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Abstract
Hidden semi-Markov models (HSMMs) are a powerful class of statistical model that

have been applied to a wide range of areas such as speech recognition, protein struc-

ture prediction, Internet-traffic modeling, financial time-series modeling, and clas-

sification of music. Three basic problems of hidden Markov model inference are:

Computation of the likelihood, computation of the maximum likelihood-estimate of

the model parameters, and computation of the maximum a posteriori estimate of

the hidden state sequence. We address these inference problems for a set of models

closely related to HSMMs.

Our contributions are: (i) We extend the HSMM to allow observations to depend

not only on the current underlying hidden state, but on the next underlying hidden

state also. This extension can be used to model behavior whereby the observed data

gradually transitions between states, rather than abruptly. (ii) We formulate the

hidden portion of the model as a Markov renewal process. This allows us to naturally

perform inference on models with hidden events other than state changes, e.g., jumps.

(iii) We show that by augmenting the state space of our hidden Markov renewal model

(HMRM), we can perform inference on an even larger class of phenomena, including

models with stochastic volatility. Hence our HMRM can address three key areas of

modern financial time series: regime-switching, jumps, and stochastic volatility.

We develop algorithms to solve the three basic problems of inference for the HMRM.

We validate the algorithms by performing inference on simulated data.

We apply our model to two real-world datasets appearing in previously published
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analyses. The first dataset contains the log-returns of four European sector indices.

Specifications of the HMRM improve the modeling of the auto-correlation function

of squared returns compared to the HSMMs used in this first analysis. The second

dataset consists of weekly returns from a weighted portfolio of NYSE stocks. Another

specification of the HMRM gives improved volatility forecasts compared to the regime-

switching GARCH models published in the second analysis.
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1. Introduction

We develop a model we call the hidden Markov renewal model (HMRM). It is based

on a powerful class of models of called hidden semi-Markov models (HSMMs), which

are an extension to the popular hidden Markov model (HMM). Like their HMM

predecessor, HSMMs have been successfully applied to many areas such as speech

recognition, protein structure prediction, Internet traffic modeling, financial time se-

ries modeling, and classification of music. A longer list of applications can be found

in the survey by Yu [36].

As a prelude, we start with two well-known models of increasing complexity: the

finite mixture model (MM) and the aforementioned HMM. In the next chapter we

extend their potential applicability by introducing the hidden Markov renewal model

HMRM.

Each one of these model assumes that there are two processes. The first process pro-

duces a sequence of random values that are not observed. This unobserved sequence

of random values affects the second process, which produces a sequence of random

values that are observable. The behavior of both of these processes, the unobserved

and observed, is governed by a set of model parameters. In practice, these parameters

1



Introduction

are not known, and to be estimated.

The relationship among the random variables and parameters in these types of mod-

els can be depicted with a directed graphical model (DGM), also known as a Bayesian

network. DGMs are a powerful formalism that can be used to determine indepen-

dence properties of a model’s variables, thereby aiding in the derivation of inference

algorithms [3]. Our use of DGMs, however, will be restricted to providing notional

descriptions of the models. Fig. 1.1 on the following page depicts a DGM for a mix-

ture model. There, {s1, s2, . . . sT} is the unobserved sequence, {x1, x2, . . . xT} is the

observed sequence. The unknown model parameters are α and ε.

We will show in detail how to estimate both the model parameters and unobserved

sequence using the observed sequence.

Notation and Conventions

A complete listing of the notation, symbols, etc. used in this dissertation is given in

the nomenclature section at the end of the document. We mention the conventions

we employ and some of the most commonly used variable names in our introductory

models. First, we use “:” to compactly express a sequence or a vector, e.g., y1:T =

{y1, y2, . . . , yT}. We extend this notation to allow for multiple indices, e.g., for am×n

matrix:

M1:m,1:n =


M11 · · · M1n

... . . . ...

Mm1 · · · Mmn



2
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x1 x2 · · · xT

s1 s2 · · · sT

α

ε

Figure 1.1.: A directed graphical model representing the MM. The shaded nodes
represent observed values, unshaded are unobserved. Random variables are repre-
sented by circles, while diamond nodes are fixed, but possibly unknown, parameters.
The model parameters are α, ε.

We denote s1:T as the unobserved sequence; we sometimes call this the hidden state

sequence. The observed sequence is x1:T , it is said to be emitted from the hidden

state sequence, so the observations are sometimes called emissions. Each st takes a

value in the state space, {1, . . . , K}.

We denote the complete set of a model’s parameters as θ; this is an aggregation of

multiple sets of parameters. For example in an MM, the parameters α1:K describe

the distribution of the state sequence, and ε1:K describe the distribution of the ob-

servations (see Fig. 1.1). So for an MM, θ = {α1:K , ε1:K}. We frequently omit the

3
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parameter set θ when it does not affect a derivation.

name meaning

s1:T The hidden state sequence, st is the value of this sequence at time t.

x1:T The observation sequence, xt is the value of this sequence at time t.

T The number of observations.

K The number of values each st can take, i.e., st ∈ {1, . . . , K}.

θ The complete set of model’s parameters.

We employ a convention of using Greek letters to name the model parameters. Capital

Roman letters are used to name variables used in the EM algorithm1. Script letters

are used in the Viterbi algorithms. We use a hat to denote a maximizer, e.g., θ̂

is the value that maximizes p(x1:T ; θ) over θ. Finally, although it is not always

possible, we try to use names that correspond to their meaning, e.g., ε1:K are the

emmissions distributions, ι1:K is the initial distribution, η1:K,1:K are the holding-time

distributions, τ1:K,1:K is the transition probability matrix, F t
k is a forward probability,

Bt
k is a backward probability, and St,dj,k is a posterior sojourn probability. These terms

are explained in the coming sections.

We adopt the same compact notation for expressing probabilities, densities, and mass

functions that is use by Gelman et al. [14, pg. 6]. An expression of the form p(·|·)

denotes a conditional probability distribution with the arguments determined by the

context; similarly p(·) denotes a marginal distribution. We use the terms ‘distribution’

and ‘density’ interchangeably; we do this for ‘distribution’ and ‘mass function’ also.

This allows us to us the same notation for continuous density functions and discrete
1The only exception is in the HMRM, where φ is forward sojourn probability, and β is the backward
sojourn probability.

4
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probability mass functions. To distinguish parameters from random variables, we

place parameters to the right of a semi-colon, e.g. p(xt|st; θ) is the distribution of xt

given st under the parameter set θ.

Specific probability distributions are denoted by a leading calligraphic character, e.g.

N (µ, σ2) is a normal distribution with mean µ and variance σ2. We denote the

density or mass function of a distribution D(θ) by fD(x; θ). When a random variable

x is distributed according to D, we write x ∼ D. A distribution used frequently in

our models is the categorical distribution, Cat(α1:K). It is defined for all probability

vectors α1:K , i.e., the elements of α1:K are non-negative and sum to one. We say that

x ∼ Cat(α1:K) if p(x = k) = αk for k = 1, . . . , K. When K = 2, the categorical

distribution reduces to the Bernoulli distribution.

Frequently and implicitly we use three results from elementary probability theory:

The equivalent definitions of conditional independence, the chain rule of probability,

and the law of total probability. A short review of these results follows.

We say, “a set of random variables A is conditionally independent of a set of random

variables B, given the set of random variables C” if any of the following hold:

p(A,B|C) = p(A|C)p(B|C) ⇐⇒

p(A|B,C) = p(A|C) ⇐⇒

p(B|A,C) = p(B|C)

In such cases, we use the notation A |= B|C to express the indicated conditional

independence. For example, Theorem 1.1 states that in a hidden Markov model

5
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x1:t−1, s1:t−1 |= xt:T , st+1:T |st. This is done by showing that p(xt:T , st+1:T |x1:t−1, s1:t) =

p(xt:T , st+1:T |st).

The chain rule of probability (CRP)

p(A,B) = p(A|B)p(B)

is generalized to read:

p(A1, . . . , AN) =
N∏
n=1

p(An|A1:n−1)

The law of total probability (LTP) says that the marginal distribution of a set of

random variables A can be obtained by summing over all possible values of set of

discrete random variables B ∑
B

p(A,B) = p(A)

and in the case where B are continuous:

ˆ
B

p(A,B) = p(A)

When we apply this rule we say that B has been summed out, or integrated out,

respectively. We may say B has been marginalized out to include either case.

6



1.1 A Mixture Model

Chapter Outline

The next two sections present the MM and HMM. In each of these sections, we first

describe the generation of the hidden state sequence s1:T and observation sequence

x1:T . We present plots that contain nearly all of the information used to generate the

observation sequence. We formally define each model by specifying its probabilistic

independence structure. We show how the EM algorithm, which is particularly suited

to problems with unobserved values [8], can be used to estimate the model’s parame-

ters. We present an algorithm that estimates the hidden state sequence. We conclude

each of these sections by demonstrating the model’s and corresponding algorithms’

feasibility. This is done by simulating data according to the model and estimating

the parameters and hidden state sequence using the simulated observation sequence.

In the next chapter we introduce the HMRM.

1.1. A Mixture Model

In a finite mixture model [29], the hidden state sequence is generated by iid draws

from a Cat(α1:K) distribution:

p(st = k) = αk

7



1.1 A Mixture Model

We call α1:K , the state distribution. Consider a mixture model with K = 3 possible

states, T = 50 observations, and state distribution:

α1:3 =
(

0.2 0.3 0.5
)

(1.1)

The first 10 elements of a state sequence drawn from this model are

2, 1, 3, 3, 1, 1, 1, 2, 2, 3, . . .

This state sequence is depicted in Fig. 1.2a on page 10. At each time t = 1, . . . , 50,

there is a rectangle whose color corresponds to the value of st. For example, since

s1 = 2 the left-most rectangle is green. The next rectangle is red, since s2 = 1, and so

forth. We will discuss the other elements of Fig. 1.2a, namely the rectangle heights

and vertical positions, shortly.

Now we describe how the observation sequence is generated, and how it is affected

by the hidden state sequence. Besides the state distribution α1:K , the other set

of parameters in a mixture model are K probability distributions, called emission

distributions (or observation distributions). These emission distributions are denoted

by ε1:K . Once the state sequence s1:T has been generated, each xt is drawn from the

distribution εst , i.e., if st = k, then xt ∼ εk where εk = N (µk, σ2
k).

The observation sequence in Fig. 1.2b was generated from the state sequence depicted

in Fig. 1.2a, and emission distributions

8



1.1 A Mixture Model

ε1:3 =
(
N (6, 22) N (0, 32) N (−8, 42)

)
(1.2)

We now address the rectangle heights and vertical positions in Fig. 1.2a. The bot-

tom and top of each rectangle are the first and third quartiles of the corresponding

emission distribution in (1.2). The vertical center of each rectangle is the mean of the

corresponding emission distribution in (1.2). Fig. 1.2c combines the state sequence

depicted in Fig. 1.2a with the observation sequence depicted in Fig. 1.2b. It contains

all the information about the parameters of this model and the sequences it generated,

with the exception of the state distribution α1:3.

We will present many figures like Fig. 1.2c. These images of rectangles provide an

intuitive way of thinking about these models and will provide a visualization of the

more elaborate models to be introduced in the sequel.

9



1.1 A Mixture Model

0 10 20 30 40 50
t

st : 1 2 3
(a) A state sequence drawn from an MM with α1:3 =

(
0.2 0.3 0.5

)
.

-10
-5
0
5
10

0 10 20 30 40 50

x
t

(b) An observation sequence generated from the state sequence shown in (a), and the
emission distributions specified in (1.2) on the previous page.

-10
-5
0
5
10

0 10 20 30 40 50
t

x
t

st : 1 2 3
(c) The state sequence with the observation sequence. Compared to (a), we have removed

the outline of each rectangle, and added a line through the rectangles to indicate the
mean of the corresponding emission distribution.

Figure 1.2.: (a) The state sequence from an MM (b) The corresponding observation
sequence (c) Both sequences
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1.1 A Mixture Model

1.1.1. Formal Definition

The MM is formally defined by equations (1.3). Given st, each xt is distributed

according to the emission distribution indexed by st. And each xt is conditionally

independent of all other variables in the model.

xt|st ∼ εst for [t=1,...,T ] (1.3a)

xt |= s\t, x\t | st for [t=1,...,T ] (1.3b)

Here v\t means all variables in the sequence v1:T , excluding the tth value, i.e., v\t =

v1:T\{vt}. The s1:T are iid according to a Cat(α1:K) distribution.

st ∼ Cat(α1:K) for [t=1,...,T ] (1.3c)

st |= s\t for [t=1,...,T ] (1.3d)

The complete set of mixture model parameters is θ = {ε1:K , α1:K}. The emission

distributions ε1:K need not be normal, although in this dissertation they will either

be normal or a variant of the normal distribution.

1.1.2. Inference

We generated the observations in Fig. 1.2b using the parameters specified in (1.1),

(1.2), and the state sequence in Fig. 1.2a. In actuality, we want to do the reverse:

we have only the observations, and want to estimate the model parameters and the

hidden state sequence producing the observations. We recover the model parameters

11



1.1 A Mixture Model

by finding a value that (locally) maximizes the likelihood of the observed data. That

is, we find the θ that maximizes p(x1:T ; θ). Such a θ is called a maximum likelihood

estimator and by convention is denoted by:

θ̂ , arg max
θ
p(x1:T ; θ)

Dempster et al. [10] showed that the iteration (1.4) converges to a local maximizer of

p(x1:T ; θ). This iteration is known as the expectation maximization (EM) algorithm .

θ(n+1) ← arg max
θ

Es1:T |x1:T ;θ(n) [log p(x1:T , s1:T ; θ)] (1.4)

The subscript on the expectation operator indicates that the expectation is to be

taken under the posterior probability p(s1:T |x1:T ; θ(n)). Because the state space is

finite, this expectation can be written as a sum over all possible state sequences:

Es1:T |x1:T ;θ(n) [log p(x1:T , s1:T ; θ)] =
∑
s1:T

log p(x1:T , s1:T ; θ)p(s1:T |x1:T ; θ(n))

Given the model parameters, we can compute the posterior probability of any state

sequence, i.e., p(s1:T |x1:T ; θ). We will see that for a mixture model, it is straightfor-

ward to find the state sequence that maximizes this probability. This state sequence

is known as the maximum a posterior (MAP) estimate.

12



1.1 A Mixture Model

1.1.2.1. EM Algorithm

In order to apply the EM algorithm we must find an expression for the expectation

in (1.4). The complete data log likelihood (CDLL) can be expressed:

log p(x1:T , s1:T ; θ) (A.1)=
T∑
t=1

log fεst (xt) +
T∑
t=1

logαst (1.5)

The expression we derive for (1.5) is based on the posterior state probabilities; e.g.

the probability that st = k after having made the observations x1:T . We denote this

probability as Atk, and find:

Atk , p(st = k|x1:T ; θ(n)) for
[
t=1,...,T
k=1,...,K

]
(A.2)=

f
ε

(n)
k

(xt)α(n)
k∑K

j=1 fε(n)
j

(xt)α(n)
j

The expectation of each summand in (1.5) is:

Es1:T |x1:T ;θ(n)

[
log fεst (xt)

] (A.3)=
K∑
k=1

log fεk(xt)Atk for [t=1,...,T ] (1.6a)

Es1:T |x1:T ;θ(n) [logαst ]
(A.3)=

K∑
k=1

logαkAtk for [t=1,...,T ] (1.6b)

so the expectation can be written:

Es1:T |x1:T ;θ(n) [log p(x1:T , s1:T ; θ)]
(1.5)
(1.6)=

K∑
k=1

T∑
t=1

log fεk(xt)Atk︸ ︷︷ ︸
,Qε(ε1:K ;θ(n))

+
K∑
k=1

logαk
T∑
t=1

Atk︸ ︷︷ ︸
,Qα(α1:K ;θ(n))

(1.7)

13



1.1 A Mixture Model

We note that the quantities A1:T
1:K are computed using the EM algorithm’s previous

iteration’s parameter set, θ(n) = {α(n)
1:K , ε

(n)
1:K}, which is to be distinguished from θ =

{α1:K , ε1:K}. The value of θ = {α1:K , ε1:K} that maximizes (1.7) becomes θ(n+1).

In (1.7) we have defined Qε(ε1:K ; θ(n)) and Qα(α1:K ; θ(n)). These two quantities parti-

tion the expression into two summands. Because Qε(ε1:K ; θ(n)) does not contain any

α terms and Qα(α1:K ; θ(n)) does not contain any ε terms, maximizing each separately

maximizes the entire expectation (1.7). The maximizer for Qα(α1:K ; θ(n)) is:

α̂k
(A.4)=

∑T
t=1 A

t
k

T
for [k=1,...,K] (1.8)

The maximizer for Qε(ε1:K ; θ(n)) is depedendent on the distributional assumption of

ε. In the specific case of the normal distribution, ε̂k is N (µ̂k, σ̂2
k) with:

µ̂k
(A.5a)=

∑T
t=1 xtA

t
k∑T

t=1 A
t
k

for [k=1,...,K]

σ̂2
k

(A.5b)=
∑T
t=1 (xt − µ̂k)2 Atk∑T

t=1 A
t
k

for [k=1,...,K] (1.9)

Equations (1.8) and (1.9) are called update formulas. Together with (A.2), they form

the essential part of the EM algorithm for the MM.

One iteration of the EM algorithm amounts to computing α̂1:K , ε̂1:K under the pa-

rameter set θ(n), and then setting:

θ(n+1) ← {α̂1:K , ε̂1:K}
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1.1 A Mixture Model

1.1.2.2. MAP State Sequence

Because of the MM’s independence properties (1.3), the MAP sequence ŝ1:T is easily

found. The posterior of s1:T factors as follows

p(s1:T |x1:T ) (A.1)
∝

T∏
t=1

p(st|xt)p(xt)
(1.3b)
∝

T∏
t=1

p(st|x1:T )

and so each st can be maximized separately. The maximizer ŝt is simply the state

that yields the maximum posterior probability:

ŝt ← arg max
k

Atk for [t=1,...,T ]

1.1.3. An Example

We apply the aforementioned procedures to an observation sequence. Fig. 1.3a is

based on the parameter values and state sequence resulting from the inference algo-

rithms applied to the data from Fig. 1.2b. The inferred parameters are

α̂1:3 =
(

0.37 0.43 0.2
)

ε̂1:3 =
(
N (5.44, 1.872) N (−2.14, 2.32) N (−9.97, 1.932)

)
(1.10)

Fig. 1.3b permits a comparison the simulated and inferred state sequences.
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-10
-5
0
5
10

0 10 20 30 40 50

x
t

(a) The data from Fig. 1.2 with the inferred parameters and state sequence overlayed. The inferred
parameters are in (1.10).

1
2
3

0 10 20 30 40 50
t

s t

inferred simulated
(b) Simulated vs. inferred state sequences.

Figure 1.3.: (a) The inferred parameters and state sequence using the data from
Fig. 1.2 (b) A comparison of the actual and inferred state sequences.

1.2. A Hidden Markov Model

The difference between the MM and HMM has lies with the hidden state sequence.

The MM assumes that the elements of s1:T are iid, whereas the HMM assumes that

s1:T is drawn from a finite state Markov chain [30]. After defining a finite state Markov

chain, this section proceeds analogously to Section 1.1.

Suppose we have defined for each t ∈ N = {1, 2, . . .} a random variable st taking

values in {1, . . . , K}. The process {st}t∈N is said to be a Markov chain with state

16



1.2 A Hidden Markov Model

space {1, . . . , K} provided that

p(st+1 = k|s1:t) = p(st+1 = k|st) for
[
t∈N
k∈{1,...,K}

]
(1.11a)

Equation (1.11a) is known as the Markov property. We assume that {st}t∈N is time-

homogeneous, that the RHS of (1.11a) does not depend on t.

τj,k , p(st+1 = k|st = j) for
[
j∈{1,...,K}
k∈{1,...,K}

]
(1.11b)

The probabilities τ1:K,1:K form the transition probability matrix (TPM). In this dis-

sertation, we assume that s1 is distributed according to an initial distribution, ι1:K :

ιk , p(s1 = k) for [k∈{1,...,K}] (1.11c)

An MC is parameterized by its TPM and and initial distribution. If s1:T is drawn

from a process satisfying (1.11), we write

s1:T ∼ MC(ι1:K , τ1:K,1:K)

Fig. 1.4a on the following page shows a state sequence drawn from a Markov chain

with the following parameters:

ι1:K =
[
0.20 0.30 0.50

]
τ1:K,1:K =


0.90 0.05 0.05

0.10 0.10 0.80

0.10 0.80 0.10

 (1.12)
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1.2 A Hidden Markov Model

Once the state sequence s1:T is generated, the observation sequence x1:T is produced

in the same manner as in the MM: each xt is drawn from εst . Fig. 1.4b shows

an observation sequence generated using ε1:K below, and the state sequence from

Fig. 1.4a.

ε1:K =
[
N (6, 32) N (0, 42) N (−8, 52)

]
(1.13)

-15
-10
-5
0
5
10

0 25 50 75 100
t

st : 1 2 3
(a) A state sequence drawn fromMC(ι1:K , τ1:K,1:K), with parameters as in (1.12).

-15
-10
-5
0
5
10

0 25 50 75 100
t

x
t

st : 1 2 3
(b) Observation sequence generated using ε1:K as in (1.13), and the state sequence as in (a).

Figure 1.4.: (a) A state sequence drawn from a Markov chain (b) The emitted
observation sequence
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1.2 A Hidden Markov Model

1.2.1. Formal Definition

Equations (1.14) characterize an HMM. Given the state sequence, the observations

are distributed as they are in the MM. Each observation is conditionally independent

of all other variables given knowledge of its state. Stated succinctly, we have

xt|st ∼ εst for [t=1,...,T ] (1.14a)

xt |= s\t, x\t | st for [t=1,...,T ] (1.14b)

In the MM definition (1.3), the s1:T are independent and identically distributed ac-

cording to Cat(α1:K). Whereas in an HMM, s1:T adheres to (1.11). And in this case

we write:

s1:T ∼ MC(ι1:K , τ1:K,1:K) (1.14c)

The entire set of HMM parameters is θ = {ε1:K , ι1:K , τ1:K,1:K}.

1.2.2. Inference

As one might expect, inference of both the parameters θ and the hidden state sequence

s1:T is more complicated than it is in the MM case. Because the states s1:T are not iid,

the posterior state probabilities p(st = k|x1:T ; θ) are no longer efficiently calculated

as simply as in the MM case, i.e., (A.2).

Baum et al. [2] presented a computationally feasible method for computing these

probabilities. Their algorithm has become known as the Baum-Welch algorithm, or

the forward-backward algorithm [28].
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1.2 A Hidden Markov Model

We present a theorem that states: Given knowledge of st, all the model’s random

variables before time t are conditionally independent of all the random variables

after (or at) time t. We appeal to this theorem frequently as we derive the forward,

backward, and other inference algorithms.

Theorem 1.1. The following conditional independence property holds in an HMM:

x1:t−1, s1:t−1 |= xt:T , st+1:T | st (1.15)

Proof. We apply the chain rule of probability and the independence properties of the

HMM:

p(xt:T , st+1:T |x1:t−1, s1:t)
(CRP )= p(xt:T |x1:t−1, s1:T ) p(st+1:T |x1:t−1, s1:t)

(CRP )=
T∏
u=t

p(xu|x1:u−1, s1:T )
T∏

u=t+1
p(su|x1:t−1, s1:u−1)

(1.14b)
(1.11a)=

T∏
u=t

p(xu|st:T )
T∏

u=t+1
p(su|st:u−1)

(CRP )= p(xt:T , st+1:T |st)

In the parlance of DGMs (e.g., see [3]), Theorem 1.1 is equivalent to saying that st

blocks, or d-separates, any path between s1:t−1, x1:t−1 and st+1:T , xt:T . Fig. 1.5 shows

the DGM for an HMM.
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1.2 A Hidden Markov Model

x1 x2 · · · xT

s1 s2 · · · sT

Figure 1.5.: A directed graphical model representing the HMM

Consider the computation of the posterior state probabilities, p(st = k|x1:T ). These

probabilities are of intrinsic interest; we may wish to know what state the system was

in at time t. They are also needed for the EM algorithm. Using Theorem 1.1, it can

be shown that (e.g., see Zucchini and MacDonald [37, (4.10)]):

p(st = k|x1:T ) (A.7)
∝

,Btk︷ ︸︸ ︷
p(xt:T |st = k)

,F tk︷ ︸︸ ︷
p(st = k, x1:t−1)

This probability is proportional to the forward and backward probabilities. We will

show that all of these probabilities can be computed in O(TK2) time.

Forward Algorithm The key insight the forward algorithm exploits is that the

forward probability F t
k , p(st = k, x1:t−1) can be computed from the previous forward

probabilities F t−1
1:K . The algorithm starts by setting

F 1
k ← ιk for [k=1,...,K]
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1.2 A Hidden Markov Model

Then for t = 2, . . . , T , we apply the following identity

F t
k , p(st = k, x1:t−1)

=
K∑
j=1

p(st = k, st−1 = j, x1:t−1)

(CRP )=
K∑
j=1

p(st = k|st−1 = j, x1:t−1)p(xt−1|st−1 = j, x1:t−2)p(st−1 = j, x1:t−2)

(1.15)=
K∑
j=1

p(st = k|st−1 = j)p(xt−1|st−1 = j)p(st−1 = j, x1:t−2)

=
K∑
j=1

τj,kfεj(xt−1)F t−1
j (1.16)

and set

F t
k ←

K∑
j=1

τj,kfεj(xt−1)F t−1
j for [k=1,...,K]

The forward algorithm executes in O(TK2) time; there are O(TK) many forward

probabilities and each requires a sum of K terms.

Fig. 1.6 on the next page illustrates the forward recursion. The black node represents

st+1 = k. There are Kt many paths to the black node; computing the probability of

this many paths is intractable. Any path to the black node must pass through one of

the blue nodes. So once we know the probability of each blue node, the probability

of the black node can be computed by summing over just the blue nodes – the gray

nodes need not be considered. This explains why the forward algorithm is relatively

more efficient. The lines following the nodes represent a recursion of this figure; i.e.,

the forward probability corresponding to each node was computed just as the forward
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1.2 A Hidden Markov Model

probability corresponding to the black node is computed in this figure. The following

is the correspondence between the computation of F t+1
k and the trajectories shown in

Fig. 1.6

F t+1
k︸ ︷︷ ︸

black node
=

K∑
j=1

τj,kfεj(xt)︸ ︷︷ ︸
black line

× F t
j︸︷︷︸

blue node

1 2 · · · t− 1 t t+ 1

1

2

...

k

...

K

· · ·

· · ·

· · ·

· · ·

...

...

...

...

...

...

...

...

...

...

...

...

...

...

t6 = 14, s6 = 4

time

st
at
e

Figure 1.6.: An illustration of the forward and Viterbi HMM algorithms
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Backward Algorithm Like the forward algorithm, the backward algorithm com-

putes the backward probabilities using previously computed values. The backward

algorithm, however, starts at T and goes backwards in time. It starts by setting:

Bk
T ← εk(xT ) for [k=1,...,K]

Then for t = T − 1, . . . ., 1, we apply the following identity

Bt
j , p(xt:T |st = j)

(1.15)= p(xt|st = j)p(xt+1:T |st = j)

= p(xt|st = j)
K∑
j=1

p(xt+1:T , st+1 = k|st = j)

(CRP )= p(xt|st = j)
K∑
j=1

p(xt+1:T |st+1 = k, st = j)p(st+1 = j|st = j)

(1.15)= p(xt|st = j)
K∑
j=1

p(xt+1:T |st+1 = k)p(st+1 = k|st = j)

= fεj(xt)
K∑
j=1

Bt+1
j τj,k

and set

Bt
j ← fεj(xt)

K∑
j=1

Bt+1
j τj,k for [j=1,...,K]
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1.2 A Hidden Markov Model

1.2.2.1. EM Algorithm

Recall the EM algorithm (1.4). In the case of the HMM, the CDLL is:

log p(x1:T , s1:T ; θ) (A.6)=
T∑
t=1

log fεst (xt) + log ιs1 +
T∑
t=2

log τst−1,st (1.17)

In addition to the posterior state probabilities A1:K
1:T , the EM algorithm requires the

posterior transition probabilities. They are defined:

N t
j,k , p(st = k|st−1 = j, x1:T ; θ(n)) for

[
t=1,...,T
j=1,...,K
k=1,...,K

]

The expectation of each summand in (1.17) is:

Es1:T |x1:T ;θ(n)

[
log fεst (xt)

] (A.3)=
K∑
k=1

log fεk(xt)Atk for [t=1,...,T ] (1.18a)

Es1:T |x1:T ;θ(n) [log ιs1 ] (A.3)=
K∑
k=1

log ιkA1
k (1.18b)

Es1:T |x1:T ;θ(n)

[
log τst,st+1

] (A.3)=
K∑
j=1

K∑
k=1

log τj,kN t
j,k for [t=2,...,T ] (1.18c)

Combining (1.17) and (1.18), the entire expectation can be written:

Es1:T |x1:T ;θ(n) [log p(x1:T , s1:T ; θ)]

=
K∑
k=1

T∑
t=1

log fεk(xt)Atk︸ ︷︷ ︸
,Qε(ε1:K ;θ(n))

+
K∑
k=1

log ιkA1
k︸ ︷︷ ︸

,Qι(ι1:K ;θ(n))

+
K∑
j=1

K∑
k=1

log τj,k
T∑
t=2

N t
j,k︸ ︷︷ ︸

,Qτ (τ1:K,1:K ;θ(n))

Because none of the parameters {ε1:K , ι1:K , τ1:K,1:K} are shared among Qε(ε1:K ; θ(n)),
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Qι(ι1:K ; θ(n)), Qτ (τ1:K,1:K ; θ(n)), maximizing each separately maximizes the entire ex-

pectation. The maximizer for Qι(ι1:K ; θ(n)) is:

ι̂k
(A.4)= A1

k for [k=1,...,K] (1.19)

The maximizer for Qτ (τ1:K,1:K ; θ(n)) is

τ̂j,k
(A.9)=

∑T
t=2 N

t
j,k∑K

l=1
∑T
t=2 N

t
j,l

for
[
j=1,...,K
k=1,...,K

]
(1.20)

Since Qε(ε1:K ; θ(n)) is the same expression as in the MM case, the maximizers ε̂k are

also the same. See e.g., (1.9) for the case where ε1:K are normal distributions. One

iteration of the EM algorithm amounts to computing ι̂1:K , τ̂1:K,1:K , ε̂1:K,1:K under the

parameter set θ(n), and then setting:

θ(n+1) ← {ι̂1:K , τ̂1:K,1:K , ε̂1:K}

1.2.2.2. MAP State Sequence

Unlike the MM case, the sequence of states with maximum a posteriori probability

cannot be obtained by simply maximizing p(st|x1:T ) separately for each st. This naive

approach often leads to a state sequence very similar to the maximizer of p(s1:T |x1:T )

[37]. However, such an approach can also lead to an impossible sequence (see Rabiner
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[28]). As an example, consider:

ι1:3 =


1/3

1/3

1/3

 , τ1:3,1:3 =


0 .5 .5

.5 0 .5

.5 .5 0

 , ε1:3 =


N (−1, 1)

N (0, 1)

N (1, 1)



Then if x1:2 = {−1,−1} is observed, At1 = .45, At2 = .42, At3 = .13 for each t = 1, 2.

Since At1 is the maximum of At1:K for each of t = 1, 2, the naive approach with these

parameters and observations leads to ŝ1:2 = {1, 1}, which is impossible.

The Viterbi algorithm [13] is a dynamic programming algorithm that computes this

optimal state sequence. First we define M t
k to be the maximum a posteriori proba-

bility of all state subsequences s1:t that end with st = k:

M t
k , max

s1:t−1
p(st = k, s1:t−1|x1:T ) for

[
t=1,...,T
k=1,...,K

]
(1.21)

Similarly to the forward algorithm, we compute M t
k efficiently by using the previously

computed values M t−1
1:K . We define S t−1

k to be the value of st−1 in (1.21). Equation

(1.22) shows how M t
k and S t−1

k can be computed using the previously computed

values M t−1
1:K .

M t
k , max

s1:t−1
p(st = k, s1:t−1|x1:T ) for

[
k=1,...,K
t=1,...,T

]
= max

j=1,...,K
max
s1:t−1

p(st = k, st−1 = j, s1:t−2|x1:T )

(CRP )= max
j=1,...,K

max
s1:t−2

p(st = k|st−1 = j, s1:t−2, x1:T )

× p(st−1 = i, s1:t−2|x1:T )
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1.2 A Hidden Markov Model

(1.15)= max
j=1,...,K

p(st = k|st−1 = j, x1:T )

×max
s1:t−2

p(st−1 = j, s1:t−2|x1:T )

= max
j=1,...,K

N t−1
j,k

At−1
j

M t−1
j (1.22)

with S t−1
k , arg max

j=1,...,K

N t−1
j,k

At−1
j

M t−1
j

So the algorithm begins by setting

M 1
1:K ← ι1:K for [k=1,...,K]

then for each t = 2, . . . , T , M t
k is computed according to (1.22), the value of j in this

equation is stored in S t−1
k :

M t
k ← max

j=1,...,K

N t
j,k

Atj
M t

j for [k=1,...,K]

S t−1
k ← arg max

j=1,...,K

N t
j,k

Atj
M t

j for [k=1,...,K]

Once M T
1:K and S T−1

1:K are computed, we set S T ← arg maxk M T
k . Then the MAP

state sequence ŝ1:T is constructed in reverse order, starting with ŝT ← S T , and then

for each t = T, . . . , 2, ŝt−1 ← S t−1
ŝt .

The Viterbi algorithm shares the same structure as the forward algorithm. It can be
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1.2 A Hidden Markov Model

related to the nodes and lines in Fig. 1.6 on page 23 as follows:

M t+1
k︸ ︷︷ ︸

black node
= max

j=1,...,K

N t
j,k

Atj︸ ︷︷ ︸
black line

× M t
j︸︷︷︸

blue node

1.2.3. An Example

Fig. 1.7a on the next page shows the result of our HMM inference algorithms ap-

plied to the simulated observation sequence in Fig. 1.4a on page 18. The inferred

parameters are:

ι̂1:3 =


0.00

1.00

0.00

 ε̂1:3 =


N (5.5, 3.22)

N (−0.9, 2.72)

N (−8.7, 2.42)



τ̂1:3,1:3 =


0.90 0.00 0.10

0.00 0.30 0.70

0.30 0.60 0.10

 (1.23)

Fig. 1.7b shows the actual and inferred state sequences.
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-15
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0
5
10

0 25 50 75 100

x
t

(a) The observation sequence from Fig. 1.4b. The colored rectangles are based on the inferred pa-
rameters and state sequence. The inferred parameters are specified in (1.23) on the preceding
page.

1
2
3

0 25 50 75 100
t

s t

inferred simulated
(b) Simulated vs. inferred state sequences.

Figure 1.7.: (a) The inferred HMM and state sequence using the observation se-
quence in Fig. 1.4. (b) A comparison of the simulated and inferred state sequences.
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2. A Hidden Markov Renewal

Model

Hidden Markov models have two major limitations. We develop a model that ad-

dresses these limitations by using a Markov renewal process (MRP) in place of the

HMM’s Markov chain. We call this model a hidden Markov renewal model (HMRM).

The HMRM is based on a class of models, which also address these HMM limitations,

called hidden semi-Markov models (HSMMs). These models are based on an hidden

semi-Markov process (SMP). In contrast to most (if not all) HSMM authors, we

explicitly develop our model as having a hidden Markov renewal process – the term

“semi-Markov process” does not appear in our development. The primary reason for

this decision is that, compared to an Markov renewal process, the associated semi-

Markov process loses information. In particular, an MRP retains the times of all

state changes, including times where a state transitions to itself. Such self-transitions

are lost when an SMP is used. By exploiting these self-transitions, we can naturally

model behavior other than state changes, e.g., the Jump model we present in Section

3.2 and the Stochastic Volatility model of Section 3.3. Our formulation progresses
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2.1 Two HMM Limitations

naturally from the HMM because the MRP is characterized by a property similar to

Markov chain’s Markov property.

The HMRM extends the capability of the HSMM by allowing observations to depend

on adjacent (super)states1. This, for example, allows us to model behavior where

the observations transition gradually, rather than abruptly, between states. We do

this with our Bridging-Means model of Section 3.1. To our knowledge, previous

incantations of the HSMM have only allowed for observations to depend on a single

(super)state.

The next section elaborates on the aforementioned HMM limitations and describes

how they can be rectified by the HMRM. After defining and describing the MRP, we

formally define the HMRM and show how we can perform inference for this model.

We conclude the chapter with a section on hidden semi-Markov models (HSMMs)

and relate the HMRM to some HSMMs we encountered in the literature. In the next

chapter we specify some sub-models of our HMRM.

2.1. Two HMM Limitations

HMMs exhibit two major limitations. The first is the modeling of the holding-time,

which is the contiguous amount of time spent in a state [28]. The holding-time is

equivalent to the width of the rectangles in e.g., Fig. 1.4b on page 18. As (2.1) shows,

1a superstate is defined shortly
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2.1 Two HMM Limitations

this quantity is geometrically distributed with parameter (1− τk,k) for each state k.

p(st+1:t+d−1 = k, st+d 6= k|st = k)

(1.11a)=
d−1∏
δ=1

p(st+δ = k|st+δ−1 = k)p(st+d 6= k|st+d−1 = k)

= (τk,k)d−1 (1− τk,k) (2.1)

Fig. 2.1 on this page is a particular example of a dataset that the geometric distribu-

tion fails to model. It is the word lengths in the English language.

0
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15000

0 5 10 15 20
Number of Letters in Word

N
um

be
r
of

W
or
ds

Distribution
Geo(0.12)
Pois(7.46)

Figure 2.1.: Histogram of word lengths in the English Linux dictionary
/usr/share/dict/words. Overlayed are the MLEs for the geometric and Pois-
son distributions.

A second major limitation of the HMM is the strong independence assumption it

makes on the observations. Because each observation xt is associated with a single

state st, the observations are all conditionally independent, given the underlying state
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2.2 Markov Renewal Process

sequence s1:T .

Next we define and describe a Markov renewal process. Then we show how the

HMRM addresses the limitations of the HMM.

2.2. Markov Renewal Process

We define a (finite space, discrete time) Markov renewal process (see Çınlar

[9], Howard [17], Kao [19], Janssen and Manca [18]). Suppose we have defined for

each r ∈ N = {1, 2, . . .}, a random variable zr taking values in {1, . . . , K} and a

random variable tr taking values in N such that 1 = t1 < t2 < t3 < · · · . The process

{(zr, tr)}r∈N is said to be an MRP with state space {1, . . . , K} provided that

p(zr+1 = k, tr+1 − tr = d|z1:r, t1:r)

= p(zr+1 = k, tr+1 − tr = d|zr) for
[
r∈N,
tr+1−tr∈N
zr∈{1,...,K}

]
(2.2a)

We always assume that {(zr, tr)}r∈N is time-homogeneous, that the RHS of (2.2a)

does not depend on r. Define (as in Çınlar [9, pg. 314]):

κdj,k , p(zr+1 = k, tr+1 − tr = d|zr = j) for
[
zr∈{1,...,K}
zr+1∈{1,...,K}
d∈N

]
(2.2b)

The family of probabilities κN1:K,1:K is called the semi-Markov kernel, which is well-
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2.2 Markov Renewal Process

defined because of time-homogeneity. Each of these probabilities can be factored

κdj,k = p(zr+1 = k, tr+1 − tr = d|zr = j)
(CRP )= p(tr+1 − tr = d|zr = j, zr+1 = k)︸ ︷︷ ︸

,fηj,k (d)

p(zr+1 = k|zr = j)︸ ︷︷ ︸
,τj,k

We define the holding-time distribution ηj,k in terms of its mass function fηj,k . We

also define the transition probability τj,k:

fηj,k(d) , p(tr+1 − tr = d|zr = j, zr+1 = k) for
[
r∈N, d∈N
zr∈{1,...,K}
zr+1∈{1,...,K}

]
(2.2c)

τj,k , p(zr+1 = k|zr = j) for
[
r∈N
zr∈{1,...,K},
zr+1∈{1,...,K}

]
(2.2d)

It remains to specify how z1, t1 are distributed. We assume that Markov renewal pro-

cesses are not delayed [9], and that z1 is distributed according to an initial distribution

ι1:K :

p(t1 = 1) = 1 (2.2e)

ιk , p(z1 = k) for [k∈{1,...,K}] (2.2f)

When a sequence (z1:R+1, t1:R+1) is drawn from a process satisfying each of (2.2), and

tR ≤ T < tR+1, we write:

(z1:R+1, t1:R+1) ∼ MRP(ι1:K , τ1:K,1:K , η1:K,1:K , T )

A draw from an MRP is shown in Fig. 2.2 on the next page. While we have assumed
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2.2 Markov Renewal Process

that t1 = 1 for all our Markov renewal processes, we do not assume that T , the time

of the last observation, coincides with any of t1:R+1. For example in Fig. 2.2, T = 20.

z1=2
t1=1

z2=3
t2=3

z3=3
t3=6

z4=4
t4=8

z5=1
t5=12

z6=4
t6=17

z7=2
t7=22

1
2
3
4

0 5 10 15 20
t

s t

Figure 2.2.: The first 7 renewals of a draw from an MRP, e.g. (z1:7, t1:7) ∼
MRP(ι1:K , τ1:K,1:K , η1:K,1:K , 20).

In the HMM (1.2) each element st of the hidden state sequence is associated with a

single time. We call z1:R+1 a superstate sequence because each zr is associated with

possibly multiple times, namely {tr, tr+1, . . . , tr+1−1}. The sequence t1:R+1 accounts

for time; it is called the renewal-time sequence. We further define the pair (zr, tr)

to be the rth renewal, and call adjacent renewals a sojourn. For each r = 1, . . . , R

we define dr , tr+1 − tr to be the rth holding-time2. In the context of an MRP, we

let s1:T denote the value of the superstate sequence at time t, i.e., st = zr where

tr ≤ t < tr+1, and call s1:T the state sequence. Later, when we incorporate the MRP

into the HMRM, we will see that the superstates emit observation subsequences. We

summarize this new nomenclature in Tab. 2.1 on the following page.

Recall the two limitations of the hidden Markov model: It has implicit geometric

holding-time distributions, and an excessively strong independence assumption with
2or “sojourn duration”
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2.2 Markov Renewal Process

word meaning expression (for rth)
superstate a hidden value associated with an observation subsequence zr
holding-time the length of an observation subsequence dr
renewal-time the starting time of an observation subsequence tr
renewal a superstate paired with its renewal-time (zr, tr)
sojourn a pair of adjacent renewals (zr, tr), (zr+1, tr+1)
observation subsequence the observations generated during a sojourn xtr:tr+1−1
state sequence the value of the superstate associated with time t st

Table 2.1.: A summary of nomenclature introduced for the HMRM.

regards to the observations. We now develop a model that addresses these limitations.

The main idea is that the hidden process now emits subsequences of observations

rather than a single observation. The distribution of the lengths of these subsequences

need not be geometric. Fig. 2.5 on page 54 shows an HSMM with Poisson distributed

holding-times. The HMRM allows us to model each observation subsequence however

we wish, in particular, the observations need not be independent of each other within

a subsequence. For example, the observation subsequences in Fig. 2.7 on page 57 are

drawn from a Wiener process.

We describe how the hidden and observed sequences are generated. First, we draw a

renewal sequence

(z1:R+1, t1:R+1) ∼ MRP(ι1:K , τ1:K,1:K , η1:K,1:K , T )

and then observations

xtr:tr+1−1 ∼ εzr,zr+1 for r = 1, . . . , R− 1, and xtR:T ∼ εzR,zR+1

where ε1:K,1:K are the emission distributions. In a HSMM, the emission distributions
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2.3 Formal HMRM Definition

depend on one superstate, zr. We have allowed them to depend on both zr and zr+1.

x1 · · · xt2−1 xt2 · · · xt3−1 · · · xtR · · · xT

z1 z2 · · · zR

Figure 2.3.: A notional representation of an HMRM. (This is not a valid directed
graphical model because the tr are random, so the structure is not fixed [23, pg.
3]). Whereas the HMM in (see Fig. 1.5) emits a single observation xt, the HSMM
emits a subsequence of observations xtr:tr+1−1. Each subsequence of observations is
fully connected, indicating that no independence assumption is made within each
subsequence. The gray edges represent our extension.

2.3. Formal HMRM Definition

Equations (2.3) formally define our model. Equations (2.3a) and (2.3b) are analogous

to (1.14a) and (1.14b) in the HMM. Equation (2.3a) specifies that εdj,k is the emission

distribution for an observation subsequence emitted during a sojourn of length d from

superstate j to k. The subscript “tr+1 − 1 ∧ T” on x allows for the last observation

subsequence to get cut off at T , even though tR+1 may go past T +1. Equation (2.3b)

specifies that every observation subsequence is conditionally independent of every

other model variable, given the subsequence’s sojourn. Recall that the holding-times
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2.3 Formal HMRM Definition

are defined dr , tr+1 − tr.

xtr:(tr+1−1)∧T |zr:r+1, tr:r+1 ∼ εdrzr,zr+1 for [r∈{1,...,R}]

(2.3a)

xtr:(tr+1−1)∧T |= xt′ , tr′ , zr′ | zr:r+1, tr:r+1 for
[
r′ /∈{r,r+1}
t′ /∈{tr,...,tr+1−1}

]
(2.3b)

The line below specifies that the renewal sequence is drawn from an MRP with spec-

ified parameters, and that tR ≤ T < tR+1. Equivalent to this line are the equations

(2.2), which define an MRP.

(z1:R+1, t1:R+1) ∼ MRP(ι1:K , τ1:K,1:K , η1:K,1:K , T ) (2.4)

The entire set of HMRM parameters is θ = {ε1:K,1:K , ι1:K , τ1:K,1:K , η1:K,1:K}.

In order to perform inference on an HMRM, we must additionally make a technical

assumption that the holding-time distributions have finite support:

∃D s.t. d > D =⇒ fηj,k(d) = 0 for each k = 1, . . . , K, j = 1, . . . , , K

This condition can typically be satisfied practically even for parametric holding-time

distributions that do not have finite support. This is done by limiting the support

to a value D such that ∑∞d=D+1 fηj,k(d) < ε for each j = 1, . . . , K, k = 1, . . . , K. We

found that setting ε to the machine epsilon [26, pg. 49] was sufficient to perform the
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inference presented in this dissertation. A computer’s machine epsilon3 is the smallest

positive number ε such that 1 + ε > 1.

2.4. Inference

Inference with the HMRM resembles inference with the HMM. We follow same outline

as the HMM case, first presenting a useful theorem that shows how the model’s

random variables can be split into two conditionally independent sets. We call on

this theorem frequently as we develop our inference algorithms.

An important insight used in our inference algorithms is that the probability that

a renewal from superstate j occurs at time t can be computed by summing over all

possible sojourns from superstate j beginning at time t to all immediate successor

superstates after holding in j for all possible lengths:

p(∃r s.t. zr = j, tr = t)︸ ︷︷ ︸
renewal probability

=
K∑
k=1

D∑
d=1

p(∃r s.t. zr = j, zr+1 = k, tr = t, dr = d)︸ ︷︷ ︸
sojourn probability

(2.5)

Renewal probabilities can, in turn, be used to compute sojourn probabilities:

p(∃r s.t. zr = j, zr+1 = k, tr = t, dr = d)
(CRP )
(A.10)=

p(zr+1 = k, dr = d|zr = j, tr = t)︸ ︷︷ ︸
,ηj,k(d) τj,k

p(∃r s.t. zr = j, tr = t)︸ ︷︷ ︸
renewal probability

(2.6)

3The computer we used had a machine epsilon of 2−52 ≈ 2.22× 10−16.
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2.4 Inference

The “∃” qualifier in (2.5)-(2.6) provides algorithmic efficiency. We will describe pre-

cisely how this qualifier promotes a more efficient forward algorithm after presenting

the algorithm.

Analogous to the HMM’s Theorem 1.1, Theorem 2.1 shows that given knowledge of

a renewal into superstate zr at time tr, all the model’s random variables before tr

are conditionally independent of all the random variables after (or at) time tr. This

theorem helps motivate the forward/backward algorithm. We cite it frequently in our

development of the HMRM inference algorithms.

Theorem 2.1. The following conditional independence property holds in an HMRM:

x1:tr−1, z1:r−1, t1:r−1 |= xtr:T , zr+1:R+1, tr+1:R+1|zr, tr (2.7)
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2.4 Inference

Proof. Apply the CRP and properties (2.3b), (2.2a).

p
(
xtr:T ,

tr+1:R+1
zr+1:R+1 | x1:tr−1,

t1:r−1
z1:r−1,

tr
zr

)
(2.3b)
(CRP )= p

(
xtr:T | tr+1:R+1

zr+1:R+1,
t1:r−1
z1:r−1,

tr
zr

)
× p

(
tr+1:R+1
zr+1:R+1 | t1:r−1

z1:r−1,
tr
zr

)
(CRP )=

R∏
u=r+1

p
(
xtu:(tu+1−1)∧T | x1:tu−1,

tr+1:R+1
zr+1:R+1,

t1:r−1
z1:r−1,

tr
zr

)

×
R+1∏
u=r+1

p
(
tu
zu |

t1:tu−1
z1:tu−1,

t1:r−1
z1:r−1,

tr
zr

)
(2.3b)
(2.2a)=

R∏
u=r+1

p
(
xtu:(tu+1−1)∧T | x1:tu−1,

tr+1:R+1
zr+1:R+1,

tr
zr

)

×
R+1∏
u=r+1

p
(
tu
zu |

t1:tu−1
z1:tu−1,

tr
zr

)
(CRP )= p

(
xtr:T | tr+1:R+1

zr+1:R+1,
tr
zr

)
× p

(
tr+1:R+1
zr+1:R+1 |, trzr

)
(CRP )= p

(
xtr:T ,

tr+1:R+1
zr+1:R+1 | trzr

)

To see how this theorem motivates the choice of forward and backward probabilities,

consider the posterior probability that a renewal into superstate k occurs at time t,

i.e., p(∃r s.t. zr = k, tr = t|x1:T ). Theorem 2.1 tells us that this probability can be
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written:

p(∃r s.t. zr = k, tr = t|x1:T )
(A.16)
∝ p(∃r s.t. zr = k, tr = t, x1:t−1)︸ ︷︷ ︸

=F t−1
k

p(xt:T |zr = k, tr = t)︸ ︷︷ ︸
=Bt

k

The probabilities F t−1
k and Bt

k are the forward and backward probabilities (which are

defined in (2.8a) and (2.9a), respectively). We will show that these probabilities can

be computed in O(K2TD) time.

2.4.1. Forward-Backward Algorithm

The forward and backward algorithms each use two types of probabilities: for-

ward/backward sojourn probabilities, and forward/backward renewal probabilities.

2.4.1.1. Forward Algorithm

The forward renewal and sojourn probabilities are defined in (2.8).

F t
k , p(∃r s.t. zr = k, tr = t+ 1, x1:t) for

[
t=0,...,T
k=1,...,K

]
(2.8a)

φt,dj,k , p
(
∃r s.t. tr=t+1−d

zr=j , tr+1=t+1
zr+1=k , x1:t

)
for

[
t=1,...,T
d=1,...,t∧D
j=1,...,K
k=1,...,K

]
(2.8b)

The upper limit on d in (2.8b) is needed to ensure that tr ≥ 1 in this equation. The

algorithm starts by setting

F 0
1:K ← ι1:K
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Figure 2.4.: An illustration of the forward HMRM algorithm, and the Viterbi algo-
rithm.

Then for each t = 1, . . . , T , the forward algorithm first computes φt,1:t∧D
1:K , and then

F t
1:K .

φt,dj,k
(A.11)← fεd

j,k
(xt+1−d:t) fηj,k(d) τj,k × F t−d

j for
[
d=1,...,t∧D
k=1,...,K

]
F t
k

(A.12)←
K∑
j=1

t∧D∑
d=1

φt,dj,k for [k=1,...,K]

We illustrate how φt+1,d
j,k , and F t+1

k correspond to Fig. 2.4 on the current page:

F t+1
k︸ ︷︷ ︸

black node
=

K∑
j=1

D∧t+1∑
d=1

=φt+1,d
j,k︷ ︸︸ ︷

fεd
j,k

(xt−d:t+1) fηj,k(d) τj,k︸ ︷︷ ︸
black line

× F t+1−d
k︸ ︷︷ ︸

blue node

In Fig. 2.4, the black node represents the renewal zr = k, tr = t+ 1. The blue nodes

represent all possible previous adjacent renewals. F t+1
k is computed by summing over

all these adjacent renewals. The lines following the nodes represent a recursion of

this figure; i.e., the forward probability corresponding to each node was computed
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just as the black node in this figure. Because holding-times are restricted to be no

greater than D, it is impossible for a sojourn starting at a gray node to end at the

black node.

An important point that still remains is the use of the “∃” qualifier in the definition

of the forward probabilities. By including the “∃” qualifier, we sum over all possible

values of r such that zr = k, tr = t+ 1

p(∃r s.t. zr = k, tr = t+ 1) =
t∑

r=1
p(zr = k, tr = t+ 1)

and collapse O(t) many probabilities into a single probability. Were we to omit the

qualifier from our forward sojourn probabilities, instead defining them as

φt,d,rj,k , p
(
zr=j
tr=t+1−d ,

zr+1=k
tr+1=t+1, x1:t

)
for

t=1,...,T
r=2∧t,...,t
d=1,...,t∧D
j=1,...,K
k=1,...,K



there would be O(T 2DK2) many forward sojourn probabilities, whereas there are

only O(TDK2) many with the qualifier.

2.4.1.2. Backward Algorithm

The backward renewal and sojourn probabilities are defined in (2.9).

Bt
j , p(xt:T |zr = j, tr = t) for

[
t=1,...,T
k=1,...,K

]
(2.9a)

βt,dj,k , p
(
xt:T ,

tr+1=t+d
zr+1=k | tr=t

zr=j

)
for

[
t=1,...,T
d=1,...,D
j=1,...,K
k=1,...,K

]
(2.9b)
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Neither B nor β is indexed by r, so there is concern that these probabilities may not

be well-defined. But Theorem A.1 shows that these probabilities are constant with

respect to r; so indeed, they are well-defined. For each t = T, . . . , 1 the backward

algorithm computes βt,1:D
1:K , and then Bt

1:K .

βt,dj,k
(A.13a)← Bt+d

j × fεd
j,k

(xt:t+d−1)× fηj,k(d) τj,k for
[
d=1,...,(T−t)∧D
j=1,...,K
k=1,...,K

]
βt,dj,k

(A.13b)← fεd
j,k

(xt:T )× fηj,k(d) τj,k for
[
d=T−t+1,...,D
j=1,...,K
k=1,...,K

]

Bt
k

(A.14)←
K∑
k=1

D∑
d=1

βt,dj,k for [k=1,...,K]

2.4.1.3. Likelihood and Posterior Probabilities

Our EM algorithm for the HMRM uses the likelihood, posterior renewal probabilities,

and posterior sojourn probabilities. These are defined in (2.10).

L , p(x1:T ) (2.10a)

Et
k , p(∃r s.t. zr = k, tr = t|x1:T ) for

[
t=0,...,T
k=1,...,K

]
(2.10b)

St,dj,k , p(∃r s.t. zr = j, zr+1 = k, tr = t, tr+1 = t+ d|x1:T ) for
[
t=1,...,T
d=1,...,D
j=1,...,K
k=1,...,K

]

(2.10c)
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2.4 Inference

These quantities can be computed using the forward-backward probabilities, as we

show in (2.11). We first compute the likelihood

L
(A.17)←

K∑
k=1

B1
kF

0
k (2.11a)

the posterior renewal and sojourn probabilities can then be computed in any order:

Et
k

(A.18)= Bt
kF

t−1
k /L for

[
t=0,...,T
k=1,...,K

]
(2.11b)

St,dj,k
(A.19)= F t−1

j βt,dj,k/L for
[
t=1,...,T
d=1,...,D
j=1,...,K
k=1,...,K

]
(2.11c)

2.4.2. EM Algorithm

Recall the EM algorithm (1.4). In the case of the HMRM, the CDLL is

log p(x1:T , z1:R+1, t1:R+1) (A.15)= log ιz1 +
R∑
r=1

[
log τzr,zr+1 + log fηzr,zr+1

(dr)
]

+
R∑
r=1

log fεdrzr,zr+1
(xtr:(tr+1−1)∧T )

(2.12)
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2.4 Inference

The expectation of each summand is:

Qε(ε1:K,1:K ; θ(n)) , Ez1:R+1,t1:R+1|x1:T ;θ(n)

[
R∑
r=1

log fεdrzr,zr+1
(xtr:(tr+1−1)∧T )

]
(A.20)=

K∑
j=1

K∑
k=1

T∑
t=1

D∑
d=1

log fεd
j,k

(xt:(t−1+d)∧T )St,dj,k (2.13a)

Qι(ι1:K ; θ(n)) , Ez1:R+1,t1:R+1|x1:T ;θ(n)

[
R∑
r=1

log ιz1

]
(A.21)=

K∑
k=1

ιkE
1
k (2.13b)

Qτ (τ1:K,1:K ; θ(n)) , Ez1:R+1,t1:R+1|x1:T ;θ(n)

[
R∑
r=1

log τzr,zr+1

]
(A.20)=

K∑
j=1

K∑
k=1

log τj,k
T∑
t=1

D∑
d=1

St,dj,k (2.13c)

Qη(η1:K,1:K ; θ(n)) , Ez1:R+1,t1:R+1|x1:T ;θ(n)

[
R∑
r=1

log fηzr,zt+1
(dr)

]
(A.20)=

K∑
j=1

K∑
k=1

T∑
t=1

D∑
d=1

log fηj,k(d)St,dj,k (2.13d)

So the entire expectation can be written:

Ez1:R+1,t1:R+1|x1:T ;θ(n) [log p(x1:T , z1:R+1, t1:R+1)]
(2.12)
(2.13)= Qι(ι1:K ; θ(n)) +Qε(ε1:K,1:K ; θ(n)) +Qτ (τ1:K,1:K ; θ(n)) +Qη(η1:K,1:K ; θ(n))

Because none of the parameters {ε1:K,1:K , ι1:K , τ1:K,1:K , η1:K,1:K} are shared among

Qε(ε1:K,1:K ; θ(n)), Qι(ι1:K ; θ(n)), Qτ (τ1:K,1:K ; θ(n)), Qη(η1:K,1:K ; θ(n)), maximizing each
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2.4 Inference

separately maximizes the entire expectation. The maximizer for Qι(ι1:K ; θ(n)) is:

ι̂k
(A.4)= E1

k for [k=1,...,K] (2.14)

The maximizer for Qτ (τ1:K,1:K ; θ(n)) is:

τ̂j,k
(A.9)=

∑T
t=1

∑D
d=1 S

t,d
j,k∑K

k=1
∑T
t=1

∑D
d=1 S

t,d
j,k

for
[
j=1,...,K
k=1,...,K

]
(2.15)

The maximizer of Qε(ε1:K,1:K ; θ(n)) varies with the form of ε choosen; in the next

chapter we present some interesting forms for ε. The maximizer for Qη(η1:K,1:K ; θ(n))

also varies with the form of ηj,k. Barbu and Limnios [1] show how to find η̂j,k for

a non-parametric distribution. In the case where the holding-time distributions are

dependent only on the current superstate, i.e., ηj,k = ηj for each k (a simpler indepen-

dence structure), Bulla [5] shows how to find η̂j for geometric and negative binomial

distributions, and Ferguson [12] finds it for the Poisson distribution.

One iteration of the EM algorithm amounts to computing

ε̂1:K,1:K , ι̂1:K , τ̂1:K,1:K , η̂1:K,1:K under the parameter set θ(n), and then setting:

θ(n+1) ← {ε̂1:K,1:K , ι̂1:K , τ̂1:K,1:K , η̂1:K,1:K}

A potential mitigator for the increased complexity required by this model is that

much of it can be done in parallel, e.g., for each t, all the values of φt,1:D
1:K,1:K can be

computed in any order. This also true for βt,1:D
1:K,1:K , and S

t,1:D
1:K,1:K .
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2.4 Inference

2.4.3. Viterbi Algorithm

The algorithm to find the maximum a posteriori renewal sequence is analogous to

the HMM case. There, to find the optimal partial path ending with st = k, we had

to consider all possible previous adjacent states, st−1 = 1, . . . , K. Here, to find the

optimal partial path ending with zr = k, tr = t, we must consider all possible previous

adjacent renewals, zr−1 = 1, . . . , K, tr−1 = t− 1, . . . , t−D.

We define M t
k to be the maximum a posteriori probability of all partial renewal

sequences ending with a renewal in superstate k at time t:

M t
k , max

r=1,...,t
z1:r−1,t1:r−1

p(zr = k, tr = t, z1:r−1, t1:r−1|x1:T ) for
[
t=1,...,T+D
k=1,...,K

]
(2.16)

To facilitate recovery of the optimal renewal sequence, we further keep a record of

best predecesors [12] Z t
k , T t

k . Z t
k is the value of zr−1 in (2.16) and T t−1

k is the value

of tr−1. (2.17) shows how M t
k , Z t

k , and T t
k can be computed using the previously

computed values M t−1
1:K .
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2.4 Inference

M t
k , max

r=1,...,t
z1:r−1,t1:r−1

p
(
zr=k
tr=t ,

z1:r−1
t1:r−1

∣∣∣∣∣x1:T
)

= max
j=1,...,K

d=1∨t,...,(t−1)∧D

max
r−1=1,...,t−d
z1:r−2,t1:r−2

p
(
zr=k
tr=t ,

zr−1=j
tr−1=t−d,

z1:r−2
t1:r−2

∣∣∣∣∣x1:T
)

(CRP )
(2.7)= max

j=1,...,K
d=1∨t,...,t−1∧D

p
(
zr=k
tr=t

∣∣∣∣∣zr−1=j
tr−1=t−d, xt:T

)

× max
r−1=1,...,t−d
z1:r−2,t1:r−2

p
(
zr−1=j
tr−1=t−d,

z1:r−2
t1:r−2

∣∣∣∣∣x1:T
)

= max
j=1,...,K

d=1∨t,...,t−1∧D

βt−d,dj,k

Bt−d
j

×M t−d
j (2.17)

with (Z t
k , T t

k ) , arg max
j=1,...,K

t′=1∨t−D,...,(t−1)∧T

βt
′,t−t′
j,k

Bt′
j

M t′

j

The algorithm begins by setting

M 1
1:K ← ι1:K

then for each t = 2, . . . , T + D, M t
k is computed according to (2.17). The value of j

in this equation is stored in Z t
k . The value of d is used to compute t − d, which is

51



2.4 Inference

stored in T t
k .

M t
k ← max

j=1,...,K
d=1∨t,...,(t−1)∧D

βt−d,dj,k

Bt−d
j

M t−d
j for [k=1,...,K]

(Z t
k , dk) ← arg max

j=1,...,K
d=1∨t,...,(t−1)∧D

βt−d,dj,k

Bt−d
j

for [k=1,...,K]

T t
k ← t− dk for [k=1,...,K]

Once M T+D
1:K are computed, the MAP state sequence ẑ1:R+1, t̂1:R+1 is constructed in

reverse order, starting with the last renewal, which must occur after time T :

(ẑR+1, t̂R+1) ← arg max
k=1,...,K

t=T+1,...,T+D

M t
k

And then for each r:

(ẑr, t̂r) ← (Z t̂r+1
ẑr+1 , T t̂r+1

ẑr+1 )

The algorithm stops when t̂r = 1. As in the HMM case, the Viterbi algorithm shares

the same structure as the forward algorithm. It and can be related to the nodes and

lines in Fig. 2.4 on page 44 as follows:

F t+1
k︸ ︷︷ ︸

black node
=

K∑
j=1

D∑
d=1

=φt+1,d
j,k︷ ︸︸ ︷

fεd
k
(xt−d:t+1) fηj,k(d) τj,k︸ ︷︷ ︸

black line

× F t+1−d
k︸ ︷︷ ︸

blue node
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2.5 Relation to HSMMs

2.5. Relation to HSMMs

A variety of models fall under the umbrella of “hidden semi-Markov model”. Yu [36]

gives a survey of many of these variations. We describe HSMMs using the termi-

nology introduced previously in this chapter. We identify three characterizers that

distinguish the different variants of HSMMs and give graphical examples. The section

is concluded with a short review of the HSMM literature.

2.5.1. Characterizers of the HSMM

There are three characterizers of an HSMM; they are described in the subsections

below. Each has to do with the assumptions that the particular model makes.

2.5.1.1. Independence Assumption Among Renewals

The first characterizer has to do with the independence assumption among the re-

newals. In the case of the HMRM, this independence assumption is specified by

(2.2). According to Yu [36, pg. 226], one of the simplest, most popular dependence

structures used in applications is

zr+1, dr |= z1:r−1, t1:r | zr

zr+1 |= dr | zr

p(zr+1 6= zr) = 1 (2.18)
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2.5 Relation to HSMMs

The above is stronger than the MRP independence assumption (2.2) that we use. It

assumes that the holding-time depends only on its superstate, and that there is 0

probability of self-transition. This is the independence assumption used in an HSMM

called the explicit duration HMM (EDHMM). The data in Fig. 2.5 on the current

page was simulated from an EDHMM.

-5

0

5

0 20 40 60
t

x
t

st : 1 2
Figure 2.5.: An HSMM with Poisson distributed holding-times; unlike an HMM,
the width of each rectangle is not geometrically distributed. Here we have set the
diagonal of the transition probability matrix to 0, so the system never transitions
back to the same superstate. Each emission distribution assumes independence
within the observation subsequence, so the rectangle heights are constant.

In contrast, Fig. 2.6 on the following page shows a simulation using the MRP in-

dependence assumption. The diagonal of the transition probability matrix used to

generate this figure is set to 0.8, allowing superstate self-transitions. This is mani-

fested by adjacent rectangles of the same color. This weaker assumption also allows

the holding-times to depend on their superstate and the next superstate also. Here we
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2.5 Relation to HSMMs

have set the mean holding-time for self-transitions to be 0.1. The mean holding-time

for a transition 1→ 2 is 3, and 2→ 1 is 4. This is reflected in the tendency of wider

rectangles to precede a change in color.

-8

-4

0

4

0 10 20 30 40 50
t

x
t

st : 1 2
Figure 2.6.: An HSMM with Poisson distributed holding-times with a more elab-
orate renewal dependence structure than was used in Fig. 2.5. Again we have
used emission distributions that assume independence within an observation sub-
sequence.

Not all HSMMs use an underlying SMP to define the hidden process – at least not as

it is defined by several authors: Çınlar [9], Howard [17], Kao [19], Janssen and Manca

[18] and Pyke [25]. Weaker independence assumptions, leading to more sophisticated

independence structures, such as the general model of Yu [36] can be used. Stronger

assumptions with less sophisticated independence structures like that of Guédon [15]

are also used. So the name “hidden semi-Markov model” is perhaps a slight mis-

nomer. The common idea binding models dubbed “HSMM” is that superstates emit

subsequences of observations and the length of these subsequences is random.
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2.5 Relation to HSMMs

2.5.1.2. Emission Distribution Assumptions

The 2nd characterizer of an HSMM involves the assumptions made on the emissions

distributions εk. One possible assumption is that the observations are iid within a

observation subsequence, e.g.

εk(xt:t+d−1) =
d−1∏
δ=0

fN (xt+δ;µk, σ2
k)

Such distributional assumptions are common. They correspond to Fig. 2.5 and

Fig. 2.6. More elaborate emissions distributions are possible. For example, if the

observation subsequences follow a Wiener process starting at some point µk (for each

superstate k) then the emission distribution would be:

εdk(xt:t+d−1) = fN (xt;µk, σ2
k)

d−1∏
δ=1

fN (xt+δ;xt+δ−1, σ
2
k)

Such emissions distributions were used for Fig. 2.7 on the next page.

It is with respect to this characterizer that our model differs substantively from pre-

vious HSMMs. Our model allows an observation subsequence to depend on both the

coinciding superstate and the next. This requires that the emission distributions be

indexed by two superstates, i.e., εj,k.

2.5.1.3. Censoring

The last characterizer of an HSMM is called censoring. If we do not assume that

the first observation coincides with a renewal time, we say the model is left cen-
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2.5 Relation to HSMMs

sored. Similarly, if we do not assume that the last observation immediately precedes

a renewal-time, we say the model is right censored. Right censoring is illustrated in

Fig. 2.5, the overlay indicates that had they been observed, emissions 51 to 60 would

have been from superstate 2. Our HMRM is right censored but not left censored.
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st : 1 2
Figure 2.7.: An HSMM with Poisson-distributed holding times. The emission dis-
tributions in this case do not assume independence of the observation subsequence,
rather these observation subsequences are draws from a Wiener process with start-
ing means at either 2 or −2. The parabolic overlays are determined by the .1, .9
quantiles at the start of each observation subsequence.

2.5.2. Literature Review

Here we review some of the papers that most shaped this dissertation. We describe

each paper’s model in terms of the three characterizers above: the renewal indendence

structure, the emissions distributions, and any censoring assumptions. For each paper
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2.5 Relation to HSMMs

we include a table summarizing these characterizers. We also enumerate any errors

we identified during our study of each paper.

2.5.2.1. Ferguson [12]

The “variable duration HMM” of Ferguson [12] was the first appearance of what

is now called an HSMM. The renewal independence structure (2.18) was used. No

assumption regarding the observation distributions were made in the development of

the forward-backward algorithm. However, in his development of the EM algorithm,

Ferguson assumed that the observations are iid within an observation subsequence.

The development did not address the third characterizer, censoring, except to say “it

is messy, but possible, to handle”. So the model assumes no censoring.

Ferguson notes that the HMM can be recovered from the HSMM in two ways. This

is important because it allows us to use existing HMM routines to test our HMRM

routines. The first way4the HMM can be recovered from the HSMM is by setting each

holding-time distribution to be degenerate at 1, and reusing the transition probability

matrix of the HMM to be replicated:

p(dr = d|zr = j) := δ1(d), τHSMM
j,k := τHMM

j,k ∀j = 1, . . . , K, k = 1, . . . , K

The second way is by setting the hold-time distributions to the geometric distribution

with parameters determined by the diagonal of the transition probability matrix in

the HMM, and replicating the rest of the HMM:
4Inference using this method ends up being substantially faster in practice; performance is compa-
rable to the standard HMM inference algorithms.
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2.5 Relation to HSMMs

p(dr = d|zr = j) := fGeo(d; 1− τHMM
j,j ), τHSMM

j,k := τHMM
j,k

∀j=1,...,K
k 6=j

Conversely, Ferguson notes that an HSMM can be embedded in a larger HMM, “with

considerable labor”. This was done by Langrock and Zucchini [20].

He states that there are three basic problems in the study such models: (i) computa-

tion of the likelihood (ii) computation of the MLE (iiia) computation of the maximum

a posteriori state sequence and (iiib) computation of the maximum a posteriori state

at each time t. He gives solutions (i), (ii), and (iiia) using an adaptation of the

forward/backward and EM algorithms of Baum et al. [2]. For (iiib) he develops an

adaptation of the Viterbi algorithm [13].

Finally he gives exact reestimation formulas for Poisson and geometrically distributed

holding-times, and normally distributed emissions.

characterizer model assumptions

renewal structure p(zr+1, tr+1|z1:r, t1:r) = p(tr+1|zr, tr = t) p(zr+1|zr)

emission

distributions

No assumptions for forward-backward algorithm.

Assumes iid emissions for EM algorithm.

censoring None

2.5.2.2. Guédon [15]

This paper presented efficient, detailed algorithms for solving the inference problems

outlined by Ferguson [12]. These algorithms serve as the basis for two freely available

R [27] software packages, those of O’Connell et al. [24] and Bulla et al. [7]. The model
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presented in this paper used the same renewal independence structure (2.18). Also

assumed was that the observations were iid within an observation subsequence. The

model allows for right censoring.

Another interesting aspect of this paper is that it presented an algorithm that is

immune to numerical underflow problems. To do this, the algorithm exploits the

assumption that observations were iid within an observation subsequence. Our model

does not make this assumption and so does not employ Guédon’s technique5.

In the process of testing our implementation of the backward algorithm presented in

this paper, we found that it was susceptible to “divide by 0” errors. This can occur

in the backward recursion, specifically line -7, pg. 637:

Gj(t+ 1) := Gj(t+ 1) + L1j(t+ u)Observ dj(u)/Fj(t+ u)

as the value Fj(t + u) can be 0. The problem is alleviated if instead the algorithm

stores the quantity, e.g. L1dividedByFj(t) := L1j(t) + Gk(t + 1)pjk on line 2, pg.

638, and replaces the computation of Gj(t+ 1) above with:

Gj(t+ 1) := Gj(t+ 1) + L1dividedByFj(t+ u)Observ dj(u)

Our inspection of the source code in Bulla et al. [7]’s and O’Connell et al. [24]’s R

packages indicated that they used some other technique to mitigate this “divide by

0” issue.

5Rather we worked with our probabilities in log domain, as in [23], and found that a double-precision
machine was sufficiently accurate.
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characterizer model assumptions

renewal structure p(zr+1, tr+1|z1:r, t1:r) = p(tr+1|zr, tr = t) p(zr+1|zr)

and p(zr 6= zr+1) = 1

emission

distributions

Assumes iid emissions.

censoring Right-censoring

2.5.2.3. Yu [36]

Yu developed a unified model that is the most general we encountered. The model

made the weakest renewal independence structure assumption that we saw

p(zr+1, dr+1|z1:r, d1:r) = p(zr+1, dr+1|zr, dr)

p(zr+1 6= zr) = 1

It made no assumptions regarding the emission distribution, and allows for left and/or

right censoring.

The paper enumerated several categories that HSMMs can fall into. It showed how

these categories arouse by making particular assumptions on the unified model. This

paper is a survey, and included over 200 references.

One error we noticed is on line 16 pg. 225. For the first equality there to be true one

of the two assumptions must be made: (1) there is a subsequence boundary between

t and t+ 1, (2) the observations are independent with a subsequence.
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characterizer model assumptions

renewal structure p(zr+1, dr+1|z1:r, d1:r) = p(zr+1, dr+1|zr, dr) and

p(zr 6= zr+1) = 1

emission

distributions

Makes no assumption.

censoring Left and right censoring.

2.5.2.4. Murphy [23]

Murphy’s paper began by making the same weak renewal independence structure

assumption of Yu – and additionally allowed for superstate self-transitions – but

eventually imposed the stronger assumption (2.18). He made no assumptions about

the emissions distributions. He noted that this allows the emissions to themselves be

an HMM or state space model. By introducing additional variables, he showed how

a valid DGM for HSMMs can be constructed. He showed how numerical underflow

in HSMM computations, an inherent problem when multiplying many probabilities,

can be alleviated by working in log space. Censoring was not addressed in this paper.

characterizer model assumptions

renewal structure p(zr+1, tr+1|z1:r, t1:r) = p(tr+1|zr, tr = t) p(zr+1|zr)

emission

distributions

Makes no assumption.

censoring Not addressed.
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2.5.2.5. Barbu and Limnios [1] and Malefaki et al. [22]

Malefaki et al. [22] presented an efficient EM algorithm for inference on a model

previously developed by Barbu and Limnios [1]. The renewal independence structure

in this model is the same as our MRP, although these authors do not allow for self-

superstate transitions, as we do. There independence structure allows the holding-

time distribution to depend on both the current and next superstates.

characterizer model assumptions

renewal structure p(zr+1, dr+1|z1:r, d1:r) = p(zr+1, dr+1|zr, dr) and

p(zr 6= zr+1) = 1

emission

distributions

Assumes emissions are non-parametric, discrete.

Barbu and Limnios allow for auto-regressions in the

observation subsequences.

Malefaki et al. assume observation subsequences are iid.

censoring Left and right censoring.

63



3. Some Examples of HMRM

Based Models

Chapter 2 presented the hidden Markov renewal model as a general model, and left

certain components unspecified. For the HMRM to be of any practical use, we must

further specify the following four things: The observation distributions ε1:K,1:K , the

holding-time distributions η1:K,1:K , and corresponding formulas for the maximizers of

Qε and Qη. We call such specifications sub-models. By specifying different emission

and holding-time distributions, different sub-models suitable for different problems

can be generated. But the core of the model can remain unchanged.

We present three sub-models, each according to the following template: We specify ε

and η, and correspondingly derive maximizers for Qε and Qη. We then simulate data

from the sub-model. Finally, we use our inference routines to recover the model’s

parameters and hidden renewal sequence.
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3.1 Bridging-Means Sub-model

3.1. Bridging-Means Sub-model

One of our primary contributions is an extension of the HSMM that allows the ob-

servation subsequences to depend on both current and future superstates. This sub-

model highlights that contribution. In particular, each observation is drawn from

a normal random variable whose mean is determined by (the mean of) the current

superstate and (the mean of) the next superstate. Equation (3.1) specifies the precise

manner in which this determination is made.

fεd
j,k

(
xt:(t+d−1∧T )

)
,

(d−1)∧(T−t)∏
δ=0

fN

(
xt+δ;

d− δ
d

µj + δ

d
µk, σ

2
j,k

)
(3.1)

The mean for any observation is a convex combination of the current and future mean.

The weight of the combination is determined by the proximity of the observation to

the adjacent renewal-times. For an observation occurring in the exact middle of

the adjacent renewals, the weights will each be 1/2. Contrastingly, an observation

coinciding with a renewal will have the same mean as the associated superstate, with

no contribution from the future superstate’s mean. Because it leads to a non-analytic

update form, we have chosen to develop the model such that the variance does not

“bridge” in the same way as the mean1. The variance depends on both adjacent

superstates, but it is constant for the duration of each observation subsequence.

1It may be possible to allow the variance to bridge in this manner but our analysis indicates
numerical methods would be needed to solve for each σ̂j,k.
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3.1 Bridging-Means Sub-model

3.1.1. Efficient Computation of ε

The inference algorithms require the computation of fεd
j,k

(xt:(t+d−1∧T )) for each d =

1, . . . , D, t = 1, . . . , T . The naive computation of each fεd
j,k

(xt:(t+d−1∧T )) is O(d), and

so the total computational complexity of these ε would be O(K2D2T ), rendering our

algorithm unfeasible for larger datasets.

We develop a method to compute fεd
j,k

(xt:(t+d−1∧T )), for each j, k, t, d, in O(K2DT ).

This is done by storing auxiliary quantities obtained during the computation of

fεd
j,k

(xt:(t+d−1∧T )), which allows us to compute fεd+1
j,k

(xt:(t+d∧T )) in O(1) time. In

essence, the improved efficiency relies on the simple idea that ∑d+1
δ=0 xδ can be com-

puted in O(1) time once ∑d
δ=0 xδ has been computed, since ∑d+1

δ=0 xδ = xd +∑d
δ=0 xδ.

From (3.1) and the density of a normal random variable we have:

log fεd
j,k

(xt:(t+d−1∧T )) = −(d ∧ T − t+ 1)
2 (log 2π + 2 log σjk)

− 1
2σ2

jk

d−1∧T−t∑
δ=0

(xt+δ −
d− δ
d

µj −
δ

d
µk)2 (3.2)

With the exception of the sum, (3.2) can be computed in O(1) time. We rewrite the

sum as:
1
d2

(d−1)∧(T−t)∑
δ=0

((d− δ) [xt+δ − µj] + δ [xt+δ − µk])2

Defining yt,j , xt − µj, this becomes

1
d2

(d−1)∧(T−t)∑
δ=0

(d− δ)2y2
t+δ,j + 2

(d−1)∧(T−t)∑
δ=0

(d− δ)δyt+δ,jyt+δ,k +
(d−1)∧(T−t)∑

δ=0
δ2y2

t+δ,k


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3.1 Bridging-Means Sub-model

Lemma A.5 on page 133 shows that this is

1
d2 [Ut,d(y1:T,j ∗ y1:T,j) + 2Ct,d(y1:T,j ∗ y1:T,k) + Vt,d(y1:T,k ∗ y1:T,k)] (3.3)

where “∗” denotes element-wise multiplication, and U,C, V are defined in Lemma A.5

on page 133.

3.1.2. Optimizing Qε

Recall that the EM algorithm for an HMRM requires maximization of:

Qε =
K∑
j=1

K∑
k=1

T∑
t=1

D∑
d=1

log fεd
j,k

(xt:(t+d−1∧T ))St,dj,k

We derive optimal values of µ, σ for ε defined as in (3.1).

3.1.2.1. Optimal µ

First, we find the optimality condition for each µj:

∂Qε

∂µj
=

K∑
k=1

T∑
t=1

D∑
d=1

(d−1)∧(T−t)∑
δ=0

d− δ
d2σ2

j,k

(dxt+δ − (d− δ)µj − δµk)St,dj,k

+
K∑
k=1

T∑
t=1

D∑
d=1

(d−1)∧(T−t)∑
δ=0

δ

d2σ2
k,j

(dxt+δ − δµj − (d− δ)µk)St,dk,j
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3.1 Bridging-Means Sub-model

Isolating the µj:

=
K∑
k=1

T∑
t=1

D∑
d=1

(d−1)∧(T−t)∑
δ=0

1
d2σ2

j,k

[(d− δ)dSt,dj,kxt+δ − (d− δ)2St,dj,kµj − δ(d− δ)S
t,d
j,kµk]

+
K∑
k=1

T∑
t=1

D∑
d=1

(d−1)∧(T−t)∑
δ=0

1
d2σ2

k,j

[δdSt,dk,jxt+δ − δ
2St,dk,jµj − δ(d− δ)S

t,d
k,jµk]

=
K∑
k=1

T∑
t=1

 1
σ2
j,k

D∑
d=1

St,dj,k
d

(d−1)∧(T−t)∑
δ=0

(d− δ)xt+δ + 1
σ2
k,j

D∑
d=1

St,dk,j
d

(d−1)∧(T−t)∑
δ=0

δxt+δ


−

K∑
k=1

T∑
t=1

 1
σ2
j,k

D∑
d=1

St,dj,k
d2σ2

j,k

(d−1)∧(T−t)∑
δ=0

(d− δ)2 + 1
σ2
k,j

D∑
d=1

St,dk,j
d2

(d−1)∧(T−t)∑
δ=0

δ2

µj
−

K∑
k=1

T∑
t=1

 1
σ2
j,k

D∑
d=1

St,dj,k
d2

(d−1)∧(T−t)∑
δ=0

δ(d− δ) + 1
σ2
k,j

D∑
d=1

St,dk,j
d2

(d−1)∧(T−t)∑
δ=0

δ(d− δ)

µk
We address the issue discussed in 3.1.1 by replacing the sums over δ with the equiv-

alent from (A.22)-(A.30).

=
K∑
k=1

T∑
t=1

 1
σ2
j,k

D∑
d=1

St,dj,k
d
Dt,d(x1:T ) + 1

σ2
k,j

D∑
d=1

St,dk,j
d
Et,d(x1:T )


︸ ︷︷ ︸

,bj

−
K∑
k=1

T∑
t=1

 1
σ2
j,k

D∑
d=1

St,dj,k
d2 Pt,d + 1

σ2
k,j

D∑
d=1

St,dk,j
d2 Qt,d


︸ ︷︷ ︸

,aj

µj

−
K∑
k=1

T∑
t=1

 1
σ2
j,k

D∑
d=1

St,dj,k
d2 Rt,d + 1

σ2
k,j

D∑
d=1

St,dk,j
d2 Rt,d


︸ ︷︷ ︸

,Bj,k

µk
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3.1 Bridging-Means Sub-model

= bj − ajµj −
K∑
k=1

Bj,kµk

So the optimal µ̂ satisfies the following matrix equation, with a, b, B defined as above:



b1

b2

...

bK


︸ ︷︷ ︸

b

=



B1,1 + a1 B1,2 · · · B1,K

B2,1 B2,2 + a2 · · · B2,K

... ... . . . ...

BK,1 BK,2 · · · BK,K + aK


︸ ︷︷ ︸

B+diag[a]



µ̂1

µ̂2

...

µ̂K


︸ ︷︷ ︸

µ̂

3.1.2.2. Optimal σ

Optimal σ is derived as follows:

∂Qε

∂σj,k
∝

T∑
t=1

D∑
d=1

(d−1)∧(T−t)∑
δ=0

(xt+δ − d− δ
d

µj −
δ

d
µk

)2

− σ2
j,k

St,dj,k
So the optimal value for σj,k satisfies

T∑
t=1

D∑
d=1

(d−1)∧(T−t)∑
δ=0

(
xt+δ −

d− δ
d

µj −
δ

d
µk

)2

St,dj,k = σ2
j,k

T∑
t=1

D∑
d=0

(d ∧ T − t+ 1)St,dj,k
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3.1 Bridging-Means Sub-model

Again, the naive computation of the sum over δ is problematic from a performance

standpoint. This is readily addressed by employing (3.3):

(d−1)∧(T−t)∑
δ=0

(
xt+δ −

d− δ
d

µj −
δ

d
µk

)2

= 1
d2

[
Ut,d(y2

1:T ) + 2Ct,d(y1:T,j ∗ y1:T,k) + Vt,d(y2
1:T,k)

]

So the optimal σ2
j,k is:

σ̂2
j,k =

∑T
t=1

∑D
d=1

1
d2 [Ut,d(y1:T,j ∗ y1:T,j) + 2Ct,d(y1:T,j ∗ y1:T,k) + Vt,d(y1:T,k ∗ y1:T,k)]St,dj,k∑T

t=1
∑D
d=1 (d ∧ T − t+ 1)St,dj,k

3.1.3. The Holding-Time Distribution η

We define each ηj,k to be the Poisson distribution with parameter λj,k:

ηj,k , Pois(λj,k) (3.4)

3.1.3.1. Optimizing Qη

With the η1:K,1:K defined as in (3.4) we optimize Qη over λ.

Qη =
K∑
j=1

K∑
k=1

D∑
d=1

log fηj,k(d)
T∑
t=1

St,dj,k

70



3.1 Bridging-Means Sub-model

Taking the partial derivative gives:

∂Qη

∂λj,k
∝

D∑
d=1

[
d

λj,k
− 1

]
T∑
t=1

St,dj,k

So the optimal value for λ is given by:

λ̂j,k =
∑D
d=1 d

∑T
t=1 S

t,d
j,k∑D

d=1
∑T
t=1 S

t,d
j,k

3.1.4. Simulated Data

We first simulate a renewal sequence from an MRP with a Poisson holding-time

distribution and the following parameters:

ι ,

0.5

0.5

 , τ ,

0.5 0.5

0.5 0.5

 , λ ,

14 14

14 14

 (3.5)

2

1

0 50 100 150
t

s t

Figure 3.1.: A renewal sequence drawn from an MRP with ι, τ , and ηj,k = Pois(λj,k)
as in (3.5).
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3.1 Bridging-Means Sub-model

Using this renewal sequence, we simulate an observation sequence with ε as in (3.1)

and parameters:

µ ,

 3

−3

 , σ ,

2 3

4 1

 (3.6)

Fig. 3.1 on the preceding page contains the renewal sequence, Fig. 3.2a on the next

page contains the corresponding observation sequence. The information from these 2

plots and (3.6) is all contained in Fig. 3.2b. The parallelograms in the overlays of this

figure elucidate our extension: the observations corresponding to these parallelograms

depend on adjacent superstates, not a single superstate.
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3.1 Bridging-Means Sub-model

-5

0

5

10

0 50 100 150

x
t

(a) A simulated observation sequence from a bridging-means sub-model with underlying sequence as
in Fig. 3.1 and observation model (3.1) with parameters (3.6).

-5

0

5

10

0 50 100 150
t

x
t

st : 1 2
(b) The same observation sequence as in (a). The overlay represents the underlying renewal sequence

and the means and variances of the observation sequence at any time. The bottom and top of the
overlay at any time t are the .1 and .9 quantiles.

Figure 3.2.: An observation sequence realized from the bridging-means model (a)
without overlay (b) with overlay.

The distance between the top and bottom of the overlay at any point is determined by

σj,k, where j and k are the adjacent superstates. Because our model is right-censored,

the end of the observations does not necessarily correspond with the final renewal, as

in the case in Fig. 3.2b.
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3.1 Bridging-Means Sub-model

3.1.5. Inference

We attempted to find the MLE of the parameters of the model using the EM algorithm

with 1000 different starting parameters. The parameters were chosen randomly in a

manner similar to that used by Rydén [31] or Bishop et al. [3]. The starting parameter

for ι was set to the uniform distribution. Each row of τ was drawn independently

from a symmetric Dirichlet distribution. Each of λj,k was drawn independently from

a continuous uniform distribution on the interval (0,
√
T ). The µ were sampled from

the observations without replacement. Finally, each of σj,k was drawn independently

from a continuous uniform distribution on the interval (0,
√

max x1:T −min x1:T ).

3.1.5.1. Parameters

The parameters we find using the EM algorithm are:

ι̂ ,

0.0

1.0

 , τ̂ ,

0.25 0.75

0.50 0.50

 , λ̂ ,

17 19

8 17



µ̂ ,

 3

−3

 , σ̂ ,

1.1 3.0

5.2 1.0

 (3.7)

3.1.5.2. Renewal Sequence

We use the Viterbi algorithm to find the most likely hidden sequence. We use the

inferred parameters listed in (3.7).
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3.2 A Jump Sub-model

2

1

0 50 100 150
t

s t

inferred simulated
Figure 3.3.: Simulated and inferred renewal sequences for the bridging model (3.1).

3.1.6. Discussion

The bridging-means sub-model requires that we allow each observation subsequence

to depend on adjacent superstates as opposed to a single superstate. This is something

that cannot be done with a HSMM. So this model elucidates a contribution of our

HMRM.

3.2. A Jump Sub-model

We have formulated our HMRM to have a hidden MRP rather than the HSMM’s

SMP. We now present a sub-model conceived in the context of this formulation. This

sub-model illustrates how we can associate events other than superstate changes with

a renewal.

The idea behind the model we present is simple: The first observation in each ob-

servation subsequence is normal distributed according to a global distribution. The

remaining observations in the subsequence are normally distributed about this first
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3.2 A Jump Sub-model

observation, with a different, local, variance. We can think of the first observation

in each subsequence as a “jump” in the observation sequence. Fig. 3.5b on page 80

shows a simulated data set with 8 such jumps.

3.2.1. The Observation Model ε

The emission distributions ε1:K,1:K are defined:

fεd
j,k

(xt:(t+d−1∧T )) =
jump︷ ︸︸ ︷

fN (xt;µg(j,k), σ
2
g(j,k))

(d−1)∧(T−t)∏
δ=1

locally distributed︷ ︸︸ ︷
fN (xt+δ;xt, σ2

l(j,k)) (3.8)

Given that a sojourn from state to j to k begins at time t, xt| ∼ N (µg(j,k), σ
2
g(j,k)) ,

and the remaining observations in the sojourn will be normally distributed about xt

with a variance of σ2
l(j,k). So each observation subsequence has it’s own mean – the

number of means is not restricted by the number of states K. The number of means

is determined by the number of renewals in the hidden renewal sequence.

3.2.2. Optimizing Qε

We derive EM updates for µg(j,k), σg(j,k), and σl(j,k). Here Qε can be written:
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3.2 A Jump Sub-model

Qε =
∑
j=1

∑
k=1

T∑
t=1

D∑
d=1

log εdj,k(xt:(t+d−1∧T ))St,dj,k

=
∑
j=1

∑
k=1

T∑
t=1

D∑
d=1
−St,dj,k

log σg(j,k) + 1
2 log 2π +

(
xt − µg(j,k)

)2

2σ2
g(j,k)


−St,dj,k

d−1∧(T−t)∑
δ=0

log σl(j,k) + 1
2 log 2π + (xt+δ − xt)2

2σ2
l(j,k)



Employing the first order optimality conditions for µglobal TODO gives:

∂Qε

∂µg(j,k)
∝

T∑
t=1

D∑
d=1

(
xt − µg(j,k)

)
St,dj,k

∴ µ̂g(j,k) =
∑T
t=1 xt

∑D
d=1 S

t,d
j,k∑T

t=1
∑D
d=1 S

t,d
j,k

(A.18)=
∑T
t=1 xtB

t
j,kF

t−1
j,k∑T

t=1 B
t
j,kF

t−1
j,k

For σg(j,k):

∂Qε

∂σg(j,k)
∝

T∑
t=1

[(
xt − µg(j,k)

)2
− σ2

g(j,k)

] D∑
d=1

St,dj,k

∴ σ̂2
g(j,k) =

∑T
t=1

(
xt − µg(j,k)

)2∑D
d=1 S

t,d
j,k∑T

t=1
∑D
d=1 S

t,d
j,k

=
∑T
t=1

(
xt − µg(j,k)

)2
Bt
j,kF

t−1
j,k∑T

t=1 B
t
j,kF

t−1
j,k

For σl(j,k):

∂Qε

∂σl(j,k)
∝

T∑
t=1

D∑
d=2

St,dj,k

(d−1)∧(T−t)∑
δ=1

[
(xt+δ − xt)2 − σ2

l(j,k)

]
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3.2 A Jump Sub-model

∴ σ̂2
l(j,k) =

∑T
t=1

∑D
d=1 S

t,d
j,k

∑(d−1)∧(T−t)
δ=1 (xt+δ − xt)2∑T

t=1
∑D
d=1 S

t,d
j,k [d− 1 ∧ (T − t)]

3.2.3. Emphasizing Renewals’ Importance

To emphasize the importance of our formulation of the HSMM as having a hidden

MRP rather than SMP, we present the case of our Jump sub-model were there is

only a single superstate – hence superstate changes don’t occur. Because there is

no switching among multiple superstates, the hidden process is a renewal process

(e.g., see Çınlar [9, Chapter 9]). We could call this a hidden renewal model (HRM).

Fig. 3.4 on the next page depicts a draw from a renewal process. Note that the

corresponding semi-Markov sequence contains no information because it is constant

for all t. Renewals, particularly the times of the renewals, are indispensable in this

model.

3.2.4. Simulated Data

Because K = 1 here, we omit the super-state subscripts for the rest of this section.

The values of the parameters we use to simulate data from this model are:

λ , 20, µg , 0, σg , 10, σl , 8 (3.9)

A realization from the renewal process underlying the observations is depicted in

Fig. 3.4 on the following page.
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3.2 A Jump Sub-model

0 50 100 150
t

s t

Figure 3.4.: A realization of a renewal process with λ = 20 as in (3.9) and η =
Pois(λ).

This realization is used to generate the observation sequence Fig. 3.5a, with ε as in

(3.8) and parameters as in (3.9). The bottom and top of the rectangles in Fig. 3.5b

are the .25 and .75 quantiles.
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3.2 A Jump Sub-model

-20

0

20

0 50 100 150

x
t

(a) A simulated observation sequence from a jump sub-model with underlying renewal sequence
Fig. 3.4 and observation model (3.8) with parameters (3.9).

-20
-10
0

10
20
30

0 50 100 150
t

x
t

Renewal: 1 2 3 4 5 6 7

(b) The same observation sequence as in (a). Each colored line is a local mean, and the surrounding
rectangle represents the .25 and .75 quantiles for all but the first observation in each observation
subsequence (conditioned on the first observation in each observation subsequence). The height
of this rectangle is determined by σlocal. Note there is different local mean for each renewal.

Figure 3.5.: An observation sequence realized from the jump sub-model (a) without
overlay (b) with overlay.

3.2.5. Inference

We again used 1000 sets of random starting parameters to fit our model. The

starting parameters for λ were drawn from a uniform distribution on [0, T ]. The
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3.2 A Jump Sub-model

starting parameters for µglobal were drawn from a normal distribution with mean

the same as the sample mean of x1:T and variance equal to the sample variance of

{min x1:T ,max x1:T}. The starting parameters for σglobal were drawn from a uniform

distribution on [0, sd({min x1:T ,max x1:T})], where sd(y1:T ) is the sample standard

deviation of y1:T . The starting parameters for σlocal were set to sd(x1:T ).

3.2.5.1. Parameters

The MLE parameters obtained from the EM algorithm are similar to the true values

(3.9):

λ = 18.12, µg = −1.39, σg = 9.34, σl = 7.91 (3.10)

3.2.5.2. Renewal Sequence

The result of the Viterbi algorithm using the MLE parameters (3.10) is shown in

Fig. 3.6 on the current page.

0 50 100 150
t

s t

inferred simulated

Figure 3.6.: Simulated and inferred renewal sequences for the jump sub-model (3.8).
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3.3 A Stochastic Volatility Sub-model

3.2.6. Discussion

We have presented a jump sub-model, demonstrating that inference for a class of

models we call hidden renewal models is readily performed using the framework de-

veloped in Chapter 2. This model illustrates an example of associating an event other

than a state change with a renewal, something that is typically not thought of in the

context of a HSMM.

3.3. A Stochastic Volatility Sub-model

We can use the HMRM framework to develop a stochastic volatility (SV) sub-model.

Whereas our jump sub-model associated a mean with each observation subsequence,

in this model, we instead associate an unobserved variance with each subsequence.

We do this by augmenting the hidden MRP (2.2) with a (inverse) variance sequence

v1:R. These variances are drawn from a distribution determined by the adjacent

superstates, zr:r+1. Each random variance is conditionally independent of all random

variables outside its sojourn:

vr|zr:r+1 ∼ Ga(νzr,zr+1/2, νzr,zr+1/2) (3.11)

vr |= x\tr:tr+1−1, t\r:r+1, z\r:r+1, v\r | zr:r+1, tr:r+1 (3.12)

When

(z1:R+1, t1:R+1) ∼ MRP(ι1:K , τ1:K,1:K , η1:K,1:K , T )
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3.3 A Stochastic Volatility Sub-model

and

vr|zr:r+1 ∼ Ga(νzr,zr+1/2, νzr,zr+1/2)

for each r = 1, . . . , R, we say that the sequence (z1:R+1, t1:R+1, v1:R) is drawn from an

augmented Markov renewal process, and write:

(z1:R+1, t1:R+1, v1:R) ∼ AMRP(ι1:K , τ1:K,1:K , η1:K,1:K , ν1:K,1:K , T )

Fig. 3.8a shows a simulation from this model. In Fig. 3.8b, the height of each rectangle

is inversely proportional to a value drawn from a Ga(ν/2, ν/2) distribution. The

bottom and top of these rectangles represent the .1 and .9 quantiles of observations

drawn during the associated sojourn.

Liu and Rubin [21] show how the EM algorithm can be employed to find the MLE for

a Student’s t-distribution. A key difference with their analysis and ours is that they

associate every unobserved variance with a single observation, whereas in our model,

an unobserved variance is associated with a subsequence of the observations.

3.3.1. The Observation Model

Given (zr:r+1, tr:r+1, vr), which we call the the rth augmented sojourn, the observations

are distributed as iid normal, with variance inversely proportional to vr:

p(xtr:(tr+1−1)∧T |zr:r+1, tr:r+1, vr)

=
(tr+1−1)∧T∏

t=tr
fN (xt;µzr,zr+1 , σ

2
zr,zr+1/vr) for [r=1,...,R] (3.13)
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3.3 A Stochastic Volatility Sub-model

Using (3.11) and (3.13), the distribution of xtr:tr+1−1, vr|zr:r+1, tr:r+1 can be expressed

p(xtr:tr+1−1, vr|zr:r+1, tr:r+1)
(CRP )= p(xtr:tr+1−1|zr:r+1, tr:r+1)p(vr|zr:r+1, tr:r+1) (3.14)
(3.13)
(3.11)=

(tr+1−1)∧T∏
t=tr

fN (xt;µzr,zr+1 , σ
2
zr,zr+1/vr)

× fGa(vr; νzr,zr+1/2, νzr,zr+1/2) (3.15)

Then vr can be integrated out to yield the emission distributions:

fεj,k(xt:t+d−1) , p(xt:t+d−1|zr = j, zr+1 = k, tr = t, tr+1 = t+ d)

=
ˆ ∞

0
p(xt:t+d−1, vr|zr = j, zr+1 = k, tr = t, tr+1 = t+ d) dvr

(3.15)= (πνj,kσ2
j,k)−d/2 Γ

(
d+νj,k

2

)
Γ
(
νj,k

2

) (∑d−1
δ=0(xt+δ − µj,k)2

νj,kσ2
j,k

+ 1
)− d+νj,k

2

Whence the emission probabilities needed by the forward/backward probabilties can

be computed.

3.3.2. Optimizing Qε

Recall the CDLL given in (2.12):

log p(x1:T , z1:R+1, t1:R+1) = log ιz1 +
R∑
r=1

[
log τzr,zr+1 + log fηzr,zr+1

(dr)
]

+
R∑
r=1

log fεdrzr,zr+1
(xtr:tr+1−1∧T )
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3.3 A Stochastic Volatility Sub-model

In the SV sub-model we must account for the augmentation of the variance sequence

v1:R. Our SV sub-model CDLL is:

log p(x1:T , z1:R+1, t1:R+1, v1:R)

= ιz1 +
R∑
r=1

[
log τzr,zr+1 + log fηzr,zr+1

(dr)
]

+
R∑
r=1

log fN (xtr:tr+1−1∧T ;µzr,zr+1 , σ
2
zr,zr+1/vr)

+
R∑
r=1

log fGa(vr; νzr,zr+1/2, νzr,zr+1/2)

The “expectation” step in the EM algorithm is:

Ez1:R+1
t1:R+1
v1:R

∣∣∣∣∣x1:T

[log p(x1:T , z1:R+1, t1:R+1, v1:R)]

Because they do not have any vr terms, Qι, Qτ , Qη are all unchanged from (2.12).

The Qε term becomes:

Qε(ε1:K,1:K ; θ(n))

= Ez1:R+1
t1:R+1
v1:R

∣∣∣∣∣x1:T

[
R∑
r=1

log fN (xtr :tr+1−1∧T ;µzr,zr+1 ,σ
2
zr,zr+1/vr)

+ log fGa(vr;νzr,zr+1/2,νzr,zr+1/2)

]

(A.31)=
K∑
j=1

K∑
k=1

T∑
t=1

D∑
d=1
E

vr

∣∣∣∣∣xt:t+d−1∧T
zr=j,zr+1=k
tr=t,tr+1=t+d

[
log f

εd
j,k

(xt:t+d−1∧T )

+ log fGa(v;νj,k/2,νj,k/2)

]
St,dj,k (3.16)

Where the last expectation is taken under the posterior distribu-

tion of v ∼ Ga(νj,k/2, νj,k/2) after having observed xt:(t+d−1)∧T |v ∼
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3.3 A Stochastic Volatility Sub-model

∏(d−1)∧(T−t)
δ=0 fN (xt+δ;µj,k, σ2

j,k/v) . This posterior distribution is [3]:

v|xt:t+d−1∧T ∼ Ga
(
νj,k + (d ∧ T − t+ 1)

2 ,
νj,k
2 +

∑d−1∧T−t
δ=0 (xt+δ − µj,k)2

2σ2
j,k

)
(3.17)

We abbreviate this expectation as Et,d
j,k for the remainder of this subsection. Each

summand in (3.16) is:

Et,d
j,k

[
log fεd

j,k
(xt:(t+d−1∧T )) + log fGa(v; νj,k/2, νj,k/2)

]
= −d ∧ (T − t+ 1)

2
(
log 2π − log σ2

j,k + Et,d
j,k [log v]

)
−
Et,d
j,k [v]
2σ2

j,k

d−1∧T−t∑
δ=0

(xt+δ − µj,k)2

+ νj,k
2 log νj,k

2 − log Γ
(
νj,k
2

)
+
(
νj,k
2 − 1

)
Et,d
j,k [log v]− νj,k

2 Et,d
j,k [v]

The expectations of a g ∼ Ga(α, β) random variable are E [g] = α/β and E [log g] =

ψ(α)− log β.2 Thus

Et,d
j,k [v] (3.17)= νj,k + (d ∧ [T − t+ 1])

νj,k +∑d−1∧T−t
δ=0 (xt+δ − µj,k)2 /σ2

j,k

Et,d
j,k [log v] (3.17)= ψ

(
νj,k + (d ∧ [T − t+ 1])

2

)

− log
νj,k +∑(d−1)∧(T−t)

δ=0 (xt+δ − µj,k)2 /σ2
j,k

2



2The function ψ is defined as ψ(x) , d
dx [log Γ(x)], and is called the digamma function.
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3.3 A Stochastic Volatility Sub-model

First order optimality conditions yield the following update formulas:

µ̂j,k =
∑T
t=1

∑D
d=1 E

t,d
j,k [v]St,dj,k

∑(d−1)∧(T−t)
δ=0 xt+δ∑T

t=1
∑D
d=1

∑d−1∧T−t
δ=0 Et,d

j,k [v]St,dj,k (d ∧ T − t+ 1)
(3.18a)

σ̂2
j,k =

∑T
t=1

∑D
d=1 E

t,d
j,k [v]St,dj,k

∑(d−1)∧(T−t)
δ=0 (xt+δ − µj,k)2∑T

t=1
∑D
d=1 S

t,d
j,k (d ∧ [T − t+ 1])

(3.18b)

0 =
T∑
t=1

D∑
d=1

[
log ν̂j,k2 + 1− ψ

(
ν̂j,k
2

)
+ Et,d

j,k[log v]− Et,d
j,k[v]

]
St,dj,k (3.18c)

The expression on the RHS of (3.18c) is monotonic in νj,k on (0,∞), and so ν̂j,k can

be found via a one-dimensional search [21], e.g. the bisection method.

3.3.3. Viterbi for the Augmented Renewal Sequence

We can rederive the Viterbi algorithm with v1:R as a part of the renewal sequence.

We define M t
k to be the maximum a posteriori probability of all partial augmented

renewal sequences ending with a renewal in superstate k at time t:

M t
k , max

r=1,...,t
z1:r−1,t1:r−1

v1:r−1

p

(
zr=k
tr=t
vr−1

,
z1:r−1
t1:r−1
v1:r−2

∣∣∣∣∣x1:T

)
for

[
t=1,...,T+D
k=1,...,K

]
(3.19)

Our record of best predecessors is now Z t
k , T t

k , V t
k , the values of zr−1, tr−1, vr−1 in

(3.19). Equation (3.20) shows how all these values can be computed using the previ-

ously computed values M t−1
1:K .

M t
k , max

r=1,...,t
z1:r−1,t1:r−1

v1:r−1

p

(
zr=k
tr=t
vr−1

,
z1:r−1
t1:r−1
v1:r−2

∣∣∣∣∣x1:T

)
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= max
j=1,...,K

d=1∨t,...,(t−1)∧D
vr−1

max
r=1,...,t−d
z1:r−2,t1:r−2

v1:r−2

p

(
zr=k
tr=t
vr−1

,
zr−1=j
tr−1=t−d
vr−2

,
z1:r−1
t1:r−1
v1:r−2

∣∣∣∣∣x1:T

)

(CRP )= max
j=1,...,K

d=1∨t,...,(t−1)∧D
vr−1

p

(
vr−1

∣∣∣∣∣zr=k
tr=t ,

zr−1=j
tr−1=t−d
vr−2

, x1:T

)

× p
(
zr=k
tr=t

∣∣∣∣∣zr−1=j
tr−1=t−d
vr−2

, x1:T

)

× max
r=1,...,t−d
z1:r−2,t1:r−2

v1:r−2

p

(
zr−1=j
tr−1=t−d
vr−2

,
z1:r−1
t1:r−1
v1:r−2

∣∣∣∣∣x1:T

)

(3.12)
(2.3b)= max

j=1,...,K
d=1∨t,...,(t−1)∧D

vr−1

p

(
vr−1

∣∣∣∣∣zr=k
tr=t ,

zr−1=j
tr−1=t−d, xt−d:(T∧t−1)

)

× p
(
zr=k
tr=t

∣∣∣∣∣zr−1=j
tr−1=t−d, xt−d:T

)

× max
r=1,...,t−d
z1:r−2,t1:r−2

v1:r−2

p

(
zr−1=j
tr−1=t−d
vr−2

,
z1:r−1
t1:r−1
v1:r−2

∣∣∣∣∣x1:T

)

= max
j=1,...,K

d=1∨t,...,(t−1)∧D

max
vr−1

p

(
vr−1

∣∣∣∣∣zr=k
tr=t ,

zr−1=j
tr−1=t−d, xt−d:(T∧t−1)

)

×
βt−d,dj,k

Bt−d
j

M t−d
j (3.20)

(Z t
k , T t

k ,V
t
k ) , arg max

j=1,...,K
t′=1∨t−D,...,t−1∧T

vr−1

p

(
vr−1

∣∣∣∣∣zr=k
tr=t ,

zr−1=j
tr−1=t−d, xt−d:(T∧t−1)

)

×
βt
′,t−t′
j,k

Bt′
j

M t′

j

The mode of a Ga(α, β) distribution, when it exists, is (α− 1)/β, so for each j, k:

max
vr−1

p

(
vr−1

∣∣∣∣∣zr=k
tr=t ,

zr−1=j
tr−1=t−d, xt−d:t−1

)
= νj,k + d− 2

νj,k +∑d
δ=1 (xt−δ − µj,k)2 /σ2

j,k

(3.21)
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The mode (3.21) only exists when νj,k + d− 2 > 0, TODO dr so the MAP augmented

sequence only exists when νj,k ≥ 1 for each j, k. When this condition is not satisfied,

a possible practical solution could be to compute the MAP of the unaugmented

sequence (ẑ1:R+1, t̂1:R+1) as in (2.17). Then, the sequence v̂1:R could be constructed as

follows: For each r such that d̂r ≥ 2, set v̂r as in (3.21). For those r such that d̂r = 1

and νzr,zr+1 < 1, the posterior density of vr is unbounded as vr → 0. So for those r,

v̂r could be set to some adhoc value.

When it exists, the MAP is recovered by the following algorithm:

M 1
1:K ← ι1:K

Then for each t = 2, . . . , T +D

M t
k ← max

j=1,...,K
d=1∨t,...,t−1∧D

νj,k + d− 2
νj,k +∑d

δ=1 (xt−δ − µj,k)2 /σ2
j,k

×
βt−d,dj,k

Bt−d
j

M t−d
j for [k=1,...,K]

(Z t
k , d) ← arg max

j=1,...,K
d=1∨t,...,t−1∧D

νj,k + d− 2
νj,k +∑d

δ=1 (xt−δ − µj,k)2 /σ2
j,k

×
βt−d,dj,k

Bt−d
j

M t−d
j for [k=1,...,K]

T t
k ← t− dk for [k=1,...,K]
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V t
k ←

νZ t
k
,k + d− 2

νZ t
k
,k +∑d

δ=1

(
xt−δ − µZ t

k
,k

)2
/σ2

Z t
k
,k

Once M T+D
1:K are computed, the MAP state sequence ẑ1:R+1, t̂1:R+1 is constructed in

reverse order, starting with the last renewal which must occur after time T :

(ẑR+1, t̂R+1) ← arg max
k=1,...,K

t=T+1,...,T+D

M t
k

And then for each r:

(ẑr, t̂r, v̂r) ← (Z t̂r+1
ẑr+1 , T t̂r+1

ẑr+1 , V t̂r+1
ẑr+1 )

The algorithm stops when t̂r = 1.

3.3.4. Simulated Data

We first draw a renewal sequence from a renewal process with Poisson holding-time

distribution with parameter λ = 20. This sequence is shown in Fig. 3.7 on this page.

0 50 100 150
t

s t

Figure 3.7.: A renewal process with Poisson holding-time distribution with param-
eter λ = 20.

There are 7 renewals in this sequence. The corresponding variances, whose inverses
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are drawn iid from a Ga(1.5/2, 1.5/2), are:

1/v1:7 = (6.19, 16.14, 4.18, 0.13, 1.31, 6.43, 0.53)

Each observation is drawn from a N (1, 22/vr) distribution, where vr is used for the rth

observation subsequence. The observation sequence is shown in Fig. 3.8a. The bottom

and top of the overlay in Fig. 3.8b are the .1 and .9 quantiles for each observation

given the augmented renewal sequence.
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(a) Observation sequence simulated from our stochastic volatility sub-model with K = 1, η =
Pois(20), µ = 1, σ = 2, and ν = 1.5.
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t

x
t

Renewal: 1 2 3 4 5 6 7
(b) The .1 and .9 quantiles of each observation in (a) overlayed.

Figure 3.8.: (a) An observation sequence realized from our stochastic volatility sub-
model. (b) With augmented sojourns overlayed.

3.3.5. Inference

We used 1000 sets of random starting parameters. The starting parameters for λ

were drawn from a uniform distribution on [0, T ]. The starting parameters for µ were

drawn from a normal distribution with mean the same as the sample mean of x1:T and

variance equal to the sample variance of {min x1:T ,max x1:T}. The starting parame-
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3.3 A Stochastic Volatility Sub-model

ters for σ were drawn from a uniform distribution on [0, sd({min x1:T ,max x1:T})].

3.3.5.1. Parameters

The MLE parameters are:

λ̂ = 21.19, µ̂ = 0.88, σ̂ = 1.52, ν̂ = 1.03 (3.22)

3.3.5.2. Renewal Sequence

The results of the Viterbi algorithm, using both the MAP and ad hoc methods de-

scribed in Section 3.3.3, are shown in Fig. 3.9a on the next page. The MAP augmented

renewal sequence is overlayed in Fig. 3.9b.

3.3.6. Discussion

We have shown how the statespace of an MRP can be augmented. In this case, we

augmented each superstate with a variance drawn from a Ga(ν/2, ν/2) distribution.

The sub-model presented provides another example of associating an event other than

a state change with a renewal. In this case, this event is a change in volatility.
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0 50 100 150
t

s t

ad hoc MAP simulated
(a) Simulated and inferred renewal sequences for the stochastic volatility sub-model. Both the MAP

and ad hoc methods described in Section 3.3.3 are shown.
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t

Renewal: 1 2 3 4 5 6
(b) The MAP renewal and variance sequence for the data in Fig. 3.8a. The .1 and .9 quantiles,

determined by µ̂ = 0.88, σ̂ = 1.52, are overlayed.

Figure 3.9.: Inference on the observations in Fig. 3.8a
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4. Applications

This chapter contains two instances of hidden Markov renewal sub-models applied to

real datasets. With each application, we compare the HMRM’s performance to that

of previously published models.

4.1. Modeling Autocorrelations of Squared

Returns

Rydén et al. [32] found that hidden Markov models were able to reproduce several

stylized facts of financial time series. A notable exception was the slowly decaying

ACF of squared returns. Bulla and Bulla [6] developed a model, based on Guédon’s

HSMM, with negative binomial holding-time distributions and normal emission dis-

tributions. We denote this model as “Bu” in the figures and tables of this section.

They showed that this model was able to reproduce this stylized fact in most cases.

They noted however that the model was not able to reproduce the slowly decaying

ACF of four sector indices considered. Of these four sectors, three were from the

financial industry.
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4.1 Modeling Autocorrelations of Squared Returns

We fit our bridging-means model of Section 3.1, denoted “BM”, to these four sectors1.

Our model contains a more elaborate renewal independence structure, allowing for

holding-time and emission dependence on both the coinciding and next superstates.

So we investigate the possibility that the “bridging” of means in our model may not be

the source of any improved performance. We do this by also fitting another HMRM,

but with emissions distributions that assume conditional independence of observations

within a subsequence. That is, for each pair of superstates j, k the emission density

of a sojourn of length d is:

fεd
j,k

(xt:(t+d−1)∧T ) =
(d−1)∧(T−t)∏

δ=0
fN

(
xt+δ;µj, σ2

j,k

)
(4.1)

We denote this model “IID”. Like the bridging-means model, this model has 17 free

parameters. But it does not transition gradually between superstates. Both the IID

and BM models used negative binomial holding-time distributions.

Fig. 4.1 shows the empirical ACFs of these datasets with the ACFs of the fitted

models. It is clear from visual inspection that both the BM and IID model’s perform

significantly better than Bulla’s model. Tab. 4.1, which contains the sums of squared

differences between each model’s ACF and the empirical ACF, confirms this assertion.

The difference between our BM and IID model is negligible. With the exception of

the parameters fit to the Financials dataset (see Section 4.1.1.2), the difference in the

parameters for these models is also relatively small.

1We thank Professor Jan Bulla for graciously providing the data used in this section.
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Figure 4.1.: ACFs of squared log returns for 4 sector indices. “Bu” is Bulla’s model,
“IID” is our HMRM with emissions as in (4.1), and “BM” is the bridging-means
model of Section 3.1.
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Bu IID BM
Banks 0.53 0.09 0.09

Financials 0.17 0.07 0.07
Insurance 0.92 0.10 0.11

Retail 0.32 0.06 0.06
Table 4.1.: The sum of squared differences between the empirical ACF and those of
the models in Fig. 4.1 at lags 1, . . . , 100. Like Bulla and Bulla [6], the ACFs were
generated from simulation. We used an observation sequence of length 5× 107.

4.1.1. MLE Parameters

4.1.1.1. Banks Dataset

Bridging-Means

µ̂ =

−0.94

8.15

× 10−4 σ̂ =

2.77 1.22

0.67 0.49

× 10−2

r̂ =

0.13 0.12

0.05 10.74

 p̂ =

0.01 0.03

0.01 0.11



τ̂ =

0.13 0.87

0.97 0.03


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IID HMRM

µ̂ =

2.57

5.59

× 10−4 σ̂ =

2.78 1.22

0.68 0.50

× 10−2

r̂ =

0.12 0.11

0.04 10.28

 p̂ =

0.01 0.03

0.01 0.11



τ̂ =

0.13 0.87

0.96 0.04



Bulla

µ̂ =

−11.02

6.25

× 10−4 σ̂ =

2.16

0.68

× 10−2

r̂ =

0.08 0.08

0.08 0.08

 p̂ =

0.03 0.03

0.01 0.01



τ̂ =

0.00 1.00

1.00 0.00


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4.1 Modeling Autocorrelations of Squared Returns

4.1.1.2. Financials Dataset

Bridging-Means

µ̂ =

−15.40

15.73

× 10−4 σ̂ =

1.14 2.49

0.54 0.73

× 10−2

r̂ =

0.05 0.04

0.08 0.18

 p̂ =

0.05 0.01

0.00 0.02



τ̂ =

0.83 0.17

0.42 0.58



IID HMRM

µ̂ =

−10.01

6.43

× 10−4 σ̂ =

2.79 1.49

0.86 0.59

× 10−2

r̂ =

0.09 0.05

0.19 0.09

 p̂ =

0.01 0.03

0.04 0.00



τ̂ =

0.16 0.84

0.72 0.28


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4.1 Modeling Autocorrelations of Squared Returns

Bulla

µ̂ =

−14.14

6.31

× 10−4 σ̂ =

2.16

0.67

× 10−2

r̂ =

0.09 0.09

0.09 0.08

 p̂ =

0.03 0.03

0.01 0.01



τ̂ =

0.00 1.00

1.00 0.00



4.1.1.3. Insurance Dataset

Bridging-Means

µ̂ =

−1.81

6.03

× 10−4 σ̂ =

3.65 1.62

0.94 0.65

× 10−2

r̂ =

0.03 0.10

0.20 9.87

 p̂ =

0.00 0.01

0.01 0.09



τ̂ =

0.39 0.61

0.85 0.15


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4.1 Modeling Autocorrelations of Squared Returns

IID HMRM

µ̂ =

2.05

4.67

× 10−4 σ̂ =

3.66 1.61

0.93 0.65

× 10−2

r̂ =

0.03 0.10

0.19 13.22

 p̂ =

0.00 0.01

0.01 0.12



τ̂ =

0.38 0.62

0.86 0.14



Bulla

µ̂ =

−12.33

4.70

× 10−4 σ̂ =

2.76

0.84

× 10−2

r̂ =

0.06 0.06

0.06 0.06

 p̂ =

0.02 0.02

0.00 0.01



τ̂ =

0.00 1.00

1.00 0.00


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4.1 Modeling Autocorrelations of Squared Returns

4.1.1.4. Retail Dataset

Bridging-Means

µ̂ =

1.70

8.23

× 10−4 σ̂ =

3.39 1.73

1.00 0.71

× 10−2

r̂ =

0.02 0.06

0.18 3.45

 p̂ =

0.00 0.01

0.02 0.05



τ̂ =

0.30 0.70

0.88 0.12



IID HMRM

µ̂ =

1.41

7.66

× 10−4 σ̂ =

3.39 1.75

1.01 0.71

× 10−2

r̂ =

0.02 0.06

0.18 3.30

 p̂ =

0.00 0.01

0.02 0.05



τ̂ =

0.30 0.70

0.87 0.13



103



4.2 Forecasting Volatility

Bulla

µ̂ =

−13.16

9.60

× 10−4 σ̂ =

2.92

0.88

× 10−2

r̂ =

0.03 0.03

0.12 0.12

 p̂ =

0.00 0.00

0.01 0.01



τ̂ =

0.00 1.00

1.00 0.00



4.2. Forecasting Volatility

Hamilton and Susmel [16] used autoregressive conditional changing heteroskedasticity

(ARCH) models with regime-switching to forecast the volatility of stock returns. The

data used was the value-weighted portfolio of stocks traded on the NYSE contained in

the CRISP data tapes from the week ended July 3, 1962 to the week ended December

29, 1987. There are T = 1331 observations in this dataset.

We compare Hamilton and Susmel’s model to an HMRM using this dataset2. The

specific HMRM we use is a combination of the Jump sub-model from Section 3.2,

and the stochastic volatility sub-model from Section 3.3. We also add a first order

auto-regressive component to this HMRM’s observation subsequence model. We call

this model a AR(1)-SV HMRM.

2This data was obtained from Hamilton’s website:
http://econweb.ucsd.edu/∼jhamilto/SWARCH.ZIP.
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4.2 Forecasting Volatility

4.2.1. The AR(1)-SV HMRM

We describe our model and present the EM updates to find the MLE. We then present

the result of the EM and Viterbi algorithms applied to weekly returns from the NYSE.

4.2.1.1. Model Description

We use Negative Binomial holding-time distributions. The distribution of the obser-

vation subsequences can be described:

p

(
xt:(t+d−1∧T )

∣∣∣∣∣zr=j
tr=t ,

zr+1=k
tr+1=t+d, vr

)

= fN

initial distribution︷ ︸︸ ︷(
xt;µg(j,k), σ

2
g(j,k)

)
×

(d−1)∧(T−t)∏
δ=1

fN (xt+δ;φj,kxt+δ−1 + µl(j,k)︸ ︷︷ ︸
autoregression

, σ2
l(j,k)/vr) (4.2)

where, as in our stochastic volatility sub-model, an (inverse) variance vr is drawn for

each observation subsequence:

vr

∣∣∣∣∣zr=j
tr=t−d,

zr+1=k
tr+1=t ∼ Ga (νj,k/2, νj,k/2) (4.3)

So the first observation in any subsequence is drawn from an initial distribution

N
(
µg(j,k), σ

2
g(j,k)

)
. Subsequent observations in the subsequence satisfy xt+1 =
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4.2 Forecasting Volatility

µl(j,k) + φj,kxt + εt where εt|vr ∼ N (0, σ2
l(j,k)/vr) . Integrating out vr from (4.2) using

(4.3) yields the emission densities that are readily employed in the forward-backward

algorithm.

fεj,k(xt:(t+d−1)∧T ) = fN (xt;µg(j,k), σ
2
g(j,k))× (πνj,kσ2

l(j,k))−
d−1

2
Γ
(
d−1+νj,k

2

)
Γ
(
νj,k

2

)

×

∑d−1∧T−t
δ=1 (xt+δ − φj,kxt+δ−1 − µl(j,k))2

νj,kσ2
l(j,k)

+ 1
−

d−1+νj,k
2

4.2.1.2. EM Updates

The EM updates to the parameters µg(j,k), σg(j,k), which describe the distribution of

the initial observation in each subsequence, are the same as in the Jump sub-model,

see Section 3.2.2 on page 76. We present these updates again here:

µ̂g(j,k) =
∑T
t=1 xt

∑D
d=1 S

t,d
j,k∑T

t=1
∑D
d=1 S

t,d
j,k

σ̂g(j,k) =
∑T
t=1

(
xt − µg(j,k)

)2∑D
d=1 S

t,d
j,k∑T

t=1
∑D
d=1 S

t,d
j,k

The updates of the local parameters are similar to the stochastic volatility model

of Section 3.3. Because we assume that the first observation in each observation

subsequence is drawn from the initial distribution, the sums over δ start at 1, rather

than 0 as in (3.18b). The expected values of an (inverse) variance drawn during a

sojourn from superstate j to superstate k starting at time t with duration d are:
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4.2 Forecasting Volatility

Et,d
j,k [v] = νj,k + (d− 1 ∧ [T − t])

νj,k +∑d−1∧T−t
δ=1

(
xt+δ − φj,kxt+δ−1 − µl(j,k)

)2
/σ2

l(j,k)

for [d=2,...,D]

Et,d
j,k [log v] = ψ

(
νj,k + (d− 1 ∧ [T − t])

2

)

− log

νj,k +∑d−1∧T−t
δ=1

(
xt+δ − φj,kxt+δ−1 − µl(j,k)

)2
/σ2

l(j,k)

2



EM updates for the local parameters µl, φl satisfy the following matrix equation:

 ∑T
t=1

∑D
d=2E

t,d
j,k [v]St,dj,k [d− 1 ∧ (T − t)]

∑T
t=1

∑D
d=2E

t,d
j,k [v]St,dj,k

∑d−1∧(T−t)
δ=1 xt+δ−1∑T

t=1
∑D
d=2E

t,d
j,k [v]St,dj,k

∑d−1∧(T−t)
δ=1 xt+δ−1

∑T
t=1

∑D
d=2E

t,d
j,k [v]St,dj,k

∑d−1∧(T−t)
δ=1 x2

t+δ−1



×

 µ̂l(j,k)

φ̂j,k

 =

 ∑T
t=1

∑D
d=2E

t,d
j,k [v]St,dj,k

∑d−1∧(T−t)
δ=1 xt+δ∑T

t=1
∑D
d=2E

t,d
j,k [v]St,dj,k

∑d−1∧(T−t)
δ=1 xt+δ−1xt+δ



The update for σ̂l(j,k) is:

σ̂l(j,k) =
∑T
t=1

∑D
d=2 E

t,d
j,k [v]St,dj,k

∑d−1∧(T−t)
δ=1

(
xt+δ − φj,kxt+δ−1 − µl(j,k)

)2

∑T
t=1

∑D
d=2 S

t,d
j,k (d− 1 ∧ T − t)

Finally, ν̂j,k is the solution to:

0 =
T∑
t=1

D∑
d=2

[
log ν̂j,k2 + 1− ψ

(
ν̂j,k
2

)
+ Et,d

j,k[log v]− Et,d
j,k[v]

]
St,dj,k
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4.2 Forecasting Volatility

4.2.1.3. Fitting the Model

The model as we have described above, with K = 2 superstates, would lead to 34 pa-

rameters. To engender parsimony we impose some additional constraints. First, each

holding-time and emission distribution can depend only on the coinciding superstate,

and not the next. That is, ηj,k = ηj and εj,k = εj for each j = 1, . . . , K, k = 1, . . . , K.

The manifestation of this constraint is that every matrix in (4.4) has constant rows.

We additionally restricted σg(1:K,1:K) and ν1:K,1:K each to a single value, as can be

seen from their matrices in (4.4). Finally we do not allow state self-transitions, i.e.,

the transition probability matrix τ is 0 along the diagonal. This yields a model with

14 free parameters, which is comparable to the models of Hamilton and Susmel (see

Tab. 4.2).
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4.2 Forecasting Volatility

µg =

 2.38 2.38

−1.83 −1.83

 σ2
g =

1.86 1.86

1.86 1.86



µl =

 0.40 0.40

−2.09 −2.09

 σ2
l =

1.43 1.43

2.60 2.60



φ =

0.28 0.28

0.20 0.20

 ν =

4.35 4.35

4.35 4.35



r =

 0.32 0.32

89.66 89.66

 p =

0.02 0.02

0.98 0.98



τ =

0.00 1.00

1.00 0.00

 (4.4)

The MAP renewal sequence found for this model is displayed in Fig. 4.2 on page 113.

4.2.2. AR(1)-SV HMRM Forecast Formula

We wish to compute the 1-step ahead forecasts E [xt+1|x1:t] , V ar [xt+1|x1:t] under

our AR(1)-SV HMRM. Our derivations yielding the formulas for these quantities are

somewhat involved, see Section A.6. There we have derived forecasts for arbitrary

steps-ahead.
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4.2 Forecasting Volatility

E [xt+1|x1:t]
(A.34)
(A.36)
(A.38)=

K∑
j=1

K∑
k=1

µg(j,k) × τj,kη>dj,k × F t
j

+
K∑
j=1

K∑
k=1

(D−1)∧t∑
d=1

(
φj,kxt + µl(j,k)

)

× fεd
j,k

(xt+1−d:t)× τj,kη>dj,k × F t−d
j

V ar [xt+1|x1:t]
(A.34)
(A.36)
(A.38)=

K∑
j=1

K∑
k=1

σ2
g(j,k) × τj,kη>dj,k × F t

j

+
K∑
j=1

K∑
k=1

(D∧t+1)−1∑
d=1

νj,k + d− 1
νj,k + d− 3 × σ

2
l(j,k)

×
νj,k +∑d−1

δ=1(xt+1−d+δ − φj,kxt−d+δ − µl(j,k))2/σ2
l(j,k)

νj,k + (d− 1)

× fεd
j,k

(xt+1−d:t)× τj,kη>dj,k × F t−d
j
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4.2 Forecasting Volatility

4.2.3. Comparison with Hamilton & Susmel

Using the same dataset, we compare the forecasts of our AR(1)-SV HMRM to the

regime-switching ARCH models of Hamilton and Susmel [16]3. All of Hamilton and

Susmel’s results are conditioned on the first four observations in the dataset. For the

1 step-ahead forecast, the following loss functions were considered:

MSE = 1
T − 4

T∑
t=5

{
(xt − E [xt|x1:t−1])2 − V ar [xt|x1:t−1]

}2

MAE = 1
T − 4

T∑
t=5
|(xt − E [xt|x1:t−1])2 − V ar [xt|x1:t−1]|

[LE]2 = 1
T − 4

T∑
t=5

{
log

(
(xt − E [xt|x1:t−1])2

)
− log V ar [xt|x1:t−1]

}2

|LE| = 1
T − 4

T∑
t=5
|log

(
(xt − E [xt|x1:t−1])2

)
− log V ar [xt|x1:t−1]|

All these loss functions are compared against a baseline model that Hamilton and

Susmel call a “constant variance” model. Under this constant variance model:

E(constant
variance) [xt | x1:t−1] = 1

T − 4

T∑
t′=5

xt′ for [t=5,...,T ]

V ar(constant
variance) [xt | x1:t−1] = 1

T − 4

T∑
t′=5

(xt − E [xt′ | x1:t′−1])2 for [t=5,...,T ]

We were able to reproduce Hamilton and Susmel’s published loss functions for the

3Only the 1-week-ahead forecast is used because we were unable to reproduce their values for the
4 and 8-week-ahead forecasts. We used the rugarch R package to successfully reproduce the log
likelihood and 1 step-ahead forecast loss functions for Student t GARCH-L(1,1) model, but were
unable to reproduce the 4 and 8-step-ahead forecast loss functions for this model. So we are not
confident that we understand exactly how the loss functions were computed for these forecasts,
and thus not confident a comparison with our model would be equitable.
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4.2 Forecasting Volatility

“Student t GARCH-L(1,1)” model. The last row in Tab. 4.2 on this page contains the

percent improvement of these loss functions computed under our AR(1)-SV HMRM.

The baseline for this improvement is the constant variance model. The other rows in

Tab. 4.2 were obtained from Hamilton and Susmel’s paper. Tab. 4.2 shows that our

model’s forecast improves those of Hamilton and Susmel [16] by approximately 50%

for each loss function considered.

Percent improvement in loss

Model
#

Param. logL MSE MAE [LE]2 |LE|
Student t GARCH-L(1,1) 7 −2822.0 -8 3 15 10
Student t SWARCH-L(3,2) 13 −2802.7 -7 11 10 10
Student t SWARCH-L(4,2) 15 −2798.1 6 13 7 9
2-state AR(1)-SV HMRM 14 −2798.6 9 21 22 15
Table 4.2.: Metrics from the models of Hamilton and Susmel [16] and our model.
For each loss function, the best performing model(s) of Hamilton and Susmel [16]
are emboldened. Because Hamilton and Susmel treated the first four observations
as given, for our model we used logL = p(x5:T |x1:4).

112



4.2 Forecasting Volatility

-30

-20

-10

0

10

20

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

-30

-20

-10

0

10

20

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

-30

-20

-10

0

10

20

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

st :
1
2

Figure 4.2.: The MAP renewal sequence and variances of our 2-state AR(1)-SV HMRM
model (4.4) overlayed on NYSE weekly returns from July 31, 1962 to December 29, 1987.
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5. Conclusion

Each model we presented is based on observed values being dependent on some un-

observed sequence. We first introduced the finite-mixture model, a model where each

observation is dependent on an unobserved state. These states are iid from a proba-

bility vector of length K; this probability vector is a parameter in the model. Next

we presented the hidden Markov model, which replaces the iid sequence of states with

a sequence drawn from a Markov chain. These two models, the mixture model and

the hidden Markov model, are precursors of our model, the hidden Markov renewal

process.

The HMRM replaces the HMM’s Markov chain with a Markov renewal process. The

Markov renewal process can be thought of as a Markov chain augmented with renewal-

times. The observations in an HMRM consist of observation subsequences, rather

than single observations. The start of each subsequence coincides with the renewal-

times of the hidden Markov renewal sequence.

Our development of the HMRM drew a parallel with the HMM, presenting a theorem

that shows how knowledge of a renewal segregates the hidden and observed sequences

into two conditionally independent sets of random variables: those occurring before
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the renewal and those occurring after (or at) the renewal. We also presented a graph

showing how renewals are related in the forward and Viterbi algorithms. The de-

velopment of the forward-backward algorithm for the HMRM distinguished between

forward/backward renewal probabilities and forward/backward sojourn probabilities.

Our HMRM extends previous HSMMs. Whereas previous HSMMs allow each obser-

vation subsequence to depend on only the coinciding superstate, the HMRM allows

each subsequence to depend on the next superstate also. This allows, for example,

the observations to gradually transition between the superstates.

Our formulation of the HMRM was initially kept general, we did not specify the

emission or holding-time distributions. To more concretely demonstrate our HMRM

we presented three sub-models that, by specifying these distributions, can be em-

ployed practically. We called the first sub-model the bridging-means sub-model. It

illustrated how our extension could be employed to model observation sequences that

gradually transition between superstates.

The next sub-model demonstrated that by using a hidden Markov renewal process,

rather than a semi-Markov process, phenomena such as jumps can be inferred from

an observation sequence. This model set the number of possible superstates, K, to 1.

So the superstate sequence was constant, containing no information. This elucidated

the importance of the renewal-time sequence, which in our jump sub-model, contains

the times of the jumps. This renewal-time sequence is absent in an SMP.

Our last sub-model augmented the state space of the hidden Markov renewal process

to include (inverse) variances. Because these variances are random, we termed the

model a “stochastic volatility” sub-model. Throughout our exposition of HMRM sub-
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models, we presented plots with overlays of rectangles – each rectangle corresponding

to an observation subsequence. The width of the rectangles in HMRM based model

are randomly distributed according to the holding-time distributions. In our stochas-

tic volatility model, the height of each rectangle is also random. As in our jump

sub-model, we allowed for only one superstate value. This provided another example

of associating an event other than a state change with a renewal.

We showed how to simulate from each sub-model. Then, using only the observation

sequence, we showed how to estimate the sub-model’s parameters and the unob-

served state/renewal sequence. By doing this with the three sub-models presented,

we demonstrate that our HMRM framework can be used to perform inference for

models that incorporate three key areas of financial time series: regime-switching,

jumps, and stochastic volatility. Further, the bridging-means model demonstrated

how regime-switching in our model can be gradual, rather than abrupt. This is be-

cause we have allowed observation subsequences to depend on both current and future

superstates.

The penultimate chapter applied HMRMs to two real-world datasets. The first was

daily returns from four European sector indices, and was previously analyzed by Bulla

and Bulla, using the HSMM of Guédon [15]. Our HMRM was able to better model

the ACF of squared returns for the indices considered. The gradual regime-switching

of the bridging-means model was not the source of the improved modeling however. A

HMRM that assumed the observation subsequences to be conditionally iid performed

just as well.

The second real-world dataset was weekly returns from a portfolio of stocks on the
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NYSE. We used an HMRM that modeled autoregressions and stochastic volatility.

Compared to the regime-switching ARCH models of Hamilton and Susmel [16], this

HMRM improved volatility forecasts by approximately 50% for each metric consid-

ered.

117



A. Derivations and Proofs

A.1. Mixture Model

A.1.1. Complete Data Likelihood, Posterior State

Probability, Posterior Expectation

An expression for the complete data likelihood of a state sequence s1:T and observation

sequence x1:T in a mixture model with parameter set θ = {α1:K , ε1:K} is given by:

p(x1:T , s1:T ; θ)
(CRP )

= p(x1:T |s1:T ; θ)p(s1:T ; θ)
(1.3b)
(1.3d)=

T∏
t=1

p(xt|st; θ)p(st; θ)

=
T∏
t=1

εst(xt)αst (A.1)
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A.1 Mixture Model

For a mixture model with parameter set θ(n) = {α(n)
1:K , ε

(n)
1:K}, the posterior state prob-

abilities, Atk = p(st = k|x1:T ; θ(n)), can be computed:

p(st = k|x1:T ; θ(n))
(1.3b)
(CRP )= p(st = k|xt; θ(n)) for

[
t=1,...,T
k=1,...,K

]
= p(xt|st = k; θ(n))p(st = k; θ(n))∑K

j=1 p(xt|st = j; θ(n))p(st = j; θ(n))

= ε
(n)
k (xt)α(n)

k∑K
j=1 ε

(n)
j (xt)α(n)

j

(A.2)

An expression for the posterior expectation of a function of a state subsequence is:

Es1:T |x1:T ;θ(n) [f(st:u)] =
∑
s1:T

f(st:u)p(s1:T |x1:T ; θ) for [1≤t≤u≤T ]

=
∑
st:u

f(st:u)
∑
s1:t−1

∑
su+1:T

p(s1:T |x1:T ; θ)

=
∑
st:u

f(st:u)p(st:u|x1:T ; θ) (A.3)

We did not use any of the mixture model assumptions (1.3); we will use this formula

again with the HMM.

A.1.2. Optimizing Qα and Qε

The following results are used to computed the update formulas for the mixture model

EM algorithm.
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Lemma A.1. The maximizing values α̂1:K for

K∑
k=1

logαkAk

subject to the constraint
K∑
k=1

αk = 1

satisfy:

α̂k = Ak∑K
j=1 Aj

(A.4)

Proof. The optimality conditions [4] require:


A1/α̂1

...

AK/α̂K

 = λ


1
...

1



Multiplying each equation by α̂k/λ and summing all the equations gives

∑K
k=1 Ak
λ

=
K∑
k=1

α̂k︸ ︷︷ ︸
=1

where the right-hand side sums to 1 by the constraint. Hence λ = ∑K
k=1 Ak and

α̂k = Ak/
[∑K

j=1 Aj
]
.

Lemma A.2. The values µ̂1:K , σ̂1:K maximizing

Q(µ1:K , σ1:K) ,
K∑
k=1

T∑
t=1

log fN (xt;µk, σ2
k)AtkQ(µ1:K , σ1:K) ,

K∑
k=1

T∑
t=1

log fN (xt;µk, σ2
k)Atk
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A.1 Mixture Model

are

µ̂k =
∑T
t=1 xtA

t
k∑T

t=1 A
t
k

(A.5a)

σ̂2
k =

∑T
t=1 (xt − µ̂k)2 Atk∑T

t=1 A
t
k

(A.5b)

Proof. The log of the normal density gives:

Q(µ1:K , σ1:K) ∝
K∑
k=1

T∑
t=1

[
log σk + 1

2
(xt − µk)2

σ2
k

]
Atk

The optimality conditions for µk imply that

T∑
t=1

µ̂kA
t
k =

T∑
t=1

xtA
t
k

and solving for µ̂k yields the first equation in (A.5b). The optimality conditions for

σk imply that
T∑
t=1

σ̂2
kA

t
k =

T∑
t=1

(xt − µ̂k)2Atk
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A.2 Hidden Markov Model

A.2. Hidden Markov Model

A.2.1. Complete Data Likelihood, Posterior State/Transition

Probabilities

An expression for the complete data likelihood of a state sequence s1:T and observation

sequence x1:T in an HMM with parameter set θ = {ι1:K , τ1:K,1:K , ε1:K} is given by:

p(x1:T , s1:T ) (CRP )= p(x1:T |s1:T )p(s1:T )
(1.14b)
(1.11a)= =

T∏
t=1

p(xt|st)p(st|st−1) (A.6)

First we show how the posterior state probability can be computed as a product of

forward and backward probabilities

p(st = k, x1:T ) (CRP )= p(xt:T |st = k, x1:t−1)p(st = k, x1:t−1) for
[
t=1,...,T
k=1,...,K

]
(1.15)= p(xt:T |st = k, x1:t−1)p(st = k, x1:t−1) (A.7)

and the posterior state probability can be computed from the joint probability as

p(st = k|x1:T ) = p(st = k, x1:T )/∑j p(st = j, x1:T ). The posterior transition probabil-
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A.2 Hidden Markov Model

ities can be similarly factored:

p(st = j, st+1 = k, x1:T ) (CRP )= p(xt+1:T |st = j, st+1 = k, x1:t−1) for
[
t=1,...,T−1
k=1,...,K

]
× p(st+1 = k|st = j, x1:t)

× p(xt|st = j, x1:t−1)

× p(st = j, x1:t−1)
(1.15)= p(xt+1:T |st+1 = k)

× p(st+1 = k|st = j)

× p(xt|st = j)

× p(st = j, x1:t−1) (A.8)

A.2.2. Optimizing Qτ

The following result is used to computed the update formula for the TPM in the

hidden Markov model EM algorithm.

Lemma A.3. The maximizer τ̂1:K,1:K for

K∑
j=1

K∑
k=1

log τj,k
T∑
t=2

N t
j,k

subject to the constraints

K∑
k=1

τj,k = 1 for j = 1, . . . , K
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A.2 Hidden Markov Model

satisfies:

τ̂j,k =
∑T
t=2 N

t
j,k∑K

l=1
∑T
t=2 N

t
j,l

(A.9)

Proof. The optimality conditions [4] require, for each j = 1, . . . , K:


∑T
t=2 N

t
1,1/τ̂1,1 · · · ∑T

t=2 N
t
1,K/τ̂1,K

... . . . ...∑T
t=2 N

t
K,1/τ̂K,1 · · ·

∑T
t=2 N

t
K,K/τ̂K,K

 =


λ1 · · · λ1

... . . . ...

λK · · · λK



Here we have represented K2 equations as a single K ×K matrix equation. Dividing

each equation by the corresponding λ term and multiplying by the τ term gives


∑T
t=2 N

t
1,1/λ1 · · · ∑T

t=2 N
t
1,K/λ1

... . . . ...∑T
t=2 N

t
K,1/λK · · · ∑T

t=2 N
t
K,K/λK

 =


τ̂1,1 · · · τ̂1,K

... . . . ...

τ̂K,1 · · · τ̂K,K



Computing the sum of each row and applying the constraint that ∑K
k=1 τ̂j,k = 1 gives


∑K
k=1

∑T
t=2 N

t
1,k/λ1

...∑K
k=1

∑T
t=2 N

t
K,k/λK

 =


1
...

1



so λj = ∑K
k=1

∑T
t=2 N

t
j,k for each j = 1, . . . , K. Hence τ̂j,k is as in (A.9).
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A.3 Hidden Markov Renewal Model

A.3. Hidden Markov Renewal Model

A.3.1. HMRM Homogeneity

We first establish that the HMRM is homogeneous – the probability distribution

of any future renewals and observations is constant with respect to the number of

renewals that have occurred previously. This result is perhaps to be expected given

MRP homogeneity (2.2b) and the homogeneity of the observations implied by (2.3a).

Theorem A.1 (HMRM Homogeneity). The distribution

p(xtr:T , tr+1:r+ρ, zr+1:r+ρ|tr, zr) is constant with respect to r. That is assuming

tr′:r′+ρ = tr:r+ρ and zr′:r′+ρ = zr:r+ρ then

p(xtr:T , tr+1:r+ρ, zr+1:r+ρ|tr, zr) = p(xt:T , tr′+1:r′+ρ, zr′+1:r′+ρ|tr′ , zr′) (A.10)

Proof. Factoring both sides of (A.10) and applying the homogeneity properties im-
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A.3 Hidden Markov Renewal Model

plied by (2.3a), (2.2b), shows that the two quantities are equal.

p(xtr:T , tr+1:r+ρ, zr+1:r+ρ|tr, zr)
(CRP )= p(xtr:T |tr:r+ρ, zr:r+ρ)× p(tr+1:r+ρ, zr+1:r+ρ|tr, zr)
(CRP )=

∏
u:u≥r,
tu≤T

p(xtu:(T∧tu+1−1)|xtr:tu−1, tr:r+ρ, zr:r+ρ)

×
r+ρ−1∏
u=r

p(tu+1, zu+1|tr:u, zr:u)

(2.3b)
(2.3a)
(2.2)=

∏
u:u≥r,
tu≤T

εduzu,zu+1(xtu:(T∧tu+1−1))×
r+ρ−1∏
u=r

ηzu,zu+1(du)τzu,zu+1

In the exact same manner as above we can show that:

p(xt:T , tr′+1:r′+ρ, zr′+1:r′+ρ|tr′ , zr′)

=
∏

u:u≥r′,
tu≤T

εduzu,zu+1(xt′u:(T∧t′u+1−1))×
r′+ρ−1∏
u=r′

ηzu,zu+1(du)τzu,zu+1

It is then clear that if tr′:r′+ρ = tr:r+ρ and zr′:r′+ρ = zr:r+ρ, the two sides of (A.10) are

also equal.
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A.3 Hidden Markov Renewal Model

A.3.2. Forward/Backward Probabilities

Here we derive formulas for the forward/backward sojourn/renewal probabilities.

First the forward sojourn probabilities:

φt,dj,k , p(∃r s.t. zr = j, zr+1 = k, tr = t+ 1− d, tr+1 = t+ 1, x1:t)

=
∑
r

p(zr = j, zr+1 = k, tr = t+ 1− d, tr+1 = t+ 1, x1:t)

(CRP )=
∑
r

p(xt+1−d:t|zr = j, zr+1 = k, tr = t+ 1− d, tr+1 = t+ 1, x1:t−d)

× p(zr+1 = k, tr+1 = t+ 1|s.t. zr = j, tr = t+ 1− d, x1:t−d)

× p(zr = j, tr = t+ 1− d, x1:t−d)
(2.7)

(A.10)= p(xt+1−d:t|zr = j, zr+1 = k, tr = t+ 1− d, tr+1 = t+ 1)

× p(zr+1 = k, tr+1 = t+ 1|zr = j, tr = t+ 1− d)

×
∑
r

p(zr = j, tr = t+ 1− d, x1:t−d)

(2.3b)
(2.2b)= εdj,k(xt+1−d:t)× ηj,k(d) τj,k × F t−d

j (A.11)

The forward renewal probabilities:

F t
k , p(∃r s.t. zr = k, tr = t+ 1, x1:t)

=
K∑
j=1

D∧t∑
d=1

p(∃r s.t. zr−1 = j, zr = k, tr−1 = t+ 1− d, tr = t+ 1, x1:t)

(2.8b)=
K∑
j=1

D∧t∑
d=1

φt,dj,k (A.12)
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A.3 Hidden Markov Renewal Model

The backward sojourn probabilities, for t+ d ≤ T

βt,dj,k , p(xt:T , zr+1 = k, tr+1 = t+ d|zr = j, tr = t)
(CRP )= p(xt+d:T , |xt:t+d−1, zr+1 = k, tr+1 = t+ d zr = j, tr = t)

× p(xt:t+d−1|zr+1 = k, tr+1 = t+ d, zr = j, tr = t)

× p(zr+1 = k, tr+1 = t+ d|zr = j, tr = t)
(2.7)

(2.3b)
(2.2b)= Bt+d

j × εdj,k(xt:t+d−1)× ηj,k(d) τj,k (A.13a)

and when t+ d ≥ T + 1:

βt,dj,k , p(xt:T , zr+1 = k, tr+1 = t+ d|zr = j, tr = t)
(CRP )= p(xt:T |zr = j, zr+1 = k, tr = t, tr+1 = t+ d)

× p(zr+1 = k, tr+1 = t+ d|zr = j, tr = t)
(2.3b)
(2.2b)= εdj,k(xt:T )× ηj,k(d) τj,k (A.13b)

Finally the backward renewal probabilities can be computed:

Bt
j , p(xt:T |zr = k, tr = t)

=
K∑
k=1

D∑
d=1

p(xt:T , zr+1 = k, tr+1 = t+ d|zr = j, tr = t)

(A.13)=
K∑
k=1

D∑
d=1

βt,dj,k (A.14)
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A.3.3. Complete Data Likelihood, Posterior

Renewal/Sojourn Probabilities, Likelihood

An expression for the complete data likelihood of a renewal sequence (z1:R+1, t1:R+1)

with tR ≤ T < tR+1 and observation sequence x1:T in an HMRM with parameter set

θ = {ι1:K , τ1:K,1:K , η1:K,1:K , ε1:K,1:K} is given by:

p(z1:R+1, t1:R+1, x1:T )

= p(x1:T |z1:R+1, t1:R+1)× p(z1:R+1, t1:R+1)
(2.3b)
(CRP )=

R−1∏
r=1

εdrzr,zr+1(xtr:tr+1−1) εdRzr,zr+1(xtR:T )

× p(z1, t1)×
R∏
r=1

p(zr+1, tr+1|z1:r, t1:r)

(2.2b)=
R−1∏
r=1

εdrzr,zr+1(xtr:tr+1−1) εdRzr,zr+1(xtR:T )

× p(z1, t1)×
R∏
r=1

τzr,zr+1ηzr,zr+1(dr) (A.15)

The posterior renewal probability can computed by first finding a formula for the
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joint probability

p(∃r s.t. zr = k, tr = t, x1:T )

=
∑
r

p(zr = k, tr = t, x1:T )

(CRP )= p(xt:T |x1:t−1, zr = k, tr = t)p(zr = k, tr = t, x1:t−1)
(2.1)

(A.10)= p(xt:T |zr = k, tr = t)
∑
r

p(zr = k, tr = t, x1:t−1)

= p(xt:T |zr = k, tr = t)p(∃r s.t. zr = k, tr = t, x1:t−1)

= Bt
kF

t−1
k (A.16)

and then, since t1 = 1, the likelihood can be computed

L , p(x1:T ) =
K∑
k=1

p(∃r s.t. zr = k, t1 = 1, x1:T )

(A.16)=
K∑
k=1

Bt
kF

t−1
k (A.17)

and finally normalizing the joint by the likelihood:

p(∃r s.t. zr = k, tr = t|x1:T ) = p(∃r s.t. zr = k, tr = t, x1:T )p(x1:T )
(A.16)= Bt

kF
t−1
k /L (A.18)

To get the computational formula for the posterior sojourn probabilities we first
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compute the joint

p(∃r s.t. zr = j, tr = t, zr+1 = k, tr+1 = t+ d, x1:T )

=
∑
r

p(zr = j, tr = t, zr+1 = k, tr+1 = t+ d, x1:T )

(CRP )=
∑
r

p(xt:T , zr+1 = k, tr+1 = t+ d|zr = j, tr = t, x1:t−1)

× p(zr = j, tr = t, x1:t−1)
(2.7)

(A.10)= p(xt:T , zr+1 = k, tr+1 = t+ d|zr = j, tr = t)

×
∑
r

p(zr = j, tr = t, x1:t−1)

= βt,dj,k × F t−1
j (A.19)

and normalize by the likelihood

p(∃r s.t. zr = j, tr = t, zr+1 = k, tr+1 = t+ d|x1:T )

= p(∃r s.t. zr = j, tr = t, zr+1 = k, tr+1 = t+ d|x1:T )/p(x1:T )
(A.19)= βt,dj,k × F t−1

j /L

A.3.4. EM Algorithm

Lemma A.4 shows how to compute the general form of an expectation that appears

multiple times in the “E” step of the EM algorithm for the HMRM.

Lemma A.4. If z1:R+1, t1:R+1 ∼MRP(ι1:K , τ1:K,1:K , η1:K,1:K , ε1:K,1:K , T ) then for any
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r = 1, . . . , R

Ez1:R+1,t1:R+1|x1:T ;θ

[
R∑
r=1

f(zr, zr+1, tr, tr+1)
]

=
K∑
j=1

K∑
k=1

T∑
t=1

D∑
d=1

f(j, k, t, t+ d)St,dj,k (A.20)

Proof. 1Let P ,
{
z1:R+1,
t1:R+1 s.t. tR ≤ T < tR+1

}
. For any z1:R+1, t1:R+1 ∈ P :

r ∈ {1, . . . , R} =⇒ tr ∈ {1, . . . , T}

by definition of R. Further, by definition of D:

tr = t =⇒ tr+1 ∈ {t+ 1, . . . , t+D}

Finally, zr ∈ {1, . . . , K}, zr+1 ∈ {1, . . . , K} for any r.

∑
z1:R+1,
t1:R+1 ∈P

R∑
r=1

f(zr, zr+1, tr, tr+1)p(z1:R+1, t1:R+1|x1:T )

=
K∑
j=1

K∑
k=1

T∑
t=1

D∑
d=1

∑
z1:R+1,
t1:R+1 ∈P

R∑
r=1

f(j, k, t, t+ d)

× p(z1:R+1, t1:R+1|x1:T )I{z = j, zr+1 = k, tr = t, tr+1 = d}

=
K∑
j=1

K∑
k=1

T∑
t=1

D∑
d=1

∑
z1:R+1,
t1:R+1 ∈P s.t.
∃r with
tr=t, tr+1=t+d,
zr=j, zr+1=k

f(j, k, t, t+ d)p(z1:R+1, t1:R+1|x1:T )

1Our proof uses elements of both [12] and [1].

132



A.4 Bridging-Means Sub-model

=
K∑
j=1

K∑
k=1

T∑
t=1

D∑
d=1

f(j, k, t, t+ d)
∑

z1:R+1,
t1:R+1 ∈P s.t.
∃r with
tr=t, tr+1=t+d,
zr=j, zr+1=k

p(z1:R+1, t1:R+1|x1:T )

=
K∑
j=1

K∑
k=1

T∑
t=1

D∑
d=1

f(j, k, t, t+ d)St,dj,k

We additionally use the following result in the “E” step of the EM algorithm for the

HMRM:

Ez1:R+1,t1:R+1|x1:T ;θ(n) [f(z1)]

=
∑

z1:R+1,
t1:R+1 ∈P

f(z1)p(z1:R+1, t1:R+1|x1:T )

=
K∑
k=1

f(k)
∑

z1:R+1,
t1:R+1 ∈P s.t.
z1=k

p(z1:R+1, t1:R+1|x1:T )

=
K∑
k=1

f(k)E1
k (A.21)

A.4. Bridging-Means Sub-model

Each of (A.22)-(A.27) is defined to be a sum based on a contiguous subset xt:(t+d)∧(T−t)

of x1:T , e.g., St,d(x1:T ) is simply the sum of the elements in the xt:(t+d)∧(T−t). We given

recursive expression for each of (A.22)-(A.27), enabling their computation in O(1)

time, given the previously computed values.
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A.4 Bridging-Means Sub-model

Lemma A.5. Given the following definitions (,) the following recursive equalities

(=) hold:

St,d(x1:T ) ,
d−1∧T−t∑
δ=0

xt+δ

=


St,d−1(x1:T ) + xt+d−1 if t+ d− 1 ≤ T

St,d−1(x1:T ) if t+ d− 1 ≥ T + 1
(A.22)

Et,d(x1:T ) ,
d−1∧T−t∑
δ=0

δxt+δ

=


Et,d−1(x1:T ) + (d− 1)xt+d−1

Et,d−1(x1:T )
(A.23)

Dt,d(x1:T ) ,
d−1∧T−t∑
δ=0

(d− δ)xt+δ

=


Dt,d−1(x1:T ) + St,d(x1:T )

Dt,d−1(x1:T ) + St,d(x1:T )
(A.24)

Vt,d(x1:T ) ,
d−1∧T−t∑
δ=0

δ2xt+δ

=


Vt,d−1(x1:T ) + (d− 1)2 xd−1

Vt,d−1(x1:T )
(A.25)

Ut,d(x1:T ) ,
d−1∧T−t∑
δ=0

(d− δ)2 xt+δ

=


Ut,d−1(x1:T ) + 2Dt,d(x1:T )− St,d(x1:T )

Ut,d−1(x1:T ) + 2Dt,d(x1:T )− St,d(x1:T )
(A.26)
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A.4 Bridging-Means Sub-model

Ct,d(x1:T ) ,
d−1∧T−t∑
δ=0

δ (d− δ)xt+δ

=


Ct,d−1(x1:T ) + Et,d−1(x1:T ) + (d− 1)xt+d−1

Ct,d−1(x1:T ) + Et,d−1(x1:T )
(A.27)

Pt,d ,
d−1∧T−t∑
δ=0

(d− δ)2

=


1
6(1 + d)d(1 + 2d)

Pt,d−1 − (T − t+ 1)(T − t− 2d+ 1)
(A.28)

Qt,d ,
d−1∧T−t∑
δ=0

δ2

=


Qt,d−1 + (d− 1)2

Qt,d−1

(A.29)

Rt,d ,
d−1∧T−t∑
δ=0

δ(d− δ)

=


1
6(d− 1)d(d+ 1)

Rt,d−1 + 1
2(T − t+ 1)(T − t)

(A.30)

Proof. First we consider the case when t+ d− 1 ≤ T . (A.22), (A.23), and (A.25) are

all trivial. For (A.24) we note that:

Dt,d(x1:T )−Dt,d−1(x1:T ) =
d−1∑
δ=0

(d− δ)xt+δ −
d−2∑
δ=0

(d− 1− δ)xt+δ = xt+d−1 +
d−2∑
δ=0

xt+δ
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A.4 Bridging-Means Sub-model

For (A.26), we use the fact that z2 − (z − 1)2 = 2z − 1:

Ut,d(x1:T )− Ut,d−1(x1:T ) =
d−1∑
δ=0

(d− δ)2 xt+δ −
d−2∑
δ=0

(d− δ − 1)2 xt+δ

=xt+d−1 + 2
d−2∑
δ=0

(d− δ)xt+δ −
d−2∑
δ=0

xt+δ

=2
d−1∑
δ=0

(d− δ)xt+δ −
d−1∑
δ=0

xt+δ

For (A.27):

Ct,d(x1:T )− Ct,d−1(x1:T ) =
d−1∑
δ=0

δ (d− δ)xt+δ −
d−2∑
δ=0

δ (d− 1− δ)xt+δ

= (d− 1)xt+d−1 +
d−2∑
δ=0

δxt+δ

Now the case when t + d− 1 ≥ T + 1. (A.22), (A.23), and (A.25) are all trivially 0.

For (A.24) we note that:

Dt,d(x1:T )−Dt,d−1(x1:T ) =
d−1∧T−t∑
δ=0

(d− δ)xt+δ −
d−2∧T−t∑
δ=0

(d− 1− δ)xt+δ =
T−t∑
δ=0

xt+δ

For (A.26):

Ut,d(x1:T )− Ut,d−1(x1:T ) =
d−1∧T−t∑
δ=0

(d− δ)2 xt+δ −
d−2∧T−t∑
δ=0

(d− 1− δ)2 xt+δ

=2
T−t∑
δ=0

(d− δ)xt+δ −
T−t∑
δ=0

xt+δ

136



A.5 Stochastic Volatility Sub-model

For (A.27):

Ct,d(x1:T )− Ct,d−1(x1:T ) =
d−1∧T−t∑
δ=0

δ (d− δ)xt+δ −
d−2∧T−t∑
δ=0

δ (d− 1− δ)xt+δ

=
T−t∑
δ=0

δxt+δ

A.5. Stochastic Volatility Sub-model

The following lemma is an analog to Lemma A.4 for a hidden augmented Markov

renewal process.

Lemma A.6. If (z1:R+1, t1:R+1, v1:R) ∼ AMRP(ι1:K , τ1:K,1:K , η1:K,1:K , ε1:K,1:K , T )

then

Ez1:R+1
t1:R+1
v1:R

∣∣∣∣∣x1:T

[
R∑
r=1

f(zr, zr+1, tr, tr+1, vr)
]

=
K∑
j=1

K∑
k=1

T∑
t=1

D∑
d=1
E

vr

∣∣∣∣∣xt:t+d−1∧T
zr=j,zr+1=k
tr=t,tr+1=t+d

[f(j, k, t, t+ d, v)]St,dj,k (A.31)

Proof. Let P ,
{
z1:R+1,
t1:R+1 s.t. tR ≤ T < tR+1

}
. Then

Ez1:R+1
t1:R+1
v1:R

∣∣∣∣∣x1:T

[
R+1∑
r=1

f(zr, zr+1, tr, tr+1, vr)
]

=
ˆ
v1:R

R∑
r=1

f(zr, zr+1, tr, tr+1, vr)p(z1:R+1, t1:R+1, v1:R|x1:T )dv1:R
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A.5 Stochastic Volatility Sub-model

(CRP )
(3.12)=

K∑
j=1

K∑
k=1

T∑
t=1

D∑
d=1

∑
z1:R+1
t1:R+1∈ P

ˆ
v1:R

R∑
r=1

f(j, k, t, t+ d, vr)

× p(vr|zr = j, tr = t, tr+1 = t+ d, x1:T )

× p(v\r|z1:R+1, t1:R+1, x1:T )p(z1:R+1, t1:R+1|x1:T )

× I{z = j, zr+1 = k, tr = t, tr+1 = d}dv1:R

=
K∑
j=1

K∑
k=1

T∑
t=1

D∑
d=1

∑
z1:R+1
t1:R+1∈ P
s.t. ∃r with
tr=t, tr+1=t+d,
zr=j, zr+1=k

ˆ
v1:R

f(j, k, t, t+ d, vr)

× p(vr|zr = j, tr = t, tr+1 = t+ d, x1:T )

× p(v\r|z1:R+1, t1:R+1, x1:T )

× p(z1:R+1, t1:R+1|x1:T )dv1:R

=
K∑
j=1

K∑
k=1

T∑
t=1

D∑
d=1

ˆ
vr

f(j, k, t, t+ d, vr)

× p(vr|zr = j, tr = t, tr+1 = t+ d, x1:T )dvr

×
∑

z1:R+1
t1:R+1∈ P
s.t. ∃r with
tr=t, tr+1=t+d,
zr=j, zr+1=k

ˆ
v\r

p(v\r|z\r, t1:R+1, x1:T )dv\rp(z1:R+1, t1:R+1|x1:T )

(3.12)=
K∑
j=1

K∑
k=1

T∑
t=1

D∑
d=1

ˆ
vr

f(j, k, t, t+ d, vr)

× p(vr|zr = j, tr = t, tr+1 = t+ d, xt:(t+d−1∧T ))dvrSt,dj,k

=
K∑
j=1

K∑
k=1

T∑
t=1

D∑
d=1
E

vr

∣∣∣∣∣xt:t+d−1∧T
zr=j,zr+1=k
tr=t,tr+1=t+d

[f(j, k, t, t+ d, v)]St,dj,k
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A.6 Forecasting

A.6. Forecasting

We wish to find an expression for the f -step ahead forecast distribution: p(xt+f |x1:t).

To this end, we first define forecast renewal probabilities as:

F t,f
j , p (∃r s.t. zr = k, tr = t+ 1 + f, x1:t)for

[
t=0,...,T
k=1,...,K
f=0,1,...

]
(A.32)

Note that F t,0
j = F t

j , with F t
j as defined in (2.8a). These forecast renewal probabilities

can be computed in a manner akin to the forward algorithm.

Throughout this section we will make the assumption that the distribution of obser-

vations at the beginning of an observation subsequence is independent of the length

of the subsequence:

p
(
xt:t+d | ∃rzr=j

tr=t ,
zr+1=k
tr+1=t+d

)
= p

(
xt:t+d | ∃rzr=j

tr=t ,
zr+1=k
tr+1=t+d′

)
for

[
d=1,...,D
d′≥d

]
(A.33)

Note this assumption does not hold in the case of the bridging-means model, but it

does hold for the AR(1)-SV HMRM.

A.6.1. Computing the Forecast Renewal Probabilities

Applying (2.5) we have:
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A.6 Forecasting

F t,f
k , p

(
∃rzr=k

tr=t+f+1, x1:t
)

=
K∑
j=1

D∧t+f∑
d=1

p
(
∃rzr−1=j

tr−1=t+f+1−d,
zr=k
tr=t+f+1, x1:t

)

When d ≤ f the renewal tr = t+ f + 1, zr = k is independent of x1:t and we have

p
(
∃rzr−1=j

tr−1=t+f+1−d,
zr=k
tr=t+f+1, x1:t

)
(CRP )= p

(
zr=k
tr=t+f+1 | ∃r

zr−1=j
tr−1=t+f+1−d, x1:t

)
× p

(
∃rzr−1=j

tr−1=t+f+1−d, x1:t
)

= τj,kfηj,k(d)× F t,f−d
j

When f + 1 ≤ d the renewal tr = t + f + 1, zr = k is not independent of xt+f+1−d:t

and we have:

p
(
∃rzr−1=j

tr−1=t+f+1−d,
zr=k
tr=t+f+1, x1:t

)
(CRP )= p

(
xt+f+1−d:t | ∃rzr−1=j

tr−1=t+f+1−d,
zr=k
tr=t+f+1, x1:t+f−d

)
× p

(
zr=k
tr=t+f+1 | ∃rzr=j

tr=t+f+1−d, x1:t+f−d
)
× p

(
∃rzr=j

tr=t+f+1−d, x1:t+f−d
)

(2.7)
(A.33)= fεd

j,k
(xt+f+1−d:t)× τj,kfηj,k(d)× F t+f−d,0

j

So these probabilities can be computed recursively for f = 1, 2, . . ..

F t,fk ←
K∑
j=1

 f∑
d=1

τj,kfηj,k(d)× F t,f−dj +
D∧t+f∑
d=f+1

fεd
j,k

(xt+f+1−d:t)× τj,kfηj,k(d)× F t+f−d,0j


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A.6 Forecasting

A.6.2. Forecast Distribution

We first consider the joint distribution p(xt+f , x1:t) rather than the forecast distribu-

tion p(xt+f |x1:t), as the later is easily recovered from the former:

p(xt+f , x1:t)

=
K∑
j=1

K∑
k=1

(D∧t+f)−1∑
d=0

p
(
xt+f ,∃rzr=j

tr=t+f−d,
zr+1=k
tr+1>t+f | x1:t

)
(CRP )=

K∑
j=1

K∑
k=1

(f∧D)−1∑
d=0

p
(
xt+f |∃rzr=j

tr=t+f−d,
zr+1=k
tr+1>t+f

)

× τj,kη>dj,k × F
t,f−d−1
j

+
(D∧t+f)−1∑

d=f
p
(
xt+f | xt+f−d:t,∃rzr=j

tr=t+f−d,
zr+1=k
tr+1>t+f

)

× fεd−f+1
j,k

(xt+f−d:t)× τj,kη>dj,k × F
t+f−d−1,0
j (A.34)

Where we have utilized the following notation for the complimentary distribution

function of ηj,k:

η>dj,k , p
(
zr+1=k
tr+1>t+d |

zr=j
tr=t

)
=

D∑
δ=d+1

fηj,k(δ)

The remaining terms needed for the forecast distribution

p
(
xt+f |∃rzr=j

tr=t+f−d,
zr+1=k
tr+1>t+f

)
and p

(
xt+f | xt+f−d:t,∃rzr=j

tr=t+f−d,
zr+1=k
tr+1>t+f

)
(A.35)
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A.6 Forecasting

are dependent on the choice of emission distributions. In the next subsection we find

formulas for these in the case of the AR(1)-SV HMRM.

When f = 1, computation of the forecast distribution serves a practical purpose.

From the CRP, we can compute the likelihood from our f = 1 forecasts as

L =
T∏
t=1

p(xt|x1:t−1)

which can be tested against (2.10a). This helps ensure, at least in the f = 1 case, our

forecast derivations and code are correct. These forecasts can also be used to compute

p(x1:t), which is used in conjunction with(A.34) to yield the forecast distribution of

p(xt+f |x1:t).

A.6.3. AR(1)-SV HMRM Specifics

We split the computation of (A.35) into two cases. For the rest of this section we

assume zr = j, zr+1 = k, tr = t+ f − d, tr+1 > t+ f is given.

A.6.3.1. case 1: p
(
xt+f |∃rzr=j

tr=t+f−d,
zr+1=k
tr+1>t+f

)

In the case of the AR(1)-SV HMRM, this case is further split into two sub-cases.

sub-case 1a: d = 0 This case implies that a renewal is coincident with t+ f :

xt+f ∼ N
(
µg(j,k), σ

2
g(j,k)

)
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A.6 Forecasting

sub-case 1b: d ∈ {1, . . . , f − 1} This case means that a renewal occurs after xt,

the last given observation, and an unobserved jump has occurred.

xt+f |xt+f−d, v ∼ N

φfj,kxu + µl(j,k)

f−1∑
δ=0

φδl(j,k),
σ2
l(j,k)

v

f−1∑
δ=0

φ2δ
l(j,k)


So

xt+f − φfj,kxt+f−d − µl(j,k)
∑d−1
δ=0 φ

δ
l(j,k)

σl(j,k)
√∑d−1

δ=0 φ
2δ
l(j,k)

|xt+f−d ∼ T (νj,k)

Note that

x− µ
σ
|µ, σ ∼ T (ν)

=⇒

p(x|µ, σ) = 1
σ
fT

(
x− µ
σ

; ν
)

Thus

p(xt+f ) = 1
σl(j,k)

√∑d−1
δ=0 φ

2δ
l(j,k)

ˆ
xt+f−d

fT

(
xt+f − φfj,kxt+f−d − µl(j,k)

d−1∑
δ=0

φδl(j,k); νj,k
)

× fN
(
xt+f−d;µg(j,k), σ

2
g(j,k)

)
dxt+f−d

This integral cannot be computed analytically. However it might be possible to eval-

uate it using numerical integration routines. Fortunately, because we are primarily

interested in the moments of this distribution, we needn’t compute this integral.
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A.6 Forecasting

A.6.3.2. case 2: p
(
xt+f | xt+f−d:t,∃rzr=j

tr=t+f−d,
zr+1=k
tr+1>t+f

)

In this model, for each observation subsequence starting at time u, we have

xu+1|xu, v = φj,kxu + µl(j,k) + εu+1, where εu+1|v ∼ N (0, σ2
l(j,k)/v) and v is the

(inverse) variance for the corresponding sojourn. This implies that xu+w|xu, v =

φwj,kxu + µl(j,k)
∑w−1
δ=0 φ

δ
l(j,k) +∑w−1

δ=0 φ
δ
l(j,k)εu+δ+1. Thus

xt+f |v, xt+f−d:t

∼ N

φfj,kxt + µl(j,k)

f−1∑
δ=0

φδl(j,k),
σ2
l(j,k)

v

f−1∑
δ=0

φ2δ
l(j,k)


v|xt+f−d:t

∼ Ga

νj,k + (d− f)
2 ,

νj,k
2 +

∑d−f
δ=1 (xt+f−d+δ − φj,kxt+f−d+δ−1 − µl(j,k))2

2σ2
l(j,k)


and so

xt+f − φfj,kxt − µl(j,k)
∑f−1
δ=0 φ

δ
l(j,k)

σl(j,k)

√∑f−1
δ=0 φ

2δ
l(j,k)

×
√√√√ νj,k + (d− f)
νj,k +∑d−f

δ=1 (xt+f−d+δ − φj,kxt+f−d+δ−1 − µl(j,k))2/σ2
l(j,k)
|xt+f−d:t

∼ T (νj,k + d− f)
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A.6.3.3. Moments

Case 1a is trivial:

E
[
xt+f | ∃rzr=j

tr=t+f−d,
zr+1=k
tr+1>t+f

]
= µg(j,k)

V ar
[
xt+f | ∃rzr=j

tr=t+f−d,
zr+1=k
tr+1>t+f

]
= σ2

g(j,k) (A.36)

For case 1b, we note that xt+f |v = φf−dj,k xt+f−d + µl(j,k)
∑d−1
δ=0 φ

δ
l(j,k) + ∑d−1

δ=0 φ
δ
l(j,k)εδ

where each εδ|v ∼ N (0, σ2
l(j,k)/v) . This implies that ∑d−1

δ=0 φ
δ
l(j,k)εδ|v ∼

N
(

0, σ
2
l(j,k)
v

∑d−1
δ=0 φ

2δ
l(j,k)

)
, so 1

σl(j,k)

√∑d−1
δ=0 φ

2
l(j,k)

∑d−1
δ=0 φ

δ
l(j,k)εδ ∼ T (νj,k), and finally

V ar
[∑d−1

δ=0 φ
δ
l(j,k)εδ

]
= σ2

l(j,k)
∑d−1
δ=0 φ

2
l(j,k)νj,k/ (νj,k − 2) for νj,k > 2. It is clear from

the previous equation that that we cannot meaningfully forecast the variance when

there exists j and k such that νj,k ≤ 2.

E
[
xt+f∃rzr=j

tr=t+f−d,
zr+1=k
tr+1>t+f

]
= φf−dj,k µg(j,k) + µl(j,k)

d−1∑
δ=0

φδl(j,k)

V ar
[
xt+f∃rzr=j

tr=t+f−d,
zr+1=k
tr+1>t+f

]
= φ

2(f−d)
j,k σ2

g(j,k) + σ2
l(j,k)

d−1∑
δ=0

φ2
l(j,k)νj,k/ (νj,k − 2) (A.37)
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For case 2:

E
[
xt+fz | xt+f−d:t,∃rzr=j

tr=t+f−d,
zr+1=k
tr+1>t+f

]
= φfj,kxt + µl(j,k)

f−1∑
δ=0

φδl(j,k)

V ar
[
xt+f | xt+f−d:t, ∃rzr=j

tr=t+f−d,
zr+1=k
tr+1>t+f

]
= νj,k + d− f

νj,k + d− f − 2 × σ
2
l(j,k)

f−1∑
δ=0

φ2δ
l(j,k)

×
νj,k +∑d−f

δ=1 (xt+f−d+δ − φj,kxt+f−d+δ−1 − µl(j,k))2/σ2
l(j,k)

νj,k + (d− f) (A.38)
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Nomenclature

ACF auto-correlation function

CDL complete data likelihood; for the MM, HMM, this is p(x1:T , s1:T ; θ),

for the HMRM it is p(x1:T , s1:R+1, t1:R+1; θ)

CDLL complete data log likelihood, the logarithm of the CDL

CRP chain rule of probability, p(v1:N) = ∏N
n=1 p(vn|v1:n−1)

DGM directed graphical model, also called a Bayesian network

EDHMM explicit duration hidden markov model, one of the simplest and

most popular HSMMs

EM expectation maximization

HMM hidden Markov model

HRM hidden renewal Model; an HMRM that does not switch between

states – equivalently an HMRM with K = 1
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Nomenclature

HSMM hidden semi-Markov model

iid independent and indentically distributed

MAP maximum a posteriori probability (estimate)

MLE maximum likelihood estimator/estimation

MM (finite) mixture model

MRP Markov renewal process

s.t. such that

SMK semi-Markov kernel

SMP semi-Markov process

SV stochastic volatility

TPM transition probability matrix

Cat the categorical distribution, x ∼ Cat(ι1:K) if p(x = k) = ιk for

k = 1 . . . K

Geo the geometric distribution, x ∼ Geo(π) if p(x = d) = (1 − π)d−1π

for d = 1, 2, . . .

MC MC(ι1:K , τ1:K,1:K) is Markov chain with initial distribution ι1:K and

transition probability matrix τ1:K,1:K
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Nomenclature

MRP MRP(ι1:K , τ1:K,1:K , η1:K,1:K , ε1:K,1:K) is a Markov renewal pro-

cess with initial distribution ι1:K , transition probability matrix

τ1:K,1:K , holding-time distributions η1:K,1:K , and emission distri-

butions ε1:K,1:K

NB the negative binomial distribution, x ∼ NB(r, p) if p(x = d) =(
d+r−2
d−1

)
(1− p)d−1pr for d = 1, 2, . . .

N the normal distribution, x ∼ N (µ, σ2) if p(x) = 1
σ
√

2πe
− (x−µ)2

2σ2 for

x ∈ R

Pois the Poisson distribution, x ∼ Pois(λ) if p(x = d) = λd−1 e−λ

(d−1)! , for

d = 1, 2, . . .

fD(·; θ) the density or mass function for a distribution D with parameter(s)

θ

emissions observed values in a model, x1:T

factorize exploiting independencies to express a probability or density as a

product (of factors)

holding-time the length of an observation subsequence, dr , tr+1− tr, is the rth

holding-time

Markov property p(st+1|s1:t) = p(st+1|st)

renewal a (superstate,renewal-time) pair, (zr, tr) is called the rth renewal
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Nomenclature

renewal time the starting time for an observation subsequence, tr is the starting

time for the rth observation subsequence

sequence a finite, ordered, set; e.g. s1:T = {s1, s2, . . . , sT}

sojourn a pair of adjacent renewals, (zr, tr), (zr+1, tr+1) is the rth sojourn

state an element of the unobserved sequence, st the state at time t

sub-model a specification of ε, η, and the corresponding maximizers for Qε

and Qη

superstate an unobserved value, zr, associated with times

tr, tr + 1, . . . , tr+1 − 1 in an MRP

update formulas the formulas for the next iteration’s parameters, theta(n+1), in the

EM algorithm

βt,dj,k backward sojourn probability, βt,dj,k , p(xt:T , zr+1 = k, tr+1 = t +

d|zr = k, tr = t)

ŝ1:T the maximum posterior state sequence,

ŝ1:T , arg maxs1:T
p(s1:T |x1:T )

ẑ1:R+1, t̂1:R+1 the maximum posterior renewal sequence,

ẑ1:R+1, t̂1:R+1 , arg maxz1:R+1,t1:R+1
p(z1:R+1, t1:R+1|x1:T )

M t
k in an HMM – the maximum posterior probability of all state se-

quences ending with st = k, maxs1:t−1 p(st = k, s1:t−1|x1:T ); in
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Nomenclature

an HMRM – the maximum posterior probability of all state se-

quences ending with (zr = k, tr = t), max r=1,...,t
z1:r−1,t1:r−1

p(zr = k, tr =

t, z1:r−1, t1:r−1|x1:T )

S t
k the value of st in the maximum posterior probability state sequence

ending with st+1 = k

T t
k the value of tr−1 in the maximum posterior probability renewal

sequence ending with (zr = k, tr = t)

Z t
k the value of zr−1 in the maximum posterior probability renewal

sequence ending with (zr = k, tr = t)

φt,dj,k forward sojourn probability, φt,dj,k , p(∃r s.t. zr = j, zr+1 = k, tr =

t− 1 + d, tr+1 = t, x1:t)

Atk posterior state probability, Atk , p(st = k|x1:T ; θ)

F t
k in an HMM – the forward probability F t

k , p(st = k, x1:t−1); in

an HMRM – the forward renewal probability F t
k , p(∃r s.t. zr =

k, tr = t+ 1, x1:t)

St,dj,k posterior sojourn probability, St,dj,k , p(∃r s.t. zr = j, zr+1 = k, tr =

t, tr+1 = t+ d|x1:T )

∗ element-wise product, e.g. yt:u ∗ zt:u = (ytzt, yt+1, zt+1, . . . , yuzu)

|= conditional independence; A |= B|C ⇐⇒ p(A,B|C) =

p(A|C)p(B|C) ⇐⇒ p(A|B,C) = p(A|C) ⇐⇒ p(B|A,C) =
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Nomenclature

p(B|C)

← denotes that a variable is being set to some value, typically used

in the context of an algorithm

ˆ denotes a maximizer, e.g. θ̂ = arg max
θ

p(x1:T ; θ)

I the indicator function, I{expr} = 1 if expr is true, and I{expr} = 0

if expr is false

N the natural numbers, 1, 2, 3, ...

∼ is distributed as, e.g. x ∼ N (µ, σ2) if p(x) = 1
σ
√

2πe
− (x−µ)2

2σ2 for

x ∈ R

∨ the maximum of two numbers, x ∨ y , max(x, y)

∧ the minimum of two numbers, x ∧ y , min(x, y)

pa(v) in a DGM this is the set of all nodes that are parents of v, that is

all nodes u such that u→ v

sd(·) the sample standard deviation

v\t specifies all but the tth element in a sequence, v1:T \ {vt}

: Specifies a contiguous sequence of values, e.g. vt:u ≡

(vt, vt+1, . . . , vu). Two subscripts can be used to express a ma-

trix, e.g. τ1:K,1:K ; τk,1:K represents the kth row and τk,1:K the kth

column. If t > u, then the convention is that vt:u = ∅.
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Nomenclature

diag[v] the diagonal matrix with the vector v as the diagonal

α the state distribution in an MM, p(st = k) = αk for every t =

1 . . . T

η the holding-time distribution

ηdj,k , p(tr+1 − tr = d|zr = j, zr+1 = k)

ι the initial distribution; in an HMM, ιk = p(s1 = k) for k = 1 . . . K,

in an HMRM ιk = p(z1 = k)

τ the transition distribution or transition probability matrix; τj,k ,

p(st+1 = k|st = j) for an HMM,

τj,k , p(zr+1 = k|zr = j) for an HMRM

θ all the model’s parameters; θ , {ι, ε} for an MM, θ , {ι, ε, τ} for

an HMM, θ , {ι, ε, τ, η} for an HMRM

ε the emmission distribution εk(xt) , p(xt|st = k) for an MM and

HMM,

εdj,k(xt:(t+d−1∧T )) , p(xt:(t+d−1∧T )|∃r s.t zr = j, zr+1 = k, tr =

t, tr+1 = t+ d) for an HMRM

K the number of hidden (super)states in a model; in an MM or HMM

st ∈ 1, . . . , K for each t, in an HMRM zr ∈ 1, . . . , K for each r

dr the rth holding-time, dr , tr+1 − tr
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Nomenclature

R the number of renewals occurring (strictly) before time T + 1 in

an HMRM

st the state of the model corresponding to observation xt

T the number of observations

tr the rth renewal-time, equivalently the time of the beginning of the

rth observation subsequence xtr:tr+1−1

xt the observation at time t

zr the superstate coinciding with the rth observation subsequence
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