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Abstract
Introduction: Brain-machine interfaces (BMIs) have been developed to enable cogni-

tive control of computers and robotic devices. Such technology might potentially lead

to restoring movement for persons with motor disabilities by allowing them to control

robotic prostheses or orthoses naturally with their mind. However, BMIs are still in

their infancy, and long-term usage with closed-loop systems has not been thoroughly

studied, nor the subsequent changes in the brain induced by cortical plasticity.

Methods : Seven able-bodied subjects were recruited for a longitudinal BMI train-

ing paradigm with the Rex lower-limb exoskeleton. Participants developed their abil-

ity to use motor imagery over nine sessions to initiate the Rex’s walking and stopping

as a Go-No Go task. The BMI consisted of active EEG processed through a Local-

ized Fisher Discriminant Analysis dimensionality reduction and a Gaussian Mixture

Model classifier on time-lagged δ band amplitudes. Training data were accumulated

to update the decoding model over the first five sessions, after which model parame-

ters were fixed for subjects to adapt to their personalized model. Subjects underwent

a final session with simultaneous EEG-fMRI recording while watching video playback

of themselves walking in the Rex performing the same motor imagery.

Discussion: BMI decoding for control of the Rex’s gait varied among the subjects,

with at least some achieving significantly above chance classification performance by

the end of training. The fMRI scans showed contrasts in activation between the Walk

and Stop conditions localized in the precentral gyrus among other areas associated

with motor imagery. Offline EEG analysis identified ERPs corresponding to the walk

cue, but these may not have been reliably detected by the classifier.

Significance: The novelty in this study is the extended use of a subject pool

continuously for many sessions of BMI training to control a walking exoskeleton. The

longitudinal aspect provides insights into how much training subjects may need to

achieve reliable classification, what factors separate good BMI operators from poor

ones, and what other features may be more relevant in future BMI applications.
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Chapter 1

Introduction

Recent estimates indicate that paralysis and other motor disabilities afflict more

than 5 million individuals in the United States [1]. Spinal cord injury (SCI), stroke,

and multiple sclerosis together account for nearly 80% of these cases; for SCI in

particular, more than 80% of cases are attributed to either motor vehicle accidents,

falls, or acts of violence (primarily gunshot wounds) [2]. In addition to drastically

reducing the quality of life due to lack of mobility, SCI incurs monumental costs to

both the patients and the overall healthcare system of more than $40 billion annually

[3]. Nearly 42% of the paralyzed population are unable to work due to disability,

with lifetime costs of care accruing up to $2.5 million for individuals with paraplegia

and more than double that amount for those with tetraplegia. These figures make

clear the need for seeking novel methods to restore movement and mobility for the

paralyzed population.

Conventional means of restoring motor function via physical rehabilitation are

often variable and incomplete, particularly in the case of gait and the ability for

patients to independently navigate their environment. Bottom-up approaches are

typically applied when there is some residual ability for movement: therapists act on

the distal physical level (bottom) aiming to influence the neural system (top), thereby

promoting mechanisms of neural plasticity [4]. Traditional therapies to improve func-

tional ambulation for patients may involve overground training and require designed

preparatory exercises, observation by a physical therapist, direct manipulation of the

limbs during gait over a regular surface, followed by supervised walking. This type

of physical rehabilitation is both physically burdensome and time-consuming for the

therapists, as such repetitive guided movements can be performed more consistently
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by robotic systems.

For motor restoration and rehabilitation, powered robots in the form of orthotic

exoskeletons use actuators to apply torques on the joints of the leg to assist in gait.

While prosthetic systems also exist whereby an amputated limb is wholly replaced, we

focus here only on the former category, which act externally on the disabled limbs to

either restore movement if the limb is paralyzed or to rehabilitate the limb if recovery

can be expected through reforming the neuromuscular pathways. Exoskeletons have

been used extensively for motor rehabilitation as part of robot-assisted gait therapy

[5, 6, 7], having been shown to have bottom-up changes on the brain, even when only

physically affecting the lower limbs [8, 9, 10], and even more so when combined with

neural stimulation [11, 12, 13, 14, 15]. However, these devices are generally operated

by unnatural physical maneuvers, e.g., pressing buttons or joysticks [16] or shifting

body weight to initiate walking [17].

Brain-machine interfaces (BMIs), which record the users’ brain signals to detect

motor intent, hope to substitute a volitional cognitive control for users who are fully

dependent on these devices, to regain a mobility as seamless as they had prior to

injury. This also ensures cognitive engagement in the motor task, thereby promoting

stronger neuroplasticity [18, 19, 20, 21, 22]. BMI efforts involving the surgical im-

plantation of electrodes in the brain have gone as far to enable tetraplegic patients

to manipulate a robotic arm to feed themselves [23, 24, 25, 26]. But while these

invasive BMIs offer more reliable signals for better control, these come at the expense

of greater risk from the surgical procedures, higher costs, and complications due to

implant degradation over time. Similar, but weaker, neural signals can be recorded

from the scalp through electroencephalography (EEG) use in a non-invasive BMI sys-

tem. Much of the focus on BMI research has been aimed at upper-limb reaching tasks

[27], but a review of the relevant literature concerning EEG control of lower-limb ex-

oskeletons for walking concludes a need for significant improvement in reliability and
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accuracy for these systems to be adopted outside of the highly controlled environment

of a lab or clinic [28]. Moreover, limited longitudinal studies leave the long-term ef-

fects on performance and changes in the brain as a result of extended BMI training

to be underexplored.

A study by Donati et al. [29] is of particular note since it demonstrated induced

neurological recovery in 8 SCI patients through long-term EEG-based BMI training

with an exoskeleton. The intensive 12 month training paradigm incorporated nearly

600 collective hours for a combination of traditional rehabilitation with a treadmill-

based exoskeleton and overground harness-supported walking; BMI training in a vir-

tual environment with tactile feedback; and BMI control of both the treadmill-based

exoskeleton and a separate overground exoskeleton system. As a result of the training,

the reported results indicated major neurological improvements in somatic sensation,

recovery of some voluntary motor control below the level of injury, and an upgrade

from complete to incomplete SCI classification in half the patients. While this was

indeed a significant achievement showcasing new rehabilitation potential for EEG-

based BMI systems, the wide breadth of the training protocol obfuscates what would

be minimally necessary to reproduce the same results for other patients and leaves

unanswered the isolated contribution of extensive BMI training with an exoskeleton.

This dissertation aims to address the high-level question of whether individuals

can be trained to control a walking exoskeleton with their EEG, and if this can ulti-

mately be a means to restore mobility for the paralyzed population. The hypothesis

proposed is that able-bodied subjects can be trained to elicit their kinesthetic motor

imagery (KI) [30, 31] to initiate walking and stopping in a robotic exoskeleton, and

that longitudinal training will both show improved performance and induce plastic-

ity in the cortical pathways underlying the imagery of gait. This hypothesis will be

investigated by addressing the following two specific aims:

Specific Aim 1 (SA1): Assess the ability to predict from δ band EEG the intention
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of users to walk and stop while controlling a robotic lower limb exoskeleton.

Specific Aim 2 (SA2): Identify the neural correlates of KI through offline analysis

of electroencephalography and functional magnetic resonance imaging, and how these

correlates relate to brain-machine interface performance.

The remaining chapters of this dissertation will be organized as follows. The sec-

ond chapter will focus on Specific Aim 1, providing a review of the relevant literature

pertaining to BMI control of lower-limb exoskeletons; describing the experimental

paradigm, technical specifications, and the data collection for the overall study; and

then presenting the results and analysis from the BMI decoding task. The third

chapter will be dedicated to Specific Aim 2, reviewing our current understanding of

KI and the analysis of its representation in our EEG and fMRI data during this BMI

task. In the fourth and final chapter, the dissertation will wrap up the conclusions

evaluating the efficacy of this longitudinal BMI paradigm.
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Chapter 2

Longitudinal Brain-Machine Interface

Training to Control a Walking Robotic

Exoskeleton

2.1 Introduction

The feasibility for brain-machine interface technologies to allow for EEG-control

of locomotion could be traced back as early as 1994, when leg movements were found

to elicit distinct event-related synchronization (ERS) patterns, i.e., changes in spec-

tral power cued to an event, over motor areas [32]. Identification of neural signa-

tures of isolated leg movements would be pivotal for generating command signals for

BMI-based robotics. Merely distinguishing differences in ERS patterns would not

be sufficient however, since such differences could only be ascertained by averaging

over numerous trials, thus not being viable for real-time control. Later attempts

would circumvent extracting signals from motor intent for BMIs by instead using

more easily identifiable evoked potentials. BMI studies throughout the 2000s often

used flashing visual stimuli to elicit P300 and SSVEP signals that could be used to

control the navigation of a motorized wheelchair [33, 34, 35], manipulate a robotic

arm [36, 37, 38], and even control the walking of a humanoid robot [39]. However,

these evoked potentials are not inherently motor signals and do not correspond with

neural patterns arising from natural volitional movement.
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More precise prediction of lower-limb kinematics was demonstrated first in non-

human primates walking on a treadmill by applying a linear decoder to neuronal spik-

ing rates from invasive recordings [40]. The results were later replicated in a study

with healthy humans during treadmill walking using the same type of continuous

decoder on low-frequency δ band EEG amplitudes, the first demonstration of decod-

ing gait patterns noninvasively [41]. This was corroborated by earlier fMRI studies

in which cortical activation was detected during motor imagery of walking in both

healthy [42] and paraplegic subjects [43], opening the field for future studies employing

EEG-based BMI systems for the control of lower-limb exoskeletons described below

and summarized in 2.1. The table uses the following abbreviations for Task types:

W-walk, S-stand, Kin-continuous kinematics, Wp-passive walk, Wa-active walk, L-

turn left, R-turn R, K-kick, A-acceleration, D-deceleration; and for Classifier types:

NB-Naive Bayes, GMM-Gaussian Mixture Model, UKF-Unscented Kalman Filter,

LogReg-Logistic Regression, k-NN - k-Nearest Neighbor, CCA-Canonical Correla-

tion Analysis, LDA-Linear Discriminant Analysis, SDA-Sparse Discriminant Analysis,

CNN-Convolutiontal Neural Networks, RF-Random Forest, CVA-Canonical Variant

Analysis, MKL-SVM - Multiple Kernel Learning Support Vector Machine.

The efforts in [41] were extended to overground walking with an exoskeleton (X1,

NASA) with two healthy subjects and one stroke survivor [44]. Lower limb joint an-

gles and EMG envelopes were predicted offline with an unscented Kalman filter under

walking conditions with and without the exoskeleton in both active and passive modes.

A longitudinal study with five stroke survivors undergoing rehabilitation and robot-

assisted gait training with the H2 exoskeleton (Technaid S.L., Spain) showed offline

decoding accuracy of the angular kinematics (also using an unscented Kalman filter)

improved over the course of the 12 training sessions [45]. These methods were also

employed in a closed-loop setting for a walking virtual avatar with moderate accura-

cies [46, 47, 48]. Only one study [49] was found that performed closed-loop continuous

prediction of joint angles in an exoskeleton: albeit this was a hybrid approach based
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on using EEG for high level class decoding (stop, normal walk, accelerate, and de-

celerate) and joint angle trajectories were governed by EMG amplitudes in a central

pattern generator model.

It is essential for continuous decoding of joint angles to be extremely robust to

ensure safe closed-loop control of an exoskeleton. Current results have not yet demon-

strated this reliably, and most closed-loop efforts have focused on simpler binary clas-

sification of walking versus stopping or standing. The feasibility of closed-loop control

of an exoskeleton was demonstrated in 2013 with a single SCI patient [50] using the

REX exoskeleton: this study used δ band EEG in a Gaussian mixture model and

saw an accuracy improvement from 21% to 70% over the first period of trials with

90% accuracy on the final trial. The algorithm is later evaluated with an H∞ artifact

removal algorithm and saw up to a 10% improvement in offline decoding accuracy for

two able-bodied subjects trained over 9 sessions [51]. Another 2013 study [30] used

the treadmill-confined RoGO Lokomat (Hocoma, Switzerland) with one able-bodied

and one SCI patient each with a Bayesian classifier and features from the integrated

power spectral density over 1-40 Hz was used. Studies with the H2 exoskeleton de-

tected gait intention with features from both ERD (7-25 Hz) and movement-related

cortical potentials (MRCPs, 0.1-1 Hz) through sparse discriminant analysis and a lin-

ear classifier first with three able-bodied subjects and four with paraplegia from SCI

[52] and then with four incomplete SCI patients using [53]. One more study with the

H2 [54] showed that applying tDCS could improve BMI performance in four healthy

subjects. Finally, one more binary-class study employed a customized lower-limb gait

training exoskeleton [55], evaluating two independent naive Bayes models based on

sensorimotor rhythms (SMRs) and MRCPs.

Some closed-loop BMI applications have attempted to expand beyond the two

class problem, to distinguish between three or more commands for the exoskeleton.

The first study with multi-state classification attempted to use 8-30 Hz ERD features
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in a logistic regression classifier to distinguish offline between active walking, passive

walking, and rest using the RoGO Lokomat for healthy subjects and stroke patients

[56]. Other studies have used SSVEP to distinguish between turning left and right and

speeding up in the XYKXZFK-9 rehabilitation robot (Xiangyu Medical Equipment

Co. Ltd., China) [57], and between walking, stopping, accelerating, and decelerat-

ing in the hybrid EEG-EMG BMI study with the custom exoskeleton described in

[49]. Several multi-state classification studies were performed with the REX: one

closed-loop study [58, 59] with 11 healthy subjects used SSVEP to navigate a course

consisting of 10 sit/stand cycles and walking along a marked circle both clockwise

and counter-clockwise; another achieved three class closed-loop classification (walk

forward versus turn left/right) by cascading two binary classifiers [60]; and another

using δ band amplitudes achieved four state classification (walk, stop, turn left, turn

right) for one able-bodied and one SCI subject using multiple kernel support vector

machines (SVMs) [61].

Few studies have attempted to conduct multiple sessions with the same subjects

due to inherent difficulties in subject retention and commitment, even though ex-

tended BMI training in an exoskeleton has shown to have clinical benefits. Contreras-

Vidal et al. [45] showed improved functional ambulatory ability in a longitudinal

study with chronic stroke survivors that trained with the H2 for 12 sessions across

four weeks; the improvements were correlated with the increase in the decoding accu-

racy of the BMI, suggesting an improved neural representation for gait in the dam-

aged cortex. As described in Chapter 1, Donati et al. [29] demonstrated landmark

neurological recovery in eight complete SCI patients after an intensive 12-month re-

habilitation protocol with a custom exoskeleton. To investigate the role of extensive

exoskeleton BMI training by itself, we explore here the ability to evaluate binary-

state closed-loop control in a longitudinal BMI paradigm with multiple able-bodied

subjects over a large number of sessions.

8



Table 2.1: Studies incorporating BMI control of lower-limb exoskeletons. Closed-loop
BMI control denoted with *. This table is an updated adaptation from a
previous review paper [28].

Robotic
Device

Subjects BMI

First Author Year Impaired Able-
bodied

Tasks Pre-Processing Feature
Extraction

Dimensionality
Reduction

Classifier

Do [30]* 2013 RoGO Loko-
mat

1 SCI 1 W,S CAR, noisy
channels re-
moved

0–40Hz
ERD

CPCA, AIDA NB

Kilicarslan [50]* 2013 REX 1 SCI - W,S — 0.1-2Hz
MRCP

LFDA GMM

He [44] 2014 NASA X1 1 stroke 2 Kin CAR 0.1-3Hz
MRCP

PCA UKF

García-Cossio [56] 2015 RoGO Loko-
mat

3 stroke 10 Wp, Wa, S CAR, CCA,
Laplacian

8–30Hz
ERD

- LogReg

Kwak [58]* 2015 REX - 11 W,L,R,S,Sit CCA SSVEP - k-NN

Zhang [57]* 2015 XYKXZFK-9 - 3 W,L,R,S,A,D - SSVEP - CCA

Donati [29]* 2016 RoGO Loko-
mat, custom
exo

8 SCI - W,S,K CAR CSP (arm
MI)

- LDA

Kilicarslan [51]* 2016 REX - 2 W,S H∞ 0.2-3Hz
MRCP

LFDA GMM

López-Larraz [52]* 2016 H2 4 SCI 3 W,S CAR, noisy tri-
als removed

7–25Hz
ERD,
0.1–1Hz
MRCP

- SDA

Gui [49]* 2017 Custom exo 2 10 Kin - SSVEP - LDA

Kwak [59] 2017 REX - 7 W,L,R,S,Sit - SSVEP - CNN

Lee [60]* 2017 REX - 5 W,L,R CAR 14–19Hz
ERD

- RF

Liu [55]* 2017 Custom exo - 6 W,S Laplacian, CAR 4–48Hz
SMR,
0.1–1Hz
MRCP

- CVA-NB

Zhang [61] 2017 REX 1 SCI 1 W,S,L,R ASR 0.1-2Hz
MRCP

- MKL-SVM

Contreras-Vidal [45] 2018 H2 5 - Kin ASR, CAR 0.01-3Hz
MRCP

PCA UKF

Rajasekaran [53]* 2018 H1 4 - W,S Optimal spatial
filter, CAR,
z-score, noisy
channels re-
moved

0.1-1Hz
MRCP,
7-30Hz
ERD

- SDA

Rodriguez-Ugarte [54]* 2018 H2 - 4 W,S Laplacian 6-35Hz
ERD

- SVM
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2.2 Methods

2.2.1 Subject Demographics

Seven able-bodied participants (four males & three females, ages 20-30; Table

2.2) with no history of neurological disease or physical impairments were recruited

in this study to assess their ability to control a walking lower-limb exoskeleton with

their brain activity. Subjects provided written informed consent and completed a

preliminary health assessment. The clinical progress (monitoring for pain, fatigue,

skin condition, and other discomfort) of each subject was documented after each

session. Subsequent recruitment of subjects was put on hiatus due to safety concerns

during the 2020 COVID-19 pandemic. All experimental protocols were approved by

the Institutional Review Board of the University of Houston.

Table 2.2: Subject Info.

Subject

ID
Sex

Age

(yrs)

Enrollment

Length (Days)

MIQ

Score Avg

S1 M 26 22 5.07

S2 F 22 16 4.71

S3 M 29 15 5.86

S4 F 20 36 6.07

S5 M 23 45 5.71

S6 F 20 81 —

S7 M 30 37 4.64
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Figure 2.1: (a) Subject in the REX exoskeleton wearing an EEG cap. (b) EEG channel
montage and EOG channel locations. (c) Active EEG electrodes. Adapted from
[63] CC BY 4.0).

2.2.2 Powered Lower-Limb Robotic Exoskeleton

The REX (Rex Bionics Ltd; Auckland, NZ) is a powered robotic exoskeleton with

bilateral actuators on the hip, knees, and ankles, to fully assist in locomotion for

people with paralysis, e.g., patients with complete SCI. It is self-balancing thereby

alleviating the need for arm supported crutches. The REX can be operated via a

joystick to walk forward, walk backward, and turn. For this study, we developed

a custom configuration allowing the REX to be operated wirelessly, bypassing the

joystick, for the purpose of controlling the walking movements of the REX (initiating

walking from stopping and initiating stopping from walking) using a closed loop EEG-

based brain-machine interface (Figure 2.1A) [50, 62].
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2.2.3 Experimental Task and Paradigm

The experimental paradigm consisted of nine sessions scheduled approximately 2-3

times per week per the subjects’ availability. Each session involved a training phase,

three blocks of closed-loop testing in a Go/No-Go task (consisting of 4 trials each for a

total of 12 trials) [64], followed by two closed-loop 6-minute tests. The training phase

involved collection of EEG data from the subject walking in the exoskeleton for six

stop-walk-stop (SWS) cycles; the training cycles were preprogrammed such that the

REX was in full control of the subjects’ legs. A loud auditory beep was used as a cue

at the start of the stop-to-walk and the walk-to-stop transitions. During the training,

subjects were instructed to elicit kinesthetic motor imagery (KI), i.e., to focus on the

contractions of their legs’ muscles and joints and imagining the forces they would be

exerting if they were controlling their legs themselves. KI has previously been used

to identify walking and idle states to control the walking of both a virtual avatar

[31] and a physical exoskeleton [30]. The EEG associated with the KI of walking

contrasted with that during rest was used as the basis for developing the classifier.

The trials of the closed-loop test blocks consisted of a single SWS cycle; subjects

heard the same beep cue to signal the start of each of the stop, walk, and second

stop phases. Subjects were instructed to continue eliciting their KI according to each

phase, but this time the REX would stop or walk depending on the real-time classified

output from the decoder. Trials would end prematurely if the subjects experienced

failed classifications for 30 consecutive seconds; a successful trial was one in which the

subject completed the full SWS cycle while avoiding the 30s timeout. After the 12

trials, subjects performed two more closed-loop tasks: a 6-minute stop task and a 6-

minute walk task, trying to maintain either the stop or walk states continuously for 6

consecutive minutes. This would be akin to the common 6-Minute Walk Test clinical

assessment commonly used in motor rehabilitation [65]. The protocol is outlined in

the top of Figure 2.2.
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Figure 2.2: Flowchart of the experimental protocol (top) and the real-time EEG signal pro-
cessing (bottom).

After the first trial, the training data from the prior sessions were concatenated

to the current session to increase the robustness of the classifier. After the fifth

session, the classifier became fixed and no longer received the new training data so

that the subject could then adapt how they evoked their KI based on the classifier

performance.

After the 9 BMI sessions, subjects underwent an MRI scan (Philips Ingenia 3.0T,

Koninklijke Philips N.V.; Netherlands) for both a T1-weighted structural scan and

a fMRI recording. For the functional scans, subjects watched a 10-minute video of

themselves walking in the REX for 11 SWS cycles. The video was filmed from the

first person view of the subject as if they were looking down at their own legs in the

exoskeleton. While watching the video in the scanner, subjects were again asked to

try to evoke their KI as if trying to control the exoskeleton.

2.2.4 Data Acquisition and Processing

EEG data sampled at 100 Hz were collected and wirelessly transmitted from 64

Ag/AgCl active electrode channels (actiCap System, MOVE System; Brain Prod-

ucts GmbH, Germany) placed and labeled according to a modified version of the

international 10-20 system [66]. Four posterior channels (TP9, TP10, PO9, PO10)

were relocated to be used as VEOG and HEOG sensors to measure baseline signals
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for eye blink and eye movement artifacts. Channels FT9 and FT10 were also relo-

cated to the AFz and FCz positions respectively for more scalp coverage, displacing

the ground and reference electrodes to the top of the left and right ear respectively

(Figure 2.1B). Electrolytic gel was injected between the electrodes and the scalp to

maintain impedances below 20 kΩ. The 3D spatial locations of all EEG channels

were digitized with a binocular camera scanner (CapTrak, Brain Products GmbH;

Germany) for more detailed analyses to identify dipole source locations. An elastic

mesh was placed over the EEG cap to compress the electrode cables to reduce arti-

facts induced by the motion of the cables. During the fMRI recording, EEG data were

collected simultaneously using a custom MR-compatible EEG cap (Brain Products

GmbH) with digitized channel locations (FastTrak, Polhemus; Colchester, VT) [67].

The classifier model was generated offline using custom scripts in MATLAB (Math-

works; Natick, MA), and the real-time processing was performed with multi-threaded

C++ code in Visual Studio (Microsoft Corporation, Redmond, WA). For both real-

time processing and offline classifier model generation, the mean of the EEG was first

subtracted out. The VEOG and HEOG sensors were then used as reference channels

for artifact rejection with an H∞ filter [51]. Performance of this artifact removal

method was validated by visually inspecting to ensure reduction of eye blink signals

in channel FP1. Building on previous successes with detecting motor intent from low-

frequency δ band in EEG [41, 44, 45, 47, 50], the cleaned signals were then band-pass

filtered from 0.1-2 Hz using a second order Butterworth filter. Separate channels were

then used to create a feature matrix using a 200ms window with a shift of 20ms, each

row having the time shifted from [ch1(t−n), ..., ch1(t), ch2(t−n), ..., ch2(t), ..., chm(t)],

where n is the window size in samples and m = 64 is the total number of channels.

Each row of this feature matrix was normalized such that the values ranged between

0 and 1. The resulting feature matrix was either used for determining the dimension-

ality reduction/classification parameters when training the model or to determine the

real-time walk/stop output during the closed-loop trials. These steps are outlined in
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the lower half of Figure 2.2.

2.2.5 Classification Algorithm

We applied dimensionality reduction to the feature matrix (originally 1,200 di-

mensions, from the product of 60 channels and 20 time lags) using Local Fisher’s

Discriminant Analysis (LFDA) to preserve the multimodal structure. LFDA is an

extension of classical linear discriminant analysis (LDA) that uses locality-preserving

projection to preserve the multimodal statistical structure within data. Unlike LDA,

it does not require class distributions to be either Gaussian or unimodal and does not

put an upper-bound on the number of reduced dimensions [68]. For a dataset with

training samples X = {xi}ni=1 in Rd (d-dimensional feature space) and class labels

yi ∈ {1, 2} (for either Walk or Stop) where n is the total number of samples and nl

is the number of samples in class l, LFDA defines the local between-class S(lb) and

within-class S(lw) scatter matrices as

S(lb) =
1

2

n∑
i,j=1

W
(lb)
i,j (xi − xj)(xi − xj)

T (2.1)

and

S(lw) =
1

2

n∑
i,j=1

W
(lw)
i,j (xi − xj)(xi − xj)

T , (2.2)

where W (lb) and W (lw) are n× n matrices defined as

W
(lb)
i,j =


Ai,j(1/n− 1/nl), if yi = yj = l

1/n, if yi 6= yj

(2.3)

and

W
(lw)
i,j =


Ai,j/nl, if yi = yj = l

0, if yi 6= yj

, (2.4)
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with Ai, j ∈ [0, 1] being the affinity (heat kernel) between samples xi and xj

Ai,j = exp(−‖xi − xj‖2

γiγj
), (2.5)

based on γi = ‖xi−x
(knn)
i ‖ denotes the local scaling of data samples in the neighbor-

hood of xi, and x
(knn)
i is the knn-nearest neighbor of xi. As in LDA, Fisher’s ratio is

maximized but using the local scatter matrices to obtain the transformation matrix

(ΦLFDA) for dimensionality reduction

ΦLFDA = arg max
ΦLFDA

tr[(ΦT
LFDAS

(lw)ΦLFDA)−1ΦT
LFDAS

(lb)ΦLFDA]. (2.6)

The reduced data was used to train a Gaussian Mixture Model (GMM) classifier

to map the demarcated stopping and walking phases of the SWS cycles during the

training session to the processed EEG in the reduced feature matrix. A Gaussian

mixture model is a probabilistic model that assumes all data samples are generated

from a mixture of a finite number of Gaussian distributions with unknown parameters,

whose probability density function is defined as

p(x) =
K∑
k=1

αkN (x, µk,Σk), (2.7)

where

N (x, µk,Σk) =
1

(2π)d/2|Σk|1/2
× exp[−1

2
(x− µk)TΣ−1

k (x− µk)]. (2.8)

The parameters for the optimal number of distributions K, their centroids µk,

their widths Σk, and their mixing weights αk are determined by the expectation-

maximization algorithm [50, 69]. The overall LFDA-GMM model was trained on a

random subset of 70% of the training data and evaluated on 30% of the remaining

data.
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During the closed-loop trials, the GMM classifier would return a value for either

Walk or Stop at every time sample (10ms). These binary values for filtered with an

exponential moving average to prevent jittery Walk and Stop transitions. A dual-

threshold Schmitt trigger with hysteresis controlled the switching between states,

toggling Walk when the moving average filtered output exceed a high threshold,

and reverting back to Stop only when the output dropped below a lower threshold.

Threshold levels were initially fixed for the first five sessions as the classifier model

accrued more data for each session, but once the model was fixed after Session 5, the

threshold values were manually fine-tuned as needed at the start of each session.

2.3 Results

2.3.1 Closed-Loop BMI Decoding Accuracies

The results of closed-loop decoding for BMI control of the REX are shown first

in Figure 2.3 for all subjects and each of the 9 sessions using two different metrics.

The Balanced Accuracy (black diamonds) measures accuracy as a function of correctly

predicted samples. Because the class distribution may be uneven, often biased towards

the Stop class, a simple percentage of correctly predicted samples is insufficient. The

Balanced Accuracy accounts for this by taking the average of the sensitivity (true

positive rate) and specificity (true negative rate) for a better metric adjusted to a

50% chance level. The Task Completion Accuracy (blue line, yellow triangles) is the

percentage of the 12 trials that were successful, i.e., subjected completed each phase

of the Stop-Walk-Stop cycle without triggering the 30s fail timeout. Performance for

both metrics are rather varied across subjects with no consistent trends; S1 and S3

did show general improvement from the first to the last sessions, both achieving a

Task Completion Accuracy of 100% for Session 9 but starting close to 0 for Session

1. S1 in particular showed a notable trend in improvement in performance once the
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Figure 2.3: BMI accuracies for all subjects and their 9 sessions: Task Completion Accuracy is
the percentage of the 12 trials successfully completed; Balanced Accuracy is the
mean of sensitivity and specificity of the classified samples; Training Accuracy
is the cross-validation classification accuracy during model training.

decoder parameters were fixed after Session 4. Most other subjects performed at or

around chance except for a few sparse sessions of good accuracy. Because of this

variability, some of the future analysis will selectively focus on S1 as good-performing

subject that showed improvement across session and S2 as a poor-performing subject

that was consistently at chance. The average trial accuracy for the final session for all

subjects was 60.7%, compared to 29.8% for the Session 1 average, while the average

Session 9 Balanced Accuracy was only 51.0%.

The cross-validation training accuracies (red circles) from calibrating the decoder
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model are also shown for the first 5 sessions (4 for the case of S5); the vertical black

line demarcates the early sessions with the adaptive decoder and the late sessions with

the fixed decoder. As is common in machine learning, these were very high (>90%

accuracy) relative to the closed-loop accuracies. As the size of the training dataset

grew with each session, the training accuracy decreased slightly as the model began

to generalize for inter-session signal variability. Note that the time scales are different

for each subject, as sessions were scheduled according to each subjects’ availability;

S6 in particular was not available for a 43 day period and overall took 81 days to

complete the protocol, in contrast to S1, S2, and S3 who efficiently completed the 9

sessions within 3 weeks.

The BMI performances of the individual trials within each session are shown in

Figure 2.4. The first four sessions can be described as a familiarization period with the

BMI as both the model and the subject are adapting, and are thus omitted from this

plot. Each trace shows the cumulative average of the classification accuracy for the

duration of each trial. All traces start at 100% and either decay with misclassifications

or rise towards convergence with correctly classified samples. The traces are also

color-coded (red for Stop, green for Walk) for each phase of the SWS cycle. Traces

for successful trials go through the green and second red phases, while fail trials finish

prematurely in either the green or first red phase and/or end on a negative slope. The

final classification accuracy for the trial is denoted with a black circle at the end of

each trace while the Balanced Accuracy for the session (same as from Figure 2.3) is

marked with a star. Session 9 for both S1 and S3 show excellent BMI performance

with all 12 trials successfully going through the full SWS cycle, not ending on a

prolonged negative slope (otherwise indicating a triggered 30s fail count timeout),

and very efficiently completing most trials in about a minute or less.

Each BMI session concluded with a pair of 6 Minute Tests, in which the subjects

were asked to maintain either a continuous Stop or a continuous Walk for a duration
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Figure 2.4: Individual closed-loop BMI accuracies for all subjects for sessions 5-9. Accuracy
is shown as the cumulative time average for the duration of the trial, color-coded
for each phase of the SWS cycle, with the overall trial accuracy as a black circle
at the end of each trace, and the session balanced accuracy as a black star.

of 6 minutes. Figure 2.5 shows the performance for these tests. The top plot shows

individual accuracies as a percentage of correctly classified samples for the Walk and

Stop tests separately in each of the 9 sessions. To better relate this to the traditional

6 Minute Walk Test used in physical rehabilitation [65], we assess the total distance

covered for the 6 minute period by identifying the number of correctly predicted Walk

samples during the Walk Test and subtracting the number of incorrectly predicted

Walk samples during the Stop Test; this normalized difference is shown in the bottom

plot of Figure 2.5. Difference scores of 0 might occur if the decoder is completely

biased towards one state, and negative scores are possible if more walking occurs

during the Stop test. Consistent with the previous decoding results, S1 and S3 again

have high accuracies (median scores of 0.60 and 0.88 respectively) demonstrating
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Figure 2.5: Decoding accuracies for the closed loop 6 Minute Walk and Stop Tests. The
top plot shows individual classification accuracies for the Walk and Stop tests
separately as percentage of correctly classified samples. The bottom plot shows
the normalized difference in distance covered between the Walk and Stop tests.

strong ability to maintain a consistent state.

2.3.2 EEG Signal Analysis

Given the variability in BMI performance both among subjects and sessions, we

take a closer look into what might be the causes by analyzing the quality of the EEG

signals as inputs to the decoder. The EEG impedance is a common variable that can

greatly influence signal quality during an experiment; as described in the methods,

impedance values were maintained as low as possible to ensure good conductivity.

Figure 2.6 shows the electrode impedances before and after each session for all sub-

jects. Values less than 10 kΩ (within the green portion of the spectrum) are ideal for

EEG experiments, as is shown to be the case for most sessions and subjects. Both
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Figure 2.6: EEG electrode impedances at the start and end of each session for all subjects.
Most sessions began with acceptably low impedance values (<10 kΩ) although
some ended with a low number of channels losing their conductivity by the end.

S6 and S7 had numerous sessions above this range, although most of the impedance

values did settle by the end of the session. Still, even individual channels with high

impedances can cause irregularities that might disrupt the decoder’s performance.

Impedance values for S7’s Session 7 were not saved at the beginning of the trial due

to a technical error.

Besides impedance values, we looked into a number of other metrics to discern

any underlying features that may explain why some trials were successful with the

BMI and others weren’t. While our closed-loop decoding algorithm used simple spec-

trotemporal features (i.e., δ band amplitudes), we assessed more complex features of
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the EEG trial data to distinguish between the successful and failed trials. The Shan-

non’s entropy, spectral edge frequency, dyadic entropy, fractal dimension, Hjorth pa-

rameters (the normalized slope descriptors: activity, mobility, and complexity) [70],

and statistical moments (skewness and kurtosis) were calculated for each channel and

averaged, as these were features that have been shown successful in detecting EEG

irregularities during seizure detection [71]. Figure 2.7 shows these features evaluated

for each trial and color-coded based on the trial’s outcome (green circle for success,

red x for failure). Each feature’s median value for all trials are shown on the right

side of each plot in black. Not much separability is apparent between the two condi-

tions for any of these features, but the median values for both the fractal dimension

and mobility show the least overlap. The fractal dimension is a measure of a signal’s

complexity and self-similarity in time [72, 73], and mobility represents an estimate

of the mean frequency, defined by the ratio of the standard deviations of the signal’s

derivative and the signal itself [70]. Figure 2.8 takes a closer look at these two fea-

tures, in addition to skewness as a contrast, for each subject individually, illustrating

the distributions as raincloud plots (probability density functions as the clouds and a

scatter of the individual data points as the rain) [74]. A two-sided Wilcoxon rank sum

test was performed for each of these distributions, verifying statistical difference in

the distributions for both the fractal dimension and mobility measures at the p < 0.05

significance level for the group subject data as well as individually for S1 and S7.

2.3.3 Feature Matrix Analysis and Clustering

Another way we evaluate the BMI decoder post hoc is by looking at the EEG

feature matrix data just as it’s going into the classification algorithm. The feature

vector for each classification sample consisted of 200ms windows of δ EEG amplitudes

concatenated for all channels. The averaged windows for each channel are visualized

for two subjects, S1 as the best performing subject and S2 as a subject that performed
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Figure 2.7: Various nonlinear and complex EEG features (averaged across channels) were
calculated for each of the closed-loop trials to discern indicators of successful or
failed BMI performance. Each feature is plotted across the 12 trials for the 9
sessions (separated by vertical lines), with the overall median plotted in black.

mostly at chance, in Figures 2.9 and 2.10 respectively. Some channels are removed for

the purposes of clarity. The scalp maps are sorted in a confusion matrix according to

the BMI classification of each feature vector: true positives (TP) vs. false positives

(FP) vs. true negatives (TN) vs. false negatives (FN). Each trace represents the

averaged feature window for a whole session, and are color-coded in order of a yellow-

orange-red-black color gradient (Session 1 as yellow and Session 9 as black). A thick

blue trace shows the overall average across all sessions. For both subjects, the dynamic

range of values is very small, with the scale bar set to limits from 0.485 to 0.515 µV.

As each feature vector was normalized to the range [0 1], the collective average seems
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Figure 2.8: Raincloud plots for fractal dimension, mobility, and skewness showing their dis-
tribution (probability density function and boxplots together) for successful and
failed trials, separated by subject. *** denotes statistically significant different
distributions (p < 0.05) based on a two-sided Wilcoxon rank sum test.

to converge to the midpoint of this range. Although likely not significant, the TP and

FP scalp maps show more traces deviating farther from the mean, suggesting that

the decoder was guessing Walk feature vectors with larger variances.

We also explored if the issue might have been with limitations in the Gaussian

Mixture Model classifier failing to find any separability in the feature matrix. Did the

GMM do the best it could do with the feature matrix it was given, or could another

classifier improve upon these results? The same closed-loop data was passed through

three other unsupervised clustering algorithms (k-means, hierarchical, and spectral
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Figure 2.9: Average EEG features for subject S1 (best performing subject) on scalp maps,
sorted by true/false positive/negative classifications. Each trace represents the
session-averaged window of δ amplitudes, ordered by a yellow-red-black gradient
(Session 1 yellow, Session 9 black) with the overall average in blue.
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Figure 2.10: Average EEG features for subject S2 (worst performing subject) on scalp maps,
sorted by true/false positive/negative classifications. Each trace represents
the session-averaged window of δ amplitudes, ordered by a yellow-red-black
gradient (Session 1 yellow, Session 9 black) with the overall average in blue.
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clustering) with two different distance metrics (Euclidean and cosine). Each trial

was clustered independently and accuracies (assigned based on the known class labels

from the trial) were averaged for the whole session. Figure 2.11 shows the clustering

accuracies for the three different algorithms and the two distance metrics for each sub-

ject, both on the normalized data (as seen by the GMM classifier; top plot) and the

data before normalization (bottom). Hierarchical and spectral clustering both per-

formed well above chance, both performing with average overall accuracies of 70.1%

using the cosine distance. Using the un-normalized data rendered the cosine distance

ineffective for the hierarchical algorithm, but it did improve average accuracies for

the Euclidean distance from 59.9% to 71.7%, even achieving accuracies as high as

89.1%. The k-means classifier performed at chance for most of the sessions. Curi-

ously, the subjects who had the highest offline accuracies, S4 and S6, both performed

near chance levels during the closed-loop trials (Figure 2.3).

2.4 Discussion

2.4.1 Variability in BMI Performance Among Subjects

The purpose of this study was to develop a brain-machine interface for the control

of a walking exoskeleton and to evaluate the performance of users over an extended

period of 9 sessions. While the closed-loop decoding accuracies were overall rather

varied across subjects, 5 of the 7 subjects that completed the protocol were able to

successfully complete more than half of their trials in the last session. Two subjects

in particular, S1 and S3, performed demonstrably better than the others, both com-

pleting 100% of their final session’s trials and with respective median 6MWT scores

of 0.60 and 0.83 (on a scale from -1 to 1). In post-session debriefing, both individuals

were confident in their ability to control the REX’s gait at will by the end.
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Figure 2.11: Accuracies from offline unsupervised clustering of the feature matrix of the
closed-loop EEG data.

The exemplary performance of these two subjects demonstrates the feasibility of

BMI control for at least certain individuals, suggesting that some people may be more

adept BMI performers than others. Quantitative attempts to explain the discrepancy

in subjects’ performances were not conclusive (Figures 2.7, 2.8) at finding features

and statistical measures that could predict trial success. Certain features, such as the

fractal dimension and mobility, had statistically different distributions when evalu-

ated on the EEG from successful and failed trials separately, but these patterns were

not consistent across all subjects (or even on the well-performing subjects together).

Other qualitative factors did seem to have an impact on a subject’s daily performance.

Long delays between sessions (most notably a month long hiatus between S6’s seventh
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and eighth sessions) negatively impacted performance as the subject had to refamil-

iarize themselves with the BMI. Anecdotally, mental well-being may have also played

a role; some subjects admitted participating in the experiments while being stressed

with coursework and other personal issues, and S3 reported not having slept well the

night before his seventh session, an outlier in an otherwise positive trend. While BMI

protocols remain novel, it would seem that attaining strong performances would be

contingent upon the subjects’ mental well-being.

2.4.2 Comparisons with other Exoskeleton BMI Studies

This study was unique among other noninvasive BMI studies to control an ex-

oskeleton in that it took place over many sessions over several weeks to develop a

generalizable decoding model. One study did test their subjects over 5 sessions on

consecutive days [54], but a new model was trained each day and no meaningful

differences were reported across sessions, suggesting the intervals were too short for

inducing any plasticity. Their testing protocol also involved trials of decoding SWS

cycles, but of fixed time lengths and the robot was disabled during the Stop cycles

eliminating the possibility of false positive movements; for two subjects, they were

able to achieve mean accuracies of 73.4% using a SVM on ERD features between 6-35

Hz. A 2013 study by Do et al. [30] was the earliest but most similar to our pro-

tocol in that they focused on extracting KI to switch between alternating prolonged

Stop and Walk cycles. They report using an able-bodied and a SCI subject over 5

sessions, but these sessions are all on the same day and more akin to the trial blocks

(sets of 4 trials) used in our study. They evaluated performance by calculating the

cross-correlation of the cue signal with the exoskeleton state signal (average of 0.812

for the two subjects), and showed rather robust control with ERD features from 0-

40 Hz through classwise PCA dimensionality reduction and a Naive Bayes classifier.

However, both of their subjects were non-naive BMI users and experienced with KI,
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which may explain their quickness to learn to control the exoskeleton.

Two other studies used a BMI as a "brain-switch" [75] attempting to only detect

a single instance of gait intention to trigger walking in the exoskeleton [52, 55]. Both

studies used protocols with trials instructing subjects to attempt to walk following

a cue after a period of rest, detecting for the readiness potential (i.e., motor-related

cortical potential) to trigger a gait cycle for the trial. Lopez-Larraz et al. [52] tested

a mixed group of 3 able-bodied and 4 SCI subjects, using both low frequency δ and

ERD features between 7-25 Hz in a sparse discriminant analysis for 84% and 78% ac-

curacies among healthy and SCI patients respectively. Liu et al. [55] used a slightly

different approach by trying to evoke hand motor imagery to scan a broader cortical

representation, attaining 69% detection in 6 able-bodied subjects with canonical vari-

ant analysis and Naive Bayes. Specifics in the study by Donati et al. [29] regarding

the BMI protocol and decoding performance were not provided in enough detail for

commentary here. Other studies that have been carried out using BMIs for classifying

more than 2 states are not used for comparison here, but are discussed in Section 2.1

and detailed in Table 2.1 [49, 57, 58, 60].

2.4.3 Examining Alternative Features and Classifiers

The feature matrix as visualized in Figures 2.9 and 2.10 showed minimal differ-

ences between the Walk and Stop conditions, even for subject S1 for whom decoding

was mostly successful. The grand average across all subjects (not shown) showed even

fewer changes within the already small amplitude scale. The choice of 200ms windows

was perhaps too small compared to the previously discussed studies [30, 52, 54, 55],

which employed window sizes ranging from 750ms to 2s to capture the relevant fea-

tures. Our use of a 200ms might have missed the necessary feature for triggering the

BMI, but extending the window length will come at the expense of higher dimen-

sionality and computation times, unless trade-offs are made that sacrifice channels
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or time resolution. Alternatively, the frequency bandwidth can also be expanded to

include signals from the higher end of the frequency spectrum. Our rationale for

using a range of 0.1-2 Hz was based on some of our previous work that showed strong

correlations in this range with angular kinematics of gait [41, 44, 46, 47, 48, 76, 77],

and while they were similarly used to detect readiness potentials in [52, 55], they

were still used in conjunction with ERD features at higher frequency ranges, or ERD

features were used exclusively [30, 54].

Other clustering algorithms, particularly the hierarchical and spectral methods,

showed improved ability to separate the data than the GMM used in real-time. More-

over, the GMM parameters were optimized during the model training phase, while

only the type of distance metric was varied for the other clustering methods. Inter-

estingly, the newer algorithms performed best for S4 and S6, who were among the

poorest performers for closed-loop control. These higher clustering accuracies should

be taken with caution though, since they may not necessarily translate well to closed-

loop decoding. It is possible that the good clustering may be a result of overfitting

from the algorithm having a full distance matrix for every sample in the closed-loop

set, and that introducing unseen data in real-time may not be as successful. Selecting

a new type of decoding scheme or even alternative features is naturally difficult be-

cause you can only judge based on offline performance on training data, which showed

consistently high accuracies even with the GMM (red circles in Figure 2.3).

2.4.4 Limitations

Although the results presented in this study show promise, there are a number of

factors in the experimental protocol that add difficulty to the interpretation of the

results and potentially hinder the efficacy of the BMI system. The REX exoskeleton

itself has hardware limitations that insert an inherent time delay when executing

movement commands. Since the REX is meant to be fully stable, it has to complete
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a whole gait cycle before stopping, resulting in a slower time response to switch

states than the BMI output. This ensured stability does result in a slightly unnatural

walking motion that may not fully match the users’ expectation when trying to elicit

kinesthetic motor imagery if imagining normal walking without an exoskeleton.

Negative feedback from the closed-loop nature of the experiment can also physi-

cally affect the subject during misclassifications. Some studies circumvent this issue

by suppressing any false positive movements [52, 54], but during our misclassifications,

the REX may start walking when the subject is trying to maintain an idle state and

the unexpected disruption of the movement can negatively affect the subject’s focus

and BMI performance. Reduction of these false classifications could possibly be done

with prior BMI training with KI itself (without an exoskeleton) [31, 55] and providing

either visual or tactile feedback to guide the subject that their imagery attempts are

being decoded in the right direction [29]. The drawback here is that the subject may

switch their focus from the KI of their imagined movements to instead guiding the

visual/tactile feedback cue. Even the strategy of using kinesthetic imagery for the

BMI requires effort and for subjects to maintain focus [55], also rendering the subject

susceptible to occasional distractions, since experiments were carried out in a long

public hallway. The motors of the REX are also rather loud and the noise itself can

be both a distraction or create an unwanted auditory response in the EEG that could

interfere with the BMI decoding.

We were unable to reliably analyze the EEG signals during the trials due to the

inconsistent timing of imagery cues and the concurrent feedback of the REX. The

extracted epochs would have to be categorized as either true/false positive/negative

states (as in Figures 2.9 and 2.10) and would ultimately be of either insufficient

length or number (only 200ms in length in the reported figures). As is usually the

case in EEG studies, a legitimate concern is the possibility of noise and artifacts

contaminating the data. Motion artifacts are typically minimal during walking at
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speeds as slow as the REX [78], but more robust offline artifact cleaning methods

including Artifact Subspace Reconstruction [79, 80] and Independent Component

Analysis [81, 82] will be employed in the following chapter. And as is usually the

case, this experiment certainly could have benefited from having more subjects and

more data per subject. The full protocol was already a major time commitment for

the subjects as is, and it would be unreasonable to ask them to commit to even more

trials and/or sessions. We were also limited in having to prematurely stop subject

recruitment due to the ongoing COVID-19 pandemic.

2.5 Conclusions

In this study, a brain-machine interface was designed to allow able-bodied subjects

to initiate walking in a robotic lower-limb exoskeleton. Subjects were trained across 9

sessions over several weeks to track improvement and other changes in performance.

Our results showed mixed performance among the full cohort of subjects but very

robust decoding in at least 2 participants, demonstrating that kinesthetic motor im-

agery, measured noninvasively using EEG, can be used to switch between walking and

stopping states when controlling an exoskeleton. This work contributes to the body

of literature by benchmarking the performance of the LFDA-GMM classifier used

here, the windowed δ band features, and a longitudinal protocol that accrues multi-

session training data for a more generalizable decoder. While the ultimate goal of

this research is to determine the viability of a BMI to restore motion to the paralyzed

population, our use of able-bodied subjects serves as an initial proof-of-concept that

subjects can cognitively control a robotic device for mobility. Future steps that could

further the results presented here would be to enroll paralyzed patients with spinal

cord injury, evaluating alternative features and more advanced classifiers, and incor-

porating tactile feedback or electrical stimulation as a means to improve decoding

performance and cortical plasticity.
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Chapter 3

The Neural Correlates of Kinesthetic

Motor Imagery of Gait during Brain-

Machine Interface Training

3.1 Introduction

Kinesthetic motor imagery (KI) is the mental simulation of movement that re-

quires a sense of feeling and perception of the muscles contracting and stretching in

accordance with the imagined motion [83, 84, 85]. This internalized embodiment of

the movement is in contrast to visual motor imagery (VI), which only requires men-

tally seeing (but not feeling) the motion from either a first- or third-person point of

view [83]. Even without eliciting movement or electromyographic (EMG) response,

KI can still induce physiological responses including increases in heart rate, blood

pressure, and respiration [83, 86, 87]. Moreover, KI can be useful in motor imagery

training to improve voluntary muscle strength [84, 86, 88, 89], motor performance

[90, 91], motor sequencing [92], aiming [93], and timing [94] in either sports [95]

or physical rehabilitation applications [96, 97, 98], with comparable training curves

to training with motor execution [92]. KI training can also improve the strength

of EMG and movement-related cortical potentials (MRCPs) [84], and even induce

stronger plasticity when used in conjunction with functional electrical stimulation

(FES) [99, 100, 101].

Kinesthetic imagery involves similar overlapping yet distinct neural structures
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when compared to both visual imagery and actual movement. Imaging studies using

fMRI show that both KI and executed movement activate regions in the premotor

and parietal cortices, supplementary motor area (SMA), cingulate gyrus, the puta-

men and caudate nucleus of the basal ganglia, and cerebellum [54, 83, 84, 102, 103].

The literature is somewhat inconsistent in reporting primary motor cortex (M1) acti-

vation during motor imagery, but it is found more often during KI (albeit decreased)

rather than VI [102, 104, 105, 106], which otherwise sees more activation in occipital

visual areas such as primary visual cortex, cuneus, and prestriate cortex [83, 105].

Both SMA (superior and medial frontal cortices and dorsolateral prefrontal cortex)

and basal ganglia are more prominent in KI than real movement, suggesting that

imagery involves recruitment of both a fronto-parietal network and subcortical and

cerebellar regions [105, 107, 108, 109]. The parietal cortex is crucial in the genera-

tion of mental images [110, 111] and sensory-visual representation [84], whereas the

cerebellum regulates balance control and locomotor speed [105]. Guillot et al. also

identified a ventral premotor system corresponding to mirror neurons that is active

during KI, responding to perception of kinesthetic feedback [83]. Neuroimaging stud-

ies that looked specifically at the imagery during walking identified representation

for foot movements located within the interhemispheric fissure of sensorimotor cor-

tex [112], general activation of prefrontal cortex (PFC), SMA, cingulate cortex, basal

ganglia, and brainstem [105, 107, 113], with deactivation of multisensory vestibular

cortical areas [114]. The integration of these numerous structures makes sense as gait

necessitates controlled balance between automatic and cognitive controlled processes

[113, 115]. Hamacher et al. provides a comprehensive review of studies identifying

walking-related brain activity [116].

Other studies have shown how KI can be detected and measured in cortical po-

tentials using electroencephalography (EEG). The most consistent finding is the µ

event-related desynchronization (ERD), i.e., the decrease in spectral power within the

7-13 Hz frequency band [54, 104, 112, 117], although this power suppression has also
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been seen in a range as wide as 6-35 Hz [117] spanning the high θ through β frequen-

cies. Electrode channels that see motor imagery-related ERD are usually positioned

over the vertex and bilaterally over central motor areas with surrounding areas seeing

the opposite effect in event-related synchronization (ERS) as a focal ERD/surround

ERS effect [104, 117, 118, 119]. Tariq et al. also reports a high β rebound (ERS) at

the end of the KI period [112]. These distinct neural patterns within EEG suggest

that KI can be used as a "brain switch" to control a brain-machine interface (BMI)

[75, 120], with detectable state differences even in paralyzed populations without the

ability to move [29, 31]. The ability to elicit strong KI responses can also be iden-

tified through questionnaires [121], which may be a useful tool to screen candidates

for successful BMI performance [83]. In addition to ERD and ERS features, cortical

activation during motor imagery distributes through the sensorimotor cortex as EEG

sensorimotor rhythms (SMRs) that produce stable features over time with latencies

lasting several seconds; MRCPs are usually associated with motor execution, but can

be more easily detected during imagery as a peak preceding movement onset [55].

Several BMI studies have used features derived from kinesthetic imagery to detect

gait intent to control exoskeletons [29, 30, 31, 55, 112]. The classification of the BMI

performances are discussed in detail in Chapter 2. Despite some variability among

subjects within and across the studies [30, 104], feature extraction for walking KI

generally involved electrodes overlying PFC, SMA, and sensorimotor areas for the

legs and arms.

One key question related to the use of KI in brain-machine interfaces is how lon-

gitudinal training might effect KI responses. Most of the previously discussed studies

conducted limited or single-session BMI training without allowing for observation of

long term effects or changes. One exception to this was a study by Donati et al. [29],

which saw extensive training yield a significant increase in amplitude in the event-

related potential (ERP) and an increase in the number of localized dipole sources

clustered near the leg representation in motor cortex in SCI patients. These effects
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are however confounded by the multiple facets of the training paradigm, which incor-

porated physical rehabilitation in a body-weight support system and an exoskeleton,

virtual reality KI training with tactile feedback, as well as BMI control of a virtual

and physical exoskeleton. The purpose of the current study is to investigate the neu-

ral correlates underlying the KI of walking within the context of a multi-session BMI

training paradigm with an exoskeleton. We measure EEG responses during the course

of the training with a final fMRI recording upon completion of nine BMI sessions to

observe changes in the spatial and temporal dynamics that may indicate BMI-induced

neuroplasticity.

3.2 Methods

The neural data analyzed for this experiment are from the same overarching

dataset with the subject pool and behavioral task as described earlier in Chapter

2, with the subject demographic information included in Table 2.2. All subjects

had provided written informed consent and all experiments were approved by the

Institutional Review Board of the University of Houston.

3.2.1 Experiment Setup and Protocol

Behavioral Task

Seven able-bodied subjects (four males & three females, ages 20-30) were recruited

in this study to elicit their kinesthetic imagery while walking in the REX lower-limb

robotic exoskeleton (Rex Bionics Ltd; Auckland, NZ). Over nine sessions, scheduled

approximately 2-3 times per week per the subjects’ availability, EEG data were col-

lected from the subjects walking in the REX for six stop-walk-stop (SWS) cycles with

the REX in full control of the subjects’ legs (Figure 2.1a). An auditory beep cued
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the start of each stop-to-walk and walk-to-stop transition. Subjects were instructed

to elicit their KI during the walk phases in accordance with the movement of the

exoskeleton. Each session lasted approximately five minutes and the collected data

was used to train the closed-loop BMI decoder as described in Chapter 2.

EEG Data Acquisition

EEG data sampled at 100 Hz were collected and wirelessly transmitted from 64

Ag/AgCl active electrode channels (actiCap System, MOVE System; Brian Products

GmbH, Germany) placed and labeled according to a modified version of the inter-

national 10-20 system [66]. Four posterior channels (TP9, TP10, PO9, PO10) were

relocated to be used as VEOG and HEOG sensors to measure reference templates for

eye blink and eye movement artifacts. Channels FT9 and FT10 were also relocated

to the AFz and FCz positions respectively for better scalp coverage over the motor

cortex, displacing the ground and reference electrodes to the top of the left and right

ear respectively (Figure 2.1b). Electrolytic gel was injected between the electrodes

and the scalp to maintain impedances below 20 kΩ. The 3D spatial locations of all

EEG channels were digitized with a binocular camera scanner (CapTrak, Brain Prod-

ucts GmbH; Germany) for more detailed analyses to identify dipole source locations.

An elastic mesh was also placed over the EEG cap to compress the electrode cables

to reduce artifacts induced by the motion of the cables.

MRI Data Acquisition

After the nine sessions, subjects underwent an MRI scan (Philips Ingenia 3.0T,

Koninklijke Philips N.V.; Netherlands) for both a T1-weighted structural scan and

a fMRI recording. For the functional scans, subjects watched a 10-minute video of

themselves walking in the REX for 11 SWS cycles filmed from the subject’s first

person view as if they were looking down at their own legs in the exoskeleton. While
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watching the video in the scanner, subjects were again asked to try to evoke their KI

in accordance with the exoskeleton’s movements. EEG data were also collected during

the MRI scan using a custom MR-compatible EEG cap (Brain Products GmbH) with

digitized channel locations (FastTrak, Polhemus; Colchester, VT) [67]. Due to a data

collection hiatus during the COVID-19 pandemic, subjects S6 and S7 did not undergo

the MRI scan.

Motor Imagery Questionnaire

Subjects were asked to complete the Motor Imagery Questionnaire - Revised Sec-

ond version (MIQ-RS) [121] as a post-experiment follow-up survey. The MIQ-RS is an

established assessment for obtaining a quantitative measure of a subject’s movement

imagery ability in both visual and kinesthetic domains. Such questionnaires have

shown to be a useful tool to screen candidates for successful BMI performance [83].

Subjects completed the questionnaire independently with a guided online instruc-

tional video. The average score across the 14 questions in the MIQ-RS are reported

in Table 2.2. No response is given for subject S6 who did not return the completed

questionnaire.

3.2.2 Offline EEG Signal Processing

The collected EEG data underwent a rigorous offline processing pipeline to re-

move physiological and non-physiological artifacts. All analysis steps were performed

using custom code scripts written in MATLAB (Mathworks; Natick, MA) with extra

functions from the open source toolboxes EEGLAB [122] and Fieldtrip [123]. The

overview of the processing steps are shown in the flowchart in Figure 2.2.

The EEG data were first high-pass filtered at 0.1 Hz with a fourth order But-

terworth filter to remove baseline drift. Electrical line noise was removed using the
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Figure 3.1: Flowchart for offline processing steps of the EEG during kinesthetic imagery of
walk and stop while walking in the REX exoskeleton.

CleanLine plugin, which uses a sliding window to adaptively estimate the sine wave

amplitude for subtraction. The dataset was then concatenated with the remaining

EEG data from the closed-loop BMI trials to ensure sufficient length downstream for

independent component analysis (ICA); these would be separated out later. Next, the

VEOG and HEOG sensors were used as reference channels for artifact rejection with

an H∞ filter, which has been shown to be especially effective in mitigating ocular

artifacts [51]. Afterwards artifact subspace reconstruction (ASR) [79, 80] was used

to remove noisy bursts from the data using a channel correlation criterion of 0.8 and

a burst criterion of 10 standard deviations to remove corrupted subspaces. If neces-

sary, missing channels that were rejected by ASR were then replaced via a spherical

interpolation. The EEG data were then re-referenced to the common average of the

60 channels.

Independent Component Analysis and Dipole Source Localization

Statistically independent sources in the EEG data were identified using Adaptive

Mixture ICA (AMICA) [124], which has been shown to have improved accuracy over

traditional Infomax ICA [125]. The digitized electrode positions were aligned to the

standard MNI brain model (Montreal Neurological Institute, Quebec, Canada) [126]

and equivalent current dipole models were estimated to match the scalp projection of
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each independent component using a standard three-shell boundary element model

with the DIPFIT toolbox [122, 123]. The fitTwoDipoles plugin [127] was used to

estimate symmetrically constrained bilateral dipoles if they provided a better fit over

the single dipole model. Following the dipole fitting procedure, any dipoles that ex-

plained less than 90% of the residual variance of the component projections were

rejected from further analysis. Additional components were rejected if their pro-

jections were deemed to be noise related, based on probabilistic estimates from the

automated labeling plugin IClabel [128]. For visualizing dipole cluster locations, the

remaining components were clustered according to their 3D locations using k-means

to obtain across-subject and across-session component clusters. For all other spec-

tral and temporal analyses, the remaining components were projected back to the

EEG channel space and segmented in time to separate the walk and stop phases of

kinesthetic imagery.

3.2.3 fMRI Analysis

All fMRI analysis was performed using standard processing steps on each subject’s

data with the open source SPM12 software package within MATLAB [129]. The DI-

COM images received from the scanner were first converted into the NIFTI format.

The converted images were realigned (using the Realign (Estimate) function) by reg-

istering to the mean using a 2nd degree B-spline. The realigned images were then

warped to the normalized space (Normalize (Est & Wri)), aligned to the first image

of the series with very light regularization. These files were smoothed (Smooth) using

default parameters to clean high frequency spatial artifacts before statistical analysis.

Finally, each voxel time series was put into a voxel-based general linear model (GLM),

where the block design sequence (timed to the stopping and walking onsets of the

REX in the video) was convolved with the hemodynamic response function (HRF) to

compute the BOLD signal.
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After the preprocessing steps, both the Walk and Stop KI conditions were con-

trasted against the baseline Rest and also with each other. All contrasts were statis-

tically thresholded with Family Wise Error-corrected p < 0.05 to identify individual

regions of interest (ROIs). Due to the limited number of subjects, we did not perform

any group comparisons of ROIs.

3.3 Results

3.3.1 Spatial Distribution of EEG Spectral Power During Imag-

ination of Gait

The Thomson’s multitaper power spectral density estimate was computed for

each EEG channel (pmtm function in MATLAB) after segmenting the Walk and

Stop phases of kinesthetic imagery. These were integrated into the five frequency

EEG frequency bands: 0.1-4 Hz for δ, 4-8 Hz for θ, 8-15 Hz for α, 15-31 Hz for β,

and 31-50 Hz for γ. The across-subject mean value of the logarithmic ratio between

each condition and baseline rest are plotted on scalp maps for each frequency band

(columns) and each session (rows) in Figure 3.2. As expected based on previous motor

imagery studies, ERD is seen in the α range (middle column, blue/negative values),

quite widespread but particularly over central motor areas and anterior-frontal cortex.

The amount of α suppression increases by an average of 4.8 dB between Session 1 and

Session 9, with the greatest changes in channels AFz, AF3, and AF4 (average change

of -12.5 dB). Bilateral central and parietal channels CP1/2, CP5/6, C3/4, P3/4, and

Pz show prominent suppression in Session 9 (-10.3 dB average for these channels)

without having as large a change across sessions. Strong γ ERS (fifth column) is

also consistent across most of the scalp for all sessions (7.24±3.8 dB). In contrast,

the power ratios comparing Stop to Rest (right half of Figure 3.2) are much smaller

as visually apparent given the fainter colored scalp maps. For Session 9, average α
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Figure 3.2: Event-related de-/synchronizations for both the Walk and Stop conditions versus
Rest as baseline projected onto scalp maps and averaged for all subjects. Sessions
descend in rows and each column corresponds to the five typical frequency bands
within EEG.

Walk and Stop ERD are -6.3 dB and -1.6 dB respectively, and average respective γ

ERS are 6.0 dB and 1.5 dB. This suggests that the KI during the Stop condition was

mostly similar to the baseline Rest condition.

Individual subject ERD/ERS scalp maps contrasting Walk with Rest are shown

for subjects S1 and S2 in Figure 3.3. These subjects were chosen as the best and

worst (chance-level) performing subjects respectively in the BMI task as described in

Chapter 2. Of these two subjects, only S1 shows strong α ERD, which also spreads

to the θ and β frequency bands, while S2 actually shows some slight α ERS (mean

1.9 dB for all sessions and channels). The average change in α power in S1 decreases
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Figure 3.3: Event-related de-/synchronizations for Walk versus Rest projected onto scalp
maps for the best (S1) and worst (S2) performing BMI subjects. Sessions descend
in rows and each column corresponds to the five typical frequency bands within
EEG.

from -1.8 dB to -3.2 dB between Session 1 and Session 9, and most commonly seen

in central and parietal channels with slightly deeper blue areas (more suppression) in

the left hemisphere. The trend in γ ERS is also prevalent in S1 at an average of 7.0

dB across sessions, while only 3.4 dB for S2.

3.3.2 Cortical Potentials Related to Walking Imagery

Next, we calculate the time course of ERD/ERS as temporal changes in spectral

power relative to onset of walking and stopping KI. The time-series of each EEG
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channel were band-pass filtered into each of the five frequency bands, squared in

amplitude to obtain power samples, segmented ±2 s relative to the beep cue for

switching between Walk and Stop KI states, and averaged across trials and channels.

Additionally, the ERP was calculated with the same segmentation and averaging

process without the filtering or squaring. These temporal signals are plotted for the

average of all subjects and individually for S1 and S2 in Figure 3.4. The traces for

Session 1 and Session 9 are shown to indicate pattern changes as a result of the

longitudinal training. Note that there is a difference in scaling in the y-axis for θ

power for S1 and α power for S2, as denoted by the red numbering. In the group-

averaged data, there is a notable ERP response after both the Walk and Stop beeps,

resulting in a peak of 0.12 µV approximately 420 ms after the Walk beep and a

peak of 0.11 µV 460 ms after the Stop cue. In S1, this ERP peak also occurs at

approximately 460 ms after the beep cue, but with a large increase 0.20 µV to 0.30

µV between the first and last session, and only peaks at 0.17 µV after the Stop beep.

S2 has no apparent ERP peak during the Session 1, but the final session’s amplitude

is still reduced relative to S1 and occurs earlier (0.12 µV at 350 ms). Another notable

change is the increase in α power seen in the group-averaged data before the Walk

beep (while the subject is at rest) before and after the longitudinal training; this is

the well-documented µ rhythm over sensorimotor areas [32, 104, 130], which increases

from 13.5 µV 2 to 28.9 µV 2 after the nine sessions, and the heightened α decreases

after the subject is cued to imagine walking. S2 was found to have very low α power

overall (note the different y-axis scale), while S1 shows a more oscillating pattern

whose peak preceding the Walk beep increases from 60.7 µV 2 to 83.1 µV 2 between

Session 1 and Session 9, and then sees a sharp drop 200 ms after Walk beep. Patterns

in the higher frequency bands (β and γ) are more varied and inconsistent with the

average subject data only showing a sharp peak preceding the Stop beep.

We then look at the ERPs on a per channel basis, but filtered into the δ band as

this was the frequency range of interest used during the BMI decoding in Chapter
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Figure 3.4: Time courses for the Event-Related Synchronizations and the Event-Related
Potential for S1, S2, and group-averaged data relative to the Walk and Stop
beeps. Data are shown for the first (thin blue trace) and last (thick black line)
sessions to indicate change after the longitudinal training.
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2. Individual traces for nine select channels over the central motor-related areas are

shown for each session, color-coded on a yellow-red-black gradient (yellow for Session

1, black for Session 9) in Figure 3.5. The most common feature in these channels

is a biphasic peak (a small negative deflection followed by a large positive peak) in

response to both Walk and Stop beep cues. Peak negativity usually occurs about

250 ms after the cue ranging from -1.0 to -2.3 µV among the channels where visible

in the group-averaged data, with the main positive peak occurring at about 450 ms

ranging from 1.2 µV to 3.6 µV. The effect is much larger in S1 than in S2, the former

having positive spikes larger than 13 µV. The largest amplitudes are found in the

central and central-parietal channels (Cz, CP1/2/z), and only for these do we see a

difference between the Walk and Stop conditions. The peak amplitudes do not vary

significantly over sessions.

We also investigated changes in the movement-related cortical potentials (MR-

CPs) in this dataset to see how it evolved over training and its relation with BMI

performance. These were obtained by passing the offline EEG data through a high-

pass filter (0.1 Hz, 4th order Butterworth), then re-referenced using a large Laplacian

spatial filter, and finally low-pass filtered (1 Hz, 4th order Butterworth) [131, 132].

As with the ERPs, these were segmented ±2s relative to the Walk and Stop beeps

and then averaged across trials. The MRCPs for the same nine central EEG channels

are shown in Figure 3.6. Two distinct patterns are present among these signals: a

negative deflection after the cue seen in the central and frontal channels and a posi-

tive peak with a negative rebound seen in parietal/posterior channels. The former is

an example of the readiness potential, the increase in negativity in the MRCP that

precedes movement [52, 55, 131, 133]. As with the other previous findings, these

effects are most pronounced in S1 but diminished in S2 and the subject-averaged

plots. The readiness potential negativity peaks around 800 ms (781±123 ms) for the

group-averaged data. For the biphasic response, the positive peak occurs around 500

ms (485±39 ms) with the negative rebound around 1150 ms (1156±123 ms). No
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Figure 3.5: Traces for the ERP filtered into the δ band for select EEG channels over the
central motor areas for S1, S2, and group-averaged data relative to the Walk and
Stop beeps. Data are shown for all sessions, color-coded on a yellow-red-black
gradient (yellow for Session 1, black for Session 9)
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significant variability was found across sessions. The across-session average MRCPs

were then plotted with Walk and Stop together on the scalp map topography in Fig-

ure 3.7. The Stop MRCPs show a similar response to the Walk response although

with a lower peak amplitude for the readiness negativity and the biphasic positivity,

particularly for channels closer to the vertex.

3.3.3 Localized Dipole Sources from EEG during Gait Im-

agery Training

Figure 3.8 shows a graph ranking the most frequently identified locations for the

equivalent dipole sources associated with the EEG independent components. The

most common location is the superior frontal gyrus in the right hemisphere, but the

next three most common locations are on the left side specifically in the precentral,

lateral occipital, and the superior parietal gyri. Some of these regions (e.g., superior

frontal and precentral gyri) also show bilateral dipoles in both hemispheres. The

dipole sources were then clustered based on their 3D location using a k -means algo-

rithm with k = 5. The choice of five for the number of clusters was determined to be

optimal based on the highest value of the Calinski-Harabasz Index and the Silhouette

Coefficient clustering criteria for values of k from 5-15. The five individual clusters

for the group data are shown in Figure 3.9 separately for the early and late sessions

(Session 1-3 and 7-9 respectively). Clusters 1 and 2 both span the central superior

parts of the brain, but are separated by the central sulcus. The centroid for Cluster

1 lies in the left posterior cingulate cortex for both the early and late sessions with a

slight shift closer to the midline and increased membership from 23 components to 25.

Cluster 2’s centroid lies in the right precuneus and sees a drop in membership from

18 to 13. Cluster 3 spans the left temporal lobe with its centroid specifically in the

bank of the superior temporal sulcus with no change in the number of components.

Cluster 4 covers the rear occipital areas with the early sessions having 7 members
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Figure 3.6: Movement-related cortical potentials for select EEG channels over the central
motor areas for S1, S2, and group-averaged data relative to the Walk and Stop
beeps. Data are shown for all sessions, color-coded on a yellow-red-black gradient
(yellow for Session 1, black for Session 9) with the mean value as a cyan trace.
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and its centroid in the left lateral occipital gyrus and the later sessions having 14

members centered around the left lingual gyrus. Cluster 5 is the most widespread of

the clusters in frontal cortex, and sees the largest increase in membership from 10 to

24 and the centroid migrates from the right insula to the caudal middle frontal gyrus.

The same five clusters are collectively visualized for S1 and S2 separately in Figure

3.10. The clustered dipole locations for S1 are a smaller representative sample of the

grouped subject data, but with only 21 and 24 dipoles for the early and late sessions

respectively. For S2, considerably fewer dipoles met the acceptable thresholds for

residual variance and probability of being non-artifact (only 8 and 13 for early and

late sessions), and the original Cluster 1 and Cluster 2 over the vertex have merged

in the later sessions.

Additionally, Figure 3.9 shows the ERP associated with each dipole cluster ob-

tained by averaging the independent component activation ±2 s from each beep cue.

The ERPs associated with Cluster 1 and Cluster 2 (i.e., those closest to motor ar-

eas) exhibit the most prominent responses. The Cluster 1 ERP response consists of

biphasic peaks for both Walk and Stop: for Walk there is first a negative peak of

-0.65 µV at 270 ms after the beep, followed by a positive peak of 0.5 µV at 430 ms,

and then a slower negative rebound to -0.5 µV at 840 ms; the Stop ERP has a smaller

first negative peak (-0.3 µV) that is slightly delayed at 320 ms but a larger positive

peak extending to 0.65 µV with no second negative rebound. The ERP for Cluster

1 is greatly enhanced in amplitude with similar timings for Sessions 7-9 (note the

difference in scaling on the y-axis): the first Walk negativity reaches -0.82 µV, rises

to 0.55 µV, and drops to -0.88 µV for the slower negativity phase; the Stop ERP peak

amplitudes are increased to -0.55 µV and 0.8 µV. For Cluster 2, the early Walk ERP

reaches peaks of -0.33 µV (260 ms) and 0.59 µV (480 ms) and the negative rebound

lasts up to 1.2 s after the beep; the corresponding Stop ERP only has a positive peak

of 0.41 µV at 650 ms. The Walk ERP for this cluster does not increase at the end

of the training, but there is seemingly contradictory α activity in the Stop ERP that
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subsides after the beep, i.e., when the subject imagines coming to rest. Given the

otherwise general similarities between the responses of these two clusters, there is also

a consistent delay between the peak timings that could suggest a cascading of the

same signal through a pathway connected by these regions.

3.3.4 Contrasting Walk and Stop Imagery through fMRI

All subjects, excluding S6 and S7, underwent an fMRI scan to measure brain ac-

tivation while eliciting their KI and viewing first-person video playback of themselves

walking in the REX. Changes in blood flow were measured from the BOLD contrast

to indicate regions of temporal brain activity. The segmented Walk and Stop scans

were contrasted using statistical parametric mapping. Figure 3.11 shows regions of

statistically significant activation in which voxels during Walk KI had higher intensity

than during Stop KI through a glass brain view. Despite having rather disparate BMI

performance, patterns of activation are most similar in S1, S2, and S4, for which the

most significant areas of activation are in supplementary motor cortex (SMA) by the

interhemispheric fissure and the bilateral inferior occipital gyrus (IOG). Subect S3

also had very good BMI performance but very different patterns of activation than

S1, with more widespread activation emphasizing the bilateral superior parietal lobule

and cerebellum more than the IOG and central gyrus near motor areas. S5 had very

little activation in motor areas but also recruited bilateral IOG. Coronal slices for

each subject’s T1-weighted structural scans are shown in Figures 3.12-3.16 overlaid

with contrast blobs both for which activation in Walk is statistically greater than

Stop and vice versa. Although on a smaller scale of T scores, there is still significant

activation during Stop KI, particularly in S2 and S3 in the cerebellum, cuneus, post-

central gyrus, lingual gyrus, and occipital pole. The full information of all identified

significant activation clusters and their associated brain regions for all subjects are

shown in Table 3.1 for Walk activation and Table 3.2 for Stop activation.
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Table 3.1: Regions of brain activation and MNI coordinates for each subjects’ fMRI
contrasts of Walk KI vs. Stop KI.

MNI Coordinates (mm)

Subject Brain Region(s) t value x y z

S1
L/R supplementary cortex, 21.7 0 -10 74L precentral gyrus

L inferior occipital gyrus 20.2 -52 -74 8

R inferior occipital gyrus, 16.6 54 -68 6R middle temporal gyrus

R/L cerebellum exterior, 13.0 34 -46 34L inferior occipital gyrus

R superior temporal gyrus, 12.4 68 -36 14R supramarginal gyrus

L planum temporale,
10.9 -64 -34 16L superior temporale gyrus,

L supramarginal gyrus

L/R postcentral gyrus 9.9 -42 -28 40

R superior parietal lobule, 7.9 34 -34 48R supramarginal gyrus

R precentral gyrus 7.7 16 -32 46

L/R thalamus 6.8 -4 -20 2

brain stem, 6.5 10 -30 -18cerebellar vermal lobules I-V

S2
R/L inferior occipital gyrus, 13.0 50 -72 0R middle occipital gyrus

L supplementary motor cortex, 12.0 -2 -12 76L precentral gyrus

54



Table 3.1: Continued

L/R parietal operculum,
11.0 -50 -40 26L planum temporale,

L supramarginal gyrus

L/R superior parietal lobule 9.3 -26 -42 48

S3
R occipital pole, 20.1 20 -96 0R/L superior parietal lobule

L/R cerebellum exterior 17.8 -16 -66 -18

L inferior occipital gyrus, 17.4 -22 -98 0L middle temporal gyrus

R/L precentral gyrus, 15.8 62 2 34R/L postcentral gyrus

L temporal gyrus, 15.5 -62 -8 -26L fusiform gyrus

R/L superior frontal gyrus, 14.3 16 70 20R frontal pole

L middle occipital gyrus, 13.8 -28 -94 24L superior occipital gyrus

R lateral orbital gyrus 12.5 38 58 -14

L angular gyrus, 12.3 -40 -72 48L superior parietal lobule

R pallidum 11.8 18 2 0

L/R middle frontal gyrus 11.5 -52 4 42

R supramarginal gyrus 11.1 62 -34 28

brain stem 9.9 4 -46 -62

L supplementary motor cortex 8.7 -10 10 52
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Table 3.1: Continued

L calcarine cortex, 7.6 -16 -66 2L lingual cortex

S4
R/L superior parietal lobule 9.4 30 -44 44

R middle/superior temporal
gyrus

8.7 58 -62 -4

L parietal operculum 8.2 -48 -38 24

R/L precentral gyrus, 8.2 4 -16 68L supplementary cortex

L inferior temporal gyrus 6.8 -48 -38 24

L putamen 5.6 -26 -2 6

R precuneus 5.4 12 -50 50

S5
L inferior occipital gyrus, 17.0 -24 -98 -2L middle temporal gyrus

R inferior occipital gyrus, 15.1 28 -84 4R occipital pole

L/R precentral gyrus 9.9 -30 -4 40

L superior parietal lobule 7.8 -38 -40 48

L parietal operculum 7.7 -46 -34 16

R supramarginal gyrus 7.7 64 -18 40

L/R cerebellum exterior 7.5 -18 -66 -22

L inferior frontal gyrus, 7.0 -50 10 4L central operculum
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Table 3.2: Regions of brain activation and MNI coordinates for each subjects’ fMRI
contrasts of Stop KI vs. Walk KI.

MNI Coordinates (mm)

Subject Brain Region(s) t value x y z

S1
L/R cuneus 8.9 -8 -90 -16

L superior parietal lobule 8.3 -18 -78 54

L superior temporal gyrus,
7.6 -56 -34 6L planum temporale,

L middle temporal gyrus

R transverse temporal gyrus, 7.0 46 -14 0R superior temporal gyrus

L inferior frontal gyrus, 6.1 -46 20 24L middle frontal gyrus

L middle temporal gyrus 5.7 -54 -48 2

S2
L inferior occipital gyrus, 11.5 -24 -96 -10L cuneus

R occipital pole, 10.4 26 -98 -4R lingual gyrus

L/R middle frontal gyrus, 9.7 -40 50 4R central operculum

R/L postcentral gyrus 9.1 0 -40 74

R/L supramarginal gyrus 8.4 64 -46 28

L middle frontal gyrus, 7.8 -30 38 38L superior frontal gyrus

L/R cingulate gyrus, 7.1 -2 -26 28L precuneus
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Table 3.2: Continued

L posterior insula,
6.7 -32 -26 16L superior temporal gyrus,

L transverse temporal gyrus

L temporal pole,
6.6 -40 4 -18L entorhinal area,

L posterior insula

R precentral gyrus 6.4 42 -12 56

R cerebellum exterior 6.4 10 -78 -34

L superior parietal lobule 6.4 -24 -72 54

L/R caudate 6.3 -10 10 10

R putamen, 5.8 26 16 -4R caudate

R cerebellum exterior, 5.8 10 -66 -10cerebellum vermal lobules I-V

R superior frontal gyrus 5.6 26 22 58

S3
R precuneus, 20.0 6 -54 66L postcentral gyrus

R/L cerebellum exterior 14.8 12 -86 -44

R lateral ventricle, 9.3 26 -42 10R lingual gyrus

L temporal pole 8.5 -54 4 -42

brain stem 7.6 4 -28 -52

S4
R/L cerebellum exterior 6.1 36 -76 -26

58



Table 3.2: Continued

S5
R/L lingual gyrus 9.3 14 -72 -8

L/R superior occipital gyrus 8.4 -22 -90 22

R superior temporal gyrus 6.9 64 0 -2

3.4 Discussion

3.4.1 Neural Signatures of Gait KI with an Exoskeleton

The underlying neural correlates of the kinesthetic imagery of walking while un-

dergoing BMI training to control a robotic exoskeleton were explored using both

EEG and fMRI analysis. The fMRI results show slightly varied patterns of ac-

tivation in the five subjects that underwent the scanning, with the most consis-

tently activated regions including motor-related areas (supplementary motor area,

SMA, and precentral gyrus/primary motor cortex, M1) close to the leg representa-

tion in the interhemispheric fissure and areas associated with visual processing (bi-

lateral inferior occipital gyrus, IOG, and superior parietal lobule, SPL). Numerous

studies find similar activation in SMA, specifically associated with motor initiation

[30, 54, 83, 84, 102, 103, 105, 113, 116], while M1 activation, involved in motor execu-

tion, is less consistently found during KI [102, 104, 105, 113]; S1, S2, and S4 all show

activation in both SMA and M1, S3 shows activation in SMA only, and S5 does not

show any in this region. Among visual areas, the SPL was most consistently activated

while the IOG was only found in 4 subjects but was usually among the strongest ac-

tivated regions. The SPL is more commonly involved during non-kinesthetic visual

motor imagery (VI) [83, 107, 113, 134], and lesions to this region can impair motor
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imagery ability [110, 135]. The IOG is observed less frequently during motor im-

agery, more notably known for visual processing and recognition of shapes and faces

[136, 137, 138]; IOG activation has been seen in a gait-imagery study in Parkinson’s

disease patients watching a video of an actor walking [139] and another study with

healthy subjects imagining walking down a path displayed on a screen [140]. This

suggests that the video playback of the subjects walking in the REX may have con-

tributed to increased activity in the IOG rather than the walking imagery. Consistent

activations during the Stop phase occur in the cuneus/ precuneus for S1, S2, and S3,

known for visual processing and generating mental images [83, 105], but also the

brain’s default mode network active during wakeful rest [141, 142]. This inter-subject

variability is not unexpected [30, 55], as subjects may be employing different imaging

strategies. The lack of activation in M1 or SMA in S5 suggests that the subject may

have only trained using VI instead of KI.

The localized dipole sources derived from the EEG data also reflect the patterns

found in the fMRI activations. Cluster 1 and Cluster 2 in Figure 3.9 both span

somatosensory areas near representation of the legs, although Cluster 1 most directly

reflects the M1 and SMA activation found in fMRI. The centroid for Cluster 2 lies in

the precuneus, and the centroid for Cluster 1 is in the posterior cingulate cortex, which

has shown to be active in other imagery studies [84, 102]. Cluster 4 likely corresponds

to the visual areas that were activated. The top regions in Figure 3.8 have a near

one-to-one correspondence with fMRI activations: precentral L represents M1 and

SMA, lateraloccipital L contains the IOG, superiorparietal L for the SPL, with the

precuneus rounding out the top five. Interestingly, the most common singular region

is the right superior frontal cortex (Cluster 5), which sees the largest increase in

dipoles over the training. Only S3 showed active frontal cortex in the fMRI data, but

frontal cortex activation has been previously reported during walking KI [30, 83, 105].

S3 was one of the subjects that had an overall good BMI decoding performance, and

later described his strategy as less focused on the KI but task-oriented in trying to
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reach a target destination, which may account for more activity in frontal areas.

The EEG results also show the expected α suppression associated with movement

well-established in the literature [31, 41, 112, 117, 118]. The α ERD is mainly localized

to central motor areas as seen in Figure 3.2 and Figure 3.3, with some increase in power

in the surrounding channels, the noted focal ERD/surround ERS effect [117, 118].

There is a slightly more suppression in the left hemisphere, which may be related to

the right-handedness of all the subjects or that the REX would always make its first

step with its right leg. Some of the ERD extends to θ and β frequencies, particularly

for S1, which has also been documented by Reynolds et al. [117]. This comes at the

expense that we do not see the expected ERS in the β band [31, 112]; it is possible

that since this phenomenon usually occurs in the higher end of β, the expected ERS

was canceled out by the α ERD that extended to the lower end of β, yet may still be

visible as γ ERS. In the time domain (Figure 3.4, it is apparent that α power drops in

response to the Walk beep, but the reduced α power does not rebound after the Stop

beep. One plausible explanation is that the REX takes several seconds to come to a

stop after the beep and the α rebound is slow and occurs outside of the 2s window

plotted.

An apparent but noisy ERP response emerges as a response to both cues; much

of the noise is reduced when the signal is filtered into the δ band and averaging is

limited to central channels 3.5. Moreover, the ERP maintains its profile after source

localization and averaging across dipoles clustered within sensorimotor cortex, and

the biphasic spike and the timing of the peaks are consistent with other studies using

motor imagery that have identified these spikes as the N2 and P3 peaks [29, 143, 144,

145]. Similarly, the MRCP obtained via spatial filtering shows the expected negativity

of the readiness potential [52, 55, 131, 133] in central and frontal channels that would

be overlying motor and premotor cortex. A response with a different profile and a

switch in polarity occurs in the parietal and occipital channels that may originate
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from a source from a different dipole cluster and/or may be related to a response

from visual structures involved in kinesthetic imagery.

3.4.2 Impacts from the Longitudinal Study

One of the goals of this study was to determine the long-term effects of KI and

BMI training through multiple sessions as a longitudinal study. Although there was

variability among subjects in their neural signatures, there were several features that

showed a persistent increase between the start and end of the training in the group-

averaged data. The amount of α power suppression (ERD) increases across sessions,

particularly over the central motor areas, as a consequence of heightened µ rhythm

during the Rest and Stop phases preceding the Walk beep. We did not observe any

change in the amplitudes of the MRCP, as otherwise reported by Yao et al. [84],

finding a 20% increase in the MRCP of Cz and C3. Their subjects trained for 5

days/week over 6 weeks, so both the frequency and duration of training would likely

have played a factor. We did find an increase in the peak amplitudes of the average-

channel ERP between the first and last sessions, which is accentuated in the best

performing BMI subject as well as in the cluster-averaged ERP for motor cortex.

The year-long multi-faceted rehabilitation protocol by Donati et al. saw a much

larger increase in the ERP on the order of magnitudes, while our peak increase was

approximately 60%. Their study also saw an increase in the number of dipoles clus-

tered near motor cortex, while we saw notable cluster growth for the frontal cortex

and visual areas. As stated previously, their study also incorporated physical rehabil-

itation with overground body-weight support and an exoskeleton, virtual reality KI

training with tactile feedback, and BMI control of a virtual and physical exoskele-

ton. Moreover, their subject population comprised of patients paralyzed from spinal

cord injury, who may have started the training with a depleted motor representa-

tion in the brain. While we did not measure outcome changes in motor execution
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and physical performance, the literature is quite unified that longitudinal KI train-

ing can be useful in various aspects of physical rehabilitation and motor training

[84, 86, 88, 89, 90, 91, 92, 92, 93, 94, 95, 96, 97, 98].

3.4.3 Implications for BMI Control

Our analysis showed several EEG signatures of kinesthetic imagery that may be

useful for BMI control. We found identifiable peaks in both the ERP and MRCP that

would be detectable before movement onset. One of the pitfalls of our decoding model

used in Chapter 2 that may have accounted for poor performance was the use of 200 ms

for window size to create the EEG feature matrix. While longer window sizes would

lead to increased computational time and thus a slower response time, there would

likely be a trade-off for better performance and reliability. Other BMI studies used

particularly larger window sizes ranging from 750 ms to 2s to detect motor intention

[30, 52, 54, 55], and adopting a longer window may help us detect peaks in the ERP

or MRCP. The average distance between the N2 and P3 peaks in our δ-filtered ERP

was about 200 ms, and we would ideally want to use a longer window to fully capture

this feature. Similarly, the MRCP doesn’t reach peak negativity until about 800 ms

after the cue. Using δ band features seems to have helped our signal-to-noise ratio

in detecting these EEG features, but this can be improved upon further by using

select channels over the central motor areas, since the peripheral electrodes within

the 60-channel montage may simply contribute more background noise. Another

strategy that has been effective in other studies [29, 55, 112] is to use imagined hand

movement to elicit a detectable response to initiate walking. This would be easier to

distinguish multiple classes, such as left movement vs. right movement, since hand

representation in cortex is spread out more laterally in motor cortex. However, our

goal was to develop a more intuitive BMI that initiates movement with natural mental

imagery.
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There is also the issue that the noted responses after the Walk and Stop beeps

have very similar profiles of sharp transient peaks. It is unlikely that these similar

responses are due to an auditory evoked potential, as the relevant literature describes

these as occurring within 100 ms of hearing the beep cue, roughly 50 ms for the

first positive peak over posterior areas and a negative peak about 100 ms afer onset

over frontocentral areas [146, 147, 148]. Regardless, if we were to continue to rely

on these features for BMI control, we may have to reconsider from trying to reliably

distinguish between the two signals to utilizing them in a different way. Instead of

a different response corresponding to Walk and Stop separately, the ERP may serve

better as a brain switch to toggle between the two states [75, 120, 149]. Subjects would

then no longer need to sustain their KI for the duration of the phase, and could just

reactivate it when needed to toggle a switch to the next state. The literature does not

have a consensus on the effects of sustained vs. transient imagery, sometimes seeing

stronger β oscillations/weaker ERD in the former case [150, 151] or vice-versa [117];

this effect would need to be explored further to demonstrate its viability for usage in

BMI applications.

3.4.4 Limitations

This study has several limitations that are important to address. First, we had

a small sample size both in terms of the number of subjects (7) and the number of

trials and data points (6 Walk and 6 Stop cues per each of the 9 sessions). This would

normally be insufficient for most ERP studies that require averaging of sometimes

hundreds of trials to elucidate a clear response with a high signal-to-noise ratio.

Furthermore, only five subjects were able to receive an fMRI recording, limiting the

extent to which we can identify overall trends for a generalized population. But

in order to have had more subjects and more data per subject, we would need to

disassociate the KI training aspect of this experiment from the larger BMI training
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paradigm, since the collected KI data served mainly to gather training data for the

BMI classifier.

Secondly, the limited data and the variability within it makes it difficult to clearly

identify longitudinal trends. For the sake of presentation, we were only able to report

the first and last measurements but do not use regression to establish a statistically

significant change. It would also have been beneficial to have recorded an fMRI from

subjects at the very beginning of the protocol, to be able to compare both structural

and functional differences as a result of the longitudinal training.

Thirdly, a kinesthetic imagery paradigm is often difficult to execute properly.

When performed for long periods of time, KI can be cognitively demanding for sub-

jects [108, 117], leading to fatigue and decreased performance at the end of sessions.

It is also difficult to enforce whether subjects are properly working to elicit KI, as

opposed to visual imagery or focusing their general attention on the task. The dis-

parate fMRI activations give us some insight into this: S5 likely only performed with

VI due to a lack of activation in and around motor cortex, and S3 may have pursued

his own unique task-oriented strategy prioritizing successful BMI performance over

eliciting a strong KI response. We administered the Motor Imagery Questionnaire

(MIQ-RS) [121] to determine an objective measure of the subjects’ ability to elicit

kinesthetic vs. visual imagery (results reported in 2.2, but no clear connection could

be found between scores and either BMI performance or strength of neural responses.

Moreover, measuring EMG from the leg muscles during the task would have helped us

determine with certainty that the subjects were not making overt attempts at move-

ment (but restrained by the exoskeleton); motor imagery by definition is no longer

imagery if there is any detectable activation in EMG [102].
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3.5 Conclusions

In this study, we investigated the neural correlates of the kinesthetic imagery of

gait throughout the duration of a longitudinal BMI training paradigm to control a

walking exoskeleton. EEG data were collected and analyzed while subjects were in-

structed to elicit their KI for alternating Walk and Stop cycles in an exoskeleton over

nine longitudinal sessions. Our results demonstrates changes in α suppression and

µ rhythm activity, pronounced responses in the ERP and MRCP in response to the

cue to switch states, and cortical activity related to the mental imagery of walking

localized in both motor and visual areas of the brain. This work contributes to the

body of literature by assessing what cortical changes transpire, as measured by EEG

and fMRI data, as a result of nine sessions of training subjects to use their KI to

control a walking exoskeleton. Future steps that could further the results presented

in this chapter would be to enroll patients paralyzed from spinal cord injury to track

improvement and recovery in motor response, investigate changes in functional and

structural connectivity within EEG and the fMRI diffusion tensor imaging respec-

tively, and identify correlates of a more intuitive/less cognitively demanding mode

of motor imagery that could serve as a useful tool for BMI control. Additionally,

this study can be integrated with either functional electrical stimulation or vibrotac-

tile feedback [29, 54, 117] to improve upon these findings for more enhanced neural

responses, better clinical outcomes for recovery, and more robust BMI performance.
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Figure 3.7: Movement-related cortical potentials plotted over the scalp topography for S1,
S2, and group-averaged data overlaying the Walk (green) and Stop (red) condi-
tions.
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Figure 3.8: Counts of the most frequently occurring brain regions associated with the local-
ized dipole sources for all subjects and sessions.

Figure 3.9: Clustered dipoles visualized on a generic brain MRI and the associated Walk and
Stop ERP for each cluster, shown in rows. Dipoles are shown for all subjects but
separated between early (Sessions 1-3) and late sessions (Sessions 7-9). Cluster
centroids are indicated with a white ring. Red text denotes different scaling.
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Figure 3.10: Dipoles visualized on a generic brain MRI with all clusters colorized for S1 (top)
and S2 (bottom), separated by early (Sessions 1-3) and late training sessions
(Sessions 7-9). Cluster centroids are shown in white with the center colored
the same as the rest of the cluster.
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Figure 3.11: Glass brain views showing regions of statistically significant activation where
voxels during Walk KI have higher intensity than during Stop KI.
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Figure 3.12: Coronal slices of subject S1’s T1-weighted structural MRI overlaid with blob
contrasts for both significant increases and decreases in voxel intensity during
Walk and Stop KI.
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Figure 3.13: Coronal slices of subject S2’s T1-weighted structural MRI overlaid with blob
contrasts for both significant increases and decreases in voxel intensity during
Walk and Stop KI.
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Figure 3.14: Coronal slices of subject S3’s T1-weighted structural MRI overlaid with blob
contrasts for both significant increases and decreases in voxel intensity during
Walk and Stop KI.
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Figure 3.15: Coronal slices of subject S4’s T1-weighted structural MRI overlaid with blob
contrasts for both significant increases and decreases in voxel intensity during
Walk and Stop KI.
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Figure 3.16: Coronal slices of subject S5’s T1-weighted structural MRI overlaid with blob
contrasts for both significant increases and decreases in voxel intensity during
Walk and Stop KI.
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Chapter 4

Conclusion

The purpose of this dissertation was to develop a brain-machine interface that

detected movement intention from kinesthetic motor imagery to control a lower-limb

walking exoskeleton, and to track cortical changes as subjects learned to train their KI

over nine longitudinal sessions. In Chapter 1, we presented an overview of how BMI

systems hold the potential for restoring movement and mobility for people suffering

from paralysis and motor disabilities. In Chapter 2, we developed and evaluated a

closed-loop LFDA-GMM decoder to classify Walk and Stop states from windowed δ

band EEG, demonstrating robust control in at least three of the subjects by the end

of their training. We also tracked how the average EEG feature vector evolved over

time, its dependence on classification state, and analyzed various signal statistical

measures to identify separation between well- and poorly-classified EEG. In Chapter

3, we looked at the neural correlates underlying the KI of gait from the EEG collected

during the training phase of the BMI protocol. We found noteworthy changes in α

suppression, prominent ERP and MRCP peaks in response to the cue to switch states,

and localized the cortical activity within motor and visual areas of the brain. The

work presented in this dissertation contributes to the state-of-the-art in noninvasive

BMI systems for control of robotic systems, and furthering our understanding of the

representation of gait-related motor imagery in the brain.

So to circle back to the original high-level question of whether individuals can be

trained to control a walking exoskeleton with their EEG, and if this can ultimately be

a means to restore mobility for the paralyzed population: we proved our hypothesis

demonstrating that about half of our able-bodied subjects can be trained to effectively

control the exoskeleton with their mental imagery. We identified time-domain and
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spectral features that were prominent as the subjects focused on trying to either walk

or stop, and how these features track over longitudinal training. And we built upon

our knowledge of the cortical mechanisms representing imagination of walking that

it may hopefully be used to restore mobility in people with motor disabilities.
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