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Abstract

Seismic modeling is a valuable tool for seismic interpretation of oil and gas reser-

voirs and is an essential part of seismic inversion algorithms. In this thesis, we have

developed and verified the new full-wave phase-shift (FWPS) approach for solving

seismic modeling and imaging problems. FWPS approach is based on a new way to

generalize the “one-way” acoustic wave equation using a phase-shift structure. Our

approach solves the full acoustic wave equation by separating the problem into an

equation consisting of two coupled first-order partial differential equations for wave

propagation in depth, in which the initial waves are purely one-way, but solving the

equations for downgoing initial waves and then for upgoing initial waves, retaining

the full two-way nature of the Helmholtz equation. This produces a complete set

of linearly independent solutions, that is used to construct the correct, causal full

wave solution that includes waves propagating both up and down. The initial con-

ditions for the modeling problem are generated by solving the Lippmann-Schwinger

integral equation formally, in a non-iterative fashion and converting the problem

into a Volterra integral equation of the second kind. Reflection and wraparound

from boundaries are effectively dealt with employing correct absorbing boundary

conditions.

We validate the new FWPS method by applying it to forward modeling and in-

version. Time snapshot results are given for standard velocity models, as well as

a realistic earth velocity model. We compare the realistic earth velocity model re-

sults from new FWPS approach to those obtained by finite differences (FD), with

correct scattering boundary conditions imposed. We have stabilized our results by
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using the Feshbach projection-operator technique to remove all the nonphysical ex-

ponentially growing evanescent waves, while retaining all of the propagating waves

and exponentially decaying evanescent waves. Our approach is easily parallelized to

achieve approximate N2 scaling, where N is the number of coupled equations. We

discuss the parallelization techniques used to optimize the algorithm and improve the

computational cost. We show the presence of evanescent waves in a realistic earth

velocity model by comparing the reflection matrix both with and without decaying

evanescent waves.
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Chapter 1

Introduction

1.1 Petroleum Seismology

The main motivation behind petroleum seismology is to have a clear and ac-

curate map of the subsurface structure in the area under exploration before any

attempt to drill. This structural map is important to the oil and gas industry be-

cause it plays a key role in determining where to drill for hydrocarbon reserves which,

in turn can have an enormous global economic, environmental, and political impact.

The petroleum industry employs reflection seismology as an aid to study and map

the subsurface, which enables it to locate, study and monitor potential underground

hydrocarbon reservoirs. Seismology refers to the study of how energy, in the form

of seismic waves, propagates through layers of earth’s crust and interacts differently

with various types of underground formations.
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Seismic exploration plays a key role in defining and characterizing existing reser-

voir wells and in discovering new oil and gas reservoirs. The first known seismic ex-

ploration trials were conducted by John C. Karcher and colleagues, who performed a

primitive seismic survey and mapped a shallow limestone bed at Belle Isle, Oklahoma

in the summer of 1921. Since then, seismic technologies have evolved into ever more

sophisticated techniques through the use of digital computer processing, improved

energy sources, advanced acoustic receivers (multi-component), three-dimensional,

and four-dimensional (time-lapse) seismic surveys.

1.2 Seismic Acquisition

As previously mentioned, petroleum seismology is a method of locating com-

mercial accumulations of hydrocarbon reservoirs by seismically imaging the earth’s

reflectivity distribution. Oil and gas, being less dense than water, tend to rise through

connected pore spaces in the rock until they encounter an impermeable barrier where

they become trapped [1]. The exploration for hydrocarbon resources mainly takes

place in sedimentary rocks located in the upper few kilometers of the Earth’s crust.

In a seismic exploration procedure, a manufactured and controlled source of seismic

energy generates seismic waves, known as incident waves, that propagate through

the subsurface until encountering an interface with significantly different physical

properties (e.g., velocity and/or density). Then, a fraction of the source energy is

reflected towards the earth’s surface to be recorded and acquired as data by a re-

ceiver placed on or near the earth’s surface. The reflected wave is recorded by the

2



receiver in terms of the Earth’s vertical particle velocity (or some function thereof) or

pressure change over a certain time span, denoted as a seismic trace. The reflected

wave contains information about the source that created it, the medium that the

wave has traveled through, and the inhomogeneities (or reflectors) that caused part

of the incident wave to return to the surface.

This procedure can be carried out on land or in a marine environment, in which

case they are referred to as on-shore and off-shore surveys, respectively. Each of these

types of seismic acquisition calls for a proper set of devices to be employed as sources

and receivers that best match the type of environment being surveyed. For example,

in an on-shore acquisition, a vibrator truck (known as vibroseis) or an explosive

device (e.g., dynamite) that generates seismic waves in the earth, can be used as a

source and a geophone (device sensitive to ground motion) can be used as receiver.

The vibrator truck continuously shakes the ground, starting from a low frequency

rumble at about 5 Hz and then progressively sweeping to higher frequencies up to

150 Hz. The sweep time ranges from 20 s to 40 s or so, and the recorded signal

from the geophone is cross-correlated with the vibrator truck signal to produce an

impulsive source wavelet. Figure 1.1 is a cartoon of an on-shore acquisition.

In an off-shore survey, as shown on Fig. 1.2, a proper source can be an air-gun,

which is a device that releases bursts of highly-pressurized air into the water; a

proper receiver is an hydrophone. Geophones and hydrophones both measure the

earth’s or water’s response in the form of particle velocity, acceleration, and pressure

change. They convert particle movement or acceleration into an electric pulse that

is recorded along with it’s arrival time. The amplitude of the recorded pulse in the

3



Figure 1.1: On-shore seismic survey that results from a seismic wave from a vibrator
truck into a recorder truck containing nine geophones [2].
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geophone or hydrophone is proportional to the magnitude of the particle velocity or

acceleration.

The recorded seismic data are processed to reveal information about the Earth’s

subsurface. Ultimately, this information is interpreted to deduce the geological struc-

ture and the size and type of possible hydrocarbon accumulations. The quality of

the processed seismic data has a direct impact on the ability to find and describe

reservoirs. False or inaccurate reservoir prediction can lead to wells drilled in the

wrong location; an expensive mistake given that an off-shore deep water well can

cost more than 500 million dollars. Such high stakes motivate research into new,

more effective seismic data processing algorithms. The two main methods of seismic

data processing are seismic modeling and seismic migration. Seismic modeling and

seismic migration are, in some sense, inverses of each other [4]. Modeling describes

the forward process of propagating waves from sources to scatterers to receivers,

generating seismic data. Migration attempts to undo the wave propagation effects

to produce an image of the earth.

5



Figure 1.2: Off-shore seismic survey that results from a single shot from an airgun
into a streamer containing five hydrophones [3].
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1.2.1 Seismic Migration

Migration is a wave-equation-based process used in seismic processing to obtain

a model of the subsurface. It involves geometric moving of scattered signals to show

the layer boundary or other structure where the seismic wave was reflected rather

than where it is picked up. Migration was first used in the 1920’s, and today, it has

evolved into many variations [5, 6, 7]. Two of the most important migration methods

are pre-stack and post-stack migration.

Pre-stack migration is the process in which seismic data is “back propagated”

through a velocity model before the stacking sequence occurs. The usual form of

pre-stack migration is depth migration. Pre-stack migration requires the information

about velocities of the earth’s layers. Once the user back propagates the data, there

will be some error in the image caused by dipping reflectors or diffractions. The pre-

stack depth migration will adjust the model according to the velocities given. Pre-

stack migration is often applied only when the layers being observed have complicated

velocity profiles, or when the structures are just too complex to see with post-stack

migration. Pre-stack migration is an important tool in modeling salt diapirs because

of their complexity and this has immediate benefits if the resolution can pick up any

hydrocarbons trapped by the diapir.

Post-stack migration is the process of migration in which the data is stacked be-

fore it has been migrated. This process is more popular for many reasons, mainly

because of its reasonable cost compared to pre-stack migration. As in pre-stack mi-

gration, post stack migration is based on the idea that all data elements represent

7



either primary reflections or diffractions. This is done by using an operation involv-

ing the rearrangement of seismic information so that reflections and diffractions are

plotted at their true locations. The reason that migration is needed is due to the fact

that variable velocities and dipping horizons cause the data to record surface posi-

tions differently from their subsurface positions. A disadvantage of using post-stack

migration compared to pre-stack migration is that it does not give as clear results as

pre-stack. Post-stack migration usually gives good results though, when the dip is

small and where events with different dips do not interfere on the migrated section.

1.2.2 Seismic Modeling

Seismic modeling is a technique for simulating wave propagation in the Earth.

It involves solving the acoustic wave equation in order to predict data that would be

recorded by a set of sensors for an assumed velocity model of the subsurface. Seismic

modeling is a valuable tool for seismic interpretation and is a essential part of seismic

inversion algorithms. Seismic modeling methods can be classified into three main

categories [8]: ray-tracing methods, integral-equation methods, and direct methods.

Ray-tracing methods (asymptotic methods) have been frequently used in seismic

modeling and imaging. In these methods, the wavefield is considered as a series of

certain events, with characteristic travel time and associated amplitude. Raypaths

are traced either by solving a certain differential equation that can be extracted from

seismic wave equation or by using analytic results within layers and explicit Snell’s

law calculations (interface based models). They do not take into account the full
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wavefield [9]; therefore, these methods are approximative. Typically, the full wave

equation is replaced by a single, first-order partial differential equation, by factoring

the second-order equation, neglecting the effects due to the local variation of the

sound velocity. Consequently, only waves traveling in one direction are included.

Thus, they are also called “one-way” equations. The one-way equations were origi-

nally introduced by Claerbout [10, 11].

The second group of seismic modeling methods are integral-equation methods.

Integral-equation methods of seismic modeling are based on an integral represen-

tation of the seismic wavefield spreading from point sources (Huygens’ principal).

There are two forms of integral methods: volume integral and boundary integral.

The integral-equation methods are very useful in the derivation of imaging meth-

ods based on the Born approximation, due to their particular analytical character

(Cohen, 1986 [12] and Weglein et al., 2003 [13]).

The last category of seismic forward modeling methods are the direct methods

that involve numerical solution of wave equation. Such methods are also called

full-wave equation methods since they implicitly provide the full wave field. Direct

methods such as Finite Difference (FD) (Alterman & Karal, 1968 [14], Claerbout,

1985 [11], and Virieux, 1986 [15]) and finite element (Huygens, 1987 [16], Marfurt,

1984 [17], and De Basabe & Sen, 2009 [18]) require the model to be discretized into

a finite number of points and therefore sometimes are called grid methods. Psudo-

spectral methods (Gazdag, 1981 [19] and Kosloff et al., 1982 [20]) are also examples

of the direct method. Direct methods have the ability to accurately model seismic

waves in arbitrary heterogeneous media. The primary disadvantage is that these
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methods are extremely expensive and time consuming compared to the other two

methods.

Seismic modeling is useful in a wide range of applications in exploration and

earthquake seismology. It plays an important role in almost all aspects of explo-

ration seismology such as seismic data acquisition, processing, interpretation, and

reservoir characterization. It increases the reliability of seismic data analysis. In

seismic acquisition, seismic forward modeling reduces the risk in seismic exploration

by providing quantitative information to design better surveys (e.g., Gjystdal et al.,

2007 [21], Laurain et al., 2004 [22], and Robertsson et al., 2007 [23]). In complex

geological settings seismic forward modeling can be used to test different acquisition

parameters and subsurface models to achieve the optimum data collection strategy.

Seismic modeling has been used to test different processing algorithms and flows. An-

other important role of seismic modeling is to calibrate migration methods (Gray et

al., 2001 [24]). Seismic forward modeling can also be used to relate the response of

an interpreted geologic model to real data. Also it can be applied in the development

of geological models to investigate the structural and stratigraphic problems faced

during the seismic interpretation (Chopra & Sayers, 2009 [25]).
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1.3 One-way Wave Equation Downward-continua-

tion Seismic Modeling and Migration Meth-

ods

In recent years, wavefield downward-continuation seismic methods have been

widely applied as the available computational power has steadily increased. Explo-

ration for oil and gas has extended to areas with more complex structures, exhibiting

strong lateral variations in seismic velocity. Wavefield downward-continuation en-

ables geophysicists to predict wavefields in the subsurface by propagating a seismic

wavefield through an appropriate subsurface velocity model. The essence of wavefield

downward-continuation modeling and depth migration methods is a recursive wave-

field extrapolation based on one-way wave equations [26]. The term recursive implies

that the output wavefield from the last extrapolation is used as the input wavefield for

the next extrapolation. Wavefield downward-continuation methods typically show a

superior capability for imaging complex structures compared with non-recursive ray-

based methods such as diffraction-stack or Kirchhoff migration. It is widely accepted

that recursive extrapolators provide a more accurate solution to the wave equation

over a wider range of velocities and seismic frequencies [27].

Many algorithms have been developed that fall into the category of recursive

wavefield extrapolation. In 1972 Claerbout [10, 11] developed the implicit finite-

difference method which used a one-way wave equation which allows energy to prop-

agate only in one-way. This is of course an approximation and breaks down for
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strongly varying velocity models. The explicit space-frequency extrapolation (often

called the f-x) method was introduced by Berkhout in 1982 [26]. He showed that

the forward seismic modeling can be elegantly described by a matrix equation, using

separate operators for downward and upward traveling waves. Using this model,

inverse extrapolation involves one matrix inversion procedure to compensate for the

downward propagation effects and one matrix inversion procedure to compensate for

the upward propagation effects. He concluded that explicit methods are simple and

most suitable for three-dimensional applications.

In 1984, Gazdag and Sguazzero [28] introduced the phase-shift plus-interpolation

method (PSPI). Their wave extrapolation procedure consisted of two steps; the wave-

field is extrapolated by the phase-shift method using laterally uniform velocity fields

and the actual wavefield is computed by interpolation from the reference wavefields.

They claimed that PSPI method is unconditionally stable and lends itself conve-

niently to migration of three-dimensional data.

In 1990 Stoffa et al. [29] introduced the split-step Fourier method which takes

into account laterally varying velocity by defining a reference slowness (reciprocal of

velocity) as the mean slowness in the migration interval and a perturbation term that

is spatially varying. However, this method is theoretically accurate only when there

are no rapid lateral slowness variations combined with steep angles of propagation.

In 1999 Margrave and Ferguson [30] introduced the non-stationary phase-shift

method (NSPI). In their method the symmetric operator is used in a recursive wave-

field extrapolation to compute incident and reflected wavefields at any desired depth.

In 2008 Shragge [31] presented a novel approach in which downward-continuation was
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implemented in Riemannian coordinates in the presence of complex geology.

In 2009 Al-Saleh et al. [32] introduced a direct downward-continuation method us-

ing explicit wavefield extrapolation. Their method downward continues data directly

from topography using a recursive space-frequency explicit wavefield-extrapolation

method. They confirmed the method’s effectiveness in imaging shallow and deep

structures beneath rugged topography. Their algorithm is claimed to treat strong

lateral velocity variations by using the velocity value at each spatial position to build

the wavefield extrapolator in which the depth step usually is kept fixed.

1.4 Generalized Phase-shift Method

A basic part of seismic migration is downward continuation of surface data

into the subsurface. The phase-shift method introduced by Gazdag in 1978 [33]

for wavefield extrapolation has played a very important role in exploration seismic.

Gazdag’s method is most useful in situations when the velocity model is function of

the depth only, i.e., it is independent of the coordinates transverse to the direction of

extrapolation. Therefore, the phase-shift method, as developed, is not theoretically

able to treat lateral velocity variations [26]. In a phase-shift method, propagation is

modeled by the scalar wave equation, and Fourier transforms are used to decompose

the seismic wavefield into plane waves that are exptrapolated from one depth to

another by a phase-shift. The Fourier transformed and phase-shifted wavefield is then

inverse Fourier transformed and used to estimate reflectivity. For any extrapolation

step, the velocity must remain constant in all coordinates. Velocity variation in depth
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is accommodated by segmenting the subsurface into horizontal intervals of constant

velocity and extrapolating through these layers recursively.

In 1987, Kosloff and Kessler [34] showed how the phase-shift method can be

generalized for an arbitrary velocity structure in the space-frequency domain. It is

instructive to understand how the phase-shift method of Kosloff and Kessler works

and how it can be implemented in both the space-frequency domain and wavenumber-

frequency domain. Therefore, we highlight the work of Kosloff and Kessler [34] on

the phase-shift method.

The Kosloff-Kessler phase-shift method is based on the solution of the temporally

transformed acoustic wave equation

∂2

∂z2
P̃ (x, z, ω) =

(
−ω

2

c2
− ∂2

∂x2

)
P̃ (x, z, ω), (1.1)

where x and z denote horizontal and vertical Cartesian coordinates respectively,

P̃ (x, z, ω) denotes the space-frequency domain pressure field, ω is the angular fre-

quency, and c(x, z) is the velocity field. As suggested by Kosloff and Baysal in

1983 [35], it is convenient to recast Eqn. (1.1) as a set of two first-order coupled

equations given by

∂

∂z

 P̃

∂P̃
∂z

 =

 0 1

−ω2

c2
− ∂2

∂x2
0


 P̃

∂P̃
∂z

 . (1.2)

The downward continuation in the migration consists of the solution of Eqn. (1.2)

for each frequency at all depths under the initial conditions of the values of P̃ and

∂P̃
∂z

at the surface z = 0 [35]. Equation (1.2) can be expressed in a more compact
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form

∂

∂z

 P̃

∂P̃
∂z

 =
[
Ã
] P̃

∂P̃
∂z

 (1.3)

where [P̃ , ∂P̃
∂z

] denotes a column vector of length 2Nx containing first the Nx pressures

P̃ (idx, z, ω) and then the Nx pressure derivatives ∂P̃ (idx,z,ω)
∂z

, for i = 0, 1, ..., Nx − 1.

The matrix [Ã] is obtained by comparison to Eqn. (1.2). As with the ordinary

phase-shift method, the solution here is propagated in depth increments. Within

each increment z to z + dz, the velocity is assumed to be invariant in the vertical

direction although it may vary horizontally. The solution of Eqn. (1.3) can then be

written as

∂

∂z

 P̃

∂P̃
∂z


z+dz

= exp[Ãdz]

 P̃

∂P̃
∂z


z

. (1.4)

The solution (1.4) embodies a phase-shift of the eigenvector coefficients of Ã. The

evaluation of exp[Ãdz] involves approximating Ã to obtain a phase factor. The expo-

nential is computed via exp[iãdz] with ã being a real, diagonal matrix. This leads to

the Kosloff-Kessler generalized phase-shift approach. When the velocity structure is

varying arbitrarily, the eigenvalues and eigenvectors of Ã can no longer be obtained

by inspection. It would therefore seem that a matrix diagonalization would have to

be performed before each propagation. Kosloff et al. used the Chebychev expansion

method by Tal-Ezer in 1986 [36]. Their work indicates how the calculation of a

matrix exponential can be done without having to resort to expensive matrix diago-

nalizations. However, the Chebychev expansion method is unstable with absorbing

boundaries and also quite expensive, so that it is not suitable for the realistic velocity
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models used in seismic exploration.

1.5 New Full-wave Phase-shift Approach to Solve

the Helmholtz Wave Equation

In 2012 Kouri et al. [37] introduced a new and explicit method for solving the

scattering problem, using the Helmholtz wave equation, based on a novel method

to generalize the “one-way” acoustic wave equation. In this method, the full two-

way nature of the Helmholtz equation is included but the equation is converted into

a one-way form using a generalized phase-shift structure explained in the previous

section. The method consists of two coupled, first-order partial differential equations

for wave propagation in the depth variable z. Therefore, this new method is called

new full-wave phase-shift approach and it solves the full acoustic wave equation by

separating the problem into an equation in which the initial waves are purely one-

way, but solving the equations for downgoing initial waves and then again for upgoing

initial waves. This produces a complete set of linearly independent solutions, in terms

of which one can readily construct the correct, causal full wave solution that includes

wave propagating both up and down.

Our approach makes use of some early ideas on the non-iterative solution of

the Lippmann-Schwinger equation in quantum scattering (Sams et al. [38, 39]).

Following the early work of Kosloff and Kessler [34], the second-order Helmholtz

wave equation is transferred into two coupled first-order differential equations in the
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depth variable z as in Eqn. (1.2). Then, a new vector W is introduced for the

pressure and it’s derivative,

W =

 P̃

Q̃

 (1.5)

where Q̃ = ∂P̃
∂z

. The coupled, first-order equations can be written in the following

form:

∂

∂z
W =

 0 1

−ω2

c2
− ∂2

∂x2
0

W. (1.6)

Kouri et al. [40] proposed a new splitting for the Eqn. (1.6) employing the modi-

fied Cayley method approach. More precisely, the wave operator in Eqn. (1.6) is

decomposed into the sum of two matrices: the first one is a propagator in a reference

velocity medium, and the second one is a perturbation which takes into account the

vertical and lateral variation of the velocity. This is done by addition and subtraction

of the term −ω2

c20
, where c0 is locally constant reference velocity. Then, Eqn. (1.6)

can be written as

∂

∂z

 P̃

Q̃

 =

 0 1

−ω2

c20
− ∂2

∂x2
0


 P̃

Q̃

+

 0 0

−ω2

c2
+ ω2

c20
0


 P̃

Q̃

 . (1.7)

Now Eqn. (1.7) can be represented as

∂

∂z
W = MW + VW, (1.8)

where,

M =

 0 1

−ω2

c20
− ∂2

∂x2
0

 , V =

 0 0

−ω2

c2
+ ω2

c20
0

 , and W =

 P̃

Q̃

 .
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Solving the linear, first-order partial differential equations in Eqn. (1.8) we can

obtain the simplest new full-wave phase-shift solution

W(z + ∆z) =

(
I + ∆z

2
V(z + ∆z)

)
exp(∆zM)

(
I + ∆z

2
V(z)

)
W(z). (1.9)

A complete mathematical derivation of the above equation is given in Chapter 2.

When the pressure P̃ (x, z) and pressure derivative Q̃(x, z) are known, P̃ (x, z+∆z)

and Q̃(x, z+∆z) can be calculated by Eqn. (1.9) in a step-by-step process. Discretiza-

tion of P̃ (x, z+ ∆z) and Q̃(x, z+ ∆z) leads to 4Nx + 2 coupled ordinary differential

equations in the expansion components of the pressure P̃ (j∆x, z + ∆z) and their

derivatives Q̃(x, z + ∆z). Here j = 0.1, ..., 2Nx are the indices in a Fourier basis ex-

pansion. To solve the coupled differential equations in the modeling problem initial

values of pressure P̃ (j∆x, z0) and its derivative Q̃(j∆x, z0) are produced by consid-

ering a complete set of Volterra initial solutions. A Feshbach projection method [41]

is applied to stabilize the solution by removing only growing evanescent waves, while

retaining all propagating and decaying waves.

An advantage of the new full-wave phase-shift approach to that of Kosloff and

Kessler’s approach is that by taking the reference velocity c0 constant by layer, the

entire lateral variation of the velocity is included in the perturbation term V in the

form of I + αV . This makes the computation of the matrix exponential extremely

efficient and inexpensive. Another feature of the new full-wave phase-shift approach

is it can be readily applied to both seismic modeling and depth migration. This

approach also provides ways to apply correct boundary conditions and eliminate

exponentially growing evanescent waves while retaining the exponentially decaying
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evanescent waves.

This research is part of a long-term research project aimed at solving the new

full-wave phase-shift approach developed by Kouri et al. In this dissertation new

full-wave phase-shift approach is applied to seismic modeling and migration in dif-

ferent velocity models. The results are verified by constructing time snapshots of the

acoustic wave propagation for these different velocity models. We introduce an easy

parallelization of the new FWPS code based on the linearly independent solutions

for various frequencies. Detailed analysis of absorbing boundary conditions and ways

to improve the Feshbach projection-operator are also given. We have also studied

the presence of evanescent waves in a realistic earth velocity model. Furthermore, we

present the seismic inversion results obtained using Volterra inverse scattering series

and new full-wave phase-shift approach reflection data.
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1.6 Outline of the Dissertation

This dissertation is organized as follows.

Chapter 2 describes the procedure to solve the Helmholtz wave equation using

the new full-wave phase-shift approach. Detailed descriptions and mathematical

derivations regarding the computation of Feshbach projection-operator, absorbing

boundary conditions, Volterra initial conditions, matrix exponential, and perturba-

tion matrix are given in this chapter.

Chapter 3 analyzes the use of absorbing boundary conditions in the new full-wave

phase-shift approach. Time snapshot results are given for three different velocity

models to verify the validity of our new approach.

Chapter 4 discusses the presence of evanescent waves in a realistic earth velocity

model.

Chapter 5 includes the results of Volterra inverse scattering for two velocity mod-

els with the reflection data obtained by the new full-wave phase-shift approach.

Chapter 6 includes the new modifications to new full-wave phase-shift algorithm.

It includes an improved calculation of the Feshbach projection operator and a de-

tailed description on parallelizing the source code. It also describes the optimized

computation of the Vnn′ matrix.

Finally, Chapter 7 concludes with suggestions for future work.
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Chapter 2

The New Full-wave Phase-shift

Approach

2.1 Introduction

Simulation of wave propagation is important not only in petroleum industry but

also in many engineering and scientific disciplines. The basic equation that describes

wave propagation problems in the space-frequency domain is the Helmholtz acoustic

wave equation. The Helmholtz equation in two-dimensions is defined through the

equation

∂2

∂z2
P̃ (x, z, ω) =

(
−ω

2

c2
− ∂2

∂x2

)
P̃ (x, z, ω), (2.1)
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where x and z denote horizontal and vertical Cartesian coordinates respectively,

P̃ (x, z, ω) denotes the space-frequency domain pressure field, ω is the angular fre-

quency, and c(x, z) is the velocity field. Here, z is being considered as the general

direction of propagation. Equation (2.1) is a partial differential equation and hence,

is difficult to solve. This second-order partial differential equation can be trans-

formed into two coupled, first-order differential equations in the depth variable z as

follows:

∂

∂z

 P̃

∂P̃
∂z

 =

 0 1

−ω2

c2
− ∂2

∂x2
0


 P̃

∂P̃
∂z

 . (2.2)

Equation (2.2) is a matrix partial differential equation and can be solved using a

standard numerical procedure, such as Runge Kutta method. The accuracy of the

solution depends on the numerical scheme adopted, as well as, the determination of

the operator ∂2

∂x2
. The new full-wave phase-shift ( FWPS ) approach is based on the

solution of the Helmholtz wave equation in the space-frequency domain. This new

method was developed by Kouri et al. and it is based on a new way to generalize

the one-way wave equation by decomposing the wave operator into a sum of two

matrices. In the following sections, we explain the procedure to solve the new FWPS

approach by highlighting the 2012 work of Kouri et al [37]. We consider mainly

a modeling problem in two-dimensions, but this work can be easily extended into

three-dimensions.
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2.2 The New Full-wave Phase-shift Approach

First, we define a locally constant reference velocity c0. Choosing the constant

velocity is arbitrary, and the initial choice of c0 is the minimum velocity at the

surface z = 0. Then, starting with Eqn. (2.2), after addition and subtraction of −ω2

c20
,

the wave operator is separated into the sum of two matrices. We obtain

∂

∂z

 P̃

Q̃

 =

 0 1

−ω2

c20
− ∂2

∂x2
0


 P̃

Q̃

+

 0 0

−ω2

c2
+ ω2

c20
0


 P̃

Q̃

(2.3)

by setting Q̃ = ∂P̃
∂z

. Equation (2.3) can be recast as

∂

∂z
W = MW + VW, (2.4)

where,

M =

 0 1

−ω2

c20
− ∂2

∂x2
0

 ,V =

 0 0

−ω2

c2
+ ω2

c20
0

 , and W =

 P̃

Q̃

 .

Separating the coupling operator into two matrices is called “operator splitting” [42,

43]. The two operators M and V are chosen to provide an efficient computational

scheme. In Eqn. (2.4), the first operator M generates a propagator in the reference

velocity medium, and the second operator V is a perturbation term which takes into

account the vertical and lateral variation of the velocity field. Equation (2.4) is a lin-

ear, first-order partial differential equation, which can be exactly solved. Multiplying

both sides of Eqn. (2.4) by exp(−Mz) we obtain

exp(−Mz)
∂

∂z
W = exp(−Mz)MW + exp(−Mz)VW. (2.5)
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Using the fact that M and exp(−Mz) commute we get

exp(−Mz)
∂

∂z
W −M exp(−Mz)W = exp(−Mz)VW. (2.6)

Since,

∂

∂z

(
exp(−Mz)W

)
= −M exp(−Mz)W + exp(−Mz)W, (2.7)

Eqn. (2.6) can be simplified into the following form

∂

∂z

(
exp(−Mz)W

)
= exp(−Mz)VW. (2.8)

Upon integration Eqn. (2.8) from z up to z + ∆z, where ∆z is the grid spacing in

the depth variable, we obtain

exp[−(z + ∆z)M)]W(x, z + ∆z) =

exp(−zM)W(x, z) +

∫ z+∆z

z

dz′ exp(−z′M)V(x, z′)W(x, z′). (2.9)

Finally, multiplying the last equation by exp[−(z + ∆z)M)] we get

W(x, z + ∆z) = exp(∆zM)W(x, z)

+

∫ z+∆z

z

dz′ exp([z + ∆z − z′]M)V(x, z′)W(x, z′). (2.10)

Equation (2.10) is an exact, formal solution of the full wave equation. Following the

work of Judson et al. (1991) [44], Eqn. (2.10) can be converted into an explicit form

to calculate W numerically. In this approach Newton-Cotes quadrature is applied

to approximate the z-integral. The simple trapezoidal rule is used to discretize the

integral inside the solution to the full wave Eqn. (2.10). Then, Eqn. (2.10) can be

rearranged to

W(z + ∆z) =

(
I− ∆z

2
V(z + ∆z)

)−1

exp(∆zM)

(
I + ∆z

2
V(z)

)
W(z), (2.11)
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where I is a 2×2 identity matrix.

The operator (I−∆z
2

V(z+∆z)) must be inverted to get an exact solution. Because

of the structure of V, the computation of the inverse in Eqn. (2.11) is analytical and

straightforward:(
I− ∆z

2
V(z + ∆z)

)−1

=

(
I + ∆z

2
V(z + ∆z)

)
. (2.12)

Finally, we obtain the recursion expression

W(z + ∆z) =

(
I + ∆z

2
V(z + ∆z)

)
exp(∆zM)

(
I + ∆z

2
V(z)

)
W(z), (2.13)

which is the simplest new FWPS approach solution. When the pressure P̃ (x, z)

and pressure derivative Q̃(x, z) are known, P̃ (x, z + ∆z) and Q̃(x, z + ∆z) can be

calculated by Eqn. (2.13) in a step by step process.

Equation (2.13) consists of coupled first order differential equations that cannot

be solved analytically further. To get the solution of pressure and its derivative

at each depth, P̃ (x, z) and Q̃(x, z) are discretized using a finite grid along the x

direction. This discretization is convenient since seismic data includes discrete time

histories at discrete points on the earth. When discretized, P̃ (x, z) and Q̃(x, z)

become P̃ (j∆x, z) and Q̃(j∆x, z), where j = 0,±1,±2, ...,±Nx. Now the coupled

equations are converted into a set of 2× (2Nx + 1) coupled differential equations. In

order to solve these coupled equations in (2.13) further, the matrix exponential and

the perturbation term should also be calculated in the discretized version. Also, for

the seismic modeling problem, initial values of pressure and its derivative at each x

grid point for the initial z0 (surface values) are needed. Next sections of this chapter

discuss the procedures mentioned above.
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2.3 Computation of the Matrix Exponential and

the Perturbation Matrix

2.3.1 Computation of the Matrix Exponential

The structure of the matrix M in Eqn. (2.4) is given by

M =

 0 1

−ω2

c20
− ∂2

∂x2
0

 =

 0 I

S 0

 . (2.14)

In the Fourier basis exp(2πinx/L)√
L

, the matrix M is of the size 2×(2Nx+1)∗2×(2Nx+1)

and not diagonal. The submatrix S in the Fourier basis is diagonal and given by

S =



(−ω2

c21
+ (−2πNx

L
)2) 0 . . . 0

0 (−ω2

c22
+ (2π(−Nx+1)

L
)2) . . . 0

...
...

. . .
...

0 0 . . . (− ω2

c2N
+ (2πNx

L
)2)


. (2.15)

Here cj are the constant reference velocities and they are all set to c0. L is equal to

2Nx∆x and it is the length of the finite grid, where ∆x is the grid spacing along x

direction. The eigenvalues of the submatrix S are its diagonal elements:

λj = −ω
2

c2
j

+
(2πk

L

)2

(2.16)

where j = 1, 2, ...., (2Nx + 1) and k = (−Nx + j − 1). The eigenvalues of the S

matrix are pure real. The eigenvalues of the matrix M can be determined using

the eigenvalues of the submatrix S [34, 45] and are given by ±
√
λj, where j =
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1, 2, ...., 2Nx + 1 . The corresponding eigenvectors Ψ±j are given by,

(Ψ±j )j′ = 1δj,j′ ±
√
λjδ(2Nx+1+j),(2Nx+1+j′). (2.17)

Using these eigenvectors, a matrix T of the size (4Nx+2)× (4Nx+2) is defined with

its columns consisting of the eigenvectors of matrix M. Then the exponential term

can be written as [46]:

exp(M∆z) = T exp(Λ∆z)T−1, (2.18)

where,

exp(Λ∆z) =



e(
√
λ1∆z) 0 . . . 0

0 e(
√
λ2∆z) 0 . . .

...
. . .

e(
√
λ2Nx+1∆z) 0 . . .

e(−
√
λ1∆z) 0 . . .

. . . 0

0 e(−
√
λ2Nx+1∆z)



.

It can be seen from Eqn. (2.18) that computation of the matrix exponential is simply

applying a phase-shift. Therefore, the computation of the matrix exponential is

inexpensive (saves computer time and storage) in new FWPS method and is efficient

to be used in many problems involving very large matrices. This advantage is due

to the fact that entire lateral variation of the velocity is included in V, by taking c0

constant.
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2.3.2 Computation of the Perturbation Term in the Fourier

Basis

In order to carry out computation of solutions to the new FWPS approach, the

operator V in Eqn. (2.13) has to be expanded in a Fourier basis. First, matrix A is

defined as

A = M + V, (2.19)

where,

A =

 0 I

−ω2

c2
− ∂2

∂x2
0

 =

 0 I

K 0

 . (2.20)

Here, I represents the identity operator and it can be written in the Fourier basis as

1

L

∫ L

0

dxei(n
′−n)2πx/L = δnn′ . (2.21)

To obtain the Fourier basis matrix of K, first 1
c2(x,z)

is expanded in the Fourier basis

as

1

c2(x, z)
=

Nx∑
n=−Nx

Sn
exp(2πinx/L)√

L
, (2.22)

where

Sn =
1√
L

∫ L

0

dx
exp(−2πinx/L)

c2(x, z)
. (2.23)
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Then,

1

L

∫ L

0

dx
1

c2(x, z)
ei(n

′−n)2πx/L

=
Nx∑

n′′=−Nx

Sn′′

∫ L

0

dx
exp(−2πnx/L)√

L

exp[2π(n′ + n′′)x/L]

L

=
Nx∑

n′′=−Nx

Sn′′√
L
δn,n′′+n′ (2.24)

and

1

L

∫ L

0

dxe−2πinx/L (K) e2πin′x/L = δnn′

(
2πn′

L

)2

− ω2

Nx∑
n′′=−Nx

Sn′′√
L
δn,n′′+n′ . (2.25)

The choice of simplest splitting used by Kouri et al. is

K = K0 + V1 (2.26)

with

1

L

∫ L

0

dxe−2πinx/L (K0) e2πin′x/L =
1

L

∫ L

0

dxe−2πinx/L

(
−ω

2

c2
0

− ∂2

∂x2

)
e2πin′x/L

= δnn′
[(2πn

L

)2

− ω2S0

]
, (2.27)

and

1

L

∫ L

0

dxe−2πinx/L (V1) e2πin′x/L =
1

L

∫ L

0

dxe−2πinx/L

(
ω2

c2
0

− ω2

c2(x, z)

)
e2πin′x/L

= ω2

(
S0δnn′ −

Nx∑
n′′=−Nx

Sn′′√
L
δn,n′′+n′

)
. (2.28)
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2.4 Method for Finding Initial Conditions for New

FWPS Approach Using Volterra Solutions

In order to initiate the computation of solutions to the new FWPS approach,

the correct surface values of P̃ (x, z0, ω) and Q̃(x, z0, ω) should be provided. But

the correct P̃ (x, z0, ω) and Q̃(x, z0, ω) that produce the desired solution need the

measurement of reflections produced by the inhomogeneities in the velocity model,

which can only be attained by solving the forward problem . Following is the method

used by Kouri et al. to provide these initial conditions. It is started with deriving

the Lippmann-Schwinger solution of the Helmholtz wave equation.

The two dimensional Helmholtz equation in the space-frequency domain can be

written as

[∇2 +
ω2

c2(x, z)
]P (x, z, ω) = 0, (2.29)

where

1

c2
=

1

c2
0

[1− V (x, z)] (2.30)

in terms of constant reference velocity c0 and a perturbation V (x, z). Then, the

Helmholtz equation can be rewritten as

[∇2 +
ω2

c2
0(x, z)

]P (x, z, ω) =
ω2

c2
0

V (x, z)P (x, z, ω) (2.31)

in terms of c0 and V (x, z). An integral equation corresponding to Eqn. (2.31) is
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given by

P+(x, z, ω) = P+
0 (x, z, ω)

+

∫ z1

z0

dz′
∫ L

0

dx′G+
0 (x, x′, z, z′, ω)k2V (x′, z′)P+(x′, z′, ω), (2.32)

where k = ω/c0. This was obtained using the causal free-space Green’s function

G+
0 (x, x′, z, z′, ω) = − i

2

∑
n

1

kn

exp(2inπx/L)√
L

exp(−2inπx′/L)√
L

exp(ikn|z − z′|)

(2.33)

which satisfies the equation

[∇2 + k2]G+
0 (x, x′, z, z′, ω) = δ(x− x′)δ(z − z′). (2.34)

The dispersion relation of kn in Eqn. (2.33) is given by

kn =

√
−ω

2

c2
0

+ (
2πn

L
)2. (2.35)

Equation (2.32) is the Lippmann-Schwinger equation. The pressure field P+
0 (x, z, ω)

represents a wavefield in the reference medium and the integral represents a scattered

wavefield due to the perturbation. At this point compact support is assumed for

V (x, z) on the [z0, z1] domain.

Expanding the pressure terms in Eqn. (2.32) in the Fourier basis exp(2πinx/L)√
L

P+(x, z, n, ω) =
∑
n′

exp(2πin′x/L)√
L

P+(n′, z, n, ω), (2.36)
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and using Eqn. (2.33),

∑
n′

exp(2πin′x/L)√
L

P+(n′, z, n, ω) =

exp(iknz)
exp(2πinx/L)√

L
− ik2

2

∑
n′

1

kn′

exp(2πin′x/L)√
L

∫ z1

z0

dz′ exp(ikn′|z − z′|)∫ L

0

dx′
exp(−2πin′x′/L)√

L
V (x′, z′)

∑
n′′

exp(2πin′′x′/L)√
L

P+(n′′, z′, n, ω) (2.37)

can be obtained. Multiplying both sides of Eqn. (2.37) by exp(−2πin′x/L)√
L

and integrat-

ing over x, we get

P+(n′, z, n, ω) = exp(iknz)δnn′ −
ik2

2

∑
n′′

1

kn′

∫ z1

z0

dz′ exp(ikn′|z − z′|)

V (n′, n′′, z′)P+(n′′, z′, n, ω). (2.38)

Equation (2.38) is the causal Lippmann-Schwinger solution of the acoustic wave

equation in the Fourier basis. It has the form of an inhomogeneous Fredholm in-

tegral equation of the second kind. In Eqn. (2.38), the first index n′ corresponds

to the dependence in the lateral variation x and the second index n corresponds to

dependence on the lateral position of the source x0.

To solve Eqn. (2.38), the information of P+(n′′, z′, n, ω) is needed in all the re-

gions where the perturbation is nonzero. This problem is resolved by transforming

Eqn. (2.38) into an inhomogeneous Volterra integral equation of the second kind.

This transformation follows the work of Sams and Kouri [38, 39] and Smith et al. [47].

The absolute value appearing in the argument of the Green’s function can be

eliminated by writing the integral over z′ in terms of an integral from z0 to z plus
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an integral from z to z1:

P+(n′, z, n, ω) = δnn′ exp(iknz)

−ik
2

2

∑
n′′

1

kn′

∫ z

z0

dz′ exp(ikn′(z − z′))V (n′, n′′, z′)P+(n′′, z′, n, ω)

−ik
2

2

∑
n′′

1

kn′

∫ z1

z

dz′ exp(ikn′(z
′ − z))V (n′, n′′, z′)P+(n′′, z′, n, ω). (2.39)

Introducing a new matrix notation,

(P+(z))n′n = P+(n′, z, n, ω). (2.40)

Eqn. (2.39) can be written as

P+(z) = e+(z) − ik2

2
k−1e+(z)

∫ z

z0

dz′e−(z′)V(z′)P+(z′)

− ik2

2
k−1e−(z)

∫ z1

z

dz′e+(z′)V(z′)P+(z′). (2.41)

The e+ and e− are diagonal downgoing (+) and upcoming (-) matrices of plane waves

having the following form:

e± =



exp(±ik0z) 0 . . . 0

0 exp(±ik1z) . . . 0

...
...

. . .
...

0 0 . . . exp(±ik2Nxz)


. (2.42)

k−1 in Eqn. (2.42) is also a diagonal matrix with elements δnn′/kn:

k−1 =



1
k0

0 . . . 0

0 1
k1

. . . 0

...
...

. . .
...

0 0 . . . 1
k2Nx


. (2.43)
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The physical solution for z ≤ z0 is given by

P+(z) = e+ + e−r(ω), (2.44)

where r(ω) is the reflection amplitude matrix given by

r(ω) = −ik
2

2
k−1

∫ z1

z0

dz′e+(z′)V(z′)P+(z′). (2.45)

Adding and subtracting the following term,

−ik
2

2
k−1e−(z)

∫ z1

z0

dz′e+(z′)V(z′)P+(z′),

Eqn. (2.41) can be simplified into:

P+(z) = e+(z) + e−(z)r(ω) − ik2

2
k−1e+(z)

∫ z

z0

dz′e−(z′)V(z′)P+(z′)

+
ik2

2
k−1e−(z)

∫ z

z0

dz′e+(z′)V(z′)P+(z′).(2.46)

Assume a solution of the form

P+(z) = P1(z) + P2(z)r(ω). (2.47)

Then,

P1(z) = e+(z) − ik2

2
k−1e+(z)

∫ z

z0

dz′e−(z′)V(z′)P1(z′)

+
ik2

2
k−1e−(z)

∫ z

z0

dz′e+(z′)V(z′)P1(z′) (2.48)

and

P2(z) = e−(z) − ik2

2
k−1e+(z)

∫ z

z0

dz′e−(z′)V(z′)P2(z′)

+
ik2

2
k−1e−(z)

∫ z

z0

dz′e+(z′)V(z′)P2(z′) (2.49)
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are required to satisfy Eqn. (2.47). Now the reflection amplitude matrix is

rn′n(ω) =
(

[1 +
ik2

2
k−1

∫ z1

z0

dz′e+(z′)V(z′)P2(z′)]−1

[−ik
2

2
k−1

∫ z1

z0

dz′e+(z′)V(z′)P1(z′)]
)
n′n
, (2.50)

in terms of P1(z) and P2(z). It indicates a dense operator, with each column de-

scribing the full angular dependence of reflection associated with x-wave number kn.

The two integral Eqns. (2.48) and (2.49) are the desired Volterra equations. The

initial values of P1 and its derivatives with respect to z, Q1 are determined by the

fact that for z less than or equal to z0, the solution is equal to e+. Therefore, the

form of the initial pressure and its derivative will be

P1(z0) =



exp(+ik0z0) 0 . . . 0

0 exp(+ik1z0) . . . 0

...
...

. . .
...

0 0 . . . exp(+ik2Nxz0)


(2.51)

and

Q1(z0) =



+ik0 exp(+ik0z0) 0 . . . 0

0 +ik1 exp(+ik1z0) . . . 0

...
...

. . .
...

0 0 . . . +ik2Nx exp(+ik2Nxz0)


.

(2.52)

Using Eqns. (2.51) and (2.52), P1(z) and Q1(z) can be calculated for any z value.

Then P2(z) and Q2(z) can be obtained by complex conjugation. Now using these

Volterra solutions the desired Lippmann-Schwinger solution can be calculated using
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the well defined transformation in (2.48) and (2.49) and the reflection matrix rn′n(ω)

computed from Eqn. (2.50).

2.5 Absorbing Boundary Conditions

Numerical calculations for solving Helmholtz equation require a bounded or

finite volume which leads to artificial reflections from the boundary. Also using

Fourier method, which has periodic properties leads to wraparounds from the ar-

tificial boundaries. Those are fundamental problems which arise in the numerical

simulation of the wave phenomena. These reflection and wraparound waves will in-

terfere with the true seismic waves as they propagate into the modeled region, and

will lead to artificial reflections not observed in the actual seismic experiment. There-

fore, an efficient method must be introduced to remove the unwanted reflections and

wraparounds.

In 1986, Kosloff et al. [48] introduced a method of absorbing boundary conditions

which can be used both for acoustic and elastic wave equations. In their method,

the wave amplitude is attenuated at the grid boundary region based on a simple

modification of the wave equation. The modified two dimensional acoustic wave

equation in the space-time domain can be written as:

∂

∂t

 P̃

∂P̃
∂t

 =

 −γ 1

c2∇2
xz −γ


 P̃

∂P̃
∂t

 . (2.53)

Here, γ is the reduction function of the form γ = a/ cosh2(αn) where a is a constant,
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α is a decay factor and n is the distance in number of grid points from the boundary.

Kouri et al. followed a similar principle as in Eqn. (2.53) to introduce an reduction

function to implement absorbing boundary conditions in new FWPS approach. In-

troducing an absorbing potential in the space-frequency domain, Eqn. (2.2) can be

written as

∂

∂z

 P̃

∂P̃
∂z

 =

 −γ 1[
−ω2

c2
− ∂2

∂x2

]
−γ


 P̃

∂P̃
∂z

 . (2.54)

As explained section 2.2, operator splitting can be applied to write the matrix on

the right hand side of the Eqn. (2.54) in terms of two matrices

M =

 0 1

−ω2

c20
− ∂2

∂x2
0

 , ṼAb =

 −γ 0

VAb −γ

 ,

 −γ 1

−ω2

c2
− ∂2

∂x2
−γ

 = M + ṼAb. (2.55)

Here, VAb = −ω2

c2
+ ω2

c20
. There is no change made in the matrix M. Following the

same procedure applied to get Eqn. (2.11), a new equation with absorbing boundary

conditions can be obtained:

W(z + ∆z) =

(
I− ∆z

2
ṼAb(z + ∆z)

)−1

exp(∆zM)

(
I + ∆z

2
ṼAb(z)

)
W(z).

(2.56)

The matrix inversion in Eqn. (2.56) can be done analytically as before,

DAb =

 (1 + ∆z
2
γ)−1 0[

∆z
2

(1 + ∆z
2
γ)−1VAb(1 + ∆z

2
γ)−1

]
(1 + ∆z

2
γ)−1

 . (2.57)
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Therefore, the new FWPS approach solution with the absorbing boundary becomes

W(z + ∆z) = DAb(z + ∆z) exp(∆zM)

(
I + ∆z

2
ṼAb(z)

)
W(z). (2.58)

One can also use the Helmholtz equation with damping terms,

∂2

∂t2
P̃ (x, z, t) = c2 ∂

2

∂x2
P̃ (x, z, t)− 2γ

∂

∂t
P̃ (x, z, t)− γ2P̃ (x, z, t), (2.59)

and directly transform the Eqn. (2.59) to the frequency domain by using a standard

time-frequency Fourier transform. Transformation of Eqn. (2.59) to the frequency-

space domain yields the form

∂

∂z

 P̃

∂P̃
∂z

 =

 0 1[
− 1
c2

(ω2 − γ2 + i2γω)− ∂2

∂x2

]
0


 P̃

∂P̃
∂z


= HAb

 P̃

∂P̃
∂z

 . (2.60)

Next, simply write the matrix HAb as M plus V to cast Eqn. (2.4).

HAb = M + VAb =

 0 1

−
[
∂2

∂x2
+ ω2

c20

]
0

+

 0 0[
ω2

c20
− 1

c2
(ω2 − γ2 + i2ωγ)

]
0

 .

(2.61)

Again only the perturbation term is modified due to applying absorbing boundary

conditions. In that case, the working equation with absorbing boundaries is

W(z + ∆z) =

(
I + ∆z

2
VAb(z + ∆z)

)
exp(∆zM)

(
I + ∆z

2
VAb(z)

)
W(z). (2.62)
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2.6 Feshbach Projection-operator Method to Re-

move Growing Evanescent Waves in the New

FWPS Approach

Another difficulty in solving the Helmholtz acoustic wave equation using a com-

plete basis expansion is the occurrence of evanescent waves or exponentially grow-

ing/decaying waves. To get a stable solution for the wave equation there should be

a method to filter the exponentially growing evanescent waves. For example, global

filtering, proposed by Kosloff and Baysal [35], is a method of removing evanes-

cent waves by eliminating all the Fourier components that satisfy the condition

kn = 2πn/L > ω/cmax, where cmax is the highest velocity between the depth step

z and z + ∆z. But their method also removed all the decaying evanescent waves,

consequently removing the steep dip events in low-velocity regions. In contrast, the

stabilizing method proposed by Kouri et al. only removes the exponentially grow-

ing evanescent waves while retaining all the propagating and exponentially decaying

waves.

It is clearly observed from the Eqn. (2.16) that the eigenvalues of the matrix

M are either purely real or purely imaginary depending on the values of {λi}s.

The pure imaginary waves include wave numbers k2
n satisfying the relation ω2/c2

0 >

(2πn
L

)2. These imaginary eigen values correspond to the propagating waves with a

simple phase-shift. The pure real waves include wave numbers k2
n satisfying the

relation ω2/c2
0 < (2πn

L
)2. They are associated with the exponentially growing or
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decaying evanescent waves. These evanescent waves can be generated experimentally

from seismic sources that generate spherical waves or when the acoustic wave is

crossing a velocity interface at an angle beyond the critical angle [49]. The negative

real eigenvalues lead to an exponential decay as z increases and the positive real

eigen values grow exponentially. Therefore, we have to eliminate the exponentially

growing solution on grounds of energy conservation to obtain a numerically stable

and accurate solution to the wave equation. To overcome this problem Kouri et al.

have constructed and applied Feshbach projection-operator method in the solution

of the new FWPS approach.

The Feshbach projection-operator approach was first introduced in nuclear physics

[41]. It was later used in molecular quantum scattering [50]. In this method two

projection-operators Π and X are constructed so that Π contains all the propagat-

ing waves (both upward and downward) and the decaying evanescent waves and X

contains the growing evanescent waves.

These two operators satisfy the following properties:

Π2 = Π, X2 = X, Π + X = 1, ΠX = XΠ = 0. (2.63)

The eigenvalues M are (for a constant reference velocity c0)

λk = ±

√
−ω

2

c2
0

+
(2πj

L

)2

; k = 1, 2, ...., (2Nx + 1) ; j = (−Nx + k − 1). (2.64)
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The kth eigenvector can be written as

Ψ±,k = Nk



0

0

...

1

0

...

±
√
−ω2

c20
+
(

2πj
L

)2

0

...



, (2.65)

where Nk is the normalization constant and the value 1 is at the kth position and

the value

(
±
√
−ω2

c20
+
(

2πj
L

)2
)

is at the (2Nx + k+ 1)th position of the eigenvector.

The biorthogonal complement ξ±,k of Ψ±,k is

ξ±,k =
1

2Nk

0 0 . . . 1 0 0 . . .

± 1√
−ω2

c20
+
(

2πj
L

)2

 0 . . .

 . (2.66)

Using the closure relationship Eqn. (2.63) for a complete set of states, along with

their biorthogonal complements, the identity operator can be written in terms of the

projection-operators, Π and X,

I =
∑
±,k

Ψ±,kξ±,k =

(∑
±,k1

Ψ±,k1ξ±,k1 +
∑
±,k2

Ψ±,k2ξ±,k2

)

=

(∑
±,k1

Ψ±,k1ξ±,k1 +
∑
−,k2

Ψ−,k2ξ−,k2

)
+
∑
+,k2

Ψ+,k2ξ+,k2 = Π + X. (2.67)
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Here, k1 and k2 run over eigenstates with imaginary and real eigenvalues, respectively.

(±, k1) corresponds to propagating waves, (−, k2) denotes decaying components and

(+, k2) growing components. The explicit form of Π is

Π =

 I1 0

0 I1

+


1
2
I2 −1

2
1√

−ω2
c20

+

(
2πj
L

)2 I2

−1
2

√
−ω2

c20
+
(

2πj
L

)2

I2
1
2
I2

 , (2.68)

where I1 and I2 are identity operators that only span the imaginary-eigenvalue and

real-eigenvalue subspaces respectively.

The Feshbach projection-operator applied to Eqn. (2.62) can be written as:

I(z + ∆z)W(z + ∆z) = I(z + ∆z)

(
I + ∆z

2
VAb(z + ∆z)

)
I(z + ∆z) exp(∆zM)I(z)

(
I + ∆z

2
VAb(z)

)
I(z)W(z), (2.69)

or,

(Π(z + ∆z) + X(z + ∆z)) W(z + ∆z) = (Π(z + ∆z) + X(z + ∆z))(
I + ∆z

2
VAb(z + ∆z)

)
(Π(z + ∆z) + X(z + ∆z))

exp(∆zM) (Π(z) + X(z))

(
I + ∆z

2
VAb(z)

)
(Π(z) + X(z)) W(z). (2.70)

By applying Π(z + ∆z) from the left and throwing away all the terms containing X

as an approximation, we get

Π(z + ∆z)W(z + ∆z) ' Π(z + ∆z)

(
I + ∆z

2
VAb(z + ∆z)

)
Π(z + ∆z) exp(∆zM)Π(z)

(
I + ∆z

2
VAb(z)

)
Π(z)W(z). (2.71)
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Equation (2.71) is the our new working equation with Feshbach projection-operator

and absorbing boundary conditions applied. If our reference velocity c0 does not

change along the z-direction, we have Π(z + ∆z) = Π(z).
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Chapter 3

Computational Results

3.1 Testing of Absorbing Boundary Conditions for

the New FWPS Approach

3.1.1 Introduction

Whenever we solve a partial differential equation numerically by a volume dis-

cretization, we must truncate the computational grid in some way, and the key

question is how to perform this truncation without introducing significant artifacts:

wraparounds and reflections from boundaries, into the computation since these un-

desired artifacts eventually override the actual seismic signals which propagate in the

modeled region. Some problems are naturally truncated, e.g., for periodic structures

where periodic boundary conditions can be applied. Some problems involve solutions
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that are rapidly decaying in space, so that the truncation is irrelevant as long as the

computational grid is large enough.

However, some of the most difficult problems to truncate involve wave equa-

tions, where the solutions are oscillating and typically decay with distance r only

as 1
r(d−1)/2 in d-dimensions. The slow decay means that simply truncating the grid

with hard-wall (Dirichlet or Neumann) or periodic boundary conditions will lead to

unacceptable artifacts from boundary reflections. Therefore, wave equations require

something different: an absorbing boundary that will somehow absorb waves that

strike it, without any reflection. Applying a absorbing boundary is very important in

wave-equation forward modeling and migration, as the absorbing boundary condition

may effect the total computational cost and quality of the results.

In the following sections we describe how to apply absorbing boundary condition

proposed by Kosloff et al. [48] to the new FWPS method solution and analyze its

effectiveness in new FWPS approach on several velocity models.

3.1.2 Background

The first attempts at using absorbing boundaries for wave equations involved

absorbing boundary conditions. First, Lysmer et al. [51] proposed a “viscous bound-

ary” which absorbs reflecting waves effectively. Next, Lysmer et al. [52] proposed a

“transmitting boundary” which absorbs body waves and surface waves on the lateral

infinite boundary. Those absorbing boundary conditions are dependent upon fre-

quency. Smith [53] proposed a “non reflecting boundary” which can be achieved by
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averaging the solution of two problems; one involving fixed boundary conditions and

one involving free boundary conditions. In 1985, Kays proposed absorbing bound-

ary conditions for acoustic media [54]. There are also several other methods for

constructing absorbing boundaries proposed by Randall [55] and Higdon [56].

On the other hand, Kosloff et al. [48] proposed a method, which absorbed radi-

ating waves from the interior of the finite grid. They showed the method applied to

the Schrodinger equation and acoustic wave equation in two-dimensions and three-

dimensions. It is based on a gradual reduction of the amplitudes in a strip of nodes

along the boundaries of the grid. Since this method appears extremely simple and

robust, and can be applied to a wide variety of time-dependent problems, we have

followed a similar method to implement absorbing boundary conditions in to our so-

lution of new FWPS approach to remove the unwanted reflections and wraparound

effects.

3.1.3 Absorbing Boundary Conditions for New FWPS Ap-

proach

In Kosloff’s method, the wave amplitude is attenuated at the grid boundary

region based on a simple modification of the wave equation. The modified two

dimensional acoustic wave equation in the space-time domain can be written as:

∂

∂t

 P̃

∂P̃
∂t

 =

 −γ 1

c2∇2
xz −γ


 P̃

∂P̃
∂t

 . (3.1)
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Here, γ is the reduction function of the form γ = a/ cosh2(αn) where a is a

constant, α is a decay factor, and n is the distance in number of grid points from the

boundary. γ should be chosen so that it should be small enough to avoid reflections

and large enough to eliminate transmissions.

Kouri et al. [37] followed a similar principle as in Eqn. (3.1) to introduce a reduc-

tion function to implement absorbing boundary conditions in new FWPS approach.

The derivation of absorbing boundaries in the new FWPS approach is given in Chap-

ter 2, Section 2.5. Following the method of Kosloff, the new FWPS method solution

with the absorbing boundary conditions becomes:

W(z + ∆z) = DAb(z + ∆z) exp(∆zM)

(
I + ∆z

2
ṼAb(z)

)
W(z) (3.2)

with

DAb =

 (1 + ∆z
2
γ)−1 0[

∆z
2

(1 + ∆z
2
γ)−1VAb(1 + ∆z

2
γ)−1

]
(1 + ∆z

2
γ)−1

 . (3.3)

One can also use the Helmholtz equation with damping terms, and directly trans-

form the equation to the frequency domain by using a standard time-frequency

Fourier transform. In that case, the absorbing potential enters in Eqn. (3.1). Then,

transforming Eqn. (3.1) including the damping terms to the frequency-space domain

yields the form

∂

∂z

 P̃

∂P̃
∂z

 =

 0 1[
− 1
c2

(ω2 − γ2 + i2γω)− ∂2

∂x2

]
0


 P̃

∂P̃
∂z


= HAb

 P̃

∂P̃
∂z

 , (3.4)
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with matrix HAb written in the following format:

HAb = M + V =

 0 1

−
[
∂2

∂x2
+ ω2

c20

]
0

+

 0 0[
ω2

c20
− 1

c2
(ω2 − γ2 + i2ωγ)

]
0

 .

(3.5)

To reduce the extension of the numerical grid, in the new FWPS solution the ab-

sorbing potential γ is introduced in the z and x coordinates of the subsurface velocity

model in the form of a reduction/damping function. Therefore, in our implemen-

tation of absorbing boundary conditions γ consists of two parts, γx and γz so that

γ = γx + γz.

Figure 3.1 shows the shape of the damping function γ = a/ cosh2(αn) at a = 5.0

and α = 0.10. Figure 3.2 shows enlarged sections of γ with different α values. In

Fig. 3.2(a), α = 0.18 with 20 absorbing grid points and in Fig. 3.2(b), α = 0.10 with

35 absorbing grid points. Figure 3.2 indicates that by reducing α in the damping

function one must increase the length of the damping region.

By introducing the damping function γ in the perturbation matrix V, the value of

P (x, z, w) is slightly reduced at each depth step in a strip of grid points on left, right

and bottom of the velocity model. The amplitude reduction in each strip is gradually

tapered from a zero value in the interior boundary. We do not introduce an absorbing

boundary conditions at the top of the model as in the new FWPS approach, since

we only deal with downgoing waves when initiating the wave propagation.
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Figure 3.1: Damping function γ at a = 5.0 and α = 0.10.
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(a)

(b)

Figure 3.2: Damping function with different absorbing boundary conditions. (a) γ
at a = 5.0 and α = 0.18. (b) γ at a = 5.0 and α = 0.10.
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3.2 Producing Snapshots with the New FWPS Ap-

proach

3.2.1 The Source Function

The mathematical formula for the source function is given by

S(t)δ(x− xj)δ(z) = −
√

2

π
σγ(σ − 2σγ(σt− τ)2) exp(−γ(σt− τ)2)δ(x− xj)δ(z),

(3.6)

where

σ = 1.5fmax

fmax is the maximum frequency ( we have used fmax = 20 Hz)

τ = 1

γ = 8.

The time-dependance of the source function is given by a Ricker wavelet, a stan-

dard source used in the oil and gas industry. Ricker wavelet is a zero-phase wavelet

with a central peak and two smaller side lobes. The source function in time and

frequency domain are shown in Fig. 3.3. The spatial structure of the source is a

Dirac delta function located at x = xj and z = 0.
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(a)

(b)

Figure 3.3: Source function (a) in time domain S(t). (b) in frequency domain S(ω).
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3.2.2 Creating Snapshots in New FWPS Approach

Generating snapshots at different time steps is helpful to analyze the accuracy of

the modeling approach. In order to produce snapshots, the pressure values must be

calculated in the time domain. We started our derivation by Fourier transforming the

acoustic wave equation in to the frequency domain to obtain the Helmholtz equation.

Therefore, to produce snapshots, we have to inverse Fourier transform the resulting

pressure values into time domain, weighted by the contribution of each frequency to

the source. In order to do that, we must return to the full acoustic wave equation

and solve it for the case that contains the frequency domain source.

The non-homogeneous acoustic wave equation in the space frequency domain can

be written as

ω2

c2
P̃ (x, z, ω) +

∂2P̃ (x, z, ω)

∂z2
+
∂2P̃ (x, z, ω)

∂x2
= −Ŝ(ω)δ(x− xj)δ(z), (3.7)

where Ŝ is the source function in the frequency domain. To include the spatial

character of the source properly, δ(x− xj) in the Fourier basis can be written as

δ(x− xj) =
+∞∑

n=−∞

exp(2πin(x− xj)/L)

L
. (3.8)

The (causal) Lippmann-Schwinger solution of Eqn. (3.7) is

P̃ (x, z, ω) = −Ŝ(ω)

∫ +∞

−∞
dz′
∫ L

2

−L
2

dx′G+(x, x′, z, z′, ω)δ(x′ − xj)δ(z′). (3.9)

G+(x, x′, z, z′, ω) also satisfies a Lippmann-Schwinger equation of the form

G+(r, r′, ω) = G+
0 (r, r′, ω) +

∫
dr
′′
G+

0 (r, r
′′
, ω)V(r

′′
)G+(r

′′
, r′, ω). (3.10)
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The new vector notation denotes: r = (x, z), r′ = (x′, z′) and r
′′

= (x
′′
, z
′′
). Here,

G+
0 (r, r′, ω) satisfies

(
ω2

c2
0

+
∂2

∂z2
+

∂2

∂x2
)G+

0 (r, r′, ω) = δ(r− r′). (3.11)

Substituting

(
ω2

c2
+

∂2

∂z2
+

∂2

∂x2
)G+(x, x′, z, z′, ω) = δ(x− x′)δ(z − z′) (3.12)

in Eqn. (3.7) gives

P̃ (x, z, ω) = −Ŝ(ω)

∫ +∞

−∞
dz′
∫ L

2

−L
2

dx′G+
0 (x, x′, z, z′, ω)δ(x′ − xj)δ(z′)

−Ŝ(ω)

∫ +∞

−∞
dz
′′
∫ L

2

−L
2

dx
′′
G+

0 (x, x
′′
, z, z

′′
, ω)V(x

′′
, z
′′
)P̃ (x

′′
, z
′′
, ω). (3.13)

Integrating over x′ and z′ leads to

P̃ (x, z, ω) = −Ŝ(ω)G+
0 (x, xj, z, 0, ω)

−Ŝ(ω)

∫ +∞

−∞
dz
′′
∫ L

2

−L
2

dx
′′
G+

0 (x, x
′′
, z, z

′′
, ω)V(x

′′
, z
′′
)P̃ (x

′′
, z
′′
, ω). (3.14)

We can show that

−Ŝ(ω)G+
0 (x, z, xj, 0, ω) = −Ŝ(ω)

−i
2

∞∑
n=−∞

exp(ikn|z|)
kn

exp(2πin(x− xj))
L

, (3.15)

with

kn =

√
−ω

2

c2
0

+ (
2πn

L
)2. (3.16)

Next, multiplying P+(x, z, n, ω) by −i
2kn

exp(−2πnxj/L)√
L

and summing over n leads to

P+(x, z, ω) =
−i
2

Nx∑
n=−Nx

1

kn

exp(−2πinxj/L)√
L

P+(x, z, n, ω). (3.17)
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Finally, the time domain pressure is calculated by Fourier transforming from frequen-

cies to time, weighting the P+(x, z, ω) with the Fourier coefficients of the acoustic

source dependence Ŝ(ω):

P+(x, z, t) =

∫ ωmax

ωmin

dωŜ(ω) exp(iωt)P+(x, z, ω). (3.18)

3.3 Computational Results

3.3.1 Introduction

In the following sections we demonstrate the new FWPS approach by applying it

to forward modeling. First, we present the effect of absorbing boundary conditions

in new FWPS approach. Next, we produce snapshot results for several different

velocity models using a Ricker Wavelet for the time-dependance of the source. We

have presented the snapshot results with and without absorbing boundary conditions

applied.

3.3.2 Velocity Models

We have used several velocity models to test our new FWPS approach to solve

the Helmholtz acoustic wave equation. The first and simplest velocity model is a two-

dimensional homogeneous velocity model with a uniform velocity equal to 2000 m/s.

The second model is an arbitrary varying velocity structure called steep velocity

model which is shown in Fig. 3.4(a). In the steep model the lightly shaded region

55



has velocity 4500 m/s and the dark region has velocity 2000 m/s. The third velocity

model is a realistic earth velocity model which consists of a portion of the BP P-

wave velocity model. It is also an arbitrary varying velocity structure with a complex

shaped high velocity region and slow velocity varying sediment layers. The BP P-

wave velocity model is shown in Fig. 3.4(b). In each case, the model size was 601

points along the z-direction and 2Nx+1 = 301 grid points along the x-direction. For

the BP P-wave velocity model only, a low velocity part at the bottom has been added

to provide compact support in z. We have used grid spacings dz = 1.5 m and dx =

10 m. The reference velocity was chosen to be c0 = 2000.0 m/s for the homogeneous

and steep velocity models. For the BP P-wave velocity model the reference velocity

was c0 = 1492.0 m/s, the velocity of the sea water layer.
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(a)

(b)

Figure 3.4: P-wave velocity models. We have plotted the wave velocity against
(Depth, Distance). Color bar shows the wave velocity values in m/s. (a) Steep
velocity model. (b) BP P-wave velocity model.
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3.3.3 Absorbing Boundary Conditions Results

We have used both Eqns. (3.2) and (3.5) to implement the boundary conditions

in the new FWPS solution. We found them both to provide almost the same re-

sults. But to demonstrate the effectiveness of the absorbing boundary condition we

primarily use the formalism given in (3.5), since compared to (3.2) it doesn’t involve

many γ inversions, hence saving some computational time. To present the results,

we have used the propagating wavefield in the frequency domain, P (x, z, ω). In all

the figures, the frequency dependance pressure wavefield data are normalized by the

largest value of the corresponding data field.

Figure 3.5 displays the pressure wavefield P (x, z, ω) at frequency 50.91 Hz for

the homogeneous velocity medium without absorbing boundary conditions applied.

It clearly displays strong, unwanted boundary effects.

Figure (3.6) shows the pressure wave field P (x, z, ω) for the homogeneous velocity

medium with different absorbing boundary conditions. In those figures we have kept

the damping amplitude value a = 5.0 and changed the α values. Figures 3.6(a)

and 3.6(b) have α values 0.18 and 0.07 respectively. These α values correspond to

employing ∼ 20 and ∼ 50 grid points in the absorbing boundary region. It can be

seen from those graphs that fewer artificial reflections are produced when decreasing

α, and in turn increasing the damping region. Figures 3.6(a) and 3.6(b) indicate a

clear improvement compared to Fig. 3.5.

Next, we have applied the absorbing boundary conditions for the steep veloc-

ity model as similarly to the homogeneous case. Figure 3.7 displays the pressure
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Figure 3.5: Pressure wavefield for the homogeneous model at 50.91 Hz without ab-
sorbing boundary conditions applied. We have plotted the pressure amplitude against
(Depth, Distance). Grayscale bar shows the values of normalized pressure wavefield
data.
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(a)

(b)

Figure 3.6: Pressure wavefield for homogeneous model at 50.91 Hz for different
absorbing boundary conditions. We have plotted the pressure amplitude against
(Depth, Distance). In both figures, grayscale bar shows the values of normalized
pressure wavefield data. (a) α = 0.18. (b) α = 0.07.
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wavefield P (x, z, ω) at frequency 50.91 Hz for the steep velocity medium without

any absorbing boundary conditions applied. Figure 3.8 displays the pressure wave

field P (x, z, ω) at frequency 50.91 Hz for the steep velocity medium with different

absorbing boundary conditions applied. We have kept the damping amplitude value

a = 5.0 and changed the α values. Figures 3.8(a) and 3.8(b) have α values 0.18

and 0.07 respectively correspond to employing ∼ 20 and ∼ 50 grid points in the ab-

sorbing boundary region. The two sets of graphs for the steep velocity model show

improvement as in the previous homogeneous case.

Using Kosloff’s method of absorbing boundary conditions we were able to effec-

tively dealt with the boundary effects in new FWPS solution . It shows that well

known seismic techniques can be easily applied in new FWPS method solution to

reduce artificial reflections. The solution to avoiding boundary effects used to be

to enlarge the numerical mesh, thus delaying the side reflections and wraparound

longer than the range of times involved in the modeling. Obviously this solution

considerably increases the computation time. Thus choosing Kosloff’s method, at

the same time we were able to save some computational time.
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Figure 3.7: Pressure wavefield for the steep velocity model at 50.91 Hz without
absorbing boundary conditions applied. We have plotted the normalized pressure
amplitude against (Depth, Distance). Grayscale bar shows the values of normalized
pressure wavefield data.
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(a)

(b)

Figure 3.8: Pressure wavefield for the steep velocity model at 50.91 Hz for different
absorbing boundary conditions. We have plotted the pressure amplitude against
(Depth, Distance). In both figures, grayscale bar shows the values of normalized
pressure wavefield data. (a) α = 0.18. (b) α = 0.07.
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3.3.4 New FWPS Approach Modeling Results

In this section we verify the new FWPS approach by applying it to forward

modeling. We present the results for the three different velocity models given in

Section 3.3.2. To produce snapshots, we have used the source function given in

Eqn. (3.6). We have Fourier transformed the time dependent source S(t) to the

frequency domain Ŝ(ω) and set a cutoff frequency for which the value of Ŝ(ω) is

very small. For this time domain source function, we have taken a frequency range

from 0.001
2π

Hz to 300
2π

Hz. We have computed solutions for 80 different frequencies

lying in this range, with a constant interval ∆ω = 4
2π

Hz. The larger the number

of frequencies taken into account in the calculation, over a given frequency range,

clearer the snapshot. To obtain snapshots, after finding P+(n′, z, n, ω), we have

calculated P+(x, z, n, ω) by using Eqn. (2.36). Then, frequency dependent pressure

values P+(x, z, ω) were calculated by Eqn. (3.3). Finally the snapshots P+(x, z, t)

were obtained using Eqn. (3.4). The time step was chosen to obey the stability

condition, the Courant Friedriches Lewy condition (CFL condition) [57]. It is chosen

to be less than a value determined by the CFL condition to obtain clear snapshots

for the wave propagation at different times. Define

α =
c

(dx/dt)
=

2

π
, (3.19)

where c is the maximum velocity in the propagating medium, dt is the time step, dx

is the maximum grid spacing and α is the Courant number. We have used α < 0.2

for our work.
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3.3.5 Snapshots for Homogeneous Velocity Model Without

Absorbing Boundary Conditions Applied

The snapshots for the homogeneous velocity model at times 0.2 s to 0.5 s are

shown in the following figures from Fig. 3.9(a) to Fig. 3.9(d). No absorbing bound-

ary conditions are applied when obtaining these snapshots. Unwanted artifacts are

clearly seen in these figures. We have normalized the wavefield amplitude data of

each figure by the largest value of the amplitude of that particular data set.

(a)

(b)
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(c)

(d)

Figure 3.9: Snapshots for the homogeneous velocity model using new FWPS ap-
proach without absorbing boundary conditions applied. We have plotted the pres-
sure amplitude against (Depth, Distance). In each of the figures, grayscale bar shows
the values of normalized pressure wavefield amplitudes. (a) t = 0.20 s. (b) t = 0.30 s.
(c) t = 0.40 s. (d) t = 0.50 s.
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3.3.6 Snapshots for Homogeneous Velocity Model with Ab-

sorbing Boundary Conditions Applied

The snapshots for the homogeneous velocity model at times 0.2 s to 0.5 s are

shown in the following figures from Fig. 3.10(a) to Fig. 3.10(d). We have used 50

points of absorbing region when obtaining these snap shots. We have normalized the

wavefield amplitude data of each figure by the largest value of the amplitude of that

particular data set.

(a)

(b)
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(c)

(d)

Figure 3.10: Snapshots for the homogeneous velocity model using new FWPS ap-
proach with absorbing boundary conditions applied. We have plotted the pressure
amplitude against (Depth, Distance). In each of the figures, grayscale bar shows the
values of normalized pressure wavefield amplitudes. (a) t = 0.20 s. (b) t = 0.30 s.
(c) t = 0.40 s. (d) t = 0.50 s.

68



3.3.7 Snapshots for Steep Velocity Model with Absorbing

Boundary Conditions Applied

The snapshots for the steep velocity model at times 0.10 s to 0.50 s are shown

in the following figures from Fig. 3.11(a) to Fig. 3.11(e). We have used 50 points of

absorbing region when obtaining these snap shots. We have normalized the wavefield

amplitude data of each figure by the largest value of the amplitude of that particular

data set.

(a)

(b)
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(c)

(d)

(e)

Figure 3.11: Snapshots for the steep velocity model using new FWPS approach with
absorbing boundary conditions applied. We have plotted the pressure amplitude
against (Depth, Distance). In each of the figures, grayscale bar shows the values of
normalized pressure wavefield amplitudes. (a) t = 0.10 s. (b) t = 0.20 s.(c) t =
0.30 s. (d) t = 0.40 s. (e) t = 0.50 s.
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3.3.8 Snapshots for BP P-wave Velocity Model with Absorb-

ing Boundary Conditions Applied

The snapshots for the substantially more complicated BP P-wave velocity model

at times 0.20 s to 0.30 s are shown in the following figures from Fig. 3.12(a) to

Fig. 3.12(c). We have used 50 points of absorbing region when obtaining these snap

shots. We have normalized the wavefield amplitude data of each figure by the largest

value of the amplitude of that particular data set. The low velocity part at the

bottom has been removed when presenting the results.
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(a)

(b)

(c)

Figure 3.12: Snapshots for the BP P-wave velocity model using new FWPS approach.
We have plotted the pressure amplitude against (Depth, Distance). In each of the
figures, grayscale bar shows the values of normalized pressure wavefield amplitudes.
(a) t = 0.20 s. (b) t = 0.25 s. (c) t = 0.30 s.
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3.3.9 Snapshots for BP P-wave Velocity Model Obtained

Using Finite Difference Method

The snapshots for the BP P-wave velocity model obtained using finite difference

(FD) method are shown in the following figures from Fig. 3.13(a) to Fig. 3.13(c). We

have normalized the wavefield amplitude data of each figure by the largest value of

the amplitude of that particular data set.
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(a)

(b)

(c)

Figure 3.13: Snapshots for the BP P-wave velocity model using FD method. We have
plotted the pressure amplitude against (Depth, Distance). In each of the figures,
grayscale bar shows the values of normalized pressure wavefield amplitudes. (a) t =
0.20 s. (b) t = 0.25 s. (c) t = 0.30 s.
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From Fig. 3.11 and Fig. 3.12, it is clearly visible that the scattering at the bound-

aries are correctly treated by the new FWPS approach. Furthermore, Fig. 3.11 show

both up and down propagating waves, validating the full-wave propagation in new

FWPS approach. To further validate the new FWPS results, in Fig. 3.13, we present

the FD snapshot results for the BP P-wave velocity model. Comparing Fig. 3.12

to that of Fig. 3.13 we observe the snapshot results are very similar. This further

demonstrates that new FWPS approach provides a accurate solution to the full-

wave equation. Our method produces accurate travel times and treats the reflector

locations in complex geologic structures correctly, providing kinamatically correct

results. However, it does not provide the same amplitude as in FD method. The

amplitude errors in one-way wave type wave equations are usually related to their

failure to conserve energy [58]. Therefore, introduction of a new term associated

with the amplitudes as in “true-amplitude phase-shift method” may be needed to

get the correct dynamics [58, 59, 60].
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Chapter 4

Evanescent Waves in the BP

P-wave Velocity Model

4.1 Introduction

If we carry out the full formal solution to the wave equation, we must math-

ematically include waves for which ω2/c2
0 < (2πn

L
)2 to satisfy the requirement for

completeness of the basis. At least some of these states are needed to describe the

distortion of the pressure wave caused by lateral inhomogeneity in the acoustic ve-

locity. They also are required to describe the source correctly. This leads to the

occurrence of exponentially growing and decaying waves. The physical reason for

instability is the amplification caused by the growing evanescent waves that leads to

a rapid “blow-up” of the solution, making it necessary to suppress these unwanted

wave modes in one-way extrapolation algorithms. Kosloff and Baysal [35] suggested
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suppressing all of the evanescent waves in the wavenumber domain by using the

Fourier transform and a simple ideal cutoff filter for a background with depth-only

dependent velocity and a zero offset source-receiver configuration. This strategy lead

to the removal of some propagating waves along with the evanescent waves and, as

a result, poor imaging of steep reflectors. Sandberg and Beylkin [61] extended this

method to suppresses evanescent modes in an arbitrary laterally varying background

by introducing spectral projectors to remove the evanescent modes, hence, leaving

all propagating modes intact in a variable background. This is computationally in-

tensive as it requires matrix diagonalizations to construct the projectors. It does,

however, deliver a correct image.

In physical reality, both solutions with harmonic oscillations (propagating waves)

and exponentially decaying (evanescent) waves with depth are present. Therefore,

removing all the evanescent waves affects the resolution and consequently the final

image. Thus it is useful to seek a less costly method to filter out only the exponen-

tially growing evanescent waves. It is clearly observed from the Eqn. (2.16) that the

eigenvalues of the matrix M are either purely real or purely imaginary depending

on the values of {λi}s. The pure real waves include wave numbers k2
n satisfying the

relation ω2/c2
0 < (2πn

L
)2. They are the wave numbers associated with the exponen-

tially growing or decaying evanescent waves. The negative real eigenvalues lead to an

exponential decay as z increases and the positive real eigenvalues grow exponentially.

The stabilizing method (Feshbach projection-operator method) proposed by Kouri et

al. requires no expensive diagonalization and only removes the exponentially grow-

ing evanescent waves corresponding to these positive real eigenvalues while retaining
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all the propagating and exponentially decaying waves. With the use of this method,

now we are able to identify the significance of the evanescent waves in realistic earth

models.

4.2 Computational Results

To test the significance of the evanescent waves we have used the BP P-wave

velocity model shown in Fig.3.4(b). The model size is 601 points along the z-direction

and 2Nx + 1 = 301 grid points along the x-direction. We have added 150 points of

sea water layer to the bottom of the z-direction to provide compact support for the

velocity model. We have used grid spacings dz = 1.5 m and dx = 10 m. The initial

reference velocity was c0(z0) = 1492.0 m/s and the minimum velocity for each layer

was used to calculate the projection matrix at each depth step z.

The snapshots including both propagating and decaying evanescent waves are

shown in Fig. 3.12(a) to Fig. 3.12(c). The snapshots including only propagating

waves for times t = 0.20 s, t = 0.25 s and t = 0.30 s are shown in Fig. 4.1(a) to

Fig. 4.1(c). Figure (4.2)(a) to Fig. (4.2)(c) show the difference of above two sets of

snapshot figures. These snapshots, show propagation of decaying evanescent waves.

Although the amplitude of the evanescent wave is less than that of the propagating

wave, there is still a significant contribution from them. Removing all these decaying

evanescent waves would indeed affect the quality of the final result.

To validate our results, we also include the reflection amplitude rn,n′ data for

a single frequency of 43.64 Hz. Figure (4.3) contain the reflection amplitude rn,n′
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for the case with both propagating and decaying evanescent waves. Figure (4.4)

contain the reflection amplitude r0
n,n′ for the case with only propagating waves. Fig-

ure (4.5) contain the difference of reflection amplitudes rn,n′ − r0
n,n′ . Here, the index

n′ corresponds to the dependence in the lateral variation x and the second index n

corresponds to the dependence on the lateral position of the source x0. Note from

Figure (4.4) the contribution of evanescent waves are due to the large wave numbers

corresponding to the larger values of ±Nx. For comparison we also include reflection

amplitude rn,n′ data for a smaller frequency of 14.55 Hz. The reflection amplitudes

are shown in Fig. (4.6) and Fig. (4.8).

Our new FWPS approach yields a stable solution that suppresses only growing

evanescent waves. Our study of decaying evanescent waves shows that they are

important physically and that their presence is not just a theoretical artifact. Their

presence can be observed in the wave propagation of realistic BP earth model.
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(a)

(b)

(c)

Figure 4.1: Snapshot with only propagating waves at (a) t = 0.20 s. (b) t = 0.25 s.
(c) t = 0.30 s. We have plotted the pressure amplitude against (Depth, Distance). In
each of the figures, grayscale bar shows the normalized pressure wavefield amplitude
values.
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(a)

(b)

(c)

Figure 4.2: Difference of snapshot figures Fig. 3.12(a)-(c) and Fig. 4.1(a)-(c) at (a) t
= 0.20 s. (b) t = 0.25 s. (c) t = 0.30 s. We have plotted the pressure amplitude
difference against (Depth, Distance). In each of the figures, grayscale bar shows the
normalized pressure wavefield amplitude values.
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Figure 4.3: Reflection amplitude (rn,n′) data with both propagating and decaying
evanescent waves at f = 43.64 Hz, plotted against (Column index, Line index). Color
bar shows the values of dimensionless reflection amplitude rn,n′ .
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Figure 4.4: Reflection amplitude (r0
n,n′) data with only propagating waves at f =

43.64 Hz, plotted against (Column index, Line index). Color bar shows the values
of dimensionless reflection amplitude r0

n,n′ .
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Figure 4.5: Difference of reflection amplitudes rn,n′ − r0
n,n′ at f = 43.64 Hz, plotted

against (Column index, Line index). Color bar shows the values of rn,n′ − r0
n,n′ .
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Figure 4.6: Reflection amplitude rn,n′ data with both propagating and decaying
evanescent waves at f = 14.55 Hz, plotted against (Column index, Line index).
Color bar shows the values of dimensionless reflection amplitude rn,n′ .
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Figure 4.7: Reflection amplitude (r0
n,n′) data with only propagating waves at f =

14.55 Hz, plotted against (Column index, Line index). Color bar shows the values
of dimensionless reflection amplitude r0

n,n′ .
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Figure 4.8: Difference of reflection amplitudes rn,n′ − r0
n,n′ at f = 14.55 Hz, plotted

against (Column index, Line index). Color bar shows the values of rn,n′ − r0
n,n′ .
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Chapter 5

Seismic Imaging Using Volterra

Inverse Scattering Series and New

FWPS Approach.

5.1 Introduction

Inverse scattering method studies the scattered wavefield measured near the

surface to determine the earth’s subsurface properties. From the end of 1970s, with

the development of inverse scattering research on wave equation, this theory was

introduced into the field of seismic exploration. Moses and Prosser [62, 63] first

brought forward the inverse scattering series method (ISS). Later, Bleistein and

Cohen [64, 65, 66] discussed the relationship between inverse scattering theory and

seismic imaging problem.
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There are mainly two types of inverse scattering methods: linear approxima-

tion methods [67, 64] and optimization methods [68, 69]. Currently, Weglein and

co-workers have employed the inverse scattering theory [70], which has a significant

advantage in comparison to other data inversion methods (e.g., full waveform inver-

sion [68, 69]). Their work on ISS is based on the early work of Jost and Kohn [71],

Moses [62], Razavy [72] and Prosser [63]. The ISS is a direct method for seismic

inversion[73]. It uses the Born-Neumann series solution of the acoustic Lippmann-

Schwinger equation and requires no prior information of the actual wave propagation

in the subsurface. Their approach, however, is limited by the finite radius of conver-

gence of the Born-Neumann series of the acoustic Lippmann Schwinger equation.

Kouri et al. [74], have developed a one-dimensional Volterra inverse scattering

series (VISS) which possesses advantages over ISS. Also, their method achieves imag-

ing and inversion in one procedure. Their method is inspired by the early work of

renormalization transformation of the Lippmann-Schwinger equation into a Volterra

equation by Sams and Kouri [38]. In 2003, Kouri and Vijay [75] proposed a method

to formulate the acoustic scattering solution in terms of a Volterra kernel to overcome

the convergence limitation of the Born-Neumann series solution of the Lippmann-

Schwinger integral equation. In their method [75], the inverse series was derived for

both reflection and transmission data. Lesage, Jie et al. [74], provides the extension

of this approach to a more practical case involving only reflection data measured

near the surface, which is more useful in the oil and gas industry.

The following section gives a detailed derivation of the Volterra inverse scattering

series (VISS) based on the renormalization of the Lippmann-Schwinger equation.
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We employ the reflection data computed by the new FWPS approach in VISS to

validate seismic imaging. The detailed derivation of computing reflection data based

on Volterra Lippmann-Schwinger equations is given in chapter 2.

5.2 Volterra Inverse Scattering Series

The definitions of terms in this section are found in chapter 2. The causal

Green’s function is given by

G+
0,ω(xz|x′z′) ≡ G+

0,ω =
−ik2

2

∑
nx

1

knx
ϕnx(x)ϕ∗nx(x

′)eiknx |z−z
′| (5.1)

where ϕn(x) are the lateral Fourier basis functions defined by

ϕn(x) =
e2πinx/L

√
L

= ϕ∗(−n)(x). (5.2)

The Volterra Green’s function is given by

G̃0,ω(xz|x′z′) ≡ G̃0,ω = k2
∑
nx

1

knx
ϕnx(x)ϕ∗nx(x

′)sin[knx(z − z′)]η(z − z′) (5.3)

where η(z − z′) is the Heaviside function. If G is a general Green’s function, then

Gf ≡
∫ L

0

dx′
∫ ∞
−∞

dz′G(xz|x′z′)f(x′z′). (5.4)

The causal Green’s function can be expressed in terms of the Volterra Green’s func-

tion by adding an (operator) solution of the homogeneous Helmholtz equation:

G+
0,ω = G̃0,ω −

ik2

2

∑
nx

1

knx
ϕnx(x)φ−knx (z)ϕ∗nx(x

′)φ∗−knx (z′) (5.5)

= G̃0,ω −
ik2

2

∑
nx

1

knx
ϕnxφ−knxϕ

∗
nxφ

∗
−knx . (5.6)
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The causal solution of the acoustic, frequency domain equation (solution of the LS

equation) for the initial incident wave vector can be denoted in an abstract form by

the symbol:

P+
ω (n0

x, kn0
x
) (5.7)

where kn0
x

is the initial incident wave vector. Here, P+
ω (n0

x, kn0
x
) is only Fourier

expanded in the source position dependence compared to chapter 2. Then the LS

equation in Volterra abstract form can be written exactly as

P+
ω (n0

x, kn0
x
) = ϕn0

x
φk

n0x
+ G̃0,ωV P

+
ω (n0

x, kn0
x
)

− ik2

2

∑
nx

1

knx
ϕnxφ−knxϕ

∗
nxφ

∗
−knxV P

+
ω (n0

x, kn0
x
). (5.8)

Equation (5.8) is shown in an abstract form with the integrations are suppressed.

The general form of G̃0,ω with the integrations is given in Eqn. (5.4). The complex

basis functions ϕ∗nx and φ∗−knx in last term of Eqn. (5.8) are functions of x
′

and z
′

respectively, which also needed to be integrated over. The reflection matrix elements

are defined in abstract form by

r(nx,−knx|n0
x, kn0

x
) = − ik2

2knx
ϕ∗nxφ

∗
−knxV P

+
ω (n0

x, kn0
x
). (5.9)

Equation (5.8) can be expressed using the reflection matrix elements as

P+
ω (n0

x, kn0
x
) = ϕn0

x
φk

n0x
+ G̃0,ωV P

+
ω (n0

x, kn0
x
)

+
∑
nx

ϕnxφ−knxr(nx, knx|n
0
x, kn0

x
). (5.10)

Next, the LS is re-normalized by factoring out the reflection amplitudes. To do this,

define

P+
ω (n0

x, kn0
x
) = P1,ω(n0

x, kn0
x
) +

∑
nx

P2,ω(nx,−knx)r(nx,−knx|n0
x, kn0

x
). (5.11)
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By comparing (5.11) and (5.10) we observe

P1,ω(n0
x, kn0

x
) = ϕn0

x
φk

n0x
+ G̃0,ωV P1,ω(n0

x, kn0
x
) (5.12)

P2,ω(nx,−knx) = ϕnxφ−knx + G̃0,ωV P2,ω(nx,−knx). (5.13)

We stress that both P2,ω(nx,−knx) and P1,ω(n0
x, kn0

x
) satisfy Volterra integral equa-

tions. The iteration of the Volterra equations, yields

P1,ω(n0
x, kn0

x
) =

∑
m=0

(G̃0,ωV )mϕn0
x
φk

n0x
, (5.14)

P2,ω(nx,−knx) =
∑
m=0

(G̃0,ωV )mϕnxφ−knx . (5.15)

Recalling equations (5.9)-(5.11),

r(nx,−knx|n0
x, kn0

x
) = − ik2

2knx

∫ L

0

dx′
∫ ∞
−∞

dz′ϕ∗nxφ
∗
−knxV [

∑
m=0

(G̃0,ωV )mϕn0
x
φk

n0x

+
∑
nx

∑
m=0

(G̃0,ωV )mϕnxφ−knxr(nx,−knx|n
0
x, kn0

x
)]. (5.16)

Next, write the perturbation as a sum of orders of the data:

V (xz) =
∑
j=1

Vj(xz). (5.17)

The first order results is then

r(nx,−knx|n0
x, kn0

x
) = − ik2

2knx

∫ L

0

dx′
∫ ∞
−∞

dz′ϕ∗nxφ
∗
−knxV1(x′, z′)ϕn0

x
φk

n0x

(5.18)

It is instructive to consider the first order expression. We now specialize the incident

wave vector to be along the positive z axis. Then it follows that:

k0 = k =
ω

c0

(5.19)
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and equation (5.18) becomes

r(nx,−knx|0, k0) = − ik2

2knx

∫ L

0

dx′
∫ ∞
−∞

dz′ϕ∗nxφ
∗
−knxV1(x′, z′)ϕ0φk0

φ0 =
1√
L

(5.20)

But we observe that

V1,nx(z
′) =

∫ L

0

dx′ϕ∗nxV1(x′z′) (5.21)

Therefore,

r(nx,−knx |0, k0) = − ik2

2knx

∫ ∞
−∞

dz′φ∗−knxV1,nx(z
′)φk0/

√
L (5.22)

Therefore, inverse Fourier transforming equation (5.22) yields the nx Fourier com-

ponent of V1. Thus,

V1(xz) =
∑
nx

ϕnxV1,nx(z). (5.23)
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5.3 Computational Results

Figure 5.1 shows the two velocity models c(x, z), we have used to test the imag-

ing or inversion of two-dimensional VISS. Both velocity models present challenging

velocity variations in lateral and vertical directions. Figure 5.1(a) is a steep velocity

model with slanted layer boundaries. Figure 5.1(b) is a widely used realistic earth

velocity model (BP P-wave model) with arbitrarily varying velocities including a salt

domain. For both velocity models we have used dx = 10 m and dz= 1.5 m as grid

spacings. In each case, we have used 2Nx + 1 = 301 grid points along the x-direction

and 601 grid points along the z-direction. For the BP P-wave velocity model, a

low velocity part at the bottom has been added to provide compact support in z.

Reflection data for the inversion was obtained by new FWPS approach. We have

computed rn′,n(ω) for 500 frequencies lying in a frequency range from 0.001/2π Hz

to 250/2π Hz with a constant frequency interval ∆ω = 0.5/2π Hz using new FWPS

approach. For these results we have only used the reflection data corresponding to

the normally incident waves (n0
x = 0).

Figure 5.2 compares the velocity perturbation V (x, z) = 1− c2
0/c

2(x, z) and VISS

first order result V1(x, z) for the steep velocity model. The amplitude for this case

is V0 = 0.3 with c0 = 2000.0 m/s and cmax = 2900 m/s. As seen in Figure 5.2(b),

high accuracy can be observed in the x-direction. The depth of the first reflecting

boundary is well predicted while the next reflecting boundary is predicted at an

earlier depth than in Figure 5.2(a). There are unwanted artifacts appearing in the

sharp boundary of the steep model. When sharp boundaries are present in the the
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(a)

(b)

Figure 5.1: P-wave velocity models. We have plotted the wave velocity against
(Depth, Distance). Grayscale bar shows the wave velocity values in m/s. (a) Steep
velocity model. (b) BP P-wave velocity model.
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velocity perturbation that needs to be inverted, the first order term results in Gibbs

oscillations due to the numerical truncation of the Fourier integral (Eqn. 5.22). To

filter out the oscillations, we have used the Lanczos averaging method [76]. Therefore,

to capture the sharp boundaries, larger frequency ranges have to be used.

Figure 5.3 compares the velocity perturbation V (x, z) = 1− c2
0/c

2(x, z) and VISS

first order result V1(x, z) for the BP P-wave velocity model. We have computed

rn′,n(ω) for a reference velocity c0=1492 m/s using the new FWPS approach. Al-

though the general geological structure is reproduced well, the layer positions are

not well predicted. Also the inversion doesn’t capture reflector dips having angles

larger than 450. This is due to the fact that the reflection data used in the inversion

corresponds only to the normally incident waves (n0
x = 0). Figure 5.4 shows the

reflection data corresponding to the normally incident waves (n0
x = 0) for the steep

velocity model that were used for the inversion. The high accuracy in the inversion

results, is also a good indicator for the accuracy of the FWPS method.
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(a)

(b)

Figure 5.2: VISS first order result for the steep velocity model plotted against
(Depth, Distance). Grayscale bar shows the dimensionless velocity perturbation
values. (a) Velocity perturbation V (x, z) = 1− c2

0/c
2(x, z) with c0 = 2000.0 m/s and

cmax = 2900 m/s. (b) VISS first order result V1(x, z).
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(a)

(b)

Figure 5.3: VISS first order result for the BP P-wave velocity model plotted against
(Depth, Distance). Grayscale bar shows the dimensionless velocity perturbation
values. (a) Velocity perturbation V (x, z) = 1 − c2

0/c
2(x, z) with c0 = 1492.0 m/s.

(b) VISS first order result V1(x, z) .
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Figure 5.4: Reflection amplitude rn′,n(ω) plotted against (Frequency, X grid index).
Color bar shows the values of dimensionless reflection amplitude rn′,n(ω). These
reflection data correspond to the normally incident waves (n0

x = 0) at different fre-
quencies.
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Chapter 6

Modifications to the New FWPS

Approach

6.1 Changing the Reference Velocity with Depth

An important feature of the new FWPS approach is introducing a locally con-

stant reference velocity c0 and using operator splitting method [42, 43, 44, 77] which

leads to an exponential propagator that can be analytically evaluated by phase-shift

structure. The complicated remainder of the Helmholtz operator is retained in an

inhomogeneous term so that lateral velocity variations can be included. However,

there is a major issue concerning the choice of reference velocity (c0) that is best at

any given depth. The initial choice of c0 is at z = 0 is obvious since at that depth,

the velocity is homogeneous and remains so for some depth. After some distance, at

some depth point z′, the acoustic velocity may become inhomogeneous. After that
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depth point z′, the acoustic velocity may not be equal to the initial c0(z0) at any

point in the subsurface. The result is that the minimum velocity, c(x, z) for z ≥ z′

will be larger than c0(z0). This is indeed the case when dealing with realistic velocity

models. For BP P-wave velocity model given in Fig. 3.4(b) the acoustic velocity at

the surface of sea level is 1492.0 m/s while inside the salt domain it is 4370.0 m/s,

∼2.9 times greater. Therefore, to build an efficient and stable modeling algorithm

there should be an effective way to handle these large velocity variations. In the

following section we discuss how to modify the new FWPS algorithm to include

different reference velocities with depth.

6.1.1 Modifying the Feshbach Projection-operator

We can define a “local wave number” as

k(x, z) =
ω

c(x, z)
, (6.1)

then evanescent waves or closed channels satisfy

2πnx
L

2

>
ω2

c2(x, z)
, (6.2)

and propagating waves or open channels satisfy

2πnx
L

2

<
ω2

c2(x, z)
. (6.3)

To get best results with a minimum loss of information, we want to choose c0(z) so

as to include all possible propagating components of the pressure at a given depth

step z. Consequently, we want to remove the minimum number of growing evanescent
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waves. Therefore, we need to choose the minimum velocity for that given depth step,

resulting in a new reference velocity

c0(z) = min c(x, z). (6.4)

When the minimum velocity of the given layer c0(z) exceeds the initial choice of refer-

ence velocity c0(z0), the number of evanescent waves will clearly increase. Thus, if we

continue using the initial c0(z0), waves that were propagating up and down become

evanescent waves that are either decaying exponentially or growing exponentially.

The way a given wave number contributes to the projection-operators Π and X is

solely determined by the value of c0. Clearly, this defeats the goal of Feshbach pro-

jection and hence we need to modify the projection-operators to take account of the

dependance on c0(z) as to which nx components of the pressure are propagating and

which are evanescent.

In our New FWPS approach, we have coupled equations for the z-dependent, nx

components of the pressure

∂

∂z
W = MW + VW, (6.5)

W =

 P̃

Q̃,

 (6.6)

P̃nxn′x = P̃ω(nx | n′x | z), (6.7)

and

Q̃nxn′x = Q̃ω(nx | n′x | z). (6.8)
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The values of nx range from −Nx ≤ nx ≤ Nx, so P̃ and Q̃ have 2Nx+ 1 components.

Consequently, W is a 4Nx + 2 components vector. The projectors Π and X are

matrices. These dimensions are independent of the choice of reference velocity c0(z).

Now we note that the explicit form of Π is

Π =

 I1 0

0 I1

+


1
2
I2 −1

2
1√

−ω2
c20

+

(
2πj
L

)2 I2

−1
2

√
−ω2

c20
+
(

2πj
L

)2

I2
1
2
I2

 , (6.9)

where I1 and I2 are identity operators that only span the imaginary-eigenvalue and

real-eigenvalue subspaces respectively. Clearly, the definition of Π and X depend on

the value we assign to c0. The effect of a specific choice of c0 is determine which

values of nx obey the propagating or evanescent property and the precise form of Π

and X. Therefore, we can change the value of c0 in the projection matrices and easily

construct the projectors Πc0(z) and Xc0(z), which are now labeled by the value of

c0 at a given depth, z. For every z the form of Π remains the same; only the sizes

of I1 and I2 change. With the use of modified projection matrix, now we are able to

identify the significance of the evanescent waves in realistic earth models.
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6.2 Performance of New FWPS Approach Under

Parallelization

Seismic wave modeling algorithms used for calculating the seismic response for

a given earth model, require large computational resources in terms of speed and

memory [78, 79]. Therefore, as supercomputers become more and more powerful, it

is very important for computational geoscientists to take advantage of such powerful

high performing computer facilities. In the following subsections we describe our

parallel implementation of the new FWPS approach to solve the Helmholtz acoustic

wave equation in a message passing environment.

6.2.1 Parallelization of New FWPS Code Based on Linearly

Independent Solutions

The new FWPS approach requires the solution of 2 × (2Nx + 1) = 4Nx + 2

coupled ordinary differential equations, where 2Nx + 1 is the number of grid points

along the x direction. Since the most time consuming part in the algorithm is the

computation of propagation W(z+∆z) in the “propagat subroutine”, we concentrate

on the computational complexity of this step. This computation results in (4Nx+2)3

order scaling due to the computational effort in matrix-matrix multiplications. From
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the solution to the new FWPS approach

Π(z + ∆z)W(z + ∆z) ' Π(z + ∆z)

(
I + ∆z

2
VAb(z + ∆z)

)
Π(z + ∆z)

exp(∆zM)Π(z)

(
I + ∆z

2
VAb(z)

)
Π(z)W(z),(6.10)

it is clearly seen that the solution for each column of W(z) is linearly independent.

Earlier methods used to eliminate the exponentially growing evanescent waves have

been a major obstacle in parallelization of the wave propagating algorithms. Fes-

hbach’s projection method stabilization has made the new FWPS approach easily

parallelizable. We can distribute each column of W(z) on a different processor and

calculate them simultaneously. In this way we can reduce the expensive matrix-

matrix multiplication in the propagating equation to a matrix-vector multiplication.

Consequently, the computational cost is reduced from (4Nx + 2)3 to (4Nx + 2)2 for

each separate linearly independent solution.

We have used message passing interface (MPI) to parallelize the new FWPS

algorithm. It is based on message passing to communicate between processors. A

typical method of a parallel job is given below.

broadcast data and start job on n processors

do i=1 to j

each processor does some calculation

end do

receive the results of the job

end job
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In our case we broadcast Π, exp(∆zM), VAb(z), VAb(z + ∆z), and W(z) from

the root processor, so they are available on every processor. When each independent

matrix-vector computation is done for each column of W(z) we receive the pressure

result for W(z + ∆z), where z + ∆z is the next depth step. There is no need

to communicate between the processors while the computation is been done. This

is a huge advantage over other algorithms where processors must communicate to

achieve the stabilization since in previous methods involved superposing of all the

independent solutions was required to remove the exponentially growing evanescent

waves.

We have carried out all the calculations on AMD (2.2 GHz) machines using an

OpenMPI/1.6.5-Intel compiler. We specified the number of nodes we want to use

with processors per node always set to 1. We have also used O3 optimization when

compiling the new FWPS algorithm as it provides deeper inner loop unrolling and

better loop scheduling. The O3 optimization emphasizes on speed over size; therefore,

it can be used when run-time performance is an important factor.

Using the parallelization with respect to independent columns of W(z), we eval-

uate the scaling behavior of the new FWPS algorithm. We compare the times to

compute the propagation for two different grid sizes of a steep velocity model. In each

case the velocity model has the same number of z grid points with Nz = 601. The

number of x grid points used in test 1 and test 2 are 2Nx+1 = 151 and 2Nx+1 = 301,

respectively. Those numbers also correspond to the number of Fourier basis set com-

ponents we used in each test case. Therefore, test 1 and test 2 have 302 (4Nx + 2)

and 602 linearly independent solutions respectively. According to the (4Nx + 2)3
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No. of Processors Time (s) (test1) Time (s) (test2)
2 549.38 4423.06
4 394.18 1977.82
8 303.16 1182.33
16 255.21 949.38
20 238.75 812.34
21 236.45 714.47
25 235.31 659.38
30 236.69 687.92

Table 6.1: Comparison of performance time for different number of processors. Test 1
and test 2 are for 302 and 602 linearly independent solutions with Nz = 601 number
of vertical grid points.

order scaling for the non-parallel approach, the ratio of the performance time for

propagation for the two test cases should be around 7.92. That means in a sin-

gle processor test 2 should take 7.92 times performance time as that of test 1. As

shown in Table 6.1, the performance time taken by test 2 is about 8.05 times greater

than that of test 2 for small number of processors. When we use 21 processors the

ratio of performance time is about 3.02. Thus, it indicates that when we increase

the number of processors, the total computational time gradually decreases. It also

demonstrates the impact of the (4Nx+2)2 order scaling in the new FWPS approach.

Our (4Nx + 2)2 scaling behavior of the new FWPS approach can be seen up to 21

processors.
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6.2.2 Parallelization Based on Different Frequencies

Another common method of parallelization used in the industry is to divide the

frequency range to be computed between the processors. After each processor fin-

ishes its frequency set it will send its results to the master processor for output or

post-processing. This parallelization is also possible for the new FWPS approach.

In this method , we calculate W(z) values by sending sets of frequencies to different

processors. We have also applied frequency based parallelization to our new FWPS

approach and have verified its performance . Table 6.2 compares the times to com-

pute the propagation for two different frequency ranges of a steep velocity model. In

each case the velocity model has the same grid size with Nx = 150 and Nz = 601.

The number of frequencies used in test 1 and test 2 are 40 and 80, respectively.

Data in table 6.2 shows a speedup as we increase the number of processors. For a

fixed model size the computational time decreases with the increase in the number

of processors. Therefore, if we increase the size of the problem, better speedup can

be achieved for large number of processors.

No. of Processors Time (h:mn:s) (test1) Time (h:mn:s) (test2)
2 09:38:13 21:59:08
4 10:36:10 19:08:41
8 04:26:30 09:16:35
16 03:27:54 06:04:53
20 04:27:34 05:59:50

Table 6.2: Comparison of performance time for different number of processors. Test 1
and test 2 are for 40 and 80 frequencies respectively.
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6.3 Computation of the Perturbation Matrix Vn,n′

To calculate the solution to the W(z + ∆z), initially we must compute the

perturbation matrix terms V in the Fourier basis expansion. This will give us the

following result

1

L

∫ L

0

dxe−2πinx/L (V) e2πin′x/L =
1

L

∫ L

0

dxe−2πinx/L

(
ω2

c2
0

− ω2

c2(x, z)

)
e2πin′x/L

= ω2

(
S0δnn′ −

Nx∑
n′′=−Nx

Sn′′√
L
δn,n′′+n′

)
(6.11)

where

Sn =
1√
L

∫ L

0

dx
exp(−2πinx/L)

c2(x, z)
. (6.12)

According to the structure of V in Eqn 2.46, we only need to calculate the lower left

submatrix terms as rest of the terms in the matrix are zero:

V =

 0 0[
ω2

c20
− 1

c2
(ω2 − γ2 + i2ωγ)

]
0

 . (6.13)

From now on we refer to this submatrix as Vn,n′ . Here n and n′ both run from

−2Nx to 2Nx, yielding a (2Nx + 1)× (2Nx + 1) matrix for Vn,n′ . In the original new

FWPS source code, calculation for Vn,n′ was done by using loops over n, n′ and n′′,

having (2Nx + 1)2 operations to calculate Sn and Vn,n′ .

We have identified Vn,n′ to have a special form with constant diagonal terms. In

linear algebra, such a matrix is called a Toeplitz matrix or diagonal-constant matrix.

Each descending diagonal from left to right in a Toeplitz matrix is constant. For
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instance the following matrix is a Toeplitz matrix:

V =



v0 v−1 v−2 . . . . . . v−n+1

v1 v0 v−1
. . . . . .

...

v2
. . . . . . . . . . . .

...

...
. . . . . . . . . v−1 v−2

...
. . . . . . v1 v0 v−1

vn−1 . . . . . . v2 v1 v0


. (6.14)

By using this fact, we have introduced a new computing scheme for Vn,n′ , which

only includes (4Nx + 1) × (2Nx + 1) operations. Since Vn,n′ is a Toeplitz matrix,

then that matrix has only 2× (2Nx + 1)− 1 = 4Nx+ 1 degrees of freedom, reducing

the number of operations from (2Nx + 1)2 to 4Nx + 1. Therefore, we have made

the computation of Vn,n′ matrix fairly easier and also faster than in the original new

FWPS source code.
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Chapter 7

Conclusion

In conclusion, the snapshot results and inversion results reported in this disser-

tation provide compelling evidence that new FWPS approach provides a phase-shift

based solution to the full acoustic wave equation. It provides accurate travel times

and treats the reflector locations in complex geologic structures correctly, providing

kinamatically correct results comparable to FD method. Comparing the snapshot

results from Fig. 3.9(a) to Fig. 3.9(d) with Fig. 3.10(a) to Fig. 3.10(d), we can clearly

see that the unwanted artifacts are effectively removed using the absorbing boundary

conditions, providing a much clearer snapshots.

For the first time, we were able apply new FWPS approach to a realistic earth

model. The snapshot results from Fig. 3.12(a) to Fig. 3.12(c) for the BP P-wave

model are very encouraging and provide further evidence of the validity of the new

FWPS approach. We also modified the use of the Feshbach projection operator

so that minimum information is lost when removing the growing evanescent waves.
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The new Feshbach projection operator is computed by using the minimum velocity

of each separate layer, which is very useful when dealing with realistic velocity mod-

els. We were also able to apply a good parallelization scheme to the new FWPS

algorithm based on the linearly independent solutions. Earlier methods used to

eliminate the exponentially growing evanescent waves have been a major obstacle

in parallelization of the wave propagating algorithms but Feshbach’s projection op-

erator stabilization has made the new FWPS approach easily parallelizable. While

our method is computationally somewhat expensive compared to some similar, but

approximate techniques, the quality of the results justifies the effort to develop the

new FWPS algorithm for modeling and inversion.

We are currently improving the new FWPS source code to have better optimiza-

tion in terms of speed by investigating the use of other parallelization methods such

as OpenMP. The plan is to develop our approach further and work on making our

algorithm competitive with other modeling and imaging methods in terms of speed.

We are also carrying out modifications to the FWPS algorithm to include higher

order quadrature methods such as Simpson’s rule to increase the step size in depth

variable z. We also note that extending the new FWPS results to three-dimensional

acoustic case is straightforward and it can be done by including another Fourier basis

function exp(2πinyy/Ly)√
Ly

to describe wave motion along the y direction. Finally, the the

methods and results on the thesis could benefit not only seismic physics but also

other physics fields such as quantum physics and optics.
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