. Biro and McDermid studied in [55], that the

problem of deciding whether a stable matching exists in an instance of the Cyclic

3DSM problem with Incomplete lists (Cyclic 3DSMI) is NP-complete. TMSC is a

generalization of the 3DSMI problem according to [51], and hence, the same applies

to TMSC.

2.5.3 R-TMSC Model

As discussed above, even the process of determining whether a stable matching

exists for a TMSC model is NP-complete. Hence, we consider techniques to refine the

TMSC model to make it easily solvable. Therefore, we add a few reasonable restric-

tions as given below, and transform the TMSC problem into an R-TMSC problem:

(1) The preference lists of spectrums are derived from a master preference list. This

master list is the set of all users in strict order (e.g., according to the prices offered),

and the preference lists of all spectrums are derived from this master list, includ-

ing all or just part of it; (2) The infrastructures are indifferent with the spectrums,

i.e., for each infrastructure, the spectrums in its preference list form one tie. We

refer to this model, satisfying both (1) and (2), as the R-TMSC model. This model

will be discussed and modified to be implemented in our wireless network virtualiza-

tion resource allocation problem. Finding the maximum cardinality matching of the

R-TMSC problem is still NP-hard as proved in [51].

Taking the above mentioned restrictions into consideration, we build the R-

TMSC model for our scenario. Firstly, we construct the preference lists for each spec-

trum, user and infrastructure. As mentioned before, in the cyclic preference problem,

the preference lists of each type of agents include only one type of agents. Therefore,

the preference lists of spectrums consist of only users, users’ preference lists contain

only infrastructures, and infrastructures’ lists are comprised of only spectrums, all in

the order of preference.
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The preference list of each spectrum over the users is derived from a master

list, that ranks the users according to their offer prices, Oi, in descending order4. The

users who demand higher data rates will offer higher prices, and are more preferred

by the spectrums. All spectrums’ preference lists are derived from the master list,

and in our case, all spectrums create identical preference lists (we assume that all

users are acceptable by all spectrums) as

PLs(k, i) = Oi, (2.15)

∀i ∈ {1, 2, . . . ,M}, and ∀k ∈ {1, 2, . . . , K}.

On the other hand, the users rank the acceptable infrastructures according

to the service quality (the acceptable set is generated by applying (2.9)), which is

measured by SINR Γi,j
5. The SINR in turn decides the data rates for the wireless

service, and thus, the users indirectly choose the infrastructures according to the

expected data rates. We denote the preference lists for users as

PLu(i, j) = Γi,j, (2.16)

∀i ∈ {1, 2, . . . ,M}, and ∀j ∈ {1, 2, . . . , N}.

According to the R-TMSC model, the infrastructures are indifferent with the

spectrums. In other words, the preference list of any infrastructure consists of a tie,

with all spectrums ranked the same, which can be represented as

PLb(j, k) = 1, (2.17)

∀j ∈ {1, 2, . . . , N}, and ∀k ∈ {1, 2, . . . , K}.
4Here, since it is the SPs who provide services using the purchased spectrum bands, it is basically

the SPs that rank the users.
5We assume the interference, σ2

I = 0 in building the preference lists, since the matching actions
of other users are not known in advance to any user.
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2.5.4 Spectrum-oriented R-TMSC

After finishing the generation of all the agents’ preference lists, we propose our

spectrum-oriented R-TMSC algorithm. Slightly different from the R-TMSC algo-

rithm discussed in [51], we tailor it to fit our problem setting. Before moving on to

the algorithm, we define the following sets for an instance of R-TMSC and matching

M:

A+1(M, sk) = {ui|ui �sk M(sk), ui ∈ PLs} (2.18)

denotes the set of all users that spectrum sk prefers to its current partner M(sk),

A+1(M, ui) = {bj|bj �ui M(ui), bj ∈ PLu} (2.19)

denotes the set of all infrastructures that user ui prefers to its current partnerM(ui),

A−1(M, sk) = {bj|bj ∈ B, sk ∈ PLb,N (M, bj) < qb} (2.20)

represents the set of all infrastructures that still have capacity to accept spectrum sk,

and

A−2(M, sk) = {ui|A+1(M, ui) ∩ A−1(M, sk) 6= ∅, ui ∈ U} (2.21)

represents the set of all users, such that there exists an infrastructure bj that user ui

prefers to its current partnerM(ui), and infrastructure bj still has capacity to accept

spectrum sk.

Also, let SLu ⊆ PLu, SLb ⊆ PLb, and SLs ⊆ PLs, respectively, be sub-lists of

agents from the preference lists. We define Head(SLu, ui) as the elements (infrastruc-

tures) in SLu with the highest priority. Similarly, Head(SLb, bj) and Head(SLs, sk)

represent the spectrums in SLb and users in SLs with the highest priority, respec-

tively.

In light of these definitions, the basic idea of the spectrum-oriented R-TMSC

algorithm is to search for the “best” triple and add this triple to the matchingM each
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time, which starts from an empty set. Each “best” triple (in the form of (ui, bj, sk))

is generated by first selecting a spectrum satisfying certain requirements, and then

this selected spectrum chooses the best user that meets its requirements, and finally

this selected user picks the most eligible infrastructure. The detailed procedure is

described in Algorithm 2.1.

Algorithm 2.1 Spectrum-oriented R-TMSC Algorithm
Input: U , B, S
Output: M

1: Initialization;
2: Construct the preference lists PLu, PLb, and PLs;
3: M = ∅, flag = 1;
4: while flag == 1 do
5: flag = 0;
6: for each sk ∈ S do
7: U ′ = A+1(M, sk) ∩ A−2(M, sk);
8: if U ′ 6= ∅ then
9: ui = Head(U ′, sk);

10: B′ = A+1(M, ui) ∩ A−1(M, sk);
11: bj = Head(B′, ui);
12: if N (M, sk) == 1 then
13: M =M\{M(sk),M(M(sk)), sk};
14: flag = 1;
15: end if
16: if N (M, ui) == 1 then
17: M =M\{ui,M(ui), ∗};
18: flag = 1;
19: end if
20: M =M∪ {ui, bj, sk};
21: end if
22: end for
23: end while
24: Output stable matching M;

Algorithm 2.1 starts with an empty matchingM. U ′ = A+1(M, sk)∩A−2(M, sk),

as in line 7, searches for a better triple to improve M. If the if statement in line 8

holds true, then the lines till 21 are executed to updateM. This is done by selecting

a more preferred partner (user) for spectrum sk as in line 9, and then, selecting a

more preferred partner (infrastructure) for that user ui as in line 11. Finally, this

better triple is added to the matching M, as shown in line 20, and this is repeated

till we obtain the best triples. This algorithm is called spectrum-oriented R-TMSC

matching, since we choose a spectrum first to begin with, and then this spectrum
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chooses from its list of preferred users, and the users in turn select their preferred

infrastructures.

Theorem 2.3. The spectrum-oriented R-TMSC algorithm will stop and output a

stable matching after a finite number of steps.

Proof. Algorithm 2.1 refines a list of triples in each iteration and proceeds by adding

the best triple to an initially empty matching M, as in line 20. The while loop

goes on till the flag drops to 0. During each iteration, a user ui is assigned to

a better infrastructure bj in its preference list. Let spectrum sk be matched to a

user, say ux, but while doing these operations, this ux =M(sk) will be unmatched.

Necessarily, ui is better than ux for sk, i.e., ui �sk ux. Thus, a higher priority

user must be matched to a better infrastructure, whenever a matched user becomes

unmatched. As the number of users, and the number of infrastructures in each user’s

preference list is limited, the algorithm will stop after a finite number of steps. To

prove the stability, let us suppose that the output matching M from Algorithm 2.1

is unstable. This implies that there must be a blocking triple (ui, bj, sk) such that:

sk ∈ PLb, N (M, bj) < qb, bj �ui M(ui), and ui �sk M(sk). So ui ∈ A+1(M, sk),

bj ∈ A+1(M, ui), bj ∈ A−1(M, sk), and ui ∈ A−2(M, sk). Then A+1(M, sk) ∩

A−2(M, sk) 6= ∅ and A+1(M, ui) ∩ A−1(M, sk) 6= ∅. The algorithm will not stop in

such a case, and hence, this is a contradiction. Therefore, the output matching M

from Algorithm 2.1 is stable [51].

Theorem 2.4. The spectrum-oriented R-TMSC algorithm can always find a stable

matching in O(K
∑

ui∈U |PLu|) iterations.

Proof. During each iteration of Algorithm 2.1, at least one user will be assigned to its

most preferred infrastructure, if each infrastructure has a large capacity qb. Hence, the

maximum time required for this is decided by the total number of spectrum bands, K,

and the total number of users, M , which gives a time complexity of O(KM). However,
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when qb is small, at least one user is assigned to a better infrastructure in its preference

list during each for loop till the flag becomes 0 and the algorithm terminates. Even

in the worst case, each user is pre-matched to all the infrastructures in its preference

list, in the order of preference, while the algorithm runs. As a result, instead of M , the

lengths of the preference lists of the users decide the maximum time required, resulting

in a time complexity equal to O(K
∑

ui∈U |PLu|), where K
∑

ui∈U |PLu| ≤ |T | (|T |

is the total number of possible triples) [51].

Thus, when the number of entities is finite, we can see that the proposed

spectrum-oriented R-TMSC algorithm always arrives at a stable matching in a fi-

nite number of steps, which is decided by the number of spectrum bands and the

lengths of preference lists of the users, as proved in Theorem 2.3 and Theorem 2.4.

The obtained stable matching implies that none of the spectrum-user-infrastructure

triples have entities that prefer other partners to the currently matched partners.

This in turn implies that the spectrums (SPs) have been matched to users according

to their preferred offer prices, and the users have been matched to infrastructures

according to their preferred QoS, in a stable manner (the infrastructures are indif-

ferent with the spectrums, as discussed before). This demonstrates the existence of

a feasible algorithm considering the network slices (spectrum and infrastructure re-

sources) as well as the users, simultaneously, with an emphasis on the SP (spectrum)

perspective.

2.5.5 User-oriented R-TMSC

As in the case of spectrum-oriented R-TMSC, we define the following sets for

an instance of user-oriented R-TMSC and matching M:

A+1(M, ui) = {bj|bj �ui M(ui), bj ∈ PLu} (2.22)
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denotes the set of all infrastructures that user ui prefers to its current partnerM(ui),

A+1(M, bj) = {sk|sk ∈ PLb,N (M, bj) < qb} (2.23)

denotes the set of all spectrums in the preference list of infrastructure bj,

A−1(M, ui) = {sk|sk ∈ S, ui ∈ PLs,N (M, sk) < qs} (2.24)

represents the set of all spectrums that still have capacity to accept user ui,

A−2(M, ui) = {bj|A+1(M, bj) ∩ A−1(M, ui) 6= ∅, bj ∈ B} (2.25)

represents the set of all infrastructures, such that there exists a spectrum sk in the

preference list of infrastructure bj, and spectrum sk still has capacity to accept user

ui.

The other definitions are the same as those in the case of spectrum-oriented

R-TMSC. The objective of the user-oriented R-TMSC algorithm is also to search for

the “best” triple and add this triple to the matching each time, which starts from an

empty set. Each “best” triple (in the form of (ui, bj, sk)) is generated by first selecting

a user satisfying certain requirements, and then this selected user chooses the best

infrastructure that meets its requirements, and finally, this selected infrastructure

picks an arbitrary spectrum from its preference list (since we assume plausibly that

the infrastructures are indifferent with the spectrums). The detailed procedure is as

described in Algorithm 2.2.

Similar to the spectrum-oriented R-TMSC algorithm, Algorithm 2.2 starts with

an empty matching M. B′ = A+1(M, ui) ∩ A−2(M, ui) as in line 7 searches for a

better triple to improve M. If this set B′ 6= ∅, then the for loop continues to

updateM. Since we focus on the users to begin with the process, it is called a user-

oriented R-TMSC matching. These users then choose from their lists of preferred

infrastructures, and the infrastructures in turn select arbitrary spectrums from their

preference lists, as they are indifferent with spectrums in R-TMSC.
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Algorithm 2.2 User-oriented R-TMSC Algorithm
Input: U , B, S
Output: M

1: Initialization;
2: Construct the preference lists PLu, PLb, and PLs;
3: M = ∅, flag = 1;
4: while flag == 1 do
5: flag = 0;
6: for each ui ∈ U do
7: B′ = A+1(M, ui) ∩ A−2(M, ui);
8: if B′ 6= ∅ then
9: bj = Head(B′, ui);

10: S ′ = A+1(M, bj) ∩ A−1(M, ui);
11: Select arbitrary sk from S ′;
12: if N (M, ui) == 1 then
13: M =M\{ui,M(ui),M(M(ui))};
14: flag = 1;
15: end if
16: if N (M, bj) == 1 then
17: M =M\{∗, bj,M(bj)};
18: flag = 1;
19: end if
20: M =M∪ {ui, bj, sk};
21: end if
22: end for
23: end while
24: Output stable matching M;
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As in the case of spectrum-oriented R-TMSC, the following can be easily proved

for user-oriented R-TMSC:

• The user-oriented R-TMSC algorithm will stop and output a stable matching

after a finite number of steps.

• The user-oriented R-TMSC algorithm can always find a stable matching in

O(M
∑

bj∈B |PLb|) iterations.

Similar to the spectrum-oriented R-TMSC algorithm, the proposed user-oriented

R-TMSC algorithm also always arrives at a stable matching in a finite number of

steps, which is decided by the number of users and the lengths of preference lists of

the infrastructures. The obtained stable matching implies that the users have been

matched to infrastructures according to their preferred QoS, and the spectrums have

been matched to users according to their preferred offer prices, in a stable manner.

This presents another feasible algorithm from the perspective of the users instead of

the SPs.

2.5.6 Convergence

Even though the proposed R-TMSC algorithms are distributed approaches, once

the preference lists are created, the matching algorithm can be run offline at an entity

like the wireless network controller, and is not iterative. Also, since each entity needs

to rank only a few entities which are accessible, the preference lists would not be too

long, and the algorithm can converge [51] in a few ms on a large-scale processor (given

that the algorithm converged for around 200 users in almost 800 ms in our small-scale

processor). However, user mobility can lead to changes in preference lists of different

entities. We can either run the three-sided matching algorithm repeatedly, or use

algorithms such as the Roth-Vande Vate (RVV) algorithm, which can transform a
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(a) Overall user throughput.
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Figure 2.2: User throughput analysis.

random matching into a stable matching [49], for dynamically adapting to the changes

due to user mobility in our future work.

2.6 Performance Evaluation

In this section, we evaluate the proposed spectrum-oriented R-TMSC algorithm

by comparing it with the user-oriented R-TMSC algorithm, a decoupled allocation,

as well as a random allocation, through MATLAB simulations.
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The spectrum-oriented R-TMSC algorithm operates by adding a triple to the

matching each time, while the triple is generated by finding a qualified spectrum

first, and then the best qualified user for this spectrum, and finally the best qualified

infrastructure for this user. Similarly, the user-oriented R-TMSC operates by adding

one triple each time, but the triple is generated from one qualified user, followed by

finding the best qualified infrastructure for this user, and a random qualified spectrum

for this infrastructure. We compare the performance of the proposed algorithms with

that of a decoupled allocation scheme, which decouples the virtual service generation

from the user service management, emulating the traditional centralized allocation by

the wireless network controller. For simplicity, we follow the assumption that the in-

frastructures are indifferent with the spectrums as considered in the R-TMSC scheme,

to form spectrum-infrastructure pairs. These resource pairs are then matched with

the users using the Gale-Shapley algorithm, which is used to find a stable solution for

two-sided matching problems [20]. For comparison purposes, we also consider a ran-

dom allocation approach, which randomly matches users to spectrum-infrastructure

pairs.

We assume a circular cellular network with a radius of R = 800 m, consisting

of M ∈ [50, 210] mobile users, N = 5 infrastructures and K = 20 spectrum bands.

The bandwidth of each spectrum band is set to be 5 MHz. The capacity of each

infrastructure is 44 Mbps, while the capacity of each frequency band is 11 Mbps. The

minimum SINR requirements for all mobile users are set at an identical value of 25

dB. For the propagation gain g = Cβζd−α, we set the path loss constant C as 10−2,

the multipath fading gain β as the exponential distribution with unit mean, and the

shadowing gain ζ as the log-normal distribution with 4 dB deviation and the path

loss exponent α as 4.

In Fig. 2.2a and Fig. 2.2b, the overall and average throughput of users are eval-

uated. We increase the user numbers from 50 to 210 by a step size of 20. As shown
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Figure 2.3: User satisfaction.

in Fig. 2.2a, the network throughput increases under all four schemes as more users

join the network. It is reasonable, since spectrum is reused between users who share

the same infrastructure and spectrum, which improves the spectrum efficiency. On

the other hand, Fig. 2.2b shows that the average user throughput decreases as more

users get matched to the available spectrum and infrastructure resources. It is due

to the interference caused by the users who share the same resources. We can also

observe from Fig. 2.2a and Fig. 2.2b that spectrum-oriented R-TMSC outperforms

user-oriented R-TMSC slightly, and both outperform the decoupled and random al-

locations.

Fig. 2.3 gives another insight on the system performance from the perspective

of user satisfaction. In this chapter, we consider the user satisfaction percentage as

the ratio between the actual transmission rate and the expected transmission rate.

As discussed in Section 2.1, users make offers to the SPs according to the expected

rates. As a result, the users who have higher rate demands will offer higher prices, and

thus, are more preferred by the SPs and are better served by allocating resources.

It is obvious that as more users join, the user satisfaction decreases. With more

users sharing the same radio and infrastructure resources, the interference grows,
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Figure 2.4: SP revenue.
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Figure 2.5: System cost-performance.

leading to a performance degradation. However, the spectrum-oriented algorithm

still outperforms the user-oriented one, and both demonstrate better results than the

decoupled and random allocations.

Fig. 2.4 compares the four methods in terms of the revenue of the SPs. The SP

revenue is calculated as the total income obtained by providing service to matched

users using the purchased spectrum resources. Accordingly, more users, more overall

revenue. We can see that, apart from random allocation, the other three algorithms

achieve more or less the same SP revenue.
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Figure 2.6: Algorithm run time.
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Figure 2.7: Cardinality of output matching.

In Fig. 2.5, we analyze the cost-performance of the system. As defined in

Section 2.4, the system objective is to optimize the system cost-performance, which

is the actual transmission data rate of each user over its offer price, averaged over all

users (average data rate/unit price). The cost-performance metric not only indicates

how good the users are performing, but also conveys the benefits earned by the SPs.

As can be seen from the figure, it decreases as more users join. This is caused by the

average user throughput decrease as indicated in both Fig. 2.2b and Fig. 2.3. The

spectrum-oriented algorithm again proves itself to be better than the user-oriented
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algorithm, and both matching algorithms beat the decoupled and random allocations.

Fig. 2.6 compares the run times of the four algorithms for M ∈ [50, 210] mobile

users, N = 5 infrastructures and K = 20 spectrum bands. Undoubtedly, the exe-

cution time increases as the number of users increases. The difference in run times

between the spectrum-oriented algorithm and the other schemes also grows with the

number of users. Besides, spectrum-oriented R-TMSC takes 100 ms less than the

other algorithms to finish, which is a huge margin in the wireless communication

scenario.

Fig. 2.7 illustrates the cardinality of the output matching on the number of

users, which indicates the number of users served. We increase the user numbers from

50 to 450 by a step size of 20. We can observe from the figure that the spectrum-

oriented R-TMSC, user-oriented R-TMSC and the decoupled methods serve all the

users, till the number of users is almost 200. Thereafter, the spectrum-oriented and

user-oriented algorithms level off at serving around 220 users, as the number of users

increases further. This is due to the limited spectrum and infrastructure resources

available. The decoupled allocation has a falloff after around 220 users. The random

allocation performs poorly throughout.
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Fig. 2.8 shows the cardinality (number of users served) of the spectrum-oriented

R-TMSC algorithm on the number of users for four different cases: K = 10, K =

15, K = 20 and K = 30. N = 5 in all of these cases. It can be noticed from the

figure that all the users are served in all four cases, until the number of users reaches

a particular value. For the K = 10 case, the maximum number of users served is

110, whereas for K = 15, it is 165, and it is 220 for the K = 20 and K = 30 cases.

Evidently, for the given number of infrastructures (N = 5), as the number of spectrum

bands increases, more number of users can be served.

2.7 Conclusion

In this chapter, we propose a matching-based framework for resource alloca-

tion in wireless network virtualization. Utilizing a variant of the 3DSM model, the

R-TMSC model, we formulate the relations between the radio resources, physical

infrastructure and mobile users. The proposed spectrum-oriented and user-oriented

R-TMSC algorithms are proved to always generate stable matching results in a fi-

nite number of steps. Simulation results validate the effectiveness of the proposed

matching-based approaches compared to the traditional centralized methods. The

spectrum-oriented R-TMSC algorithm enhances the user throughput and satisfac-

tion, as well as the system cost-performance. It also runs faster than traditional

methods, with the run time margin increasing along with the number of users. More-

over, for a given amount of resources, the proposed algorithms serve more number of

users than the traditional decoupled and random allocations.
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Chapter 3

Virtual Core Network Resource Allocation in 5G

Systems using Three-Sided Matching

3.1 Introduction

One of the implementations of virtualization in next generation mobile networks

is the paradigm known as Network Function Virtualization (NFV). NFV has been

coined as a technique to decouple physical network infrastructure from the network

functions that run on top of it [56]. NFV allows various mobile network components to

be virtualized and placed as software components on top of a virtualization platform

[57]. As a result, NFV facilitates flexible provisioning of network functionalities, thus

maximizing the network resource utilization and minimizing the service costs [58].

NFV is among the prime enablers of 5G networks, where a particular service

can be disintegrated into a set of Virtual Network Functions (VNFs), which can be

implemented in software hosted on Cloud Networks (CNs). Virtualization in 5G sys-

tems will cover the Radio Access Network (RAN) and the Core Network (Evolved

Packet Core (EPC) and 5G Core). The EPC components which will be virtualized are

Mobility Management Entity (MME), Home Subscriber Sub-system (HSS), Serving

Gateway (SGW), and Packet Data Network Gateway (PGW). The 5G Core com-

ponents which are going to be virtualized include Access and Mobility Management

Function (AMF), Session Management Function (SMF), Authentication Server Func-

tion (AUSF), and User Plane Functions (UPF). Virtual instances of these components

will be initiated and hosted in federated cloud networks, which form the virtual EPC

(vEPC)/5G Core network [57].

The RAN of next generation networks consists of a set of Tracking Areas (TAs)

as per Release 8 of the 3GPP mobile network specifications [57], which are groups
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of cells that are under the coverage of a set of eNodeBs (BSs). The MVNO com-

municates its resource needs based on user traffic requirements in the TAs to the

NFV Orchestrator (NFVO), which then converts these resource needs into software

component requirements to be initiated in the network. The software components

are Virtual Machines (VMs) in the CNs, which host the required instances of VNFs

according to the needs of the user traffic in the TAs.

As discussed in Chapter 2, the centralized allocation of virtual resources us-

ing the NFVO does not have the flexibility demanded by user specific requirements

and user mobility. Moreover, resource allocation solutions are moving towards more

distributed methods due to the high computational complexity and communication

overhead of centralized allocations. Among these methods, a popular approach is

matching theory, which provides distributed solutions while considering the local-

ized preferences of all the entities involved [17]. Accordingly, we propose a resource

allocation framework for NFV based on three-sided matching, by considering the in-

terrelationships between the three sets of entities: TAs, VNF instances, and CNs.

The contributions of this chapter can be summarized as below:

• A distributed resource allocation framework is proposed for NFV in 5G vEPC,

by modeling the interactions between the TAs, VNF instances, and CNs using

three-sided matching.

• Similar to Chapter 2, the TMSC model is considered here, as it allows each

agent to have multiple partners. However, since the process of determining

whether a stable matching exists for a TMSC model itself is NP-complete, we

transform it into an R-TMSC problem by adding a few plausible restrictions.

• The R-TMSC model can be solved by the proposed algorithm, and a stable

solution is always guaranteed. The effectiveness of the proposed algorithm is

verified via simulations.
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The rest of this chapter is organized as follows. Some of the relevant previous

works are discussed in Section 3.2. The system model is presented in Section 3.3, and

the problem is formulated in Section 3.4. We perform the algorithm analysis in Section

3.5, where firstly, we discuss the three-sided stable matching game for the considered

scenario in Section 3.5.1. Secondly, we introduce the TMSC model for the NFV

resource allocation scenario in Section 3.5.2, and then, discuss the proposed R-TMSC

model in Section 3.5.3. Finally, we perform a detailed analysis of the algorithm in

Section 3.5.4. Thereafter, we demonstrate the performance of our proposed algorithm

through simulation results in Section 3.6. The chapter is concluded in Section 3.7.

3.2 Related Work

Resource allocation in wireless network virtualization is a popular area among

researchers. An information-centric wireless network virtualization architecture for

5G mobile wireless networks is proposed in [59]. The application of network virtual-

ization in smart cities by enabling the use of 5G is discussed in [60], and [61] discusses

a user mobility and service usage oriented approach for wireless virtual networks. An

auction based model for maximizing the network revenue, and dynamic allocation of

resources to different network slices are discussed in [38] and [39], respectively.

A lot of prominent research has been going on with regard to NFV as well.

Reference [62] discusses autonomic placement of VMs according to the policies of the

CN providers, and [63, 64] propose solutions for cloud federation formation. Some

of the research works on the placement of VNFs for the vEPC/5G Core are [65–67],

which focus mainly on SGW placement, PGW placement, and load-aware dynamic

placement of SGW/PGW, respectively. The aforementioned works deal with either

determining the optimal number of VNFs or VNF placement in the CNs. Reference

[57] proposes a solution to address both by firstly, determining the optimal number
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Figure 3.1: 5G network before EPC virtualization.

of VM instances for each VNF, and then, placing these VNF instances on CNs.

However, as per my knowledge, a framework to perform resource allocation in

NFV by jointly considering both the user traffic requirements for VNF instances, and

their placements in different CNs, has not been proposed. Here, we integrate these

two aspects by harnessing the advantages of matching theory, which is a framework

that provides feasible solutions based on the mutually beneficial relationships between

different sets of entities. Accordingly, in this chapter, we propose a three-sided match-

ing based framework for resource allocation in NFV, which considers three important

sets of entities in a vEPC/5G Core network: TAs, VNF instances, and CNs. Even

though my focus here will be on vEPC, the proposed solution can be easily extended

to 5G Core VNFs.

45



3.3 System Model

We consider a wireless network virtualization scenario in which the BSs in the

RAN are organized in TAs [57]. As mentioned before, the EPC components of 5G

will be virtualized and hosted in a federated cloud network. Therefore, the initial

step in resource allocation is determining the optimal number of instances for each

VNF: MME, HSS, SGW, and PGW, and then, deploying them according to the

requirements of the TAs.

Here, we consider a network with U users, T TAs, V total instances of all the

VNFs deployed at a given time, and C CNs that belong to different cloud network

operators, as shown in Fig. 3.1. As in any wireless scenario, the main objective is

to enhance the user experience by keeping the overall costs at a minimum. We can

consider the users’ SINR as the key metric for user satisfaction, since it determines

the channel capacity bounds. This in turn decides the data rates received by the

users, and hence, the overall QoS.

Hence, the price paid by user l for the services received in TA i is given by

Rl
i = tlir

l
i, (3.1)

where tli is the price per Mbps in TA i for user l, and rli is the data rate (indicative

of the SINR and thus, the QoS) in Mbps in TA i for user l.

The service requirements of the traffic generated by the users in a TA are

addressed by the different instances of the initiated VNFs. Hence, the utility of TA

i can be represented as the revenue obtained from the users minus the price paid for

the service of the VNFs, as

U i
TA =

Ui∑
l=1

tlir
l
i − (αimj + βisj + γipj + δihj), (3.2)

where Ui is the total number of users in TA i, mj, sj, pj, and hj are the service prices
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of the VNF instances (MME, SGW, PGW, and HSS, respectively) that serve TA i,

and αi, βi, γi, and δi are scalars which indicate what part of the services of these

VNF instances are occupied by the traffic requirements from TA i (multiple TAs can

be served by the same instance of a VNF). If TA i doesn’t use the service of any one

or more of these VNF instances, the scalars associated with those instances are set

to 0.

Subsequently, these VNF instances are hosted in CNs managed by different

operators. The amount of virtual resources (CPU, memory, storage etc.) allocated to

each instance of each VNF is called flavor, and each flavor is dedicated to a specific

VM in the CN. Thus, the utility of VNF instance j can be expressed as the difference

between the revenue obtained from the TAs and the price paid for the assigned flavors

in CN k, as

U j
V NF =

T∑
i=1

κivj − f jkc
j
k, (3.3)

where κivj = αimj or βisj or γipj or δihj, when the VNF instance is an MME, SGW,

PGW or HSS, respectively. f jk = θΓjk is the number of flavors assigned to VNF

instance j, which is proportional to the average SINR (QoS) between CN k and the

users in TAs served by VNF instance j, Γjk, and θ is a scalar. cjk is the cost/flavor for

VNF instance j in CN k.

Finally, the utility of CN k can be described as the revenue from the VNF

instances minus the operating costs of the cloud network, and can be written as

Uk
CN =

V∑
j=1

(f jkc
j
k − o

j
k − d

j
k), (3.4)

where ojk = f jkθ
j
k denotes the operating costs of CN k in hosting VNF instance j,

where θjk denotes the operating costs per flavor of CN k in hosting VNF instance j.

djk = njk + qjk denotes the costs of service delay, where njk is the cost due to network
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delay, and qjk is the cost due to queuing delay at the CN servers.

Considering (3.2), (3.3), and (3.4), and summing up over all the T TAs, V VNF

instances, and C CNs will give us the total utility of the virtual network as

UV N =
T∑
i=1

U i
TA +

V∑
j=1

U j
V NF +

C∑
k=1

Uk
CN =

T∑
i=1

Ui∑
l=1

tlir
l
i −

C∑
k=1

V∑
j=1

(ojk + djk), (3.5)

where the first term indicates the total service price paid by all the users in all the

TAs in the RAN and the second term indicates the total overall costs of the federated

cloud network.

3.4 Problem Formulation

As mentioned before, the main objective from the perspective of the network

is to maintain the user experience at a good level, while simultaneously keeping the

overall costs at a minimum. In this regard, we express the optimization problem of

the virtual network as

max
rli

UV N =
T∑
i=1

Ui∑
l=1

tlir
l
i −

C∑
k=1

V∑
j=1

(ojk + djk),

s.t.


tli ≤ tthi ,

djk ≤ dthk ,

ojk ≤ othk ,

(3.6)

where the first constraint is to keep the price per Mbps in TA i for each user below the

threshold value for TA i, tthi . The second and third constraints are to keep the costs

of service delay and operating costs for each instance, djk and ojk, below the respective

threshold values, dthk and othk , in CN k.

In order to achieve this, the TAs need to be assigned to the VNF instances ac-

cording to the user traffic requirements in the TAs. Subsequently, the VNF instances

need to be deployed in the CNs according to the flavor requirements of the instances.
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In order to achieve this, we need a distributed algorithm that takes into account the

requirements of all the three entities involved. Hence, we introduce the three-sided

matching based approach in the next section.

3.5 Algorithm Analysis

Here, we discuss the proposed algorithm in detail, where we introduce the three-

sided stable matching game for the considered scenario in Section 3.5.1. Then, we

discuss the TMSC and R-TMSC models in Section 3.5.2 and Section 3.5.3, respec-

tively, and finally, perform an analysis of the proposed algorithm in Section 3.5.4.

3.5.1 Three-sided Stable Matching Game

In this chapter, let the three-sided matching between the T TAs, V VNF in-

stances and C CNs be denoted by M ⊆ T × V × C, where T , V , and C are the sets

of TAs, VNFs instances, and CNs considered at a given time, respectively. Here,

M is a set of triples from T × V × C. For the considered NFV scenario, a blocking

triple consists of a TA, a VNF instance and a CN, each of which has the desire to

get matched with each other as a triple, instead of staying with the current matched

partners in M. A matching M is said to be stable if there exists no blocking triple

for M [51].

3.5.2 TMSC Model

Chapter 2 discussed the TMSC problem in detail, which allows each agent to

have multiple partners. In order to explain the TMSC model for the NFV resource

allocation scenario, we consider the triple (TA i, VNF instance j, CN k), and denote

it as (Ti, Vj, Ck). Here, we assume that TAs only rank VNF instances, VNF instances

only rank CNs, and CNs only rank TAs in their orders of preferences, and that each
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agent can be matched to a limited number of the other type of agents which it ranks.

The detailed definition is given as follows.

Definition 3.1. Three-sided Matching with Size and Cyclic Preference:

The three-sided matching problem of TMSC is to find a matching M = {(Ti, Vj, Ck)}

with the maximum cardinality:

max |M|,

s.t.


N (M, Ti) ≤ qTi ,
N (M, Vj) ≤ qVj ,
N (M, Ck) ≤ qCk ,

(3.7)

∀i ∈ {1, 2, . . . , T}, ∀j ∈ {1, 2, . . . , V }, and ∀k ∈ {1, 2, . . . , C}, where N (M, x) rep-

resents the number of partners that x has in the matching M. |M| represents the

cardinality of the matching M, which is the number of (Ti, Vj, Ck) triples in the

matching. The constraints represent the capacity limitations of TA Ti, VNF instance

Vj, and CN Ck, respectively. The problem of deciding whether a stable matching

exists in an instance of TMSC is NP-hard [51], as discussed in Chapter 2.

3.5.3 R-TMSC Model

Due to the aforementioned NP-completeness of the TMSC model, we need to

perform some refinement in order to make it easily solvable. Accordingly, a few

plausible restrictions are added to the TMSC problem to transform it into an R-

TMSC problem. The assumptions are: (1) the preference lists of TAs are derived

from a master preference list, which is the set of all VNF instances in strict order;

(2) the CNs are indifferent with the TAs (for each CN, the TAs in its preference list

form one tie). Considering these restrictions, the R-TMSC model for the considered

scenario is built.

Firstly, we create the preference lists for each of the TAs, VNF instances and

CNs. Since this is a cyclic preference problem, the preference lists of TAs consist
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of only VNF instances, VNF instances’ preference lists contain only CNs, and CNs’

lists are comprised of only TAs, all in the order of preference. The preference list

of each TA over the VNF instances is derived from a master list that ranks the

instances according to their service costs, vj, in ascending order. Each TA creates

its preference list from this master list according to the user traffic requirements for

the VNF instances (vj can be mj, sj, pj, and/or hj, accordingly), and preferring the

instances offering cheaper service costs as

PLT (i, j) = vj. (3.8)

Similarly, the VNF instances create their preference lists by ranking the CNs

in the descending order of the offered QoS (SINR), which is decided by the flavors

assigned by the CNs [57] (the better the SINR, the better they can serve the users in

the TAs) as

PLV (j, k) = Γk. (3.9)

According to our assumption of the R-TMSC model, the CNs are indifferent

with the TAs. In other words, the preference list of any CN consists of a tie with all

TAs ranked the same, which can be represented as

PLC(k, i) = 1. (3.10)

3.5.4 Algorithm Analysis

Once the preference lists are created, the R-TMSC algorithm for the three-

sided matching of the TAs, VNF instances, and CNs can be executed. The R-TMSC

algorithm discussed in [51] is modified according to our scenario. The following sets
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TAs, VNF instances, and CNs are matched to each other as per their preference lists  

Figure 3.2: 5G network after EPC virtualization.

for matching M and an instance of R-TMSC are defined:

A+1(M, Ti) = {Vj|Vj �Ti M(Ti), Vj ∈ PLT} (3.11)

denotes the set of all VNF instances that TA Ti prefers to its current partnerM(Ti),

A+1(M, Vj) = {Ck|Ck �Vj M(Vj), Ck ∈ PLV } (3.12)

denotes the set of all CNs that VNF instance Vj prefers to its current partnerM(Vj),

A−1(M, Ti) = {Ck|Ck ∈ C, Ti ∈ PLC ,N (M, Ck) < qCk} (3.13)

represents the set of all CNs that still have capacity to accept TA Ti,

A−2(M, Ti) = {Vj|A+1(M, Vj) ∩ A−1(M, Ti) 6= ∅, Vj ∈ V} (3.14)

represents the set of all VNF instances, such that there exists a CN Ck that VNF

instance Vj prefers to its current partner M(Vj), and CN Ck still has capacity to

accept TA Ti.

Additionally, let the sub-lists of agents from the preference lists be denoted as

SLT ⊆ PLT , SLV ⊆ PLV , and SLC ⊆ PLC , respectively. We define Head(SLV , Vj)
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as the elements (CNs) in SLV with the highest priority. Similarly, Head(SLC , Ck) and

Head(SLT , Ti) represent the TAs in SLC and VNF instances in SLT with the highest

priority, respectively. Given these quantities, the algorithm basically searches for the

“best” triple and adds this triple to the matchingM (starts from an empty set) each

time. Each “best” triple, in the form of (Vj, Ck, Ti), is generated by initially selecting

a TA satisfying certain requirements, followed by this selected TA choosing the best

VNF instance that meets its requirements, and finally this selected VNF instance

choosing the most eligible CN. The detailed procedure is described in Algorithm 3.1.

The network after the implementation of the proposed three-sided matching algorithm

is shown in Fig. 3.2.

Algorithm 3.1 R-TMSC Matching Algorithm for 5G vEPC
Input: V , C, T
Output: M

1: Initialization;
2: Construct the preference lists PLV , PLC , and PLT ;
3: M = ∅, flag = 1;
4: while flag == 1 do
5: flag = 0;
6: for each Ti ∈ T do
7: V ′ = A+1(M, Ti) ∩ A−2(M, Ti);
8: if V ′ 6= ∅ then
9: Vj = Head(V ′, Ti);

10: C ′ = A+1(M, Vj) ∩ A−1(M, Ti);
11: Ck = Head(C ′, Vj);
12: if N (M, Ti) == 1 then
13: M =M\{M(Ti),M(M(Ti)), Ti};
14: flag = 1;
15: end if
16: if N (M, Vj) == 1 then
17: M =M\{Vj,M(Vj), ∗};
18: flag = 1;
19: end if
20: M =M∪ {Vj, Ck, Ti};
21: end if
22: end for
23: end while
24: Output stable matching M;
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Figure 3.3: Average data rate provided by CNs.
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Figure 3.4: User satisfaction.
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Figure 3.5: Cardinality of output matching.

3.6 Simulation Results

In this section, we evaluate the proposed R-TMSC algorithm by comparing it

with a centralized random allocation of the available sets of entities, through MAT-

LAB simulations. The comparison with a centralized random allocation is plausible

to draw a contrast with the proposed distributed approach, and due to the unavail-

ability of comparable benchmarks in literature. We consider part of a RAN with a

radius of R = 1 km, consisting of T = 20 TAs, C = 5 CNs and V ∈ [50, 450] VNF

instances. The bandwidth of each frequency band used is set to 100 MHz. The ca-

pacity of each CN is set to 400 Mbps, while the capacity of each TA is set to a value

of 100 Mbps. The minimum SINR requirement for the mobile users in all the TAs is

set at a uniform value of 25 dB.

Fig. 3.3 shows that the average data rate offered by the CNs decreases as more

VNF instances get matched to the available TAs and CNs. We can also observe

that the proposed R-TMSC algorithm outperforms the random allocation, as it takes

into account the localized preferences of all the entities. However, as the number of

instances increases, the performance of the proposed algorithm becomes comparable
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to that of the random allocation due to the capacity limits of the considered entities.

Fig. 3.4 demonstrates the user satisfaction, which is defined here as the ratio

between the actual data rate and the expected data rate from the CNs to the VNF

instances, which in turn, is for serving the user traffic requirements. We can see that

the user satisfaction drops as more number of VNF instances get initiated. Also, the

performances of both algorithms become comparable with increase in the number of

instances due to the considered capacity limits, similar to Fig. 3.3.

Fig. 3.5 illustrates the cardinality of the output matching, which indicates the

number of initiated VNF instances that are hosted in CNs. We can observe that

the R-TMSC algorithm matches all the VNF instances to CNs, till the number of

instances is almost 425. Thereafter, as the number of instances increases further, the

algorithm levels off at serving around 425 users, as there are only limited numbers of

available TAs and CNs. The R-TMSC algorithm outperforms the random allocation

by a huge margin.

3.7 Conclusion

In this chapter, we propose a three-sided matching based framework for resource

allocation in NFV. The relationships between the TAs, VNF instances, and CNs in

a vEPC/5G Core network are modeled by utilizing a variant of the 3DSM problem

called the R-TMSC problem. The proposed R-TMSC algorithm will always generate

stable matching results in a finite number of steps. The simulation results illustrate

the effectiveness of the proposed framework compared to a centralized random allo-

cation approach. The proposed method improves the average capacity provided by

the CNs as well as the user satisfaction. Additionally, more number of VNF instances

are hosted in CNs through the R-TMSC algorithm.
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Chapter 4

Pricing and Resource Allocation Optimization for

IoT Fog Computing and NFV: An EPEC and

Matching Based Perspective

4.1 Introduction

The advent of the Internet of Things (IoT) brings about massive internetworking

of devices that we use in our everyday lives. This gives rise to the need for storing and

processing tremendous amounts of data efficiently [68]. The handling of such a large

amount of data can be realized by cloud computing [69], by providing the required

resources for the users to access various applications on demand. Additionally, the

heterogeneity of applications in IoT calls for the virtualization of wireless networks,

which leads to better flexibility and management through the abstraction and sharing

of resources [10]. As mentioned in previous chapters, wireless network virtualization

involves the sharing of the physical substrate network by multiple virtual networks,

and to facilitate this, both spectrum and infrastructure resources are isolated and

split into slices [8, 11].

Virtualization is one of the key driving forces of 5G mobile networks, which aims

at delivering extremely high capacity, low latency, and high device density per area.

Specifically, NFV is a paradigm which decouples the physical network infrastructure

from the network functions that run on it [56], as seen in Chapter 3. The different

services are disintegrated into VNFs, and are placed on top of a virtualization platform

as software components on CNs [57,58]. The increase in the demand for storage and

processing capabilities due to the provisioning of 5G services can be addressed by

similar convergence of network and cloud infrastructures [70].

However, the processing requirements vary according to the applications, with
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some applications demanding faster processing speeds than others [71]. Traditionally,

the large-scale data centers built by the Data Service Operators (DSOs) to meet the

processing needs of the Authorized Data Service Subscribers (ADSSs) are far from

the ADSSs. In the light of the fast processing demands of next generation networks,

computation resources are being moved to the edge of the network. This concept is

known as fog computing [72], in which a number of small-scale but flexible computing

devices called Fog Nodes (FNs) are deployed close to the ADSSs. These micro clouds

are also known as edge clouds or cloudlets, as they have lesser computing resources

compared to data center based clouds and are deployed at the network edge [73]. Due

to their proximity to the ADSSs, the FNs can provide data services with low latency

and low transmission costs [74].

Considering the heterogeneity and complexity of IoT applications, an integra-

tion of the fog computing technology with NFV is inevitable for rendering computa-

tion flexibility and scalability in next generation networks. As a result, an efficient

resource allocation solution for a fog enabled NFV platform needs to effectively model

the interactions between the different sets of entities: DSOs, ADSSs, and FNs, as well

as enable the DSOs to allocate resources from the FNs as per the VNF requirements

of the ADSSs.

The DSOs and ADSSs in a typical fog computing scenario are autonomous enti-

ties that try to maximize their own profits. The DSOs try to allocate resources from

the FNs at prices which favor them, and the ADSSs purchase these resources accord-

ing to their own benefits. However, the maximization of profit for one DSO might

affect the profits of other DSOs. Also, if one ADSS tries to maximize the amount

of purchased resources at a given price, it might affect the amount of computing re-

sources available to the other ADSSs. Therefore, in order to reach a stable and social

optimum, we need to model the competition among them, and find an equilibrium

solution.
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Modeling this competition results in an Equilibrium Problem with Equilibrium

Constraints (EPEC), which is a hierarchical optimization problem with equilibria at

two levels [75]. Due to the conflicts between them and amongst themselves, there

exist equilibrium criteria at both the level of the DSOs and at the level of the ADSSs.

In order to balance these conflicting objectives, we use an incentive mechanism as

in [76], and then perform the optimization of their utilities. The Alternating Direction

Method of Multipliers (ADMM), which is considered an efficient tool for large-scale

optimization is adopted here, due to its decomposition and fast convergence properties

[77].

A large-scale fog computing optimization framework to achieve this is proposed

in [78], which formulates the interactions between the DSOs and ADSSs as an EPEC.

It is then solved using an ADMM based algorithm, which provides the optimal values

of the resource prices to be set by the DSOs, and the optimal amount of resources

to be purchased by the ADSSs, resulting in the simultaneous optimization of profits

for both sets of entities. However, a fog computing resource allocation framework for

the next generation networks is incomplete without the dimension of virtualization.

We need to efficiently allocate the resources from FNs as per the resource needs of

various VNFs initiated at the ADSSs, by considering the localized conditions.

Accordingly, in this chapter, we extend the resource allocation framework pro-

posed in [78] to integrate NFV, by proposing a matching theory based algorithm for

the DSOs to allocate resources from the FNs as per the VNF requirements of the

ADSSs. Taking all of this into account, we state the objectives and contributions of

this chapter as below:

• We model the competitions between the DSOs and ADSSs in an IoT fog com-

puting scenario as an EPEC, for which we use an incentive mechanism, in order

to balance the conflicting objectives of both sets of entities.

59



• An ADMM based algorithm is invoked to solve the EPEC and obtain the opti-

mal values of the resource prices to be set by the DSOs, and the optimal amount

of resources to be purchased by the ADSSs, resulting in profit optimization for

both.

• Further, we obtain the resource requirements for different VNFs to be deployed

from the resource requirements of the ADSSs. This is finally utilized in a many-

to-many matching algorithm which allocates the computing resources of the FNs

according to the resource requirements of the VNFs, in a distributed manner.

• The effectiveness of the proposed framework is then demonstrated through sim-

ulations. The simulation results show that the proposed ADMM based EPEC

algorithm converges within a few iterations to give optimum results. It is also

observed that the proposed many-to-many matching algorithm outperforms the

centralized approach in terms of the cost of the FN resources.

The remainder of this chapter is arranged as follows. We discuss some of the

relevant previous works in Section 4.2. In Section 4.3, we introduce the system

model, and formulate the problem in Section 4.4. We analyze the proposed framework

in Section 4.5, where firstly, we introduce the concept of ADMM in Section 4.5.1.

Secondly, we discuss the design of the incentive function in Section 4.5.2, and then

the ADMM based EPEC algorithm is discussed in detail in Section 4.5.3. The many-

to-many matching algorithm for VNF resource allocation is discussed in detail in

Section 4.5.4. We discuss the performance of our model through simulation results in

Section 4.6. Finally, the chapter is concluded in Section 4.7.
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4.2 Related Work

Wireless network virtualization resource allocation for next generation networks

has been widely discussed in the literature [79–81]. Reference [82] proposes a three-

sided matching based framework for wireless network virtualization resource alloca-

tion considering the spectrum and infrastructure resources and mobile users. The

research works in NFV generally deal with either determining the optimal number of

required VNFs or the placement of VNFs in CNs. Reference [83] proposes a matching

based framework for NFV resource allocation, by jointly considering both the user

requirements for VNFs as well as their placements in different CNs.

The management of resources in fog computing is challenging due to a large

number of FN deployments, and is extensively discussed in research areas [74]. A

multi-dimensional framework has been proposed in [84], where a QoS consistent con-

tract providing a comprehensive payment plan to the FNs, revenue maximization of

the network operators, and incentives to the FNs has been evaluated. A mathemati-

cal framework for service-oriented heterogeneous resource sharing has been proposed

in [85], and [86] proposes a Distributed Dataflow (DDF) programming model that

coordinates the resources distributed across hosts in fog computing. Reference [87]

proposes a matching game based joint radio and computational resource allocation

problem for optimizing system performance and improving user satisfaction in IoT

fog computing. Reference [88] investigates the formation of stable coalitions among

Fog Infrastructure Providers (FIPs), and proposes a mathematical model for profit

maximization in order to allocate IoT applications to sets of FIPs.

There are a few recent works that integrate fog computing and virtualization

in IoT. Reference [89] proposes Virtual Fog, which is a complete layered framework

for IoT and connects the layers from fog computing through virtualization. A dy-

namic resource allocation framework for NFV enabled Mobile edge-cloud (MEC) is
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discussed in [73], in which both low latency requirements and MEC cost efficiency

are addressed. Reference [70] demonstrates three use cases of an integrated cloud/fog

and heterogeneous networks orchestration through a 5G NFV experimental platform,

and performs testing of end-to-end IoT and mobile services. Even though these works

perform the indispensable integration of NFV and fog computing for IoT, a resource

allocation framework for IoT fog computing and NFV, by taking into consideration

the DSOs, ADSSs, and FNs, and also the resource requirements of the various VNFs,

has not been proposed.

The fog computing scenario considered in [78] addresses the competition among

multiple DSOs and multiple ADSSs, as opposed to related previous works. The op-

timization of the resulting EPEC scenario with a large number of entities is handled

by the convergence properties of ADMM [90,91], which is a powerful large-scale opti-

mization tool. The simulation results demonstrate that the optimization of the utility

functions of DSOs can be achieved while simultaneously performing the optimization

of the utility functions of ADSSs.

In order to bring in the NFV perspective here, we have to determine the resource

requirements for various VNFs that serve the ADSSs, which are to be deployed in

the FNs operated by different DSOs. To that end, we need to model the localized

preferences of the FNs and the VNF resource requirements in a distributed manner.

As seen from previous chapters, a promising candidate here is matching theory, which

has gained popularity in recent years as an efficient distributed framework [14]. The

formation of mutually beneficial relationships between different sets of entities forms

the basis for matching theory, and it is known to have overcome certain limitations

of optimization and game theory [92].

Considering a large number of FN deployments and VNF initiations, and also

the fact that different instances of the same VNF initiated to serve different ADSSs,
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Figure 4.1: System architecture for IoT fog computing.
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Figure 4.2: Proposed NFV resource allocation framework for fog computing in IoT.

can be deployed in the same FN for ease of management (and also that many FNs can

together host a single VNF instance), in this chapter, we propose a many-to-many

matching [93] based algorithm for NFV enabled IoT fog computing, to perform VNF

resource allocation in FNs.

4.3 System Model

We consider an IoT fog computing scenario consisting of multiple DSOs, ADSSs,

and FNs, as shown in Fig. 4.1. As mentioned before, unlike the massive data centers

which are usually located far from the ADSSs, the FNs are deployed closer to the
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ADSSs, which helps to reduce the service latency and congestion by computation

offloading. The ADSSs request for computing resources from the DSOs, and the

DSOs serve the ADSSs by allocating computing resources from the FNs operated by

them. At the same time, the traditional practice in an NFV scenario is that the

MVNO communicates the resource needs based on the requirements of the users to

the NFVO. Then, the NFVO translates these resource needs into software component

requirements that need to be initiated in the network [83].

In an NFV enabled IoT fog computing scenario, these software components

would be the VM resources available in the distributed network of FNs. Once the

VNF requirements of each ADSS are known to the DSOs, they can allocate VM

resources from the FNs operated by them. The VM resources in the FNs can then

host the allocated instances of VNFs. Fig. 4.2 summarizes the proposed framework.

In this chapter, we consider the NFVO to be a centralized entity that coordinates the

proposed distributed resource allocation schemes.

Here, a network with K DSOs, N ADSSs, and M FNs is considered. We

denote the computing resources from the FNs in terms of Computing Resource Blocks

(CRBs). The price for one CRB set by DSO i for ADSS j is denoted by {θi,j|i =

1, 2, ..., K; j = 1, 2, ..., N}, and θi is the pricing profile for DSO i. The number

of CRBs purchased from DSO i by ADSS j is denoted by {xi,j|i = 1, 2, ..., K; j =

1, 2, ..., N}.

Therefore, according to the profits and costs of DSOs, we express the utility

function of DSO i, ∀i ∈ {1, 2, . . . , K}, as

Pi(θi) =
N∑
j=1

Ui,j(θi,j), (4.1)
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where

Ui,j(θi,j) = Ri,j −Di,j −Oi,j, (4.2)

and

Ri,j(θi,j) = xi,jθi,j (4.3)

is the revenue from the computing resources provided to ADSS j by DSO i, where

xi,j is the number of CRBs purchased from DSO i by ADSS j, and θi,j is the price

for one CRB purchased by ADSS j from DSO i.

Di,j = ni,j + qi,j (4.4)

is the cost due to service delay. Here,

ni,j = γdi,j (4.5)

is the cost incurred by the network delay, which is the delay from the physical service

provider (i.e., FN) to ADSS j. Consider its value to be a linear function of the distance

from the physical service provider to ADSS j, di,j, and γ is the cost per unit distance.

We consider the workload of ADSS j to follow a Poisson process with a workload rate

of wj, and also assume the queue length as the workload rate/computing service rate,

and as a result, we get the cost incurred by the queuing delay at the servers, qi,j as

qi,j = κ
wj
µxi,j

, (4.6)

where κ is the cost per unit queue length, and each CRB can provide computing

service at the rate of µ.

Oi,j = xi,jηi,j (4.7)

is the operational and measurement cost for the resources provided by the FNs to

ADSS j, thus helping DSO i in offloading. Here, ηi,j is the price set by the FNs

helping DSO i serve ADSS j.
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As mentioned before, the number of CRBs purchased from DSO i by ADSS j

is denoted by {xi,j|i = 1, 2, ..., K; j = 1, 2, ..., N}, and xj is the CRB purchase profile

of ADSS j. According to the profits and costs of the ADSSs, we express the utility

function of ADSS j, ∀j ∈ {1, 2, . . . , N}, as

Qj(xj) =
K∑
i=1

Wi,j(xi,j), (4.8)

where

Wi,j(xi,j) = Ti,j −Di,j −Ri,j(xi,j). (4.9)

Here,

Ti,j = βjwj (4.10)

is the revenue obtained by ADSS j from its workload data, where βj is the revenue

obtained by ADSS j per unit workload rate. Di,j is the cost due to service delay,

similar to the case of the DSOs.

Ri,j(xi,j) = xi,jθi,j (4.11)

is the cost of the computing resources provided to ADSS j by DSO i, which is the

same as the revenue obtained by DSO i from the computing resources provided to

ADSS j, and hence, we have used the same notation, Ri,j.

4.4 Problem Formulation

As mentioned before, the DSOs and the ADSSs are assumed to be autonomous

entities, that aim to maximize their own profits. However, the maximization of Pi(θi)

for one DSO may affect the utilities of other DSOs and the ADSSs, and similarly,

the maximization of Qj(xj) for one ADSS may affect the utilities of other ADSSs and

the DSOs. Also, the optimization of the utility functions of the ADSSs should be

performed in such a way that the optimization of the utility functions of the DSOs
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are not affected. When the number of DSOs and ADSSs are large as in a typical IoT

fog computing scenario, a centralized optimization of the utilities of all the DSOs as

in (4.1), and those of all the ADSSs as in (4.8) simultaneously, is a difficult task.

From the utility function discussed in the previous section, we can express the

optimization problem of DSO i as

max
θi

Pi =
N∑
j=1

[Ri,j(θi,j)−Di,j −Oi,j] (4.12)

s.t.


N∑
j=1

Ai,jθi,j = Bi,

Di,j ≤ Dth,

(4.13)

where θi = (θi,1, θi,2, ..., θi,N) is the row vector that represents the prices set by DSO i

for each of the N ADSSs. The first linear constraint for DSO i in (4.13) indicates the

limit on the total price per CRB offered by DSO i, where all {Ai,j|j = 1, 2, ..., N} and

Bi are real, scalar constants. Dth in the second constraint denotes the upper bound

for the cost of service delay between DSO i and ADSS j.

We can also express the optimization problem of ADSS j as

max
xj

Qj =
K∑
i=1

[Ti,j −Di,j −Ri,j(xi,j)] (4.14)

s.t.


K∑
i=1

Xi,jxi,j = Yj,

Di,j ≤ Dth,
(4.15)

where xj = [x1,j, x2,j, ..., xK,j]
T is the vector that represents the resources purchased

by ADSS j from each of the K DSOs. The first linear constraint for ADSS j in (4.15)

indicates the total resource requirement of ADSS j in terms of the number of CRBs

purchased from all the DSOs, where all {Xi,j|i = 1, 2, ..., K} and Yj are real, scalar
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constants. The second constraint is similar to the one in the optimization problem of

DSO i.

Since xi,j denotes the number of CRBs purchased from DSO i by ADSS j, the

values in {xi,j|i = 1, 2, ..., K; j = 1, 2, ..., N} are decided by the ADSSs. Hence, this

matrix would consist of values which are the optimal values of xi,j, so as to maximize

the utilities of the ADSSs as in (4.14), rather than the optimal values of xi,j, so

as to maximize the utilities of the DSOs as in (4.12). Therefore the DSOs need

to provide incentives to the ADSSs, in order to make the ADSSs choose values in

{xi,j|i = 1, 2, ..., K; j = 1, 2, ..., N} favoring the DSOs. To this end, we can formulate

the problem as an incentive mechanism design, which can lead to an optimum result

as per the utilities of the DSOs in (4.12), while simultaneously considering the utilities

of the ADSSs in (4.14).

Here, we can consider θi,j to be the incentive factor provided by DSO i to ADSS

j, as the DSO can influence the value of xi,j by setting the price at a certain θi,j. By

controlling the incentive factor {θi,j|i = 1, 2, ..., K; j = 1, 2, ..., N}, DSO i can get each

of the ADSSs to choose the values of xi,j such that its profit, Pi(θi,∗) is maximized.

θj = (θ1,j, θ2,j, ..., θK,j)
T is the vector of incentive factors for ADSS j. We can use

this to design an incentive function Φj(Qj(xj), θj), which indicates the interactions

between the DSOs and ADSS j.

In summary, the DSOs’ optimization problem can be formulated as

max
θi

Pi =
N∑
j=1

[Ri,j(θi,j)−Di,j −Oi,j]

s.t.



N∑
j=1

Ai,jθi,j = Bi,

Di,j ≤ Dth,
xj = arg max Φj(Qj(xj), θj),

s.t.


K∑
i=1

Xi,jxi,j = Yj,

Di,j ≤ Dth,

(4.16)
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∀i ∈ {1, 2, . . . , K}, and ∀j ∈ {1, 2, . . . , N}.

This is an example of an EPEC, which is a hierarchical optimization problem

that contains equilibrium problems at both the upper and lower levels [75]. That is

to say, there exist equilibrium criteria at the upper level as well, rather than just min-

imizing the real-valued functions subject to equilibrium constraints. In our scenario,

both the DSOs as well as the ADSSs have a set of equilibrium constraints, as shown

in (4.16). As there are two levels of entities with equilibrium constraints, a centralized

solution that is feasible for everyone is difficult. Here, the DSOs are at advantage,

as they make the first move by declaring the prices for the computing resources they

provide. They can predict the amount of resources going to be purchased by the

ADSSs and reach an optimal price to maximize their utilities. However, we need a

solution that can optimize the utilities of the DSOs, while simultaneously considering

the utilities of the ADSSs.

The ADSSs can only control the values of xi,j, the number of CRBs purchased

from the DSOs, and the DSOs can only decide the values of θi,j, the incentive factors

provided to the ADSSs. As the DSOs can predict the amount of resources going to be

purchased, they can use the incentive factors to control the resources purchased by

the ADSSs. Even though mechanisms like Stackelberg games [5] can be applied here,

they work well only in scenarios with one leader and multiple followers. In our case,

the coordination of multiple conflicting utilities might demand high complexity to give

an optimal result. Also, the network size can practically be very large. Therefore,

we need an algorithm that would converge regardless of the network size. These

requirements point us to the ADMM for the above optimization problem in an IoT

fog computing network. In the next section, the detailed analysis of ADMM for EPEC

is considered.
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4.5 Algorithm Analysis

Here, we firstly discuss the basic concept of the ADMM in Section 4.5.1. After

that, we move on to the design of the incentive function in Section 4.5.2. That

is followed in Section 4.5.3 by the detailed explanation of the ADMM based EPEC

algorithm used to optimize the profits of both DSOs and ADSSs in IoT fog computing.

Finally, the many-to-many matching algorithm for the allocation of FN resources as

per the VNF requirements of the ADSSs is discussed in detail in Section 4.5.4.

4.5.1 Alternating Direction Method of Multipliers

To understand the working of the ADMM, let us consider a network with one

service provider and N users, where the provider wants to maximize its utility as

maxH(yj) =
N∑
j=1

hj(yj)

s.t.
N∑
j=1

Cjyj −D = 0,

(4.17)

where each hj(yj) is a strongly convex function, yj is a real, scalar variable, and Cj

and D are given real, scalar constants [76].

Here, the values of yj can be updated by the provider as

yj(t+ 1) = arg max (H (yj)) +
N∑
j=1

λj (t)Cjyj + Ψ, (4.18)

where

Ψ =
ρ

2

N∑
j=1

‖Cjyj −D‖2
2. (4.19)

Here, ‖.‖2 denotes the Frobenius norm, ρ > 0 is a damping factor, and t is the iteration
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step index [76]. λ is the dual variable, and it is updated as

λj (t+ 1) = λj (t) + ρ

(
N∑
j=1

Cjyj (t+ 1)−D

)
. (4.20)

When each hj(yj) is strongly convex, it has been proved that the ADMM con-

verges quickly [76]. Hence, it is used for large-scale optimization problems in big

networks.

4.5.2 Incentive Function Design

DSO i wants to maximize its profit, Pi, by providing certain incentives to the

ADSSs. Here, as the DSOs set the prices, θi,j per unit of computing resource that

the ADSSs purchase, the incentive factor can be assumed to be a discount from the

initial prices set by the DSOs. Let θi,j
(p) denote the price set by the DSOs at the

beginning of the pth iteration. Let θi,j
′(p) denote the value of price that the DSOs have

evaluated at the end of the pth iteration. Then the incentive factor can be expressed

as

δi,j = θi,j
(p) − θi,j ′(p). (4.21)

This would result in an incentive function expressed as

Φj(Qj(xj), θj) = ∆δi,j, (4.22)

where ∆ is a positive scalar value, which can be the same or different for each DSO.

4.5.3 ADMM based EPEC in IoT Fog Computing

As mentioned before, the DSOs initially announce the prices for the CRBs

that they provide. This announced set consists of prices, {θi,j|i = 1, 2, ..., K; j =
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1, 2, ..., N} set by each DSO i for each ADSS j, that maximize the profit, Pi(θi) for

each DSO i.

Next, we explain the ADMM based EPEC method, which is an iterative process.

Each iteration of the ADMM can be explained as a two-step process as given below:

1. Optimization Problem of the ADSSs: Each ADSS j uses the announced

prices at the start of each iteration p, θi,j
(p) to calculate the values of {xi,j(p)|i =

1, 2, ..., K; j = 1, 2, ..., N}, the number of CRBs to be purchased from each DSO

i, to maximize its profit Qj(xj). Here, the superscript (p) denotes the value at

the pth iteration of the method. This is the inner loop of the ADMM. t is the

iteration step index of the inner loop.

We described xj in (4.16) as xj = arg maxΦj(Qj(xj), θj), where Φj(Qj(xj), θj)

is the incentive function as described above. For each ADSS j, maximizing the

incentive function is equivalent to maximizing its profit, Qj(xj) to form a set

of values, xj which can in turn maximize the incentives provided by the DSOs.

Hence, the value of xj is updated at each iteration of the inner loop by ADSS

j as

xj
(p)(t+ 1) = argxj

max (Qj (xj)) +
K∑
i=1

λi
(p) (t)Xi,jxi,j + Ψ, (4.23)

where

Ψ =
ρ

2

K∑
i=1

∥∥∥∥∥
N∑

m=1,m 6=j

Xi,mxi,m
(p) (τ) +Xi,jxi,j − Yj

∥∥∥∥∥
2

2

(4.24)

and τ = t + 1 if m < j, τ = t if m > j. Here, ρ > 0 is a damping factor as

mentioned above, and λ is the dual variable which is updated as

λi
(p) (t+ 1) = λi

(p) (t) + ρ

(
K∑
i=1

Xi,jxi,j
(p) (t+ 1)− Yj

)
. (4.25)
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At the end of the inner loop during each iteration p of the outer loop, the ADSSs

arrive at a set of values, xj, which maximizes their profits. At the same time,

these values are predicted by the DSOs, and are used to update the values of

θi,j.

2. Optimization Problem of the DSOs: The DSOs are able to predict the

behaviors of ADSSs and the values of xi,j. The DSOs then invoke ADMM as

θi
′(p)(t+ 1) = argθi max (Pi (θi)) +

N∑
j=1

λj
(p) (t)Ai,jθi,j + Ψ, (4.26)

where

Ψ =
ρ

2

N∑
j=1

∥∥∥∥∥
K∑

m=1,m 6=i

Am,jθm,j
(p) (τ) + Ai,jθi,j −Bi

∥∥∥∥∥
2

2

(4.27)

and τ = t + 1 if m < i, τ = t if m > i. Here, ρ > 0 is the damping factor, and

λ is the dual variable which is updated as

λj
(p) (t+ 1) = λj

(p) (t) + ρ

(
N∑
j=1

Ai,jθi,j
(p) (t+ 1)−Bi

)
. (4.28)

Thus, the DSOs recalculate the values of θi,j that maximize their profits. This

would result in an updated set of values for the price, θi
′(p). As discussed in

Section 4.5.2, δi,j denotes the difference between the updated values of price,

θi,j
′(p) and θi,j

(p), the price at the start of iteration p. Based on this difference

in prices, the DSOs calculate the incentive factor as ∆δi,j, which is a discount

in the announced prices. Here, ∆ is a positive scalar value, which can be the

same or different for each DSO. This would result in the values of θi,j for the

next iteration as

θi,j
(p+1) = θi,j

(p) ±∆δi,j. (4.29)
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Algorithm 4.1 ADMM based EPEC in IoT Fog Computing

Input: {θi,j|i = 1, 2, ..., K; j = 1, 2, ..., N}, p = 1

Output: θi,j
(opt), xi,j

(opt), i = 1, 2, ..., K, j = 1, 2, ..., N

while

∥∥∥∥ K∑
i=1

Pi(θi
′(p))−

K∑
i=1

Pi(θi
′(p−1))

∥∥∥∥ ≥ ε do

(1) Optimization for ADSSs using ADMM (inner loop):

ADSSs use the announced prices, θi,j
(p) to evaluate xi,j values, and their maxi-

mum profits, Qj(xj);
(2) Optimization for DSOs using ADMM (outer loop):
DSOs predict the behavior of ADSSs and xi,j values, invoke ADMM to perform
maximization of profits, resulting in new prices, θi,j

′(p), and update the prices to

θi,j
(p+1) by evaluating incentives;

(3) p = p+ 1;
end while
Result: Optimal values of CRBs purchased, x(opt) = x(p)

Optimal values of price, θ(opt) = θ(p)

The updated values, θi,j
(p+1) are then provided to the ADSSs for the (p+ 1)th

iteration. This is the outer loop of the ADMM. The outer loop terminates when

∥∥∥∥∥
K∑
i=1

Pi(θi
′(p))−

K∑
i=1

Pi(θi
′(p−1))

∥∥∥∥∥ < ε, (4.30)

where ε is a pre-determined small-valued threshold. The ADMM algorithm is

shown in detail in Algorithm 4.1.

The utility function of DSO i as in (4.12), and the utility function of ADSS j as

in (4.14) are convex. As per [76], if the utility functions of the DSOs and the ADSSs

are strictly convex, ADMM can converge to optimal values, x(opt) and θ(opt). For the

theoretical proof of convergence, the readers are referred to [76]. The application of

ADMM in the case of non-convex objective functions is discussed in [90].
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4.5.4 Many-to-Many Matching Algorithm for VNF Resource

Allocation

After the execution of the ADMM based EPEC algorithm, once the optimal

values for the CRBs to be purchased by the ADSSs, and the price offered by the

DSOs are obtained, the next step is the allocation of the required CRBs from the

FNs, as per the VNF requirements of the ADSSs. In this chapter, we assume that

only one VNF instance is initiated to serve an ADSS at a given time, and that the

CRB requirement of an ADSS at a given time is the amount of VM resources required

by that VNF instance. Also, as already mentioned, different instances of the same

VNF initiated to serve different ADSSs, can be deployed in the same FN for ease of

management, as well as many FNs can together host a single VNF instance.

In an IoT fog computing scenario, the DSOs might have different preferences

on the FNs based on the resource prices set by the FNs. The DSOs would naturally

prefer the FNs offering them the lowest price. Accordingly, the DSOs create their

preference lists by arranging the FNs in the ascending order of their prices as

PLDSO(i) = ηk,i, (4.31)

∀i ∈ {1, 2, . . . , K}, and ∀k ∈ {1, 2, . . . ,M}.

Similarly, the FNs have preferences on the DSOs based on the CRB (VM re-

source) requirements of the ADSSs served by the DSOs. That is, the FNs consider

VNF instances which require more VM resources (imply needing faster computation)

as of having higher priority. Accordingly, the FNs arrange each (DSO,ADSS) pair in

the descending order of the CRB (VM resource) requirement to form their preference

lists as

PLFN(k) = xi,j, (4.32)

∀i ∈ {1, 2, . . . , K}, ∀j ∈ {1, 2, . . . , N}, and ∀k ∈ {1, 2, . . . ,M}. Hence, the preference
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Algorithm 4.2 Many-to-Many Matching Algorithm for VNF Resource Al-
location

1: for FN k do
2: Construct the preference list PLFN(k) on all (DSO,ADSS) according to (4.32);
3: One pointer is set as the indicator pointing at the first (DSO,ADSS) in the

preference list.
4: end for
5: for DSO i do
6: Construct the preference list PLDSO(i) on all FNs according to (4.31);
7: end for
8: We set a flagk, ∀k ∈ {1, 2, . . . ,M}, as an indicator to show if the CRBs of FN k

were selected by the (DSO,ADSS) in the previous round, but not in the current
round. The initial value of flagk = 1;

9: while the pointers of all FNs have not pointed at all the (DSO,ADSS) in their
preference list do

10: FNs propose to (DSO,ADSS) with their prices;
11: for FN k who still has available CRBs do
12: if flagk = 1 then
13: The pointer stays at the current position in the list;
14: else
15: The pointer jumps to the next position in the list;
16: end if
17: The FN proposes to the pointed (DSO,ADSS) in its preference list with its

available CRBs;
18: We set flagk = 0;
19: end for
20: (DSO,ADSS) determine which FNs to select;
21: for (DSO,ADSS) xi,j do
22: if The total available number of CRBs proposed by the FNs exceed its re-

quirements then
23: (DSO,ADSS) xi,j selects the required number of CRBs from the FNs, and

rejects the rest;
24: For CRBs of the FN k which are selected by the (DSO,ADSS) in the last

round, but not in the current round, we set flagk = 1;
25: end if
26: end for
27: end while

list of each FN has K ×N entries.

Once the preference lists are generated, a many-to-many matching can be gen-

erated between the two sets of entities. A many-to-many matching is a matching

problem in which entities from a set can be assigned to multiple entities in the other

set, and vice versa, based on their capacity constraints [20]. The many-to-many

matching algorithm proposed for our NFV integrated IoT fog computing scenario is

described in detail in Algorithm 4.2.
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Table 4.1: Parameter settings for simulations

Parameter Value
K 5
N 20
M 25
dij U(0, 1) km
Dth 0.1
γ 10−5

κ 10
wj Poisson distributed with mean =

1000 s−1

µ 500 K s−1

η U(0, 10−3)
β U(0, 10−1)
∆ 0.5

ε for ADMM 10−3

ρ for ADMM 1.5

4.6 Simulation Results

This section evaluates the performance of the proposed ADMM for EPEC and

many-to-many matching based framework with MATLAB. The values of the different

parameters used for the simulations are shown in Table 4.1. The number of ADSSs,

N , and FNs, M are varied in certain cases; if either of N or M values is not shown

to change in the simulation figure, then it has the value as shown in Table 4.1. The

notations in the U(a, b) format in Table 4.1 denote random values from a continuous

uniform distribution in the interval (a, b).

Fig. 4.3 demonstrates the convergence of the ADMM based EPEC algorithm.

It shows how the total profit of the DSOs,
K∑
i=1

Pi(θi), behaves during the optimization

using ADMM. For an error threshold of ε = 10−3, it takes only p = 4 iterations for the

ADMM to converge. Hence, the conflicting utilities of the DSOs have been optimized

in just a few iterations. It also shows how the error value of the ADMM converges to
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Figure 4.3: Total DSO profit and ADMM error vs. number of ADMM iterations.
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Figure 4.4: Total ADSS profit vs. mean of workload rate, wj.

the threshold value in those few iterations.

Fig. 4.4 shows the relation between the total profit of the ADSSs,
N∑
j=1

Qj(xj),

and the mean of the workload arrival rate of ADSSs, wj for five cases: 200 s−1, 500
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Figure 4.5: The total cost for the CRBs paid to FNs by the DSOs.

s−1, 1000 s−1, 2000 s−1, and 5000 s−1. It can be seen that as the mean value of wj

increases from 200s−1 to 5000s−1, the total profit of the ADSSs increases.

Fig. 4.5 to Fig. 4.8 compare the performance of the proposed many-to-many

matching algorithm with a centralized algorithm. The centralized algorithm is an

approach in which the NFVO, which acts as a centralized entity in NFV enabled

IoT fog computing, performs the resource allocation itself. The NFVO allocates the

resources from the FNs according to the VNF requirements of the CRBs. Similar to

the case of the many-to-many matching algorithm, we assume that the largest CRB

requirement, i.e., the largest value of xi,j maps to the VNF instance with the highest

priority. However, as opposed to the distributed approach with preference lists for

the two sets of entities, in the centralized approach, the NFVO arranges the VNF

instances as per their priorities (CRB requirements or xi,j values), and allocates them

to the FNs as per their available resources. Each comparison has been executed for

50 times, and the average values are plotted here.

Fig. 4.5 compares the total cost for the CRBs paid to FNs by the DSOs, between
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Figure 4.6: Algorithm run time for the allocation of CRBs.

the proposed many-to-many matching algorithm and the centralized algorithm. The

comparison is performed for four cases: M = 15, M = 20, M = 25, and M = 30. It

can be observed that in all the four cases, the total CRB cost is lesser in the proposed

approach than in the centralized approach. It can also be noted that the difference

is more in the first and last cases. When M = 20 and M = 25, the number of FNs is

comparable to that of the ADSSs, N = 20, and hence, the resource allocation might

be comparable in both the approaches.

Fig. 4.6 compares the run times of the many-to-many matching and the cen-

tralized algorithms. Again, the comparison is performed for four cases: M = 15,

M = 20, M = 25, and M = 30. It is obvious that the algorithm run times increase

with the number of entities, as can be observed. The proposed algorithm has larger

run times when the number of FNs increases, which is reasonable as it is a distributed

approach.

Fig. 4.7 analyzes the total cost for the CRBs paid to FNs by the DSOs for
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Figure 4.7: The total cost for the CRBs paid to FNs by the DSOs.

the two approaches, similar to Fig. 4.5. However, the number of ADSSs is varied

here to study four cases: N = 20, N = 25, N = 30, and N = 50. It can be

observed again that the proposed many-to-many matching approach outperforms the

centralized approach. It can also be noted that the difference is small in the first and

second cases, since the number of FNs, M = 25, might be comparable to that of the

ADSSs. However, the difference increases as the number of ADSSs grows larger.

Fig. 4.8 compares the algorithm run times similar to Fig. 4.6. Here, the

number of ADSSs is varied to study four cases: N = 20, N = 25, N = 30, and

N = 50. Intuitively, the algorithm run times increase with the number of entities.

Again, the proposed algorithm has slightly larger run times when the number of

ADSSs increases, which is reasonable as it is a distributed approach.

The system used for executing the simulations has a small-scale Intel(R) Core(TM)

i7−7500U CPU with a 16 GB RAM. Therefore, the algorithm run time values shown

in Fig. 4.6 and Fig. 4.8 are in hundreds of ms. In a practical IoT fog computing
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Figure 4.8: Algorithm run time for the allocation of CRBs.

network, the proposed ADMM based EPEC and many-to-many matching algorithms

can be executed at the NFVO. For the many-to-many matching algorithm, once the

preference lists are generated, it can be executed by a centralized entity. With a

large-scale processor in a practical network, the algorithm run times will decrease

tremendously.

4.7 Conclusion

In this chapter, we propose a distributed resource allocation framework for an

NFV integrated IoT fog computing scenario. Initially, an ADMM based EPEC al-

gorithm is proposed to model the competitions between the DSOs and the ADSSs,

which provides the optimal values of the amount of resources to be purchased by

the ADSSs, and the optimal values of the resource prices to be set by the DSOs.

Thereafter, a many-to-many matching based algorithm is invoked to allocate the

computing resources of the FNs according to the VNF resource requirements of the
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ADSSs. The simulation results demonstrate that the ADMM based EPEC algorithm

converges quickly to give optimum results. It is also observed from the simulation

results that the proposed many-to-many matching algorithm outperforms the cen-

tralized approach in terms of the cost of the FN resources. The proposed resource

allocation model combining EPEC and matching can be efficiently used in NFV en-

abled IoT fog computing scenarios.
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Chapter 5

VLC and D2D Heterogeneous Network

Optimization: A Reinforcement Learning

Approach Based on Equilibrium Problems with

Equilibrium Constraints

5.1 Introduction

The current RF spectrum crunch in wireless communications has made explor-

ing and exploiting alternative sources of bandwidth inevitable. With a vast bandwidth

of approximately 300 THz, visible light spectrum can facilitate high data rate com-

munication, called Visible Light Communication (VLC). Apart from the immense

bandwidth, some of the advantages of using visible light for communication are: (i) it

is unlicensed and hence, provides free spectrum, (ii) it is secure as its propagation is

limited, and (iii) VLC is easy to be implemented through already existing ubiquitous

and inexpensive visible light sources such as Light Emitting Diodes (LEDs) [94, 95].

LEDs are expected to be the major sources of illumination, and also the transmitters

for VLC, using which data rates in the range of hundreds of Mbps can be achieved [96].

Although VLC ensures high data transmission rates, it is hindered from serving

users in strong sunlight areas or shaded areas, resulting in limited coverage. Tak-

ing this into consideration, combining cellular communication with VLC has been

proposed. A heterogeneous network integrating cellular and VLC communications

guarantees good coverage from the cellular network and high capacity from the VLC

network [97]. In such a heterogeneous network, the traffic congestion in the cellular

network is minimized by offloading some of the traffic to the VLC network. This

improves the spectrum reuse in the heterogeneous network, by utilizing both the

licensed and the visible spectrums for communication [98]. In these networks, the
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mobile users which are able to access the VLC network can relay the data to the

mobile users which cannot be served by the VLC network. This can be realized using

Device-to-Device (D2D) communication.

D2D communication enables mobile devices to transmit data directly between

each other, without relaying it through a base station, thus improving the spectral

and energy efficiencies, and minimizing the latency [99]. D2D communication can

be integrated with VLC to serve mobile devices that are inaccessible by the VLC

transmitters [98]. The mobile users being served can pay the mobile users which act

as relays, for their services. However, there are many issues in such a VLC-D2D het-

erogeneous network. One of the most important issues is the determination of data

transmission routes from the VLC transmitters to the end mobile devices. Tradition-

ally, the VLC Service Provider (VLCSP) can determine this data transmission route

based on maximizing its revenue and minimizing the overall latency, in a centralized

manner [98].

However, the data transmission environment between the VLC transmitters

and the mobile devices, and amongst the mobile devices themselves, in a VLC-D2D

heterogeneous network, is highly dynamic. There can also exist a competition among

the mobile devices accessible by the VLC transmitters, to relay the data to the mobile

devices inaccessible by the VLC transmitters, and obtain revenue. A centralized

solution available for the VLCSP and the mobile devices is difficult in such cases.

Additionally, due to the random nature of the positions and data requirements of

the mobile devices, the parameters in the network cannot be fully predicted. This

calls for techniques to determine optimal distributed data transmission routes for a

stochastic communication environment, which indeed is very challenging.

Recently, Machine Learning (ML) paradigms have gained wide popularity in

several decision making scenarios, and Reinforcement Learning (RL) is a general
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Figure 5.1: Proposed multi-hop route selection algorithm for VLC-D2D heteroge-
neous network.

framework that helps to learn behavior through trial-and-error interactions with a

dynamic environment [100–102]. Consequently, taking into account the dynamic and

unpredictable nature of our considered communication environment, in this chapter,

we propose an RL based method to determine data transmission routes in the VLC-

D2D heterogeneous network.

Being a learning method that does not require a model of the considered en-

vironment makes RL suitable for our scenario, using which we can deduce optimal

data transmission routes through trial-and-error. In a typical RL scenario, a learning

agent which is capable of taking actions, observes the environment after each of its

actions [103]. Each action influences the state reached by the agent in the future.

The success in RL scenarios is measured through total rewards, and hence, the agent

basically aims to maximize its accumulated rewards through its actions. Therefore, in

order to perform learning in our heterogeneous network scenario, we need a method

to calculate the rewards.

Accordingly, we consider a network where the VLCSP, the Cellular Service

Provider (CSP), and the mobile users, are independent entities. In the heterogeneous
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network environment under consideration, the independent entities can use their ex-

periences from interacting with the environment, to improve their behaviors [104].

In order to obtain the rewards, we also model the competition among the mobile

devices accessible by the VLC transmitters in relaying the data. Subsequently, we

propose an ADMM based EPEC approach for determining the optimal rewards dy-

namically, which is discussed in detail later. The interconnection between RL, EPEC,

and ADMM in the proposed algorithm is shown in Fig. 5.1. The major contributions

of this chapter are summarized as follows:

• We propose a multi-hop data transmission route determination method for an

indoor VLC-D2D heterogeneous network, utilizing an RL based technique. This

is a distributed method that can determine the route based on local information,

unlike the conventional, centralized method where the VLCSP determines the

route based on data transmission path delays.

• The proposed RL method utilizes Q-learning, which is a direct RL technique,

and works by continuously improving the knowledge of the consequences of

certain actions at certain states. In our scenario, it enables the transmitted

data to learn from its interactions with the environment to find an optimal

route in a distributed fashion.

• In order to compute the rewards dynamically for the RL based route determina-

tion method, we formulate the interactions between the mobile users which relay

data using D2D communication, as an EPEC optimization problem. An EPEC

is a hierarchical optimization problem that contains equilibrium constraints at

two levels. Here, the utilities of the mobile users which send and receive the

relayed data are simultaneously optimized by using EPEC.

• Then, we utilize the properties of ADMM as a large-scale optimization tool

to solve the EPEC problem, given the large number of entities (mobile users),
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in the considered scenario. Using ADMM, we achieve optimal solutions for

the EPEC, which contribute to the rewards for the Q-learning based route

determination approach.

• The effectiveness of the proposed algorithm is then validated through simula-

tions, which emphasize the effect of the RL method on transmission capacity

and latency. The simulation results highlight the effect of the number of learn-

ing steps and the importance of future rewards, on the data transmission rates

and path delays.

The rest of this chapter is organized as follows. Some of the relevant previous

works are discussed in Section 5.2. In Section 5.3, we present the system architecture

and the key parameters used in our VLC-D2D heterogeneous network optimization

model. Then, in Section 5.4, we formulate the optimization problem of the pro-

posed model, and introduce the RL and EPEC formulations, which are used in our

proposed algorithms. The proposed algorithms and their detailed analyses are pro-

vided in Section 5.5. Here, we discuss the Q-learning based algorithm for optimal

data transmission route determination in Section 5.5.1, and the ADMM based EPEC

algorithm for the determination of rewards in Section 5.5.2. We present the perfor-

mance of the proposed Q-learning based optimal route determination method, which

also incorporates the ADMM based EPEC technique, in Section 5.6, where we firstly

discuss the simulation results in Section 5.6.1, and then, discuss a few aspects of the

results in Section 5.6.2. Finally, conclusions are drawn in Section 5.7.

5.2 Related Work

Since the deployment of heterogeneous networks is a promising solution to the

wireless capacity crunch issue, a great deal of research is prevalent in this area. Ref-

erence [105] shows 90% offloading from the macrocell base station by using heteroge-
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neous small cell-based networks. A survey on the state-of-the-art and challenges of

Long-Term Evolution-Advanced (LTE-A) heterogeneous networks is given in [106],

where the elements of LTE-A heterogeneous networks introduced in different LTE

releases of 3GPP are also summarized, among which D2D communication is intro-

duced in Release 12. Reference [107] utilizes game-theoretic approaches to provide

distributed solutions to the resource allocation issues in D2D communication under-

laying cellular networks, where the complex strategies of the D2D and cellular users to

maximize their own utilities are modeled using the tools from game theory. Improving

the coverage for mobile users at the cell edge is of key importance in wireless commu-

nication, and is facilitated using D2D range extension in [108]. Reference [109] deals

with the energy efficiency maximization in a D2D-assisted heterogeneous network,

and considers optimal power allocation, along with user equipment association.

Owing to the remarkable wireless traffic offloading potential of VLC, the re-

search on inclusion of VLC in heterogeneous networks is growing tremendously [110–

114]. Reference [115] elaborates on user-centric VLC heterogeneous networks from

the signal coverage, system control, and service provision perspectives, and discusses

a few open challenges. An indoor heterogeneous network combining VLC and RF

have been proposed in [116], where a new VLC frame, multiple access mechanism,

and a novel handover scheme have been introduced, and the capacity performance

of the network has been improved compared to an RF only system. Reference [117]

proposes an indoor hybrid system integrating WiFi and VLC, which utilizes the band-

width benefits of VLC, and proposes the optimal resource allocation among users. An

indoor VLC and RF heterogeneous network is investigated from the energy efficiency

point of view in [118]. Reference [119] considers an indoor VLC attocell and RF femto-

cell network, where the optimal resource allocation is achieved through a distributed

algorithm.

In order to implement such complex heterogeneous networks and to ensure
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proper allocation of resources, we need efficient algorithms that can handle compli-

cated scenarios. Research on ML algorithms is quite prominent in this regard, of which

RL research has gained a lot of momentum in the recent years. Since it is a learning

method that does not need a model of the environment, RL is well suited for scenarios

where the environment changes during learning [120]. It has been discussed widely

in areas like machine learning, neural networks, operations research, control theory,

and so on [121]. RL is the learning algorithm behind AlphaGo, the first computer

program to defeat a professional player at Go, one of the most challenging classical

games [122]. Reference [102] performs a basic survey of RL, and also discusses a few

classic model-free algorithms. A survey of RL in robotics is given in [123], through

behavior generation in robots. A comprehensive survey on the recent developments

in RL with function approximation, and a comparison of the performance of different

RL algorithms is provided in [121]. Reference [124] demonstrates a simple two-player

soccer game using RL techniques, and a model for a route planning system based on

multi-agent RL is proposed in [125].

Due to the flexibility and effectiveness of RL in learning, it has been applied

to solve many issues in wireless communication. Reference [126] proposes an RL

based sub-band selection policy to anti-jamming communications with Wideband

Autonomous Cognitive Radios (WACRs) in a scenario with multiple policy-learning

agents. The sub-band selection problem in wideband Cognitive Radio (CR) is dealt

with in [127], using an extension of the Q-learning algorithm, called the replicated

Q-learning. Some other applications of RL can be found in [128–135], which are

in wireless sensor networks, LTE-A networks, cognitive network and radio resource

management, wireless communication in healthcare, and energy-efficient wireless com-

munication.

In order to harness the benefits of heterogeneous networks as well as the poten-

tials of the VLC and D2D technologies, our scenario of interest is an indoor VLC-D2D
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heterogeneous network. An indoor VLC-D2D heterogeneous network scenario has

been considered in [98], where the mobile devices accessible by the VLC transmitters,

relay the data to the mobile devices which are not accessible by the VLC transmit-

ters. Reference [98] proposes a hierarchical game, where the interactions between

the VLCSP and the CSP, the CSP and the mobile users, and between the VLCSP

and the mobile users are modeled as Stackelberg games. The network arrives at the

solution when the mobile users achieve a Nash equilibrium among them, and the

above mentioned Stackelberg games achieve Stackelberg equilibriums. Nevertheless,

the data transmission route is determined by the VLCSP, by considering only the

transmission path delays.

In the case of the indoor VLC-D2D heterogeneous network considered in this

chapter, we adopt an RL based route determination method, as discussed in the

previous section. To my best knowledge, an RL based method to determine data

transmission routes in a dynamic VLC-D2D heterogeneous network environment has

not been employed in any previous work. Also, determining the rewards for RL

dynamically during the learning process has not been considered before. Hence, in

this chapter, we utilize the potential of RL as a powerful learning algorithm for a

stochastic environment. The rewards are computed during the RL process using

EPEC, which is solved by making use of the capacity of ADMM as an efficient large-

scale optimization tool.

5.3 System Model

An indoor downlink scenario consisting of K VLC transmitters of a VLCSP,

a CSP, and T mobile users is considered, following the settings in [98]. Out of the

T mobile users, there are M Mobile Users in Coverage area (MUiCs) of the VLC

transmitters and N Mobile Users in Darkness (MUiDs). As shown in Fig. 5.2, MUiCs
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Figure 5.2: System architecture of VLC-D2D heterogeneous network.

are the mobile users which are under the visible light cones of the VLC transmitters,

and MUiDs are the mobile users which are not directly under the visible light coverage

of the VLC transmitters. For data transmission, as the MUiDs can only receive weak

signals from the cellular base stations, D2D communication is adopted in which some

MUiCs and MUiDs can act as relays for the end MUiDs [98]. The MUiCs and MUiDs

that relay the service from the VLC transmitter to the end MUiD are called Mobile

Users as Relays (MUaRs). As shown in Fig. 5.2, MUiC 1 is able to receive traffic

from the VLC transmitter. Then, MUiC 1 acts as a relay for MUiD 1 which also acts

as a relay for the end MUiD 2.

For the visible light communication between VLC transmitter κ, for κ ∈ {1, 2, . . .

, K}, and MUiC m, for m ∈ {1, 2, . . . ,M}, the transmission rate can be defined as

Cκm = Sκ log2

(
1 +

PκGκm

σ2
I + σ2

N

)
, (5.1)

where Sκ is the amount of spectrum for each of the K VLC transmitters, Pκ is the

92



transmit power of each of the K VLC transmitters, Gκm is the channel gain between

VLC transmitter κ and MUiC m, σ2
I is the interference from other visible light sources,

and σ2
N is the channel noise.

For the D2D communication between MUaR i, for i ∈ {1, 2, . . . , T}, and MUaR

j, for j ∈ {1, 2, . . . , T}, i 6= j (or between MUaR i, for i ∈ {1, 2, . . . , T}, and end

MUiD j, for j ∈ {1, 2, . . . , N}), the transmission rate can be defined as

Cij = Sij log2

(
1 +

PijGij

Ic +N0

)
, (5.2)

where Sij is the amount of allocated wireless spectrum for MUaR i to transmit data

to MUaR j (or for MUaR i to transmit to the end MUiD), Pij is the transmit power

from MUaR i to MUaR j (or from MUaR i to the end MUiD), Gij is the channel

gain between MUaR i and MUaR j (or between MUaR i and the end MUiD), Ic is

the interference from cellular uplink, and N0 is the additive noise.

We consider the VLC transmitters, the MUaRs and the end MUiDs in our

network as nodes in a graph. For the multihop wireless data transmission from a

VLC transmitter to an end MUiD, the data packet size is denoted by M. The

penalty due to the delay between node i and node j can be expressed as [98]

Dij = α
M
Cij

, (5.3)

where α denotes the penalty of unit service delay. The penalty due to the total delay

is the sum of the penalties between all the nodes in the data transmission service

route.

Accordingly, we consider an L-hop route, {h1, h2, . . . , hL}, for the data trans-

mission from VLC transmitter κ, for κ ∈ {1, 2, . . . , K}, to the end MUiD, where node

hl, ∀l ∈ {1, 2, . . . , L− 1}, is an MUaR, and node hL is the end MUiD.
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The utility for node hl in the transmission route, is given by the revenue received

by the node minus the delay penalty and the cost of the wireless spectrum. The utility

function can be expressed as

UMUaR
l = βM− γDl − rlSl + rl−1Sl−1, (5.4)

where β and γ are the weight factors. Dl has the same physical meaning as Dij from

(5.3), which is the penalty of delay from node hl to node hl+1 in the transmission

route, rl is the price per unit of the wireless spectrum resources, and Sl has the same

physical meaning as Sij from (5.2), which is the amount of allocated wireless spectrum

for node hl. Thus, βM is the revenue obtained by node hl by relaying a data packet of

sizeM, γDl is the delay penalty, rlSl is the price paid for the spectrum, and rl−1Sl−1

is the revenue obtained by providing spectrum to the upstream node hl−1.

In this chapter, we propose to determine the L-hop data transmission route,

as shown in Fig. 5.3, from a VLC transmitter to the end MUiD, utilizing an RL

technique, which is discussed in detail in the next section. In order to formulate the

model for the RL technique, let us consider the transmitted data from a particular

VLC transmitter to a particular end MUiD as the learning agent, the current location

(node) of the transmitted data as the state, and the transmission direction of the agent

from the current node to the next accessible node as an action. Here, as there can be

different data transmitted from different VLC transmitters to the same end MUiD or

different end MUiDs at the same time, we consider a scenario wherein a number of

single agent RL tasks take place simultaneously.

Another key factor in this learning technique is reward, which is simply the

payoff obtained by the agent, by performing an action at a given state. In RL, the

actions may not only affect the immediate reward, but also the rewards obtained

in future [103]. In our scenario, the transmission data rate can be considered as the

reward. As such, we define the reward matrix R, which contains the rewards obtained

94



by the agent, by selecting every possible action (transmitting to all accessible nodes),

from every state (current position of transmitted data). We express the reward matrix

for our single agent RL scenario as

R =



R11 . . . . . R1(K+T )

. . . . . . .
RK1 . . . . . RK(K+T )

. . . . . . .
R(K+M)1 . . . . . R(K+M)(K+T )

. . . . . . .
R(K+T )1 . . . . . R(K+T )(K+T )


,

where T = M +N is the total number of mobile devices in our indoor scenario. Here,

the rows indicate the states, and the columns indicate the actions. For example,

R1(K+1) is the reward obtained by the agent, by taking the action of transmitting

data to state K + 1 (MUiC 1) from state 1 (VLC transmitter 1), R(K+M+1)(K+T ) is

the reward obtained by the agent, by taking the action of transmitting data to state

K + T (MUiD N) from state K +M + 1 (MUiD 1), and so on.

Here, R11,R22, . . . ,R(K+T )(K+T ) can be taken as 0, since none of the nodes

transmits data to themselves. R11, . . . ,R1K , . . . ,RK1, . . . ,RKK will be 0, as the VLC

transmitters will not transmit data to each other. R(K+1)1, . . . ,R(K+1)K , . . . ,R(K+T )1,

. . . ,R(K+T )K will also be 0, as the mobile devices do not transmit data to the VLC

transmitters. Additionally, as the VLC transmitters do not send data to the N

MUiDs, R1(K+M+1), . . . ,R1(K+T ), . . . ,RK(K+M+1), . . . ,RK(K+T ) will be 0. In addi-

tion, since an MUiC will not transmit data to another MUiC, columns K+1 through

K + M of rows K + 1 through K + M will be 0. Finally, since an MUiD will not

transmit data to any MUiC, columns K + 1 through K + M of rows K + M + 1

through K + T will also be 0.
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Figure 5.3: L-hop data transmission route.

5.4 Problem Formulation

In our considered scenario, the initial problem for VLC transmitter κ, for

κ ∈ {1, 2, . . . , K}, is determining an optimal route, {h1, h2, . . . , hL}, from the VLC

transmitter to the end MUiD. Clearly, this can be considered as a single agent RL

scenario, where the agent needs to learn the environment through its experience and

take actions to maximize its rewards. In order to realize this, the agent has to exploit

what is already known, and simultaneously, has to explore to be able to choose better

actions in the future [103].

Q-learning is a model-free RL technique [136], in the sense that the agent can

directly learn about its optimal policies, i.e., a mapping from a state to an action of

the agent, without knowing the future rewards [120]. Q-learning works by learning an

action-value function that constructs the optimal policy, by selecting the action with

the highest value. This optimal policy gives the maximum achievable expected value

of the total reward. In this chapter, we utilize single agent Q-learning to decide the

optimal route from each VLC transmitter to the end MUiD. The detailed analysis of

the Q-learning algorithm is included in the next section.

For utilizing Q-learning to decide the data transmission route for VLC trans-

mitter κ, for κ ∈ {1, 2, . . . , K}, we need to generate the reward matrix, R, as shown in
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the previous section. This is performed as an iterative update process, while modeling

firstly, the interactions between the VLC transmitters and the MUaRs, and secondly,

the interactions between the MUaRs and the end MUiDs.

Initially, we model the interactions between each of the K VLC transmitters

and the set of M MUiCs, which is the set of candidates for the first hop, h1, using

(5.1). This generates some of the rewards in the R matrix, which are the reward

values associated with all the possible first hops (MUiCs) for the agent, from each of

the VLC transmitters.

In our scenario, we consider the first hops, h1 to be MUiCs, and the rest of

the hops in the L-hop route to be MUiDs, including the MUiDs acting as MUaRs,

and the end MUiDs. Hence, we generalize and formulate the utility function of the

MUaRs as

UMUaR
t = βM− γDt − rtSt + rt−1St−1, (5.5)

where all the symbols have the same physical meanings as given in (5.4), except that

the subscript t denotes any MUaR.

When the current MUaR node transmits data to the next MUaR nodes, we

consider St to be the spectrum allocated to the current node by the next nodes. An

optimal value of St ensures a successful transmission from the current node to the

next nodes. Hence, we express the utility function of the current MUaR node, with

respect to the allocated spectrum resource, as

UMUaR
t (St) = βM− γDt − rtSt. (5.6)

Accordingly, the utility of the next MUaR nodes is the revenue obtained by

allocating the spectrum to the current MUaR node. Hence, we formulate the utility

function of the next MUaR nodes, with respect to the price per unit of the spectrum

97



resources, rt, as

UMUaR
t+1 (rt) = rtSt. (5.7)

We model the interactions between the MUaRs as an optimization problem, in

order to maximize the utilities of the next MUaR nodes as in (5.7), while maximizing

the utility of the current node as in (5.6). The optimization problem is expressed as

max
rt

UMUaR
t+1 (rt) = rtSt

s.t.


rt > 0,
St = arg max

(
UMUaR
t (St) = βM− γDt − rtSt

)
,

s.t. St > 0,

(5.8)

for t ∈ {1, 2, . . . , T}, where St is the vector containing the optimal values of St for

the current MUaR to transmit data to the next MUaRs.

The values in St form the rest of the rewards in the R matrix, which are the

reward values associated with all the possible next hops (MUaRs) for all the possible

first hops (MUiCs), and then, the reward values associated with all the possible hops

after that in the L-hop route, and so on. This helps generate the values in the Q

matrix, which is the core of the Q-learning algorithm for the L-hop data transmission

route calculation, and is discussed in detail in the next section.

Here, (5.8) is a two-level optimization problem. Such a hierarchical optimization

problem that contains equilibrium criteria at two levels is called an EPEC [75,137], as

already discussed in Chapter 4. (5.8) is an optimization problem, where the MUaRs

at two levels have their sets of equilibrium constraints. A centralized solution for all

parties is difficult in such cases. We need a solution that can maximize the utility of

the current MUaR node, while maximizing the utilities of the next MUaR nodes.

Stackelberg games can be employed in similar cases [5]. However, they work

well only in scenarios with one leader and multiple followers. If we need to coordinate
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multiple conflicting utilities at both the levels, it might demand high complexity to

provide optimal results. In addition, if we consider scenarios with a large number of

entities, we need an algorithm that can converge for large networks. On that account,

we consider ADMM for the optimization problem discussed above, for the VLC-D2D

scenario. ADMM for EPEC is discussed in detail in the next section.

5.5 Algorithm Analysis

As mentioned before, Q-learning is a model-free technique used in RL scenarios,

where the environment behavior is not fully known. In our scenario, the positions and

data requirements of the mobile devices are random in nature and cannot be fully

predicted. Therefore, Q-learning is a suitable tool to perform learning. Specifically, we

propose to utilize the Q-learning technique to determine the L-hop data transmission

routes from the VLC transmitters to the end MUiDs.

Here, the Q-learning based algorithm for optimal data transmission route de-

termination is discussed in Section 5.5.1, and the ADMM based EPEC algorithm for

the determination of rewards is discussed in Section 5.5.2.

5.5.1 Q-learning for Route Selection

The general Q-learning algorithm works by evaluating Q values for different

(state, action) pairs, denoted as Q(S,A). In order to implement the Q-learning al-

gorithm, we need the immediate reward values associated with various actions from

different states, i.e., R values for different (state, action) pairs, denoted as R(S,A).

For recording these reward values, we create a rewards matrix, R, as shown in Section

5.3.

However, the reward values are not known beforehand in the considered sce-

nario. We compute the reward values dynamically during Q-learning, and record
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Algorithm 5.1 RL based multi-hop route selection algorithm in VLC-D2D
heterogeneous network

1: Initialization:
i) Initialize the reward and Q-learning matrices:
R = 0, and Q = 0.
ii) Set the η parameter, the maximum number of learning steps, Lmax, the max-
imum number of hops, L, and the minimum threshold for the D2D transmission
data rate Cth.
iii) Set the current number of learning steps, s = 0, and the current number of
hops, l = 0.

2: Generating the Q matrix:
3: while s ≤ Lmax do
4: Select an initial state for each agent as one of the K VLC transmitters.
5: while current state 6= end MUiD do
6: if current state = VLC transmitter then
7: Compute R(S,A) using Algorithm 5.2 and update.
8: else
9: Compute R(S,A) using Algorithm 5.3 and update.

10: end if
11: Select one of all possible actions for the current state.
12: Using this possible action, go to the next state.
13: Get the maximum Q value for this next state based on the stored Q values

for all possible actions.
14: Compute Q(S,A) for the current state using (5.9) and update.
15: Update current state = next state.
16: end while
17: s = s+ 1.
18: end while
19: Utilizing the Q matrix to find the best route:
20: Set current state = initial state.
21: From current state, find the action with the highest Q value.
22: l = l + 1.
23: if l > L or Cij < Cth then
24: Routing failure, no available route.
25: end if
26: Set current state = next state.
27: Repeat steps 21 to 26 until current state = end MUiD.
28: Output L-hop transmission route.

them in the R matrix. In this scenario, the VLC controller can implement the Q-

learning algorithm, since it can act as an entity to co-ordinate and update the values

of R(S,A) provided by the other entities.

As our Q-learning route selection algorithm runs, depending on the current

state of the agent, there can be two different scenarios.

• Current state = VLC transmitter At the start of the algorithm, the trans-

mitted data will be at a VLC transmitter, and hence, the next state will be an
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MUiC. Therefore, we can compute the reward values using (5.1), which gives

the capacity for VLC transmission between the VLC transmitter and the MUiC.

• Current state = MUaR In our considered L-hop route, the first hops are

MUiCs, and the rest of the hops are MUiDs acting as MUaRs. These inter-

actions between the MUaRs are modeled in Section 5.4, using the EPEC in

(5.8). In this case, we invoke the ADMM technique to solve this EPEC, which

is discussed in detail in Section 5.5.2. Thus, for the current state and action as

MUaRs, we obtain and record the reward values.

Now, we add a similar matrix Q, to represent the agent’s learning through

experience. As in the case of the R matrix, the rows of the Q matrix represent the

current state of the agent, and the columns represent the actions. The agent begins

the learning by knowing nothing, and hence, the Q matrix is initialized to 0.

The Q-learning route selection algorithm implemented by the VLC controller is

described in detail in Algorithm 5.1. The algorithm has two main parts: generating

the Q matrix, and utilizing the Q matrix to find the best data transmission route.

5.5.1.1 Generating the Q matrix

The generation of the Q matrix is performed for a number of iterations, which

we set as the maximum number of learning steps, as in the while loop from steps

3-18. Initially, one of the K VLC transmitters is chosen to be the initial state of the

agent. The while loop in steps 5-16 runs for as long as the current state of the agent

becomes the end MUiD. Within each learning step, the agent continues the learning

until it reaches the end MUiD within the maximum number of hops.

If the current state of the agent is a VLC transmitter, then the VLC transmitter

computes the R(S,A) values for the R matrix using Algorithm 5.2. If the current

state of the agent is not a VLC transmitter, then the current state of the agent will

101



be an MUaR, which results in an EPEC as in (5.8). The corresponding R(S,A)

values are evaluated by the MUaRs, using the ADMM for EPEC algorithm, which is

discussed in detail in Algorithm 5.3.

Once the R(S,A) values are evaluated, steps 11-15 are executed, which form the

core of the learning part. The determination of the Q-value for each (state, action)

pair, Q(S,A), for a particular R(S,A) in the reward matrix, is given by

Q(S,A) = R(S,A) + η ∗max[Q(S ′,A′)], (5.9)

where S is the current state of the agent, A is the selected action for the current

state, S ′ is the next state for state S, and A′ is the action space of the agent in state

S ′. Here, η is the discount factor, and is the weight given to the future rewards. An

η value closer to 0 indicates more preference given to immediate rewards, and if η is

closer to 1, future rewards are considered with greater weight.

5.5.1.2 Utilizing the Q matrix to find the best route

Once the agent learns from its experience and obtains an optimized Q matrix

from the above mentioned steps, we put this learning to our use. The remaining steps

in the algorithm explain how the agent navigates through the obtained Q matrix, to

find an optimum route. It starts from the initial state, which is a VLC transmitter,

and finds the action with the highest Q-value for this initial state, to be the next

state. Now, for this next state, the action with the highest Q-value is found, to be

the next state. This process is continued until the current state of the agent becomes

the end MUiD. Each time when the next state is updated, and thus, one more hop

is added to the route, it is checked if the number of hops, l has not exceeded the

maximum number of hops, L. This procedure results in an L-hop data transmission

route from the VLC transmitter to the end MUiD.
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Algorithm 5.2 Computation of rewards for VLC

1: For VLC transmitter κ, for κ ∈ {1, 2, . . . , K}, and MUiC m, for m ∈
{1, 2, . . . ,M}, compute the reward, R(S,A) as

Cκm = Sκ log2

(
1 + PκGκm

σ2
I+σ2

N

)
, as in (5.1).

2: Output R(S,A).

Here, an important issue is regarding the choice of actions during learning. The

agent can either choose an action to maximize its current Q-value, or choose an action

randomly from among all of its possible actions. The approach in which the agent

chooses to maximize its current Q-value is called the greedy approach [120]. The

agent can be trapped in a local optimum in this case, and the solution is for the agent

to explore other possible actions. In this chapter, we face this issue by employing

an ε-greedy method, where ε is a probability factor. The agent chooses the action

with the maximum Q-value with a probability of 1− ε, and a random action with a

probability of ε.

Next, we discuss the reward calculation procedure using the ADMM for EPEC

algorithm.

5.5.2 ADMM for EPEC

In this subsection, we firstly discuss the concept of ADMM as applied to the

considered scenario [77]. Then, we explain the iterated process of the ADMM based

EPEC algorithm used to model the interactions between the MUaRs. Finally, we

discuss the convergence of the proposed ADMM based EPEC algorithm.

5.5.2.1 ADMM

To demonstrate the ADMM, let us consider an example scenario with one cur-

rent MUaR and T ′ next MUaRs, where the current MUaR wants to maximize its
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utility as

maxUMUaR
t (St) = βM− γDt − rtSt,

s.t.St > 0,
(5.10)

where St is a real, scalar variable.

Here, the values of St can be updated by the current MUaR as

Sti(t+ 1) = arg max
(
UMUaR
t (Sti)

)
+ λi (t)Sti + Ψ, (5.11)

∀i ∈ {1, 2, . . . , T ′}, and

Ψ =
ρ

2
‖Sti‖2

2. (5.12)

Here, ρ > 0 is a damping factor, t is the iteration step index, and ‖·‖2 denotes the

Frobenius norm [76]. λ is the dual variable, and it is updated as

λi (t+ 1) = λi (t) + ρ (Sti (t+ 1)) . (5.13)

Due to its quick convergence property, ADMM is used for large-scale optimiza-

tion problems in large networks [76], as discussed before.

5.5.2.2 ADMM for EPEC to obtain R(S,A) for MUaRs

In the Q-learning based route selection algorithm, if the current state of the

agent is an MUaR, modeling the interaction between the current state (MUaR) and

the next hop (MUaR) results in an EPEC as in (5.8). Each of the accessible next

MUaRs provides spectrum, St, to the current MUaR, for which the current MUaR

pays a price, rt to the next MUaR node which it transmits to. The determination of

the optimal values of St and rt by the current and next MUaRs, respectively, forms

the core of the ADMM based EPEC method in our scenario. It is an iterative process

as shown in Algorithm 5.3, in which each iteration can be explained in two steps as

given below:
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5.5.2.2.1 Optimization problem of the current MUaR node Initially, the

next MUaR nodes announce the prices for the bandwidth that they are providing. The

current MUaR uses the announced prices at the start of each iteration, p, to calculate

the values in St, the amount of spectrum to be purchased from each accessible next

MUaR, to maximize its profit UMUaR
t (St). Here, the superscript p denotes the value

at the pth iteration of the method, and the superscript p− 1 denotes the value at the

p− 1th iteration of the method. This is the inner loop of ADMM. t is the iteration

step index of the inner loop.

We described St in (5.8) as St = arg max
(
UMUaR
t (St)

)
. For the current MUaR,

maximizing its utility,
(
UMUaR
t (St)

)
forms a set of values, St. Hence, the values in St

are updated at each iteration of the inner loop by the current MUaR as

St
(p)
i (t+ 1) = arg max

(
UMUaR
t (Sti)

)
+ λi

(p) (t)Sti + Ψ, (5.14)

where

Ψ =
ρ

2
‖Sti‖2

2, (5.15)

where ρ > 0 is a damping factor as mentioned above, and λ is the dual variable,

which is updated as

λi
(p) (t+ 1) = λi

(p) (t) + ρ
(
St

(p)
i (t+ 1)

)
. (5.16)

At the end of the inner loop during each iteration, p, of the outer loop, the current

MUaR arrives at a vector of St values, St, which maximizes its utility. At the same

time, these values are predicted by the next MUaRs, and are used to update the

values of rt.

5.5.2.2.2 Optimization problem of the next MUaR nodes The next MUaRs

are able to predict the behavior of the current MUaR and the values in St. The next

105



MUaRs then execute ADMM as

rt(i)
(p)(t+ 1) = arg max

(
UMUaR
t+1 (rt(i))

)
+ λ(p) (t)rt(i) + Ψ, (5.17)

where

Ψ =
ρ

2
‖rt(i)‖2

2. (5.18)

Here, ρ > 0 is the damping factor, and λ is the dual variable, which is updated as

λ(p) (t+ 1) = λ(p) (t) + ρ
(
rt(i)

(p) (t+ 1)
)
. (5.19)

Thus, the next MUaRs recalculate the values of rt that maximize their profits.

The updated values, rt
(p+1), are then provided to the current MUaR for the

(p+ 1)th iteration. This is the outer loop of ADMM. The outer loop terminates when

∥∥∥∥∥
T1∑
t=1

UMUaR
t+1 (r

(p)
t )−

T1∑
t=1

UMUaR
t+1 (r

(p−1)
t )

∥∥∥∥∥ < ε, (5.20)

where T1 is the number of next MUaR nodes, and ε is a pre-determined threshold.

ADMM algorithm for EPEC is shown in Algorithm 5.3.

5.5.2.3 Convergence

ADMM is a widely used large-scale optimization tool for both convex and non-

convex objective functions. From (5.8), the utility functions of the current and next

MUaR nodes in our considered scenario, UMUaR
t (St) and UMUaR

t+1 (rt), respectively, are

linear. The convergence of ADMM in the case of nonconvex objective functions is

discussed in [90]. ADMM is guaranteed to converge to the set of stationary solutions,

in the case of nonconvex objective functions, if the penalty parameter, ρ, is chosen

to be sufficiently large. In our scenario, ADMM converges to the optimal values

of St and rt, which simultaneously maximize the utilities for the current and next

MUaR nodes, respectively. Reference [90] provides the detailed convergence analysis

of nonconvex objective functions.
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Algorithm 5.3 Computation of rewards for D2D using ADMM for EPEC

1: Initialization:
Set the ε parameter, and number of iterations, p = 0.

2: ADMM for EPEC between MUaRs:

3: while

∥∥∥∥ T1∑
t=1

UMUaR
t+1 (r

(p)
t )−

T1∑
t=1

UMUaR
t+1 (r

(p−1)
t )

∥∥∥∥ ≥ ε do

4: Optimization for the current MUaR node (inner loop):
The current MUaR node uses rt to evaluate optimal St, such that its utility is
maximized.

5: Optimization for the next MUaR nodes (outer loop):
The next MUaR nodes predict the behavior of the current MUaR node, i.e.,
they deduce the optimal St obtained by the current MUaR node, and evaluate
optimal rt, such that their utilities are maximized.

6: p = p+ 1.
7: end while
8: For MUaR i, for i ∈ {1, 2, . . . , T}, and MUaR j, for j ∈ {1, 2, . . . , T}, i 6= j (or

between MUaR i, for i ∈ {1, 2, . . . , T}, and end MUiD j, for j ∈ {1, 2, . . . , N}),
compute the reward, R(S,A) as

Cij = Sij log2

(
1 +

PijGij
Ic+N0

)
, as in (5.2), using optimal values from St as Sij.

9: Output R(S,A).

Lemma 5.1. The L-hop route for data transmission from the VLC transmitter to

the end MUiD, obtained through the proposed RL based method is optimal.

Proof. In the Q-learning algorithm, the reward for the first hop in the L-hop route is

the data rate for the communication between the VLC transmitter and the MUiC, as

determined using Algorithm 5.2. According to the receivedM and the known values

of rt, the current MUaR calculates the optimal St that maximizes its utility, which is

predicted by the next MUaRs, and is utilized in calculating the optimal values of rt

that maximize their utilities. This process between the MUaRs is repeated until the

ADMM converges, as shown in Algorithm 5.3. The utilities of the MUaRs computed

using the optimal values of St and rt form the rewards for the next hops in the L-hop

route. Since the utilities of the MUaRs in the L-hop route are obtained using the

optimal values of St and rt, none of the MUaRs can deviate from these optimal values

for better utilities. Clearly, the L-hop route deduced by the Q-learning algorithm

which consists of these MUaRs is optimal.
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5.6 Performance Evaluation

Here, we discuss the simulation results in detail in Section 5.6.1 and discuss a

few important aspects of the results in Section 5.6.2.

5.6.1 Simulation Results

In this section, we evaluate the performance of the proposed route selection

algorithm using MATLAB. We consider a 5 m × 5 m room for the indoor VLC-D2D

scenario. The number of VLC transmitters, K, and the number of mobile users,

T , are varied to study different cases for evaluation purposes. The mobile users

are placed randomly in the room, making some of them MUiCs and some of them

MUiDs. The VLC transmitter(s) are placed equidistant along a non-diagonal line

through the center of the room (if there is only one VLC transmitter, it is placed at

the exact center of the room). Here, the spectrum for each VLC transmitter, Sκ is

set as 1 GHz. The transmit power of each VLC transmitter, Pκ is set as 1 W, the

typical output power of a white LED. Both the interference and noise for the VLC

transmission, σ2
I and σ2

N are set to −20 dB. The interference and noise for the D2D

transmission, Ic and N0, are also set to −20 dB. The transmit power of each mobile

user, Pij is set as 300 mW. The data packet size, M is set as 1 Kb, and α is set to

1 s−1. The values of β and γ are set to 106 b−1 and 106, respectively. We set the

maximum number of hops for the data transmission route, L as 3. For Q-learning,

we vary Lmax, the maximum number of steps between 1 and 100, to study the effect

of learning on different parameters. We set the default value of η as 0.8, to emphasize

future rewards, and the greedy factor, ε is set as 0.1. The values of ε and ρ for ADMM

are set as 10−6 and 1.5, respectively.

Fig. 5.4 shows the effect of Q-learning on the VLC transmission data rate for

two cases: 1 VLC transmitter and 5 mobile users, and 2 VLC transmitters and 10
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Figure 5.4: Effect of Q-learning on VLC transmission data rate.

mobile users. The figure shows the transmission capacity for the VLC communication

between the VLC transmitter and the MUiC. We can see that as the number of

learning steps increases from 1 to 100, the VLC transmission (first hop) capacity

from the VLC transmitter to the MUiC increases, which demonstrates the impact

of RL on improving the VLC transmission capacity. Specifically, we observe that as

the number of learning steps doubles from 50 to 100, the VLC data rate improves by

around 16% for the case with 2 VLC transmitters and 10 mobile users. This is due

to a better Q matrix achieved via better learning through more interactions with the

environment.

Fig. 5.5 shows the effect of Q-learning on the delay in VLC transmission for two

cases: 1 VLC transmitter and 5 mobile users, and 2 VLC transmitters and 10 mobile

users. The figure shows the delay for the VLC communication between the VLC

transmitter and the MUiC. We can see that the VLC transmission (first hop) delay

from the VLC transmitter to the MUiC decreases, as the number of learning steps

increases from 1 to 100. This shows how RL helps in minimizing the VLC transmission

delay in a VLC-D2D heterogeneous network. Here, we can see in particular that as
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Figure 5.5: Effect of Q-learning on VLC transmission delay.
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Figure 5.6: Effect of Q-learning on D2D transmission data rate.

the number of learning steps doubles from 50 to 100, the VLC delay decreases by

around 14% for the case with 2 VLC transmitters and 10 mobile users, which is also

the result of better learning.

Fig. 5.6 shows the effect of Q-learning on the average D2D communication data

rate for two cases: 1 VLC transmitter and 5 mobile users, and 2 VLC transmitters

and 10 mobile users. The figure shows the average transmission capacity for the D2D
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Figure 5.7: Effect of Q-learning on D2D transmission delay.

communication between the MUaRs. We can see that as the number of learning

steps increases from 1 to 100, the average D2D communication (second and third

hops) data rate between the MUaRs increases. There is a significant increase in data

rate (48%), when the number of learning steps increases from 1 to 10 for the case with

1 VLC transmitter and 5 mobile users. This shows the impact of RL on improving

the D2D communication data rate in a VLC-D2D heterogeneous network.

Fig. 5.7 shows the effect of Q-learning on the average delay in D2D communi-

cation for two cases: 1 VLC transmitter and 5 mobile users, and 2 VLC transmitters

and 10 mobile users. The figure shows the average delay for the D2D communication

between the MUaRs. We can see that the average D2D communication (second and

third hops) delay between the MUaRs decreases, as the number of learning steps

increases from 1 to 100. The average D2D delay is decreased by around 33% in the

case with 1 VLC transmitter and 5 mobile users, for an increase in the number of

learning steps from 1 to 10. This shows the impact of RL in minimizing the D2D

communication delay in a VLC-D2D heterogeneous network.

The effects of the discount factor for Q-learning, η, on the average D2D commu-
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Figure 5.8: Effect of discount factor on D2D parameters.

nication data rate and delay are shown in Fig. 5.8. The proposed method is compared

with a centralized method where the data transmission route is determined by the

VLCSP based only on the transmission path delays. The average D2D data rate and

delay does not change much for the centralized allocation. It can be observed that the

average capacity of D2D communication increases, and the average delay decreases

as η increases for the proposed method. This indicates better performance as the

emphasis on future rewards grows, which in turn underlines the benefits of learning

from experience.

The effects of Q-learning on the overall algorithm run time are shown in Fig.

5.9, for two cases: 1 VLC transmitter and 5 mobile users, and 2 VLC transmitters

and 10 mobile users. It is obvious that as the number of learning steps increases, or as

the number of entities increases, the algorithm run time will increase. Specifically, we

can observe that the run time increases proportionally with the number of learning

steps as well as the number of entities. Hence, the key observation here is that the

time complexity of the proposed RL based multi-hop route determination algorithm

using ADMM for EPEC, is linear.
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Figure 5.9: Effect of Q-learning on overall algorithm run time.

5.6.2 Discussion

Here, as we consider an indoor communication scenario, the mobility speed

of the cellular users is significantly lesser compared to the learning speed of the RL

algorithm. Thousands of data packets are transmitted in each second, and this enables

the RL algorithm to perform repeated interactions and arrive at an optimal L-hop

route at a rate much faster than the changes in locations of the mobile users. The

RL algorithm can be run to capture any changes in the network topology.

Also, the run times in Fig. 9 are obtained using a small-scale Intel(R) Core(TM)

i7 − 7500U CPU with a 16 GB RAM. The algorithm’s run times can be improved

tremendously by using a better processor, which would be the case in a practical

VLC-D2D heterogeneous network. Accordingly, the algorithm can be run every few

minutes or seconds in order for the RL part to accommodate the changes in users’

locations, and optimal multi-hop routes can be determined dynamically. Also, in the

considered indoor scenario, L can be as small as 2, with just an MUiC relaying the

data from the VLC transmitter to the end MUiD. In this case, the RL algorithm for

route determination converges even faster, dismissing the effects of user mobility.
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5.7 Conclusion

In this chapter, we propose an RL based data transmission route determination

method for an indoor VLC-D2D heterogeneous network. We utilize the model-free

Q-learning technique to determine L-hop data transmission routes from the VLC

transmitters to the end MUiDs. We determine the rewards for the Q-learning method

dynamically during each learning step, by formulating the interactions between the

MUaRs as an EPEC optimization problem, and then, solving it using ADMM. We

evaluate the performance of the proposed algorithm through MATLAB simulations.

It can be observed from the simulations that RL improves the parameters of a typical

VLC-D2D heterogeneous indoor downlink scenario. As the number of learning steps

increases, the agent learns more through its interactions with the environment, and

hence, the data transmission rate is improved, and the delay is minimized. We can

observe from the simulation results that when the number of learning steps increases

from 1 to 100, the VLC and D2D data rates are increased and the delays are reduced.

It can also be noticed that the D2D data rate is improved and the delay is minimized

as the discount factor for Q-learning increases, which highlights the importance of

future rewards. The simulation results also demonstrate the time complexity of the

proposed algorithm to be linear.
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Chapter 6

Defending Primary User Emulation Attacks in

Cognitive Radio Networks by Generative

Adversarial Networks

6.1 Introduction

CR is a state-of-the-art technology that will facilitate better and efficient spec-

trum utilization in the future wireless communication paradigm [138]. The radio

spectrum required for wireless communications is a scarce resource, and hence, the

Dynamic Spectrum Access (DSA) technique has been proposed to put the wireless

spectrum to efficient use [139, 140]. It serves as the inverse of the static spectrum

management practiced currently, and enhances the spectrum efficiency by introducing

more flexibility [140]. DSA is facilitated by means of a CR, which is a context-aware

radio that can adapt according to the communication environment. Accordingly, the

dynamic management of spectrum is enabled through a CRN, an intelligent network

in which one can dynamically configure transmission parameters like communication

protocol, operating frequency band and modulation scheme [141].

Licensed and unlicensed users in a CRN are called Primary Users (PUs) and

Secondary Users (SUs), respectively. DSA works firstly by the spectrum sensing

performed by SUs [142], which is the process of identifying unoccupied parts of the

licensed spectrum called white spaces [143]. This is followed by the opportunistic

utilization of these white spaces for communication by SUs, without interfering with

the operations of PUs [144]. Thus, the radio spectrum can be shared by PUs and

SUs without interference, and the spectral efficiency can be enhanced tremendously.

Nonetheless, spectrum sensing is faced with a few technical challenges, of which

a crucial one is distinguishing PU signals from SU signals. This puts the security
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Figure 6.1: Illustration of PUE attacks in a CRN.

of CRNs at risk, as SUs lack information about the network spectrum usage by

PUs [138]. This leads to one of the major security issues specific to CRNs, known

as Primary User Emulation (PUE) attacks [145]. In a PUE attack, a PUE attacker

emulates the transmission of PUs, and deceives legitimate SUs into clearing the spec-

trum for PUs, as is the inherent courtesy in a CRN. In this way, PUE attacks result

in inefficient spectrum utilization of CRNs, thus defying their very purpose.

A great deal of research has been carried out on PUE attacks, given their

impact on CRN security, and many different approaches have been proposed for

PUE attack detection [146,147]. Considering the tremendous applications of machine

learning techniques in wireless communication networks including CRNs [7,148], these

techniques are gaining popularity in PUE attack classification as well. Specifically,

deep learning based approaches have also been attaining prominence recently [149,

150].

Deep learning is a part of machine learning where computers learn from experi-

ence, through models which are many layers deep [152–154]. Additionally, Artificial

Neural Networks (ANNs) are models that mimic the biological neural networks in
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the human brain and enable complex problem solving through deep learning [151].

Recently, Generative Adversarial Networks (GANs) have emerged as an efficient and

effective method to train classifiers in a semi-supervised manner [155]. GANs consist

of two ANNs, a generative model and a discriminative model, pitted against each

other in a minimax zero-sum game [5,92].

GAN is considered to be a superior deep learning tool when available labeled

data samples are limited [155]. The data augmentation capabilities of GAN can be of

assistance in our PUE attack classification scenario, as the available data samples are

limited here. However, in order to overcome the training instabilities associated with

GAN, we consider a variant of the basic GAN called Wasserstein GAN (WGAN).

Accordingly, in this chapter, we propose a WGAN based framework for the detec-

tion of PUE attacks in a typical CRN. The major contributions of this chapter are

summarized as follows:

• Firstly, energy detection is performed to locate the frequency of the user. Then,

the sensed signal is observed for a time period, and its cyclostationary features

are computed, which are its statistical properties varying periodically with time.

These features are later used to distinguish between PU and PUE attacker

signals.

• The computed cyclostationary features are input as data value matrices into

the GAN framework, in which both the generator and discriminator networks

are Convolutional Neural Networks (CNNs) [156].

• Finally, the GAN framework is used to classify the sensed signal into PU signal

or PUE attacker signal based on the cyclostationary feature value inputs.

• The proposed GAN framework is trained and tested using datasets generated in

MATLAB. The performance of the model in successfully detecting PUE attacks
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is demonstrated through simulations.

The rest of this chapter is organized as follows. We discuss previous work re-

lated to this chapter in Section 6.2. The system model and the problem formulation

are discussed in Section 6.3. The application of the proposed framework is discussed

in Section 6.4, where initially, we discuss the computation of cyclostationary features

in Section 6.4.1, and then, we discuss the concept of GANs in Section 6.4.2. Next,

we discuss the concept of WGAN in Section 6.4.3. Finally, the proposed GAN based

detection of PUE attacks in CRNs is discussed in detail in Section 6.4.4. The perfor-

mance of our framework is demonstrated through simulation results in Section 6.5.

The chapter is concluded in Section 6.6.

6.2 Related Work

Approaches based on cyclostationary features have been immensely employed

in CRNs for spectrum sensing and modulation classification. A signal classification

algorithm using cyclostationarity is proposed in [157], which provides necessary infor-

mation about the radio environment to CRs. Reference [158] proposes an approach for

the detection and analysis of cyclostationary signatures, and presents an implemen-

tation of these signatures on a real cognitive radio test platform. The importance of

cyclostationary feature detection in spectrum sensing due to its ability to differentiate

modulated signals is highlighted in [159].

Following its successful applications in different areas of wireless communica-

tions, researchers have been exploring the possibilities of deep learning in CRNs.

References [160], [161], and [162] demonstrate a few applications of ANNs in CRNs.

A deep learning based fingerprinting model for detecting cognitive devices is proposed

in [163]. Reference [164] proposes a deep learning based signal modulation classifi-

cation method, and [165] employs a CNN to detect CR waveforms. Reference [166]
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proposes adversarial machine learning to design intelligent jamming attacks and de-

fense strategies against the attacks in CRNs. A similar approach with a GAN assisted

jammer is demonstrated in [167]. Reference [168] adopts a GAN based spectrum sens-

ing technique for CRNs, showing superior results due to training data augmentation.

Automated modulation classification using data augmentation by GANs is discussed

in [169].

PUE attacks and defense mechanisms in CRNs have been extensively inves-

tigated in recent research [170–173]. Reference [170] proposes a mean field game

approach which helps SUs take strategic defense decisions when multiple attackers

are present, and claims a detection accuracy of 89% with a false alarm probability of

0.09. Detecting PUE attacks based on a transmitter verification scheme based on the

Time-Difference-of-Arrival (TDOA) localization method is proposed in [171]. An algo-

rithm to differentiate PU signals from PUE attacker signals based on energy-efficient

localization and variance of channel parameter is discussed in [172]. Reference [173]

proposes an adaptive method for PUE attack detection, which is enabled through a

Received Signal Strength (RSS) based hypothesis detection system.

Deep learning based methods have been employed for waveform detection, pri-

mary user sensing, device fingerprinting, and for PUE attack detection in CRNs.

The application of deep learning to detect PUE attacks is realized in [174], which

discusses two broad categories of PUE attack detection: fingerprint based detection

and activity pattern based detection. A Recurrent Neural Network (RNN) based

PUE attack detection method is proposed here, which falls under the activity pattern

based detection category. This method is based on the observation of signal activity

patterns in a CRN through intermittent spectrum sensing. Further, the gradient van-

ishing problem of RNNs is resolved through a multi-layer Long Short-Term Memory

(LSTM) network, which achieves an average loss value of 0.0003.

119



Reference [144] also proposes a deep learning based PUE attack detection frame-

work. Here, energy detection is used to locate the users in a frequency band, and

then, a cyclostationarity based method is used to extract the signal features. Finally,

a Multilayer Perceptron (MLP) ANN is used for the classification of PUE attacks,

which demonstrates a detection accuracy of around 98% in hardware implementa-

tions.

Even though both of the aforementioned works employ deep learning networks

for PUE attack detection, the following aspects set this work apart.

• This chapter proposes a PUE attack classification model based on deep learning,

similar to [174] and [144]. However, the core of the detection framework is a

GAN consisting of two competing networks, which recently became popular as

a powerful model for scenarios with limited labeled data. Also, CNNs are used

as the generator and discriminator in the proposed GAN model.

• As opposed to the activity pattern based detection method proposed in [174],

this is a fingerprint based PUE attack detection method, as it is based on cyclo-

stationary features, which are dependent on the transmitter’s intrinsic features.

Hence, we need not model the signal patterns of the normal traffic in a CRN

for attack detection.

• Even though cyclostationarity based models are vastly applied in CRNs for mod-

ulation classification and spectrum sensing, research on applying such models

in PUE attack classification is limited. This chapter utilizes the cyclostation-

ary features of the sensed signals as input in the proposed GAN framework for

attack detection.

According to the authors’ knowledge, a GAN based framework for the detec-

tion of PUE attacks in CRNs has not been proposed in the literature. Here, we
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convert the cyclostationary features that can help discriminate between PU and PUE

attacker signals, into suitable inputs for the GAN framework. Then, by exploiting

the minimax game model of GAN, we train the network using labeled datasets, to be

able to successfully detect PUE attacks in CRNs. The simulation results show the

convergence of the GAN model, and thus, emphasize the effectiveness of our proposed

approach.

6.3 System Model and Problem Formulation

In this section, we firstly introduce the system model in Section 6.3.1, and then

formulate the problem in Section 6.3.2.

6.3.1 System Model

As discussed in Section 6.1, the SUs perform spectrum sensing initially, which

is followed by the opportunistic utilization of the spectral white spaces. A preferable

spectrum sensing method is the cooperative spectrum sensing, which mitigates the

hidden PU problem, in which a SU is unable to sense an active PU due to signal fading

or due to the PU signal being out of range [175]. The SUs share their sensing results

to gain better knowledge of the spectrum environment in cooperative sensing. In such

scenarios, a fusion center acts as a centralized controller that collects information from

all the SUs sensing a particular frequency band, and arrives at a final decision [176].

Here, we consider a typical CRN scenario consisting of a Primary Base Station

(BS), a cognitive BS, which behaves like a centralized controller similar to a fusion

center, and multiple PUs and SUs, as shown in Fig. 6.1. As mentioned before, the

SUs will be continuously sensing the spectrum. During this process, when a spectral

white space is detected, the SU utilizes that part of the spectrum for its transmission.

However, if/when the SU detects the presence of a PU in that part of the spectrum,

121



the SU leaves the spectrum band or moves to another spectral white space for its

communication. In this way, the spectrum is accessed dynamically, and thus, better

spectral efficiency is achieved.

In order to understand how PUE attacks are carried out, let us consider a

scenario as shown in Fig. 6.1, consisting of M PUs, N SUs, and K PUE attackers.

The PUs and the primary BS communicate with each other using a licensed frequency

band, which has the channels f1, f2, f3, f4, and f5. The cognitive BS performs

spectrum sensing continuously, and allocates the unused licensed frequency band

channels to the SUs for their communication with each other. From Fig. 6.1, we can

see that the channels, f1, f3, and f4 are being used for the communication between

the primary BS and PUs 1, 3, and 2, respectively. The cognitive BS senses the

available licensed frequency band channels, f2 and f5, and is able to allocate these

channels to the SUs for communication. Taking this into consideration, we highlight

two cases of PUE attacks below.

• Selfish PUE attack: Channel f2 which is unoccupied by the PUs is sensed by

the cognitive BS, and is allocated to SUs 1 and 2 for communication. PUE

attacker 1 emulates the primary signals in channel f2, and attacks SUs 1 and

2 in service. Thus, PUE attacker 1 captures channel f2, resulting in a service

interruption between SUs 1 and 2.

• Malicious PUE attack: Channel f5 is unoccupied by the PUs, and should be

sensed by the cognitive BS, normally. However, PUE attacker K emulates the

primary signals in channel f5, and if PUE attacker K cannot be identified

correctly, the cognitive BS can sense it as a PU and mistake channel f5 to be

occupied. Thus, PUE attacker K captures channel f5 which is unoccupied by

the PUs, and wastes the communication opportunity of SUs 3 and 4.
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6.3.2 Problem Formulation

As already discussed, the PUE attackers can jeopardize the spectrum opportu-

nities of the SUs in a CRN by emulating the signals of the PUs. Such a competi-

tion between the SUs and the PUE attackers can be considered as a noncooperative

game [5,92]. This is possible because the SUs and the PUE attackers have conflicting

interests in terms of wireless spectrum access. Additionally, a spectrum access gain

by the PUE attackers implies the loss of spectrum access to the SUs, and a gain of

spectrum access by the SUs implies the loss of a PUE attack opportunity. Therefore,

to be specific, such a noncooperative game is a two-player zero-sum game. Here, one

player acts as a maximizer who tries to maximize its gain (loss to the other player),

and the other player acts as a minimizer who tries to minimize its loss (gain to the

other player), and it is impossible for both of them to win [5, 92].

In a noncooperative game, a solution concept is the Nash equilibrium, in which

no player can gain anything by deviating from its current strategy [177]. For a zero-

sum game, the Nash equilibrium solution is the minimax solution, which is the saddle

point in mixed (selecting each strategy with a certain probability) strategies [178].

In our scenario, let us consider the maximum payoff when either of the SU or the

PUE attacker wins spectrum access as a standard value, U , which can be considered

as the transmission data rate. Hence, ∀n ∈ {1, 2, . . . , N}, and ∀k ∈ {1, 2, . . . , K}, the

minimax solution for our scenario can be expressed as

max
SPUE(k)

USU(n) = U, and (6.1)

max
SSU (n)

UPUE(k) = −U. (6.2)

Here, (6.1) says that the maximum possible payoff, USU(n), for SU n (player 1), given

PUE attacker k (player 2)’s strategy, SPUE(k), is U . Similarly, (6.2) says that the
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maximum possible payoff, UPUE(k), for PUE attacker k (player 1), given SU n (player

2)’s strategy, SSU(n), is −U .

In order to maximize U and let SU n always win against PUE attacker k,

∀n ∈ {1, 2, . . . , N}, and ∀k ∈ {1, 2, . . . , K}, we need to successfully distinguish PUE

attacker signals from actual PU signals. However, we only have a limited set of signal

characteristics (for example, modulation scheme) to learn from, to be able to achieve

this goal efficiently. Taking this into account, and also the zero-sum game nature of

the competition between the SUs and the PUE attackers, a potential candidate for a

learning algorithm is GAN.

As discussed before, GANs consist of two ANNs, which are pitted against each

other in a minimax zero-sum game. The minimax solution obtained for the GAN clas-

sification framework, as discussed in the next section, will in turn result in achieving

the maximization of payoffs for the SUs, as shown in (6.1). Considering the great

capabilities of GAN for semi-supervised learning and classification in a setting with

minimal labeled data, in this chapter, we employ a GAN based framework in the next

section, for the detection of PUE attacks in our considered CRN scenario.

6.4 Algorithm Analysis

In this section, we discuss our proposed GAN based PUE attack detection

method in detail. Firstly, in Section 6.4.1, we discuss the computation of cyclosta-

tionary features of all the user signals, which will serve as the input to the GAN

architecture. Then, we explain the basic idea of a GAN network in Section 6.4.2,

followed by which we explain the working of our proposed algorithm in Section 6.4.4.

Finally, we discuss the execution aspects of the algorithm in Section 6.4.5.

Before moving to the cyclostationary feature calculation, we list the assumptions

in our proposed framework, similar to [144], as below.
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• All the PUs, SUs and PUE attackers operate in the same frequency band.

• Only one user transmits during one time period.

• The transmitted signal power is much higher than the noise power in the chan-

nel.

• The modulation schemes of the PUs are already known, and has different signal

features compared to the PUE attackers.

6.4.1 Computation of Cyclostationary Features

Simply put, if a signal has statistical properties varying periodically with time,

such a signal is called cyclostationary [179]. Consider a cyclostationary signal y(t).

Due to the mentioned periodic property, we can represent this signal using its Spectral

Correlation Function (SCF) as [144]

SαY (f) = lim
T→∞

lim
∆t→∞

1

∆t

∫ ∆t/2

−∆t/2

1

T
YT (t, f +

α

2
)Y ∗T (t, f − α

2
)dt, (6.3)

where {α} is the set of Fourier components. Here, YT (t, f) is the time varying Fourier

transform of y(t), defined as

YT (t, f) =

∫ t+T/2

t−T/2
y(u)ej2πfudu. (6.4)

The spectral components of white noise are uncorrelated, and hence, for all

α 6= 0, the additive white noise does not affect the SCF, or in other words, SCF

is robust to additive noise. Now, we define Spectral Coherence (SC), which is a
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Algorithm 6.1 Computation of Cyclostationary Features

1: Split the sensed modulated signal into Nf frames. Each frame consists of T = ∆t
Nf

samples, given the signal has ∆t samples overall.
2: Compute the Fourier transform coefficients for each frame.
3: Shift the Fourier transform of each frame by α/2 and −α/2 and multiply them.
4: Compute the average value over Nf frames.
5: Perform frequency smoothening using a moving average filter.
6: Repeat steps 2-5 for each value of α to obtain the SCF as in (6.3).
7: Normalize the SCF to obtain the SC as in (6.5).
8: Obtain the CDP from the peak values of the SC as in (6.6).

normalized form of the SCF as [144]

Cα
Y (f) =

SαY (f)

[S0
Y (f + α

2
)S0

Y (f − α
2
)]1/2

. (6.5)

The SC shows the spectral presence of the signal at different cyclic frequencies. The

SC has values ranging from 0 to 1, and has non-zero components at different cyclic fre-

quencies for different modulation schemes, which acts as the signature for identifying

different modulation schemes.

In this chapter, we utilize only the maximum value of SC for each value of α,

called the Cyclic Domain Profile (CDP) or α-profile, which can be expressed as [180]

P (α) = max
f
|Cα

Y (f)|, (6.6)

where |Cα
Y (f)| is the absolute value of the SC of the received signal. The CDPs of

the signals sensed by the SUs can be examined to map the spectral components to

a particular modulation scheme, the features (carrier frequency, phase shift etc.) for

which are already known for the PUs but not known for the PUE attackers. For this

purpose, the CDP of the received signal is determined [180], which is explained in

detail in Algorithm 6.1. The resulting CDP values are saved as matrices, and the CDP

value matrices serve as input to the GAN framework for learning and classification.
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6.4.2 Generative Adversarial Networks

GANs consist of a generative network and a discriminative network functioning

as adversaries to each other. The generative model can be thought of as a counterfeiter

trying to produce fake currencies, and the discriminative model is analogous to the

police trying to discover the fake currencies [155]. The generative model can be called

a generator, G, and the discriminative model can be called a discriminator, D. Here,

G tries to generate samples that are difficult for D to discriminate from the actual

data, while D tries to discriminate between samples from the actual data and those

from G. Such a competition drives both networks into improving their methods, until

the real samples become indistinguishable from the fake samples. This competition

between the G and D networks can be modeled as a minimax two-player game [155].

Let y be a set of data samples, pdata(y) be its distribution, and pz(z) be a prior

on input noise variables. G is a differentiable function representing the generator,

and the generator’s distribution, pg, over the data y is given by the mapping G(z).

Let D(y) represent the discriminator, and it gives the probability that y is from the

actual data and not the generator.

The discriminator is trained to correctly label the data samples and the gener-

ator samples, while the generator is trained to keep the discriminator from discrimi-

nating the samples correctly. Consequently, we can represent the objective function

for the minimax two-player game between G and D, with a value function of V (G,D)

as

min
G

max
D

V (G,D) = Ey∼pdata(y)[logD(y)] + Ez∼pz(z)[log(1−D(G(z)))]. (6.7)

Here, we train D to maximize logD(y), and G to minimize log(1 −D(G(z))).

However, in practice, G is trained to maximize logD(G(z)), rather than minimizing

log(1−D(G(z))), since log(1−D(G(z))) saturates initially when D can discriminate
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clearly but G is poor [155]. Thus, GANs are trained based on the competition be-

tween the generator and discriminator networks, of which the former tries to generate

samples similar to the ones from the actual data, and the latter tries to distinguish if

the samples belong to the data distribution (actual data) or the model distribution

(generated by G).

Even though GANs are promising generative models, they suffer from a few

issues: imbalance between both the networks causing overfitting, high sensitivity

to hyperparameter selections, and mode collapse of the generator resulting in lesser

diversity of generated samples. In addition, the parameters of the model keep oscil-

lating, and this keeps GAN from always converging. Therefore, GANs are very hard

to train, and a lot of research is being conducted on consistently training them in a

stable manner.

6.4.3 Wasserstein GAN

The aforementioned issues in the training of GANs have led to the development

of different variants of the basic GAN. Wasserstein-GAN (WGAN) is a form of GAN

which overcomes some of the training hurdles associated with the basic GAN model

[181, 182]. Reference [181] attributes the training difficulty of GANs to the aspect

that the divergences which the GAN framework minimize are not continuous with

respect to the parameters of the generator network. Therefore, the usage of the Earth

Mover (EM) distance is proposed, which is also known as the Wasserstein-1 distance

W (x, x′), and is described as the minimum cost to transport mass for transforming

the distribution x to the distribution x′. As opposed to the divergences in the basic

GAN, the Wasserstein-1 distance is continuous everywhere [182].

The value function in (6.7) can be modified for the WGAN as

min
G

max
D∈D

V (G,D) = Ey∼pdata(y)[D(y)]− Ez∼pz(z)[D(G(z))], (6.8)
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where D is the set of 1-Lipschitz functions. Minimizing the value function as shown

in (6.8) with respect to the parameters of G under an optimal D, minimizes the

Wasserstein-1 distance [182], which can be denoted for our scenario asW (pdata(y), pz(z)).

Also, as opposed to the basic GAN, the value function of the WGAN correlates with

the quality of the samples.

6.4.4 WGAN based PUE Attack Detection in CRNs

In our scenario, the CDP matrices obtained using Algorithm 6.1 serve as input

to the GAN framework. Therefore, (6.8) can be modified for our scenario as

min
G

max
D∈D

V (G,D) = EP (α)∼pdata(P (α))[D(P (α))]− Ez∼pz(z)[D(G(z))]. (6.9)

The next major question is what kind of network to choose for the generator

and the discriminator. We need an easy to train network that can work with the

available limited data, and most importantly, work with the CDP value matrices.

CNNs are an ideal choice, considering they have been used successfully for classifying

millions of images into thousands of classes [184,185].

Subsequently, in our GAN based network, we utilize CNNs as the generator

and the discriminator, the architecture for which is shown in detail in Fig. 6.2 (ReLU

stands for Rectified Linear Unit). The optimizer used in the training of the network

is RMSProp, which is an optimization method that involves dividing the learning rate

for a particular weight by a running average of the values of the recent gradients for

that weight [183].

Now, we explore the training of the WGAN network using RMSProp optimiza-

tion [181], as shown in Algorithm 6.2. Keeping all of this in mind, we elucidate our

proposed PUE attack detection framework based on WGAN in Algorithm 6.3.
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Figure 6.2: Proposed GAN architecture.

6.4.5 Discussion

The GAN based network for PUE attack detection can be deployed at the

cognitive BS/fusion center. This is because it acts as a centralized controller to

combine the sensing results from all the SUs. Another reason is that the SUs are low

computation power devices, and will not be able to handle such complex algorithms.

Most importantly, the generator and discriminator networks will be owned by a single

entity, and one network can be used to enhance the performance of the other network

and vice versa, thus resulting in a high-performance GAN classifier.

Initially, the GAN network at the cognitive BS/fusion center needs to be trained

using some previous signal activity data from the CRN including those of PUs and

PUE attackers. However, this training can be done offline, and it makes the model

ready for PUE attack detection in real-time. Once the model is deployed in a real
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Algorithm 6.2 WGAN Training Algorithm

1: Input: The learning rate β, the clipping parameter c, the batch size b, the number
of epochs ne, the number of iterations of the discriminator per generator iteration
nd.

2: for epoch number ne do
3: for t = 0, . . . , nd do
4: From noise prior pg(z), extract a minibatch of b noise samples, {z(1), . . . , z(b)}.
5: From the data distribution pdata(y), extract a minibatch of b data samples,

{y(1), . . . ,y(b)}.

6: D ← ∇w
1
b

b∑
l=1

[D(P (α)(l))−D(G(z(l)))]

7: w ← w + β.RMSProp(w,D)
8: w ← clip(w,−c, c)
9: end for

10: From noise prior pg(z), extract a minibatch of b noise samples, {z(1), . . . , z(b)}.

11: G← −∇θ
1
b

b∑
l=1

D(G(z(l)))

12: θ ← θ − β.RMSProp(θ,G)
13: end for

network, firstly, the SUs can sense the spectrum and perform the computation of

cyclostationary features as shown in Algorithm 6.1. Then, the obtained CDP values,

which may include those of PUs and PUE attackers, can be sent to the cognitive BS

for classification.

The cognitive BS can make scheduling decisions for SUs based on the classifi-

cation results from the GAN network. If a PUE attacker is detected in a frequency

band, the cognitive BS can communicate it to the SUs performing spectrum sensing

in that frequency band, and also take necessary actions to ensure proper spectrum

usage.

6.5 Simulation Results

We implement Algorithm 6.1 to generate the CDP value matrices using MAT-

LAB. The system used for this process has an Intel Core i7−7500U CPU with a 16 GB

RAM. The simulation setup consists of a transmitter, an Additive White Gaussian
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Algorithm 6.3 WGAN based PUE Attack Detection in CRNs

1: Perform energy detection to locate the frequency of the user.
2: if no user detected then
3: Go to step 1.
4: else
5: Observe the sensed signal for a time T .
6: Compute the cyclostationary features of the sensed signal using Algorithm 6.1.

7: Input the obtained CDP values for classification into the GAN framework,
which has been trained using Algorithm 6.2.

8: if CDP values are similar to those of the PUs then
9: Classify as PU.

10: else
11: Classify as PUE attacker.
12: end if
13: end if

Noise Channel (AWGN) channel, and a receiver. The transmitter includes a random

number generator, which generates random data bits, a baseband modulator, which

then modulates it using one of BPSK, QPSK or FSK modulation schemes, and a

raised-cosine filter, which minimizes intersymbol interference through pulse-shaping.

Both the PUs and the PUE attackers are assumed to utilize the BPSK, QPSK or

FSK techniques for baseband modulation. However, the phase offset is assumed to

be 0 for the PUs in BPSK and π/4 for the PUs in QPSK, and the modulation order is

assumed to be 8 for the PUs in FSK. Even though the baseband modulation schemes

are assumed to be the same for the PUE attackers, the above mentioned parameters

are different, and act as a set of fingerprints for identifying the attackers.

The number of data symbols is taken as 1000. The sampling frequency is

considered to be 8× the symbol rate. The value of EbNo (ratio of bit energy to noise

power spectral density) is considered to be 10 dB, which reflects on the Signal-to-

Noise Ratio (SNR) due to the AWGN channel. The value of Nf is taken as 10. The

CDP values obtained through the simulations have been saved as 1× 256 matrices to

be fed as inputs to the GAN.

The GAN training as seen in Algorithm 6.2, and the PUE attack classification as

seen in Algorithm 6.3 have been implemented in Python with TensorFlow as backend.
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The system used for training and testing the GAN network has an Intel Core i7 −

8750H CPU with a 16 GB RAM, and a GeForce GTX 1070 GPU.

We used 22000 data value matrices for training and 2000 data value matrices

for testing the network. We ran ne = 70 epochs with a batch size of b = 22 data

value matrices, which can be considered as 1000 iterations in each epoch to input all

the 22000 matrices. Hence, the total number of steps = number of epochs × number

of iterations = 70× 1000 = 70000. The other hyperparameters of the WGAN model

are set to the following values: β = 0.00005, c = 0.01, and nd = 5, similar to [181].

Generally, loss functions help guide the training of a deep learning network, and

represent the cost of inaccuracy in classification predictions. Therefore, we consider

the variations in loss function values of the generator and the discriminator as the

parameters for performance evaluation.

Fig. 6.3 shows the loss function values for the generator and the discriminator

for the training dataset containing 22000 samples. Specifically, Fig. 6.3a shows the

generator loss and Fig. 6.3b shows the discriminator loss. Fig. 6.3c and Fig. 6.3d

show the discriminator loss values when it is fed with samples from the actual data,

and with samples from the generator generated data, respectively. It can be observed

from the figures that the average loss value is converging to 0 within the total number

of training steps, even though there are slight oscillations in the beginning. The

convergence of the WGAN model demonstrates that the training has been effective.

Fig. 6.4 shows the loss function values for the generator and the discriminator

for the testing dataset containing 2000 samples. The generator loss is shown in Fig.

6.4a, and the discriminator loss is shown in Fig. 6.4b. Similar to the training losses

shown before, Fig. 6.4c and Fig. 6.4d illustrate the discriminator loss values for

actual data input, and for model data input, respectively. The average testing loss

values can be seen to be converging within the total number of testing steps, even
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(a) Generator loss. (b) Discriminator loss.

(c) Discriminator loss with data input. (d) Discriminator loss with model input.

Figure 6.3: Generator and discriminator losses vs. number of steps for the training
dataset.

though Fig. 6.4b and Fig. 6.4c show some oscillations. This demonstrates that the

proposed WGAN model for PUE attack classification is effective.

6.6 Conclusion

In this chapter, we propose a novel WGAN based framework for PUE attack

detection in CRNs. We obtain the CDP values of the signals sensed by the SUs, and

utilize these values as inputs for classification by the GAN. The generator and dis-

criminator losses of the proposed model are observed to be converging, which denotes

that our GAN framework can be employed for efficient PUE attack classification in

CRNs.
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(a) Generator loss. (b) Discriminator loss.

(c) Discriminator loss with data input. (d) Discriminator loss with model input.

Figure 6.4: Generator and discriminator losses vs. number of steps for the testing
dataset.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

This dissertation proposes efficient resource allocation solutions for some of the

key facets of next generation mobile networks: network virtualization, fog computing,

heterogeneous networks, and spectrum sharing. Distributed frameworks based on

game theoretic and ML techniques are proposed by considering the objectives and

behaviors of various autonomous entities involved, which are summarized below:

• The three-sided matching based model from the perspective of the spectrum im-

proves user throughput and satisfaction in wireless network virtualization. The

interrelationships between the spectrum and infrastructure slices, and the mo-

bile users can be modeled using the R-TMSC problem, and it always generates

stable matching results in a finite number of steps. The spectrum-oriented R-

TMSC algorithm can be employed in virtualization scenarios in order to enhance

the user throughput and satisfaction, as well as to serve more number of users

compared to the centralized decoupled allocation by the MVNO. The proposed

three-sided matching algorithm can be utilized to achieve distributed allocation

of network resources in wireless network virtualization, which is flexible to user

requirements.

• The three-sided matching framework can jointly address both the user require-

ments for different VNF instances as well as their placements in different CNs

in NFV. The proposed R-TMSC algorithm not only improves the average data

rate provided by the CNs and the user satisfaction, but also leads to more num-

ber of VNF instances being hosted in CNs. Therefore, the proposed model can
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be effectively employed in 5G vEPC to consider the VNF demands along with

allocating the required resources from CNs.

• Pricing optimization for DSOs by simultaneously considering the ADSS require-

ments, as well as resource allocation optimization for FNs is possible for NFV

integrated fog computing. The interactions between the DSOs and the ADSSs

in fog computing can be effectively modeled by EPEC, and a large-scale opti-

mization can be facilitated by ADMM. The optimization of resource pricing for

the DSOs and the amount of resources to be purchased by the ADSSs can be

achieved in real-time using the proposed ADMM for EPEC algorithm. More-

over, the resources from the FNs can be allocated according to the VNF resource

requirements of the ADSSs using the proposed many-to-many matching model.

The many-to-many matching approach can reduce the costs of FN resource

allocation compared to the centralized allocation by the NFVO.

• RL can be employed for routing optimization in dynamic heterogeneous network

scenarios, along with ADMM for EPEC for large scale revenue optimization.

The proposed RL based technique can determine optimal data transmission

routes for a VLC-D2D heterogeneous network in a distributed fashion, while

simultaneously performing revenue optimization for the D2D users by utilizing

ADMM for EPEC. Data transmission routes with low delays and high capac-

ities can be achieved through the RL based algorithm. The proposed RL and

EPEC based framework can be employed in similar heterogeneous networks to

determine optimal data transmission routes.

• Deep learning networks like GAN can be used for attack classification in CRNs.

The proposed WGAN based model with CNNs as both the generator and the

discriminator, demonstrates efficient PUE attack classification performance.

The convergence of the generator and discriminator loss values of the model
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shows that cyclostationarity based PUE attack detection frameworks utilizing

GANs are effective. The proposed model can be employed in other cyclosta-

tionarity based classification scenarios in CRNs.

7.2 Future Works

Finally, there is always room for improvement. On that account, some of the

possible directions for future research are listed here:

• Incorporate user mobility into wireless network virtualization re-

source allocation: Considering the widespread integration of V2X in next

generation networks, the proposed matching based algorithm can be extended

to incorporate user mobility in the virtualization scenario. User mobility can

lead to continuous changes in the preference lists of the different sets of entities.

A possible workaround for this situation is that the three-sided matching algo-

rithm can be executed repeatedly to reflect the continuous changes in preference

lists. Another possible workaround is that models such as the RVV algorithm

can be adopted as mentioned in Chapter 2, which can transform a random

matching into a stable matching through minimal updates.

• Extend the proposed framework for 5G vEPC to virtual 5G Core

resource allocation: The proposed three-sided matching framework for 5G

vEPC involving TAs, VNF instances and CNs, can be easily extended to the

5G Core network. In that case, the set of VNF functions will change from MME,

HSS, PGW, or/and SGW to AMF, SMF, AUSF, or/and UPF. The deployment

costs of these VNF instances on to the CNs will also change according to the

flavor requirements of the instances.

• Extend fog computing optimization to meet the diverse requirements
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of IoT: The proposed EPEC and matching based framework can be extended to

address the heterogeneous resource requirements of different kinds of IoT devices

(ADSSs). Considering the diverse sources of computation tasks in the emerging

IoT ecosystem like smart grids, wearable devices, VR etc., the demand profiles

for various VNF instances can change as per the applications, and accordingly,

their deployments on to the FNs can be further optimized.

• Routing optimization using RL and EPEC can be employed in other

heterogenous networks: Heterogeneous networks are a promising solution

for traffic offloading and extending coverage in next generation networks. The

proposed RL and EPEC based algorithm can be employed in heterogeneous

networks involving small cells, femto cells, etc. in 5G mobile networks for

routing and D2D revenue optimization.

• GAN based frameworks can be utilized for intelligent PUE attack

detection: Taking into account the role of DSA in improving the spectrum

efficiency of next generation networks, the proposed GAN based framework can

be extended to detect more intelligent PUE attacks. The huge potential of deep

learning models like GANs can be exploited to detect radio-aware intelligent

adversaries of CRNs by learning certain features which set them apart from the

legitimate users.
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