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DYNAMICS OF A THREE-AXIS GYRO

STABILIZED PLATFORM

ABSTRACT

A detailed development of the equations of motion
for the stable member of a three-gimbal platform is pre-
sented. These equations are combined with models of the
three platform control loops to formulate a model for

the system.

The system model is simplified and a digital simu-
lation is developed for studying the motion of the stable
member under conditions of dynamic vehicle angular

environment.

Test cases are presented for a typical inertial

measurement unit.
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CHAPTER I

INTRODUCTION

An inertial navigation system consists of an inertial
measurement unit (IMU), navigation computer, and computer
interface. The IMU measures the acceleration and attitude
of the vehicle in an inertial coordinate system; these iner-
tial coordinates are transferred to the computer, which
determines the vehicle position in the desired reference

frame.

The requirement that the IMU measure vehicle accel-
eration in an inertial reference frame led to the concept
of an inertial platform or stable member on which to mount
the accelerometers. This stable platform provides a con-
trolled angular environment, which reduces sensor dynamic

error during vehicle oscillation.

The predominant configuration for an IMU is a group
of inertial sensors mounted on a gimbal-supported platform.
These sensors consist of three accelerometers and three
single-degree~of-freedom rate integrating gyroscopes (gyros)

which detect attitude errors (Figure 1).

Torquers mounted in the gimbal pivots are activated
by the gyros to null the disturbing torques transmitted to

the platform and return the platform to the correct reference
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attitude. The disturbing torques are due to friction in
the pivots, mass unbalance of the gimbals, and anisoiner-
tial effects. Driving the gimbals so that the gyro float
angles are nulled returns the stable member to its original

attitude, which causes negligible commutative error.

The platform-mounted accelerometers measure the
components of translational acceleration to which the vehi-
cle is subjected in a set of reference inertial coordinates;
the acceleration may be integrated in the reference system
to determine the vehicle state vector (velocity and posi-
tion). The state vector may be used for guidance and navi-

gation computations.

The gimbaled platform (IMU) is the classical form
of an inertial navigation system. There are two standard
gimbal configurations: the three-gimbal system, which is
deprived of a degree of freedom when the pitch and roll
gimbals become aligned (gimbal lock) as the middle gimbal
angle approaches ©/2 radians; the four-gimbal configuration,
which eliminates the possibility of gimbal-lock, can expe-
rience instantaneous reorientation of a gimbal by
radians (gimbal flip). The four-gimbal system allows the
vehicle a complete sphere of movement without loss of refer-

ence attitude if gimbal flip can be accommodated.



The three-gimbal system places logistic constraints
on mission profiles; profiles must be designed such that the
middle gimbal angle does not become excessive (approach m/2
radians). The attitude constraint is relative to a particu-
lar alignment (inertial reference) and therefore may be

varied by a change in alignment.

The effects of the vehicle's rotational environment
on the inertial instruments' environment is a primary con-
cern. The filtering effect of the gimbal control loops 1is
a function of the vehicle attitude relative to the reference
coordinate system, and is not readily analyzed for an arbi-
trary vehicle motion. A mathematical model and digital
simulation of a three-gimbal IMU was developed to study the
effects of vehicle motion on the stable member (inertial

instrument environment).

The system kinematic model is defined in Chapter II,
and consists of a seven-body (case, outer gimbal, inner
gimbal, platform, and three gyros) topological tree with
one degree of freedom between adjacent bodies. All bodies
are considered to be rigid, and their respective coordinate
systems and appropriate linear transformations are defined.
Kinematic relations between the members of a perfect platform

are defined and extended to an imperfect or real system.



In Chapter III, the equations of motion are developed
>
for each body of the system in the form M = iﬁ where M
is the net torque on a given member of the system, and con-
sists of the torque applied by the adjacent outer and inner
>

members; iﬁ is the inertial derivative of the body angular
momentum. The equations of motion for the gimbals and gyros
are a set of six second-order differential equations of
state, where the state variables are the three system Euler

angles, the three gyro float angles, and their respective

derivatives,

¢ ¢
P ¥
5 8
o a
X X
a &
y Y
o &
z zZ
¢ - [ A] ¢ (1-1)
¥ ¥
8 )
& o
X X
a o
y y
o o
b4 Z

The elements closing the loop between the gyro outputs

& and the control torques applied to the gimbals are modeled



in Chapter IV. The resolvers, demodulator, compensation

filters, amplifiers, and torque motors are included.

In Chapter V, the complete system model is analyzed
and reduced in order; this was achieved by eliminating
high-frequency terms, thus facilitating digital simulation.
The low-frequency platform model is simulated in FORTRAN on

a CDC 3800.

Criteria are developed in Appendix D to evaluate the
stable-member motion under test conditions, and are included
in the simulation. The figures of merit include the root-
mean-square (rms) value of the total misalignment angles
about the three axes, and the mean and variance of the indi-
vidual misaiignment angles. These criteria are plotted
against time for the test cases run. The simulation was
run for a range of environmental conditions on a typical

space-vehicle platform and the results are presented.



CHAPTER 1II
KINEMATIC RELATIONSHIPS

The three-gimbaled Inertial Measurement Unit (IMU)
supporting structure consists of the platform, inner gimbal,
outer gimbal, and the case (Figure 2); each member is
assumed to be rigid. The following definitions apply to
the angles and rates relating the four members of the gim-

baled system.

8 — The relative angle between the inner gimbal and the

platform, measured about the platform Y-axis (Yp).

Do
I

The relative angular rate between the inner gimbal and

the platform, measured about the platform Y-axis (Yp).

Yy — The relative angle between the outer and inner gimbals,

measured about the inner gimbal Z-~-axis (ZI).

i — The relative angular rate between the outer and inner

gimbals, measured about the inner gimbal Z-axis (ZI).

¢ — The relative angle between the case and the outer

gimbals, measured about the outer gimbal X-axis (Xo).

S-e
[

The relative angular rate between the case and the outer

gimbal, measured about the outer gimbal X-axis (XO).

The above-defined angles and angular rates represent

a 1,3,2 (¢,¥,8) Buler sequence from the case to the platform.
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I. COORDINATE SYSTEMS

Gimbal Coordinate System. An orthogonal coordinate

system is defined rotating with each member of the gimbaled
system (Figure 3): platform (Xp,Yp,Zp), inner gimbal
(XI,YI,ZI), outer gimbal (XO,YO,ZO), and case (XC,YC,ZC).

A vector may be represented in the coordinates of any of
the members and transformed from member to member by the

appropriate linear transformation [Bp 1, [B

*
1, [BOC], etc.

I Io

The inner gimbal and the platform are related by
® , the inner gimbal angle (IGA); the direction cosine
transformation matrix from the platform to the inner

gimbal is [BPI]-

cos 8 0 =-sin 6
[BpI] = 0 1 0 (2-1)
sin 6 0 cos ©

*Note: Notation Convention, Appendix C.
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The outer gimbal is related to the inner gimbal by

the middle gimbal angle (MGA).

FIGURE 5

RELATIONSHIP BETWEEN INNER AND OUTER
GIMBAL COORDINATE SYSTEMS
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The direction cosine transformation matrix from the

inner gimbal to the outer gimbal is [BIO].

cos sin ¢ 0

il

-sin V¥ cos Y 0 (2-2)

0 0 1

The fourth member of the system is the case, which is
related to the outer gimbal by ¢ , the outer gimbal angle

(OGA) .

FIGURE 6

RELATIONSHIP BETWEEN OUTER GIMBAL

AND CASE COORDINATE SYSTEM
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Transformation from the outer gimbal to the case is

represented in matrix form by [Boc].

1l 0 0
[B ] = 0 cos ¢ sin ¢ (2-3)

0 -sin ¢ cos ¢

The transformation from the platform to the case

coordinate system is formed by

(B,,] = (B, 1B 1[B ;] (2-4)
cos 6 cos Y sin ¥ -sin 6 cos y ]
sin 6 sin V¥ cos Y cos ¢ sin 6 sin Y cos ¢

[ch] = - cos 6 cos ¢ sin ¢ + sin 6 sin ¢
cos 6 sin ¢ sin ¢ -cos Y sin ¢ cos O cos ¢

+ sin 6 cos ¢ - sin 6 sin Y sin ¢

-

(2-5)

Gyro Coordinate System. The system gyros are assumed

to be mounted on the platform with no misalignment between
the gyro cases and the platform. Each gyro has a coordinate
syStem (Figure 7) mounted in the float with axes S, I,

and O representing the spin axis of the rotor, float input
axis and output axis, respectively. One degree of freedom
(float angles o

a and az) exists between the float of

x" Ty’

each gyro and the platform.
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Figure 8 illustrates the orientation of the gyro

triad to the platform.

Y-gyro

(A

\_/

N\
" |

FIGURE 8

ORIENTATION OF GYRO AND PLATFORM AXES
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The direction cosine transformations from the plat-

fo
rm to the X, ¥, and Z gyro floats are [Bpgx], [Bpgy],

and [Bpgz], where

sin ax -cos Oy 0
[Bpgx] = cos o sin a, 0 (2-6)
0 0 1
0 sSin aY -CcoS uY
[Bpgy] = 0 cos a, sin a, (2-7)
1 0 0
0 -cos a, -sin aZ
[Bpgz] = 0 sin a, =-cos o, (2-8)
1 0 0

II. VECTOR TRANSFORMATION BETWEEN GIMBALS

A
Defining u as a unit vector with coordinates

T
[pr,Upy,Upz] ' [UIx’UIy'UIz

T

T T
17, [U ,Uoz] , and

,U
oX oy

[o_ ,U_ ,U_,]

cx'Vcy in the platform, inner and outer gimbals,

and case coordinate systems, respectively.



Let

pPX

=
|

U
Py

U
| P2

oX

>

U
oy

oz

17

(2-9)

The following relationships may be used to trans-

form vector coordinates between the various membexrs of the

system.

Platform and Inner Gimbals.

_ b
u = [BPI]u
Since [BpI] is normal orthogonal
-1 _ T _
(B,;17" = B, )7 =
Therefore
u [BI Tu

(2-10)

[BIp] (2-11)

(2-12)

*Note: Notation Convention, Appendix C.
P



Inner and Outer Gimbals.

u = [BIo]u
-1 _ T _
[BIO] [BIO]
Therefore
AI _ ~o
u = [BoI]u

c ~0
u = [Boc]u
-1 _ T _
[BOC] - I:BOC] -
Therefore
- "c
u = [Bco]u
Platform and Case.
u [ch]u
-1 _ T _
B, 07" = [B]
Therefore
W = [B Ju€

B_.]

ol

[B ]

co

18

(2-13)

(2-14)

(2-15)

(2-16)

(2-17)

(2-18)

(2-19)

(2-20)

(2-21)
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ITII. VECTOR TRANSFORMATION BETWEEN

GYROS AND PLATFORMS

Unit vectors in gyro float coordinates for the triad

are defined as

ngS UgyS Ug zS

gx  _ gy _ gz _
u ngI ' u UgyI ’ u ngI
ngO UgyO ngO

(2-22)

The transformation of vector coordinates between
the gyro coordinate systems and the platform is described

by the following equations.

Platform and X-Gyro.

gx _ p -
u = [Bpgx]u (2-23)
-1 T
B = B = B -
(B, (B ] (B, o] (2-24)
Therefore
"o _ Tgx -
u [ngp]u (2-25)

2% = B ]uP (2-26)



-1
B = B = B
[ PgY] [ PGY] [ GYP]
Therefore
up = [B ]ugy
gyp
Platform and Z-Gyro.
wI? = [B 1u?
pgz
-1 T
B = B = B
: pgz] [ pgz] [ gzp]
Therefore
¥ = [B 1ud?
gzp

IV. PERFECT PLATFORM KINEMATICS

20

(2-27)

(2-28)

(2-29)

(2-30)

(2-31)

If a perfectly balanced, frictionless set of pivots

is assumed, an arbitrary rate ) may be applied to the

case without disturbing the platform. In case coordinates,

8 may be expressed

(2-32)
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The following kinematic relation may be written for

the perfect platform; assuming Sp = 0 , then

<> >
£ = w
cp
where
> > > ->
W = W + W + W
cp Ip ol co
Wy 0 0 ¢
wcy = [BOC] [BIO] 6| + |0 + |0
w_, 0 1{ 0
1 0 0 cos ¥ sin ¢
= 0 cos ¢ sin ¢ -sin ¢ cos ¥
0 =-sin ¢ cos ¢ 0 0

1 []

0 )

+ o] + |o
J 0

8 sin v+ é

€
n

cX

w = 8 cos ¢y cos ¢ + P sin ¢

(2-33)

(2-34)

(2-35)

(2-36)

(2-37)
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w,, = -8 cos ¥ sin ¢ + & cos ¢ (2-38)

Solving for the Euler angle rates

¢ = Wy ~ & sin ¥ (2-39)
Yy o= w,, COS o + wcy sin ¢ (2-40)
. w cos ¢ - W sin ¢
6 = X ez (2-41)

cos

Equations 2-39, 2-40, and 2-41 can be integrated and
the resulting Euler angles substituted into Equation 2-5
evaluating the direction cosine matrix representing the
relative attitude between the platform and case, assuming
frictionless pivots and a stable platform

(w = g = = 0).
Xp Yyp zp

V. IMPERFECT PLATFORM KINEMATICS
The kinematic relations used to derive the equations
for a perfect platform may be generalized and extended to

determine the relationship between the members of an

imper fect platform.

Angular Rate Relationships Between Gimbals. Assume

that the angular rate of the case is that of the carrier or

vehicle
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> >
W = (2-42)
C v
P
e avs _ _
wv = q (2-43)
r
Therefore
p
>v _ _
c - q (2-44)
r

Let the case coordinate system be aligned with the vehicle

system

p
0w = |q (2-45)
C
r

The outer gimbal rate 30 is equal to the vector sum of
the case rate 30 and the relative rate moc between the

case and the outer gimbal

W = u +o0 (2-46)



In case coordinates

P ¢
>c _ -
wo = a 0
r 0
P -9
>c _
W= gq
r
. . >0 e
In outer gimbal coordinates w_ = [B Jw
o] coO o
where
1 0 0
[BCO] = 0 cos ¢ =-sin
0 sin ¢ cos
W p -9
>0 _ _
w, = woy = g cos ¢ r
W g sin ¢ + r
Likewise, the inner gimbal rate ®

>
vector sum of the outer gimbal rate W

>
w

rate Io

24

(2-47)
(2-48)
(o (2-49)
¢
sin ¢ (2-50)
cos ¢
is equal to the

I

and the relative

between the outer and inner gimbals

(2-51)
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In outer gimbal coordinates

p - ¢ 0
ag = |q cos ¢ - r sin o] + |0 (2-52)
g sin ¢ + r cos ¢ @

Transforming to inner gimbal coordinates

<> _ 0 _
wy = [B_ ;lug (2-53)
where
cos ¥ =-sin ¢ 0
[B,,] = |[siny cos ¥y 0
0 0 1
wa
I _
w; = Wiy
f“Iz
(2~-54)
(p + ¢) cos § - (g cos ¢ - r sin ¢) sin ¥
= (p + i) sin ¥ + (@ cos ¢ - r sin ¢) cos VP
q sin ¢ + r cos ¢ + @
The platform rate Ep is kinematically described by
O = o, +w (2-55)



In inner gimbal coordinates

(p + é) cos ¥ - (Q cos ¢ -~ r sin ¢) sin ¢

(p + é) sin ¥ + (q cos ¢ - r sin ¢) cos Y| +

qg sin ¢ + r cos ¢ + Y

Transforming to platform coordinate

[(p +

(p +

-[(p +

>
WP
p

¢) cos ¢ -
[g sin ¢ +

¢$) sin ¢y +

¢) cos Y -
[ sin ¢ +

>I
= B w
(B, Jug

cos 6 0

~-sin 6 0

|
€

(q cos ¢ - ¢
r cos ¢ + &]

(@ cos ¢ - r

(g cos ¢ - r
r cos ¢ + @]

sin 6

cos ©

sin

sin

sin

sin

cos

$) sin ] cos 6]

6

¢) cos ¢ + 6

¢) sin Y] sin 6

0

26

De

(2-56)

(2-57)

(2-58)

(2-59)

(2-60)
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Angular Acceleration Relations Between Gimbals. The

generalized kinematic relations for the imperfect platform
must also include the acceleration relationships because the

platform can no longer be assumed to remain motionless.

To determine the angular acceleration of the members,
assume that the inertial derivative of the case angular

velocity equals that of vehicle

p
-+ -+
* irc _ i*c _ . _
wc wvehicle q (2-61)
r
The derivative taken in the case reference system is
> e
oS = ¢ (2-62)
o] c

The inertial angular acceleration of the outer
gimbal is equal to the vector sum of the inertial angular
acceleration of the case and the inertial relative angular

acceleration between the case and outer gimbal. That is
s = o+t (2-63)
Nofe that

ch o= 1y (2-64)

*Note: Notation Convention, Appendix C.
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Expressed in case coordinates

< —-* v > ->
oS = 0+ %a® o+ ¢ x € (2-65)
(o] [o] Cco (o] ocC
In component form
> P ¢ ecx ecy €cz
l&g = é + |0 + P q r (2-66)
r 0 6 0
where e , e , and e are unit vectors in the case
cx cy cz
coordinate system.
p+ ¢
'_o> . .
lwg = |qg + ré (2-67)
r - ab
Transforming to outer gimbal coordinates
-+ -+
i*o _ i*c _
w, = [Bco] w_ (2-68)
p+ ¢
'_: ] . Y .
lwg = (@ + rd) cos ¢ - (r - g¢) sin ¢

(é + ri) sin ¢ + (f - qé) cos ¢

(2-69)
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Similarly

> L >
ie ie ie
= + -
W W, Wrg (2-70)
> L > N 5
ie ie o
= w + + X -
I o on wo on (2 71)

Expressing in outer gimbal coordinates

P+ ¢ 0
i&; = (é + r$) cos ¢ - (f - qé) sin ¢] + {0

(& + rd) sin ¢ + (r - qb) cos ¢ ¥

e e
ox oy oz
+ |p + ¢ g cos ¢ - r sin ¢ r cos ¢ + g sin ¢
0 0 ¥

(2-72)

where e

A

;, € , and e
ox oy o

are unit vectors in the outer
gimbal coordinate system

ﬁ + 5 + (g cos ¢ - r sin ¢)¢

° (§ + r$) cos ¢ - (r - qb) sin ¢ - (p + )}

(q + ré) sin ¢ + (r - qé) cos ¢ + i

(2-73)
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Transforming to inner gimbal coordinates

i?o
= [BoI] w (2-74)

[p + 5 + (g cos ¢ = r sin ¢)¢] cos P =~ [(é + r$)-
cos ¢ - (r - gb) sin ¢ - (p + ¢)¥] sin ¥

X

7 . - . . .
1wi = |[p+ ¢ + (g cos ¢ - r sin ¢)¢P] sin ¢ + [(q + rd)

cos ¢ - (r - qb) sin ¢ - (p + $)P] cos ¥

X

(@ + rd) sin ¢ + (r - ab) cos ¢ + ¥ i

s

(2-75)

For the platform

-> > >
ie _ ic ie _
p = Wy + wPI (2-76)
> i—> I+ N >
l L] _ * [ ] -
b = W, + wpI + wo X wpI (2-77)
e _+I
iep ie
w = B w 2-78
e (B, 17 0, (2-78)

>
Evaluating lmp in platform coordinates in the same manner

as the previous members
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(o . _

([P + ¢ + (g cos ¢ - r sin $)9] cos ¥ ~ [(q + rd)
cos ¢ - (r - gd) sin ¢ - (p + $)P] sin Y
- (g sin ¢ + r cos ¢ + w)és cos 6

X

+ %(q + rd) sin ¢ + (r - gd) cos ¢ + w

+ [(p+ &) cos ¥ - (g cos ¢ - r sin ¢)

X sin w]é; sin 6
iTp é + $ + (g cos ¢ - r sin ¢)@£ sin ¢ + [(é + ré)"
“p T x cos ¢ - (r - gb) sin ¢ - (p + §)P] cos Y + ©

-{[é + $ + (q cos ¢ - r sin ¢)¢] cos ¢ - [(é + ré)
cos ¢ - (r - gb) sin ¢ - (p + $)¥] sin ¥
- (g sin ¢ + r cos ¢ + i é% sin 6

S

X

+ t(é + ré) sin ¢ + (f - gq¢) cos ¢ + w

+ [(p + $) cos ¥ - (q cos ¢ - r sin ¢)
L X sin w]é; cos © J
(2-79)

Gyro Kinematic Relationships. The system gyros are

orthogonally mounted on the innermost member (platform) of
the system. If there is no misalignment of the case, the
gyro float is related to the platform by the float angle

0 . The platform-to-gyro (float) transformagion Equations
2-6, 2-7, and 2-8 are used to develop the kinematic relation-

ships of the three individual gyros and the platform.

The angular velocity relationship of the gyros to

the platform is

w9 = [B P + oY (2-80)
g rg p gp
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For the X-gyro

¥ = B P + @I¥ (2-81)
gx Pgx p gXp

Expanding in X-gyro coordinates

w sin o -CcoSs 0w 0
gxS X X PX
> .
wI* = w = cos o sin a O lw + |0
gx gx1I X X Py
w 0 0 1] |w o
gx0 pz X
(2-82)
w w sina - w cos o
gxS px X Py X
*gx _ .
W = w = w cos o + w sin o
gx gxI joP:d X b4
® w o+ o
gx0 Pz X
(2-83)

If o the X-gyro float angle is a small angle, then

w -w
gxS py
-)gx _ -
ng ngI = wpx (2-84)
W %0 sz + oo
Similarly, for the Y- and Z-gyros
@Y = B 1P + %Y (2-85)

gy P9Y P gyp
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and

ggz _ *>gz

= B Jo° + o (2-86)
gz pPgz P gzp

Expanding in the respective gyro coordinates and assuming

ay and a, are small angles, we compute

w -w
gys Pz
.
wl¥ = ) = W (2~-87)
gy gyl by
w w  +
gyo px Y
and
W -w
gzSs ry
>
wd? = o = - (2-88)
gz gzl pz
© w o+ a
gzo PX z

The angular acceleration of the gyros with respect to the

platform is described by

o> > ->

P = P 4 PgP 4 P x P (2-89)
g b gp b gp
Specifically, for the X-gyro
".* '_o* ? - -5
twP = toP + PyP + of x P (2-90)
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". ? ) ™A ~ A I
w 0 e e e

> px pX 1 pz

W= e + 10| + |w w w (2-91)

gx by px by pz
'EL a | o 0 aQ

pZ_ L X N

where e, e, and e are unit vectors aligned with
px Py bz

the respective platform axes.

Therefore
[ + 0w
> Px X py
WP o= o -aw (2-92)
gx Py X pX
w + o
Pz X ]

Transforming to X-gyro coordinates, we compute

_—> _+
109% = B 1|%%P (2-93)
bpX pPgx gx
- Tr. . -
sin o -cos o Ol]lw + 0 W
N X X pPx X pY
i'gx . . .
w cos o sin o 0]l |w - oW
gx X X PY X px
0 0 1lle + a
o 4L Pz X N

(2-94)

Assuming o is very small
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-0+ 4w
> Py X pX
Twd* = W + o W (2-95)
gXx bx X py
i wpz + ax

Expanding in state variables

$sin v + 0 + oW - W
> . . X px Py
iegx _ . .
w = -¢ cos B cos Yy - P sin 6 + O W + W
gx X py px
¢ sin 6 cos ¢ - y cos O + o + sz
(2-96)
The vector equations for the Y and 2 gyro are
'.’ -.) -.) > >
TP o= taP 4+ PP 4 WP x g (2-97)
9y P SYP P gyp
‘? '? ? > >
TP o= TP o+ PP 4 P x (2-98)
gz p gzp p gzp

Evaluating and transforming to Y- and Z-gyro coordinates,

respectively, and assuming small ay "and o, angles

-+ 0w
N pz Y pY
T09Y - ®  + 0w (2-99)
gy PY Y Pz
W O+ o
_  px Yy
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-0 - 6w
> PY z pz
tpdE -~ +aw (2-100)
gz Pz z py
W+ a
[ PX z
Expanding in state variables
-4 si + 6 - W+ oW
N ¢ sin ? cos VY Y cos oz oy
TIY = -¢ sin ¢y - 6 + W + o W
gy . py Y pz
-¢ cos 6 cos - sin 6 + o + W
i ¢ v - v y px |
(2-101)
and
sin +06-W -0 W
> .- ¢ i . pY Z pz
139 -¢ sin 6 cos ¢y + Yy cos 6 - W + oW
gz .o ee .‘pz Z py
L:¢ cos 8 cos Y - ¢ sin 6 + o + pr |
(2-102)
Coefficients.
Outer gimbal kinematic coefficients
WOX = p - ¢)
Woy = g cos ¢ - r sin ¢ (2-103)
1) = g sin ¢ + r cos ¢

oz



W =
oX

"cl

oy = g cos ¢ - r sin ¢

WOz = g sin ¢ + r cos ¢

Inner gimbal kinematic coefficients
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- ¢WOZ (2-103)
+ éwoy
sin ¥
cos Y
(2-104)

WIx = Wox cos Y - WOy
WIy = Wox sin ¢y + Woy
WIz = Woz_JJ
i = Ppcosy - W _siny - W
‘IY = é sin ¥ + Wo cos Y + WIX@
.IZ = v.qOZ

Platform kinematic coefficients

pr = WIx cos 6 + WIZ
W = wW. -8
pYy Iy
sz = -WIx sin 6 + WIz

sin 6

(2-105)

cos 0
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W = 6w + W cos B + W sin 6
pPX jo¥-4 Ix Iz
A = W 2-105
pPY Iy ( )
W = -0wW - W sin 8 + W cos ©
Pz pPX Ix Iz

where p, g9, ¢, é, é, and r are the known rates and

respective case accelerations.



CHAPTER III
SYSTEM DYNAMICAL EQUATIONS

Each member of the system is treated as a rigid body,

and the torque equation 3-1 is developed.

M = 1H (3-1)

The net torque M consists of driving torque applied
by the adjacent outer member and reaction torque applied by

the adjacent inner member.

The equations are presented in the coordinate system
of the member under consideration. The adjacent members

may be noted from Figure 3, the topological diagram.

The system consists of seven rigid bodies (X-gyro,
Y-gyro, Z-gyro, platform, inner and outer gimbals, and
case), each with one degree of freedom respective to its

adjacent bodies.

The dynamical equations of the system are developed
starting with the gyros and working progressively out to

the case.



40

I. ROTATIONAL DYNAMIC EQUATIONS

The rigid-body rotational equation of motion is

M o= i (3-2)
> >
i+ _ dH _
where H = It (3-3)
> > N 5
R o= Mg+ w x H (3-4)

>
M — inertial derivative of the vector H .
e
™H — derivative of H calculated in a rotating frame of
reference.
5>
w - absolute rotational rate of the moving reference frame.

> . .
H — inertial angular momentum.

M — external torque applied to the body.

The equations of motion for three of the system
members and the three integrating gyros are developed based
on the preceding definitions. The results are a set of
second-order differential equations for the gimbals and

the three gyros.

Each member is treated as a rigid body, and three
equations are written for the coordinates of the external

->
torque M .
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The moment coordinate denoted by M* 1is on the free
or dynamic axis (represented by the dashed line in Figure 3)
of the member under consideration, and the other two coordi-
nates are constraints. The constraints represent the reac-
tion torques in the locked axis of the hinge; the free axis
torque represents the single degree of freedom between two
adjacent members of the system. The terms in the equations

represented by W and W are lumped parameters, e.g., pr

and W .
pX

II. GYRO EQUATIONS OF MOTION

The generalized angular momentum of a gyro may be

expressed in vector form

> > >
B = |[I + H 3-5
g [ g]wg © ( )

assuming a massless case.

Hg — total angular momentum of the gyro float.
[Ig] — inertia tensor of the gyro float.

&g — absolute angular velocity of the gyro float.
ﬁm — wheel angular momentum.

The first derivative of ﬁg viewed from an inertial

reference is

ey
|
Q
jas
+
€4
X
o

(3-6)
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For an inertial derivative of ﬁg

M = A (3-7)

X-gyro Equations of Motion. Expanding equation 3-7

for the X-gyro in S (spin axis), I (input axis), and O

(output axis) coordinates

> i
M = ' (3-8)
gx gx
= gx; - -
ngs ngS ngs + (ngo ngI)ngOngI (3-9)
= gy -
ngI ngI ngI + wango + (ngs ngo)ngongs
(3-10)
* 9x; + (I I
ngO - ngo ngO wangI ( gxI ng)ngIngS
(3-11)

The equation of motion for the dynamic axis gxO may

be written in terms of state variables by substituting

. *

-Dgxoax = ngo ; Viscous float damping, and substituting

the output axis component of Equation 2-96 for gxégxo .

(¢ sin 6 cos Y - Y cos 6 + &x + W)

Dgxoax ngo pz

- wangI + (ngI N ngs)ngIngS (3-12)
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Arranging the highest derivative of the state variables on

the left side

® sin B cos ¥ - P cos O + a. = —X_ W
X ngO gxI
- o
(ngI ngS) W W _ Dgxo X _ W
ngo gxI gxS ngO Pz
(3-13)
*
The moments -M y —M , and -M are transformed
gxS gxI gx0

to platform coordinates and included in the platform equa-

tions of motion as reaction torques.

Y- and Z-Gyro Egquations of Motion. The Y- and Z-gyro

rotational equations are similarly developed in Y- and

Z-gyro coordinates, respectively.

Y~-gyro:
- gy*
M = I W + (I - I Jw ) (3-14)
gys gys gys gyo gyI’ gyO gyl
— gy :
M = I w + H w + (I - I Yw w
gyI gyl gyI wy gyo gys gyo’ gyO gys
(3-15)
M 1 9Y,
= - H w + (I - I w w
gyo gyo gyo wy gyl ( gyl gyS) gyl gys

(3-16)
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Z-gyro:
M = 1 _ %% _+ (1 -1 e w (3-17)
gzS gzs gzs gzO gzl® gz0O gzI
M = gz -
gzl IgzI wgzI + szwgzo + (Igzs Igzo)wgzswgzo
(3-18)
* gz*
gzo- — Tgzo Ygzo T Huzlgar * (IgzI - Ing)wgzIwng
(3-19)

The equations for the dynamic axes may be expanded

in terms of the state variable by substituting

* .
M = =D o,
gyo gyo vy
(3-20)
M = -D_ ¢
gzO - gzoaz

and substituting the output axis components of Equations

- - gy’ gz .
2-101 and 2-102 for wgyo and wgzo , Yrespectively.
- cos 6 cos ¥ - ¥ sin 6 + o = I“Y W
Y gyo gy
I - I D G
- ( gyl gys’ W W - _9¥0 Y _w
I I S I
gyo gyl gy gyo bx

(3-21)
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(3-22)
III. GYRO OUTPUT AXIS EQUATIONS

The three dynamic gyro equations (3-13, 3-21, and
3-22) may be expressed as second-order differential equa-

tions in terms of the state variables

G ®+G ¥+ = LGX (3-23)
x¢ xyP X
G ®+G ¥+ a = LGY (3-24)
Yo Yy Y
G +G ¥+ a = LGZ (3-25)
zd zy z
where
Gx¢ = sin 0 cos ¥
G = -
- cos 0
Gy¢ = =-cos 6 cos P
(3-26)
G = =-sin 6
vy
Gzp = -cos 0 cos Y

Gzy = -sin 0
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H (1 -1 ) D .
ICX = wa W .1 " gx; gx$s W IW . - %xo X oW
gx0 9 gx0 gxi Ix gx0 pz
(3-27)
H (T -1 ) D
LY = pwWo - =W W T
gyo 9y gyo0 gy+i 9Y gy0 p
(3-28)
_ sz (IgzI B Ing) Dgzoaz .
ez = I w zI I zS 'gzI I - W b'4
gz0 9 gzO 9 9 gzo . P
(3-29)
Gyro Rate Coefficients.
W = -W
gxs 194
ngI = pr (3-30)
W = W__ + 0
gx0 pz X
W = -W
gys bz
W = W (3-31)
gyT by

W
gyo bx Yy
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gzs by
WgzI = —sz (3-32)
W = W__+ a0

gzo pPX z

> -> >
> . > . o> . . . .
Wo, Wo, WI' WI, Wp, and Wp are defined in equation groups

2-104, 2-105, and 2-106.

Gyro Reaction Torques. The reaction moment of the

gyros on the platform is expressed by transforming the

negative of the gyro moments to platform coordinates.

Gyro-to-Platform Reaction Moment:

M
gpx
>
M = M (3-33)
gp gpYy

M
gpz

Evaluating for X-, Y-, and Z-gyros

Mgpx ngS ngs Mng
M = -|B M - |[B M - |B M

gpy [ gxp] gxI [ GYP] gyl [ gZp] gzl
* * *

Mgpz ngO ngo Mgzo

(3-34)



where

Assuming that

(Byyp!

sin

-COSs

sin

-COSs

=CO0Ss

~-sin

a , o, and o
b 4 y b4

[B

[B

gxp

]
gyp

o
X

o

are

cos «
X

sin o

cos O

sin o

sin o

-COSs a

small

48

(3-35)

(3-36)

(3-37)

(3-38)

(3-39)
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0 0 1
[Bgzp] = -1 0 0 (3-40)
0o -1 0

- —M* -Mm*
ngI ngO gzO
MP = | M + |-M + | M (3-41)
gp gxSs gyl gzSs
—M*
gx0 ngS MgzI
- * *
(ngI + ngO gzO)
-
MP = M - M + M 3-42
gp ( gxs gyl GZS) ( )
-M* -M ., -M_ )
gx0 gys gzl
Expanding in state variables
P _ . - _ .
Mgpx ngI¢ cos 6 cos Y + ngIw sin © ngIapry
- N - - - W
ngIpr wango (ngS ngo)ngo gxS
+ [ ] *
Dgyoay + Dgzoaz (3-43)
Substituting
= - : + W -H W
MGX ngI(apry px) wx gxoO
- - + 5 + D 0
(ngs ngO)ngOngS Dgyan gz0 z

(3-44)
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Results in

gpx ng1¢ cos O cos Y + nglw sin 6 + MGX

(3-45)

Similarly

D . ' .
M = sin Y (I + 1 + 1 + 6 (I + I
gpy - ¢ w( gx$s gyI gzs) ( gxS gyl

+ I ) + MGY (3-46)
gzS
where

M = a - I
GY ngs xWPx IgYIaprz gzsazwpz pé gxS gyI

+ Igzs) + (ngo - ngI)ngOngI

+
gys gyo WgyO gys gz0 gzl Wgzowgzl

- H W -~

wy gyo mengodx (3-47)

H W o
wz gz0 2z
and

p _ oo . X LTS
M = - 6 co I + I + os 6 (I
gpz ¢ sin s P( g gZI) Y c ( g

ys vS

+ IgzI) + MG2Z (3-48)
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where
MGZ = -W_ (I + I +I oW _ +I oW _ + (I
pz( gys gzI) gysS'y py gzI z py ( gyo
- + - + 3
IgyI)WgyOWgyI (Igzs Igzo)wgzowgzs Dgxoax
szWgzo - Hwngyoay (3-49)
IV. DYNAMIC EQUATION OF GIMBALED MEMBERS
Platform Equations of Motion.
> e
M = 'H (3-50)
b P
o> -> N N
M = PHE +w xH (3-51)
b 1% p b
Expanding in platform coordinates
M = I Po 4+ (I -1I Jo w _ -M
Ipx PX pXx bz PY Ppz pY gpXx
(3-52)
* p-
= I w + (I -I Ju w - M
Ipy PY DPY pPX bz pz pX gpy
(3-53)
M = 1 Po 4+ (I -I dw w -M
Ipz bz Dpz pY PX PX py gpz

(3-54)
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52

*
, M , and MIPZ are the coordinates of the driving

torque applied by the inner gimbal on the platform axes

x , ¥, Zp) in platform coordinates. The respective gyro

p p

reaction torque coordinates are M M and M
9 gpx’ “gpy’ gpz

previously defined in Equations 3-45, 3-46, and 3-48.

Expanding in terms of the state variables, the

locked-axes (XP and ZP) equations are

M = =-¢ cos 6 cos w(IPx + I

Ipx ) - ¢ sin e(Ipx

gxI

+ ngI) + MPX

where

MPX = I W + (I _-1I )W W _ + MGX
PX pX bz py Pz py

MGX is defined in Equation 3-44, and

= ¢ si + + I
MIpz ¢ sin 6 cos w(IPz IgyS gzI)
- . + MPZ
Y cos e(Ipz + IgyS + IgzI)
MPZ = I W + (I -I )W W - MGZ
where P pzpz ( by px) pxpy

MGZ is defined in Equation 3-49. The dynamic Y-axis
(YP) of the platform is expanded to form the fourth

state variable differential equation

(3-55)

(3-56)

(3-57)

(3-58)
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. (1 + I + I )
-¢ sin VY ( gxS %yI gzs 4 1)

Py
. f(I + I + I )
-9 ( gxs %YI 925+ 1) = wmpy (3-59)
by
where
M; MGY .
MPY = PY - (3-60)
I I Py
Py Py

MGY is defined in Equation 3-47, and

oy = DIpé + FIP(SGNé) - T, (3-61)
DIp — viscous friction between the inner gimbal and
the platform.
FIP(SGNé) — function representing Coulomb friction and
striction.
TII — motor torque, inner axis.

Inner Gimbal Equations of Motion. The inner gimbal

rotational equations of motion are

(3-62)
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->
. > >
= "H_+ w_xH (3-63)

Expanding in inner gimbal coordinates

IO

Mon = IIx wa + (IIz - IIy)wIzwa - MpIx
(3-64)
M = I. Y%, 4+ (I. -I_du. w._ -M
oly Iy Iy Ix Iz’ Ix Iz ply
(3-65)
M = 1. To. + (1 I
olz 1z 12 Iy Ix)wawa plz
(3-66)
The driving torque applied to the inner gimbal by the
outer gimbal is M .
oI
oIx
M = |m (3-67)
oI oly
*
olz
ﬁpI is the reaction torque of the platform on the inner
gimbal; M = -M where M was determined in
pI Ip Ip
Equations 3-55, 3-61, and 3-57.
MpIx MIpx
BEo= |m = -B__1|M (3-68)
pI pIy| pI’ | Ipy

MpIz MIpz
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In terms of the state variables, the inner gimbal

equations of motion for the locked axes (XI and YI) are

_ ) o
MoIX = ¢ cos w[IIx + cos G(Ipx + ngI) + sin e(Ipz
+ Igys + IgzI)] - ¢ cos B(IPx + ngI - Ipz
- Igys - IgzI) + MIX (3-69)
where
MIX = (IIZ - IIY)WIZWIY + IIxWIx + MPX cos 6§ - MPZ sin ©
(3-70)
MPX and MPZ are defined in Equations 3-56 and 3-58,
respectively.
Mon = -¢ sin Y IIY + MIY (3-71)
where
. *
MIY WIyIIy (IIx - IIz)WIzWIx MIpy
(3-72)
* 3 . (]
MIpy is defined in Equation 3-61.

The Z-axis of the inner gimbal is the driven or
dynamic axis; expanding in state variables, the fifth

system differential equation is formed.
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pPx gxI Ipz IgyS gzl

-¢ sin ® cos 6 cos Y

. (I + I )
- w[i + sin® g —BX gxI
T
Iz

I

(I + T + I )
+ cos® p —PZ gyS gzl ] = MIZ (3-73)
Iz

where the dynamic torque

*

M (I -I_)
Iz Iy Ix
MIZ = ==tZ - W_ W
IIz IIZ Ix Iy
_ MPXIs1n 0 _ MPZIcos e _w (3-74)
Iz Iz Iz
* ] J 3-7
otz = Dor¥ * F p(SGNY) - T o (3-75)
DoI — viscous friction between inner and outer

gimbals.

FoI(SGNi) — function representing stiction and Coulomb

friction.

T — middle-axis motor torque

Outer Gimbal Equations of Motion. The sixth state

equation describing the system is obtained from the

equation of motion for the outer gimbal X-axis.



Tox

* .
M = 1 ° + (I - I Jw w -
cOX OoX oX [0 34 oy 0z oy
where
>0 — =T
Mo = [BIo]MoI
Substituting state variables
- ) (le + cos? 6(I LTI xI)
6|1 + cos® v T P g
| ox
sin? (T, + I o+ I 1) ;I
+ T + sin” ¥ T
oX oX
. I % + I <I I ”
- Y cos 0 sin & cos Y p Ig <
oxX
I -1
oXxX
where
*
Mcox (Ioz B on)
Mox = I - I ozwoy
oXxX OoX

_ MIX cos ¥ _ MIY sin ¢ _

I I
ox ox

P
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(3-76)

(3-77)

(3-78)

(3-79)
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and
* . .
MCox = DCO¢ + FCO(SGN¢) - Too (3-80)
Dco — viscous friction between the case and outer
gimbal.
FCO(SGNé) — function representing stiction and Coulomb
friction.
Too — outer axis motor torque.

V. GIMBAL SYSTEM STATE EQUATIONS

The three eguations of motion (3-59, 3-73, and
3-78) representing the gimbaled system may be expressed
as a set of second-order differential equations in the

state variables.

A  ®+A .6 = MPY (3-81)

po pb
AI¢<I> + AW‘Y = MIZ (3-82)
AO¢CI> + Aow‘i’ = MOX (3-83)

Coefficients are defined as

pd -

(I + I + I )
A = -sin w[ gxs IgyI gzS +1] (3-84)
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Iy

I¢

od

A, =
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(I + I + I )
_[ gxs IgyI gzs +1 (3-85)
Py
(1 + I )
—[1 + sin? o —BX__9xI
I
iz
(. +1I + I )
+ cos? § —BZ IgYS gzl (3-86)
Iz
I -1 +1 - I -1
-sin 6 cos6 cos ¥ ( pPX bz gxI gys gzI)
IIz
(3-87)
2
(I._ + cos” 8(I + I )
-1 + cos?® y X ——px  TgxI
oX
sin? 6(I_ + I st I ) ) :
* T 22 + sin® y (3-88)
OoX oX
I + I - I - - I
-cos O sin 6 cos VP ( bX gxI pz gys gzI)
IOX
(3-89)

VI. SOLVED DYNAMICAL EQUATIONS

(GIMBALS AND GYROS)

The differential equations of motion for the three

gyros mounted on the platform were previously derived and
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presented in Equations 3-23, 3-24, and 3-25. Equations
3-81, 3-82, and 3-83 describe the motion of the gimbaled
members. Solving the aforementioned system of six
differential equations for the highest derivative of the

state variables

co MIZ A, - MOX A, (3-90)
A_A - A_A
I¢ oY Iy o

. MOX A
v = 1

BroPop ~ PryPos

MIZ A
o

¢ (3-91)

5 A, [MOX Ap, - MIX Aow] , MPY (3-52)
Boo (BroPoy ~ BrgPoy)  Bps

o, = LGX - Gx¢5 - wa§ (3-93)

&y - Loy - Gy¢5 - Gyw¥ (3-94)

@, = 16z - GZ¢5 - sz§ (3-95)



CHAPTER IV
THE CLOSED-LOOP SYSTEM

The IMU studied is composed of four mechanical
members (case, outer and inner gimbals, and platform) with
three gyros orthogonally mounted on the innermost member

or platform.

I. ATTITUDE ERROR MEASUREMENT

The gyros are of the integrating type and serve as
instruments to measure the angular displacement of the
platform about their respective input axes. The triad
formed by the three gyro measurements may be treated as a
vector representing the change in attitude of the platform,
providing that commutation is negligible. No order of
rotation is assumed when the attitude variation of the
platform is treated as a vector. This assumption breaks
down during periods of extreme platform disturbance, and a
commutation error may be observed. A.commutation error
results in an unrecoverable platform-attitude error. The
platform-attitude error vector is represented by a triad

of the gyro float angles.
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2 = Ja (4-1)

The 0o vector is the error signal in the IMU
control loop. There are three degrees of freedom between
the case and the platform, the X-, Z-, and Y-Euler sequence,
as discussed previously. The dynamic or driven axis between
each member of the system has a torque motor mounted such
that it may attempt to drive the platform to a position
nulling o ; which returns the platform to its initial
position (inertial reference) if there has been no

commutation.

Resolving Errors. The Euler rotation axes generally

form a nonorthogonal set, and o must be transformed as
follows to form the error signal ¢ for the three control

loops

II
>
e = € nm (4-2)

oo

Note: The bases II, mm, and oo are not generally

orthogonal.



Determination of €__, € , and ¢ .
II mm 00
> -> >
a , o=oaf
>
Do [
pl
-I- — . --p—
o cos 6 0 =-sin 6] ]a
X X
of] = 0 1 0 of
Yy Y
ol {§in 8 0 cos QJ af
| 2] -/

The error signal for the inner gimbal loop

I

to ay or the output of the Y-axis gyro

- oM p-
o cos Y
(o] .
o -sin Y
Y
a® 0
d z— -

sin ¢ 0

cos w‘ 0

o
o
b4

o
y
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For small

€
ITI

(4-3)

(4-4)

is equal

(4-5)

(4-6)

(4-7)

(4-8)
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£ = o sin 6 + o cos 6 (4-9)
mm X V4

In the system studies, the Z-axis gyro had its

input oriented along the negative Z-axis; therefore

€m - &, Sin 6 - a_ cos 0 (4-10)
af = [B ]3° (4-11)
ocC
Fﬂdq 1 0 0 --&01
X X
at = 0 cos ¢ sin ¢ o (4-12)
y Y
C . o
LOLZ~ 0 sin ¢ cos ¢] _ocz_

The outer gimbal loop error is ai

— c —
€00 = O (4-13)
€oo = O, COS 6 cos ¥ - o, sin 8 cos P + ay sin ¥
(4-14)

With the Z-axis gyro oriented along the negative Z-axis,

the outer gimbal error becomes

> = o cos B cos P+ a sin 6 cos ¢ + o sin Y
oo b'4 z y

(4-15)



65

Summarizing the resolver equations for the system

under consideration

£ 0 1 0 o

IT X
e = € = sin 6 0 ~cos 0 o,
mm Y
€0 cos B cos Y sin ¢ sin 6 cos ¥ o,
(4-16)

ITI. PREAMPLIFIER DEMODULATOR

The signal generators or pickoffs on the gyro float
and the resolvers are variable inductance transformer
devices. The output of the resolvers is therefore an
amplitude-modulated signal; the demodulator preamplifier for

the control loops is modeled by the transfer function

S2
K 5 + 1
a\4613

s s 2(0.1786)s ]
—t+ 1 + + 1
(3378 )[36042 3604

x 1 (4-17)

2
[ g |
3787

A limiter follows the preamplifier to simulate saturation

effects.
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ITII. COMPENSATION AND SERVOAMPLIFIER

Each of the three loops has a servoamplifier to drive
the torgue motors and a compensation network to achieve the
required loop response and noise attenuation. The three
filter/servoamplifiers are modeled by the following func-
tions, which represent the inner, middle, and outer gimbal
loops, respectively. Saturation effects are included in

the loop, Figure 9

(s + 5)(s + 160)

K1 s % 125) (s ¥ 2000) (4-18)
(s + 5) (s + 160) _

Kim Ts + .125) (s ¥ 2000) (4-19)

K (s + 5)(s + 160) (4-20)

oo (s + .125) (s + 2000)

Iv. DYNAMIC AXES TORQUES

Motor Torques. The torque motors are modeled as

first-order lags

Ts T+ I (4-21)

and produce the driving torque T applied to the three

dynamic axes



R - DYNAMIC EQUATION > b >
- - M* (GIMBALS AND GYROS) v v v
T | =, >T e > T . o - o .
M* = DB - T + F' (SGNB) 1 . e e e e »
T
v = [¢, ¥, 6, axl ayl az]
. 3 [ Y [ y N b
T (sGNB) . B v -
F .
'; (SGNB)
N
.
| time SF
>
- + ->
K L |/+" Y COMPENSATION AND u
TS F I _/] SERVOAMPLIFIER
0 - . .- . . . —"T . . . -*T + e+ T
v [e, Y, ¢, uxl GY’ az] B = (8, v, ¢} Kt = [KtII' tmm’ Ktoo] SENB = [SGNO, SGNY, SGN¢]
-> - ->
o T R S S S T T _ BIAS = [BIAS , BIAS_, BIAS
LA LT P PR SO A BT =16 v ¢ = (T, T, T ) N [BIAS s y' 2]
> -+
T >T _ #To mw . SF = [SF_, SF , SF_]
v [e, v, ¢, axr ayl a ] e [aex’ eyl aEz] _P: [MIpy' o1z ' _COX] R X y 2
*> ) o’ = [D D D ] X = [k 1
o7 [;x, iy ; i e = [EIII Eom’ Eoo] . 1p’ o1’ “co a - alir’ “amm aco
z
T
R - Fl = [F_ , F , F 1
T T I I
a [a , o, o} ut o= (U Uy Uool P ° co
->T
Yy = Wypr Yoo Yo 1
FIGURE 9

BLOCK DIAGRAM FOR THREE-AXIS PLATFORM

L9



where

Net Torque.

. _)*
axes 1s M

% %
where M ' Mo

Ipy Iz

The net

*
, and M
CcCOX

K
tII
tmm

too
II

mm

(o] o]

50 usec
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(4-22)

(4-23)

torque on the driven dynamic

(4-24)

are defined in equations 3-61,

3-75, and 3-80, respectively.

In vector form

(4-25)
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where viscous friction is

De

>
To _ [ _
DB = [DIp DoI Dcé] V] (4-26)
é

and Coulomb and static frictions are %T(SGNé).

Figures 9 and 10 are vector block and schematic

diagrams of the three-axes platform, respectively.
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CHAPTER V
SYSTEM SIMPLIFICATION AND SIMULATION

The system modeled in Chapters II, III, and IV is
examined for reduction of high-frequency (small time
constant) terms and programmed in FORTRAN for the CDC 3800
digital»computer. High-frequency terms are removed from
the models if system performance (simulated) is not
extensively affected. This results in reduced computation
times. The integration-stepsize is chosen as a function of

the smallest time constant is retained.
I. INERTIAL MEASUREMENT UNIT MODEL SIMPLIFICATION

The IMU model summarized in Figure 10 consists of
three second-order differential equations (3-90), (3-91),
and (3-92) representing the motion of the mechanical members
of the system, equations (3-93), (3-94), and (3-95)
representing the three gyros, and the transfer functions
(4-17) to (4-20) for the control-loop elements. The
servoamplifier gain in each loop is adjusted to offset
the variation in gimbal inertia so that the response and
stability of the three loops are maintained. A single loop
may be examined for elimination of high-frequency terms.

The control loop to be analyzed is presented in Figure 11.



PREAMPLIFIER DEMODULATOR

GIMBAL
INERTIA GYRO 2
Ka('_ﬁL'i + 1)
4
1 6 | _ wum L (4613)
2 I TS + 1 ket
Js g 2 2
(58 + ) (e + 20t ) (o + 2 = )
(3604) (3787)
J INNER GIMBAL = 2.6303 x 10° gm-cm®
J MIDDLE GIMBAL = 5.3658 x 10° gm-cm>
J OUTER GIMBAL = 1.0631 x 10° gm-cm?
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-
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FIGURE 11
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Vems D =0.475 x 10° LT
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A frequency domain analysis is performed using a plot of

the log of the gain versus the log of frequency (Figure 12).

It is clear that all terms with breakpoints above
160 radians per second may be dropped without appreciably

affecting the system phase margin.

Phase Margin with High-Frequency Terms
P.M. = 39° for the inner and middle loop

P.M.

32° for the outer 1loop

Phase Margin Without High-Frequency Terms
P.M., = 56° for the inner and middle loop

P.M.

43° for the outer loop

This reduces the preamplifier demodulator to a gain, the
gyro equations to first order, and the compensator to a
lead. Figure 13 is a block diagram of the new low-

frequency loop.

Preamplifier Demodulator. The preamplifier demodu-

lator represented by the transfer function in equation
(4-17) may be reduced to a pure gain Ka . The open loop,
frequency-gain plot (Figure 12) indicatesAthat the dynamic
terms have no effect on system response, and the simulation
does not contain any disturbance requiring attenuation of

these frequencies.
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NOTES

(1) OPEN-LOOP TRANSFER FUNCTION

2
1.352( =+ 1)
-A(S) = 00 1290 2082
K S s 2
s s( + 1) s s 2(0.1786)S
1290 gt 1 + 1
(3378 )<36042 3604
S S
1 (18-2 % (3 +1)(wo ) (K )
5 S s TH
S+ 2R 1 (o125 + 1) (z000 *+ )
3787
where
GIMBAL LOOP K K_ K.
INNER 1 1 1.12
MIDDLE 2 2 1.12
OUTER 4 3 0.105

(2) EVALUATING -A(S) AS S » O

GIMBAL LOOP -A(S), S-0

INNER 1.65355x10°
MIDDLE 1.65355x10°
OUTER 1.12358x10°



(3)

NOTES (Concluded)

ESTIMATING PHASE MARGIN

HIGH-FREQUENCY MODEL

*INNER

Phase

Phase

Phase

*OUTER

Phase

Phase

AND MIDDLE GIMBAL LOOP
Angle at Crossover
_ -1 240
Angle = -1 + tan 100
= -140.9
Margin = 39.01
GIMBAL LOOP
_ -1 150
Angle = -1 + tan 10
= -147.72
Margin = 32.28

LOW-FREQUENCY MODEL

* INNER

Phase

Phase

*OUTER

Phase

Phase

AND MIDDLE GIMBAL LOOP
_ -1 240

Angle = -1 + tan 160
= 123.64

Margin = 56.36

GIMBAL LOOP
_ -1 150

Angle = -m + tan 160
= -136.85

Margin = 43.15

- tan~

- tan~

N o
Ol >
oo
o

] =
Nl
o|o
o
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Compensation Network and Servoamplifier. The

transfer functions (equations 4-18, 4-19, and 4-20)
representing the compensation network and servoamplifier
for the control loops contain the following terms

K(s + 5)(s + 160)
(s + .125) (s + 2,000)

(5-1)

The lag at 2,000 radians may be eliminated with only
minor effects on the simulation performance; however, this
leaves an undesirable form for the remaining transfer
function. The form %%%% is physically unrealizable when
Q(S) is of higher order than P(S). An examination of the
remaining terms on the gain-frequency plot (Figure 12)
reveals that the leads at 5 and 160 radians are required
for loop response and stability. The total, open loop,
transfer functions, after dropping the high frequency
terms (Figure 13), is of the proper form; therefore a set
of differential equations may be written incorporating

the required compensation amplifier terms.

The compensation network and servoamplifier for

the low-frequency model are represented by

K(s + 5)(s + 160)
(s + .125) (5-2)
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The dynamic equations for the compensation filter
illustrated in Figqgure 13 may be developed by the block

algebra manipulation illustrated by Figure 14.

The differential equations representing the block

diagram Figure 14 are

Y = KU + 164.875X + 800X (5-3)

Se
Il

KU - .125X (5-4)

Relating the above equations to the three loops under

consideration
>T -
- [YII'Ymm'Yoo] (5-5)
>T -
- [UII'U 'UOO] (5 6)
ET = K ZT (5-7)
a
> —.>T
al = K € (5-8)
a
where
€1 = ay
€m = &, sin 6 - a cos 0 (5-9)

€ = 0o_cos B8 cos Yy + 0_ sin 0 cos Y + a_ sin P
oo X z v

79



U(s) |1|lu(s) | K(s + 5)(s + 160) | ¥(s)

5 (s + .125)
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Me
]
Q

IT y

= o sin B8 - o_ cos 6 (5-10)
X Z

Me

mm

a, cos 6 cos ¥ + o sin 6 cos ¥ + ay sin ¢

(o] o]

Torque Motor. The torque motor represented by a

first-order lag

+
TtS 1

has a very small time constant. This analysis assumes
Tt to be 50 usec; based on this figure, the torquer is
reduced to a pure gain K, for use in the low-frequency
model. Analysis of the gain-frequency plot (Figure 12)

indicates that this reduction has a negligible effect on

the system response.

Gyro Reduction. The gyro equations may be repre-

sented for a single channel by the second-order transfer

function

1 _H
a(s) = [g ?‘EZ%‘T] W, (8) (5-11)
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This function may be reduced to the first-order transfer

function
a(s) = (Eég) @ () (5-12)

by eliminating the o terms from Equations 3-23 to 3-25
and 3-81 to 3-83. Reducing the order of the gyro equations
results in the following six simultaneous equations

representing the motion of the gyros and gimbals of the

system.
A 6+A 0 +A o +A o +A o = MPYW
pd pb px x PY ¥ pz =z
(5-13)
AI¢¢ + AIww +A o+ AIy v +A o = MIZW
(5-14)
Ao¢¢ + Aoww + A o+ AOy gt A_ o, = MOXW
(5-15)
Ax¢¢ + Axww +toa = LGXW (5-16)
A + A + 0 = LGYW (5-17
y¢¢ yww y )
Az¢¢ + Azww + o, = IGZW (5-18)
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Coefficients are defined as

I
Ax¢ = 5559 sin 6 cos Y (5-19)
gx0
ngO
A = -—="— cos 0 (5-20)
xy Dgxo
) I o
A 6 = —531— cos B cos Y (5-21)
Y gyo
I 0
A, = ~p—— sin 6 (5-22)
y gyo
gzO
A 6 = "B cos ® cos ¥ (5-23)
2 gzO
I z0
Ay = —D—g—— sin @ (5-24)
2 gzO
1 .
on = on (Hx cos 6 cos ¢ + Dgxo sin 6 cos )
(5-25)
1 .
A = H sin 6 cos - D cos O cos
oy on ( yo n 1 gy0 V)
(5-26)
R § : _
AOZ = T;; (Hz sin 6 cos VP Dgzo cos B cos V)

(5-27)



Ix

Iy

Iz

Py

gyl gyo gys' pz wy

(Hx sin 6 - Dgxo cos 6)

-H cos 6 - D sin 6
( y gyo )

(-Hz cos 6 - Dgzo sin 8)

(H_)

(pr)

(H

I W + H
gx py wx

I W - H o

9y PY Wwy vy
I W + H

gz py wz

(ngI B ngS - ngO)pr + waa
(1 + I -1 W + H
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(5-28)

(5-29)

(5-30)

(5-31)

(5-32)

(5-33)

(5-34)

(5-35)

(5-36)

(5-37)

(5-38)
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LGZwW

MOXW

MIZW
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(IgZS + Igzo - IgzI)sz + szaz (5-39)
ngI + ngo - ngs (5-40)
I + I - 5-41
gys gyo gyl ( )
IgZI + Igzo - Igzs (5-42)
wa (ngI - ngs) ngO °
D Wox1 D Woxt"gxs ~ B Wz
gx0 9 gxo0 g g gxO0 p
(5-43)
- I
HwY - (IgYI gYS) - _9y0 &
D W I D Wg IW VA D pr
gyo Y gyo y- 9 gyo
(5-44)
sz (IgzI " Ing) IgzO \
D W zI D w zSW zI D w X
gzO g gzO0 g g gzo0 p
(5-45)
1 f..* .
= M - MOZY - MIZY cos ¥ - MIXZ sin VY
I 1 cox
ox
M* i MGXW 8
- siln - X cOos CcOs
Ipy 1] Y
~ MGZW sin 6 cos ¢y - MPZY cos 6 cos ¥
+ MPYX sin 6 cos \p} - W, (5-46)
1 §.* .
M - MIYX - (MPZY + MGXW) sin 6
I | oIz
Iz
- (MPYX - MGZW) cos ef - W (5-47)
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* .
MPYW = = Im - MPXZ + MGYW! - W (5-48)
I | Ipy f pY
PY
MOZY = (I -I )W W (5-49)
0z oy’ oz oy
MIZY = (I - IIy)WIzWIY + I W (5-50)
MIXZ = (I, - I )W W__ + IIway (5-51)
MPZY = (I -I )W W + I W (5~52)
pz py’ pz py pPX px
MPYX = (I -I )W W +1I W (5-53)
pY px’ px py pz pz
MIYX = (IIy - IIX)WIXWIY (5-54)
MPXZ = (I -1 )W W (5-55)
pX rz’ px pz
MGXW = I W _+H W + (I - I )W W
gxI px WX pz gxo gxz' pz py
(5-56)
MGYW = (ngo + Igys + IgzI - ngI - Igyo
- IgzO) Pz px - Hwywpx - Wx pz x
- Wz px 2z - (ngS + IgyI + Ing) PY
(5-57)
MGZW = (I + I - I - I W W
( gyo gzo gyl gzs) Py px
+ (H -H o)W - (I + I W
( wy wy y) px ( gys gxI) pz

(5-58)



Solving
obtain
(1 ¢
(2) vy
(3) o
(4) &x
(5) ay
(6) a

Coefficients are

87

equations 5-13 through 5-18 simultaneously, we
MC, -MB
= BBCw - Bccw (5-59)
oY v o
B.M - MC
= B¢CC - BBc¢ (5-60)
oY v
_ A¢(BwMC - CwMB)+ Aw(B¢MC - C¢MB) . M,
AG(B¢Cw - ch¢) A,
(5-61)
= LGXW - Ax¢¢ - Axww (5-62)
= LGYW - AY¢¢ - Ayww (5-63)
= IGZW - A .6 - A_¥ (5-64)
defined as
Bo = Poo T PoxPxo T PoyPye T Pozfze
(5-65)
By = BoxPyy T RpByy t Bostay (5-66)
A, = A (5-67)

pb
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B¢ = AI¢ - AIxAde - AIyAyd) - AIzAz¢
(5-68)
Bw = AIw - AIxAXIIJ - AIyAyw - AIzAzlp
(5-69)
C¢ = Ao¢ - onAx¢ - AoyAycb - AozAz(b
(5-70)
Cw = Aow - onAxw - AoyAylP - AozAzlp
(5-71)
M = MPYW - A ILGXW - A ILGYW - A LGZW
A jP S Py bz
(5-72)
MB = MIZW - AIXLGXW - AIyLGYW - AIzLGZW
(5-73)
M = MOXW - A IGXW - A ILGYW - A IGZW
c ox oy oz
(5-74)

Equations 5-59 through 5-64, combined with the following
differential equations representing the compensation net-
work and servoamplifier indicated in Figures 15 and 16, form
the low-frequency model for the IMU under consideration.

The smallest time constant represented is 6.25 milliseconds.
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The differential equations for the compensation

networks and servoamplifiers are

GII = Gmm = Goo (5=75)
Y
II
G = S B (5-76)
II UII
Ymm
Gmm = ﬁT— (5-77)
mm
Yoo
Goo = (5-78)
oo
c - Jxr _ 18.2 [(s + 5) (s + 160)
II YiI 6400 (s + .125)
(5-79)

The differential equations to be solved representing the

GII transfer function are
« _ 18.2 _ _
X = gzﬁﬁ UII .125x . (5 80)
Y. = 164.875%x + :8:2 3 4+ goox (5-81)
II ) 6400 "1z

Similarly, Y oo and Y o may be determined as functions

' ﬁm , U , and UOo , respectively. Resolving

of U
m m o0

m
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L] [ ]
0 , 0 , O , 0 , ay, and o, into error singals

€ r
X y z X

€117 ®mm

€0’ éII, émm, and éoo , respectively, and adding
resolver erxrors €g and ew
€11 = ay (5-82)
€m = O, Sin (6 + ee) - az cos (6 + ES)
(5-83)
€00 a_ cos (6 + ee) cos (¢ + €¢)
+ a_ sin (6 + ee) cos (Y + ew)
+ i + 5-84
uy sin (Y ew) (5-84)
EII = ay (5-85)
nm a_ sin (6 + ee) - o cos (6 + se)
(5-86)
oo T Oy cos (6 + ee) cos (Y + ew)
+ a, sin (6 + ee) cos (Y + €¢)
+ 0 si + 5-87
o sin (¥ ew) ( )

where ee and Ew are resolver errors.
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The low-frequency model of the IMU system (Figures
15 and 16) and related equations were programmed and
designated subroutine PLTFRM. This subroutine simulates
the low-frequency dynamic behavior of a three-gimbaled
IMU with an orthogonally mounted gyro triad on the platform

(stable member).

The program is briefly outlined in the flow diagram

(Figure 17). Block 1 of the flow diagram receives updates
-5

of the vehicle (IMU case) body angular accelerations W,
from the external driver subroutine NEWACC four times per
integration step. Block 2 transforms the gyro-float
pickoff angles o into error signals ¢ for each gimbal
axis. The scale factor, bias, and resolver errors may be

incorporated in & at this point if desired.

The compensation filter differential equations are
solved in block 3, assuring the desired loop response.
The filter output ; is multiplied by the motor gain ﬁt
and the sign selected in block 4 such. that the torque
applied by the motor drives o toward the null. Computa-
tions performed in block 5 calculate the Coulomb friction
torque in each loop as a function of the SGN of the gimbal
angle rates. The net tordque ﬁ* , 1including motor torgque,
Coulomb friction, and viscous damping is computed in

block 6. The derivatives of the state wvariables
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PLTFRM

< CALL NEWACC > (1)
->
o -+ u

(RESORBVER AND PREAMPLI- (2)
FIER)

'

_ 18.2K[(S + 5) (S + 160)
T(8) = 5159 [ 5+ .125) ]

(STABILIZATION AMPLIFIER)

'

4

(TORQUE MOTOR)

(3)

(4)

SIMILARLY
J +~ Fo¢I
& T FCo

FIP = -FDYNX

FIP

FDYNX

FIP = FSTATX * SGN(TMX)

FIGURE 17

GENERAL FLOW DIAGRAM



Fk

M* = BB + F - 7
(TOTAL TORQUE)

COMPUTE ¢, §, B, AND &
(DYNAMIC EQUATIONS FOR
GIMBALS AND GYROS)

CALL DIFEQ
INTEGRATE TO GET

¢, ¥, 6, AND &

COMPUTE [B |
cp

(BODY-TO~-PLATFORM
TRANSFORMATION MATRIX)

RETURN

(6)

D = VISCOUS DAMPING
¢

2= |V
8

F = COULOMB FRICTION

AND STRICTION
>
T =

MOTOR TORQUE

(7)

(8)
4th-ORDER RUNGE-KUTTA

(9)

FIGURE 17 (Concluded)

GENERAL FLOW CHART
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;, i, 6, &x, &y, and &z are calculated in block 7, and are
used by the integration subroutine. Subroutine DIFEQ is
called in block 8 and the state equations are integrated
using a 4th-order Runge-Kutta scheme. When an integration
cycle has been completed, the program proceeds to block 9
where the body-to-platform transformation [Bcp] is computed
from the Euler angles. A comprehensive flow diagram with
common locations defined and a FORTRAN listing of PLTFRMS,

NEWACC, and DIFEQ are presented in Appendix A.



CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

This thesis developed a mathematical model for the
three-gimbal IMU stable member and a FORTRAN subroutine to

simulate its motion.

The kinematic relationships between the system
members were developed in Chapter II. Equations 2-60 and
2-79 represent the relationship between the case and the
platform. The gyro-to-platform relationships are presented

in Equations 2-84, 2-87, 2-88, 2-96, 2-101, and 2-102.

Chapter III developed the dynamic equations of
motion (3-90 through 3-95) for the mechanical members
(gimbals and gyros) of a three-gimbal IMU, including damp-
. ing, friction, and inertial effects. The control loop
components were modeled including demodulators, resolvers,
compensation networks, and torque motors. A frequency-
domain analysis indicated that the high-frequency (time
constants less than 5 msec) terms may be eliminated without
severely affecting the system response or stability. The
equations'of motion are reduced to Equations 5-59 through
5-64 for the low-frequency representation of the gimbals

and gyros.

Figure 15 and the associated filter and resolver

equations (5-80 through 5-85) represent the low-frequency



98

mechanization of the three-gimbal IMU stable member.
Subroutine PLTFRM is programmed from the low-frequency

system representation.

This thesis developed subroutine PLTFRM to simulate
the angular motion of a three-gimbal IMU stable member.
This subroutine is a tool for studying the environment to
which inertial instruments are subjected when mounted on

the stable member.

PLTFRM was tested (described in Appendix D) under
a variety of stationary axis and coning motion conditions.

The results closely paralleled available Apollo test data.

The development of this simulation is prerequisite
to performing extensive studies to relate specific mission
profiles with the environment to which the inertial
instruments are subjected. Realistic studies of platform-
mounted instrument errors may be performed using PLTFRM to

simulate the stable-member motion.

The high-frequency model presented can be used as
the basis for developing a hybrid simulation which maintains
all the dynamic terms of the system. A simulation of this

nature would be of use in studying servoloop components.



REFERENCES



100

REFERENCES

Arnold, Ronald N., and Leonard Maunder. Gyrodynamics and
its Engineering Applications. New York: Academic
Press, 1961.

Beckett, Royce, and James Hart. Numerical Calculations
and Algorithms. New York: McGraw-Hill Book Company,
Inc., 1967.

Bode, H. W. Network Analysis and Feedback Amplifier Design.
Princeton, N.J.: Van Nostrand Company, Inc., 1945.

Chestnut, Harold, and R. W. Mayer. Servomechanisms and
Regulating System Design. Vol I. New York: John Wiley
and Sons, Inc., 1951.

Gibson, John E. ©Nonlinear Automatic Control. New York:
McGraw-Hill Book Company, Inc., 1963.

Goodman, L. E., and A. R. Robinson. "Effects of Finite
Rotations on Gyroscope Sensing Devices," J. Appl. Mech.,
Vol. XXV, June 1958.

Greenwood, Donald T. Principles of Dynamics. New York:
Prentice-Hall, Inc., 1965.

Halfman, Robert L. Dynamics. Vol I. New York: Addition
Wesley Publishing Company, Inc., 1962.

Hildebrand, Francis B. Methods of Applied Mathematics.
New York: Prentice-Hall, Inc., 1952.

Richardson, L. I. T. The Gyroscope Applied. London:
Hutchinson's Scientific and Technical Publications,
1954.

Savet, Paul H. (ed.) Gyroscopes: Theory and Design.
New York: McGraw-Hill Book Company, Inc., 1961.

Sutherland, A. A., Jr., and William S. Beebee. "Design of
Strapdown Gyroscopes for a Dynamic Environment,"
Houston: NASA Contractor Report CR-1396.

Thomson, William T. Introduction to Space Dynamics. New
York: John Wiley and Sons, Inc., 1961.




APPENDIXES



APPENDIX A
COMPUTER PROGRAM DOCUMENTATION

The program documentation consists of a detailed
flow diagram (Figure 18), a description of the input common
for subroutine PLTFRM (page 110), and a FORTRAN listing of
subroutine PLTFRM (page 113), with its associated subrou-
tines NEWACC, DEFEQ, MXV, and REAL FUNCTION SGN. Chapter V
described the program organization and included a general

flow diagram.

Mr. L. A. White of the Lockheed Electronics Company
performed the programming and checkout of PLTFRM and its

associated routines.



I1=1, 2,3

INITIAL P, Q,
FOR CONSTANT
ANGULAR RATE

R

PLTFRM

NO

DF NO

(385 + I)
=0

YES

Y

Y(12 + I) = DF(376 + I)
N=N+1
TSTOP = N * DELT
DT = DTMAX
IDONE = 0
YES
N>1
NO

[

DIPHI = DPHI
DIPSI = DPSI
DITHETA DTHETA

<: CALL NEWACC :>

FIGURE 18

DETAILED FLOW DIAGRAM

GET ANGULAR ACCELERATION
(DP, DQ, DR)
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NO

NO
YES
ALPHAXE = ALPHAX * SFX
+ BIASX
DALPHAXE = DALPHAX * SFX
+ BIASX
ALPHAYE = ALPHAY * SFY
+ BIASY
DALPHAYE = DALPHAY * SFY
+ BIASY
ALPHAZE = ALPHAZ * SF2
+ BIASZ
DALPHAZE = DALPHAZ * SF2
+ BIASZ
EIY = AI * ALPHAYE
YES
EIY = EIYSAT * SGN(EIY)
v
EMZ = AM * LALPHAXE * SIN
(THETA + ETHETA)
- ALPHAZE * COS
(THETA + ETHETA)]
NO

YES

EMZ = EMZSAT * SGN (EMZ)

FIGURE 18 (Continued)
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EOX =

AO * [ALPHAXE * COS
(THETA + ETHETA)

* COSs (PSI + EPSI)
+ ALPHAZE * SIN
(THETA + ETHETA)

* COS (PSI + EPSI)
+ ALPHAYE * SIN
(PSI + EPSI)]

NO

YES

EOX

= EOXSAT * SGN(EOX)

A 4

DEIY =
DEMZ =

DEOX =

AI * DALPHAYE

AM * [DALPHAXE * SIN

(THETA + ETHETA)
- DALPHAZE * COS
(THETA + ETHETA)]

AO * [DALPHAXE * COS

(THETA + ETHETA)

* COS (PSI + EPSI)

+ DALPHAZE * SIN

(THETA + ETHETA) * COS
(PSI + EPSI) + DALPHAYE
* SIN (PSI + ESPI))

UMI
UMM
uMo
DUMI
DUMM
DUMO
DX1I

DXIM

YMM =

MYO =

EIY

EMZ * 2

EOX * 3

DEIY

DEMZ * 2

DEOX * 3
0.00284375 * UMI
- 0.125 * X1I
0.00284375 * UMM
- 0.125 * XIM

DX10 = 0.002843375 * UMO

- 0.125 * Xl0

YMI = 164.875 * DX1I

+ 800.0 * X1I + DUMI
* 0.00284375

164.875 * DXIM

+ 800.0 * XIM

+ 0.00284375 * DUMM

164.875 * DX10

+ 800.0 * X10

+ 0.00284375 * DUMO

FIGURE

h J
E:

18 (Continued
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NO

YES

YMI = YMISAT * SGN(YMI)

YMM = YMMSAT * SGN(YMM)

YMO = YMOSAT * SGN(YMO)

2
>

A 4

TMX = KTO * YMO
TMY = KTI * YMI
TMZ = KTM * YMM

FIGURE 18 (Continued)



A

3

FCO = ~ FDYNX

FCO = FSTATX * SGN(TMX) FCO

= + FDYNX
y
FOI = -FDYNZ FOI = FSTATZ * SGN(TMZ) FOI = + FDYNZ
b &
4]
DTHETA =
y
FIP = - FDYNY FIP = FSTATY * SGN(TMY) FIP = +FDYNY ]

COMPUTE
AND a_ ,
z

EQUATIONS ( )

¢, ¥, 0, mxl Gy:

FIGURE 18 (Continued)

DYNAMIC EQUATIONS
FOR GIMBAIL, MEMBERS
AND GYROS
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YES
IDONE = 0
NO

COs 6 Cos ¢

SIN ¢
-SIN 0 COS ¢

-SIN ¥ COS ¢ COS 6
+ SIN ¢ SIN ©

Cos ¢ COS ¢

SIN 6 SIN ¥ COS ¢
+ SIN¢ COS 6

SIN ¢ SIN § COS 8
+ SIN 8 COS ¢

-SIN ¢ COS ¢

CosS ¢ COS 6
-~ SIN ¢ SIN 6 SIN ¢

y
1 RETﬁRN ’

RATEX WPX
RATEY WPY
RATEZ WPZ

0 - WPZ WPY

TﬂAT =| WP2 O -WPX

FIGURE 18 (Continued)

>

INTEGRATE $, ¥, 8, &, DP,

> DQ, DR, XiI, XiM, XiO
(FOURTH-ORDER RUNGE-KUTTA)

;> INTEGRATE PLATFORM RATES
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9
A 4
WPX|

*
DATI = |WPX|—- TMAT * ATI

WPZ

!

( CALL DIFEQ > INTEGRATE DATI

COUNTER WHICH INDICATES
COMPLETION OF ONE
INTEGRATION STEP (FOURTH
PASS)

IDONE = 1

FIGURE 18 (Concluded)
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INPUT COMMON DESCRIPTION

Subroutine PLTFRM Common BLK1l
Location Symbol Description
1 PHI Outer gimbal angle
2 PSI Middle gimbal angle
3 THETA Inner gimbal angle
4 ‘ DPHI Outer gimbal angle rate
5 DPSI Middle gimbal angle rate
6 DTHETA Inner gimbal angle rate
HWX
62-64 HWY Gyro angular momentum
HWZ
IGXI Float moment of inertia about respective
65-67 %gg% gyro input axes
IGXS Float moment of inertia about respective
68-70 IGYS .
I1G7S gyro spin axes
IGXO Float moment of inertia about respective
71-73 IGYO
1GZ0 gyro output axes
IPX
74-76 IPY Platform moments of inertia
IPZ
IIX
77-79 ITY Inner gimbal moments of inertia
I1Z
IOX
80-82 I0Y Outer gimbal moments of inertia
102
DIP
83-85 DDI Viscous damping

DCO



Iocation

Symbol

92-94

95-97

101
104-105

106-107

108-109

110-112

113-115

122-124

125-127

128-130

131

223-225

SFX
SFY
SF2Z

BIASX
BIASY
BIASZ

DTMAX

FSTATX
FDYNX

FSTATY
FDYNY

FSTATZ
FDYNZ

AT
AM
AO

EIYSAT
EMZSAT
EOXSAT

YMISAT
YMMSAT
YMOSAT

KTT
KTM
KTO

DGXO
DGYO
DGZO

DELT

EPHI
EPSI
ETHETA

111

Description

Scale factor-multiplicative perturbation

to gyro error signal o

Additive perturbation to gyro error
signal o

Integration time step

Static and dynamic (Coulomb) friction
torque between case and outer gimbal
Static and dynamic (Coulomb) friction

torque between inner gimbal and platform

Static and dynamic (Coulomb) friction

torque between inner and outer gimbals

Preamp gains

Preamp saturation limits

Compensation filter saturation limits

Torque motor gains

Viscous damping on respective gyro

output axes

Update time increment for each call to
PLTFRM routine

Misalignment (offset) errors incorpo-
rated into respective gimbal angles

in resolver



112

Location Symbol Description

201-209 TSV(1l-9) Estimated body-to-stable-member (plat-

form transformation matrix
377-379 P,Q,R Vehicle angular velocity

336-338 DP,DQ,DR Vehicle angular acceleration
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SUBROUTINE PLTFRM
COMMON/DFILE/DF (600)
COMMON/DRIFT/ATI (3) ,DATI(3) ,SCRTCH(7) ,TMAT(9)

COMMON/BLK1/Y (61) ,HWX ,HWY ,HWZ ,IGXI ,IGYI,IGZ2I,IGXS,IGYS,
IGZs,1GX0,I1G6Y0,IGZ0,IPX,IPY,IPZ,IIX,IIY,IIZ,I0X,I0Y,I0Z,
DIP,DOI,DCO,FIP,FOI,FCO,TMX,TMY,TXZ ,SFX,SFY,SFZ ,BIASX,
BIASY,BIASZ,EIY,EMZ,EOX,DTMAX,DT,T,FSTATX ,FDYNX ,FSTATY,
FDYNY ,FSTATZ ,FDYNZ,AI,AM,AO,EIYSAT,EMZSAT ,EOXSAT,UMI,
uMM,UMO ,YMI ,YMM,YMO,YMISAT ,YMMSAT ,YMOSAT ,KTI ,KTM,KTO,
DGX0O,DbGYO,DGZ20 ,DELT, IOPEN,AIPHI ,AIPSI,AOPHI ,AOPSI,
APPHI ,APTHETA ,DCHEK,DWIX,DWIY,DWIZ ,DWOX ,DWOY,DWOZ ,DWPX,
DWPY ,DWPZ ,GXPHI ,GXPSI ,GYPHI ,GYPSI,GZPHI,GZPSI,L,L2,T2,
MCOX,MIPY,MOIZ ,WGXI ,WGXO ,WGXS,WGYI,WGYO,WGYS ,WGZI ,WGZO,
WGZSs ,WIX ,WIY,WIZ,WOX,WO0Y,WOZ ,WPX,WPY,WPZ,DUMI,DUMM,
DUMO ,ANGPX ,ANGPY ,ANGPZ ,RATEX,RATEY ,RATEZ ,WORK(7) ,LGXW,
LGYW,LGZW ,MGXW,MGYW ,MGZW ,MPYW ,MIZW ,MOXW,MA ,MB,MC ,AXPHT,
AXPSI,AYPHI ,AYPSTI,AZPHI ,AZPSI ,APHI ,APSI ,ATHETA,BPHI,
BPSI,CPHI,CPSI,TEMP1l,TEMP2,TEMP3 ,EPHI ,EPSI,ETHETA

EQUIVALENCE (Y (1) ,PHI), (Y(2),PSI), (Y(3),THETA), (Y (4)DPHI),
(¥(5),DPSI), (Y(6) ,DTHETA) , (¥ (7) ,ALPHAX),
(Y(8) ,ALPHAY, (Y(9) ,ALPHAZ), (Y(10) ,X1I),
(¥(11) ,X1M), (Y (12),X10), (¥ (13),P), (Y (14),Q),
(¥(15),R), (Y (1l6) ,D1PHI), (Y(17),D1PSI,
(Y(18) ,D1THETA), (Y(19) ,D2PHI, (Y (20) ,D2PSI),
(Y(21) ,D2THETA), (Y (22) ,DALPHAX), (Y (23) ,DALPHAY) ,
(Y (24) ,DALPHAZ), (Y(25) ,DX1I), (Y (26) ,DX1M),
(¥(27) ,pX10), (Y (28),DP), (Y(29),DQ), (Y (30) ,DR)

DIMENSION SET(222)
EQUIVALENCE (SET(1),Y(1))

DATA (SET(62) 4.34E5,4.34E5,4.34E5),

(SET(65) = 650.8,650.8,650.8),

(SET(68) = 724.9,724.9,724.9),

(SET(71) = 367.3,367.3,367.3),

(SET(74) = 4.2085E5,2.6303E5,4.2085E5),
(SET(77) = 3.5015E5,5.2270E5,5.3658E5),
(SET(80) = 1.0631E6,1.0067E6,8.8841E5),
(SET(83) = 4.0E4,4.0E4,4.0E4),
(SET(101) = 0.0009765625),

(SET(104) = 1.76539E6,1.4123E6),
(SET(106) = 1.76539E6,1.4123E6),
(SET(108) = 1.76539E6,1.4123E6),
(SET(110) = 1650.0,1650.0,1650.0),
(SET(113) = 1.0E3,1.0E3,1.0E3),
(SET(122) = 1.0E3,1.0E3,1.0E3),
(SET(125) = 1.5185163E7,1.5185163E7,1.5185163E7),
(SET(128) = 4.75E5,4.75E5,4.75E5)
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REAL IGXI,IGYI,IGZI,IGXS,IGYS,IGZS,IGX0,IGY0,IGZO,IPX,
Ipy,1P7Z,11X,I1Y,112,10X,I0Y,I0Z,MIPY,MOIZ ,MCOX,KTI,
KTM,KTO,LGXW,LGYW, LGZW ,MGXW ,MGYW ,MGZW ,MPYW,MIZW,MOXW,
MA ,MB,MC,MOZY ,MIZY ,MIXZ , MPZY,MPYX,MIYX, 6 MPXZ

DATA (SFX=1.0) ,SFY=1.0), (SFZ=1.0)
DIMENSION TSV (9)
EQUIVALENCE (TSV,DF(201))
IF (N,NE.O) GO TO 4
bo 3 I1I=1,3
IF (DF(385+I) .NE.0.)GO TO 3
Y(12+I) = DF (376+I)

3 CONTINUE

4 N = N+1
TSTOP = N * DELT
DT = DTMAX
IDONE = 0
IF(N.GT.1) GO TO 200

10 D1PHI DPHI

D1PSI DPSI

D1THETA = DTHETA

CALL NEWACC(T,DP,DQ,DR)
SPH SIN(PHI)

SPS = SIN(PSI)

STH = SIN(THETA)

CPH = COS (PHI)

CPS = COS(PSI)

CTH = COS (THETA)

IF (IOPEN.NE.QO) GO TO 131
SPHE = SIN(PHI+EPHI)
SPSE = SIN(PHI+EPSI)
STHE = SIN(THETA+ETHETA)
CPHE = COS (PHI+EPHI)
CPSE = COS(PSI+EPSI)
CTHE = COS (THETA+ETHETA)



ALPHAXE = ALPHAX*SFX + BIASX

DALP

HAXE = DALPHAX*SFX + BIASX

ALPHAYE = ALPHAY*SFY + BIASY
DALPHAYE = DALPHAY*SFY + BIASY
ALPHAZE = ALPHAZ*SFZ + BIASZ
DALPHAZE = DALPHAZ*SFZ + BIASZ

ETY

= AI * ALPHAYE

IF (ABS(EIY) .GT.EIYSAT) EIY = EIYSAT * SGN(EIY)

EMZ

= AM * (ALPHAXE*STHE - ALPHAZE* (CTHE))

IF (ABS (EMZ) .GT.EMZSAT) EMZ = EMZSAT * SGN(EMZ)

EOX

= A0 * (ALPHAXE*CTHE*CPSE+ALPHAZE*STHE*CPSE
+ALPHAYE*SPSE)

IF (ABS (EOX) .GT.EOXSAT) EOX = EOXSAT * SGN (EOX)
DEIY = AI * DALPHAYE

DEMZ = AM * (DALPHAXE*STHE - DALPHAZE*CTHE)

DEOX = AO * (DALPHAXE*CTHE*CPSE+DALPHAZE*STHE*CPSE
+DALPHAYE*SPSE)

UMI = EIY

DUMI = DEIY

UMM = EMZ * 2.0

DUMM = DEMZ * 2.0

UMO = EOX * 3.0

DUMO = DEOX * 3.0

DX1I = 0.00284375*UMI - 0.125*X1T

DX1M = 0.00284375*UMM -~ 0.125*X1M

DX10 = 0.00284375*UMO - 0.125*X10 -

YMI = 164.875*DX1I + 800.0*X1I + 0.00284375*DUMI
YMM = 164.875*DX1M + 800.0*X1IM + 0.00284375*DUMM
YMO = 164.875*DX10 + 800.0*X10 + 0.00284375*DUMO

IF (ABS (YMI) .GT.YMISAT) YMI = YMISAT * SGN(YMI)
IF (ABS (YMM) .GT.YMMSAT) YMM = YMMSAT * SGN(YMM)
IF (ABS (YMO) .GT.YMOSAT) YMO YMOSAT * SGN(YMO)
TMX = KTO * YMO
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120

121

122

123

124

125

126

127

128

129

130
131

T™Y = KTI * YMI

TMZ = KTM * YMM

IF (DPHI) 120,121,122
FCO = -FDYNX

GO TO 123

FCO = FSTATX * SGN (TMX)
TO TO 123

FCO = FDYNX

IF (DPST)124,125,126
FOI = -FDYNZ

TO TO 127

FOI = FSTATZ * SGN (TMZ)
GO TO 127

FOI = FDYNZ

IF (DTHETA)128,129,130
FIP = -FDYNY

GO TO 131

FIP = FSTATY * SGN(TMY)
GO TO 131

FIP = FDYNY

CONTINUE

WOX = P - DPHI

WOY = Q*CPH - R*SPH
WOZ = Q*SPH + R*CPH

DWOX = DP

DWOY = DQ*CPH - DR*SPH - DPHI*WOZ
DWOZ = DQ*SPH + DR*CPH + DPHI*WOY
WIX = WOX*CPS - WOY*SPS

WIY = WOX*SPS + WOY*CPS

WIZ = WOZ - DPSI

DWIX = DP*CPS - DWOY*SPS - WIY*DPSI

DWIY DP*SPS + DWOY*CPS + WIX*DPSI
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DWIZ
WPX

WPY =
WPZ

DWPX
DWPY
DWPZ
WGXS
WGXI
WGXO
WGYS
WGYI
WGYO
WGZS
WGZI
WGZO
MIPY
MOIZ
MCOX
APTHE
APPHIT
AIPST

ATPHI
AOPHI

AOPSI
AXPHI
AXPSI
AYPHI
AYPSI
AZPHI
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= DWOZ

WIX*CTH + WIZ*STH

WIY - DTHETA

-WIX*STH + WIZ*CTH
= DTHETA*WPZ + DWIX*CTH + DWOZ*STH
= DWIY
= -DTHETA*WPX - DWIX*STH + DWOZ*CTH
= -WPY
= WPX
= WPZ + DALPHAX
= ~-WPZ

= WPY
= WPX + DALPHAY
= -WPY
= -WPZ
= WPX + DALPHAZ
= DIP*DTHETA + FIP - TMY

= DOI*DPSI + FOI - TMZ
= DCO*DPHI + FCO - TMX

TA = - ((IGXS+IGYI+IGZS)/IPY + 1.)

= APTHETA * SPS

-(1l. + STH**2* ((IPX+IGXI)/IIZ)
+ CTH**2* ((IPZ+IGYS+IGZI)/IIZ))

= -STH * CTH * CPS * (IPX-IPZ+IGXI-IGYS-IGZI)/IIZ

= —(1. + CPS**2* (IIX+CTH**2* (IPX+IGXI)
+ STH**2* (IPZ+IGYS+IGZI))/IOX + SPS**2*I1Y/IOX)

= -CTH * STH * CPS * (IPX+IGXI-IPZ-IGYS-IGZI)/IOX
= IGXO/DGXO*STH*CPS

= -IGXO/DGXO*CTH

= -IGYO/DGYO*CTH*CPS

= ~-IGYO/DGYO*STH

= -IGZO/DGZO*CTH*CPS
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AZPSI = -IGZO/DGZO*STH

HX = (IGXI+IGXO-IGXS)*WPY + HWX

HY = (IGYS+IGYO-IGYI)*WPY - HWY*ALPHAY
HZ = (IGZI+IGZO-IGZS)*WPY + HWZ

HPX = (IGXI-IGXS-IGXO)*WPX + HWX*ALPHAX
HPY = (IGYI+IGYO-IGYS)*WPZ + HWY

HPZ = (IGZS+IGZO-IGZI)*WPZ + HWZ*ALPHAZ
AOX = (HX*CTH*CPS + DGXO*STH*CPS)/IOX
AOY = (HY*STH*CPS - DGYO*CTH*CPS)/IOX
AOZ = (HZ*STH*CPS - DGZO*CTH*CPS)/IOX
AIX = (HX*STH - DGXO*OTH)/IIZ

AIY = (-HY*CTH - DGYO*STH)/IIZ

AIZ = (-HZ*CTH - DGZO*STH)/IIZ

APX = HPX/IPY
APY = HPY/IPY
APZ = HPZ/IPY
LGXW = (HWX*WGXTI

(IGXI-IGXS) *WGXI*WGXS - IGXO*DWPZ)/DGXO
LGYW = (HWY*WGYI (IGYI-IGYS)*WGYI*WGYS - IGYO*DWPX)/DGYO
LGZW = (HWZ*WGZI (IGZI-IGZS)*WGZI*WGZS - IGZO*DWPX)/DGZO
MGXW = IGXI*DWPX+HWX*WPZ+ (IGXO-IGXS)*WPZ*WPY.

MGYW = (IGXO+IGYS+IGZI-IGXI-IGYO-IGZO)*WPX*WPZ-HWY*WPX
-HWX*WPZ*ALPHAX-HWZ*WPX*ALPHAZ~- (IGXS+IGYI
+IGZS) *DWPY

MGZW = (IGYO+IGZO-IGYI-IGZS)*WPX*WPY+ (HWZ-HWY*ALPHAY) *WPX
- (IGYS+IGZI) *DWPZ

MOZY = (IOZ-IOY)*WOZ*WOY
MIZY = (IIZ-IIY)*WIZ*WIY + IIX*DWIX
MIXZ = (IIX-IIZ)*WIZ*WIX + IIY*DWIY
MPZY = (IP2Z-IPY)*WPZ*WPY + IPX*DWPX
MPYX = (IPY-IPX)*WPX*WPY + IPZ*DWPZ
MIYX = (IIY-IIX)*WIX*WIY
MPXZ = (IPX-IPZ)*WPX*WPZ

MOXW = (MCOX-MOZY-MIZY*CPS-MIXZ*SPS-MIPY*SPS
~MGXW*CTH*CPS-MGZW*STH*CPS~MPZY*CTH*CPS
+MPYX*STH*CPS) /I0OX - DWOX
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Il

MPYW
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(MOIZ~-MIYX- (MPZY+MGXW) *STH- (MPYX-MGZW) *OTH) /I1%
~DWIZ

(MIPY-MPXZ+MGYW) /IPY - DWPY

MA = MPYW - APX*LGXW - APY*LGYW - APZ*LGZW
MB = MIZW - AIX*LGXW - AIY*LGYW - AIZ*LGZW
MC = MOXW - AOX*LGXW - ACY*LGYW - AOZ*LGZW

APHI = APPHI - APX*AXPHI - APY*AYPHI - APZ*AZPHI
APSI = APX*AXPSI + APY*AYPSI + APZ*AZPSI

ATHETA = APTHETA

BPHI = AIPHI - AIX*AXPHI ~ AIY*AYPHI - AIZ*AZPHI
BPSI = AIPSI - AIX*AXPSI - AIY*AYPSI - AIZ*AZPSI
CPHI = AOPHI - AOX*AXPHI - AOY*AYPHI - AOZ*AZPHI
CPSI = AOPSI - AOX*AXPSI - AOY*AYPSI - AOZ*AZPSI
TEMP1 = MB*CPSI - MC*BPSI

TEMP2 = BPHI*CPSI - BPSI*CPHI

TEMP3 = MC*BPHI - MB*CPHI

D2PHI = TEMP1/TEMP2

D2PSI = TEMP3/TEMP2

D2THETA = ((APSI*TEMP3 -~ APHI*TEMPl)/TEMP2 + MA)/ATHETA
DALPHAX = LGXW - AXPHI*D2PHI - AXPSI*D2PSI
DALPHAY = LGYW - AYPHI*D2PHI - AYPSI*D2PSI
DALPHAZ = LGZW - AZPHI*D2PHI - AZPSI*D2PSI

IF (IDONE.EQ.0) GO TO 200

TSV (1) = CTH * CPS

TSV (2) = SPS

TSV (3) = ~STH * CPS

TSV (4) = -SPS*CPH*CTH + SPH*STH

TSV (5) = CPH*CPS

TSV(6) = STH*SPS*CPH + SPH*CTH

TSV (7) = SPH*SPS*CTH + STH*CPH

TSV (8) = -SPH*CPS

TSV(9) = CPH*CTH - SPH*STH*SPS

RETURN

200 CONTINUE
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CALL DIFEQ(1l5,T,DT,Y,L)

RATEX = WPX
RATEY = WPY
RATEZ = WPZ

CALL DIFEQ(3,T2,DT,ANGPX,L2)
TMAT(2) = WPZ

TMAT(3) = -WPY
TMAT (4) = -TMAT(2)
TMAT (6) = WPX
TMAT (7) = -TMAT(3)
TMAT(8) = -TMAT (6)

CALL MXV (TMAT,ATI,DATI)

DATI (1) = WPX - DATI(1l)
DATI (2) = WPY - DATI(2)
DATI(3) = WPZ - DATI(3)

CALL DIFEQ(3,T3,DT,ATI,L3)
IF (L.NE.O) GO TO 10
IF(T.LT.TSTOP) GO TO 10
IDONE = 1

GO TO 10

END
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SUBROUTINE NEWACC (T,DP,DQ,DR)
COMMON/INAXIS/DELT,ALPHA,BETA,Cl,C2,C3,C4,C5
DOUBLE PRECISION TEMP1, TEMP2, Ul, U2, U3
DATA (INIT=0)

IF (INIT.EQ.1) GO TO 10

INIT = 1

TEMP1 = DBLE (ALPHA)

TEMP2 = DBLE (BETA)

Ul = DCOS (TEMP1)*DCOS (TEMP2)

U2 = DSIN(TEMP1)*DCOS (TEMP2)

U3 = - (DSIN(TEMP2))

DOMEG = C2*C3*COS(C3*T - C4) + C5

DP = Ul * DOMEG

DQ = U2 * DOMEG

DR = U3 * DOMEG

RETURN
END
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SUBROUTINE DIFEQ (N,X,DX,Y,I)
DIMENSION Y (1)
N2=2*N
N3=3*N
DX2=DX/2.0
IF (I) 20,10,20

10 Y(4*N+1)=X
X=X+DX2

20 I=I+1
DO 80 K=1,N
KPN=K+N
KPN2=K+N2
KPN3=K+N3
GO TO (30,40,40,70),I

30 Y(KPN2)=Y(K)
Y (KPN2) =Y (KPN)
GO TO 50

40 Y(KPN2)=Y (KPN2)+2.0*Y (KPN)
IF (I-2) 60,50,60

50 Y(K)=Y(KPN3)+DX2*Y (KPN)
GO TO 80

60 Y(K)=Y(KPN3)+DX*Y (KPN)
GO TO 80

70 Y(KPN2)=Y(KPN2)+Y (KPN)
Y (R)=Y (KPN3) +DX*Y (KPN2) /6.0

80 CONTINUE
IF (I-3) 100,90,110

90 X=X+DX2

100 RETURN

110 1I=0
RETURN
END
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10

20

30

SUBROUTINE MXV (X,Y,Z)
DIMENSION X(3,3),¥(3),2(3)
DO 10 1I=1,3

Z(1)=0.0

DO 10 J=1,3
Z(I)=2(I)+X(I,J)*Y(J)
RETURN

END

REAL FUNCTION SGN(X)
IF (X) 10,20,30

SGN = =-1.0

RETURN

SGN = 0.0

RETURN

SGN = 1.0

RETURN

END
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BIAS
X

BIAS
y

BIAS
z

co

Ip

DoI

o
Il

gx0

D
gyo
gzO

ESA TII

ESA T
mm

APPENDIX B

PLATFORM SIMULATION DATA

CGS Units Description
0.0 Bias error, platform
X-axis gyro
0.0 Bias error, platform
Y-axis gyro
0.0 Bias error, platform
Z-axis
4 dyne-CM . .
x 10 Tad/sec Viscous damping, case to
outer gimbal
4 dyne-CM . . .
x 10 5%37536 Viscous damping, inner
gimbal to platform
4 dyne-CM . .
x 10 Tad/sec Viscous damping, outer
gimbal to inner gimbal
6 dyne-CM . .
.475 x 10 f%ﬁ7§€5 Output axis viscous
damping, X-axis gyro
6 dyne-CM . .
L475 X 10 Tad/sec Output axis viscous
damping, Y-axis gyro
6 dyne-CM . .
.475 x 10 Tad/sec Output axis viscous
damping, Z-axis gyro
= +£1000.0 Volts Preamp saturation limit -
inner gimbal loop
= +£1000.0 Volts Preamp saturation limit -

middle gimbal loop



ESA T
oo

co

Ip

oI

FDYN
X

FDYN

FDYN
z

FSTAT
X

FSTAT
Y

FSTAT
z

wx

H
wy

CGS Units

= +1000.0 Volts

1.4123 x

1.4123 x

1.4123 x

1.76539

1.76539

I

1.76539

.434 x 10°

.434 x 10°

See components
X, ¥, and Z ,

6

10° dyne-CM

106 dyne-CM

10" dyne-CM

x 10° dyne-cM

x lO6 dyne-CM

x 10° ayne-cM

dyne-CM
rad/sec

dyne-CM

rad/sec
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Description

Preamp saturation limit -

outer gimbal loop

of FDYN and FSTAT;

respectively

Coulomb friction torque,

from case to outer gimbal

Coulomb friction torque,
from inner gimbal to
platform

Coulomb friction torque,
from outer gimbal to

inner gimbal

Static friction torque,

from case to outer gimbal

Static friction torque,
from inner gimbal to

platform

Static friction torque,
from outer gimbal to

inner gimbal

Angular momentum of the

platform X-axis gyro

Angular momentum of the

platform Y-axis gyro



H

wz

gxlI

gxo

gxs

I
gyl

I
gyo

gys

gzl

gzo

gzs

Ix

I,

Iz

CGS Units

.434 x

650.8

367.3

724.9

650.8

367.3

724.9

650.8

367.3

724.9

3.5015

5.2270

5.3658

6 dyne-CM

10 rad/sec

2
gm-cm
g-cm
g-cm

2
gm-cm
gm—cm2
gm—cm2

2
gm-cm
gm-cm

2
gm-cm

X 105 gm-cm2
X 105 gm—cm2

x 10 gm-cm2

" Description

Angular momentum of the

platform Z-axis gyro

Float moment of inertia
X-gyro input axis

Float moment of inertia
X-gyro output axis
Float moment of inertia
X~-gyro spin axis

Float moment of inertia
Y-gyro input axis

Float moment of inertia
Y-gyro output axis
Float moment of inertia
Y-gyro spin axis

Float moment of inertia
Z-gyro input axis

Float moment of inertia
Z-gyro output axis
Float moment of inertia
Z-gyro spin axis

Inner gimbal X-axis

moment of inertia

Inner gimbal Y-axis

moment of inertia

Inner gimbal Z-axis

moment of inertia
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oxX

oy

(o34

PX

PY

4.2085

CGS Units

1.0631 x 10°

1.0067 x 10°
5

8.8841 x 10
x 10°

2.6303 X 10°

X

4.2085

1650.0

1650.0

1650.0

1.5185163 x 10/ dyne-CM

1.5185163 x 10

1.2283712 x 10

10°

2
gm-cm
2
gm-cm
2
gm~-cm
2
gm-cm

2
gm-cm

2
gm-cm

amp

amp

amp

7 dyne-CM

7 dyne-CM
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Description

Outer gimbal X-axis

moment of inertia

Outer gimbal Y-axis

moment of inertia

Outer gimbal Z-axis

moment of inertia

Platform X~-axis moment of
inertia

Platform Y-axis moment of
inertia

Platform Z-axis moment of
inertia

Preamp gain inner gimbal

loop

Preamp gain middle gimbal

loop
Preamp gain outer gimbal

loop

Torque motor gain inner
gimbal to platform

Torque motor gain outer

to inner gimbal
Torque motor gain case to
outer gimbal

Scale factor error term
X-gyro
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CGS Units Description

SFy = 1.0 Scale factor error term
Y-gyro

SFz = 1.0 Scale factor error term
Z-gyro

YMSATII = *1000.0 volts Compensation filter
saturation inner gimbal
loop

YMSATmm = £1000.0 volts Compensation filter
saturation middle gimbal
loop

YMSAToo = *1000.0 volts Compensation filter

saturation outer gimbal
loop



APPENDIX C
NOTATION CONVENTION
I. MATRICES

Matrices are represented by a capital letter in

brackets. In particular

[Bcp] = direction cosine matrix,

from case to platform

Coordinate transformation matrices are represented
by a pair of lower case subscripts; the first indicates
the coordinate frame of the vector to be transformed and

the second indicates the coordinate frame of the transformed

vector.
II. VECTORS

Vectors are .designated by a superwritten arrow

1524
n
€

Unit vectors use ~ 1in place of an arrow over the

describing symbol.
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The coordinate frame in which the components of a
vector are expressed is indicated by an identifying

superscript. That is

z; = The angular rate of P

expressed in I coordinates

A vector component is expressed by dropping the
arrow and adding appropriate subscripts identifying the

coordinate system and component. For example

w
Ix
+TI
w =
Iy
0\)Iz

ITII. VECTOR TIME DERIVATIVES

The time derivatives of a vector vary depending on
the absolute rotational rate of the reference system in
which it is computed. For this reason, it is necessary to
indicate the coordinate system in which the time derivative
is taken, as well as in which the components of the time

derivative are expressed.

. >
. -> i . . . . .
The notation ®w or w indicates a time derivative

with respect to the inertial reference frame. Similarly,
>
Pypc represents a time derivative with respect to the p

reference frame with coordinates in the C frame.



APPENDIX D
TEST CASES AND RESULTS

Subroutine PLTFRM may be used to study the effects

of vehicle motion on the attitude of the stable member,

navigation base.

A driving program was prepared to call PLTFRM; the

Apollo platform described by the system parameters in

Appendix B was studied under the influence of stationary

axis and coning motion.

I. STATIONARY AXIS MOTION

Stationary axis motion may be described as rotational

motion about a single axis S" . The stationary axis of

rotation is located by rotating an axis S (initially
located along the vehicle X axis) o degrees about the
Z-body axis and B degrees about the Y-body axis

(Figure 19).

Sll

Sl
FIGURE 19

STATIONARY AXIS OF ROTATION
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The rotational rate magnitude about the stationary

axis described is

Q = C1 + C2 sin (C3t - C4) + C5t
where
Cl — Constant rate (Bias)
C2 - Aﬁplitude of sinusoidal component of rate
C3 — Frequency of sinusoid

C, — Phase shift

C. — Ramp component of rate
The closed form integral of  is

C
= - _2 -
Yy = Ct T, [cos (C t C4)] + = + v,

for the definite integral t =0 to t =+t

Q

2
Y 17 T T 2

[cos (C3tf - C4) - Ccos C4] +

>v .
The rate £ may be expressed as a vector w in

vehicle coordinates by multiplying a unit vector of

direction cosines B8 .
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cos o cos B bl
B = sin o cos 8 = b2
~-sin B b3

oY = OB

The reference attitude matrix [T] body to inertial

frame may be calculated

[(T] = [Té]}l + [L] sin y + [L12(1 - cos yﬁ
where
0 b, b,
Ll = |b, 0  -b,
b, b, 0

and [TO] = initial value of [T].

The matrix [T] represents the'closed-form transfor-
mation from the body system of the vehicle to the reference
inertial frame. The transformation may be compared with
[Bcp], Equation 2-20, when evaluated with the system
Euler angles, and the variation between these transforma-

tions represents the platform error.
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ITI. CONING MOTION

Coning motion is more complicated than stationary
axis motion. The body coordinate system (Figure 20) is
initially rotated through an angle 6 about the YI axis,
which establishes the body coordinate system at t = 0 .
The total body angular rate w is composed of a rate ®
aligned with 2 and another 38 along ZB . The body

I

rates are

w = -w_ sin 6 sin ¢
X b

w = w sin 6 cos ¢
Yy b

w = w + w_cos 6
z s D

where
¢ = wst

The reference attitude matrix [T] may be calculated

an element at a time and compared with [Bcp].
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FIGURE 20

CONING MOTION AXES OF ROTATION

The elements of [T] are

t11 = cos Y cos O cos ¢ - sin P sin ¢
t12 = =cos ¥ cos O sin ¢ ; sin w cos ¢
t13 = c¢os ¥ sin 6
t21 = sin Y cos 6 cos ¢ + cos ¥ sin ¢
t22 = =gin Y cos O sin ¢ + cos Y cos ¢
t = sin ¢ sin 6

23
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t3; = -sin 0 cos ¢
t32 = sin 6 sin ¢
t33 = cos b6
where
v = Wt
¢ = “st

and 0 = the initial rotation about the YI axis estab-

lishing the body to inertial attitude at t = 0 .
III. ATTITUDE ERRORS

The attitude error of the stable member may be
expressed as a function of the row vectors making up the
reference transformation [T] and [Bcp] as evaluated from

the simulated platform Euler angles.

Let

Tl Bl
T = T2 and [Bcp] = B2
T B
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where
Ty = [Fir %12 i3
T = -t t t ]
2 [T21 22 23]
T3 = [t31 t32 Fi3
and Bl"Bz' and B3 are the respective row vectors

constituting equation 2-20.

Assuming EXP is small, the X-axis attitude error

EXP is calculated by

= 1o - e |
EXP = 5 T, * B, - B, Ty
Similarly
= Ly . -8 .ol
EYP = 5 lTl B3 Bl Tﬂ
and
N - .
EZP = 5 sz Bl B2 Tl

For the purpose of evaluating the IMU system perfor-
mance, a time-history of EXP, EYP, and EZP was studied.

The criteria used for evaluating the attitude error were
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the norm, mean, and variance-of-attitude errors (EXP, EYP,
and EZP). The norm is defined as the root mean square

(rms) of the attitude angles and represents a total

attitude error.

IV. TEST CASES

FEach test case run includes a time plot of the above-
mentioned parameters. (A representative group of test
cases is included.) &Each case is identified based on the
preceding discussion of the driving functions. Test cases

include step response, slewing, and sinusoidal stationary

axis (STAXIS) cases as well as coning motion.

Test Case 1, 30°/sec Y-axis step response.

Stationary axis motion with o = 90°, 8 = 0°, Cl1 = 30° ,

512 plot points per second.
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Test Case 2, Slewing. Stationary axis motion with

C1 = 30°/sec, o = 45°, B = =30° (512 plot points/sec).

The disturbance between 4 and 6 seconds results from the

system experiencing gimbal lock.
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Test Case 3, Sinusoidal Stationary Axis Motion

(Y=-axis). STAXIS with C1 = 30°/sec, C3 = 0.1 Hz, a = 90°,

B = 0° (512 plot points/sec). Discontinuity at 0, 5, and

10 seconds is due to friction effect when the gimbal rate

changes direction.
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Test Case 4, Coning Motion. Coning with 6 = 30°,

w, = 1l6°/sec, wp = 8°/sec (128 plot points/sec). Severe

coning motion effects result.
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