
Heuristics for the Cutting Stock with Setup Cost and Blood

Collection Problems

A Dissertation

Presented to

the Faculty of the Department of Industrial Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in Industrial Engineering

by

Azadeh Mobasher

May 2013

Heuristics for the Cutting Stock with Setup Cost and Blood

Collection Problems

Azadeh Mobasher

Approved:

Chairman of the Committee
Ali Ekici, Assistant Professor,
Industrial Engineering

Committee Members:

Gino Lim,
Associate Professor,
Industrial Engineering

Eylem Tekin,
Instructional Associate Professor,
Industrial Engineering

Basheer Khumawala,
Professor,
Bauer College of Business

Funda Sahin,
Associate Professor,
Bauer College of Business

Suresh K. Khator, Associate Dean
Cullen College of Engineering

Gino Lim, Associate Professor and
Chairman, Industrial Engineering

Acknowledgements

I wish to take this opportunity to express my appreciation for numerous individu-

als who made my years in Houston a rewarding experience. I am very grateful to my

dissertation supervisor, Prof. Ali Ekici, for giving me the opportunity and freedom

to pursue my research under his supervision. Interacting with him as his student

and advisee I benefited tremendously from his numerous qualities as a mentor and

collaborator.

I also wish to thank the other members of my dissertation committee: Professors

Gino Lim, Eylem Tekin, Basheer Khumawala, and Funda Sahin for having accepted

to take the time out of their busy schedules to read my dissertation and to provide

me with their comments and suggestions.

I have been fortunate to associate with many friends and family members during

the time I spent in Houston. In fact, there are too many to list in the acknowledge-

ments but I am nevertheless truly grateful. However, in particular, I would like to

thank Maryam Aliakbari, Elham Mortazavi, Forozan Shaghaghi, Masoumeh Rajabi,

Mahdieh Samea, and my dearest grandmother, Fatemeh Amizadeh for their unlim-

ited kindness and prayers. Their love and memories kept me sane and helped me

throughout my graduate life. I will always remember their support, friendship, and

love.

Last, and most importantly, I am forever indebted to my parents, Aman Mobasher

and Ashraf Khalilpour, my brother, Amin Mobasher, and my sisters, Azin and Arezou

Mobasher. Their invaluable and relentless support, encouragement, and love are

without doubt the most important reasons for my success. I could not have achieved

this without their unlimited sacrifice.

My parents, the angels of my life, bore me, raised me, supported me, taught me,

iv

and loved me. They are the reasons I could make it this far in my life. To them I

dedicate this dissertation.

v

To my dear parents

Aman Mobasher & Ashraf Khalilpour

with all my love

Heuristics for the Cutting Stock with Setup Cost and Blood

Collection Problems

An Abstract

of a

Dissertation

Presented to

the Faculty of the Department of Industrial Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in Industrial Engineering

by

Azadeh Mobasher

May 2013

vii

Abstract

The applications of Operations Research techniques enable decision makers to

come up with better and more efficient decisions for a wide range of problems in

different industries. In this dissertation, two different problems are studied: (i) the

Cutting Stock Problem with Setup Cost, and (ii) Integrated Collection and Appoint-

ment Scheduling Problem. Both problems are analyzed and solution approaches are

developed using Operations Research methodologies.

The first problem addresses the Cutting Stock Problem with Setup Cost (CSP-S),

which is a more general case of the well-known Cutting Stock Problem (CSP). In

CSP, one wants to minimize the stock items used while satisfying the demand for

smaller-sized items. However, the number of patterns/setups to be performed on the

cutting machine is ignored. In CSP-S, different cost factors for the material and the

number of setups are considered, and the objective is to minimize the total production

cost including both material and setup costs.

In Chapter 1, a mixed integer linear programming model, two local search al-

gorithms, a pattern pool based approach and a column generation based heuristic

algorithm are proposed for CSP-S. The effectiveness of the proposed algorithms is

demonstrated on the instances from the literature.

In Chapters 2 and 3, the second problem is introduced, which is motivated by

the processing requirements of the donated whole blood. This problem is called

the Integrated Collection and Appointment Scheduling Problem (ICASP). The blood

products have limited life time and are required to be collected from donation centers

and delivered to a processing center for platelet extraction within a certain amount

of time.

In Chapter 2, a mixed integer programming model is developed for ICASP. Since

viii

the problem under consideration is NP-hard, an integer programming based algorithm

and a construction based heuristic approach are proposed to find a good feasible solu-

tion. In Chapter 3, we assume that the number of scheduled donors that are showing

up for donation is uncertain. Robust optimization and Chance Constrained Program-

ming are utilized to account for the uncertainty of data. The effect of uncertainty is

demonstrated on the instances from the Gulf Coast Regional Blood Center located

in Houston, TX.

ix

Table of contents

Acknowledgements iv

Abstract viii

Table of contents x

List of Figures xiii

List of Tables xiv

Chapter 1 Heuristics for the Cutting Stock Problem with Setup Cost 1

1.1 Introduction . 1

1.2 Literature Review . 2

1.3 Problem Definition . 6

1.4 Mathematical Formulations . 9

1.5 Complexity and A Special Case . 12

1.6 Heuristic Algorithms . 14

1.6.1 Local Search Algorithms . 15

1.6.2 Column Generation Based Heuristic Algorithm 24

1.6.3 Pattern Pool Based Approach 27

1.7 Computational Results . 28

1.8 Conclusion . 32

Chapter 2 Integrated Collection and Appointment

Scheduling Problem 34

2.1 Introduction . 34

2.2 Literature Review . 37

x

2.3 Problem Definition . 39

2.4 A Mixed Integer Linear Programming Model 42

2.4.1 Tour-Related Constraints . 43

2.4.2 Arrival Time Constraints . 44

2.4.3 Collection Amount Constraints 45

2.4.4 Non-negativity and Integrality Constraints 47

2.5 Heuristic Approaches . 47

2.5.1 Clustering Phase . 47

2.5.2 Integer Programming Based Algorithm 48

2.5.3 Construction Based Heuristic Algorithm 49

2.6 Computational Results . 54

2.7 Summary . 57

Chapter 3 Robust Optimization and Chance Constrained

Programming for the Collection Problem with Uncertainty 59

3.1 Introduction and Literature Review 59

3.2 Problem Definition and Mathematical Models 61

3.3 Robust Optimization . 62

3.4 Chance Constrained Programming 66

3.5 Computational Results . 67

3.6 Summary . 74

Chapter 4 Conclusion and Future Work 76

4.1 Current Findings . 76

4.1.1 Cutting Stock Problem with Setup Cost 76

4.1.2 Integrated Collection and Appointment Scheduling

Problem . 77

xi

4.2 Future Research Directions . 78

4.2.1 Cutting Stock Problem with Setup Cost 78

4.2.2 Integrated Collection and Appointment Scheduling

Problem . 79

References 81

xii

List of Figures

Figure 1.1 (a) CSP, (b) PMP, and (c) CSP-S solutions for the example

with cost setting Cs = $100, Cp = $1. 7

Figure 1.2 Comparison of SKBA and SHPC solutions over 40 instances

for different cost settings: (i) Cs = $100, 000, Cp = $1, (ii) Cs =

$10, 000, Cp = $1, (iii) Cs = $1, 000, Cp = $1, and (iv) Cs = $100, Cp =

$1. 19

Figure 2.1 An example illustrating the importance of synchronizing the

appointment and pickup schedules. 41

xiii

List of Tables

Table 1.1 Demand and length information for the demand items in the

example. 6

Table 1.2 Solutions found by different problems for the example under

different cost settings. 8

Table 1.3 Average CPU time and optimality gap of the solutions found by

MPGA, SPGA, MKBA and SKBA. 30

Table 1.4 Average CPU time and optimality gap of the solutions found by

LSE, LSH, CGA, PPBA, CSP, PMP and CGV. 31

Table 1.5 Average optimality gap of the solutions found by LSE, LSH,

CGA, PPBA, CSP, PMP and CGV over 30 instances for which a fea-

sible solution is found by CGV. 32

Table 2.1 Comparison gaps of solutions found by ICASP–MIP, IPBA and

CBHA for 30 scenarios. 56

Table 3.1 Comparison gaps of solutions found by RICASP-C, RIPBA-C

for the six deviation scenarios of 30 instances. 70

Table 3.2 Comparison gaps of solutions found by RICASP-B, RIPBA-B

for the six deviation scenarios of 30 instances. 71

Table 3.3 Comparison gaps of solutions found by RICASP-E, RIPBA-E

for the six deviation scenarios of 30 instances. 72

Table 3.4 Comparison d-gaps of solutions found by RIPBA-C, RICASP-C,

RIPBA-B, RICASP-B, RIPBA-E, RICASP-E for the 30 instances. . . 73

Table 3.5 Comparison gaps of solutions found by ICASP-CCP, IPBA-CCP

with different alpha values. 74

xiv

Chapter 1 Heuristics for the Cutting Stock Problem with

Setup Cost

1.1 Introduction

The classical Cutting Stock Problem (CSP) addresses the problem of cutting stock

materials of lengthW in order to satisfy the demand of smaller pieces with demand di

and length wi while minimizing the trim loss. CSP is first introduced by Kantorovich

[36] and studied in one or more dimensions to deal with real-world applications in

various industries such as the glass, fiber, paper and steel industries [21]. The main

objective in CSP is to minimize total waste/material cost, and the number of setups

(different cutting patterns) are usually ignored. However, in real world applications,

the number of cutting patterns in a production plan has to be considered since each

cutting pattern requires an additional setup on the cutting machine. This is especially

important when doing the setup on the cutting machine is time-consuming and/or

costly. For example, Chien and Deng [14] mention the importance of both material

and setup cost in semiconductor industry, and several authors focus on minimizing

the setup and waste cost simultaneously [8, 16, 19, 23, 34, 56].

In this chapter, we study a general version of the one-dimensional CSP, in which we

try to minimize total production cost (setup + material cost) while cutting stock items

of lengthW into demand items of smaller size (wi) in order to satisfy the demand (di)

for each item. Different from the classical CSP, in this problem the total production

cost includes both material cost and setup cost. Every time a new cutting pattern

is used, a setup cost is incurred to set up the cutting machine. We call this problem

the Cutting Stock Problem with Setup Cost (CSP-S). CSP-S unifies a wide domain of

packing/cutting stock problems. Note that CSP-S reduces to CSP when the setup

cost is assumed to be zero. It reduces to the well-known Bin Packing Problem (BPP)

1

[38, 43, 52] when material cost is negligible and demand of each item is 1. Finally,

CSP-S reduces to Pattern Minimization Problem (PMP) [49, 55] which focuses on

minimizing the number of different cutting patterns with a given number of stock

items to be cut to satisfy the demand when the material cost dominates the setup

cost. According to the typology by Dyckhoff [22], CSP-S belongs to type 1/V/I/R,

which means that it is a one-dimensional problem with an unlimited supply of stock

materials of the same size and a set of demand items. According to the typology

by Waescher et al. [58], CSP-S is an input (value) minimization assignment problem

which has a weakly heterogeneous assortment.

The remainder of the chapter is organized as follows. We discuss the related

work in the literature in Section 1.2. In Section 1.3, we provide a formal definition

of the problem, and present an example to illustrate the problem. A mixed integer

non-linear assignment formulation and a mixed integer linear model are presented in

Section 1.4. In Section 1.5, we discuss the complexity of the problem and analyze

a special case of the problem. We propose two local search algorithms, a pattern

pool based approach and a column generation based heuristic algorithm for CSP-S

in Section 1.6. We conduct computational experiments to compare the performance

of the proposed algorithms and the other methods in the literature. The results are

presented in Section 1.7. Conclusion is provided in Section 1.8.

1.2 Literature Review

The most related problems in the literature are Cutting Stock Problem (CSP) and

Pattern Minimization Problem (PMP). Several heuristic and exact algorithms are

developed to solve CSP and PMP. Gilmore and Gomory [27, 28] formulate CSP as

an integer program where the decision variables are the number of times each cutting

pattern is used. In CSP, when the number of demand items increases, the possible

number of patterns and decision variables increase exponentially. Therefore, Gilmore

2

and Gomory propose a method where they first create the useful cutting patterns by

solving an auxiliary problem, then they solve the linear programming (LP) relaxation

and apply rounding procedure to a typically non-integer solution. This heuristic

approach often results in an optimal integer solution. This algorithm is also known

as Column Generation algorithm which is comprehensively explained in [25]. Valério

de Carvalho [51] develops a combination of column generation algorithm and a branch-

and-bound procedure to solve CSP. He formulates the problem as an arc flow model

with some side constraints which also provides a better lower bound. Similar to

the column generation algorithm developed by Gilmore and Gomory [28], the new

model can be split into a master and a subproblem. At each node of the branch-

and-bound tree, he first introduces branching constraints in the master problem and

then generates columns. Instead of generating only one attractive arc (pattern), arc

flow model introduces a set of arcs corresponding to valid cutting patterns which

accelerates the column generation procedure.

Belov and Scheithauer [6] propose an exact cutting plane algorithm in combination

with column generation to address CSP when stock items have different sizes. In

general, a knapsack problem is solved to generate a new column [28]. In the proposed

algorithm, a modified heuristic method is used to find new columns which is generally

more difficult than solving a knapsack problem. Belov [7] discusses the known models

of CSP and proposes several solution approaches like branch-and-price method and

delayed pattern generation heuristic algorithm. Waescher and Gau [57] first discuss

existing heuristic and exact methods to solve CSP by generating integer patterns

and determining the production frequencies. Then, they propose several heuristic

approaches to generate integer patterns for a relaxation of an integer model known

as Complete-Cut Model [27, 28, 45]. The heuristics are tested on randomly generated

instances in comparison with optimal solutions which are found using the proposed

lower and upper bounds on the optimal solution.

3

In general, PMP can be defined as minimizing the number of different cutting pat-

terns while satisfying the demand with a given number of stock items [55]. However,

most of the authors use CSP solution to determine the number of stock items, say

K, and look for a solution with minimum number of different patterns using K stock

items. McDiarmid [39] proves that PMP is strongly NP-hard even for a special case

where only two items fit into a stock item but none of the three do, and proposes a

heuristic approach to find packings of balanced subsets in order to solve this special

case of PMP. Alves and Valŕio de Carvalho [2] develop a branch-and-price-and-cut

algorithm after formulating PMP using an arc flow idea. They use dual feasible func-

tions and linear combinations of added constraints to derive new valid inequalities

and strengthen the bounds of the column generation algorithm. Vanderbeck [55] de-

velops a mixed integer formulation for PMP and solves it using a column generation

approach with linear master problem and non-linear subproblem which is decomposed

into bounded knapsack problems. In addition, a branch-and-bound procedure with

several super-additive inequalities to tighten the feasible region is proposed. Belov

[7] modifies Vanderbeck’s compact mixed integer formulation to strenghten the LP

relaxation bound and then proposes a simple non-linear model for PMP. His method

is based on using an enumerative scheme for LP relaxation model. Umetani et al.

[49] propose a heuristic algorithm, called Iterated Local Search with Adaptive Pattern

Generation (ILS-APG), to minimize the number of different cutting patterns used in

CSP. They first assume that the number of patterns is fixed, say K patterns, and then

search for a solution with a minimum quadratic objective which shows the deviation

of production from demand. Afterwards, they try to minimize K iteratively using

ILS-APG.

Foerster and Waescher [24] propose a heuristic method to minimize the number of

different patterns for minimum waste solution. This heuristic approach has two steps:

(i) finding a minimum waste solution regardless of setup cost, and (ii) combining any

4

p patterns and substitute them with p − 1 patterns for p ≤ 4 using a method called

KOMBI. Cui et al. [16] present a sequential heuristic algorithm, called Sequential

Heuristic Procedure - Cui (SHPC), to solve PMP. This algorithm generates a cutting

pattern using a subset of unassigned items, decides the production frequency and

repeats until all items are assigned. Cui and Liu [17] modify SHPC by introducing

two candidate sets for pattern selection. The first set of candidate items can be used

for finding a new pattern, and the second set includes all the previously generated

patterns. The final set of patterns are chosen considering the total material and

setup cost. Yanasse and Limeira [60] propose a hybrid scheme to heuristically reduce

the number of different patterns in CSP with any dimension. They first generate

patterns and select good patterns using some predefined criteria and update the set

of items whose demands are not satisfied. Then, they solve the reduced problem

using the LP relaxation. Fractional values are rounded down to nearest integer, and

the remaining demand is satisfied using First Fit Decreasing packing algorithm [35].

Finally, they apply the KOMBI heuristic proposed by Foerster and Waescher [24] to

combine several patterns.

Finally, Farley and Richardson [23], Walker [56], Haessler [34], Belov and Schei-

thauer [8] also study problems related to CSP-S where both material and setup costs

are considered. Farley and Richardson [23] introduce this problem as a subset of

the general fixed-charge problem to solve the two-dimensional trim-loss problem in

the glass industry. In Farley and Richardson [23], similar to Walker [56], an initial

solution for a linear model of CSP with fixed charge per setup is produced. Then, a

new pattern is allowed into basis (using simplex method), only if the total production

cost is decreased. Afterwards, a heuristic algorithm is used to improve the solution

by swapping cutting patterns. They use the algorithm by Gilmore and Gomory [29]

to generate the patterns throughout the algorithm. Haessler [34] introduces a mixed

integer pattern-based formulation to solve the one dimensional fixed-charge problem

5

with lower and upper bounds on the customer order requirements. He proposes a se-

quential heuristic approach and uses manually solved small instances to evaluate the

performance of the proposed approach. Belov and Scheithauer [8] design a sequen-

tial heuristic approach to minimize number of input stock materials and present the

effectiveness of this algorithm to minimize the number of different cutting patterns

and the maximum number of open stacks during the cutting process.

1.3 Problem Definition

In this section, we first provide a formal definition of the problem, and then, give

an example to illustrate the differences between CSP, PMP, and CSP-S. In CSP-S, we

have stock items of length W and a set of demand items with given length (wi) and

demand (di) values. We use I = {1, . . . , n} to denote the set of demand items. We

satisfy the demand for each item by cutting stock items according to some cutting

patterns. For each cutting pattern, we incur a setup cost of Cs. Finally, Cp denotes

the cost of a stock item per unit length. Our objective is to satisfy the demand with

minimum total production cost (setup + material cost). For example, if we satisfy

the demand by cutting K stock items using S different patterns, then the total cost

will be CsS + CpKW .

To further explain the problem and illustrate the differences between CSP, PMP

and CSP-S, we provide a simple example. In this example, we have 3 demand items

and enough number of stock items with length 10. The demand and size information

for the demand items is given in Table 1.1.

Table 1.1: Demand and length information for the demand items in the example.

Item 1 2 3
di 8 7 6
wi 4 5 6

6

In Figure 1.1, we provide CSP, PMP and CSP-S solutions when material cost per

unit length (Cp) is $1 and unit setup cost (Cs) is $100. In order to find optimal CSP

solution, we use the mixed integer linear model presented by Kantorovich [36]. To

find the PMP solution, we linearize Vanderbeck’s compact formulation [55], details

of which are explained in Section 1.4. Finally, CSP-S solution is found by solving

the mixed integer linear formulation presented in Section 1.4 to optimality. In Figure

1.1, numbers on the patterns show the item indices, and the production frequency of

a pattern is provided on the left side of each pattern.

(a) (b) (c)

Figure 1.1: (a) CSP, (b) PMP, and (c) CSP-S solutions for the example with cost
setting Cs = $100, Cp = $1.

If we solve CSP to minimize the total material cost by ignoring the setup cost, 4

different cutting patterns are used, 11 stock items are cut, and the total production

cost is $510 (see Figure 1.1(a)). In PMP, we intend to minimize total production cost

while minimizing the number of setups has the second priority. While solving PMP,

Vanderbeck [55] sets an upper bound (K) on the number of stock items that are

used to satisfy the demand, and minimizes the number of different cutting patterns

while satisfying the demand with K or less stock items. In general, K is set to

CSP solution. However, it can be set to higher values to find the trade-off between

material and setup cost as mentioned by Vanderbeck [55]. When we set K to 11

(CSP solution), PMP solution is the same as CSP solution with a total cost of $510.

However, if we set K to a larger number such as 21 (=
3∑

i=1
di), the final solution uses

7

14 stock items and 3 different cutting patterns with total cost of $440. Note that

increasing K beyond 21 does not change the solution since it is an upper bound on

the number of stock items cut in any solution. Vanderbeck [55] is trying to satisfy

the demand exactly, and thus, he is using equality for demand satisfaction constraints

without allowing excess production. We can further improve solutions for PMP by

allowing excess production. This approach helps us to find a better solution with 11

stock items and 3 different patterns and total production cost of $410 (see Figure

1.1(b)). When we solve CSP-S to find a solution that minimizes both material and

setup cost, 2 different cutting patterns are used, 12 stock items are cut, and the total

production cost is $320 (see Figure 1.1(c)), which is the minimum of all solutions.

We consider different cost settings as well, and provide a summary of the solutions

for different problems in Table 1.2. Since CSP solutions do not depend on the cost

setting, the solutions do not change under different cost settings. We see that CSP-S

performs better when the setup cost is high and equally same as PMP when the setup

cost is lower. This is reasonable since PMP is specifically designed for the low setup

cost settings. On this example, we see that CSP-S is a better representation of the

problem when there are separate setup and material costs. Moreover, CSP-S solution

converges to PMP (or CSP) solution as the material cost increases.

Table 1.2: Solutions found by different problems for the example under different
cost settings.

Cost Setting Problem # of Stock Items # of Patterns Total Cost ($)

Cs = $100, Cp = $1
CSP 11 4 510
PMP 11 3 410
CSP-S 12 2 320

Cs = $100, Cp = $5
CSP 11 4 950
PMP 11 3 850
CSP-S 12 2 800

Cs = $100, Cp = $100
CSP 11 4 11,400
PMP 11 3 11,300
CSP-S 11 3 11,300

8

1.4 Mathematical Formulations

In the literature, different mathematical formulations are proposed for CSP, which

can be divided into four categories: (i) pattern-based formulations, (ii) assignment

models, (iii) one-cut formulations, and (iv) arc flow models [1]. In this section, we

provide an assignment-type mixed integer non-linear formulation for the CSP-S, and

then develop a mixed integer linear model by linearizing the non-linear formulation.

We use this formulation to find optimal solutions or lower bounds which are used to

evaluate the performance of the heuristic algorithms.
We start with an observation about the number of patterns/setups in the optimal

solution. The number of setups in an optimal solution for CSP-S is not greater than
the number of setups in an optimal solution for CSP. This is because the setup cost
is not considered in CSP, and the only objective is to minimize the total material
cost. Therefore, any solution with more patterns compared to the CSP solution will
not decrease the number of stock items cut to satisfy the demand. Hence, while
developing a mathematical model for the problem, we assume that the solution has
at most N number of different patterns which is found by solving the CSP. We use
J = {1, 2, . . . ,N} to denote the set of patterns. We can formulate CSP-S as a mixed
integer non-linear program (MINLP) by using the following decision variables:

Xj = Number of times pattern j is used ∀j ∈ J

Pij = Number of times item i is cut in pattern j ∀i ∈ I, j ∈ J

Yj =

 1, if pattern j is used

0, otherwise
∀j ∈ J

The proposed formulation is as follows:

MINLP: Minimize Cs

∑
j∈J

Yj + CpW
∑
j∈J

Xj , (1.1)

s.t. ∑
j∈J

PijXj ≥ di, ∀i ∈ I, (1.2)

9

∑
i∈I

Pijwi ≤WYj , ∀j ∈ J, (1.3)

Xj ∈ N, ∀j ∈ J, (1.4)

Pij ∈ N, ∀i ∈ I, j ∈ J, (1.5)

Yj ∈ {0, 1}, ∀j ∈ J. (1.6)

Equation (1.1) is the objective function which is the summation of total setup cost

and total material cost. For each item i, constraints (1.2) make sure that demand is

satisfied. Constraints (1.3) ensure that the total length of items cut in a pattern does

not exceed the length of the stock item. These constraints also determine whether

a pattern is used or not. Finally, constraints (1.4-1.6) represent the integrality and

non-negativity of decision variables. Here, we use N to denote the set of natural

numbers including 0.

This mathematical model is not easy to solve due to non-linearities. However,

we can linearize this formulation by introducing some new variables and utilizing the

method proposed by Glover [30]. First, we provide a result about how to linearize a

multiplication of two positive integer variables if there exists an upper bound on one

of the variables. We assume that we have a constraint of the form xy ≥ C where x

and y are positive integer decision variables and C is a constant. If there exists an

upper bound for x, i.e., x ≤ B for some constant B, we can rewrite x as a linear

function of binary variables. Using new binary variables, say zt, x can be written as

x =
blog2 Bc∑

t=0
2tzt. Now the original constraint is equivalent to

blog2 Bc∑
t=0

2tzty ≥ C. When

we have a multiplication of a positive integer and binary variable (zty), we can replace

it with a new positive variable, say nt, and introduce the following three constraints

(i) nt ≤ y, (ii) nt ≤ Mzt, and (iii) nt ≥ y + M(zt − 1) where M is a large constant.

As a result, xy ≥ C can be replaced by the following four linear constraints: (i)
blog2 Bc∑

t=0
2tnt ≥ C, (ii) nt ≤ y, (iii) nt ≤ Mzt, and (iv) nt ≥ y + M(zt − 1) where nt’s

are positive variables and zt’s are binary variables.

10

Using the procedure explained above, we linearize constraints (1.2). We know
that Pij is limited by bW

wi
c. Therefore, we can reformulate these non-linear con-

straints by first introducing new binary variables Eijk for each i ∈ I, j ∈ J, k ∈
Ki = {0, 1, . . . , blog2 bW

wi
cc}. Then, Pij is equivalent to ∑

k∈Ki

2kEijk and constraints

(1.2) become ∑
j∈J

∑
k∈Ki

2kEijkXj ≥ di. After introducing Zijk = EijkXj as new positive

variables, we come up with the following mixed integer linear program (MILP):

MILP: Minimize Cs

∑
j∈J

Yj + CpW
∑
j∈J

Xj , (1.7)

s.t. ∑
j∈J

∑
k∈Ki

2kZijk ≥ di, ∀i ∈ I, (1.8)

∑
i∈I

∑
k∈Ki

2kEijkwi ≤WYj , ∀j ∈ J, (1.9)

Zijk ≤ Xj , ∀i ∈ I, j ∈ J, k ∈ Ki, (1.10)

Zijk ≤MEijk, ∀i ∈ I, j ∈ J, k ∈ Ki, (1.11)

Zijk ≥ Xj +M(Eijk − 1), ∀i ∈ I, j ∈ J, k ∈ Ki, (1.12)

Xj ∈ N, ∀j ∈ J, (1.13)

Zijk ≥ 0, ∀i ∈ I, j ∈ J, k ∈ Ki, (1.14)

Yj ∈ {0, 1}, ∀j ∈ J, (1.15)

Eijk ∈ {0, 1}, ∀i ∈ I, j ∈ J, k ∈ Ki. (1.16)

In MILP, constraints (1.8), (1.10), (1.11), and (1.12) are the linearized versions of

constraints (1.2). Constraints (1.9) are the new versions of constraints (1.3) after re-

placing Pij with
∑

k∈Ki
2kEijk. Finally, constraints (1.14) and (1.16) are the integrality

and nonnegativity restrictions on the new variables.
MINLP is partly developed based on the assignment models by Kantorovich [36]

and Vanderbeck [55]. Kantorovich [36] is the first to propose an integer linear assign-
ment formulation for CSP using an upper bound, say K, on the maximum number
of stock items. Valério de Carvalho [53] and Vance [54] report that the branch-
and-bound algorithms based on the Kantorovich’s model fail to solve some instances
optimally because of weak LP relaxation bound. Recently, Vanderbeck [55] presents

11

the following compact formulation for PMP which is similar to MINLP. We will use
the linearized version of this formulation (using the procedure explained above) for
solving PMP.

Minimize
K∑

k=1
Yk, (1.17)

s.t.
K∑

k=1
XkPik = di, ∀i ∈ I, (1.18)

K∑
k=1

Xk ≤ K, (1.19)

Xk ≤ KYk, ∀k ∈ {1, 2, . . . ,K}, (1.20)
K∑

k=1
wiPik ≤WYk, ∀k ∈ {1, 2, . . . ,K}, (1.21)

Pik ∈ N, ∀i ∈ I, k ∈ {1, 2, . . . ,K}, (1.22)

Yk ∈ {0, 1}, ∀k ∈ {1, 2, . . . ,K}, (1.23)

Xk ∈ N, ∀k ∈ {1, 2, . . . ,K}. (1.24)

In this formulation, K is set to the minimum number of stock items required to

satisfy the demand which can be found by solving CSP. However, as mentioned by

Vanderbeck, it can be set to higher values to examine the trade-off between material

and setup cost minimization as well. The main drawbacks of this compact model

are the weak LP relaxation bound [55] and constraints (1.18). Since the goal in

Vanderbeck’s model is to satisfy the demand exactly without allowing excess produc-

tion, constraints (1.18) may increase the material usage and the number of different

patterns used.

1.5 Complexity and A Special Case

In this section, we discuss the complexity of CSP-S and analyze a special case.

We use the algorithm developed for this special case to develop heuristic algorithms

12

for the general problem.

Proposition 1.5.1. CSP-S is strongly NP-hard.

McDiarmid [39] proves that PMP is strongly NP-hard. Proposition (1.5.1) follows

from this result since PMP is a special case of CSP-S where material cost dominates

setup cost.

Next, we analyze a special case of CSP-S where setup cost is dominating and

summation of sizes of all the items is smaller than or equal to the length of the stock

item, i.e., ∑
i∈I
wi ≤ W . We call this special case, Single Setup Problem. In this case,

there is only one setup/pattern in the optimal solution since we look for a solution with

minimum number of setups. The only remaining thing to be determined is the cutting

pattern of this setup. We propose Algorithm 1, called Single Setup Algorithm (SSA),

to find the optimal solution. The proposed algorithm runs in pseudo-polynomial time

(O(W
mini∈Iwi

)). We know that each item appears in the cutting pattern at least once.

Then, the main idea is to increase the number of appearances for the item that has the

largest ratio of demand divided by the number of appearances. When the algorithm

terminates, Pi determines the number of times item i appears in the cutting pattern

and L determines the number of stock items to be cut.

Algorithm 1 Single Setup Algorithm (SSA)
1: Pi = 1 for all i ∈ I
2: RemainingLength = W −

∑
i∈I

wi

3: ChosenItem = argmaxi∈Id di
Pi
e

4: if wChosenItem ≤ RemainingLength then
5: PChosenItem = PChosenItem + 1
6: RemainingLength = RemainingLength− wChosenItem

7: Go to Step 3
8: else
9: Set L = maxi∈Id di

Pi
e

10: end if

Theorem 1.5.2. Algorithm 1 finds an optimal solution for the Single Setup Problem.

13

Proof. We do the proof by contradiction. Assume that the solution found by the al-

gorithm is not optimal, and let L′ be the number of stock items cut in the optimal so-

lution. We have L′ < L due to our assumption. Let Oi be the number of appearances

for item i in the optimal solution. We know that ∑
i∈I
Oiwi ≤ W and ∑

i∈I
Piwi ≤ W .

Moreover, L′ = maxi∈Id di

Oi
e and L = maxi∈Id di

Pi
e. Let k = argmaxi∈Id di

Pi
e. In this

case, we have Ok ≥ Pk + 1 since d dk

Ok
e ≤ L′ < L = d dk

Pk
e. Our claim is that there

exists l ∈ I such that Pl > Ol. If we assume that no such l exists, then we obtain

wk + ∑
i∈I
Piwi ≤

∑
i∈I
Oiwi ≤ W which contradicts the algorithm. The algorithm should

not have terminated because we can assign one more place to item k which has the

largest ratio of demand divided by the number of appearances in the pattern.

At some point during the algorithm, the number of appearances for item l increases

from Ol to Ol +1. At this point, let P ′i (≤ Pi) be the number of appearances for item i.

Then, we have d dl

Ol
e ≤ L′ < d dk

Pk
e ≤ d dk

P ′
k
e. This shows that according to the algorithm,

Ol should not be increased to Ol + 1 since item l does not have the largest ratio.

1.6 Heuristic Algorithms

The integer program proposed in Section 1.4 has a weak LP relaxation, and the

formulation is highly symmetric similar to the formulations by Kantorovich [36] and

Vanderbeck [55] due to interchangeability of the indices j which denote different

cutting patterns. Therefore, obtaining an optimal solution using MILP formulation

in Section 1.4 is computationally challenging and developing fast and robust heuristic

methods is essential. In this section, we discuss the algorithms proposed for CSP-

S. We discuss three types of algorithms: (i) local search algorithms, (ii) a column

generation based heuristic algorithm, and (iii) a pattern pool based approach.

14

1.6.1 Local Search Algorithms

In general, a local search algorithm starts with an initial solution and looks for

a better solution in the “neighborhood” of the current solution until there is no

improvement. First, we discuss how to find an initial feasible solution. For that

purpose, we develop constructive heuristic algorithms which help in finding a “good”

initial solution.

1.6.1.1 Finding an Initial Solution

To find a “good” initial solution, we develop four constructive heuristic algo-

rithms motivated by Algorithm 1 which is proposed for the Single Setup Problem.

Namely, the four algorithms are (i) Multiple Pattern Generation Algorithm (MPGA),

(ii) Sequential Pattern Generation Algorithm (SPGA), (iii) Multiple Knapsack-Based

Algorithm (MKBA), and (iv) Sequential Knapsack-Based Algorithm (SKBA).

The main idea behind all four algorithms is to solve a Single Setup Problem with

a stock item of length rW for some r value between d∑
i∈I
wi/W e and N . Note that

d∑
i∈I
wi/W e is a lower bound on the number of different patterns and N is an upper

bound (implied by CSP solution) on the number of different patterns. Then, we

form the patterns one-by-one by following a rule. The pseudocodes are provided in

Algorithms 2, 3, 4, and 5. In MPGA (Algorithm 2), we assign the items to the

patterns based on the number of times that each item is cut. After we determine

the number of appearances (Pi) for each item using SSA, we replace item i with

Pi sub-items with demand d di

Pi
e. Then, we sort the sub-items in a descending order

with respect to demand (d di

Pi
e) or length (wi) and assign them to individual patterns

one-by-one considering the width of the stock item. When the current pattern is

full, i.e., there is no more place to put an additional item from the sorted list of

sub-items, we close this pattern and start a new pattern. This continues until all the

sub-items are assigned to a pattern. The number of times each pattern is produced

15

is determined by the maximum demand of the sub-items assigned to this pattern.

The expected final number of patterns is r, but we may end up with more patterns

due to the waste in each cutting pattern. We run this procedure for a set of r values

(r ∈ {d∑
i∈I
wi/W e, . . . ,N}) and choose the one with the smallest total cost.

Algorithm 2 Multiple Pattern Generation Algorithm (MPGA)
1: MinCost = +∞
2: for r = d

∑
i∈I

wi

W e to N do
3: Solve the Single Setup Problem assuming we have stock items of length rW .
4: Let Pi be the number of appearances for item i found after solving the Single Setup

Problem.
5: Replace item i with Pi number of sub-items with demand d di

Pi
e.

6: Sort the new
∑
i∈I

Pi sub-items according to their demand or length in a non-increasing

order.
7: Start with the first pattern: t = 1.
8: Starting from the first sub-item in the list, assign each sub-item to pattern t if it fits

into the stock item of length W . If it does not fit, finalize pattern t, and start a new
pattern: t = t+ 1. Continue this until all the sub-items in the list are assigned to a
pattern.

9: After determining the patterns, each pattern will be produced equivalent to maximum
demand in that pattern.

10: Calculate the total cost for the solution found. Let TotalCost be the total cost.
11: if TotalCost < MinCost then
12: MinCost = TotalCost
13: end if
14: end for

In MPGA, after solving Single Setup Problem, we can sort the sub-items with

respect to demand values or lengths. Moreover, while assigning the items into the

patterns (Step 8), we can still use the previous patterns if the current sub-item in

the list fits to that pattern. This results in a different version of the algorithm. We

consider all these combinations and report the best result.

In SPGA (Algorithm 3), similar to MPGA we first solve a Single Setup Problem

and follow the same steps to determine the first pattern. Different from MPGA, after

assigning each pattern, we update the remaining set of items and demand values and

run MPGA for the updated set of items assuming that we have stock items of length

(r − 1)W . We repeat the procedure until all the items are assigned to patterns.

16

Algorithm 3 Sequential Pattern Generation Algorithm (SPGA)
1: MinCost = +∞
2: for r = d

∑
i∈I

wi

W e to N do
3: Set k = r,H = I.
4: Start with the first pattern: t = 1.
5: Solve the Single Setup Problem assuming we have stock items of length kW .
6: Let Pi be the number of appearances for item i found after solving the Single Setup

Problem.
7: Replace item i with Pi number of sub-items with demand d di

Pi
e.

8: Sort the new
∑

i∈H
Pi sub-items according to their demand or length in a nonincreasing

order.
9: Starting from the first item in the list, assign each item to pattern t if it fits into

the stock item of length W . If it does not fit, finalize pattern t. Update the set of
unassigned items H.

10: if H = ∅ then
11: Go to Step 19.
12: else
13: if

∑
i∈H

wi ≤ (k − 1)W then

14: Set k = k − 1, open a new pattern: t = t+ 1 and go to Step 5.
15: else
16: Start a new pattern: t = t+ 1 and go to Step 5.
17: end if
18: end if
19: After determining the patterns, each pattern will be produced equivalent to maximum

demand in that pattern.
20: Calculate the total cost for the solution found. Let TotalCost be the total cost.
21: if TotalCost < MinCost then
22: MinCost = TotalCost
23: end if
24: end for

In MKBA (Algorithm 4), similar to MPGA first we solve a Single Setup Problem
to determine Pi and d di

Pi
e for each item. While forming the patterns, instead of

assigning sub-items one-by-one, we solve a knapsack problem. We assume any item
cut on stock item of length rW is an independent item, and thus, we have n′(= ∑

i∈I
Pi)

sub-items each with associated demand of d di

Pi
e. Let U be the set of sub-items. We use

d′i and w′i to denote the demand and length of sub-item i for i ∈ U . Defining xi as a
binary variable indicating whether sub-item i is placed into the current pattern or not,
we solve the following knapsack problem to determine the sub-items to be produced
in the current pattern. After fixing this pattern, we update the set of remaining

17

sub-items (U) and solve another knapsack problem for the remaining sub-items.

KP: Maximize
∑
i∈U

d′ixi, (1.25)

s.t. ∑
i∈U

w′ixi ≤W, (1.26)

xi ∈ {0, 1}, ∀i ∈ U. (1.27)

In another variant of the MKBA, we replace the objective function coefficients of

xi’s, which are d′i currently, with d′iw′i. We report the best solution found among these

two variants.

Algorithm 4 Multiple Knapsack-Based Algorithm (MKBA)
1: MinCost = +∞
2: for r = d

∑
i∈I

wi

W e to N do
3: Solve the Single Setup Problem assuming we have stock items of length rW .
4: Let Pi be the number of appearances for item i found after solving the Single Setup

Problem, and n′ =
∑
i∈I

Pi.

5: Replace item i with Pi number of sub-items with demand d di
Pi
e.

6: Initialize the set of sub-items: U = {1, 2, . . . , n′}, and start with the first pattern:
t = 1.

7: if U = ∅ then
8: Go to Step 13.
9: else
10: Solve KP (Equations (1.25)-(1.27)) to determine the current pattern.
11: Update U , start a new pattern: t = t+ 1 and go to Step 7.
12: end if
13: After determining the patterns, each pattern will be produced equivalent to maximum

demand in that pattern.
14: Calculate the total cost for the solution found. Let TotalCost be the total cost.
15: if TotalCost < MinCost then
16: MinCost = TotalCost
17: end if
18: end for

Finally, SKBA (Algorithm 5) is a variant of MKBA. The only difference is that

when the first pattern is found by solving the knapsack problem, the remaining items

18

and their demand values are updated, and then, we solve another Single Setup Prob-

lem with the remaining items to form the next pattern. This is repeated until all

the demand is satisfied. Cui et al. [16] propose a similar algorithm, called SHPC,

to solve PMP. In SHPC, the authors start fitting items into stock items by solving

a bounded knapsack problem where the weight of each item is defined as a func-

tion of the item’s length based on some predefined parameters. While cost setting is

important in determining the best solution in SKBA, SHPC is not sensitive to cost

parameters. In Figure 1.2, we provide a comparison of the solutions found by SKBA

and SHPC over 40 instances from the literature [49] for different cost settings: (i)

Cs = $100, 000, Cp = $1, (ii) Cs = $10, 000, Cp = $1, (iii) Cs = $1, 000, Cp = $1, and

(iv) Cs = $100, Cp = $1. The solutions are normalized assuming that the solutions

found by SHPC correspond to 100%. We see that the solutions generated by SKBA

are around 35%, 36%, 36%, and 51% better than the solutions found by SHPC for

cost settings (i), (ii), (iii), and (iv), respectively.

Figure 1.2: Comparison of SKBA and SHPC solutions over 40 instances for different
cost settings: (i) Cs = $100, 000, Cp = $1, (ii) Cs = $10, 000, Cp = $1, (iii) Cs =
$1, 000, Cp = $1, and (iv) Cs = $100, Cp = $1.

19

Algorithm 5 Sequential Knapsack-Based Algorithm (SKBA)
1: MinCost = +∞
2: for r = d

∑
i∈I

wi

W e to N do
3: Set k = r, H = I.
4: Start the first pattern: t = 1.
5: if H = ∅ then
6: Go to Step 18.
7: else
8: Solve the Single Setup Problem assuming we have stock items of length kW .
9: Let Pi be the number of appearances for item i found after solving the Single Setup

Problem.
10: Replace item i with Pi number of sub-items with demand d di

Pi
e, and let U be the

set of sub-items.
11: Solve KP (Equations (1.25)-(1.27)) to determine the current pattern.
12: Update H, and start a new pattern: t = t+ 1.
13: if

∑
i∈H

wi ≤ (k − 1)W then

14: Set k = k − 1.
15: end if
16: Go to Step 5.
17: end if
18: After determining the patterns, each pattern will be produced equivalent to maximum

demand in that pattern.
19: Calculate the total cost for the solution found. Let TotalCost be the total cost.
20: if TotalCost < MinCost then
21: MinCost = TotalCost
22: end if
23: end for

After finding an initial solution using the above mentioned constructive heuristic

algorithms, we try to improve the solution iteratively by checking the other solutions

in the neighborhood of the current solution. Different local search methods are de-

veloped in the literature to solve CSP and PMP. Foerster and Waescher [24] present

a method of combining the cutting patterns of a CSP solution to produce a new solu-

tion with fewer setups and generally more number of stock items than CSP solution.

The method is called KOMBI, in which they combine 2 patterns to find 1 pattern,

or combine 3 or 4 patterns to come up with 2 or 3 patterns instead, respectively.

Using a similar idea of combining patterns, we propose two local search algorithms:

(i) Local Search with Exact Combination (LSE), and (ii) Local Search with Heuristic

20

Combination (LSH). Different from KOMBI heuristic, in which only p to p− 1 com-

bination is allowed and p is at most 4, we consider combining p patterns into p − i

patterns where i ∈ {1, 2, . . . , p− 1} and p can be larger than 4. Starting from p = 2,

we consider all possible p values until there is not a feasible combination.

1.6.1.2 Local Search with Exact Combination

In Local Search with Exact Combination (LSE), we try to combine the patterns

by solving a mixed integer program. The main idea is to combine p patterns into less

than p patterns using a mixed integer program with the objective of minimizing the

number of stock items used. We combine the patterns if the solution improves. We

consider combining the patterns with a certain probability even if the new solution is

worse. We use I ′ to denote the set of items produced in the patterns considered for

combining. For each item in I ′, we use dr
i to denote the demand that is satisfied by the

patterns under consideration and should be satisfied by the newly formed patterns.
Assuming we consider p patterns to combine, the following decision variables are

used in the proposed mixed integer program:

xj = Number of times pattern j is produced ∀j ∈ {1, 2, . . . , p− 1}

yij = Number of times item i is cut in pattern j ∀i ∈ I ′, j ∈ {1, 2, . . . , p− 1}

We can formulate the problem as a non-linear model as follows:

NLSE: Minimize
∑

j∈{1,...,p−1}

xj , (1.28)

s.t. ∑
i∈I′

yijwi ≤W, ∀j ∈ {1, 2, . . . , p− 1}, (1.29)

∑
j∈{1,...,p−1}

xjyij ≥ dr
i , ∀i ∈ I ′, (1.30)

xj ∈ N, ∀j ∈ {1, 2, . . . , p− 1}, (1.31)

yij ∈ N, ∀i ∈ I ′, j ∈ {1, 2, . . . , p− 1}. (1.32)

21

In NLSE, objective function is minimizing the total material cost. Constraints (1.29)
make sure that every new pattern fits into the stock item. Constraints (1.30) assure
that the partial demand of items in I ′ is satisfied. The remaining constraints are
the integrality restrictions. Using the upper bound on variable yij, we introduce the
following two new decision variables to linearize constraints (1.30).

tijk =

 1, if item i is cut k times in pattern j

0, otherwise
∀i ∈ I ′, j ∈ {1, 2, . . . , p− 1}, k ∈ Ki

eijk = xjtijk ∀i ∈ I ′, j ∈ {1, 2, . . . , p− 1}, k ∈ Ki

The linearized version of NLSE is as follows:

LLSE: Minimize
∑

j∈{1,2,...,p−1}

xj , (1.33)

s.t. ∑
i∈I′

∑
k∈Ki

2ktijkwi ≤W, ∀j ∈ {1, 2, . . . , p− 1}, (1.34)

∑
j∈{1,2,...,p−1}

∑
k∈Ki

2keijk ≥ dr
i , ∀i ∈ I ′, (1.35)

eijk ≤ xj , ∀i ∈ I ′, j ∈ {1, 2, . . . , p− 1}, k ∈ Ki, (1.36)

eijk ≥ xj +M(tijk − 1), ∀i ∈ I ′, j ∈ {1, 2, . . . , p− 1}, k ∈ Ki, (1.37)

eijk ≤Mtijk, ∀i ∈ I ′, j ∈ {1, 2, . . . , p− 1}, k ∈ Ki, (1.38)

xj ∈ N, ∀j ∈ {1, 2, . . . , p− 1}, (1.39)

eijk ≥ 0, ∀i ∈ I, j ∈ {1, 2, . . . , p− 1}, k ∈ Ki, (1.40)

tijk ∈ {0, 1}, ∀i ∈ I, j ∈ {1, 2, . . . , p− 1}, k ∈ Ki. (1.41)

The pseudocode for LSE is provided in Algorithm 6. Note that in Step 4 of the

algorithm, we sort the patterns in the solution in a nondecreasing order with respect

to the number of usage or in a nondecreasing order with respect to the total waste.

We consider both of these alternatives and report the best solution found. Here, the

total waste of a pattern is calculated by multiplying the number of times the pattern

is used by the waste in the pattern.

22

Algorithm 6 Local Search Algorithm with Exact Combination (LSE)
1: Let TotalCost be the total production cost of the best initial solution found by MPGA,

SPGA, MKBA and SKBA.
2: Initialize the best solution found so far: BestSolution = TotalCost.
3: Initialize the number of patterns to be combined: p = 2.
4: Order patterns in a nondecreasing order according to the number of usage (or in a

nondecreasing order according to total waste).
5: Choose first p patterns.
6: Solve LLSE.
7: if LLSE is infeasible then
8: Increase the number of patterns considered: p = p+ 1, and go to Step 5.
9: else
10: Calculate the total cost of new solution: TempCost.
11: if TempCost < TotalCost then
12: Update the current solution: TotalCost = TempCost.
13: if TotalCost < BestSolution then
14: Update the best solution found so far: BestSolution = TotalCost.
15: end if
16: Go to Step 3.
17: else
18: Generate a threshold value p1, and a moving probability p2 uniformly from [0,1].
19: if p2 ≥ p1 then
20: Move to this new solution: TotalCost = TempCost, and go to Step 3.
21: else
22: Terminate the algorithm, and report the best solution: BestSolution.
23: end if
24: end if
25: end if

1.6.1.3 Local Search with Heuristic Combination

In Local Search with Heuristic Combination (LSH), we combine the patterns in a

heuristic way using SSA or one of the constructive heuristic algorithms. Similar to

LSE, we try to combine the chosen patterns in such a way that the portion of the

demand satisfied by the patterns under consideration will be satisfied by the newly

formed patterns. If we consider combining two patterns into one, we use SSA since

it finds the optimal solution for one setup case. Otherwise, we use the construc-

tive heuristic algorithms discussed in Section 1.6.1.1. The algorithm is outlined in

Algorithm 7.

23

Algorithm 7 Local Search with Heuristic Combination (LSH)
1: Let TotalCost be the total production cost of the best initial solution found by MPGA,

SPGA, MKBA and SKBA.
2: Initialize the best solution found so far: BestSolution = TotalCost.
3: Initialize the number of patterns to be combined: p = 2.
4: Order patterns in a nondecreasing order according to the number of usage (or in a

nondecreasing order according to total waste).
5: Choose first p patterns.
6: if p = 2 then
7: Run SSA (Algorithm 1) to combine two patterns into one pattern, and store the

solution: TempCost.
8: else
9: Run all the four constructive heuristic algorithms (MPGA, SPGA, MKBA and

SKBA) to combine p patterns into less than p patterns, and store the best solution
found: TempCost.

10: end if
11: if TempCost < TotalCost then
12: Update the current solution: TotalCost = TempCost.
13: if TotalCost < BestSolution then
14: Update the best solution found so far: BestSolution = TotalCost.
15: end if
16: Go to Step 3.
17: else
18: Generate a threshold value p1, and a moving probability p2 uniformly from [0,1].
19: if p2 ≥ p1 then
20: Move to this new solution: TotalCost = TempCost, and go to Step 3.
21: end if
22: end if
23: if New solution with total cost TempCost has p number of patterns then
24: Increase the number of patterns considered: p = p+ 1, and go to Step 4.
25: end if
26: Terminate the algorithm, and report the best solution: BestSolution.

1.6.2 Column Generation Based Heuristic Algorithm

In this section, we develop a Column Generation Based Heuristic Algorithm (CGA)

to solve CSP-S by modifying the column generation method developed by Vander-

beck [55] to solve PMP. CGA is different from the column generation algorithm of

Vanderbeck [55] in terms of production requirements, objective function, and method

to solve the subproblem. In CGA, we allow excess production in favor of reducing

the number of patterns, thus the demand constraint we are dealing with is different.

24

In addition, the objective function of the CGA’s master problem is minimizing total

production cost, while Vanderbeck’s model only minimizes the number of setups given

the number of stock items to be used. In Vanderbeck [55], the subproblem is origi-

nally non-linear and solved with a branch-and-bound approach. Although the CGA

subproblem is also non-linear, we use the method discussed in Section 1.4 to linearize

the subproblem and obtain the optimal solution at each iteration of the CGA.

Similar to Vanderbeck [55], we define Q as the set of feasible patterns as follows:

Q = {q = (q0, q1, . . . , qn) ∈ Nn+1 :
n∑

i=1
wiqi ≤ W, q0qi ≤ di ∀i}. (1.42)

Here, the first entry of a vector in Q represents the number of times this cutting
pattern is used, and the remaining entries specify the cutting pattern. Note that we
have q0qi ≤ di constraint in order to be able to utilize the same procedure although it is
not necessarily true for CSP-S. Otherwise, the related subproblem is not a meaningful
problem without defining a value for q0. For any vector q in Q, we define a decision
variable λq, which is 1 if pattern q (q1, . . . , qn) is produced q0 times and 0 otherwise.
Using these vectors, the master problem of the column generation procedure can be
formulated as follows:

MP-CG: Minimize Cs

∑
q∈Q

λq + CpW
∑
q∈Q

q0λq, (1.43)

s.t. ∑
q∈Q

q0qiλq ≥ di, ∀i ∈ I, (1.44)

λq ∈ {0, 1}, ∀q ∈ Q. (1.45)

We generate the profitable columns (vectors in Q) using the dual prices of the LP
relaxation of MP-CG. Assuming that πi (∀i ∈ I) are the dual variables associated with
constraints (1.44), the columns are generated by solving the following subproblem:

NSP-CG: Minimize CpWq0 −
∑
i∈I

q0qiπi, (1.46)

s.t.

25

q0qi ≤ di, ∀i ∈ I, (1.47)∑
i∈I

qiwi ≤W, (1.48)

q0 ∈ N, (1.49)

qi ∈ N, ∀i ∈ I. (1.50)

Note that this is a non-linear formulation. However, we can linearize it using the
idea discussed in Section 1.4. For item i, we know that bW

wi
c is an upper bound on qi.

Therefore, we can linearize NSP-CG as follows:

LSP-CG: Minimize CpWq0 −
∑
i∈I

πi

∑
k∈Ki

2kAik, (1.51)

s.t. ∑
k∈Ki

2kAik ≤ di, ∀i ∈ I, (1.52)

∑
i∈I

∑
k∈Ki

2kEikwi ≤W, (1.53)

Aik ≤ q0, ∀i ∈ I, k ∈ Ki, (1.54)

Aik ≤MEik, ∀i ∈ I, k ∈ Ki, (1.55)

Aik ≥ q0 +M(Eik − 1), ∀i ∈ I, k ∈ Ki, (1.56)

q0 ∈ N, (1.57)

Aik ≥ 0, ∀i ∈ I, k ∈ Ki, (1.58)

Eik ∈ {0, 1}, ∀i ∈ I, k ∈ Ki. (1.59)

In LSP-CG, Eik is a new binary variable such that qi = ∑
k∈Ki

2kEik, and Aik is a new

positive decision variable which is equal to q0Eik. In this model, Eik and Aik are used

to linearize constraints (1.47).

In the classical column generation, when a new pattern is found, one of the pre-

vious patterns is removed from the consideration set after solving the LP relaxation

of the master problem. When there is no candidate pattern found to enter the set

of patterns, the algorithm is terminated and the original integer master problem is

solved using the final set of patterns. However, in our implementation, we keep track

26

of all the columns generated, and stop the procedure when enough patterns, say 100n,

are found. At the end, we solve the master problem (MP-CG). Although this method

increases the solution time of master problem, it helps include a higher number of

different patterns and improve the quality of the final solution.

1.6.3 Pattern Pool Based Approach

In this section, we present a Pattern Pool Based Approach (PPBA) to solve CSP-

S. ILOG IBM CPLEX introduced a solution pool feature to find multiple solutions

for a problem within a percentage of the optimal solution. This feature has two

steps. In the first step, it solves the problem’s mathematical model until certain

stopping criteria are met and records the set of solutions found. In the second step,

the mathematical model will run based on the solutions that were saved. In Section

1.6.1.1, we proposed four constructive heuristic algorithms that can find good initial

solutions (sets of patterns) for the CSP-S. The solution pool feature and available

set of patterns found by the constructive heuristic methodologies motivated us to

propose a similar algorithm for our problem called as Pattern Pool Based Approach.

In PPBA, we first run all of the four heuristic algorithms proposed in Section

1.6.1.1 and finds J , a set of feasible patterns. Then we feed the generated patterns

as a pool of solutions to a mathematical model (PPBA) with the following decision

variables.

Xj = Number of times pattern j is used ∀j ∈ J

Yj =

 1, if pattern j is used

0, otherwise
∀j ∈ J

The proposed formulation is as follows:

PPBA: Minimize Cs

∑
j∈J

Yj + CpW
∑
j∈J

Xj , (1.60)

s.t.

27

∑
j∈J

aijXj ≥ di, ∀i ∈ I, (1.61)

Xj ≤MYj , ∀j ∈ J , (1.62)

Xj ∈ J, ∀j ∈ J , (1.63)

Yj ∈ {0, 1}, ∀j ∈ J . (1.64)

where M is a very large constant. aij is the number of times that item i is cut

on pattern j. The values of aij are calculated based on the constructive heuristic

algorithm solutions. This model tries to choose a set of patterns from the provided

pool of patterns to minimize the total production cost. It also decides about the

number of times that each pattern should be used in order to satisfy the demand.

The patterns, that are available in the pool, will satisfy ∑
i∈I aijwi ≤ W , because the

heuristic algorithms make sure patterns are feasible. Therefore, there is no need to

add constraints (1.3) of proposed model in Section 1.4.

1.7 Computational Results

To test the performance of proposed algorithms, we conduct computational exper-

iments on the instances available in the literature for different cost settings. We use

40 CSP instances from a chemical fiber company including up to 29 items which are

provided by Umetani et al. [49] at http://www-sys.ist.osaka-u.ac.jp/~umetani/

instance-e.html. All the computational experiments are carried out on a system

with two 2.4 GHz Xeon processors and 4 GB RAM. The algorithms are implemented

in C++, and CPLEX 12.2, with default settings, is used as the optimization engine.

We consider four different cost settings in the experiments to see the performance

of the algorithms under different cost structures: (i) Cp = 1, Cs = 100, 000, (ii)

Cp = 1, Cs = 10, 000, (iii) Cp = 1, Cs = 1, 000, and (iv) Cp = 1, Cs = 100. As the

setup cost increases, total setup cost comprises a larger portion of the total cost, and

therefore, the number of setups becomes more important.

28

http://www-sys.ist.osaka-u.ac.jp/~umetani/instance-e.html
http://www-sys.ist.osaka-u.ac.jp/~umetani/instance-e.html

In addition to the two local search algorithms (LSE and LSH), the column gener-

ation based heuristic algorithm (CGA) and pattern pool based approach (PPBA), we

include the solutions of three other problems/algorithms in the comparisons as well:

(i) classical Cutting Stock Problem (CSP), (ii) Pattern Minimization Problem (PMP)

and (iii) Vanderbeck’s Column Generation Algorithm [55] (CGV). To solve CSP, we

use the assignment formulation proposed by Kantorovich [36]. Total production cost

for CSP is then calculated using the considered Cp and Cs values. To find PMP

solutions, the compact formulation of Vanderbeck [55] is solved after linearization

using the same method in Section 1.4. While implementing PMP and CGV of Van-

derbeck [55], in order to make a fair comparison we allow excess production, and

we consider different K values as an upper bound on the number of stock items to

be cut. As mentioned by Vanderbeck, the trade-off between material and setup cost

minimization can be examined by setting K to different values.

To calculate the average optimality gap of the solutions found by any of these

algorithms, we need to find the optimal solution or a lower bound for CSP-S. We set

a 4-hour time limit on MILP formulation and report the optimal solution or lower

bound (best LP relaxation objective) found at the end of 4 hours. Using this optimal

solution or lower bound, denoted by LB, the optimality gap of a solution with total

cost TC is calculated as follows:

Optimality Gap = TC − LB
LB

× 100%. (1.65)

We summarize the computational results in Tables 1.3, 1.4 and 1.5. Table 1.3

presents the average optimality gaps and CPU times of the constructive heuristic

algorithms for different cost settings, which are later used as subroutines for LSE

and LSH, and also provide the pool of patterns used in PPBA. Although the average

optimality gaps of MKBA or SKBA are lower than MPGA or SPGA, we consider

29

all these algorithms while implementing LSE, LSH and PPBA, because each of these

four algorithms can find the best solution in almost 10% of the instances.

Table 1.3: Average CPU time and optimality gap of the solutions found by MPGA,
SPGA, MKBA and SKBA.

MPGA SPGA MKBA SKBA
Cp = 1, Cs = 100, 000

Opt. Gap (%) 29.60 43.37 21.30 30.10
CPU Time (sec) 0.01 0.74 40.60 5.13

Cp = 1, Cs = 10, 000
Opt. Gap (%) 14.62 23.39 11.08 9.16
CPU Time (sec) 0.01 0.74 35.25 5.11

Cp = 1, Cs = 1, 000
Opt. Gap (%) 11.49 9.38 7.56 3.96
CPU Time (sec) 0.01 0.74 46.35 5.05

Cp = 1, Cs = 100
Opt. Gap (%) 10.93 9.04 7.54 3.89
CPU Time (sec) 0.01 0.74 45.20 5.13

In Table 1.4, we provide the average optimality gap of the solutions and average

CPU time over 40 instances for different cost settings. The column headings rep-

resent the algorithm used. For CSP, PMP and CGV, since the setup costs are not

explicitly considered, the solution times for different cost settings are same. In its

original form (with equality constraint), CGV fails to find a solution for almost 25%

of the instances (generally larger instances) in all cost settings due to infeasibility

of the final integer master problem while using the patterns found by the branch-

and-bound algorithm. Therefore, the optimality gaps for CGV are over 30 instances.

Cerqueira and Yanasse [12] also report the same deficiency in solving large instances

using Vanderbeck’s solution approach. The optimality gaps under LSH, LSE and

PPBA columns demonstrate the improvement on the initial solution found by the

constructive heuristics after using local search methods or running PPBA model.

We see that LSE performs 1% better than LSH on average. However, the solution

time of LSH is around 94% lower than that of LSE. PPBA performs better than

30

both LSH and LSE for lower setup cost settings. When the setup costs are high,

although LSE performs better than PPBA, PPBA still has a superior performance

over LSH. Among the proposed algorithms, CGA performs slightly better than PPBA

for low setup cost settings. However, when the setup costs are high, all LSE, LSH

and PPBA outperform CGA. When we compare the proposed algorithms with PMP,

CSP and CGV, we see that the proposed algorithms provide significantly better re-

sults when the setup cost is high. Although CGV and CSP are specifically designed

for small/negligible setup cost settings, the proposed algorithms still provide similar

or slightly worse solutions. Note that for some cost settings optimality gaps of PMP

solutions are higher than the gaps for CGV solution because of the 4-hour time limit

on PMP formulation. Thus, for lower cost settings CGV results should be considered

as PMP results as well.

Table 1.4: Average CPU time and optimality gap of the solutions found by LSE,
LSH, CGA, PPBA, CSP, PMP and CGV.

LSH LSE CGA PPBA PMP CSP CGV
Cp = 1, Cs = 100, 000

Opt. Gap (%) 10.08 8.84 13.88 9.97 44.72 164.22 88.95
CPU Time (sec) 73.98 1450.02 22.32 1603.98 9949.68 8675.43 94.08

Cp = 1, Cs = 10, 000
Opt. Gap (%) 2.12 1.54 2.08 1.76 27.38 27.38 8.56
CPU Time (sec) 77.20 1470.31 269.00 1561.23 9949.68 8675.43 94.08

Cp = 1, Cs = 1, 000
Opt. Gap (%) 1.91 0.85 0.45 0.53 3.29 3.09 0.58
CPU Time (sec) 91.11 1607.70 722.33 1700.67 9949.68 8675.43 94.08

Cp = 1, Cs = 100
Opt. Gap (%) 2.04 0.90 0.43 0.50 2.57 0.43 0.55
CPU Time (sec) 99.87 1709.16 2925.25 1636.71 9949.68 8675.43 94.08

Finally, to provide a fair comparison of the algorithms, we compare the solutions

found over 30 instances that CGV could find a solution. We provide the results in

Table 1.5. We observe that over these 30 instances CGA performs best except the

highest setup cost setting. LSE, LSH and PPBA still provide comparable results for

31

low cost settings and better results for the highest setup cost setting.

Table 1.5: Average optimality gap of the solutions found by LSE, LSH, CGA, PPBA,
CSP, PMP and CGV over 30 instances for which a feasible solution is found by CGV.

LSH LSE CGA PPBA PMP CSP CGV
Cp = 1, Cs = 100, 000

Opt. Gap (%) 10.81 9.16 11.29 9.99 46.99 150.72 88.95
Cp = 1, Cs = 10, 000

Opt. Gap (%) 1.90 1.50 0.92 0.98 32.25 23.28 8.56
Cp = 1, Cs = 1, 000

Opt. Gap (%) 1.42 0.80 0.28 0.34 2.69 1.72 0.58
Cp = 1, Cs = 100

Opt. Gap (%) 1.01 0.71 0.24 0.30 2.50 0.35 0.55

1.8 Conclusion

In this chapter, we introduce a general version of the one-dimensional cutting

stock problem, called Cutting Stock Problem with Setup Cost, in which our goal is

to minimize the total production cost including material and setup costs. Cutting

Stock Problem with Setup Cost provides a unified framework for a wide domain of

packing/cutting stock problems including the well-known Cutting Stock Problem and

Pattern Minimization Problem.

We first develop a mixed integer linear model for this NP-hard problem. Then, we

analyze a special case of the problem and propose an algorithm to find the optimal

solution. We develop (i) two local search algorithms each of which utilize constructive

heuristic algorithms motivated by a special case of the problem, (ii) a pattern pool

based approach and (iii) a column generation based heuristic algorithm. We test the

performance of these algorithms on the instances from the literature. Our results show

that the proposed column generation algorithm provides solutions with smaller total

cost for low setup cost settings, while local search algorithms and pattern pool based

approach provide better solutions for high setup cost settings. Compared to other

32

algorithms for similar problems in the literature, the proposed algorithms provide

significantly better results for high setup cost settings, and similar results for low

setup cost settings.

33

Chapter 2 Integrated Collection and Appointment

Scheduling Problem

2.1 Introduction

Blood is one of the vital products needed for medical treatments including cancer

treatment, orthopedic and cardiovascular surgeries, organ and marrow transplants

and blood disorder treatments. In the U.S., every two seconds a patient needs blood

or blood products, and more than 38,000 blood donations are needed daily to satisfy

the demand [3]. In many countries, people still die because of inadequate supply of

blood products [59].

According to the eligibility rules established by the U.S. Food and Drug Admin-

istration (FDA), around 38% of the population is eligible for blood donation in the

U.S, but only 3% of the population donates blood in a year. Hence, managing this

limited blood supply efficiently is as crucial as promoting blood donation.

When a donor donates blood at a donation site, this donated blood (also called

whole blood) is separated into its components by centrifugation [3]. The three main

blood products used in transfusion are red blood cells, platelets and plasma. Plasma

is used for burn and trauma patients. Red blood cells are needed for any patient

requiring transfusion. They are mainly used for anemia treatment, surgery, treatment

of blood disorders and for premature babies. Finally, platelets are used to treat cancer

patients, accident and malaria victims, asthma patients and others with blood clotting

problems. Although all of these products have limited shelf-lives, platelets are the

most critical one due to its short life-span (5 to 9 days).

In the U.S., FDA and the American Association of Blood Banks (AABB) regulate

collection, processing and storage of blood and its components. According to these

regulations, whole blood must be processed within 8 hours of donation to extract

34

platelets [61]. Similar regulations are imposed in other countries such as Austria and

Turkey as well [20, 48]. The platelet extraction is generally done at a central process-

ing center. For example, all the blood collected by American Red Cross in Buffalo,

NY is sent to Rochester, NY for processing, and then distributed to hospitals in Buf-

falo [4]. Similarly, in Connecticut, the blood units picked up from donation sites are

delivered to headquarters in Farmington [61]. Hence, blood collection organizations

have to schedule continuous pickups from the donation sites and deliver the collected

blood units to the processing center for platelet production. Since processing takes

around 2 hours, any donated blood unit that stays at a donation site or in a collection

vehicle more than 6 hours prior to processing cannot be used for platelet production.

However, those units can still be used for extracting other blood products. We call

this 6-hour requirement processing time limit.

Most of the blood collection organizations operate on an appointment based sched-

ule in order to improve staff and equipment utilization [33]. This also decreases donor

waiting time which is important for future donations from the repeat donors. Fur-

thermore, since the time of donations affects platelet production as well due to 6-hour

processing time limit, synchronizing the appointment and pickup schedules can im-

prove the platelet supply. For example, assume that there is only one scheduled pickup

from a donation site at 3pm, and the collection vehicle returns back to the processing

center by 6pm. In this case, instead of randomly scheduling the appointments, it is

better to schedule as many donations as possible between 12pm and 3pm in order to

increase platelet production while considering the capacity (bed/staff/equipment) of

the donation site.

In this chapter, we analyze the pickup and appointment schedules at the donation

sites while considering the processing time limit on platelet production. More specifi-

cally, we study the problem of coordinating the collection and appointment schedules

in order to maximize platelet production. We call this problem Integrated Collection

35

and Appointment Scheduling Problem (ICASP). In ICASP, we have multiple blood

donation sites and a central processing center with prespecified opening and closing

times. Donation sites have capacities which limit the number of donations that can

be performed at the same time. We have a fleet of vehicles to collect the donated

blood units from the donation sites. Using the estimated number of donors schedul-

ing an appointment at each donation site daily, we try to determine the pickup and

appointment schedules simultaneously for an improved platelet supply.

In ICASP, we assume that the donation sites are partitioned into clusters where

each vehicle is assigned to a single cluster and the donation sites in a cluster are visited

by the same vehicle. This clustering assumption is more practical since it eliminates

the need for coordinating the visits by different vehicles to the same donation site. We

first develop a mixed integer nonlinear programming formulation for ICASP, and then

linearize it. Later, we propose two heuristic algorithms to find a “good” solution: (i)

Integer Programming Based Algorithm (IPBA), and (ii) Construction Based Heuristic

Algorithm (CBHA). Both IPBA and CBHA first cluster the donation sites using a

variant of the well-known k-means clustering algorithm [37], and then determine the

pickup and appointment schedules for each cluster.

The remainder of the chapter is organized as follows. In Section 2.2, we provide

a review of the related work in the literature. We present the formal problem def-

inition in Section 2.3. We also provide a simple example to illustrate the benefit

of coordinated pickup and appointment scheduling. We present the mixed integer

programming formulations for ICASP in Section 2.4. In Section 2.5, we discuss the

heuristic algorithms proposed for solving ICASP. To compare the performances of the

proposed mathematical model and the heuristic algorithms, we conduct a computa-

tional study using the instances generated from Gulf Coast Regional Blood Center’s

data [33]. The results of the computational experiments are presented in Section 2.6.

We conclude the chapter in Section 2.7.

36

2.2 Literature Review

ICASP is related to the well-known Vehicle Routing Problem (VRP). VRP is ex-

tensively studied by several authors since the early work by Dantzig and Ramser [18].

We refer the reader to Toth and Vigo [47] for a survey of exact algorithms and to

Cordeau et al. [15] for a survey of heuristic algorithms proposed for VRP. Recently,

Golden et al. [31] discuss the latest advances and new challenges in VRP. The main

differences between VRP and ICASP are the processing time limit for platelet pro-

duction and the accumulating behavior of the blood donations. Because of these

differences, some donation sites can be visited more than once per day to increase

platelet production. Finally, in ICASP the objective is to maximize platelet produc-

tion whereas the objective in a typical VRP is minimizing the total transportation

cost.

Among the variants of VRP, the most related problem to ICASP is the milk collec-

tion problem [42]. In Sankaran and Ubgade [42], the authors study the transportation

of milk from milk collection centers to the dairy with the objective of minimizing the

transportation cost. Similar to ICASP, there is a limit on the time that milk can

spend in a collection vehicle. However, in milk collection problem milk is assumed to

be available for pickup at the collection centers early in the day. Hence, the way that

the time limit affects the vehicle routes, the availability of products at the beginning

of the day and the objective are the main differences between ICASP and the milk

collection problem.

Collection of donated blood units from donation sites is first discussed by Prastacos

[41], but he does not consider the processing time limit. The most related studies in

the literature are the ones by Doerner et al. [20], Ghandforoush and Sen [26], and Yi

and Scheller-Wolf [61]. Although the processing time limit is considered in all these

studies and multiple visits to donation sites are allowed in Doerner et al. [20] and

Ghandforoush and Sen [26], they all ignore the appointment scheduling aspect and

37

assume that the donation times are predetermined.

Ghandforoush and Sen [26] develop a decision support system to manage platelet

production for the units that are donated at mobile blood drives. They assume

that shuttles (collection vehicles) make round trips between the blood drives and

the processing center. The amount that can be picked up from a blood drive per

visit is bounded from above and below. The objective in their model is to minimize

the total daily cost which includes production, transportation and yield loss costs

(due to testing, delays in transportation, contamination, etc.) while satisfying the

demand. The authors develop a non-convex integer programming model to determine

the shuttle schedules. Then, they linearize it using linearization techniques [30]. They

only consider round trips and do not allow visiting more than one blood drive per

route. Moreover, they assume that a constant amount is picked up from a blood drive

in each visit.

Doerner et al. [20] also study a related problem where the donations are as-

sumed to be uniformly distributed over the operating hours of a donation site. Their

objective is to collect all the donated units for platelet production with minimum

transportation cost. They propose a mixed integer programming formulation, an ex-

act method and several constructive heuristic approaches to solve the problem. In

both exact and heuristic approaches, the number of pickups from each donation site

is fixed at the beginning. The main shortcoming of the study by Doerner et al. [20] is

that even a single donated unit has to be collected. However, in practice not all of the

donated units are used for platelet production. Furthermore, they do not consider

the availability of the collection vehicles.

Assuming that the donation sites are visited only once, Yi and Scheller-Wolf

[61] study the blood collection operations from donation centers. They look for a

minimum cost solution while collecting a pre-determined amount of blood for platelet

collection. Similar to Doerner et al. [20], they assume that the donations occur

38

uniformly throughout the day. They develop an exact algorithm in which all feasible

tours are generated beforehand which is computationally challenging in general. In

this study, each donation site is visited only once which limits the platelet production

significantly in practice.

2.3 Problem Definition

In this section, we first provide a formal definition of the problem, and then

illustrate the benefit of coordinating collection and appointment schedules on a simple

example.

In ICASP, we have N donation sites operated by a blood collection organization.

The donated units have to be delivered to a central processing center (denoted by 0)

for platelet production. We use I (= {1, 2, . . . , N}) to denote the set of donation sites,

and I0 (= {0, 1, 2, . . . , N}) to denote the set of all locations including the processing

center. We assume that the total daily number of donations to be scheduled at

donation site i is constant and denoted by Di for all i ∈ I. Furthermore, we assume

that it takes q hours to complete a single donation. The capacity of donation site i,

defined as the number of donations that can be handled at the same time, is denoted

by Ci. In practice, the number of beds, equipment and staff determine Ci. [ai, bi]

is the operating hours of donation site i. Appointments for blood donation can be

scheduled any time between ai and bi, and all of the donations have to be completed

before bi. Moreover, we assume that the processing center operates during the time

interval [a0, b0]. We use tij to denote the travel time (in hours) from location i to

location j for all i, j ∈ I0, and assume that tij’s satisfy triangle inequality.

We have L uncapacitated collection vehicles to collect donated units from the

donation sites and deliver them to the processing center. Due to the small size of

the blood bags, vehicle capacities are ignored. All the vehicles are initially (at time

a0) located at the processing center and have to return back to the depot at the end

39

of the day (no later than b0). When a vehicle visits location i (it can be a donation

site or the processing center), it spends fi hours for loading/unloading. Although

donation site i operates during [ai, bi], we assume that a collection vehicle can still

visit donation site i after bi to collect the remaining units for platelet production.

Finally, processing time limit on the donated units for platelet production is denoted

by S (hours). That is, in order to extract platelets from a donated blood unit, we

have to deliver it to the processing center within S hours of its donation time.

In ICASP, while assuming that we can schedule the blood donation appointments

at any time during the operating hours, we want to determine the appointment and

collection schedules for all the donation sites with the objective of maximizing the

platelet production (or, equivalently, maximizing the total number of donated units

delivered to the processing center within S hours of donation).

We provide a simple example (see Figure 2.1) to illustrate the importance of

synchronizing the appointment and pickup schedules to maximize platelet production.

In Figure 2.1, we have a single processing center, two donation sites, and a single

vehicle to collect donated blood from these donation sites. The corresponding travel

times (in hours) are given on each edge. We assume that each donation site is open

for 4 hours during 8am-12pm, and 8 donations are performed/scheduled (daily) at

each donation site. Furthermore, we assume that it takes one hour to perform a

single donation, and each donation can be scheduled at one of the following 1-hour

intervals: 8am-9am, 9am-10am, 10am-11am, 11am-12pm. Each donation site can

handle 4 donations at the same time, i.e., Ci = 4. Finally, we assume that donated

blood has to be processed within 6-hours of donation time for platelet extraction. This

means that blood units donated during time interval 8am-9am have to be delivered

to the processing center no later than 3pm. For simplicity, we assume that fi = 0 for

all locations and the processing center is open during the entire day.

If we spread the donations over time in order to have a better utilization and

40

balanced workload, we schedule 2 donations at each 1-hour interval for each donation

site. One can easily see that one vehicle cannot collect and deliver all the donated

blood in this case. The maximum amount that can be collected/processed is 12 units.

To collect 12 units of blood, the vehicle has to leave the processing center at 7am,

and visit donation sites 1 and 2 at 10am and 12pm, respectively. However, if the

collection and appointment schedules are considered together, we can collect all the

donated units by scheduling 4 donations at each of 8am-9am and 9am-10am intervals

at donation site 1 and keeping the schedule for the second donation site same.

Figure 2.1: An example illustrating the importance of synchronizing the appoint-
ment and pickup schedules.

Consider the following instance of ICASP: (i) the donation site capacities are very

large, (ii) the loading/unloading times are zero, (iii) all the donation sites open at

the same time, say a, (iv) processing center closes at a + S, and opens at a time

much earlier than a, (v) there is a single collection vehicle, and (vi) donation takes

negligible amount of time. In this case, the vehicle can make only one tour and all the

donations at a visited donation site can be scheduled so that they will be completed

right before the pickup. The problem becomes finding a path of length not more than

S while maximizing the total number of donations at the visited donation sites. This

is the well-known Orienteering Problem which is known to be NP-hard [32]. Hence,

ICASP is NP-hard as well.

41

2.4 A Mixed Integer Linear Programming Model

In this section, we present a mixed integer linear formulation for ICASP. We use

Q to denote the maximum number of tours a vehicle can make on a day. We use the

travel time between the processing center and the donation sites to find a value for

Q.

Q = b0 − a0

mini∈I{2t0i}
.

In addition to the notation defined so far, we define V (= {1, . . . , L}) as the set

of vehicles andM (= {1, . . . , Q}) as the set of possible tours. Finally, we use A as a

large constant. The decision variables used in the formulation are as follows:

Oimk = Amount of blood units picked up from donation site i

by vehicle k in tour m and used for platelet production i ∈ I,m ∈M, k ∈ V

ximk = Arrival time of vehicle k at donation site i in tour m i ∈ I,m ∈M, k ∈ V

zijmk =


1,

if location j is visited right after

location i by vehicle k in tour m

0, otherwise

i, j ∈ I0,m ∈M, k ∈ V

wmk = Returning time of vehicle k to depot at the end of tour m m ∈M, k ∈ V

vimk = Latest time by which the donations that are collected by

vehicle k from site i in tour m should be completed i ∈ I,m ∈M, k ∈ V

emk =


1, if vehicle k leaves depot for tour m

0, otherwise
m ∈M, k ∈ V .

Here, vimk is equal to min {ximk, bi}. In the formulation, the value of ximk is set to

the value of xi(m−1)k if donation site i is not visited by vehicle k in tour m. In ICASP,

the objective is to maximize the amount of donated blood units that are processed

42

to extract platelet. The objective function is as follows:

max
∑
i∈I

∑
k∈V

∑
m∈M

Oimk. (2.1)

Next, we explain the constraints in the formulation.

2.4.1 Tour-Related Constraints

To ensure the feasibility of tours, we introduce a set of constraints to the model.

Constraints (2.2) and (2.3) make sure that each donation site is visited at most once in

a tour. Finally, constraints (2.4) help to satisfy the flow balance for all the locations,

∑
i∈I0

zijmk ≤ 1, ∀j ∈ I,m ∈M, k ∈ V , (2.2)

∑
j∈I0

zijmk ≤ 1, ∀i ∈ I,m ∈M, k ∈ V , (2.3)

∑
i∈I0

zijmk −
∑
i∈I0

zjimk = 0, ∀j ∈ I0,m ∈M, k ∈ V . (2.4)

Constraints (2.5) make sure that a tour with a certain index cannot be executed

unless all of the tours with smaller indices are executed. Constraints (2.6) guarantee

that if vehicle k leaves the depot to execute a tour, then it will return back to the

depot. Finally, constraints (2.7) ensure that if vehicle k does not leave the depot to

execute tour m, none of the donation sites will be visited on that tour,

emk ≤ e(m−1)k, ∀m ∈M \ {1}, k ∈ V , (2.5)∑
j∈I

z0jmk +
∑
j∈I

zj0mk = 2emk, ∀m ∈M, k ∈ V , (2.6)

∑
i∈I0

∑
j∈I0

zijmk ≤ Aemk, ∀m ∈M, k ∈ V . (2.7)

In ICASP, we utilize a clustered structure, where all the donation sites in the same

43

cluster are visited by the same vehicle. Also, a vehicle visits donation sites in one

cluster only. We add constraints (2.8) to cluster the donation sites,

∑
j∈I0

(zjimk +
∑

n∈M

∑
l∈V
l 6=k

zjinl) ≤ 1, ∀i ∈ I,m ∈M, k ∈ V . (2.8)

2.4.2 Arrival Time Constraints

Constraints (2.9)–(2.11) determine the arrival time of a vehicle to a donation site

in a tour,

ximk + fi + tij ≤ xjmk + A(1− zijmk), ∀i, j ∈ I,m ∈M, k ∈ V , (2.9)

w(m−1)k + f0 + t0j ≤ xjmk + A(1− z0jmk), ∀j ∈ I,m ∈M \ {1}, k ∈ V , (2.10)

a0 + t0j ≤ xj1k + A(1− z0j1k), ∀j ∈ I, k ∈ V . (2.11)

A donation site cannot be visited before its opening time. This is guaranteed by

constraints (2.12). Constraints (2.13) make sure that the visiting time of a donation

site in the first tour of a vehicle is set to ai if it is not visited,

ai ≤ xi1k, ∀i ∈ I, k ∈ V , (2.12)

ai + A
∑
j∈I0

zji1k ≥ xi1k, ∀i ∈ I, k ∈ V . (2.13)

The arrival time of a vehicle to the depot, after executing a tour, is determined

by constraints (2.14)–(2.15),

ximk + fi + ti0 ≤ wmk + A(1− zi0mk), ∀i ∈ I,m ∈M, k ∈ V , (2.14)

wmk + f0 ≤ b0, ∀m ∈M, k ∈ V . (2.15)

If donation site i is not visited on tour m by vehicle k, then we set ximk equal to

44

the visiting time of this donation site in the previous tour by the same vehicle, i.e.,

xi(m−1)k. This is guaranteed by constraints (2.16)–(2.17),

xi(m−1)k + A
∑
j∈I0

zjimk ≥ ximk, ∀i ∈ I,m ∈M \ {1}, k ∈ V , (2.16)

xi(m−1)k ≤ ximk, ∀i ∈ I,m ∈M \ {1}, k ∈ V . (2.17)

Finally, we add constraints (2.18) to make sure that when a donation site is

visited, a positive amount of blood units is picked up for platelet extraction from

that donation site,

wmk + f0 ≤ ximk + S + A(1−
∑
j∈I0

zjimk), ∀i ∈ I,m ∈M, k ∈ V . (2.18)

2.4.3 Collection Amount Constraints

In order to calculate the number of appointments that can be scheduled and

collected when a vehicle visits a donation site, we need to find the latest time (vimk)

by which all the donations, to be picked up on this tour, are completed. Constraints

(2.19)–(2.20) make sure that the donations to be picked up on a tour are completed

by no later than the visiting time of the vehicle and the closing time of the donation

site,

vimk ≤ ximk, ∀i ∈ I,m ∈M, k ∈ V , (2.19)

vimk ≤ bi, ∀i ∈ I,m ∈M, k ∈ V . (2.20)

Similar to the discussion above, about the value of ximk, when donation site i is

not visited by vehicle k in tour m, we add constraints (2.21) to make sure that vimk

45

is equal to vi(m−1)k if donation site i is not visited by vehicle k in tour m,

vi(m−1)k ≤ vimk, ∀i ∈ I,m ∈M \ {1}, k ∈ V , (2.21)

vimk ≤ vi(m−1)k + A
∑
j∈I0

zjimk, ∀i ∈ I,m ∈M \ {1}, k ∈ V . (2.22)

Using vimk, the amount of donated units that can be picked up from donation site

i in tour m by vehicle k is determined by constraints (2.23)-(2.25),

Oimk ≤ Di −
∑

n<m

Oink, ∀i ∈ I,m ∈M, k ∈ V ,

(2.23)

Oimk ≤ Ci min
{⌊

vimk − vi(m−1)k

q

⌋
,

⌊
vimk − ai

q

⌋}
, ∀i ∈ I,m ∈M, k ∈ V ,

(2.24)

Oimk ≤
⌈
vimk − (wmk + f0 − S)

q

⌉
Ci + A(1−

∑
j∈I0

zjimk), ∀i ∈ I,m ∈M, k ∈ V .

(2.25)

Note that constraints (2.24)–(2.25) are not linear, but we can linearize them using

auxiliary integer variables rimk and pimk as follows:

Oimk ≤ rimkCi, ∀i ∈ I,m ∈M, k ∈ V , (2.26)

rimk ≤
vimk − vi(m−1)k

q
, ∀i ∈ I,m ∈M, k ∈ V , (2.27)

rimk ≤
vimk − ai

q
, ∀i ∈ I,m ∈M, k ∈ V , (2.28)

Oimk ≤ pimkCi + A(1−
∑
j∈I0

zjimk), ∀i ∈ I,m ∈M, k ∈ V , (2.29)

pimk − 1 ≤ vimk − (wmk + f0 − S)
q

≤ pimk, ∀i ∈ I,m ∈M, k ∈ V . (2.30)

46

2.4.4 Non-negativity and Integrality Constraints

Finally, constraints (2.31)–(2.36) represent the non-negativity and integrality re-

strictions of the decision variables,

ximk, vimk ≥ 0, ∀i ∈ I,m ∈M, k ∈ V , (2.31)

Oimk ≥ 0, ∀i ∈ I,m ∈M, k ∈ V , (2.32)

zijmk ∈ {0, 1}, ∀i, j ∈ I0,m ∈M, k ∈ V , (2.33)

wmk ≥ 0, ∀m ∈M, k ∈ V , (2.34)

emk ∈ {0, 1}, ∀m ∈M, k ∈ V , (2.35)

rimk, pimk ≥ 0 and integer , ∀i ∈ I,m ∈M, k ∈ V . (2.36)

The mixed integer linear formulation (MILP) is composed of (2.1)–(2.23) and

(2.26)–(2.36).

2.5 Heuristic Approaches

In this section, we discuss two types of heuristic algorithms. In both algorithms,

we first cluster the donation sites using a variant of the well-known k-means clustering

algorithm. Then, in Integer Programming Based Algorithm, we solve a single vehicle

version of ICASP for each cluster. In Construction Based Heuristic Algorithm, we

construct a solution using insertion techniques and then improve the solution by

exchanging the donations (neighborhood search) between the clusters.

2.5.1 Clustering Phase

In this section, we use a variant of the k-means clustering algorithm to cluster

the donation sites in to L clusters, where L represents the number of vehicles. Each

vehicle is going to collect donated units from the donation sites in one cluster only.

47

Since our objective is to schedule appointments and collections in order to maximize

the total platelet production while considering the processing time limitation, we

cluster the donation sites based on geographical proximity.

In the clustering phase, we start with randomly assigning one donation site to

each cluster. This first assigned donation site is set as the center of that cluster.

Then, the remaining donation sites are assigned to the closest clusters where the

distance between a cluster and a donation site is calculated as the distance from the

cluster center to the donation site. When all the donation sites are assigned to a

cluster, we call this cluster structure a clustering solution. The quality of a clustering

solution is determined based on a cluster distance criteria which is calculated as the

summation of the distances between the processing center and the cluster centers and

the distance of each donation site to its cluster center. Assuming Ik is the set of

donation sites in cluster k and jk is the center of cluster k, the cluster distance of this

clustering solution is equal to ∑
k∈V

(t0jk
+ ∑

i∈Ik

tijk
). We run the clustering algorithm

multiple times (100 in our case) and calculate the cluster distance for each clustering

solution. Then, we choose the clustering solution with the smallest cluster distance.

We expect to increase the quality of the clustering solution by implementing the

clustering algorithm multiple times.

2.5.2 Integer Programming Based Algorithm

In the first algorithm, called Integer Programming Based Algorithm (IPBA), we

solve a single vehicle version of ICASP for each cluster using MILP proposed in

Section 2.4. After clustering phase, the size of the problem reduces significantly which

is important in terms of run time of MILP. Note that every time a new clustering

solution is generated at the end of clustering phase, we find a different solution if we

use IPBA. Therefore, we implement clustering phase 100 times and solve IPASP for

each cluster in all these 100 clustering solutions. Then, we report the best solution

48

found.

2.5.3 Construction Based Heuristic Algorithm

The second algorithm we propose is called the Construction Based Heuristic Al-

gorithm (CBHA). In CBHA, we first solve the single vehicle problem for each cluster

using an insertion technique. Then, after finding the appointment and collection

schedules for each cluster, we implement an improvement idea to further improve the

solution by switching the donation sites between clusters.

First, we propose an heuristic algorithm, called Single Tour Heuristic, to find

a single tour that visits the donation sites to pickup as many as donated units as

possible. The pseudocode for this algorithm is provided in Algorithm 8. We use Ĩ to

denote the donation sites in the cluster under consideration.

Algorithm 8 Single Tour Heuristic (STH)
1: The tour is initially empty: Γ = ∅
2: Set U = Ĩ, F = ∅
3: Calculate Mij the total amount that can be collected on a tour when donation site i is

inserted into the jth position in tour Γ where j ∈ {1, . . . , |Γ| + 1} (|Γ| = the number of
donation sites in the tour)

4: MaximumCollected = maxi∈U,j∈{1,...,|Γ|+1}Mij

5: (ChosenSite, ChosenPosition) = argmaxi∈U,j∈{1,...,|Γ|+1}Mij

6: if MaximumCollected > 0 then
7: Update the set of remaining donation sites: U = U \ {ChosenSite}, insert donation

site ChosenSite into position ChosenPosition in tour Γ, and go to Step 3
8: else
9: Terminate
10: end if

In Algorithm 8, we start with finding the best tour among different tours of size

1. Each tour consists of the depot and one of the centers. For example, assume a

tour that starts from the depot to center i and then ends in the depot. Then we start

calculatingMij for every tour, which isMi1 when tour size is 1. One important aspect

is to determine the best time to visit a center. A donation center can be visited as

late as bi or as early as the beginning of the working time plus a donation unit time

(ai + q), to ensure that at least one set of donation package is available to be picked

49

up.

To find the maximum number of donations that can be picked up from a sin-

gle center (Mi1), we calculate b bi−(ai+q)
q
c values, where q represents unit donation

time and this fraction shows total number of unit donation time available within

working hours of a center. For example, if we assume that we visit the center

i at bi, then we can collect at most min{Di, b bi−max{ai,bi−(S−(ti0+fi+f0))}
q

c}Ci, where

b bi−max{ai,bi−(S−(ti0+fi+f0))}
q

cCi shows the maximum number of donation packages that

we can collect considering the capacity of the center and the processing time limit

(S).

Following the same approach, we calculate the remaining b bi−(ai+q)
q
c − 1 values,

where the only difference is on the time of visit (here bi), which will be decreased by

constant q values each time until the first time that it becomes smaller than or equal

to ai + q. Among these values the maximum number will determine Mi1. The same

method is used to find the Mi1 for all i ∈ I.

Next step, is to choose which site could form a tour with the largest Mi1. The

corresponding donation site will be fixed as a member of final tour. Then, we try to

find a tour of larger size. For any other site that is not assigned to the final tour, we

try all the possible sequences of adding a new site to the tour. For example, if we

have a tour of size 1 consist of donation center i, then there are two possibilities for

any center k to be added to this tour. We can either visit the center k first and then

visit center i or the reverse order. In this specific case, we need to determine (1) the

best position to add a new center, and (2) the best time to visit the centers.

For example, assume we try to calculate theMk1 when we add center k to a tour of

size 1 that includes site i. There are b bi−(ai+q)
q
c values that we need to calculate, how-

ever to calculate Mk2 there are b bk−(ak+q)
q
c values that are required to be calculated.

This means that in our algorithm, the last center on the tour defines the number of

calculations required.

50

In other words, the earliest time a tour of size n can be visited is the start of

working time of the last site on the tour plus the donation unit time. This method

ensures that we do not visit the last center without collecting any donations. For a

tour of size 2 (e.g. depot–k–i–depot), if we visit the second site at bi, then the total

amount of donated blood that can be picked up is min{Di, b bi−max{ai,bi−(S−(ti0+fi+f0))}
q

c

Ci} + min{Dk, b (bi−(tki+fk))−max{ak,bi−(S−(ti0+fi+f0))}
q

c}, where the first element shows

the total amount that can be picked up from the center i, when it is visited second

on tour and the second element represents the total amount of donated blood that

can be collected from the center k when it is visited first on tour.

In order to find the remaining b bi−(ai+q)
q
c − 1 values, we decrease the bi in the

above expressions by q every time until it becomes smaller than or equal to ai + q.

Then we set Mk1 to the largest number among all these b bi−(ai+q)
q
c − 1 values. This

process continues and later the tour size increases one by one, we terminate the

algorithm when adding one more center starts does not improve the amount that can

be collected. For each tour size, we keep the tour with largest total amount collected.

The tour with largest amount collected is reported as the solution of this algorithm.

Next, using STH as a subroutine, we propose the Multi-Tour Heuristic (MTH),

which finds multiple tours for a single vehicle in each cluster with the objective of

collecting as many donated units as possible. The pseudocode for MTH is provided

in Algorithm 9.

The main idea behind MTH is to construct one tour at a time using STH. Note

that the STH solution is a single tour that shows the order of visit, the time to

visit the last center and the amount can be collected from the center. Using the

tour information, we can easily determine the time each center is visited and how

many donations are collected and which time intervals are available before the ve-

hicle visit time to schedule appointments. For example, assume there is a tour

51

Algorithm 9 Multi-Tour Heuristic (MTH)
1: Set the number of tours to zero: t = 0, and initialize the available vehicle time: [a0, b0]
2: Run STH to find a single tour.
3: if A tour is found then
4: if The tour time is not in conflict with the VehicleAvilableTime then
5: Update the number of tours constructed so far: t = t+ 1
6: Update the number of remaining donations not scheduled/picked up (Dr

i) for dona-
tion site i and the time interval from which donated blood of the site is collected.

7: Replace the donation sites that are visited in the tour with two donation sites and
allocate the remaining number of donations to the new sites.

8: Update VehicleAvailableTime (remove the traveling time of previous tour). Set U
to all the sites in I and newly added donation sites, and fix F to empty set.

9: Go to Step 2.
10: else
11: Terminate the algorithm.
12: end if
13: else
14: Terminate the algorithm.
15: end if

of size 2 (e.g. depot–k–i–depot) and we can pick up a greater number of dona-

tions if we visit the second site at bi, then following the explanation on STH algo-

rithm, we know min{Di, b bi−max{ai,bi−(S−(ti0+fi+f0))}
q

cCi} is collected from center i and

min{Dk, b (bi−(tki+fk))−max{ak,bi−(S−(ti0+fi+f0))}
q

c} is picked up from center k. If Di or

Dk is not chosen in these equations, it means that there are some remaining number

of donations at each center, which is the difference of Di or Dk with what is collected.

Also, the first time to collect any donation is set to max{ai, bi− (S − (ti0 + fi + f0))}

for center i and is set to max{ak, bi − (S − (ti0 + fi + f0))} for center k.

At this stage, we check whether the tour (considering the start and end time of the

tour) is not in conflict with the previously constructed tours. If it does not conflict,

we add it to the tour list and update vehicle available time. Otherwise, we terminate

the algorithm. For example, for the same tour (depot–k–i–depot), the tour traveling

time is [bi − (tki + fk)− (t0k), bi + (fi + ti0 + f0)].

After a tour is constructed, for the donation sites visited in this tour, we remove

the time interval for which the appointments are scheduled and then consider the

two separate time intervals as two separate donation sites. We allocate the remaining

donations of this donation site to these two “new” donation sites according to their

52

available time intervals. For example, consider a donation site with capacity 2 which

operates from 8am to 12:30pm. Assume that the total number of donations is 16 and

a single donation takes 0.5 hours. If a vehicle visits this donation site at 11:30am

collecting only 6 donated units. This means that blood donated from 10am to 11:30am

is collected, and the 10 donations left. At this point, we replace the donation site

with two new donation sites: first one operating from 8am to 10am and the second

one operating from from 11:30am to 12:30pm. The capacities of these two donation

sites are same as the original one. The remaining number of donations is divided

between these two donation sites according to their operating hours. In this example,

the operating hours of first new center is 2 times the second new site. Therefore, 2
3 of

the remaining donations will be allocated to the first site. When we have fractional

numbers, we always round up the fractional number for the center with the larger time

interval. Note that we always respect the capacity restrictions for both time intervals.

In this example, the first site has 7 donors and the second one has 3 donors.

Finally, after forming the appointment and pickup schedules for all the clusters

using MTH, we try to improve the solution further by switching the donation sites

between clusters. In this Neighborhood Search (NS) step, we randomly choose two

clusters and switch two donation sites from these clusters.

This process is repeated at each iteration while we calculate the number of do-

nation units that can be collected with new clustering solution. At the end of each

iteration, if we have reached to a maximum number of iterations (e.g. 500), we will

generate two random numbers from [0, 1] called p1 and p2, if p1 ≥ p2 we stop the im-

provement process. Otherwise, we continue switching to the neighborhood solution

even if the solution does not improve. An outline of NS is provided in Algorithm 10.

Similar to IPBA, we try to improve the performance of CBHA by switching do-

nation centers at each iteration of NS and examining a new clustering solution.

53

Algorithm 10 Neighborhood Search (NS)
1: Set NumberOfCluster to L, generate a random clustering solution. Set MaxCollected and

BestCanBeCollected to 0. Set number of iterations to 0 (iter).
2: Run MMH, set AmountCanBeCollected to the solution of MMH.
3: if AmountCanBeCollected > MaxCollected then
4: set MaxCollected = AmountCanBeCollected
5: end if
6: if BestCanBeCollected < MaxCollected then
7: set BestCanBeCollected = MaxCollected
8: end if
9: if iter > 500 then
10: Generate two random numbers from [0, 1] (p1 and p2).
11: if p1 ≥ p2 then
12: report BestCanBeCollected and terminate.
13: else
14: randomly pick two regions and switch two arbitrarily selected donation sites between

two clusters. Set MaxCollected to 0 and iter = iter + 1 and go to step 2.
15: end if
16: else
17: Randomly pick two regions and switch two arbitrarily selected donation sites between

two clusters. Set MaxCollected to 0, iter = iter + 1 and go to step 2.
18: end if

2.6 Computational Results

To test the performance of our proposed mathematical model and solution al-

gorithms, we conduct computational experiments on 30 instances (to represent a

complete month of data) generated according to the real data provided online [33].

Gulf Coast Regional Blood Center was serving 17 donation centers during the con-

tinuous months that we were observing the data. Although, they have closed one

of the centers recently, we are using 17 donation centers because of our observation

time interval. According to the 4 years of previous data and one month current data,

using ARENA Input Analyzer version 12.0, the daily average number of donations is

following a Normal distribution with mean of 878 whole blood units (including the

number of donations from the processing center) and standard deviation of 153. In

our calculations we use 3 vehicles, which work from 9am to 7pm and we assume there

is not any limitations on the availability of drivers and vehicles. For these experi-

ments, we suppose that donation unit time is fixed to an hour and service time of

all the centers is 0.2 hour. The average donation unit time is reported to be around

54

50 minutes [40], however we add 10 more minutes for the purpose of considering

transferring time from one donor to the next donor and cleaning of the resources for

consecutive donations. The service time at each center can be set to any number

as it is representing a deterministic parameter. In these scenarios the average truck

speed is set to 45 miles per hour [50], to account for the average driving speed at the

neighborhood of all the donation centers in Houston, TX.

The algorithms are implemented in Microsoft Visual C# using SQL Server as the

database platform. CPLEX 12.3, with default settings, is used as the optimization

engine. All the experiments are carried on a system with two 2.4 GHz Xeon processors

and 4 GB RAM.

To calculate the comparison gap of a solution found by the mathematical model

or proposed heuristic approaches, we need to find the optimal solution or an upper

bound for the ICASP. We set an 8-hour time limit on MILP formulation in Section

2.4 and report the solution found at the end of 8 hours. The model was not able to

solve any of the scenarios to optimality within the pre-determined solution time limit.

Therefore, to perform a fair comparison, we use the minimum of the summation of

number of donations in all the 17 donation centers on a day and the upper bound

(best LP relaxation solution) found by MILP as an upper bound (denoted by UB)

to calculate the comparison gap. The comparison gap of a solution found by the

mathematical model or any of the heuristic algorithms (denoted by Sol) is calculated

as follows,

Comparison Gap = UB − Sol
UB

× 100%. (2.37)

We summarize the computational results in Table 2.1. The table represents the

comparison gaps of all the 30 scenarios. In this table, values under SC column are

the scenario numbers and ND are the total estimated number of donors showing up

for donation in all the 17 donation centers on a day.

Table 2.1 shows that the ICASP is unable to find a good solution within 8 hours.

55

Table 2.1: Comparison gaps of solutions found by ICASP–MIP, IPBA and CBHA
for 30 scenarios.

SC ND ICASP–MIP IPBA CBHA
Gap(%) Gap(%) Time(min) Gap(%) Time(min)

1 533 5.25 2.25 16.12 4.32 0.34
2 593 10.62 4.38 6.43 8.60 0.43
3 600 15.33 2.17 6.83 11.33 0.32
4 633 13.27 2.21 11.10 5.06 0.35
5 644 12.42 3.73 8.00 6.99 0.49
6 669 12.56 2.99 7.43 8.97 0.31
7 695 12.09 4.03 15.83 10.50 0.37
8 699 11.59 2.29 7.16 8.44 0.33
9 729 11.25 2.19 7.56 9.60 0.35
10 755 16.82 1.06 6.86 5.03 0.39
11 769 11.57 2.21 5.84 8.32 0.35
12 780 15.64 2.18 6.07 8.72 0.31
13 784 19.52 2.93 7.46 6.38 0.33
14 794 21.28 2.27 7.18 4.16 0.31
15 801 5.37 2.25 19.59 4.00 0.41
16 810 16.17 2.22 15.08 6.67 0.32
17 816 10.42 2.94 11.57 6.62 0.30
18 831 9.99 0.24 11.81 2.29 0.29
19 838 15.75 4.65 13.33 11.58 0.35
20 844 18.01 1.78 14.50 5.21 0.45
21 852 24.06 2.35 11.25 5.28 0.39
22 882 19.73 0.45 17.61 6.69 0.40
23 891 17.85 2.92 16.79 7.86 0.40
24 905 19.56 2.76 6.41 11.38 0.34
25 920 22.50 0.65 6.02 12.61 0.37
26 937 21.77 2.99 20.00 6.51 0.42
27 941 23.27 2.98 16.47 8.18 0.47
28 999 18.92 6.51 21.14 12.71 0.32
29 1068 23.22 5.15 22.99 9.46 0.48
30 1088 30.61 4.60 14.75 8.18 0.48
Average 16.21 2.74 11.97 7.72 0.37

The average comparison gaps are 19.76%, 17.17%, 16.21% and 16.21% after running

the ICASP model with 1-hour, 2-hour, 4-hour and 8-hour time limits respectively.

According to our observations, a scenario can be solved with ICASP to optimality

within 3 to 4 days and that is only possible if the system does not get to an out-

of-memory status meanwhile. However, IPBA is able to find a better solution with

respect to the solution quality and time in comparison with ICASP–MIP. The average

56

solution time of IPBA is very dependent on the number of iterations we run the

algorithm. The average comparison gaps of IPBA are 3.25% and 2.74% when we

set the number of iterations to 50 and 100 respectively, while the average solution

times are 3.41 and 11.97 minutes respectively. Note that if we increase the number of

iterations to 150 or 200, the comparison gaps remain the same for all the scenarios,

while the solution time increases rapidly (e.g., 4 to 5 hours). Therefore we only report

the gaps for 100 iterations in the Table 2.1. CBHA is a very fast algorithm and can

find a good feasible solution within a half minute even when running the algorithm

for 500 iterations, however the quality of solutions is not as good as IPBA. Note that

CBHA is run for 600 and 700 iterations as well and no improvement is observed.

On average, CBHA improves the average solution time at least 11 minutes, while

the average comparison gap increases by 5%. Also, note that the solution time of

the IPBA is very dependent of the clustering solution, which may result in very long

solution times when the mathematical model tries to reach to the default optimality

gap. To decide, which solution algorithm can be utilized to schedule the vehicle time

visits for the ICASP is tied upon the preferences of the users.

2.7 Summary

In this chapter, we introduce Integrated Collection and Appointment Scheduling

Problem (ICASP), in which our goal is to maximize the number of donated blood

packages that can be collected and delivered to a processing center within a limited

time for platelets extraction, and we schedule the donation appointments accordingly.

First, a mixed integer programming formulation is developed. Then, we propose two

heuristic algorithms: (i) Integer Programming Based Algorithm (IPBA), and (ii) Con-

struction Based Heuristic Algorithm (CBHA). We perform a computational study to

test the performance of the proposed algorithms in terms of solution quality and com-

putational efficiency on the instances from Gulf Coast Regional Blood Center located

57

in Houston, TX. The results show that the proposed algorithms provide good feasi-

ble solutions for ICASP in significantly less time than the mathematical formulation

(MILP). The MILP can not find optimal solution for none of the instances within the

specific time limits, while IPBA is able to find the best solution among the proposed

approaches within a reasonable amount of time and CBHA can generate relatively

good feasible solutions in less than a minute.

58

Chapter 3 Robust Optimization and Chance Constrained

Programming for the Collection Problem with

Uncertainty

3.1 Introduction and Literature Review

In the blood collection operations, we are dealing with a problem of determining

the routing schedule of a set of vehicles from a processing center to several donation

centers in geographically different locations and we try to collect donated blood units

within a limited time and to deliver the packages for platelet extraction. This problem

is explained comprehensively in Chapter 2. In Section 2.3, we assume that the number

of donors showing up daily for donation is deterministic and estimated based on

the historical data. However, donors may not show up for donation on the specific

day that their donations are scheduled. Also, it is possible that a larger number of

donors than what is estimated try to schedule appointments for a given day. These

variability and congestion in supply affect the amount that can be collected for platelet

production and hence reduce the reliability of the system and increase the cost of

shortages/out-dates.

Therefore, it is necessary to develop routing schedules that can account for the

uncertainty in the number of donors showing up daily. Generally, current methodolo-

gies apply stochastic optimization approaches to account for uncertainty of data. In

stochastic optimization, the uncertain data are assumed to be random and follow a

known probability distribution. For example, Chance Constrained Programming is a

stochastic approach that is first introduced by Charnes et al. [13]. In more advanced

settings, there might not be enough information to estimate the probability distribu-

tion. In such cases, we can use a methodology called Robust Optimization that is first

introduced by Soyster [44]. Unlike any other stochastic optimization method, we are

59

not required to know an exact probability distribution of an uncertain data. In such

cases, a partial knowledge about this distribution function is enough. For example,

the data uncertainty can be represented with an uncertainty set that the actual data is

within a pre-specified range. Also, solutions of a stochastic approach are only feasible

when the estimated distribution function is valid. However, the solutions of a Robust

Optimization method is robust feasible for all the possible scenarios of data within

the uncertainty set. In other words, robust optimization generally follows a “worst-

case-oriented” philosophy. This philosophy results in more conservative solutions

compared to a stochastic methodology. Therefore, if we prefer to narrow the uncer-

tainty set and utilize an exact distribution function, it is suggested in the literature

to apply a stochastic optimization approach like Chance Constrained Programming.

Otherwise, we can take advantage of Robust Optimization techniques to find a robust

feasible solution for all the possible scenarios of a specific problem. In this chapter,

to account for the uncertain number of donors showing up for donation, we apply

both Robust Optimization and Chance Constrained Programming techniques for the

Integrated Collection and Appointment Scheduling Problem (ICASP).

The most related problem to ICASP is the general Vehicle Routing Problem

(VRP). In the literature, there are many studies that are concerned with the un-

certainty of customers and demand in VRP [46]. Sungur et al. [46] utilize robust

optimization approach and chance constrained programming for a capacitated vehi-

cle routing problem with uncertain demand. They use the approaches proposed in

[9] and [10] and consider different types of uncertainty sets. They propose robust

mathematical models and a clustered algorithm to find solutions with a lower level of

unmet demand and additional cost over deterministic solutions. They compare their

results with stochastic VRP models. Also, several studies focus on uncertainty of

blood supply chain [5], which are mostly about the inventory planning in the blood

supply chain.

60

The remainder of this chapter is as follows. In Section 3.2, we briefly define

the problem. In Sections 3.3 and 3.4, we present the derivations of the Robust and

Chance Constrained Programming formulations for ICASP with uncertainty. The

computational results are provided in Section 3.5. We complete the chapter with

concluding remarks in Section 3.6.

3.2 Problem Definition and Mathematical Models

In this chapter, we focus on a problem instance of Integrated Collection and Ap-

pointment Scheduling Problem (ICASP) that contains N donation sites and a single

processing center (I0 = {1, 2, . . . , N}). We assume that D is a column vector that

represents the number of donors showing on a specific day. D is uncertain and be-

longs to a bounded set U . The expected number of donors for each center is shown

by d0
i . We assume that it takes exactly q units of time to complete donation. The

capacity of donation site i is Ci, where it is defined as the number of donations that

site can handle per q units of time. Limited number of staff or equipments at each

donation site determines Ci. [ai, bi] is the working hours of each donation center. tij

is traveling time from center i to center j where i, j ∈ I ∪ {0}. It is assumed that tij

is nonnegative and satisfy triangular inequality.

The 6 hour collection time limit is called processing time limit (for platelets ex-

traction) and we show it with S. We are required to deliver as much donated blood

as we can to the depot for extraction. We have L vehicles that start their tours from

depot, travel to a subset of donation sites and collect available donated blood which

can be used for platelets extraction and then return to the depot. More details are

provided in Chapter 2.

Previously we assumed that we can schedule the appointments without having any

conflicts with the donors’ preferences. It means that the donors show up with 100%

probability at the requested appointment time. However, in real world scenarios,

61

some donors may not be able to show up for donation at the time of their scheduled

appointments or some people may decide to donate blood without informing the

donation center and walk-in for donation. In these two cases, the number of donors

is uncertain. Without loss of generality, we assume that we have some information

about the estimated number of donors that are showing up. We assume a lower

bound and an upper bound for the number of donors. The lower and upper bounds

determine an uncertainty set, called U , for all di values.

Given the capacities of donation sites and the number of donors showing up at

each center, the first goal of this problem is to determine when vehicles should visit

donation sites in order to deliver maximum amount of donated blood to the depot.

The second goal is to determine the best schedule of donations at each donation site

with respect to the visiting times of vehicles. Similar to Chapter 2, when we find

a solution that maximizes the amount of blood collected considering the capacities

of donation centers, number of donors and center’s working hours, we can determine

the schedule of appointments accordingly with the knowledge of donation unit time,

working hours and capacities. In this chapter, we apply robust optimization and

chance constrained programming techniques utilizing both the mathematical models

proposed for ICASP (see Section 2.4) and IPBA (see Section 2.5.2).

3.3 Robust Optimization

Current methods of representing the uncertainty in routing problems make strong

assumptions about the distribution of the uncertain information. For example, they

assume that the distribution function of the uncertain data is either known or esti-

mated. In such cases, stochastic programming can be used to handle the uncertainty.

However, for a system that is strongly dependent on the human behaviors, it is not

easy to determine such probability functions in practice. Instead, it might be pos-

sible to estimate the bounds of the uncertain parameters using the historical data.

62

Considering the bound of parameters, we can utilize robust optimization approaches

to generate good solutions for the ICASP. Unlike stochastic programming models

that address a single case of the uncertainty (specific distribution function), robust

optimization can obtain a robust solution that is good for all the possible scenarios

of uncertain data. Note that we apply robust optimization method introduced by

Ben-Tal and Nemirovski [9] and utilized for a capacitated VRP by Sungur et al. [46].

In this chapter, we assume that the expected number of donors for each center is

shown by d0
i and the possible deviation from these expected values are fixed at each

scenario (s) and represented by ds
i . The deviation can have negative, zero or positive

values. We suppose P is the set of all possible scenarios and the general uncertainty

set U is Udi
= {d0

i + ∑|P|
s=1 ysd

s
i , ys ∈ R}, where ys is the weight of scenario s. Note

that Y shows the column vector of ys values (Y ∈ R|P|).

The bounded set of ys can be a Convex Hull, where {Y ∈ R|P||Y ≥ 0,∑|P|s=1 ys ≤ 1}

or it can a Box Set as {Y ∈ R|P||‖ys‖∞ ≤ 1} or an Ellipsoidal Set as {Y ∈ R|P||yTAy ≤

1}, where A is a positive definite matrix.

The Robust Integrated Collection and Appointment Scheduling Problem (RICASP)

can be formulated as a mixed integer linear model similar to the model proposed for

ICASP (Chapter 2). The only difference is on constraints (2.23). When the number

of donors is uncertain, the constraints (2.23) can be rewritten as follows:

Oimk +
∑

n∈M;n<m

Oink − d0
i ≤

|P|∑
s=1

ysd
s
i , ∀i ∈ I,m ∈M, k ∈ V. (3.1)

For a set of given decision variables O, the left hand side of the constrains (3.1) is

referred to φimk = Oimk + ∑
n∈M;n<m

Oink − d0
i for all i ∈ I,m ∈ M, k ∈ V . Similar to

Sungur et al. [46] and in order to follow the “worst-case-oriented" philosophy of the

classic robust optimization approach, it is enough to force the feasibility of constrains

(3.1) (φimk ≤
∑|P|

s=1 ysd
s
i) for the infY ∈U

∑|P|
s=1 ysd

s
i .

63

Proposition 3.3.1. If U is a convex hull, then constraints (3.1) can be replaced by

constraints (3.2),

Oimk +
∑

n∈M;n<m

Oink ≤ d0
i + mins {ds

i}, ∀i ∈ I,m ∈M, k ∈ V. (3.2)

Proof. When U is a convex hull, infY ∈U
∑|P|

s=1 ysd
s
i of each donation center i ∈ I

can be represented as a standard minimization linear primal problem {Min. ∑|P|
s=1

ysd
s
i | (−∑|P|

s=1 ys) ≥ −1 & ys ≥ 0;∀s ∈ {1, . . . , |P|}} and a corresponding dual

problem {Max.(−θ) | − θ ≤ ds
i ;∀s ∈ {1, . . . , |P|} & θ ≥ 0}. Here θ is dual decision

variable. According to the strong duality, if the primal and dual problems are feasible

and bounded, then the optimal objective values of primal and dual problems are equal

for the optimal solutions y∗ and θ∗. Thus, ∑|P|
s=1 y

∗
sd

s
i = −θ∗ and due to feasibility of

dual problem, ∑|P|
s=1 y

∗
sd

s
i ≤ ds

i for all s ∈ {1, . . . , |P|} and therefore the constraints

(3.2) is correct. Note that the infeasibility of primal or dual problem results in

infeasible robust optimization model, which is a possible case when we are utilizing

this robust optimization methodology [46].

The corresponding mathematical model with constraints (3.2) is called RICASP-

C. Following Proposition 3.3.1, we can use constraints (3.3) in IPBA and develop a

Robust Mathematical Model (RIPBA-C) for the integer programming based solution

approach. Note that I ′ represents a subset of donation sites in a cluster,

Oim +
∑

n∈M;n<m

Oin ≤ d0
i + mins {ds

i}, ∀i ∈ I ′,m ∈M. (3.3)

Proposition 3.3.2. If U is a box set, then constraints (3.1) can be rewritten as

constraints (3.4),

Oimk +
∑

n∈M;n<m

Oink ≤ d0
i −

|P|∑
s=1
|ds

i |, ∀i ∈ I,m ∈M, k ∈ V. (3.4)

64

Proof. Similar to the proof of Proposition 3.3.1, we first write primal and dual problem

of infY ∈U
∑|P|

s=1 ysd
s
i , where θs and γs represent dual variables. {Min.∑|P|

s=1 ysd
s
i | ys ≤

1;∀s ∈ {1, . . . , |P|} & ys ≥ −1;∀s ∈ {1, . . . , |P|}} represents the primal problem

and {Max. − (∑|P|
s=1 θs + γs) | − θs + γs = ds

i ; ∀s ∈ {1, . . . , |P|} & θs, γs ≥ 0;∀s ∈

{1, . . . , |P|}} is corresponding dual formulation. The two sets of constraints in primal

problem are equivalent to ‖y‖∞ ≤ 1, (‖y‖∞ = maxs{|ys|}). Any feasible solution of

dual problem satisfies −θs + γs = ds
i ;∀s ∈ {1, . . . , |P|} and according to the strong

duality we can rewrite objective value of primal problem as ∑|P|
s=1 ys(−θs + γs). The

feasibility of primal problem suggests that ys ≥ −1 for all s. Therefore, we have

ys(γs − θs) ≤ −(γs − θs), for γs − θs ≤ 0. In addition, ys ≥ 1 for all s and thus

ys(γs − θs) ≤ (γs − θs), for γs − θs ≤ 0. If we substitute γs − θs with ds
i , we can

conclude the proof.

The corresponding mathematical model with constraints (3.4) is called RICASP-

B. Following the Proposition 3.3.2, we can use constraints (3.5) in IPBA and develop a

Robust Mathematical Model (RIPBA-B) for the integer programming based solution

approach,

Oim +
∑

n∈M;n<m

Oin ≤ d0
i −

|P|∑
s=1
|ds

i |, ∀i ∈ I ′,m ∈M. (3.5)

Proposition 3.3.3. If U is an ellipsoidal set, the constraints (3.1) will be replaced

by constraints (3.6), where d is a column vector of ds,

Oimk +
∑

n∈M;n<m

Oink ≤ d0
i − (1

2
√
dTA−1d

A−1d)Td, ∀i ∈ I,m ∈M, k ∈ V.

(3.6)

Proof. When U is an ellipsoidal set, infY ∈U
∑|P|

s=1 ysd
s
i can be represented as {Min. Y Td |

Y TAY ≤ 1}. If we change decision variables with x = A
1
2Y and d̃ = A−

1
2d, the model

will be a linear function over a unit ball ({Min. d̃Tx | xTx ≤ 1}), where the optimal

65

solution is x∗ = − d̃
‖d̃‖ [11]. Thus y

∗ = − 1
2√

dT A−1d
A−1d, which completes the proof.

The corresponding mathematical model with constraints (3.6) is called RICASP-

E. Following the Proposition 3.3.3, we can use constraints (3.7) in IPBA and develop a

Robust Mathematical Model (RIPBA-E) for the integer programming based solution

approach,

Oim +
∑

n∈M;n<m

Oin ≤ d0
i − (1

2
√
dTA−1d

A−1d)Td, ∀i ∈ I ′,m ∈M. (3.7)

In this dissertation, when Y is an ellipsoidal set, we will assume that A is an identity

matrix to simplify the problem and focus on studying the effects of scenario deviations.

3.4 Chance Constrained Programming

In addition to robust optimization approach, one other way of finding a solution

for the ICASP with uncertainty is to use Chance Constrained Programming. Chance

Constrained Programming is known as one of the major methodologies to deal with

uncertain random parameters in Operations Research problems. The main difficulty

of this approach is that the distribution functions of random parameters should be

known prior to observing the random parameters.

When the number of donors that are showing for donation is uncertain and we

know that at each donation center it follows a cumulative distribution function of

Fi(x) (for each i ∈ I, where x represents the random number of donors), then the

only difference of Chance Constrained Model from the mathematical model proposed

for ICASP will be constraints (2.23). These constraints can be rewritten as follows,

Pr(Oimk +
∑

n∈M;n<m

Oink ≤ Di) ≥ (1− αi), ∀i ∈ I,m ∈M, k ∈ V. (3.8)

where αi represents the probability of violating original constraint (Oimk+ ∑
n∈M;n<m

66

Oink ≤ Di) at donation center i. Considering a general distribution function for

the number of donors showing at site i, we can substitute constraints (2.23) with

constraints (3.9),

Oimk +
∑

n∈M;n<m

Oink ≤ F−1
i (αi), ∀i ∈ I,m ∈M, k ∈ V. (3.9)

According to the scenarios generated based on Gulf Cost Regional Blood Center data,

the probability distribution functions of donors showing up at all the centers are fol-

lowing normal distributions with mean of µi and standard deviation of σi. Therefore,

if we calculate the standard score of αi (= ψ), the right hand side of constraints (3.9)

will be µi +ψ×σi. Corresponding mathematical model with constraints (3.9) is called

ICASP-CCP. Following the same approach, we can use constraints (3.10) in IPBA

and develop an integer programming based solution approach (IPBA-CCP) for the

chance constrained formulation,

Oim +
∑

n∈M;n<m

Oin ≤ F−1
i (αi), ∀i ∈ I ′,m ∈M. (3.10)

3.5 Computational Results

To test the performance of our proposed robust mathematical models, chance

constrained program and clustering solution algorithms, we conduct computational

experiments on 30 instances (to represent a complete month of data) generated using

data from Gulf Coast Regional Blood Center [33]. This Blood Center was serving 17

donation centers during the months that we observed the data. We use same set of

scenarios as in Section 2.6. Our set of experiments for Robust Optimization Models

consists of 6 deviations from the expected number of donors showing up for donation

at each scenario: +2, -2, +5, -5, +10 and -10 percent deviations. We run RICASP-

B, RICASP-C, RICASP-E to find the optimal solutions for the possible types of

67

uncertainty sets and we also run RIPBA-B, RIPBA-C and RIPBA-E to find good

feasible solutions for the robust problems within a reasonable amount of time. To

investigate the results of Chance Constrained Programming, we find the distribution

function of number of donors showing for donation at each center according to the

30 scenarios and then we set α, the probability of violating the constraints (3.9) and

(3.10), to 0.01, 0.02, 0.05, 0.08 and 0.1.

In our calculations we use 3 vehicles, which work from 9am to 7pm and we assume

there are not any limitations on the availability of drivers and vehicles. For these

experiments, we suppose that donation unit time is fixed to an hour and service

time of all the centers is 0.2 hour. The average donation unit time is reported to

be around 50 minutes [40], however we add 10 more minutes for the purpose of

considering transferring time from one donor to the next donor and cleaning of the

resources for consecutive donations. The service time at each center can be set to

any number as it is representing a deterministic parameter. In these scenarios, the

average truck speed is set to 45 miles per hour [50].

The models are implemented in Microsoft Visual C# using SQL Server as the

database platform. CPLEX 12.3, with default settings, is used as the optimization

engine. All the experiments are carried on a system with two 2.4 GHz Xeon processors

and 4 GB RAM.

To calculate the comparison gap of a solution found by the mathematical model

or proposed heuristic approaches, we need to find the optimal solution or an upper

bound for the RICASP. We set an 8-hour time limit on RICASP (-B,-C and -E)

formulations in Section 3.3 and report the solution found at the end of 8 hours. The

model was not able to solve any of the scenarios to the optimality within the pre-

determined solution time limit. Therefore, to perform a fair comparison, we use the

minimum of the summation of number of donations in all the 17 donation centers on

a day and the upper bound (best LP relaxation solution) found by RICASP (-B,-C

68

and -E) as an upper bound (denoted by UB) to calculate the comparison gap. The

comparison gap of a solution found by the mathematical model or any of the heuristic

algorithms (denoted by Sol) is calculated as follows:

Comparison Gap = UB − Sol
UB

× 100%. (3.11)

To compare the robust and the deterministic solutions, we use the best solution

found by the deterministic integer programming based algorithm (IPBA) of Chapter

2 (denoted by DSol) and report a gap (denoted by d-gap), which is calculated as

follows:

d-gap = DSol − Sol
DSol

× 100%. (3.12)

We summarize the computational results of Robust Optimization models in Tables

3.1, 3.2 and 3.3. Each table represents the comparison gaps of all the 30 scenarios

and their deviations. In all the tables, values under SC column are the scenario

numbers, positive or negative signs represent a positive or negative deviation from

the expected number of donors under column ND and the value adjacent to the sign

shows the deviation percentage.

Tables 3.1, 3.2 and 3.3 show that among the three types of uncertainty sets, box

set is generating the most conservative results while convex hull set is providing the

least conservative solutions and ellipsoidal set, that represent a normal population,

finds solutions with comparison gaps smaller than the results of the box uncertainty

and larger than solutions of convex hull uncertainty. All the tables represent that the

clustered mathematical models with any type of uncertainty - developed in Section

3.3 - can generate solutions with smaller gaps compared to robust mixed integer

programming formulation. This fact is concluded in deterministic situation as well

(Section 2.6) and it suggests that both the deterministic and robust approaches can

benefit from pre-clustering.

69

Table 3.1: Comparison gaps of solutions found by RICASP-C, RIPBA-C for the six
deviation scenarios of 30 instances.

SC ND RICASP-C RIPBA-C
+10 +5 +2 ±0 -2 -5 -10 +10 +5 +2 ±0 -2 -5 -10

1 533 24.1 20.7 18.8 16.5 14.7 11.9 7.3 21.2 17.6 15.7 13.3 11.5 8.5 3.7
2 593 26.1 22.6 20.3 18.5 16.7 14.1 10.1 18.6 14.7 12.2 10.3 8.3 5.3 0.9
3 600 24.5 20.9 18.6 16.8 15.0 12.3 8.3 20.3 16.5 14.0 12.2 10.2 7.4 3.1
4 633 25.5 21.6 19.3 17.7 16.0 13.3 8.1 21.3 17.3 14.9 13.1 11.3 8.5 3.0
5 644 23.9 20.1 17.8 16.1 14.4 11.8 6.6 19.1 15.1 12.6 10.9 9.0 6.2 0.7
6 669 29.5 26.0 24.0 22.3 20.7 18.4 13.8 22.5 18.6 16.4 14.5 12.8 10.2 5.1
7 695 27.3 23.9 21.7 20.0 18.2 15.6 11.2 18.3 14.5 12.0 10.1 8.1 5.2 0.2
8 699 32.0 28.8 26.7 25.2 23.5 21.1 17.0 18.2 14.4 11.9 10.0 8.0 5.1 0.2
9 729 27.2 23.9 21.8 20.2 18.5 16.0 11.7 17.5 13.9 11.4 9.6 7.7 4.9 0.0
10 755 31.1 27.7 25.7 24.2 22.7 20.4 15.9 19.9 15.9 13.6 11.9 10.1 7.5 2.2
11 769 28.0 24.1 22.1 20.5 19.0 16.6 12.0 21.7 17.4 15.2 13.5 11.8 9.3 4.2
12 780 26.7 22.8 20.7 19.2 17.6 15.3 10.0 20.6 16.3 14.1 12.4 10.7 8.2 2.4
13 784 29.8 25.8 23.9 22.4 20.9 18.7 13.6 23.4 19.1 17.0 15.4 13.8 11.4 5.8
14 794 27.3 23.5 21.3 19.8 18.2 16.0 10.8 18.7 14.5 12.0 10.3 8.6 6.1 0.3
15 801 31.8 28.2 26.1 24.7 23.3 20.9 16.4 21.5 17.4 14.9 13.4 11.7 8.9 3.7
16 810 30.5 27.0 24.7 23.3 21.9 19.5 14.7 22.1 18.2 15.6 14.1 12.4 9.7 4.4
17 816 28.8 25.3 23.0 21.6 20.1 17.6 12.7 22.8 19.0 16.5 14.9 13.4 10.7 5.3
18 831 31.0 27.6 25.4 24.0 22.7 20.1 15.6 23.7 20.1 17.6 16.1 14.6 11.8 6.8
19 838 30.9 27.4 25.3 23.9 22.5 19.9 15.5 21.4 17.5 15.1 13.5 11.9 9.0 4.0
20 844 29.0 26.0 23.4 21.9 20.5 17.9 13.4 20.1 16.7 13.8 12.2 10.6 7.7 2.6
21 852 32.6 29.5 27.3 25.7 24.4 21.9 17.7 19.0 15.3 12.6 10.7 9.1 6.2 1.0
22 882 33.2 30.1 28.0 26.4 24.8 22.3 18.4 18.1 14.4 11.8 9.9 7.9 4.8 0.0
23 891 32.0 29.0 26.8 25.2 23.6 21.1 17.0 18.2 14.5 11.9 10.0 8.0 5.0 0.0
24 905 29.5 26.4 24.1 22.5 20.9 18.3 14.1 17.9 14.3 11.7 9.8 7.9 4.9 0.0
25 920 32.6 29.7 27.6 26.1 24.5 22.1 18.2 17.8 14.3 11.7 9.9 8.0 5.0 0.2
26 937 33.0 29.8 27.8 26.2 24.6 22.4 18.4 20.5 16.7 14.3 12.5 10.6 7.9 3.2
27 941 32.7 29.2 27.3 25.7 24.1 21.8 17.9 19.6 15.6 13.2 11.4 9.4 6.7 2.0
28 999 35.2 32.7 30.8 29.4 28.0 25.8 21.6 20.3 17.3 14.9 13.2 11.4 8.7 3.6
29 1068 35.3 35.3 35.3 34.1 32.7 30.6 26.9 16.6 16.6 16.6 15.1 13.3 10.6 5.8
30 1088 32.8 32.8 32.8 32.8 31.4 29.4 25.4 13.4 13.4 13.4 13.4 11.6 9.0 3.9
Average 29.8 26.6 24.6 23.1 21.5 19.1 14.7 19.8 16.2 13.9 12.3 10.5 7.7 2.6

In Table 3.1, for all the instances, the number of donations at each center – for both

the robust mixed integer mathematical model and clustered mathematical model – is

set to the minimum deviation from deterministic donation numbers. This means that

the comparison gaps are the least possible for the -10% deviation and they increase

gradually when the deviation increases. In Table 3.2, for all the instances, the number

of donation is set to the deterministic number of donation at each center minus the

summation of all the deviations. The box uncertainty set results in conservative

robust solutions that are feasible for all of the scenarios similar to convex hull and

70

Table 3.2: Comparison gaps of solutions found by RICASP-B, RIPBA-B for the six
deviation scenarios of 30 instances.

SC ND RICASP-B RIPBA-B
+10 +5 +2 ±0 -2 -5 -10 +10 +5 +2 ±0 -2 -5 -10

1 533 43.5 41.0 39.6 37.9 36.6 34.5 31.0 41.8 39.2 37.8 36.0 34.7 32.5 29.0
2 593 45.1 42.5 40.8 39.5 38.1 36.1 33.1 41.7 38.9 37.1 35.7 34.3 32.2 29.0
3 600 44.2 41.5 39.8 38.5 37.1 35.1 32.2 41.1 38.3 36.5 35.2 33.7 31.6 28.5
4 633 44.5 41.6 40.0 38.7 37.4 35.4 31.6 41.8 38.8 37.0 35.7 34.3 32.3 28.2
5 644 43.8 41.0 39.3 38.0 36.8 34.8 31.0 42.0 39.0 37.3 36.0 34.7 32.7 28.7
6 669 43.4 40.5 39.0 37.5 36.3 34.4 30.7 42.7 39.9 38.2 36.8 35.5 33.6 29.9
7 695 43.9 41.3 39.6 38.3 36.9 34.9 31.7 42.7 40.1 38.3 37.0 35.6 33.5 30.0
8 699 45.0 42.5 40.8 39.5 38.2 36.2 32.9 44.5 41.9 40.2 38.9 37.6 35.6 32.2
9 729 39.1 36.3 34.5 33.2 31.8 29.7 26.1 40.2 37.5 35.7 34.4 33.0 31.0 24.5
10 755 43.4 40.6 39.0 37.7 36.5 34.6 30.9 39.4 36.4 34.7 33.4 32.0 30.0 26.0
11 769 42.4 39.2 37.6 36.4 35.1 33.3 29.5 41.1 37.9 36.2 35.0 33.7 31.8 27.9
12 780 43.5 40.4 38.9 37.7 36.5 34.7 30.6 39.8 36.5 34.8 33.6 32.3 30.4 26.0
13 784 42.4 39.1 37.5 36.3 35.1 33.3 29.1 40.5 37.2 35.5 34.3 33.0 31.1 26.8
14 794 44.1 41.2 39.4 38.3 37.1 35.4 31.4 41.1 38.1 36.2 35.0 33.8 31.9 27.7
15 801 44.3 41.4 39.8 38.6 37.4 35.4 31.8 41.2 38.1 36.3 35.1 33.8 31.8 27.9
16 810 43.4 40.7 38.8 37.6 36.5 34.5 30.6 41.7 38.8 36.8 35.7 34.5 32.4 28.4
17 816 43.5 40.7 38.9 37.7 36.6 34.6 30.7 41.5 38.6 36.7 35.5 34.3 32.3 28.2
18 831 44.1 41.4 39.6 38.5 37.4 35.3 31.7 41.6 38.8 36.9 35.7 34.6 32.4 28.6
19 838 43.4 40.6 38.9 37.7 36.6 34.5 30.9 41.1 38.2 36.4 35.2 34.0 31.9 28.1
20 844 45.3 42.9 40.9 39.8 38.7 36.7 33.2 39.0 36.4 34.2 32.9 31.7 29.3 25.6
21 852 44.6 42.1 40.3 39.0 37.9 35.8 32.4 43.9 41.4 39.6 38.3 37.2 35.1 31.6
22 882 44.3 41.8 40.0 38.7 37.3 35.2 31.9 42.7 40.1 38.3 37.0 35.6 33.4 30.1
23 891 42.1 39.5 37.7 36.4 35.0 32.8 29.3 42.3 39.8 37.9 36.6 35.2 33.1 29.5
24 905 43.5 41.0 39.2 37.9 36.6 34.5 31.1 41.8 39.3 37.4 36.1 34.8 32.6 29.2
25 920 43.9 41.5 39.7 38.5 37.2 35.2 31.9 41.2 38.7 36.8 35.5 34.2 32.1 28.6
26 937 43.2 40.4 38.8 37.5 36.1 34.2 30.8 41.5 38.6 36.9 35.5 34.1 32.1 28.7
27 941 43.9 41.1 39.4 38.1 36.8 34.9 31.6 43.3 40.5 38.8 37.5 36.2 34.2 30.9
28 999 48.2 46.2 44.6 43.5 42.4 40.6 37.3 39.2 36.9 35.1 33.8 32.5 30.4 26.5
29 1068 37.7 37.7 37.7 36.5 35.2 33.2 29.6 37.3 37.3 37.3 36.1 34.8 32.8 29.2
30 1088 42.6 42.6 42.6 42.6 41.5 39.7 36.3 37.7 37.7 37.7 37.7 36.4 34.5 30.8
Average 43.5 41.0 39.4 38.2 36.9 35.0 31.4 41.2 38.6 37.0 35.7 34.4 32.3 28.5

ellipsoidal sets. In Table 3.3, for all the donation centers, the number of donation

is set to a constant multiplied by the deterministic value. This constant is found

according to the method presented in Section 3.3 and it is always smaller than the

number of donation in an instance with convex hull uncertainty set and it is always

greater than the number of donation in the same instance with the box uncertainty

set.

Table 3.4 represents the deterministic gaps (equation 3.12) for all the instances.

Column names show the model used to find the robust solution. Although, these

71

Table 3.3: Comparison gaps of solutions found by RICASP-E, RIPBA-E for the six
deviation scenarios of 30 instances.

SC ND RICASP-E RIPBA-E
+10 +5 +2 ±0 -2 -5 -10 +10 +5 +2 ±0 -2 -5 -10

1 533 30.2 27.0 25.4 23.3 21.6 19.0 14.8 30.2 27.0 25.4 23.3 21.6 19.0 14.8
2 593 31.5 28.2 26.1 24.4 22.8 20.3 16.6 29.0 25.6 23.4 21.7 20.0 17.4 13.6
3 600 31.2 27.9 25.8 24.2 22.5 20.0 16.4 28.3 24.9 22.7 21.0 19.2 16.7 12.9
4 633 32.2 28.7 26.6 25.1 23.5 21.1 16.4 27.5 23.8 21.5 19.9 18.2 15.6 10.6
5 644 33.8 30.5 28.5 27.0 25.5 23.2 18.7 25.3 21.6 19.3 17.7 16.0 13.4 8.3
6 669 32.9 29.6 27.6 26.0 24.5 22.3 17.9 25.7 22.0 19.9 18.1 16.5 14.0 9.1
7 695 33.1 30.0 27.9 26.3 24.7 22.3 18.2 29.1 25.8 23.7 22.0 20.3 17.7 13.4
8 699 32.0 28.8 26.7 19.3 23.5 21.1 17.0 27.6 24.2 22.0 20.3 18.6 16.0 11.6
9 729 34.2 31.2 29.3 27.8 26.3 24.1 20.2 28.4 25.2 23.1 21.5 19.9 17.5 13.2
10 755 30.2 26.8 24.8 23.3 21.8 19.5 14.8 26.4 22.8 20.6 19.1 17.4 15.0 10.1
11 769 36.6 33.2 31.4 30.0 28.6 26.6 22.5 24.5 20.4 18.2 16.6 15.0 12.5 7.6
12 780 34.5 31.0 29.2 27.8 26.4 24.3 19.6 26.3 22.3 20.2 18.7 17.1 14.8 9.4
13 784 29.9 26.0 24.0 22.6 21.1 18.8 13.8 25.1 20.8 18.8 17.2 15.6 13.2 7.8
14 794 36.6 33.4 31.4 30.0 28.7 26.8 22.3 25.1 21.2 18.9 17.4 15.8 13.5 8.1
15 801 30.9 27.3 25.1 23.7 22.3 19.8 15.3 25.0 21.1 18.7 17.2 15.6 13.0 8.0
16 810 30.7 27.3 25.0 23.6 22.1 19.7 15.0 25.0 21.3 18.8 17.3 15.7 13.1 8.0
17 816 30.6 27.2 24.9 23.5 22.1 19.7 14.9 24.9 21.2 18.8 17.3 15.7 13.1 7.9
18 831 29.4 26.0 23.8 22.4 21.0 18.3 13.8 25.4 21.8 19.4 17.9 16.4 13.7 8.8
19 838 34.3 31.1 29.0 27.7 26.4 24.0 19.7 27.3 23.8 21.5 20.0 18.6 15.9 11.3
20 844 33.3 30.4 28.0 26.7 25.3 22.9 18.7 26.5 23.4 20.7 19.2 17.7 15.1 10.4
21 852 34.2 31.2 29.0 27.5 26.2 23.8 19.6 27.4 24.0 21.7 19.9 18.5 15.9 11.3
22 882 32.1 29.1 26.9 25.3 23.6 21.1 17.1 24.7 21.3 18.9 17.1 15.3 12.5 8.0
23 891 34.8 31.9 29.8 28.3 26.7 24.3 20.3 24.7 21.3 18.9 17.2 15.4 12.6 7.98
24 905 36.8 34.0 32.0 30.6 29.1 26.8 23.0 27.1 23.8 21.5 19.9 18.2 15.5 11.1
25 920 36.1 33.3 31.3 29.9 28.4 26.1 22.4 25.8 22.5 20.2 18.6 16.9 14.2 9.9
26 937 32.2 28.9 26.8 25.3 23.7 21.3 17.4 24.6 20.9 18.7 17.0 15.2 12.6 8.1
27 941 35.7 32.5 30.6 29.1 27.6 25.4 21.6 24.9 21.0 18.8 17.1 15.3 12.7 8.3
28 999 42.4 40.2 38.5 37.2 36.0 34.0 30.3 25.0 22.1 19.9 18.3 16.6 14.1 5.2
29 1068 32.7 32.7 32.7 31.5 30.0 27.9 24.0 20.7 20.7 20.7 19.2 17.5 15.0 10.4
30 1088 34.2 34.2 34.2 34.2 32.8 30.8 26.9 20.4 20.4 20.4 20.4 18.8 16.3 11.6
Average 33.3 30.2 28.2 26.5 25.2 22.9 18.7 26.1 22.7 20.5 18.9 17.2 14.7 10.0

results are not comparable with the solutions in Tables 3.1, 3.2 and 3.3, they show that

when uncertainty increases, deterministic models outperform the robust models. Also,

the clustered mathematical model is performing better in collecting more number of

donated blood than robust mixed integer program for all the types of uncertainty.

Note that the solution times of the models suggest that the integer programming

based approach is finding the solutions within several minutes and can outperform

the quality of the solutions found by the RICASP (-B, -C, -E).

72

Table 3.4: Comparison d-gaps of solutions found by RIPBA-C, RICASP-C, RIPBA-
B, RICASP-B, RIPBA-E, RICASP-E for the 30 instances.

SC RIPBA-C RICASP-C RIPBA-B RICASP-B RIPBA-E RICASP-E
1 11.3 14.6 34.5 36.5 21.5 21.5
2 6.2 14.8 32.8 36.7 18.2 21.0
3 10.2 15.0 33.7 37.1 19.2 22.5
4 11.1 15.8 34.2 37.3 18.1 23.4
5 7.4 12.9 33.5 35.6 14.5 24.2
6 11.9 19.9 34.8 35.6 15.6 23.7
7 6.3 16.6 34.3 35.7 18.7 23.2
8 7.9 23.4 37.5 38.1 18.4 17.4
9 7.6 18.4 33.0 31.7 19.8 26.2
10 11.0 23.4 32.7 37.1 18.2 22.5
11 11.6 18.7 33.5 35.0 14.8 28.5
12 10.5 17.4 32.1 36.3 16.9 26.2
13 12.9 20.1 32.3 34.4 14.7 20.2
14 8.2 17.9 33.5 36.9 15.5 28.5
15 11.4 23.0 33.6 37.2 15.3 22.0
16 12.1 21.6 34.2 36.2 15.4 21.8
17 12.4 19.2 33.6 35.9 14.8 21.2
18 15.9 23.9 35.6 38.4 17.7 22.2
19 9.3 20.1 32.0 34.7 16.1 24.2
20 10.6 20.5 31.7 38.7 17.7 25.3
21 8.5 23.9 36.8 37.5 18.0 25.7
22 9.4 26.1 36.7 38.4 16.7 24.9
23 7.3 23.0 34.7 34.4 14.7 26.1
24 7.3 20.3 34.3 36.1 17.6 28.6
25 9.3 25.6 35.1 38.7 18.0 29.4
26 9.8 24.0 33.5 35.5 14.4 23.0
27 8.6 23.4 35.6 36.2 14.6 26.9
28 7.2 24.5 29.2 39.6 12.6 32.9
29 10.5 30.5 32.7 33.1 14.8 27.7
30 9.2 29.6 34.7 39.9 16.6 31.0

Average (%) 9.8 21.0 33.9 36.5 16.6 27.7
Time (hr) 0.29 8 0.25 8 0.21 8

Table 3.5 presents the comparison and deterministic gaps for the Chance Con-

strained Model presented in Section 3.4. To compare the chance constrained pro-

gramming results with the deterministic situation, we are using two types of gaps.

The first type, called gap, represents the percentage of number of donations that

could not be collected, when we set the number of donors to µi +ψ×σi at each center

and we calculate the gap using equation (3.11), where UB denotes the minimum of

73

Table 3.5: Comparison gaps of solutions found by ICASP-CCP, IPBA-CCP with
different alpha values.

α
ICASP-CCP IPBA-CCP
Gap D-Gap Gap D-Gap

0.01 2.9 41.1 6.2 43.1
0.02 0.8 35.6 6.8 39.5
0.05 3.5 30.2 9.4 34.5
0.08 3.9 26.3 4.4 26.7
0.1 0.9 22.0 6.5 26.4

Average 2.4 31.0 6.7 34.0
Time (hr) 8 0.28

∑
i∈I(µi +ψ×σi) and best LP relaxation solution found by the ICASP-CCP within 8

hours. Note that α defines the ψ (standard score) value. Although, the values under

Gap column do not follow a specific trend, the d-gap column shows that when α –

the probability of violating chance constrained constraint – is higher, the determinis-

tic gap is smaller, because the standard score is smaller and thus the model tries to

collect greater number of donated blood. d-gap in Table 3.5 is calculated according

to the equation (3.12), where DSol represents the summation of number of donors

of the instance with di = µi and Sol is total number of donation packages collected

using the chance constraint model. DSol remains the same for all the scenarios with

different α values. Note that the chance constrained programming is not as conserva-

tive as robust optimization, because of the knowledge about the distribution function

of donation numbers. Thus the average gap for all the α values, is smaller than the

average gap of solutions in robust approaches.

3.6 Summary

In this chapter, we introduce applications of Robust Optimization and Chance

Constrained Programming for the Integrated Collection and Appointment Scheduling

Problem (ICASP), in which our goal is to maximize the number of donated blood

74

packages that can be collected and delivered to a processing center within a limited

time for platelets extraction, while it is known that the numbers of donors showing up

at donation centers are uncertain. First, three types of uncertainty sets are introduced

for the robust optimization problem and the corresponding mixed integer program-

ming formulations are developed. Then the Integer Programming Based Approach

of Section 2.5.1 is modified to find robust feasible solutions within reasonable time.

The performance of the models are tested on six deviation scenarios of 30 instances

that are generated based on real data from Gulf Coast Regional Blood Center located

in Houston, TX. The results show that the box set generates the most conservative

solutions, while ellipsoidal set finds less conservative solutions and convex hull results

in the least comparison gaps. Also, the gaps represent that the integer programming

based approach outperforms the mixed integer formulation for all the types of uncer-

tainty. Also, a chance constrained programming formulation is developed. According

to the 30 instances, it is concluded that the number of donations at all the centers

follow a normal distribution. Different values are used for the probability of violating

the mean number of donation and the results are reported accordingly. When the

probability of violating the mean of number of donation increases, more number of

donors show up and thus the chance constrained model tries to collect more units of

donated blood.

75

Chapter 4 Conclusion and Future Work

In this dissertation, applications of Operations Research techniques are studied

to address two different problems in the industry and health care settings. In this

chapter, we summarize the research that has been completed in this dissertation and

we discuss future research directions.

4.1 Current Findings

4.1.1 Cutting Stock Problem with Setup Cost

In Chapter 1, the Cutting Stock Problem with Setup Cost (CSP-S) is studied. The

goal is to minimize both material and setup costs while cutting raw materials of cer-

tain length to satisfy the demand for smaller sized items.. This problem covers a wide

domain of packing and cutting problems including the classical Cutting Stock Prob-

lem, Bin Packing Problem and Pattern Minimization Problem. CSP-S is applicable

when setting cutting machines are time consuming and/or costly and material cost

is considerable as well. First, a mixed integer linear model is developed for CSP-S.

Then, four constructive heuristic algorithms are proposed to find an initial feasible

solution for the local search methods proposed and a pool of feasible patterns. More-

over, a column generation based heuristic algorithm is proposed. The performance of

local search methods, pattern pool based algorithm and column generation approach

are tested on the instances from the literature and the results are reported. Results

show that, for over 30 instances, the column generation approach (CGA) performs

best except for the high setup cost setting. In addition, local search methods and

pattern pool based algorithm provide comparable results for low cost settings and

better results for the highest cost setting.

76

4.1.2 Integrated Collection and Appointment Scheduling

Problem

In Chapters 2 and 3, the Deterministic and Stochastic Integrated Collection and

Appointment Scheduling Problem (ICASP and RICASP) are introduced. In ICASP, it

is assumed that donors are willing to donate blood at any time that we schedule their

appointments, thus the only requirement is to find “good” vehicle arrival times at

each donation center such that the number of donated blood units collected – within

processing time limit – are maximized. Then, the schedule of appointments can be

found determined based on the pickup times (see Section 2.3).

First, a mixed integer linear model is developed for ICASP, then an Integer Pro-

gramming Based Approach and a Construction Based Heuristic Algorithm are pro-

posed to find solutions within a reasonable amount of time. Results show that, for

all the 30 scenarios generated according to the data from Gulf Coast Regional Blood

Center located in Houston, TX, the Integer Programming Based Approach produces

better results. However, the construction based heuristic algorithm can find compa-

rable results very fast.

In RICASP, we incorporate the uncertainty in the number of donors showing

up to the model. A robust optimization approach is proposed for different types

of uncertainty sets. In the robust approach, the final solution is robust feasible for

all the seven scenarios presented. Also, a chance constrained programming model is

proposed, while it is assumed that the number of donations follows normal distribution

in all the donation centers.

The results show that the integer programming based heuristic model outperforms

the proposed mixed integer mathematical model both for the robust optimization and

chance constrained models. Also, our knowledge about the distribution function of

the number of donations can increase the solution quality of ICASP and therefore

77

the chance constrained programming can find better solutions than robust optimiza-

tion. However, it is generally difficult to find an exact distribution function and it is

suggested to follow a conservative approach such as robust optimization to ensure a

robust feasible solution for all the possible scenarios.

4.2 Future Research Directions

This section includes the overview of future research directions in the cutting stock

with setup cost and blood collection problems.

4.2.1 Cutting Stock Problem with Setup Cost

In Chapter 1, we propose a mixed integer programming for the cutting stock prob-

lem with setup cost. We also develop several heuristic algorithms to solve this problem

quickly and precisely. Numerical results indicate that the heuristic algorithms can

find comparable results with the mathematical model within reasonable time, while it

is computationally challenging to find the global optimal solution of CSP-S. However,

one future direction can be to improve the quality of heuristic solutions and decrease

the optimality gap with the optimal solution.

For example, in the two local search methods that are presented in Sections 1.6.1.2

and 1.6.1.3, we can try to enhance the quality of solutions generated by constructive

heuristic algorithms in Section 1.6.1.1. In Algorithm 6, to find the production fre-

quency of newly formed patterns, an MIP formulation is used and it is assumed that

other patterns are being produced a fixed number of times. However the quality of

solutions may be improved, if production frequencies of old patterns are considered

as decision variables and determined using a modified MIP formulation. Also, in

Algorithms 6 and 7, to combine every p patterns, the first p cutting patterns that are

generated with constructive heuristic algorithm are chosen for combination; However,

78

a randomized or systematic approach to define best p patterns to be combined may

increase the quality of solutions further. It is also a fruitful research area to consider

two or more dimensions of the cutting stock problem with setup cost and use the

one-dimensional problem introduced in Chapter 1 as a research base.

4.2.2 Integrated Collection and Appointment Scheduling

Problem

In Chapter 2, we propose a mixed integer formulation for the deterministic blood

collection problem. Also, we develop two heuristic algorithms in order to find solu-

tions for the ICASP within reasonable time. Numerical experiments show that it is

computationally challenging to solve the mathematical model. Also, the heuristic al-

gorithms can outperform it within a limited time. However, it is not guaranteed that

the heuristic algorithms can find the optimal solution of a ICASP instance. There-

fore, one future suggestion is to decrease the solution time of the mathematical model.

ICASP is a more general version of the vehicle routing problem with time windows,

where every center can be visited more than once. Hence, it might be possible to uti-

lize the exact solution approaches that are developed for the vehicle routing problem

while we assume that any center can be visited at most a constant time (e.g. c) and

then we can duplicate any center into c similar centers, where each duplicated center

can be visited only once per day. Also, it is possible to apply simulated annealing

integrated by the proposed neighborhood search method and improve the quality of

solutions.

In Chapter 3, we propose several robust mathematical models considering different

types of uncertainty sets and we also develop a chance constrained program for the

integrated blood collection and appointment scheduling problem for the time that

the number of daily donations is uncertain. However, one may prefer to include

stochasticity of traveling times, service time or donation unit time. Also, it might be

79

interesting to consider that the availability of drivers and vehicles may change during

the day. The mathematical model can be further improved with including cost of

transportation or service with a lower priority than the main objective introduced in

this dissertation.

80

References

[1] Alves, C., 2005, Cutting and packing: Problems, models and exact algorithms,

Ph.D. thesis, Universidade do Minho.

[2] Alves, C., and Valério de Carvalho, J.M., 2008, “A branch-and-price-and-cut

algorithm for the pattern minimization problem," RAIRO - Operations Research

42 435–453.

[3] American Red Cross, 2012, http://www.redcrossblood.org.

[4] American Red Cross Blood Services, 2012, http://volunteer.united-e-

way.org/uwbec/org/567730.html.

[5] Beliën, J., Forcé, H., 2012, “Supply chain management of blood products: A

literature review," European Journal of Operational Research, 217(1), 1–16.

[6] Belov, G., Scheithauer, G., 2002, “A cutting plane algorithm for the one-

dimensional cutting stock problem with multiple stock lengths," European Jour-

nal of Operational Research 141(2) 274–294.

[7] Belov, G., 2004, Problems, models and algorithms in one-and two-dimensional

cutting, Ph.D. thesis, Dresden.

[8] Belov, G., Scheithauer, G., 2007, “Setup and open-stacks minimization in one-

dimensional stock cutting," INFORMS Journal on Computing 19(1) 27–35.

[9] Ben-Tal, A., and Nemirovski, A., 1998, “Robust convex optimization," Mathe-

matics of Operations Research, 23(4), 769–805.

[10] Bertsimas, D., and Sim, M., 2003, “Robust discrete optimization and network

flows," Mathematical Programming, 98(1), 49–71.

81

[11] Boyd, S., and Vanderberghe, L., 2004, Convex optimization, Cambridge Univer-

sity Press.

[12] Cerqueira, G., Yanasse, H., 2009, “A pattern reduction procedure in a one-

dimensional cutting stock problem by grouping items according to their de-

mands," Journal of Computational Interdisciplinary Sciences 1(2) 159-164.

[13] Charnes, A., Cooper, W.W., and Symonds, G.H., 1958, “Cost horizons and

certainty equivalents: An approach to stochastic programming of heating oil,"

Management Science 4, 235–263.

[14] Chien, C., Deng. J., 2001, “Optimization of wafer exposure patterns using a

two-dimensional cutting algorithm," International Transactions in Operational

Research 8(5) 535–545.

[15] Cordeau, J.F., Gendreau, M., Laporte, G., Potvin. J.Y., Semet, F., 2002, “A

guide to vehicle routing heuristics," Journal of the Operational Research Society

53(5) 512–522.

[16] Cui, Y., Zhao, X., Yang, Y., Yu, P., 2008, “A heuristic for the one-dimensional

cutting stock problem with pattern reduction," Proceedings of the Institution

of Mechanical Engineers, Part B: Journal of Engineering Manufacture 222(6)

677–685.

[17] Cui, Y., Liu, Z., 2011, “C-sets-based sequential heuristic procedure for the

one-dimensional cutting stock problem with pattern reduction," Optimization

Methods and Software 26(1) 155-167.

[18] Dantzig, G.B., Ramser, J.H., 1959, “The truck dispatching problem," Manage-

ment Science 6(1) 80–91.

82

[19] Diegel, A., Montoccohio, E., Walters, E.,Schalkwyk, S., Naidoo, S., 1996, “Setup

minimising conditions in the trim loss problem," European Journal of Operational

Research 95 631-640.

[20] Doerner, K.F., Gronalt, M., Hartl, R.F, Kiechle, G., Reimann, M., 2008, “Exact

and heuristic algorithms for the vehicle routing problem with multiple interde-

pendent time windows," Computers and Operations Research 35(9) 3034–3048.

[21] Dyckhoff, H., Kruse, D., 1985, “Trim loss and related problems," Omega 13(1)

59–72.

[22] Dyckhoff, H., 1990, “A typology of cutting and packing problems," European

Journal of Operational Research 44 145–159.

[23] Farley, A., Richardson, K., 1984, “Fixed charge problems with identical fixed

charges," European Journal of Operational Research 18(2) 245–249.

[24] Foerster, H., Waescher, G., 2000, “Pattern reduction in one-dimensional cutting

stock problems," International Journal of Production Research 38(7) 1657–1676.

[25] Ford, L.R., Fulkerson, D.R., 1962, Flows in Networks, Princeton University

Press, Princeton, New Jersey.

[26] Ghandforoush, P., Sen, T.K., 2010, “A DSS to manage platelet production

supply chain for regional blood centers," Decision Support Systems 50(1) 32–42.

[27] Gilmore, P., Gomory, R., 1961, “A linear programming approach to the cutting-

stock problem," Operations Research 9(6) 849–859.

[28] Gilmore, P., Gomory, R., 1963, “A linear programming approach to the cutting

stock problem-part II," Operations Research 11(6) 863–888.

[29] Gilmore, P., Gomory. R., 1965, “Multistage cutting stock problems of two and

more dimensions," Operations Research 13(1) 94–120.

83

[30] Glover, F., 1975, “Improved linear integer programming formulations of nonlin-

ear integer problems," Management Science 22(4) 455–460.

[31] Golden, B., Raghavan, S., Wasil, E., 2008, The vehicle routing problem: Latest

advances and new challenges. Operations Research/Computer Science Interfaces

Series, Springer.

[32] Golden, B., Levy, L., Vohra, R., 1987, “The orienteering problem," Naval Re-

search Logistics 34(3) 307–318.

[33] Gulf Coast Regional Blood Center, 2012, http://www.giveblood.org.

[34] Haessler, R.W., 1975, “Controlling cutting pattern changes in one-dimensional

trim problems," Operations Research 23(3) 483–493.

[35] Johnson, D.S., 1973, Near optimal bin packing algorithms, Ph.D. thesis, Mas-

sachusetts Institute of Technology.

[36] Kantorovich, L., 1960, “Mathematical methods of organizing and planning pro-

duction," Management Science 6(4) 366–422.

[37] MacQueen, J., 1967, “Some methods for classification and analysis of multivari-

ate observations," Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability 1 281–297.

[38] Martello, S., Toth, P., 1990, Knapsack problems: Algorithms and computer

implementations. Wiley, New York.

[39] McDiarmid, C., 1999, “Pattern minimisation in cutting stock problems," Discrete

Applied Mathematics 98(1-2) 121–130.

[40] Michaels, J.D., Brennan, J.E., Golden, B.L, Fu. M.C., 1993, “A simulation

study of donor scheduling systems for the American Red Cross," Computers and

Operations Research 20(2) 199–213.

84

[41] Prastacos, G.P., 1984, “Blood inventory management: an overview of theory

and practice," Management Science 30(7) 777–780.

[42] Sankaran, J.K., Ubgade, R.R., 1994, “Routing tankers for dairy milk pickup,"

Interfaces 24(5) 59–66.

[43] Simchi-Levi, D., 1994, “New worst-case results for the bin-packing problem,"

Naval Research Logistics 41 579-585.

[44] Soyster, A.L., 1973, “Convex programming with set-inclusive constraints and

applications to inexact linear programming," Operations Research, 1154–1157.

[45] Stadtler, H., 1988, “A comparison of two optimization procedures for 1- and 1

1/2-dimensional cutting stock problems," OR Spectrum 10(2) 97–111.

[46] Sungur, I., Ordóñez, F., Dessouky, M., 2008, “A robust optimization approach

for the capacitated vehicle routing problem with demand uncertainty," IIE Trans-

actions, 40(5), 509–523.

[47] Toth, P., Vigo, D., 2002, “Models, relaxations and exact approaches for the

capacitated vehicle routing problem," Discrete Applied Mathematics 123(1) 487–

512.

[48] Turkish Ministry of Health, 2011, http://www.saglik.gov.tr.

[49] Umetani, S., Yagiura, M., Ibaraki, T., 2003, “One-dimensional cutting stock

problem to minimize the number of different patterns," European Journal of

Operational Research 146(2) 388–402.

[50] U.S. Department of Energy, 2011, http://www1.eere.energy.gov/vehiclesandfuels.

[51] Valério de Carvalho, J.M., 1998, “Exact solution of cutting stock problems

using column generation and branch-and-bound," International Transactions in

Operational Research 5(1) 35–44.

85

[52] Valério de Carvalho, J.M., 1999, “Exact solution of bin-packing problems using

column generation and branch-and-bound," Annals of Operation Research 86

629–659.

[53] Valério de Carvalho, J.M., 2002, “LP models for bin packing and cutting stock

problems," European Journal of Operational Research 141 253–273.

[54] Vance, P., 1999, “Branch-and-price algorithms for the one dimensional cutting

stock problem," Computational Optimization and Applications 9 211–228.

[55] Vanderbeck, F., 2000, “Exact algorithm for minimising the number of setups in

the one-dimensional cutting stock problem," Operations Research 48(6) 915–926.

[56] Walker, W., 1976, “A heuristic adjacent extreme point algorithm for the fixed

charge problem," Management Science 22(5) 587–596.

[57] Waescher, G., Gau, T., 1996, “Heuristics for the integer one-dimensional cutting

stock problem: A computational study," OR Spectrum 18(3) 131–144.

[58] Waescher, G., Haubner, H., Schumann, H., 2007, “An improved typology of

cutting and packing problems," European Journal of Operational Research 183

1109-1130.

[59] World Health Organization, 2012, http://www.who.int.

[60] Yanasse, H., Limeira, M., 2006, “A hybrid heuristic to reduce the number of dif-

ferent patterns in cutting stock problems," Computers and Operations Research

33(9) 2744–2756.

[61] Yi, J., Scheller-Wolf, A., 2003, “Vehicle routing with time windows and time-

dependent rewards: a problem from the American Red Cross," Manufacturing

and Service Operations Management 5(1) 74–77.

86

	Acknowledgements
	Abstract
	Table of contents
	List of Figures
	List of Tables
	Heuristics for the Cutting Stock Problem with Setup Cost
	Introduction
	Literature Review
	Problem Definition
	Mathematical Formulations
	Complexity and A Special Case
	Heuristic Algorithms
	Local Search Algorithms
	Column Generation Based Heuristic Algorithm
	Pattern Pool Based Approach

	Computational Results
	Conclusion

	Integrated Collection and Appointment Scheduling Problem
	Introduction
	Literature Review
	Problem Definition
	A Mixed Integer Linear Programming Model
	Tour-Related Constraints
	Arrival Time Constraints
	Collection Amount Constraints
	Non-negativity and Integrality Constraints

	Heuristic Approaches
	Clustering Phase
	Integer Programming Based Algorithm
	Construction Based Heuristic Algorithm

	Computational Results
	Summary

	Robust Optimization and Chance Constrained Programming for the Collection Problem with Uncertainty
	Introduction and Literature Review
	Problem Definition and Mathematical Models
	Robust Optimization
	Chance Constrained Programming
	Computational Results
	Summary

	Conclusion and Future Work
	Current Findings
	Cutting Stock Problem with Setup Cost
	Integrated Collection and Appointment Scheduling Problem

	Future Research Directions
	Cutting Stock Problem with Setup Cost
	Integrated Collection and Appointment Scheduling Problem

	References

