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Abstract

Data analysis is an essential task for research. Modern large datasets indeed

contain a high volume of data and may require a parallel DBMS, Hadoop Stack,

or parallel clusters to analyze them. We propose an alternative approach to these

methods by using a lightweight language/system like R to compute Machine Learning

models on such datasets. This approach eliminates the need to use cluster/parallel

systems in most cases, thus, it paves the way for an average user to effectively utilize

its functionality. Specifically, we aim to eliminate the physical memory, time, and

speed limitations, that are currently present within packages in R when working

with a single machine. R is a powerful language, and it is very popular for its data

analysis. However, R is significantly slow and does not allow flexible modifications,

and the process of making it faster and more efficient is cumbersome. To address the

drawbacks mentioned thus far, we implemented our approach in two phases. The first

phase dealt with the construction of a summarization matrix, Γ, from a one-time scan

of the source dataset, and it is implemented in C++ using the RCpp package. There

are two forms of this Γ matrix, Diagonal and Non-Diagonal Gamma, each of which

is efficient for computing specific models. The second phase used the constructed

Γ Matrix to compute Machine Learning models like PCA, Linear Regression, Näıve

Bayes, K-means, and similar models for analysis, which is then implemented in R.

We bundled our whole approach into a R package, titled Gamma.
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Chapter 1

Introduction

1.1 Problem Importance

Machine Learning has become popular and has gained widespread demand due to the

availability of abundant data and processing power. Many tools and technologies, like

Python, R, Scala, Java, and C#, compute these Machine Learning models. Datasets

can be so large that they do not fit in the tools’ main memory. For these types

of data, Hadoop Stack, distributed systems, or columnar databases like Vertica are

popular choices to compute Machine Learning models. We propose that the size

of the cleaned dataset, rather than its raw counterpart, should dictate which data

processing platform is to be used [1]. Data cleaning strips unwanted and inaccurate

data. As a result, the size of the dataset is significantly reduced, along with the

need to use a heavyweight data processing platform like Hadoop. Therefore, with a

refined dataset, data processing can be limited to a single-system environment like

1



R.

1.2 Motivation

The average user, although they may have a large dataset that does not fit in their

tool’s main memory, may not use heavyweight data processing systems like Hadoop

because of the installation process, maintenance time, and cost. The downside of

using lightweight data processing systems like R or Python is that they require all

the data to be stored in the memory to compute Machine Learning models, which

is practically impossible for the average user. Our package, to a great extent, solves

these issues by giving support to computing four fundamental Machine Learning

models Linear Regression, Principal Component Analysis (PCA), Näıve Bayes, and

K-Means without main memory limitations. These models are considered to be

classical Machine Learning models that fall into the categories of Regression Algo-

rithms, Dimensionality Reduction Algorithms, Bayesian Algorithms, and Clustering

Algorithms, respectively.

1.3 Scope

R is a vast package ecosystem coupled with extensive developer support, and it ticks

all the necessary boxes as a data analytics platform. Novel research methods in

the field of Machine Learning likely have a readily available package in R. However,

R has a few shortcomings in areas like memory management, speed, and efficiency.
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While parallelism in R can be achieved using packages like parallel, the shortcomings

become evident with an increasing number of cores. The language design sometimes

poses a great problem when working with large datasets, since the data has to be

stored in the physical memory. With the dedicated physical memory of a system, R

cannot scale to work with datasets larger than the proportion of memory allocated

to it, in these cases, it is forced to crash. The physical memory limitation clearly

outweighs the need for parallelization in R, and this limitation is our major research

focus. Our research is important for classical linear Machine Learning algorithms,

rather than non-linear algorithms like Support Vector Machines (SVM), Deep Neu-

ral Networks, Logistic Regression, and Hidden Markov models. The mathematical

part of the research proved to be challenging in contrast to its implementation. We

assumed that the model from our package would comfortably fit in the main mem-

ory. Our model has a few benefits. First, the environment does not crash even when

using large datasets, which is a downside of existing R packages. Second, it works

independent of the physical memory allocated to the R environment, thus eliminat-

ing the physical memory limitations. Third, it produces as accurate results as the

existing packages that compute the above models in R. Finally, our package works

faster than the current packages in R, which is demonstrated in Chapter 6.

3



Chapter 2

Related Work

This thesis is based on several previous research achievements. The Summarization

Matrix described in this research was first proposed was first proposed by Ordonez

and colleagues [2] and then deeply explored by the same group [3] to propose two

forms of matrices based on the type of data, namely Dense and Sparse. Further, [3]

explored the optimizations for Sparse input datasets and showed that their SciDB

implementation defeated Spark performance on a large cluster. Then, this work was

migrated to a columnar Database System in work by Zhang and colleagues [4].
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2.1 Computing Scalable Machine Learning Mod-

els

Many advancements have recently been made in the computation of Machine Learn-

ing models. No matter how big the dataset size or how complex the determination

of relationship among the attributes of the datasets, we are able to see through

them. To turn Machine Learning algorithms into scalable ones, many researchers

have developed a variety of novel techniques and different optimization mechanisms.

A combination of different methods with frameworks or platforms were used in a

work by Rehab and Boufares [5], which combines MapReduce, for Multiple Linear

Regression based on the QR decomposition, and the ordinary least squares method.

Recent trends aim to incorporate data analytical capabilities within Database Sys-

tems [6]; these provide a predictive analytical model, and the associated regression

query processing algorithms reveal dependencies between the values of different at-

tributes. This was implemented on databases, like SciDB, to compute different

models like Linear Regression, PCA, and Variable selection, which are achieved with

a single pass on the entire dataset [3]. Many improvements have been made on the

existing algorithms, like K-Means, by determining the number of clusters automati-

cally, thereby eliminating its specification when we start running the model. In [7],

the authors achieved this improvement by developing an algorithm in MapReduce

and improving the quality of clustering. Developing new techniques and optimizing

existing algorithms contribute to scalable Machine Learning.
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2.2 Gram Matrix in Machine Learning

In linear algebra, the Gram matrix, also called the Gramian matrix or Gramian, of

a set of vectors v1 . . . vn in an inner product space is the Hermitian matrix of inner

products, whose entries are given by Gij = 〈vi, vj〉 from [8]. For finite-dimensional

real vectors with the usual Euclidean dot product, the Gram matrix is simply G =

V TV , where V is a matrix whose columns are the vectors vk. This Gram matrix can

be applied to compute the linear independence of vectors; that is, a set of vectors

are linearly independent if and only if the Gram determinant (the determinant of

the Gram matrix) is non-zero.

This Gram matrix can be used for many more applications. Because they use a

well-conditioned Gram matrix, the Linear and Quadratic programming algorithms,

when applied to the M-MIMO detection problem, provide interesting results, such as

exploitation of the structure of the problem (simple constraints) and improvement

of the rate of convergence, as mentioned by Fukuda and Abro [9]. This Gram ma-

trix can also be applied for Observability Analysis. It can be used to verify local

redundancy, which is important in measurement system planning. Determination of

non-redundant pseudo-measurements for merging observable islands into an observ-

able system is carried out by analyzing the pivots of the Gram matrix [10].

Our summarization approach contains this Gram matrix as one of its sub-matrices,

Q, which is described in Section 4.3.
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2.3 Comparing Similar Implementations and Sys-

tems

In the previous section, we discussed some techniques that are generally used to

compute Scalable Machine Learning models. There are many techniques to improve

the performance of the Linear Regression, PCA, Näıve Bayes, and K-Means models,

a few of which are briefly stated in this section. Data is growing exponentially

larger, may not fit in the model’s main memory, and may require an external data

storage platform to compute the Machine Learning models. Existing research has

computed the models using efficient data summarization, similar to the research in

this thesis. A framework from Lai and colleagues [11] is based on the notion of data

space reduction, which finds high-density areas in a given feature space. The dense

cells store summarized information of the data on which a designated partitioning

or hierarchical clustering algorithm, like K-Means, can be used as the next step to

find the clusters.

A Linear Regression Algorithm is used to achieve parallelism in database pro-

cessing, while Compute Unified Device Architecture (CUDA) uses a multi-threading

technique [12]. By utilizing this technique, Linear Regression is bound to achieve

a very high performance when compared to data processing on other platforms.

Both performance and accuracy matter when computing Machine Learning models.

In a publication by Senavirathne and Torra [13], a linear regression approximation

method was implemented based on integral privacy, which ensures high accuracy and

7



robustness while maintaining a degree of privacy for ML models. There are decent

enhancements for the Näıve Bayes model like those presented by Vilalta and Rish

[14], which used decomposition of classes via clustering to improve Näıve Bayes.

Many other works used triangle inequality, collaboration of compressed sensing

theory, and the K-SVD approach to accelerate k-means [15, 16, 17]. If we observe

carefully, Linear Regression, Näıve Bayes, or PCA do not require initialization, un-

like the K-Means model, which requires the number of clusters and their respective

centroids to be initialized. If initialization is bad, there is no convergence on a

solution.

Scalable Machine Learning algorithms were summarized in parallel [3]. Ordonez

and colleagues [3] exploited HP Vertica’s parallelization feature, similar to works by

Lin and Raychev [18, 19], to simultaneously perform summarization on multiple sys-

tems. We adapted the algorithms from the Ordonez publication [3] and implemented

them such that they are serial, scalable, and 99 percent accurate in R. We made use

of R’s chunking ability to read an infinite amount of input data, which made the pro-

cess faster. We completely removed the use of the database system, which was the

main component used by Ordonez and colleagues [3]. Pitchaimalai and colleagues

[20] computed Näıve Bayes inside the database with pure SQL queries. We adapted

this model computation [20] and implemented it in R. We compared our work with

the most efficient packages in R, and we found shown that our package is faster and

more reliable than the former.

Improvements for K-Means can include developing an enhanced agglomerative

fuzzy K-Means clustering method with MapReduce implementation on the Hadoop

8



platform as in Zhang and Wang’s work [21] or developing algorithms to remove

outliers from the dataset and automatically selecting the initial centroids, thereby

stabilizing the result, as performed by Boukhdhir and colleagues [22]. Similarly,

to improve the performance of data storing and indexing for Näıve Bayes in text

classification, Zhou and colleagues [23] presented a new hash and a software imple-

mentation of Näıve Bayes classification. This implementation was mapped in the

Topo-MapReduce model on a multicore processor with circuit switch and packet

switching.

Notwithstanding the implementations in parallel environments, the research in

this thesis is based on serial processing in an R environment. Since R is a functional

language, a lot of effort is required to parallelize it so that the speedup is positive,

rather than the existing negative speedup corresponding to an increased number of

cores or systems.

2.4 Linear Models in R and Mathematical Sys-

tems for the Models

Optimization techniques, like the Gradient Descent Method used by Lee [24], give

only the approximate values for some models, despite being fast. This optimization

algorithm is used to find the coefficients of a function at cost. Gradient Descent is

applied when the parameters cannot be calculated using linear algebra and must be

searched for by an algorithm. A new paradigm of assigning weights for classification

9



was proposed by Lee [24]. In contrast to the other weighting methods, it was imple-

mented on Näıve Bayesian learning in which optimal weights are calculated using a

Gradient approach.

Another approach is a Laplacian method to compute or improve Machine Learn-

ing models. A Laplace Näıve Bayes model with mean shrinkage was proposed by Wu

and colleagues [25]. This method uses a conditional distribution of the samples, as

it is less sensitive to outliers compared to the general normal distribution.

A Dynamic Programming method can compute or build upon the Machine Learn-

ing models. A Machine Learning-based state-space approximate dynamic program-

ming approach was proposed to solve the self-scheduling problem faced by power

plants under an integrated energy and reserve market by Keerthisinghe and col-

leagues [26].

We can also use the Integer Programming method. Kacprzyk and Szkatula [27]

proposed a new improved inductive learning method using the Integer Programming;

it is used to derive classification rules that correctly describe the examples belonging

to a class and do not describe examples that do not belong to that class. This

problem is also included in the set of problems solved by the Genetic Algorithm.

Alternatively, Microsoft R Open is designed to include an updated R engine

(R 3.2.2). It includes new fuzzy matching algorithms with the ability to write to

databases via ODBC with a streamlined installation experience.

10



Chapter 3

Background

3.1 Definitions on the Models and Datasets

We use Θ to represent a statistical model in general. Θ can be a Linear Regression

or PCA model, as well as any of the clustering and classification models, such as

K-Means and Näıve Bayes. PCA is an unsupervised model to reduce dimensional-

ity. Linear Regression is a fundamental supervised model, and its solution helps to

understand and build other linear models. Näıve Bayes is another classic supervised

model, and its solution assigns a numerical value between 0 and 1 to each class label

to denote the probability of data belonging to a specific class. K-Means is a clus-

tering algorithm, and its goal is to find groups within the data, with the number of

groups represented by the K. The algorithm works iteratively to assign each data

point to one of the K groups based on the features that are provided. Data points

are clustered based on feature similarity.

11



We can use the same dataset for both Linear Regression and PCA. On the other

hand, we use separate datasets for Näıve Bayes and K-Means, which are different

from the datasets used for Linear Regression and PCA. The dataset requirements are

mostly similar for Linear Regression and PCA, whereas they are different for Näıve

Bayes and K-Means.

3.2 General Hardware and Software Information

We solved the problem at hand using a single system and single core following the

serial processing techniques. Generally, systems used in serial processing are con-

figured with a Linux operating system with 1 TB to 5 TB of disk space and 8 GB

to 16 GB of physical memory. Recent systems consist of a minimum of 4 cores and

may extend up to 64 cores. However, R does not scale its processing for an increased

number of cores, which is explained in Section 3.3.

3.3 General Definitions of R System

In this section, we focus on the how data is processed, and we explain important

details about R and its run-time that led us to choose it as our data processing

platform.

In R, vectors are stored as one contiguous block allocated dynamically. Matrices

are two dimensional arrays of real numbers, which are stored as one block in column

major order and are also dynamically allocated. Lists are the most general ones of

12



the data structures and can have elements of diverse data types, including atomic

data types and nested data structures. Finally, data frames are a list of columns

of diverse data types, in which each column is a C array dynamically allocated. R

is fundamentally functional, but it also incorporates imperative programming state-

ments. R also incorporates object-oriented features that enable the creation of new

data types, libraries, and reusable functions. R uses a dynamic interpreter, and it

utilizes the C language for matrix and data frame operations and the LAPACK li-

brary for linear algebra and numerical methods. When R functions are called, the

R run-time creates nested variable environments, which are dynamically scoped. R

runs only on a single CPU thread, despite installing it on machines with numerous

cores. Thus, it cannot be easily parallelized using the current package support.

13



Chapter 4

Summarization with a Matrix

4.1 Summarization Terms

Firstly, we define the inputs given to the models. The most obvious one is the input

dataset, interpreted as a matrix, which is defined as a set of n column vectors. All

of the models take a d× n matrix as input. Let the input dataset be defined as X,

which is considered to have n points, and each point is a vector in R. Therefore, we

view X as a wide rectangular matrix. In the case of Linear Regression and Principal

Component Analysis, we take an extra dimension (for output variable Y ) resulting

a change in the dimensions of X to (d+ 1)× n, which we call X. We use i=1....n

and j=1.....d as matrix subscripts. We augment an extra row of n 1s to X and call

that as Z for mathematical convenience. The convention of using column vectors

and column-oriented matrices is also for mathematical convenience. We assume that

d << n, that is, the number of attributes in the dataset are of tens and hundreds at

14



most but not thousands and more. We perform the following matrix multiplication

in a most efficient manner rather than its raw counterpart: Z.ZT. By doing so, we

reduce the whole problem to a mere matrix multiplication which returns us some

parameters upon which we build to compute the models. We will delve deeper into

the parameters and the results in the Section 4.3.

4.2 Main Memory Algorithms (Unoptimized)

There are many ways to compute the aforementioned models in R. The four most

common and efficient methods that are used to compute each model are as follows.

4.2.1 The lm() function - Linear Regression

The most common, simple and moderately efficient method to compute the Linear

Regression in R is the lm() method. This method takes a few parameters as input and

gives a simple regression as output. Two of the most used parameters are discussed

below:

1. formula: this is the description of the model you want to build. Generally, it

is of the format Yvar Xvar, where Yvar is the dependent or the predicted variable

and Xvar is the independent or the predictor variable.

2. data: this is the variable which contains the input data in it.

15



4.2.2 The svd() function - Principal Component Analysis

We did not compute the PCA completely. Instead, we computed up to the Singular

Value Decomposition for a given input dataset. To get that result, first we compute

the correlation matrix for the given dataset using the cor(). This function takes the

following parameters as input:

1. x: numeric matrix or a data frame.

2. method: indicates the correlation coefficient to be computed. The default is

pearson correlation coefficient which measures the linear dependence between

two variables. kendall and spearman correlation methods are non-parametric

rank-based correlation test.

Then, we computed the Singular Value Decomposition on the correlation matrix

generated from cor(). We used the SV D() to compute the above, which have the

following parameters:

1. x: a numeric or complex matrix whose SVD decomposition is to be computed.

2. nu: the number of left singular vectors to be computed.

3. nv: the number of right singular vectors to be computed.

16



4.2.3 The naivebayes() function - Näıve Bayes

The most recent usage of the Näıve Bayes algorithm is the naive bayes() function.

This function takes several inputs, of which most used are mentioned below, fits

the Näıve Bayes model in which the predictor variables are assumed as independent

within each class label and gives model as output.

1. x: matrix or dataframe with categorical or numeric predictors.

2. y: class vector.

3. formula: an object of class ”formula” (or one that can be coerced to ”formula”)

of the form class predictors.

4. data: matrix or dataframe with categorical numeric predictors.

4.2.4 The kmeans() function - K-Means

To compute the K-Means model in R, we use the kmeans() function which take the

following inputs, performs clustering and returns the model as output.

1. x: numeric matrix of data, or an object that can be coerced to such a matrix

(such as a numeric vector or a data frame with all numeric columns).

2. centers: either the number of clusters, say k, or a set of initial (distinct) cluster

centres. If a number, a random set of (distinct) rows in x is chosen as the initial

centres.

17



3. iter.max: the maximum number of iterations allowed.

4.3 Our Contribution/ Improved Algorithms

From the motivation discussed in Section 4.1, we introduce the two forms of Summa-

rization Matrices that we explored, namely the Non-Diagonal Gamma Matrix and

the Diagonal Gamma Matrix. The Non-Diagonal Gamma Matrix is nothing but the

one named as Γ by by Ordonez and colleagues [28]. Then, we move on to presenting

the other form of our Summarization Matrix , which we call the Diagonal Gamma

Matrix. We asigned these aforementioned names to the matrices in our research

based on their usage and mathematical form.

4.3.1 Non-Diagonal Gamma Matrix

4.3.1.1 Theory and Representation

First, we quickly review the statistics that are integrated to form the Non-Diagonal

Gamma Matrix, which are:

n = |X|

L =
∑n

i=1 xi

Q = XXT =
∑n

i=1 xi · xTi

in which, X is the dataset, n counts total number of points in the dataset, L is a

linear sum of xi and Q is a vector outer product where xi is multiplied by itself, i.e.

18



Q is nothing but the quadratic sum of xi,

As defined earlier in Section 4.1, for Linear Regression and PCA, X is d× n and

Z is (d+ 2)× n. Matrix Γnon−diag, which is defined below, is a fundamental Gamma

function containing a complete, definite and sufficient summary of X to efficiently

compute models like Linear Regression and PCA which were previously defined. We

define another Gamma function, Diagonal Gamma, in Section 4.3.2.1 for models like

Näıve Bayes and K-Means.

We review the two ways of representing Γnon−diag from the work by Ordonez and

colleagues [3], which are: (1) vector-matrix and matrix-matrix multiplications form;

(2) sums of vector outer products form.

Γnon−diag =


n LT 1T · Y T

L Q XY T

Y · 1 Y XT Y Y T

 =


n

∑
xTi

∑
yi∑

xi
∑
xix

T
i

∑
xiyi∑

yi
∑
yix

T
i

∑
y2i


(4.1)

From [3], we can compute Γnon−diag in a single matrix multiplication utilizing

Z like Γnon−diag = ZZT =
∑n

i=1 zi · zTi . That is, the square of matrix Z gives us

Γnon−diag. Γnon−diag is significantly smaller when compared to X, so that it comfort-

ably fits in main memory.
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4.3.1.2 Models Based on Non-Diagonal Gamma

4.3.1.2.1 Linear Regression Let X = {x1, . . . , xn} be n points in the data,

representing the rows of a csv file, in our case. Each of the n points have d explanatory

variables. Let Y = {y1, . . . , yn} be a vector in a manner that each xi is associated

with yi. Now, Linear Regression can be defined as a model that establishes relation

between the dependent variable y and the d explanatory variables. From [3], standard

definition of Linear Regression is given as Y = βTX + ε, where β is the column

vector of regression coefficients and ε represents the Gaussian error. As we discussed

earlier, X is nothing but X augmented with a row of n 1s. From [29], β is defined

as β̂ = (XXT )−1XY T . From the above discussed Non-Diagonal Gamma, we can

rewrite this equation as β̂ = Q−1(XY T ).

Therefore, the LR algorithm becomes:

1. Compute Γnon−diag.

2. Solve β̂ utilizing Γnon−diag.

4.3.1.2.2 Principal Component Analysis: PCA is mainly implemented on a

dataset to reduce noise and redundancy of dimensions. This implementation was

conducted by expressing the dataset X on a new orthogonal basis, which is a linear

combination of original dataset. PCA can be computed on the covariance matrix,

V , or the correlation matrix, ρ, of the dataset used in Hastie and colleagues work

[30]. We can compute PCA using any of the metrics mentioned above. This model

require two parameters. First is U , which is a set of d orthogonal vectors, principal
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components of the dataset, ordered in decreasing order by their variance. Second

is the diagonal matrix D2 which contains the squared eigen values. From [3], we

can compute ρ, the correlation matrix, from the two parameters, D and U as ρ =

UD2UT = (UD2UT )T .

Then we compute PCA by using Eigen decomposition of the ρ, which is a sym-

metric matrix factorization. In general, only k dimensions out of d are considered as

principal components which carry the most important information about the vari-

ance of dataset. That is the remaining d − k dimensions can be discarded safely

to reduce d. The actual reduction of d to some lower dimensionality k (i.e. the k

principal components) requires an additional matrix multiplication, which is simpler

and faster than computing Θ. That is, we compute PCA from the correlation matrix

by solving Singular Value Decomposition on it. For our convenience, we will address

Singular Value Decomposition as SVD from hereon. Also, we express ρ in terms of

the sufficient statistics extracted from Γnon−diag, which can be used in computing the

SVD, as: ρab = (nQab−LaLb)

(
√
nQaa−L2

a

√
nQbb−L2

b)
. The two phases in PCA are:

1. Compute Non-Diagonal Gamma.

2. Compute ρ (or covariance matrix V ) and solve SVD of ρ (or V ).
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4.3.2 Diagonal Gamma Matrix

4.3.2.1 Theory and Representation

From Ordonez and colleagues [3], it is clear that even though Non-Diagonal Gamma

functions are iterative algorithms, they avoid reading the entirety of a dataset at

every iteration. However, that approach cannot be applied on models like Näıve

Bayes or K-Means which require more than one summarization matrix and may also

require reading the entire dataset more than once. Näıve Bayes requires g summa-

rization matrices for a given dataset, where g is the number of unique class labels

in the dataset. K-Means requires k matrices for summarization of a dataset with k

as the number of clusters given by the user (i.e. one for each cluster). Furthermore,

these models do not require complete computation of the Non-Diagonal Gamma as

described in Section 4.3.1. This difference is because the LR and PCA are com-

puted in rotated space whereas in NB and KM, we assume that the dimensions are

independent, making Gamma diagonal. Therefore, we are required to build another

function, Diagonal Gamma, which helps compute these models. We do not require

the Y parameter for Naive Bayes and K-means as used in Linear Regression and

PCA. The major difference between the two forms of Gamma is that we do not re-

quire parameters off the diagonal in Diagonal Gamma matrix as in the Non-Diagonal

Gamma matrix. So, we need only a few parameters out of the whole Non-Diagonal

Gamma, namely, n, L, LT , Q. That is, we require only a few sub-matrices from Non-

Diagonal Gamma, which can be visualized as:
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Γdiag =


n LT 0

L Q 0

0 0 0



Q =



Q11 0 0....... 0

0 Q22 0....... 0

0 0 Q33..... 0

0 0 0........ Qdd


Furthermore, from the Γdiag, we can observe that if we compute the terms n, L,

and Q we can get the whole matrix, as LT can be obtained by copying the transpose

of L. This is the major change in definition of the Non-Diagonal Gamma to that

of the Diagonal Gamma. We developed a generalized solution for all the models

mentioned in Section 4.3.1.2 and Section 4.3.2.2, which is presented below in the

Algorithm 1.

4.3.2.2 Models Based on Diagonal Gamma

4.3.2.2.1 Näıve Bayes The input for this model is a dataset X and the output

is a Näıve Bayes classification model which contains C(mean per dimension), R

(variance per dimension), and W (prior per class).

First, we take the dataset X as input in chunks of fixed size. In each chunk, we

split the data based on number of classes in the dataset. We compute one gamma
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for each part of chunk and add these Γ matrices with respect to the classes to arrive

at a final list of Γ matrices one for each class. We extract Ng, Lg, Qg as defined in

Section 4.3.1, from this final list of Γs. So, we arrive at lists of Ng, Lg, Qg.

From these lists, we compute prior (π), mu (µ), and sigma (σ) per dimension of

each item in the list separately like:

πg = Ng

n

µg = Lg

Ng

σg = Qg

Ng
-
LgLT

g

N2
g

where Ng = |Xg| and we take diagonal of L ∗LT and Q, which can be treated as

vectors instead of a matrix.

These are the 3 parameters included in the Näıve Bayes model. Then, we could

predict class labels for new data using this model. For the prediction, for each

point in the input data, we compute a probability value per class using the model

parameters.

probabilityxiclass = (1/
√

2 ∗ π ∗ σ2
xi

) ∗ e(−0.5∗(xi−µxi )
2/σ2

xi) (4.2)

We assign that class with maximum probability from the computed probabilities

to that respective point in the new data.

4.3.2.2.2 K-Means The input for this model is a dataset X and the number of

clusters represented by k and the output is three matrices C, R, W , containing the

means, the variances and the weights, respectively, for each cluster and partitions of
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X into k subsets. As we discussed earlier, X represents all points in the dataset, N is

the total number of points, L is the linear sum of points and Q is the squared sum of

points in the dataset X. Using definitions from Section 4.3.1, we now define similar

terms Xj, Nj, Lj, Qj as the subset of X which belong to a single cluster, the total

number of points per cluster (|Xj|), the sum of points in a cluster (
∑
∀xi∈Xj

xi) and

the sum of squared points in each cluster (
∑
∀xi∈Xj

xix
t
i) respectively. With these

statistics, we compute Cj, Rj, Wj as:

Cj =
Lj

Nj

Rj =
Qj

Nj
− LjL

t
j

N2
j

Wj =
Nj

n

where Nj = |Xj| and we take diagonal ofL ∗ LT and Q, which can be treated as

vectors instead of a matrix. K-means assumes spherical Gaussians (i.e. dimensions

have the same variance). Centroids Cj are generally initialized with k random points.

The algorithm iterates executing a couple of steps starting from some initial solution

until cluster centroids become stable.

Step 1 determines the closest cluster for each point and adds the point to it.

That is, this step determines cluster membership. We used Euclidean distance to

determine the closest centroid to each point xi which is defined as d(xi, Cj) = (xi −

Cj)
t(xi − Cj)

Step 2 updates all centroids Cj by averaging points belonging to the same cluster.

The cluster weights Wj and diagonal covariance matrices Rj are also updated based

on the new centroids. The quality of a clustering solution is measured by the average
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quantization error q(C), defined by Ordonez and Omiecinski [31] (also known as

distortion and squared reconstruction error). The lower is the value of q(C), the

better the quality of clustering. q(C) = 1
n

∑n
i=1 d(xi, Cj)

where xi ∈ Xj. This quantity measures the average squared distance from each

point to the centroid of the cluster to which it belongs, according to the partition

into k subsets. The K-means algorithm stops when centroids change by a marginal

fraction in consecutive iterations which is measured by the quantization error. K-

means is theoretically guaranteed to converge with decreasing q(C) at each iteration,

but it is customary to set a threshold on the number of iterations to avoid excessively

long runs.
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Chapter 5

Algorithms based on

Summarization Matrices

5.1 Algorithm to Compute Non-Diagonal/Diagonal

Gamma

This is the main algorithm which calls the two forms of Gamma matrix based on the

type of model that we are computing. And also, based on the type of input dataset,

that is, whether it is dense or sparse, it calls different type of Non-Diagonal matrix

computation.
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/* Input data is a .csv file in secondary storage*/
/* Output is any one of the Gammas */
User Input: input = ”filename.csv”
System input: chunk size = 75%(amount of RAM (main memory) allocated
to R at that time)
Output: final gamma
chunk object = chunkerFunction(input, chunk size)
chunk number = 1
while chunk object 6=EOF do

chunk = read next chunk
partial gamma list[chunk number] = compute Gamma(chunk,model)
chunk number++
discard (remove from memory) the current chunk
point the chunk object at the starting position of the immediate chunk

end

final gamma =
∑chunk number−1

i=1 partial gamma list[i]

function compute Gamma(chunk, model)
if model ∈ (LR,PCA) then
if chunk is sparse then

Non-DiagonalGammaSparse(chunk)
end
if chunk is not sparse then

Non-DiagonalGammaDense(chunk)
end

end
if model = NB then
Diagonal Gamma List(chunk) /* Algorithm 3 */

end
if model = KM then
clusterAssignedChunk = assignCluster(chunk)/* Algorithm 2 */
Diagonal Gamma List(clusterAssignedChunk) /* Algorithm 3 */

end
end function

/* function called back in main algorithm */

Algorithm 1: Scalable Algorithm to compute Non-Diagonal/Diagonal Gamma.
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5.2 Algorithm assignCluster

This algorithm takes a chunk of data, number of clusters (k) as given by the user and

list of k cluster centroids as inputs. Then, it assigns the cluster id which is closest to

a given point, in our case, a row of the chunk based on Euclidean Distance between

the cluster centroids and that point. Finally, return the list of cluster id’s assigned

to the rows of the chunk.

/* Inputs are chunk, number of clusters and list of clustercentroids ∗ /
/* Output is List{cluster id for each row of input chunk} */

User Input: k = number of clusters
System Input: X = chunk

cluster centroid list = list{list{cluster centroidattribute}k}
Output: cluster id vector

vector cluster id(k)
for i = 1 . . . X.nrows do

vector sqre diff sum(k)
for j = 1 . . . k do

cluster centroidj = cluster centroid list[j]
sqre diff sum[j] =

∑
(X[i, :]− cluster centroidj)2

end
cluster id[i] = which min(sqre diff sum)

end
/* return the cluster id list */

Algorithm 2: assignCluster Algorithm.
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5.3 Diagonal Gamma List Algorithm

This algorithm is called from the main one to compute the list of Gammas one for each

class/ cluster. This is utilized only for models like Naive Bayes and K-means which

require one summarization matrix for a given class-label or a determined cluster, as

mentioned in earlier sections.

/* Input data chunk contains the class label column as the last one */
Data: X = input data chunk
Output: { Γ1,Γ2,Γ3 . . .Γk}
d = X.ncols
/* extract the class labels column and find unique values out of it */
g = unique(X[, d]) /* g represents the unique class labels / cluster numbers
gamma = list()
gindex = 1 /* gindex represents the class label number/ cluster number */
for i ∈ g do

/* get all the rows from X which match the class label i except the class
labels column */
Xg = X[X[d] == i,−d]
if Xg! = NULL then

gamma[gindex] = Diagonal gamma(transpose(matrix(Xg))
/*Algorithm 4 */
gindex = gindex + 1

end

end
/* we return list of gammas back to the main algorithm */

Algorithm 3: Diagonal Gamma List Algorithm to return list of Gammas, each
of which represent Gamma for one class label/cluster.
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5.4 Diagonal Gamma Algorithm

This is the algorithm where the actual computation of the summarization matrix

happens. This algorithm is invoked multiple times by the Diagonal Gamma list

algorithm in a single execution to compute a single summarization matrix irrespective

of whether it is computing a classification or clustering model.

Data: Xg =subset of data with specific class label
Output: Γdiag for one class label/cluster
Ng = Xg.cols; dg = Xg.rows;
for i = 1 . . . Ng do

xi = list(dg + 1)
xi[1] = 1
for a = 1 . . . (dg) do

xi[a+ 1] = Xg[a, i]
end
for a = 1 . . . d+ 2 do

Γg[a, 1] = Γg[a, 1] + xi[a] ∗ xi[1]
if a! = 1 then

Γg[a, a] = Γg[a, a] + xi[a] ∗ xi[a]
end

end

end
for a = 1 . . . (dg + 1) do

for b = (a+ 1) . . . (dg + 1) do
Γg[a, b] = Γg[b, a]

end

end
/* return Γg with dimensions (dg + 1)× (dg + 1) ∗ /

Algorithm 4: Diagonal Gamma Algorithm.
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5.5 Time and Space Complexity Analysis

From [3], it is clear that the time complexity for the phase 1 of the Non-Diagonal

Gamma with dense data as input is O(d2n) and sparse data as input is O(k2n),

assuming k entries in xi are non-zero on an average. In phase 2, we compute the

machine learning models based on the Gamma from phase 1. So, time for phase 2

doesn’t depend on n and is Ω(d3), which for a dense matrix may approach O(d4),

when the number of iterations in the factorization numerical method is proportional

to d. This Non-Diagonal Gamma is used by models like Linear Regression and PCA.

A separate Gamma function, Diagonal Gamma, is used owing to the fact that a

major set of the traditional Non-Diagonal Gamma has little-to-no utility for models

like Näıve Bayes and K-Means. Time complexity of Diagonal Gamma computation

is O(dn) as we compute only L and diagonal of Q of the whole Non-Diagonal matrix.

This time complexity applies for all the models utilizing the Diagonal Gamma except

K-Means. Since K-Means requires the dataset to be read multiple times,let it be m,

the time complexity would be O(dnm). When we come to the space complexity, both

Diagonal and Non-Diagonal Gamma occupy the same O(d2) space in the physical

memory. In conclusion, we can say that Diagonal Gamma is faster than the Non-

Diagonal Gamma.
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Chapter 6

Experimental Evaluation

In this section, we present the experimental evaluation of our functions and the

models built upon Diagonal and Non-Diagonal Gamma. In that sense, firstly we

give a brief overview on the hardware and system configuration . Then, we give

some information on the softwares that we used and explain what datasets we used

for the experiments

Then, we move on to presenting the experimental results for each of the four

models which utilize Non-Diagonal and Diagonal Gamma. In that respect, we try

to prove that model computation using our package in R provides accurate results

by comparing them with current best packages in R in Section 6.2. After that, we

provide a brief explanation on what impact that our optimized package has on the

computation of Machine Learning models in R in Section 6.3. Then, we try to prove

that our package in R outruns the same built under a columnar database Vertica,
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Table 6.1: Hardware and Operating System.

Item Local
OS Linux Ubuntu

CPU 4 cores:2.83GHz
Nodes 1
RAM 4 GB

Storage 294GiB

a language and environment for statistical analysis like R and distributed data pro-

cessing engine like Spark in Section 6.4. Then, we show that the current routines in

R language which compute the aforementioned models fail for large datasets, which

is not the case with our scalable package.

6.1 Experimental Setup

6.1.1 Hardware

Here, we display the information about the hardware and the operating system con-

figurations in the Table 6.1

6.1.2 Software

The softwares and packages that we used for our research are presented in this

section briefly. Firstly, we used RStudio as an Integrated Development Tool (IDE)

to develop this package. RStudio includes a console, syntax-highlighting editor that
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supports direct code execution, as well as tools for plotting, history, debugging,

and workspace management. R provides a simple but elegant package development

environment which also allows us to create RCpp packages.

Secondly, we utilized the package chunkR which plays an important role in solving

the main memory limitation in R. This package read tables chunk by chunk using

a C++ backend and a simple R interface and allows a user to read long text or

comma separated valued tables in chunks. First, we create a chunker object using the

chunker function with the path to a file and others as arguments. Then, we can use

the two functions defined in the package to manipulate the chunker object, namely,

next chunk and gettable to read the next chunk and retrieve the data respectively.

There are other functions like get completed and getcolnames that are used to get

the number of rows already read and the column names of the table respectively.

Once it reads the entire file to completion, next chunk returns false and an empty

dataframe or an empty matrix is returned from the get table function.

Thirdly, we used the RCpp package by R to seamlessly integrate C++ with R

[32, 33] apart from providing both R functions and C++ classes for usage. This

means that most of the R data types and created objects can be mapped to and

from C++ equivalent types and objects and thus facilitating the users to be able to

write new code with easier integration of third-party libraries. The data structures,

types and objects include vectors, functions, environments and many more. Finally,

we also used the package iotools which provide basic I/O tools for streaming and

data parsing.

35



Table 6.2: Base datasets that are utilized and multiplied row-wise and column-wise.

dataset d n Description Used for test-

ing

CreditCard 30 285k increase in credit line?
yes or no

Näıve Bayes

YearPredictionMSD 90 515k there is rain or not Linear regres-
sion and PCA

Iris 3 150 to know the flower
species

K-Means

6.1.3 Datasets used

The datasets which are used for the experiments are listed below in Table 2. We also

include the information about the algorithms which utilize these datasets. We used

three different datasets to carryout the experiments. The first is the YearPredic-

tionMSD dataset, second is CreditCard dataset and the last one is the Iris dataset,

all of which are taken from the UCI Machine Learning repository. We replicated

each of the datasets in order to get various combinations of n and d without altering

statistical properties of the data. The first one was sampled and replicated to get

combinations of d=(9, 91) and n=(0.5M, 1M, 10M), second was replicated to get

the combinations of d=30 and n= (0.2M, 1M, 10M, 100M) and the third one is

replicated to get d=4, n=(0.1M, 1M, 10M, 100M).
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6.2 Accuracy Validation

The Table 6.3 shows the results of the experiments that were performed using the two

forms of Gamma. We compared the accuracy of model computations of our pack-

age with similar packages in R, which is a language and environment for statistical

computing.

We implemented four models in our package, namely, Linear Regression, PCA,

Näıve Bayes, and K-Means. For each model, we have a different way of measuring

the accuracy with the common underlying metric being Relative Error.

For Linear Regression, we get an intercept and a Beta per attribute as an output

for the model computed by Gamma functions. This is similar to the output given

by lm, the preferred default routine in R for Linear Regression, for the same input

dataset. We then compute the absolute differences among all the respective values

of intercept and betas, from which we compute the relative differences. Finally, we

report the maximum of the relative differences among the intercept and the betas in

Table 6.3.

For PCA, we get a diagonal matrix, D, of Eigen values and two ortho-normal

matrices, S and V, which are Eigen vectors of the given input matrix. Unlike other

models, we do not compute PCA completely in Cpp as it gives inaccurate results.

Rather, we use pure R routines to compute SVD of the correlation matrix generated

from the Gamma functions. The values in D depict the relative importance of each

column in S and V matrices. So, we imply on the point that, for the computation of
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relative error, we take the values from D whose value is greater than 1. We first find

the absolute differences among the pairs of corresponding values from the output of

the Gamma functions and that of the default R routines, from which we compute the

relative differences. We report the maximum of these relative differences in Table

6.3.

In Näıve Bayes, we build a model to predict the class labels for the test dataset.

For that, we compute two separate Näıve Bayes models on the given input training

dataset using the default R routine and the aforementioned Gamma functions. Con-

sequently, we compute the prediction accuracy by finding the degree to which the

predictions made by the functions of our package conforms to that from standard

routine in R.

For K-Means, we group the input data into k clusters, where k is pre-defined by

the user. We compute K-Means with both the default R routine and the previously

discussed Gamma functions. The output from both the techniques have three vectors,

namely, centers, radii and weights. We take the weight vectors, sorted in decreasing

order, from both the models and obtain the respective absolute errors. We use this

absolute error to compute the relative errors with respect to the weight vector of

the model computed from the default R routine. We report the maximum value of

relative error in the Table 6.3.

From Table 6.3, we understand that the results from the functions of our package

are almost an exact match with the output given by the currently existing best

packages in R.
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Table 6.3: Accuracy of models on respective datasets.

Model Maximum Relative Error Dataset used
Linear regression 5.89E-10 YearPredictionMSD

PCA 4.75E-13 YearPredictionMSD
Näıve Bayes 0 CreditCard

K-Means 4.7E-2 Iris

6.3 Impact of Optimization

Table 6.8 and Table 6.9 summarizes the results of Principle Component analysis and

Linear Regression on YearPrediction dataset. We can see that as the as the size of the

dataset increases, the inbuilt R packages crash. But contrary to that, our package

performs exceptionally well. One of the main reasons for the failure of inbuilt R

packages can be attributed to the fact that it tries to load the whole dataset into

memory, eventually resulting in untimely aborts of the program. But our package

by passes this problem by not loading the entire dataset into the memory, instead

breaking the dataset into chunks according to allocated memory which is further

discussed in the below section.

From Table 6.10, even though the current packages in R scale well for small

datasets, they result in untimely aborts for large datasets. As the size of dataset

increases, the performance of our package improves greatly.

Table 6.6 gives the synopsis of Näıve Bayes model applied on the credit Card

fraud dataset. Näıve Bayes is one of the basic machine learning models which is used

initially by most statisticians and mathematicians due to its quick turnaround time.
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Table 6.4: PCA experiment results on YearPrediction dataset from UCI Reposi-
tory(Dense).

n d R+ Γnon−diag (dense) R+ Γnon−diag (sparse) R
0.5m 91 22 33 336

1m 91 66 80 575
10m 91 726 800 crashed
1m 9 9 9 21

10m 9 91 75 205
100m 9 1018 1020 crashed

Table 6.5: LR experiment results on YearPrediction Dataset from UCI Reposi-
tory(Dense).

n d R+ Γnon−diag (dense) R+ Γnon−diag (Sparse) R
0.5m 91 22 36 276

1m 91 74 74 630
10m 91 720 828 crashed
1m 9 6 6 24

10m 9 91 69 285
100m 9 941 928 crashed

The results from our package are compared to that of the Näıve Bayes algorithm given

by R. This also behaves in a similar manner showing that the current algorithm in

R crashes for large values of n which is not the case with our package.

6.4 Performance Comparison

In order to better quantify the efficiency of our package, we built the aforementioned

models in the spark environment and an equivalent Gamma implementation in Ver-

tica too. While R failed to provide any sort of results for large datasets, spark and
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Table 6.6: Näıve Bayes experiment results on Credit card fraud dataset from UCI
Repository(Dense).

n d R+Γdiag R
0.2m 30 7 51

1m 30 40 158
10m 30 399 crashed

100m 30 1132 crashed

Table 6.7: K-Means experiment results on Iris dataset from UCI Repository(Dense).

n d R + Γdiag R
150 4 0 0

0.1m 4 6 0
1m 4 65 6
5m 4 380 crashed

10m 4 756 crashed
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Table 6.8: PCA experiment results on YearPrediction dataset from UCI Reposi-
tory(Dense).

n d Vertica R+ Γnon−diag (dense) spark
0.5m 91 46 22 67

1m 91 115 66 130
10m 91 1290 726 1074
1m 9 10 9 31

10m 9 110 91 286
100m 9 1560 1018 1780

Table 6.9: LR experiment results on YearPrediction Dataset from UCI Reposi-
tory(Dense).

n d R+ Γnon−diag (dense) Vertica spark
0.5m 91 22 276 67

1m 91 74 115 130
10m 91 720 1290 1074
1m 9 6 10 31

10m 9 91 110 286
100m 9 941 1560 1780

Vertica, on the other hand, owing to its memory handling techniques is able to fur-

nish tangible results albeit sub-par when compared to our package. The experiment

results for the Näıve Bayes model in spark environment are not reported because

spark did not have the flexibility to compute the model on negative values of at-

tributes in our dataset. Linear Regression and PCA are the only models which are

available in Vertica environment using Gamma matrix. So, we reported the results

for those two models.
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Table 6.10: K-Means experiment results on Iris dataset from UCI Repository(Dense).

n d R + Γdiag spark
150 4 0 3.2

0.1m 4 6 7.5
1m 4 65 43.3
5m 4 380 1370

10m 4 756 3012

6.5 Discussion

Even though this model works efficiently for datasets with rows in the order of

millions, it doesn’t work as intended with the billion or higher rowed counterparts.

This issue is magnified with the k-means algorithm as it requires multiple reads of

the dataset before returning the final clusters. Notwithstanding, even with the long

execution times, it still gives accurate results in contrast to the existing packages that

result in untimely session aborts. As we see in the experimental results of k-means,

the existing most efficient package for k-means model in R is aborted for a dataset

with five million rows or higher. In a similar manner, even for Näıve Bayes, the

most efficient package in R is aborted when a dataset with ten million rows is given

as input while our solution returned accurate results within a reasonable amount of

time.

Our solution adapts to the local machine and customizes the chunk size with

respect to the available physical memory. The main drawback is that R cannot be

easily parallelized unlike the Hadoop stack or other parallel systems to completely

utilize the cores available in a system thus resulting in a decreased performance.

43



Chapter 7

Conclusions

We developed a package, Gamma, in R which is capable of computing four Machine

Learning models, namely, Linear Regression, Principal Component Analysis, Näıve

Bayes and K-Means with very high accuracy. This package eliminated the physical

memory limitations of R by using efficient data chunking and summarization. Once

we have the input dataset, we divide the data into chunks, whose size is derived

dynamically based on the proportion of memory allocated by the processor to R.

This benefits our package greatly by avoiding sudden aborts, as it utilizes only the

part of memory allocated to R. For data summarization techniques, we adapted

the previous work on Gamma matrix and implemented it in a serial R environment

without using any external source of storage. In order to make R scalable and

thereby improve the performance of computing models, we utilized the efficient C++

standards provided by RCpp package. We introduced specialized Diagonal Gamma
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for models whose summarization could not be achieved with the traditional Non-

Diagonal Gamma. The proposed Diagonal Gamma proved to be the best fit for

models like Näıve Bayes and K-Means which require multiple summarization matrices

to represent their classes/clusters. Then, we presented an algorithm that implements

the construction of both Diagonal and Non-Diagonal Gamma. Provided the data and

the machine learning model, the suitable gamma construction routine is called and

model construction follows thereafter. We presented a reasonably good experimental

section. Our package is more than two orders of magnitude faster than the current

best packages in R for datasets with smaller number of attributes and is more than

four orders of magnitude faster for datasets with an average number of attributes.

As we go on increasing the value of n, number of rows in the dataset, the current

packages in R fail when the input matrix does not fit in the physical memory (RAM).

On the other hand, our package scales beyond the physical memory limits regardless

of size of the dataset. We also compared our package with the equivalent ones taken

from MLlib in spark. From the experiments, we can see that our package is two

orders of magnitude faster than what MLlib delivered.

Even though our research proves that we can get better performance just with a

single system for large datasets, there is enormous scope that we could expand it in

multiple dimensions. We need to explore more Machine learning models on how they

utilize this approach and generate the Summarization matrix. Also, we did not solve

the problem of parallelizaton in R as it is not trivial with the existing packages like

parallel. So, we can improve the performance of the package if we can achieve the

parallelism across the cores of a single system. We can use Open MPI in R to achieve
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more efficient parallelism from [34] rather than the existing packages like parallel. In

contrast, similar languages like python, which is among the most popular ones for

data analytics, can be parallelized easily. So, we look forward to implementing a

similar package in python in expectation of getting a better performance than the

one proposed. Furthermore, we can achieve even higher accuracy if we can combine

multiple models on the dataset to arrive at a better model.
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