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Abstract

We have analyzed static and dynamic data along a triaxial stress path with the

goal of better understanding the mechanisms controlling each response and their

relationship to the correlation between large strain and small strain measurements.

“Static data” large strain (10−4) measurements were performed on both unloading and

reloading along a multistage triaxial stress path. Simultaneous “dynamic data” (10−6)

strain were acquired using standard pitch and catch acoustic velocity measurement

techniques. The samples were measured “dry” i.e. equilibrated to ambient conditions.

Young’s modulus was calculated from the acoustic data and compared to the measured

static Young’s modulus. A quadratic fit has been applied to the static unloading and

reloading data. This allows us to characterize the elastic data in terms of linear and

nonlinear elastic terms, with coefficients M1, and M2 respectively. The quadratic fit

for the elastic data is subtracted from the total strain response during each reload cycle

to obtain the “induced plastic strains”. The value of M1 is found to be equal to the

measured dynamic modulus within experimental error. It was therefore interpreted

to be dominated by the physics of the grain contacts. M2, the nonlinear elastic term,

is interpreted to be due to the opening and closing of induced micro-cracks. This is

based on the correlation observed between M2 and the measured irrecoverable strains.

A network model is developed to fit the observed plastic strain data as a function

of mean and deviatoric stress. Application of this model allows prediction of the

sample stiffness (the slope of a triaxial test along the initial loading curve), at any

confining stress. This is a key component of wellbore stability models, and allows for

more robust model developments for wellbore stability, sand control etc. Future work

will include the extension of the model to include nonlinearities for the prediction of

failure. Thin section analysis to predict the plastic and nonlinear elastic parameters

in combination with velocity data is also planned.
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Chapter 1: Introduction

1.1 Significance of Thesis

Extensive work has been done to understand the relationship between static and

dynamic data. We have cited several of these studies in this chapter. The main areas

in which this work provides new insights are:

� Quantifying the effects of sample characterization on static and dynamic prop-

erties. This has been achieved by doing a detailed image analysis of thin-section

data.

� A systematic modeling methodology is presented in which the parameters are

easier to obtain and use in predicting sample properties.

� Model is successfully applied to published data in the literature.

� Physical mechanisms have been identified that control modeling parameter.

� Several crack models have been published in the literature. These models are

mainly based on correlations and empirical fits. In this study, we have looked

at the generated cracks pre-test and post-test and have provided their physical

interpretation in terms of modeling parameters.

1.2 Introduction

1.2.1 Static (large strain) Data Review

Static to dynamic correlations are locally dependent on mineralogy, texture,

stress, and thermal history, porosity, and clay content (Al-Tahini and Tani, 2006;

Edimann and Somervile, 1998). Al-Tahini and Tani (2006) measured the mechanical

properties of sandstones using triaxial tests and related them with the presence of
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cements. The cement volume was characterized using thin sections. They concluded

that not only the presence of cement is significant but also to know where they occur

in the rock matrix.

Quartz overgrowth plays a major role in increasing strength, while clay coat-

ings play a minor role (Al-Tahini and Tani, 2006). Small amounts of cement can

significantly impact both static and dynamic data, depending on its volume and dis-

tribution. Edimann and Somervile (1998) demonstrated that an increase in porosity

results in a decrease in rock strength, and an increase in Poisson’s ratio (ratio of

radial strain to axial strain).

Commonly used material models also have limitations. The Modified Cam Clay

(MCC) material model is one of the widely used models to predict static data (Roscoe

and Burland, 1968). The model assumes that a rock behaves as a linear elastic

material inside the yield surface. Generally, there are additional mechanisms present

inside the yield surface such as non-linear elasticity and plastic strains (Bilal et al.,

2015).

Walsh (1965) provided the conceptual basis of much of the work that has been

published in the literature on crack propagation and modeling in rocks. The model

discusses grains crushing and sliding as controlling mechanisms for grain deformation.

Kachanov (1982) utilized the sliding approach and modeled penny shaped cracks.

Fjaer et al. (2014) and David et al. (2007) have also applied the sliding mechanism

to model the propagation of cracks along a uniaxial stress path. These models do not

include a methodology to predict model parameters. There is also no incorporation

of data from sample characterization.

A Staged Differential Effective Medium (SDEM) model was developed by Myers

and Hathon (2014) to predict the compressibility of unconsolidated sands along a

zero-lateral strain stress path. This work utilized the length scales defined by sample

characterization to predict model parameters. In this work, we have extended this
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model to the triaxial stress path. The model will be discussed in detail later. The

next step is to calibrate the model parameters to the thin section and/or micro-CT

data.

On a well scale, acoustic logs often provide the input data for the prediction

of static properties. This upscaling allows the prediction of wellbore failure and

sand control. Core data are required to build local correlations between static and

dynamic properties. The usual upscaling issues are present when core data are used

to derive the static to dynamic correlations. This emphasizes the need for models

that are calibrated in terms of detailed sample characterization including: porosity,

framework mineralogy, the presence and volume of cements, grain contact percent

and orientation and post-test characterization of sample response.

The next level of upscaling is to map these properties on a field scale. This

makes possible the calibration of geomechanical and 4D seismic models. If models

are successfully derived based on mineralogy, texture, and stress history, this level

of upscaling is much more likely to be successful, because they can be related to

depositional models and sequence stratigraphy etc.

1.2.2 Dynamic (small strain) Data Review

For sandstones, load bearing or structural clays will increase irrecoverable strain

and slow the acoustic velocity (Hathon and Myers, 2012). Non-load bearing clays at

small volumes, however, increase the modulus derived from dynamic data but do not

affect the static stress strain response. In mudrocks, according to Hathon and Myers

(2012), peak strength is directly related to the acoustic velocity. Polar anisotropy in

GOM mudrocks ranges from 9-20% due to the interaction of depositional and com-

paction processes. This contrasts with the shale gas samples in which the anisotropy is

around 40%. Anisotropy is an important input fracture modeling parameter. Hathon

et al., (2016) modeled the acoustic anisotropy in unconsolidated sands using thin
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sections and micro-CT data. They concluded that in thrust belt settings, where the

principal stress is non vertical, average anisotropy was 15%.

In dry rock, a linear relationship is observed between reciprocal acoustic wave

velocity (travel time) and porosity (Mavko, 2009). Myers and Hathon (2009) devel-

oped SDEM models for acoustic velocity. The model allows continuous interpolation

between iso-strain (parallel) and iso-stress (series) averages of the moduli. The model

provides an intuitive interpretation of the modelling parameter in terms of the poros-

ity dependence of the Biot parameter. Contact length is also related to the modeling

parameter.

Gassman (1951) equation provide a simple model to estimate fluid saturation

effect on dynamic data. Change in bulk modulus can be calculated as a function of

fluid saturation, provided the rock fluid, dry and saturated frame moduli are known.

The relationship is given by

Ksat

Ksolid −Ksat

=
Kdry

Ksolid −Kdry

+
Kfluid

φ(Ksolid −Kfluid)
. (1)

The assumptions are that the material is isotropic and elastic, the pore space is well

connected and the medium is a closed system with no pore fluid movement across

boundaries.

Domenico (1977) modified Gassman (1951) equation and concluded that the rate

of porosity change is proportional to the differential pressure raised to a power n. The

value of exponent n is approximately 1/4 for the compressional wave velocity of the

gas saturated specimen and the shear wave velocity of both gas and brine saturated

specimens. For the compressional wave velocity of brine saturated specimens, the

value of n is around 1/18. The compressional wave velocity increases by a factor of 2.2

at 400 psi if gas is replaced by brine. The factor reduces to 1.3 as differential pressure

is increased to 5000 psi. Gas saturated shear wave velocities are a little higher than

brine saturated shear wave velocities due to the difference in bulk density. The shear
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modulus, derived from shear wave velocity, increases non-linearly with increasing

differential pressure. The value of Poisson’s ratio for brine saturated rocks ranges

from 0.4 to 0.5. On the other hand, the value for gas saturated rocks is in the range

of 0.1 to 0.15.

Domenico (1977) also concluded that although the compressional wave velocity

is primarily a function of differential (deviatoric) stress rather than confining or pore

fluid pressure, a variation of pore fluid pressure does modify velocity slightly. Com-

pressional wave velocity of gas saturated samples and shear wave velocity of both gas

and brine saturated samples depend solely on differential pressure.

Effective fluid compressibility derived from the compressional wave velocity was

found generally to be between theoretical values given by the direct weighting and

inverse weighting of the gas and brine. Direct weighting means, weighting by volume

average of the compressibility and inverse weighting means the average of incompress-

ibility.

Experimental results have shown that dispersion (variation of velocity as a func-

tion of frequency) is negligible in rocks between logging tool khz and lab tool MHz

frequency (Mavko et al., 2009). Biot (1956) theory does not predict these experi-

mental observations. Biot (1956) assumed that the attenuation in the propagation

of waves arose due to the viscosity of pore fluid. Plona (1980) offered a different

mechanism caused by the relative movement between the fluid and grain boundaries

known as squirt flow.

Composite models have been used quite often in predicting static and dynamic

properties. They use a combination of acoustic velocity data and a distribution of

aspect ratios of the ellipsoidal cracks to predict rock properties. Coyner and Cheng

(1984) predicted the change in porosity with pressure within 0.1% of the measured

change in porosity for sandstones. They observed the P and S wave velocity for dry

and saturated Berea sandstones. Shear wave velocity for the Benzene saturated rock
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was very close to the dry rock. At low stress, the saturated shear wave velocity was

higher than the dry velocity. The saturated P wave velocities were higher than the

dry velocities at all stresses.

Coyner and Cheng (1984) developed the composite model by extending the ve-

locity model of Toksoz and Kuster (1974) and Toksoz and Chen (1979). They used

a spectrum of aspect ratio ellipsoidal cracks. However, it’s not easy to predict the

model parameters, and they only apply to a low porosity rock.

1.2.3 Static Versus Dynamic Data

Static and dynamic moduli are typically different from one another (Simons,

Brace, 1965) with dynamic modulus almost always being greater than static modu-

lus. One of the reasons could be the contribution of pore fluid (Biot, 1956). This

difference is usually small in lithified rocks. Montmayeur and Graves (1985) concluded

that elastic rock properties are a strong function of maximum historical stress. Gra-

zielle (2017) found an order of magnitude difference between the static and dynamic

compressibility of Middle East carbonates.

Gassman (1951) was the first to propose a relationship between constituent prop-

erties (grain, frame and fluid modulus) and acoustic velocity. For reservoir rocks,

Graves (1982) had some success in correlating dynamic and static rock properties

using modified Gassman relations. Geertsma (1961) showed that Gasmann (1951) re-

lationships are low frequency limit of Biot’s relationships. He also concluded that the

time average approximation that is used to predict porosity using acoustic velocity is

not accurate.

Even in gas saturated rocks, there is a significant difference between static and

dynamic data (King 1970). The dynamic moduli are higher than the corresponding

static moduli. The ratio of these moduli decreases as the mean stress increases.

The difference between static and dynamic moduli is greater perpendicular to the
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bedding plane than parallel to it. There is often a correlation between the static and

dynamic ratio and the non-linear elastic behavior of rocks (Yale et al. 1995). Grain

contact adhesion and stick-slip sliding mechanisms have been proposed to explain

this relationship. These results imply that grain contact models should be useful in

understanding and quantifying static and dynamic differences (Walsh, 1965; Tutuncu

et al., 1995; Fjaer et al., 2014). Yale et al. (1995) also concluded that grain contact

and cementation control static and dynamic differences. They further illustrated

that cement type also plays a role in the static and dynamic differences with weaker

chlorite cemented samples showing larger static and dynamic differences than fully

quartz cemented samples.

Jizba (1990) found that both lithology and stress dictated the relation between

static and dynamic moduli in tight gas sandstones. He characterized the lithology into

sandstone, load bearing clays and dispersed clays. Static and dynamic moduli can also

help distinguish between sandstone and shales. Jizba (1990) concluded two types of

behavior: In shales (clay greater than 20 percent), he found that the ratio of dynamic

to static moduli is rather insensitive to confining stress due to inelastic behavior. The

ratio ranges between 1.1 to 1.6. In contrast, in sandstones and framework clay bearing

sandstones (clay less than 20 percent) he observed a strong dependence of the ratio

of dynamic to static moduli on confining stress. This behavior may be attributed to

the differing sensitivity of static and dynamic moduli to the presence of cracks.

The difference between static and dynamic data has also been attributed to the

difference in strain amplitude (Martin and Haupt, 1994). Martin concluded that for

granite rock strains greater than 5 micro strains, the stiffness of the cracks decreases,

and Young’s Modulus decreases. This effect is explained due to slip on contacts

between the surfaces. Surfaces forces at crack tips are essential for small strain ex-

cursions contributing to the higher dynamic moduli.

Olsen (2008) performed experiments on North Sea chalk and showed that the
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dynamic and static modulus depends on the magnitude of strains associated each

modulus. Similar results are also observed in this work.

Static and dynamic moduli are only equal at the beginning of the loading and

unloading stress path where the strains are small (Fjaer, 2009). This observation was

also made by (Walsh, 1965). The model by Walsh (1965) qualitatively explains the

difference between static and dynamic Young’s modulus. The velocity data corre-

sponds to the superposition of small alternating stress on the existing applied stress.

The static value is usually the slope of stress and strain curve at some arbitrarily

selected value of applied stress. On the other hand, the modulus calculated from the

sonic velocity corresponds to some average slope of the loop representing the sound

wave. Thus, the dynamic value would be somewhat higher than the static value.

Rock elastic properties are a function of the maximum stress applied to the rock.

Static compressibility is higher at higher stresses then dynamic compressibility (Mont-

mayeur and Graves 1985). Rocks mineralogy and distribution of minerals is also one

reason that only local correlations between static and dynamic properties have been

developed. Knowing just the mineralogy is not enough. Both static and dynamic

moduli are anisotropic (Hamza et al. 2018). Hamza (2018) also showed that for both

static and dynamic Young’s moduli, the horizontal modulus was greater than vertical.

1.2.4 Difficulties in Characterization and Modeling of Static and Dy-

namic Data (It’s not trivial)

The static and dynamic data depend on many different rock properties including

porosity, clay content, cement, contact modulus, and stress history, etc. Porosity

affects both static and dynamic data. Porosity is usually inversely related to peak

strength and acoustic wave velocity. Load bearing clays increase irrecoverable strains,

and non-load bearing clays impact velocity. Peak strength is sensitive to small vol-

umes of cement. Cement type also plays a role in the static and dynamic differences

8



with weaker chlorite cemented samples showing more significant static and dynamic

differences than fully quartz cemented samples. The contact modulus significantly

impacts the dynamic data. With production of irrecoverable strains inherent in static

data, rock is different at every stress.

The dynamic Young’s modulus is typically greater than or equal to the static

Young’s modulus and is believed to depend on stress path. The difference between

the two moduli typically increases as the strains become larger due to the production

of micro cracks with increasing stress. There are additional mechanisms contributing

to this difference include grain rotation and ductile deformation. There can be an

order of magnitude or more difference between static and dynamic moduli at large

strains. The presence of pore fluid also increases the difference between static and

dynamic data. For this reason, gas saturated samples are typically measured.

Commonly used material models also have limitations. The MCC model is one

of the most widely used models to predict static data. The model assumes that a

rock behaves as a linear elastic material inside the yield surface. Generally, there are

additional mechanisms present inside the yield surface such as non-linear elasticity

(opening and closing of micro-cracks) and plastic strains (ductile deformation, grain

rotation).

Several crack models have been published in the literature to predict static data.

These models are extensions of the work published by Walsh (1965). These extended

models include grains crushing and sliding as controlling mechanisms for sample de-

formation. Kachanov (1982) utilized the sliding approach and modeled deforming

penny shaped cracks. Fjaer et.al (2014) and David (2007) has also applied the sliding

mechanism to model the propagation of cracks along a uniaxial stress path. These

models do not include a methodology to predict model parameters. There is also

no incorporation of data from sample characterization. Composite models have been

used in predicting static and dynamic properties. They use a combination of acoustic
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velocity data and a distribution of aspect ratios of the ellipsoidal cracks. It is difficult

to predict the model parameters, and they apply only to low porosity samples.

1.3 Terminology and Definition

We now introduce the concepts of stress and strain and Hooke’s law. We define

the point of positive dilatancy (PPD) and its connection with multistage triaxial tests.

Also, in this section, we provide an elementary discussion of plasticity parameters:

recoverable and irrecoverable strains, friction, and dilatancy. These concepts are used

in the data analysis section.

1.3.1 The Stress-strain Curve

An example of a typical stress: strain curve is shown in Figure 4. A sample under

confining stress that is exposed to an axial load often initially exhibits linear elastic

behavior . Linear elasticity is the most basic of all material models. Only two ma-

terial parameters need to be experimentally determined: the Young’s modulus and

the Poisson’s ratio. This region may be as small as 10-6 strain for a ductile rock to

approximately one percent, or 10-1 strain for more lithified samples. By definition

elastic strain is recoverable, meaning that the sample rebounds completely when un-

loaded (i.e. there is no permanent change in shape or volume). Elastic strains include

compression of grain contacts, the elastic deformation of grains, and the opening and

closing of compliant pores. In this region, if the sample is unloaded the measured

stress-strain path retraces the initial loading curve. With continued loading and in-

creased axial strain, the stress-strain paths for loading and unloading diverge, and

some of the strain is not recovered. The missing strain is called irrecoverable, which

is the measure of permanent sample deformation. The mechanisms include, among

others, grain sliding (Fjaer et al., 2015), grain rotation, grain cracking, displacement

or translation, and permanent ductile grain deformation. With increments of loading,
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the sample often reaches the failure point, also known as the maximum compressive

strength (MCS). At this point, the sample unloads with further applied axial strain

. Depending on a sample’s previous stress and thermal history, mineralogy, and tex-

ture, this point may never be reached, or require very high axial strains ¿ 10%. The

details of the post failure stress-strain curve depend on the mode of failure and the

details of the sample makeup. A typical axial stress versus axial strain plot is shown

in Figure 1.

Figure 1: The figure shows typical stress-strain behavior of rock under increasing axial stress.
The three regions exhibited are defined by the magnitudes of the recoverable and
irrecoverable strains. S is the slope of the stress strain curve and referred to as
the sample stiffness. If the region is assumed to be elastic, the stiffness is equal
to Young’s modulus (E).

1.3.2 Deviatoric Stress

Deviatoric stress is defined as the difference between the axial stress and radial

stress. This stress is commonly associated with failure in rocks in models such as

Mohr-Coulomb (Mohr, 1882), Drucker-Prager (Drucker, 1952), etc.
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1.3.3 Strain and its Relation to the Point of Positive Dilatancy

A constant axial strain rate is the axial loading parameter used in all the mea-

surements in this thesis. This allows to calculate Young’s Modulus or stiffness over

a constant strain range. constant stress is another typically used method, however

it is harder to stop the sample before failure when using it. The ratio of the radial

strain to the axial strain is called Poisson’s ratio. The strain in rock samples is often

expressed in millistrain. If Lo and ro represent the original length and radius, then

the axial engineering strain is calculated by normalizing the total axial displacement

to the sample’s original length (Beer et al. 2009). This is given by

εa =
δL

Lo
. (2)

The engineering radial strain is given by

εr =
δr

ro
. (3)

Engineering volumetric strain is defined as the change in volume divided by original

volume,

εv =
δv

vo
. (4)

The relation between volume strain, radial and axial strain for infinitesimal strains is

shown by application of Hooke’s law,

εv = 2εr + εa. (5)

A smaller sample results from a positive strain by convention, while conversely,

a negative strain means that the sample is getting larger. Figure 4 shows deviatoric

stress plotted against volumetric strain for a typical triaxial measurement. Initially,
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the volumetric strain is positive (smaller sample). At larger axial strains, the volume

strain goes negative. The point at which the volumetric strain changes sign is the

point of positive dilatancy. We have used this point as the criteria to end the axial

strain loading ramps in a multistage triaxial test.

1.3.4 Modulus

We need relationships between the various measures of sample stiffness, and they

are defined below (Birch, 1961).

� Bulk modulus, K, is the ratio of isostatic stress to volumetric strain under

an isostatic stress path.

� Shear modulus, µ, is the ratio of shear stress to shear strain.

� P wave modulus, M = ρV 2
p , is the ratio of axial stress to axial strain for a

plane wave or uniaxial-strain path.

� Young’s modulus, E, is the ratio of axial stress to axial strain for a constant

radial stress boundary condition. Young’s modulus is calculated using Hooke’s

law from the compressional and shear velocity and is given by

E =
3 ∗ (Vp/Vs)

2 − 4

(Vp/Vs)2 − 1
∗ V 2

s ∗ ρ. (6)

Where Vp and Vs are the compressional and shear wave velocity, and ρ is the

bulk density.

� Poisson’s ratio is defined as the negative ratio of radial to axial strain, for a

constant radial stress boundary condition,

ν = −εr
εa
. (7)
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1.4 Mohr-Coulomb failure criteria

(Mohr,1882)

The Mohr-Coulomb failure criterion is one of the commonly used methods to

predict failure. It states that there is a linear relation between the normal stress (σn)

and the shear stress (τ) is given by

τ = µσn + Co. (8)

Recalling from the basic physics related to friction force, the factor (µ) is the

friction coefficient related to the applied normal stress, and (Co) is called the inher-

ent shear stress that represents the cohesion of the sample along the sliding plane.

Equation 8 can be written in terms of axial stress (σy) and confining stress (σx) as

(σy − σx)
2

= µ
(σy + σx)

2
+ Co. (9)

This is also called p-q plot where

p =
(σy − σx)

2
, and (10)

q =
(σy + σx)

2
. (11)

Using this plot, we can graph the direct measured quantities and find the slope (µ)

and the intersection (Co). The slope is usually represented in terms of an angle as

θ = sin−1µ. (12)
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1.5 Triaxial Test

By definition, a standard triaxial test is performed at a constant confining pres-

sure. The loading parameter is usually a constant axial strain rate. Brittle samples

at failure have dramatic results if the equipment is controlling on axial load. As

the axial strain increases, the deviatoric stress increases until the sample reaches its

maximum compressive strength (MCS). Figure 2 shows typical triaxial stress-strain

data. The purple line shows a constant confining pressure of 1000 psi. There are also

unload and reload cycles of the deviatoric stress to measure irrecoverable strains and

the unloading and reloading Young’s modulus and Poisson’s ratio.

1.6 Multistage Triaxial Test (MST) Methodology

In this work, we deviate from the standard triaxial test measurement protocol

by a using “multistage” triaxial testing protocol. A multistage test is like a stan-

dard triaxial test except that it has multiple loading stages at different confining

pressures. Instead of increasing the axial load of the sample to the maximum com-

pressive strength (MCS), i.e., failing the sample, the loading is stopped at the point

of positive dilatancy (PPD). The sample is then unloaded, and the confining pres-

sure is increased. The same cycle is repeated at the increased confining pressure.

This means that the yield surface is encountered at multiple points during a single

MST measurement. This eliminates the sample “twinning” problem, i.e., the lack of

repeatability inherent in single stage triaxial tests.

Figure 3 shows the stress path for our implementation of an MST. The red curve

is at a lower confining stress than the blue. The PPD is the point at which the

radial strain to axial strain ratio reaches one-half, or equivalently the volume strain

is independent of an axial load, as shown in figure 4.
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Figure 2: Data for a typical triaxial test. The deviatoric stress is plotted on the vertical
axis. The axial strain is plotted on the horizontal axis. This is a conventional
triaxial test where the confining stress is held constant throughout.

The PPD was chosen because it is a well-defined point that is easily picked

during the experiment and found to be easily corrected to the maximum compres-

sive strength. Al-Salman and Myers ( 2015) found that the maximum compressive

strength is equal to 1.2 times the axial stress where the PPD occurs for a broad range

of samples (recoverable strains ranging from ten percent to ninety percent).

Earlier techniques used different unloading points to perform an MST. The un-

loading point used in the ISRM standard is at the maximum compressive strength,

i.e., where the slope of the axial stress-strain curve is zero (Kovari, Tisa 1975). This

occurs at higher stress than the PPD. When this point is used, it is problematic to

stop the axial ramp before sample failure, and significantly more sample damage is

induced at each confining step. It is not clear how this damage affects the measure

MCS. Taheri and Tani (2008) used a lower unloading point using the maximum value

for Young’s modulus (E (secant) = max). This point is at a lower stress than the point

of positive dilatancy. There would be a larger correction factor to estimate the max-
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imum compressive strength than using the PPD. To our knowledge, this correction

factor has not yet been developed.

Figure 3: A typical MST stress path. The red curve is at a lower confining stress than the
blue. The point of positive dilatancy (Strain Ratio = 0.5) is indicated where the
unload cycle begins

Figure 4: The point of positive dilatancy (PPD) used for multi-stage triaxial (MST) tests.
Sample unloading begins once this point is reached

The PPD has been chosen for the MST instead of the two other unloading points.

It represents a compromise between them. Using PPD, the sample damage appears
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to be minimal, and the data are easily corrected (Al-Salman, Myers, Sharf-Aldin,

2015). This point also has the advantage that different operators can choose it or

even automate it with good repeatability.

1.6.1 Irrecoverable Strain

Figure 5 shows the plot of confining stress versus axial strain for a multistage

triaxial test. Similar plots may be made for the radial strain. In Figure 5, the

recoverable and irrecoverable strain is delineated. The percent irrecoverable strain is

defined as the ratio of the irrecoverable strain to the total strain during each stress

cycle. The percent irrecoverable strain is a total accumulated strain because the

sample is unloaded to a common low deviatoric stress at each confining stress. We

did not observe any significant variation as a function of confining stress for any of

the samples. Therefore an average percent irrecoverable strain value is used.

Figure 5: Confining stress versus axial strain for Austin Chalk. This plot is easily interpreted
for the percent irrecoverable strain
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Chapter 2: Experimental Analysis

The data was measured using a multistage triaxial test (MST). The testing

methodology for MST was discussed in section 1.6. This chapter discusses the exper-

imental data, and data analysis.

2.1 Experimental Setup and Stress Protocol

This section discusses the experimental equipment and the standard testing pro-

tocols for a triaxial test. Young’s modulus (Ym) is the derivative of the axial strain

to axial stress along an elastic response curve when the radial stress is held constant.

This stress path is commonly referred to as a “triaxial test.” A typical experimental

setup for a triaxial test is shown in Figure 6. The sample used was a right cylinder,

two inches in length and one inch in diameter, oriented perpendicular to the bedding

or vertical plug. ASTM (2014) guidelines were followed to setup triaxial testing pro-

tocols. All the samples used for this study were measured equilibrated to ambient

humidity and temperature. The velocities were measured using standard “pitch and

catch” techniques with torsional shear and compressional piezoelectric plates. The

loading parameter is a constant axial strain rate of five milistrains per second. The

deviatoric stress was measured using an internal, vented load cell. A two point ax-

ial strain measurement was made using internal, vented LVDTs. A two point radial

strain measurement was made using a cantilever bridge, comprising four arms with

the strain gauges mounted in a Wheatstone bridge configuration.

The experimental error in the static data is approximately five percent for the

axial data and ten percent for the radial data based on calibration to aluminum. The

error in the dynamic data is approximately one percent for compressional velocities

and approximately three percent for shear velocities, based on aluminum and Lucite

standards. The equipment was corrected for axial strain compliance and confining
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stress effects using a tungsten carbide billet.

The assembly shown in figure 6 is placed inside the cylindrical pressure vessel

shown in figure 7. The pressure vessel is filled with confining fluid (mineral oil) to

apply the radial stress.

Figure 6: A typical experimental setup for a tri-axial test. Internal measurements of axial
strain, radial strain and load are performed.

Figure 7: The cylindrical pressure vessel in which the sample assembly is placed. The max-
imum confining pressure is 12000 psi which is applied by displacement pumps
under PID (proportional integral differential) control.
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The internal load cell is located on the bottom of the vessel and is used to measure

the axial load. This load is applied through a 1 1/2 inch diameter piston using a ball

screw press. Figure 8 is a picture of the experimental setup.

Figure 8: Experimental setup including the computerized control panel. The entire appara-
tus is PID controlled and capable of 75000 lb. axial load and 12000 psi confining
stress.

2.2 Multistage Triaxial Test

In this section, we discuss the experimental results. Multistage triaxial tests have

been performed on a suite of different rock types. The samples are initially equili-

brated at 500 psi radial (confining) stress and 600 psi axial stress (100 psi deviatoric

stress). The tests were all performed using a constant strain rate loading parameter.

The static data was measured at equal time intervals, which implies that the strain

between two consecutive points is a constant value.

The velocities were measured at deviatoric stress intervals of 1000 psi. A three-

point derivative of the stress-strain curve, which straddles the velocity measurements,

was used to calculate the static Young’s modulus. In this way, we obtain both static

and dynamic Young’s modulus at the same average stress (or strain) point on the
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stress-strain curve.

Figures 9 to 13 show the “fountain plots” for Austin chalk, Berea and Castlegate

Sandstone. The author originally measured these three samples, and the data are

published in the master’s thesis (Bilal, 2016). A fountain plot consists of the axial,

radial, and volumetric strains displayed on the same plot. Positive radial strains

indicate that the sample is getting smaller whereas, the negative radial strains indicate

that the sample diameter is becoming larger. Plots for the Austin Chalk and Berea

Sandstone illustrate the range in sample properties measured (stiffness, MCC, Ym,

irrecoverable strain). The Berea and Austin Chalk show very different stress effects

on the initial slope of stress-strain curve (stiffness), with the Berea showing more

sensitivity to confining stress than the Austin Chalk. This effect is currently under

investigation.

2.2.1 Austin Chalk

Figure 9 shows a fountain plot for a test conducted on the Austin Chalk. The

Austin Chalk is an Upper cretaceous geologic formation in the Gulf Coast region of

the United States. It is named for outcrops near the type locality in Austin, Texas.

The Austin Chalk consists of recrystallized, fossiliferous, interbedded chalks, and

marls (Weishampel, 1990). Outcrops of the Austin Chalk can be seen throughout

Dallas extending into Austin and San Antonio. The water depth during deposition of

the Austin Chalk is estimated to be on the order of 820 ft. (Weishampel, 1990). The

MST was run at confining pressures of 500, 2000, 3500, 5000, and 6500 psi. There is

a significant effect of confining stress on sample stiffens. The nonlinearity near the

PPD is quite high. This is consistent with the highly ductile nature of the material.
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Figure 9: The Fountain plot for Austin Chalk showing deviatoric stress vs. axial, radial,
and volumetric strain. The inset shows that the PPD has been reached. This
is the most ductile sample measured exhibiting 20 percent irrecoverable strain.

Figure 10: The p/q plot for Austin Chalk, the friction angle is 26 degrees and the measured
cohesion is 1900 psi. Due to the ductile nature of this material the actual
cohesion may be much lower (nonlinear yield criteria).

The p/q plot for Austin chalk is shown in figure 10. The friction angle is 26

degrees, and the measured cohesion is 1900 psi. Due to the ductile nature of this
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material, the actual cohesion may be much lower (nonlinear yield criteria).

Table 1: Austin Chalk sample dimensions and weight.

Parameter Value
Length 1.962 in

Diameter 0.986 in
Weight 51.55 g

2.2.2 Berea Sandstone

Berea Sandstone is named after the town of Berea, in Cuyahoga County, Ohio

where it is quarried to use as a grindstone. It is a very fine grained sandstone with

grains being angular rather than rounded . The grains are predominantly composed of

quartz held together by silica cement. (Andrews 1870). Figure 11 shows the fountain

plot for Berea sandstone. Table 2 contains the sample dimensions and weight.

Table 2: Berea sandstone sample dimensions and weight.

Parameter Value
Length 2.042 in

Diameter 1.014 in
Weight 59.65 g

For Berea, the multistage triaxial test was performed at confining pressures of

1000, 2000, 3000, and 4000 psi. Figure 11 is the “fountain plot” for this MST test.

A fountain plot contains axial, radial, and volumetric strain plotted simultaneously.

As shown, the radial strains are negative because the sample diameter is increas-

ing. There is a significant effect of confining pressure on the slope of axial stress

versus strain data. The stiffness increases with increasing confining pressure. This is

interpreted as due to the closing of compliant pores.

Figure 12 is the p/q plot for Berea sandstone. The friction angle is 36 degrees,

and the cohesion is 2200 psi. As expected, both friction angle and cohesion are higher

than Austin chalk.
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Figure 11: Fountain plot for a sample of the Berea Sandstone showing deviatoric stress vs
axial, radial and volumetric strains. This is the least ductile sample measured,
exhibiting only 5 percent irrecoverable strain.

Figure 12: The p/q plot for Berea Sandstone, the friction angle is 36 degrees and the
measured cohesion is 2200 psi.
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2.2.3 Castlegate Sandstone

Figure 13 is fountain plot for a test conducted on the Castlegate Sandstone.

Castlegate Sandstone is a Mesozoic aged geologic formation that outcrops in Utah,

USA. For Castlegate Sandstone, the multistage test was performed at eight different

confining pressures ranging from 1000 psi to 6500 psi. Table 3 contains the sample

measurements.

Table 3: Castlegate Sandstone sample dimensions and weight.

Parameter Value
Length 1.946 in

Diameter 1.023 in
Weight 49.38 g

Figure 13: Fountain plot for Castlegate Sandstone showing deviatoric stress vs axial, radial
and volumetric strain. The irrecoverable strain is 15 percent

The p/q plot for Castlegate Sandstone is shown in Figure 14. The maximum

compressive strength was obtained by multiplying the deviatoric stress at the point
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of positive dilatancy by 1.2 (Al-Salman and Myers, 2014). The friction angle is

30.4 degrees; the cohesion is 1192 psi. These numbers are both less than the values

obtained for the Berea Sandstone. This sample had a more ductile failure than the

Berea. This is evident by the increased nonlinearity near the PPD.

Figure 14: The p/q plot for Castlegate Sandstone, the friction angle is 30.5 degrees and the
measured cohesion is 1320 psi.

2.2.4 Boise Sandstone

Figure 15 shows the results for sample Boise 1.1 of the Boise Sandstone MST run

at confining pressures up to 3000 psi. Figure 17 shows results for sample Boise 1.2 of

the Boise Sandstone MST, which run up to an intermediate confining pressure of 2000

psi. These samples are considered twins for testing purposes. These samples provided

us with the opportunity to analyze the induced damage in two similar samples, which

were run to two different ultimate confining pressures. Micro-CT and thin section

data have been used to analyze the damage in post-test samples. These results are

discussed later in the sample characterization chapter of the thesis. Table 4 contains
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the sample measurements for Boise-1 Sandstone.

For the Boise-1.1 Sandstone sample shown in figure 15, the test was run at con-

fining pressures of 500, 1000, 1500, 2000, 2500, and 3000 psi. The sample stiffness is

fairly constant with increasing confining pressure. The nonlinearity near the PPD is

quite high, similar to Austin chalk. This is consistent with the highly ductile nature

of the Boise Sandstone.

Table 4: Boise 1 Sandstone sample dimensions and weight.

Parameter Value
Length 2.014 in

Diameter 1.025 in
Weight 51.38 g

Figure 15: Fountain plot for Boise Sandstone showing deviatoric stress vs axial, radial and
volumetric strain. The sample exhibited 45 percent irrecoverable strain.

The p/q plot for the Boise-1 Sandstone sample is shown in Figure 16. The

maximum compressive strength was obtained by multiplying the deviatoric stress

at the PPD by a factor of 1.2. The friction angle is 25.7 degrees, and the measured
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cohesion is 1300 psi. The cohesion is similar to that observed for the Castlegate

Sandstone, whereas the friction angle is similar to that observed for the Austin Chalk.

Figure 16: The p/q plot for Boise-1 Sandstone, the friction angle is 25.7 degrees and the
measured cohesion is 1300 psi.

Figure 17 shows the fountain plot for the Boise-2 Sandstone sample. The test

was run atconfining pressures of 500, 1000, 1500, and 2000 psi. Similar to the Boise-1

Sandstone sample, the stiffness is fairly constant as a function of confining pressure.

The sample also exhibits nonlinear behavior near the point of positive dilatancy,

indicating a ductile response.

Table 5: Boise-2 Sandstone sample dimensions and weight.

Parameter Value
Length 2.007 in

Diameter 1.025 in
Weight 51.5 g

The p/q plot for the Boise-2 Sandstone sample is shown in Figure 18. The

maximum comprehensive strength was obtained by multiplying the deviatoric stress

at PPD by a factor of 1.2. The friction angle is 23 degrees, and the measured cohesion
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is 1326 psi. Both cohesion and friction angle are similar to the Boise-1 Sandstone

sample.

Figure 17: Fountain plot for the Boise Sandstone showing deviatoric stress vs axial, radial
and volumetric strain. The sample exhibited 45 percent irrecoverable strain.

Figure 18: The p/q plot for Boise-2 Sandstone, the friction angle is 23.0 degrees and the
measured cohesion is 1326 psi.
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2.2.5 Fontainebleau Sandstone

Figure 19 and 21 are fountain plots for twin samples of the Fontainebleau Sand-

stone. The Fontainebleau Sandstone is a quartz cemented quartz arenite. Clay min-

erals are not present. The samples were obtained from a quarry in France. Similar to

the Boise Sandstone tests, Fontainebleau Sandstone tests were also run to understand

the effect of increasing confining pressure on induced damage to the sample. The sam-

ple in figure 19 was run to confining pressure of 2000 psi, and the sample in figure 21

was run to confining pressure of 2500 psi. These samples have a permeability of 500

mD. Figure 23 and figure 25 show another set of twin samples of the Fontainebleau

Sandstone but with a different lithology. The permeability of these samples is 1 mD.

The two sets of twin samples differ each other on the basis of permeability. These

samples were also run to confining pressure of 2000 psi and 2500 psi, respectively. The

purpose of running twin samples at two different confining pressures is to quantify

the induced damage. These results are discussed later in the sample characterization

chapter.

Figure 19 is the fountain plot for the Fontainebleau-1.9 Sandstone sample (lithol-

ogy 1, k=500mD). The sample exhibits linear behavior, resulting in elastic strains

almost to the PPD. This is also evident from the observed irrecoverable strains,

which are less than 5%. In a later section we will illustrate that the Fontainebleau

Sandstone MST can be modeled with just linear and nonlinear elastic strains. Table

6 contains the sample dimensions and its weight.

Table 6: Fontainebleau-1.9 Sandstone sample dimensions and weight.

Parameter Value
Length 2.107 in

Diameter 1.007 in
Weight 64.31 g

Figure 20 shows the p/q plot for Fontainebleau-1.9 Sandstone sample. The friction
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angle is 63.2 degrees, which is quite high. The cohesion is 300 psi. The maximum

comprehensive strength was obtained by multiplying the deviatoric stress at PPD by

a factor of 1.2.

Figure 19: Fountain plot for Fontainebleau-1.9 Sandstone showing deviatoric stress vs.
axial, radial and volumetric strain. The sample exhibited 5 percent irrecoverable
strain.

Figure 20: The p/q plot for Fontainebleau Sandstone, the friction angle is 63.2 degrees and
the measured cohesion is 300 psi.

Figure 21 is the fountain plot for Fontainebleau-1.10 Sandstone sample. Similar to
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Fontainebleau-1.9 Sandstone, the sample exhibits fairly linear behavior stress-strain

behavior. This results in elastic strains almost to the PPD. Table 7 contains the

sample dimensions and its weight.

Table 7: Fontainebleau-1.10 Sandstone sample dimensions and weight.

Parameter Value
Length 2.076 in

Diameter 1.011 in
Weight 62.45 g

Figure 21: Fountain plot for the Fontainebleau Sandstone sample 1.10 showing deviatoric
stress vs axial, radial and volumetric strain. The sample exhibited 5 percent
irrecoverable strain.

Figure 22 is the p/q plot for the Fontainebleau-1.10 Sandstone sample. Similar

to Fontaine -bleau 1.9, the friction angle (56 degrees) is quite high. However, the

cohesion of 1500 psi is a bit higher than that of the twin sample.
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Figure 22: The p/q plot for Fontainebleau Sandstone, the friction angle is 56 degrees and
the measured cohesion is 1500 psi.

Figure 23: Fountain plot for Fontainebleau Sandstone showing deviatoric stress vs axial, ra-
dial and volumetric strain. The sample exhibited 5 percent irrecoverable strain.

Figure 23 is the fountain plot for the Fontainebleau-3.5 Sandstone sample. The

permeability of this sample is 1 md. This is substantially lower than the permeability

of the Fontainebleau Sandstone samples discussed previously. Similar to the higher
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permeability Fontainebleau Sandstone samples, the behavior of the MST is quite

linear. Table 8 contains the sample dimensions and weight.

Table 8: Fontainebleau-3.5 Sandstone sample dimensions and weight.

Parameter Value
Length 1.822 in

Diameter 0.986 in
Weight 52.4 g

Figure 24 is the p/q plot for Fontainebleau-3.5 Sandstone. The permeability is

1 mD. The friction angle (22 degrees) is quite low, but the cohesion of 4700 psi is

quite high. The friction angle is the lowest of all the samples measured in this thesis,

whereas cohesion is the highest.

Figure 24: The p/q plot for Fontainebleau Sandstone, the friction angle is 22.0 degrees and
the measured cohesion is 4700 psi.

Figure 25 shows the fountain plot for the Fontainebleau-3.4 Sandstone sample.

The test was run at confining pressures of 500, 1000, 1500, 2000 and 2500 psi. This

sample also exhibited linear behavior. Table 9 contains the sample dimensions and

weight.
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Figure 25: Fountain plot for Fontainebleau Sandstone showing deviatoric stress vs. axial,
radial, and volumetric strain. The sample exhibited 5 percent irrecoverable
strain

Figure 26 shows the p/q plot of Fontainebleau-3.4 Sandstone. The friction angle

is 24.3, and the cohesion is 5200 psi. Both friction angle and cohesion are similar to

the twin sample, Fontainebleau-3.5 Sandstone.

Figure 26: The p/q plot for Fontainebleau Sandstone, the friction angle is 24.3 degrees, and
the measured cohesion is 5200 psi.
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Table 9: Fontainebleau-3.4 Sandstone sample dimensions and weight.

Parameter Value
Length 1.795 in

Diameter 0.990 in
Weight 52.50 g

2.2.6 Miocene sandstone

For the Miocene-1 sandstone sample, the sample failed after only three confining

pressures cycles, as shown in Figure 27. This result illustrates that unloading at a

strain ratio of 0.5 is not a suitable point for a weakly cemented, under-compacted

sandstone. The Miocene-3 sandstone sample was run with an unloading parameter

at a strain ratio of 0.3 for each confining cycle, as shown in Figure 32. The measured

irrecoverable strain is approximately 7%. For the Miocene-1 sandstone sample, the

measured irrecoverable strain is approximately 43%. The difference results from the

Miocene-3 sandstone being loaded to lower deviatoric stress, as the strain ratio to

unload was just 0.3. Lower deviatoric stress resulted in less induced damage and

hence, lower irrecoverable strains.

The Miocene-1 sandstone exhibits nonlinearity near the point of positive dila-

tancy. This is consistent with the ductile nature of the sample. This has also resulted

in higher irrecoverable strains of 43%. Table 10 contains the sample measurements.

Table 10: Miocene-1 sandstone sample dimensions and weight.

Parameter Value
Length 1.948 in

Diameter 0.972 in
Weight 43.21 g

Figure 28 is the p/q plot for the Miocene-1 sandstone sample. The friction angle

of 39.2 degrees is quite high, but the cohesion of 920 psi is on the lower end of the

observations in this study.
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Figure 27: Fountain plot for a Miocene sandstone sample showing deviatoric stress vs. axial,
radial, and volumetric strain. The sample exhibited 43 percent irrecoverable
strain.

Figure 28: The p/q plot for Miocene-1 sandstone sandstone, the friction angle is 39.2
degrees, and the measured cohesion is 920 psi.

The Miocene-3 sandstone sample was not unloaded at the point of positive dila-

tancy (strain ratio: 0.5). Instead, the sample was unloaded at a strain ratio of 0.3.
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This change in the testing protocol resulted from the observation that the Miocene-1

sandstone sample failed after only two cycles when it was unloaded at the strain ratio

of 0.5. Because the Miocene-3 sandstone sample was loaded to a lower strain ratio,

less damage was induced during each stage. Figure 29 shows the fountain plot for the

Miocene-3 sandstone sample. The sample exhibits linear behavior. This indicates less

sample damage and more elastic strains. Table 11 contains the sample dimensions

and weight.

Table 11: Miocene-3 sandstone sample dimensions and weight.

Parameter Value
Length 2.004 in

Diameter 0.971 in
Weight 43.79 g

Figure 29: Fountain plot for the Miocene sandstone showing deviatoric stress vs. axial,
radial, and volumetric strain. The sample exhibited a 6 percent irrecoverable
strain because the stopping point for each stage was reduced to a strain ratio of
0.3.

Figure 28 shows the p/q plot for the Miocene-3 sandstone sample. The friction
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angle of 30.6 degrees is a little high, but the cohesion of 160 psi is quite low.

Figure 30: The p/q plot for Miocene-3 sandstone, the friction angle is 30.6 degrees, and the
measured cohesion is 160 psi.

2.3 Experimental Data Modeling and Analysis

In the previous section, we have discussed how the experimental data was taken.

In this and subsequent sections, we will discuss how to analyze the data and fit a

model to it. We separate the sample response into linear elastic strains, nonlinear

elastic strains, and irrecoverable strains. We will now discuss in detail how to model

each of these strains separately and how to understand the physical mechanisms that

control each part of the data. Please note that only axial strains have been modeled.

The radial strains will be part of future work.

2.3.1 Quadratic Fit for the Stress vs Strain Curve

In order to develop a model for the stress strain behavior, we expand the axial

stress in terms of the axial strain for the unload and reload curves in a Taylor series.

We have only fit the data up to a second order term. The rest of the data is analyzed
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separately as induced plastic strains. The axial stress can be expanded in term of

strains as

σ = M2ε
2 +M1ε+ σ0. (13)

Where σ0 is the initial stress of either the unloading or reloading curve. M1 and M2

are the regression coefficients for the fit.

Figure 31: An example of a deviatoric stress vs. strain curve showing the actual data and
the quadratic fit to the data. Induced plastic strains are calculated by taking
the difference between actual data and the quadratic fit.

In order to fit the data, we are not using the initial two percent of the reloading

cycles. This portion of the curve is dominated by equipment hysteresis, and possible

effects due to sample creep on the unload cycle. On the reloading curve, the data is

limited to avoid the initial loading curve. In other words we use only that portion

of the curve for which additional sample damage is induced. The curve is fit to the

maximum point of curvature. The maximum curvature point is calculated by fitting

a circle through three points along the curve and calculating its radius. The point of

the curve with the smallest radius is the maximum point of curvature.
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2.3.2 Interpretation of M1 Velocity

In the limit of small strains, the quadratic term (M2ε
2) may be ignored, and the

equation reduces to a Hooke’s law relationship. The fit to the stress-strain data,

therefore, should give M1 equal to the modulus derived from the velocity data, as

shown in Figure 32.

Figure 32: Dynamic vs. static M1 on the loading stress path. The static and dynamic
properties are equal within experimental error. There are multiple points for
each sample implying a small stress dependence for each sample compared to
the differences between samples.

For the static and dynamic data, the measured small strain moduli are equal

to within the uncertainty of the measured values, i.e., M1 can be directly predicted

for static data if we have acoustic data available from some other source. This is

consistent with earlier published results (Fjaer et-al, 2015). If, however, the bulk and

shear moduli are calculated from the static data to compare to the dynamic data,

they are not equal at small strains. We conclude that we cannot convert between

stress paths for static data using a linear elastic model. We also found that M1 M1

either varies or remains constant as a function of confining pressure, depending upon
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the sample, as shown in fig 33. This difference is currently under investigation.

Figure 33: M1 vs. confining pressure. M1 varies significantly with confining pressure for
Fontainebleau samples and Berea. However, it remains relatively constant for
Austin Chalk, Boise Sandstone, and Miocene sandstone samples. The result is
currently under investigation. The dots are dynamic M1, where velocity data
is available.

2.3.3 Interpretation of M2 – Irrecoverable Strain

M2 is termed the “Hypermodulus,” the coefficient of the second order term in

Eq 13. This term is related to nonlinear irrecoverable strain effects. There was no

significant variation observed among M2 for different reloads as a function of confining

pressure. Therefore, an average value of M2 was used for each sample. In section 1.6.1,

we discussed that irrecoverable strains remained constant for different reloads.This is

consistent with M2 also remaining constant for each reload. Figure 34 shows a plot

of the hypermodulus as a function of irrecoverable strains for each of the different

samples. The hypermodulus has a direct relationship with irrecoverable strain. The

relationship can be fit with either a linear or a quadratic relationship. We need more

data, at higher irrecoverable strains, to establish which of these relationships best fits

a range of sampe types. For higher irrecoverable strains, the absolute value of M2 is
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higher. The higher M2 value implies more nonlinear strain effects.

Figure 34: Absolute M2 vs irrecoverable strains. M2 has a direct relationship with irrecov-
erable strain. For higher irrecoverable strain, the value of M2 is higher.The
higher M2 value implies more non-linear strain effects.

2.3.4 M1 and M2 on an Unloading Stress Path

M1 and M2 were also calculated for unloading cycles. The results were com-

pared with the parameters from the loading cycle. On average both M1 and M2 were

higher on unloading cycle. The reason is primarily due to hysteresis effects that oc-

cur during sample loading and unloading. The differences in M1 ranged from 10% in

higher irrecoverable strain samples (Castlegate Sandstone, Austin Chalk, Boise Sand-

stone, and Miocene sandstone) to almost 20% in lower irrecoverable strains samples

( Fontainebleau Sandstone, Berea Sandstone). The differences in M2 for the latter

group of samples, ranged from 10% to nearly an order of magnitude.

Total hysteresis in higher irrecoverable strain samples is larger than that observed

in samples exhibiting lower irrecoverable strains. However, the difference in parame-

ters among the high hysteresis samples is lower. This is counter intuitive. In higher

irrecoverable strain samples, the hysteresis effects are dominated by plastic strains.
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There are fewer effects on elastic parameters (M1 and M2). For lower irrecoverable

strain samples, there are negligible plastic strains. Almost all the hysteresis effects the

linear (M1) and non-linear (M2) elastic parameters. That is why we have observed

larger differences in lower irrecoverable strain samples than in higher irrecoverable

strain samples. Because our purpose is to predict the loading curve, subsequent

analyses are performed on the loading stress path only.

2.3.5 Compaction Model

Myers and Hathon (2014) developed a model to predict uniaxial pore volume

compressibility for unconsolidated to slightly consolidated sands in the deep water

Gulf of Mexico. The model describes the evolution of a network as a function of

modifying the number of nodes (compacting sites) and the number of bonds (grain

contacts) between them. This network model is quite general and may be applied to

a variety of physical phenomena such as permeability, and resistivity. The model has

been extended here to include triaxial data.

2.3.6 Mathematical Representation

The goal of this section is to develop the network model equations that describe

how the statistics of a network evolve with a characteristic change in the network

properties. An initial distribution of the number of nodes to the number of bonds is

known, as shown in figure 1. The network grows by adding nodes to it, which alter

the network statistics. The objective is to develop a mathematical model for how the

statistics of the entire network evolve.

We start with some definitions and notation. For the initial network, n = n(N, j)

is the initial number of nodes, n, with j bonds when there are N total nodes. The

total number of nodes is now increased, and the new network statistics are described

by n′ = n(N + δN, j) where n′ is the new number of nodes with j bonds resulting
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from the addition of δN total nodes. The changes in n and N are given by

δn(N, j) = n′(N, j)− n(N, j) (14)

and

δN = N ′−N =
∑

n′(N, j)−
∑

n(N, j). (15)

As a base case we make the following “self-similar” assumption for the growth of the

network,

δn(N, j)

n(N, j)
=
δN

N
. (16)

n(N,j): The initial number of nodes, n, with j bonds when there are N total nodes.

The total number of nodes is now increased by δN and the new network statistics are

described by where n(N + δN, j) is the new number of nodes with j bonds resulting

from the addition of δN nodes,

n(N + δN, j) = n(N, j) +
δN

N
n(N, j). (17)

The change in the number of nodes with j bonds is proportional to the fractional

change in the total number of nodes that are added to the network, as shown in

Figure 36. With this assumption, the statistics of the original network are preserved,

and the network exhibits self- similar behavior. We show this by examining the limit

as δN approaches zero,

n(N + δN, j)

δN
=
n(N, j)

N
. (18)

This gives in the limit of small δN ,

∂n

∂N
=

n

N
(19)
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The distribution of the initial network provides the boundary condition. This will be

the reference curve as

n(No, j) = D(j). (20)

No is the initial number of nodes. The solution is given by

n(N, j) = ηD(j),Where : η =
N

No

. (21)

Figure 35: The initial known network consists of nodes with multiple connections to one
another. The statistics of the network are described by n(N,j) the number of
nodes with j connections when there are N total nodes in the network.

Figure 36: Solution to a model where it is assumed that the fractional change in the number
of nodes is proportional to the fractional change in the total number of nodes
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The next step is to extend the model that includes the possibility of more than the

simple scaling by adding extra terms. These added terms account for the deviation

from the base case and are a measure of deviation from self-similar behavior. A factor

k (n,j) is used to define the fraction of nodes that add an additional bond above self-

similar scaling. When k (n,j) is equal to zero, our base case is recovered. The model

may be represented by

N ∗ ∂n(N, j)

∂N
+ k(n, j) ∗ ∂n(N, j)

∂j
= n(N, j) ∗ (1− ∂k(n, j)

∂j
). (22)

k(n,j) is the fraction of nodes that will add an “excess” bond relative to self-similar

scaling of the initial distribution. It may, in general, be a function of both the number

of nodes, n, with a given number of bonds and/or the number of bonds, j, a node

already has. The initial distribution translates, broadens, and skews. This results

from the j dependence on the specific form of k(n,j). The equation is nonlinear if k

depends on n, and represents simple bookkeeping of nodes and bonds. The physics

inherent in the evolving network is all contained in the term k(n,j). It is based on the

physics the network represents, as shown in figure 37.

Figure 37: Depending on the form that the k(n,j) term takes, the equation allows for
models where the distribution translates, broadens, skews and shows nonlinear
effects with increasing numbers of nodes.
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For k = ko, we get

N ∗ ∂n(N, j)

∂N
+ ko ∗

∂n(N, j)

∂j
= n(N, j). (23)

The boundary condition is the assumption of a reference distribution n(No, j) =

D(No, j), where No is the initial number of nodes. The following solution is obtained.

Using the method of characteristics, we arrive at

n(N, j) = ηD(j − ko ∗ ln(η)). (24)

The scaling parameter for the network changes, η = N
No

for nonzero ko (for ko = 0 we

retrieve the base case).

We now present the solution of the nonlinear assumptions for k; k now depends

on n, the number of nodes with a particular number of bonds. Substituting k(n, j) =

k(n) = ko + k1.n we arrive at

N ∗ ∂n(N, j)

∂N
+ (ko + k1n) ∗ ∂n(N, j)

∂j
= n(N, j). (25)

.

As before, we start with the boundary condition

n(N, j) = D(No, j), (26)

when

N = No, (27)

which gives the implicit solution (n appears on both sides of the equation),

n(N, j) = ηD(j − (ko + 2k1n) ∗ ln(η)). (28)

49



We have calibrated the linear case of the model to the triaxial data. The future werk

will involve to calibrate the non-linear case.

2.3.7 Model Calibration

The model takes the form of a partial differential equation, which describes the

evolution of a network as a function of a physical change, such as applying stress. The

solution of this boundary value problem requires a measurement which establishes the

boundary condition for the solution. The model is used to predict the plastic strains

in terms of the invariants, the deviatoric, and mean stresses. The plastic strains were

calculated by taking the difference between the original data and the quadratic fit to

the elastic data, as shown in figure 38 below.

Figure 38: An example of a deviatoric stress vs. strain curve showing the actual data and
the quadratic fit to the data. Induced plastic strains are calculated by taking
the difference between actual data and the quadratic fit.

The first order term in the linear model is given by Eq. 29 where k = ko is a

constant,
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εpm(N, σ) = η(σ − k0 ln η). (29)

The linear solution of the notwork model is applied to the data. The future work

will involve using the non-linear solution to fit the data. The boundary condition

for the solution of the partial differential equation is assumed to be an exponential

distribution (n(No, σ) = D(No, σ)) = eλσ,consistent with AE observations (Prakash

2018). where n is number of nodes with specific number of bonds and N is total

number of nodes. We have mapped n into plastic strains induced as a function of

applied stress. From the exponential fit of the base case, we can get No and λ. No

is the initial total strain. λ is the characteristic stress slope. Ko controls how the

exponential distribution translates with mean and deviatoric stress. η = N
No

is the

measure of total strain and is a function of both mean and deviatoric stress. n(N, σ) is

the calculated strain at a certain σ (stress). For an exponential distribution, equation

29 can be written as

εpm(σ) = ηoe
1/k(σ−σo). (30)

We can define σ and ko in term of mean and deviatoric stress as

σd = σ sin θ, σm = σ cos θ, kd = k sin θ, km = k cos θ. (31)

θ describes the stress path. For example, for θ = 0 is constant mean stress. θ = 1 is

constant deviatoric stress. Substituting above equation in equation 30 gives

εpm(σ) = ηoe
1/kd(σd−σo

d) ∗ e1/kd(σm−σo
m). (32)

Equation 32 allows for the possibility of calculating plastic strains as a function

of the mean and deviatoric stresses. We need to know the base case (ηo), (km) and
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(kd). We are assuming that the effects of mean and deviatoric stress are separable.

2.3.8 Experimental Fit for Plastic Strains

In this section, we have plotted the modeled and raw data together to validate

the model. Figure 39 is the plot of plastic strains as a function of deviatoric stress at

different confining pressures for Castlegate Sandstone. The data shows an exponential

function trend. The parameters fit to the model were (ηo) 1.06E-4, (kd) 513 psi and

(km) -633 psi. The value of kd is positive whereas km is negative. This is consistent

with the intuitive effects of deviatoric and mean stresses. Deviatoric stress tends

to weaken the sample and hence increases plastic strains. However, the mean stress

tends to strengthen the sample resulting in decreasing plastic strains. This shows that

the, the model captures the effects of changing mean and deviatoric stress correctly.

Figure 39: Plastic strains as a function of deviatoric stress for Castlegate Sandstone. The
solid black lines are model predictions. A simple exponential is used to fit the
data. The model is fit using only three parameters: (ηo) 1.06E-4, (kd) 513 psi
and (km) -633 psi.

Figure 40 is a plot of original plastic strains vs modeled plastic strains for the

Austin Chalk. The parameters used to fit the model are ηo 3.11E-3, kd 606 psi and km
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-943 psi. Figure 41 is a similar plot for the Boise-1 Sandstone sample with modeling

parameters ηo 5.05E-4, kd 115 psi and km -505 psi. Figure 42 shows the plot for the

Boise-2 Sandstone sample with modeling parameters ηo 2.15E-4, kd 114 psi and km

-200 psi. For the Fontainebleau and Berea Sandstones, there is no need to model

plastic strains because the quadratic fit is enough to model all the data. Both of

these formations have irrecoverable strains less than approximately 5%. Such low

irrecoverable strains suggest elastic behavior. Figure 43 is the comparison of modeled

plastic strains vs original data. The parameters used to model the data are (ηo)

4.69E-5, (kd) 240 psi and (km) -195 psi.

For Fontainebleau Sandstone and Berea Sandstone, the irrecoverable strain is less

than 7%. Therefore the linear and non-linear elastic parameters (M1 and M2) are

enough to model the data. We have plotted the model fit later in section 2.4. For this

reason there is no need to model plastic strains for either the Fontainebleau Sandstone

or the Berea Sandstone.

Figure 40: Plastic strains as a function of deviatoric stress for the Austin Chalk. The solid
black lines are model predictions. A simple exponential is used to fit the data.
The model is fit using only three parameters: (ηo) 3.11E-3, (kd) 606 psi and
(km) -943 psi.
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Figure 41: Plastic strains as a function of deviatoric stress for Boise-1 Sandstone. The solid
black lines are model predictions. A simple exponential is used to fit the data.
The model is fit using only three parameters: (ηo) 5.05E-4, (kd) 115 psi and
(km) -505 psi.

Figure 42: Plastic strains as a function of deviatoric stress for the Boise-2 Sandstone sample.
The solid black lines are model predictions. A simple exponential is used to fit
the data. The model is fit using only three parameters: (ηo) 2.15E-4, (kd) 114
psi and (km) -200 psi.
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Figure 43: Plastic strains as a function of deviatoric stress for the Miocene-1 sandstone
sample. The solid black lines are model predictions. A simple exponential is
used to fit the data. The model is fit using only three parameters: (ηo) 4.69E-5,
(kd) 240 psi and (km) -195 psi.

2.4 Modeling Summary

The data are divided into linear elastic, nonlinear elastic, and irrecoverable strains:

� Linear elastic (M1): Directly predicted from the velocity data or a quadratic fit

to the base case, as explained in section 2.3.2.

� Nonlinear elastic (M2): The nonlinear elastic term is correlated to the percent

irrecoverable strain data and is directly predicted from the quadratic fit to the

base case, as shown in section 2.3.3.

� Plastic strains(ηo,k): A network of nodes and bonds is used to predict irrecov-

erable strains, presented in detail in section 2.3.5. The modeling parameters

are predicted by fitting the model to the base case.

In the next section, we have applied the modeling parameters to predict the triaxial

test. The section shows the validity of the model. Two of the samples (Austin Chalk-2

and Miocene-2 are from the literature).
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Chapter 3: Predicting a Triaxial Test

3.1 Miocene sandstone Prediction

A multistage triaxial test is shown in figure 44a for the Miocene-1 sandstone

sample. This test is named as sample ”MR”(reference) as it is used as the reference

test. The initial loading curve is at 500 psi confining stress, and the reloads curves

are at 1000 psi and 1500 psi confining pressures, respectively. The sample ”MR” data

is then used to calibrate the modeling parameters.

A quadratic fit is applied to the reloads up to the point of maximum curvature,

as discussed in section 2.3.1. The quadratic fit provides linear and non-linear elastic

strain parameters M1 and M2. Depending on the sample, M1 varies or remains

constant with confining pressure, as shown in Figure 33. In contrast, M2 remains

constant as a function of confining pressure for all of the samples, as discussed in

section 2.3.3. In section 2.3.2, we have shown that M1 can also be directly predicted

from an independent velocity measurement. This means that we can either use a

velocity measurement or use the quadratic fit to data from a twin sample to get M1

at specified confining pressure.

The next step is to calculate the difference between the strains predicted by the

quadratic fit and the actual strains measured for the reloads. These strains are labeled

as plastic strains. The compaction model, discussed in section 2.3.5, is then applied

on the plastic strains to estimate the parameters η0, kd and km. All of the model

parameters are summarized in Table 12.

The results of a single stage triaxial test may be predicted using these modeling

parameters. To validate the predicted results, a separate single stage triaxial test

was performed on a sample ”MM”(measured) at a confining pressure of 500 psi. The

sample ”MM” is a twin for the sample ”MR.” Both the predicted result and the single
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stage triaxial test data (sample ”MM”) are plotted in Figure 44b. The black line is

the modeled data, and the blue line is the original experimental data. We observe

that the model predicts the test data quite well.

(a) Sample MR(reference) (b) Sample MP(predicted)

Figure 44: (A) Miocene sandstone MST data on sample ”MR” that is used to calibrate
the model to predict a triaxial test. (B) Sample ”MM” data used to validate
the model prediction. The predicted data are shown as black lines, and the
measured data is shown in blue. The model predicts the measured data quite
well.

Table 12: Miocene-1 Sandstone Model Parameters.

Parameter Value
M1(psi)(500 psi conf. pressure) 6.6 ∗ 105

M1(psi)(1000 psi conf. pressure) 1.4 ∗ 106

M1(psi)(1500 psi conf. pressure) 1.5 ∗ 106

M2(psi) −8 ∗ 107

ηo 4.69 ∗ 10−5

km(psi) -195
kd(psi) 245

Reloads for the triaxial test are predicted for higher confining pressures of 1000

psi and 1500 psi, as shown in Figure 44b using the above parameters. M1 is different

for the reloads as it is dependent on confining pressure. The rest of the parameters

are the same.
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3.2 Castlegate Sandstone Prediction

Figure 45 shows the MST plot for the Castlegate Sandstone sample. The plot

contains an initial loading curve and the model prediction. Model results are also

shown for two higher confining pressures using the parameters shown in 13.

Table 13: Castlegate Sandstone Model parameters.

Parameter Value
M1(psi) (500 psi conf. pressure) 1.2 ∗ 106

M1(psi)(1000 psi conf. pressure) 1.38 ∗ 106

M1(psi)(1500 psi conf. pressure) 1.45 ∗ 106

M2(psi) −5.3 ∗ 107

ηo 1.06 ∗ 10−4

km(psi) -633
kd(psi) 512

Figure 45: Castlegate Sandstone MST data for initial loading curve at 500 psi confining
along with the model results at 500 psi, 1000 psi and 1500 psi confining pres-
sures. The model predicts the initial loading curve quite well.

3.3 Berea Sandstone Prediction

Figure 46 shows the MST plot for the Berea Sandstone sample. The plot contains

an initial loading curve and its prediction. Model results for two higher confining
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pressures also shown. Because the recoverable strains are almost 93 percent, the data

are adequately fit using M1 and M2. There is no need to fit this model for plastic

strains.

Table 14: Berea Model Parameters.

Parameter Value
M1(psi) (1000 psi conf. pressure) 2.2 ∗ 106

M1(psi)(2000 psi conf. pressure) 3.0 ∗ 106

M1(psi)(3000 psi conf. pressure) 3.36 ∗ 106

M2(psi) −4.2 ∗ 107

Figure 46: Berea MST data for the initial loading curve at 1000 psi confining stress along
with model results for 1000 psi, 2000 psi and 3000 psi confining pressure. The
model predicts the initial loading curve quite well.

3.4 Austin Chalk Prediction

Figure 47 shows the MST plot for the Austin Chalk sample. The plot contains

an initial loading curve and the corresponding model prediction. Model results for

two higher confining pressures are also shown using the parameters listed in table 15.
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Table 15: Austin Chalk Model Parameters.

Parameter Value
M1(psi) (500 psi conf. pressure) 1.70 ∗ 106

M1(psi)(1000 psi conf. pressure) 1.75 ∗ 106

M1(psi)(1500 psi conf. pressure) 1.80 ∗ 106

M2(psi) −1.0 ∗ 108

ηo 3.11 ∗ 10−3

km(psi) -943
kd(psi) 606

Figure 47: Austin Chalk MST data and model results for the initial loading curve at 500
psi confining along with the predicted data at 1000 psi, and 1500 psi confining
pressures. The model predicts the initial loading curve quite well.

3.5 Fontainebleau Sandstone Prediction

Figure 48 shows the MST plot for the Fontainebleau Sandstone. The plot contains

an initial loading curve and its modeled prediction. Stress-strain curves are also

predicted for two higher confining pressures using the parameters shown in table 16.

Because the recoverable strains are almost 98 percent, the data are adequately fit

using M1 and M2. There is no need to fit this model for plastic strains.
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Table 16: Fontainebleau Sandstone Model Parameters.

Parameter Value
M1(psi) (500 psi conf. pressure) 1.70 ∗ 106

M1(psi)(1000 psi conf. pressure) 1.75 ∗ 106

M1(psi)(1500 psi conf. pressure) 1.80 ∗ 106

M2(psi) −1.0 ∗ 108

Figure 48: Fontainebleau Sandstone MST data for the initial loading curve at 1000 psi
confining stress shown together with the model results at 500 psi, 1000 psi and
1500 psi confining pressures. The model predicts the initial loading curve quite
well.

For the Miocene sandstone sample, a single stage triaxial test was run to validate

the prediction from the multistage triaxial test. For the rest of the samples, the

single stage data were not available. So, the initial loading curve from the multistage

test was used to validate the modeling parameters, as shown above(Al-Salman et al.

2015) ran multistage tests along with single stage triaxial tests at different confining

pressures. This set of data provided us with the opportunity to validate the modeling

parameters by predicting the single stage triaxial test results at multiple confining

pressures. Below are Austin Chalk and Miocene sandstone data for tests performed
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by Al-Salman et al. (2015). The original MST and SST data are shown, and plotted

together with the model prediction.

3.6 Austin Chalk-2 Prediction

Figure 49 shows the MST and SST axial stress versus strain plot for the Austin

Chalk-2 sample. This test was performed by Al Salman et al. (2015). The MST test

has been used to calibrate the model and to predict single stage triaxial test results

on four different samples. The modeling parameters are shown in Table 17. Please

note that M1 at different confining pressures is obtained from the velocity data. The

rest of the parameters have been obtained from the MST test.

Table 17: Austin Chalk-2 Model Parameters.

Parameter Value
M1(psi)(500 psi conf. pressure) 1.67 ∗ 106

M1(psi)(1000 psi conf. pressure) 1.77 ∗ 106

M1(psi)(1500 psi conf. pressure) 1.67 ∗ 106

M1(psi)(2000 psi conf. pressure) 1.61 ∗ 106

M2(psi) −7 ∗ 107

ηo 4.22 ∗ 10−4

km(psi) -1100
kd(psi) 1000

(a) Austin Chalk 2-MST) (b) Austin Chalk 2-SST

Figure 49: Austin Chalk-2 MST and SST tests plot. The test was performed by Al Salman
et al. (2015). The MST test was used to calibrate the model. The results were
then used to predict single stage triaxial tests.
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Figure 50 shows the single stage tests run at 500, 1000, 1500 and 2000 psi confining

pressures. These tests were performed on the twin samples of the Austin Chalk-2 by

Al-Salman et al. (2015). The red curve is the original raw data. The black curve

shows the model prediction made using the parameters shown in Table 17. The

comparison shows that the model predicts the individual triaxial test data within

1-2% of the original data.

(a) SST prediction 500 psi confining (b) SST prediction 1000 psi confining

(c) SST prediction 1500 psi confining (d) SST prediction 2000 psi confining

Figure 50: SST data prediction for four Austin Chalk samples at four different confining
pressures. The red lines show the raw data, and the black lines show the model
predictions. The model predicts the single stage test data within 1-2% of the
original data.

3.7 Miocene-2 sandstone Prediction

Figure 51 shows the MST and SST axial stress vs strain plots for the Miocene-2

sandstone sample. The Miocene sandstone was also tested by Al Salmon et al. (2015).

This MST has been used to calibrate the model and predict single stage triaxial tests
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for four different core plugs. The model parameters are shown in Table 18. Please

note that M1 at different confining pressures is obtained from the velocity data. The

rest of the parameters have been obtained from the MST test results.

Table 18: Miocene-2 sandstone Model Parameters.

Parameter Value
M1(psi)(500 psi conf. pressure) 1.40 ∗ 106

M1(psi)(1000 psi conf. pressure) 1.13 ∗ 106

M1(psi)(1500 psi conf. pressure) 1.78 ∗ 106

M1(psi)(2000 psi conf. pressure) 1.00 ∗ 106

M2(psi) −2.2 ∗ 107

ηo 7.86 ∗ 10−5

km(psi) -210
kd(psi) 313

(a) Miocenne 2-MST) (b) Miocene 2-SST

Figure 51: Miocene-2 sandstone MST and SST tests plot. The test was performed by Al
Salman et al. (2015). The MST test was used to calibrate the model. The
results were then used to predict single stage triaxial tests.

Figure 52 shows the single stage tests performed at 500, 1000, 1500 and 2000

psi confining pressures. These tests were performed on twin samples to this study’s

Miocene-2 sandstone by Al Salman et al. (2015). The red curves show the original

raw data. The black curves show the model predictions made using the parameters

shown in Table 17. The comparison shows that the model predicts the individual

triaxial test data quite well for 1500 and 2000 psi confining pressures (2-3% error).
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For 500 psi and 1000 psi confining pressures, the model deviates somewhat at higher

deviatoric stress(5-7% error). One potential interpretation of this observation is that

the samples are not proper twins for one another.

(a) SST prediction 500 psi confining (b) SST prediction 1000 psi confining

(c) SST prediction 1500 psi confining (d) SST prediction 2000 psi confining

Figure 52: SST data prediction for Miocene sandstone at four different confining pressures.
The red line is the raw data, and the black line is the model prediction. The
model predicts the data quite well.

3.8 Generalized Stress Path for Plastic Strains

We have extended the compaction model to predict plastic strains along any stress

path by calibrating the model parameters using triaxial stress path data (Equation

32). Figure 53 shows the plastic strains calculated for the Miocene-1 sandstone sample

discussed in the previous section. The plastic strains are predicted for a constant mean

stress path, shown in figure 53a and for constant deviatoric stress path, shown in

figure 53b. As expected, the plastic strains increase due to increases in the deviatoric
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stress (const. mean stress test), and decrease due to increases in the mean stress

(const. deviatoric stress test). Future work will involve verifying these predictions by

comparing to laboratory tests run under these conditions.

(a) Constant mean stress prediction (b) Constant deviatoric stress prediction

Figure 53: (A) Constant mean stress prediction. (B)Constant deviatoric stress prediction.
The plastic strains increase due to increasing deviatoric stress (const. mean
stress test), and decrease due to increasing mean stress (const. deviatoric stress
test).

3.8.1 Matlab GUI

Figure 54 shows model predictions for plastic strains along varying stress paths.

The figure was generated using a model program run in Matlab. The program takes

(ηo,kd,km) as inputs and calculates plastic strains as a function of stress path. The

first figure shows plastic strains for a triaxial stress path. As both mean and deviatoric

stresses are changing, the plastic strains are plotted on a surface. The second figure

shows plastic strains for both constant mean and constant deviatoric stress. The

third and fourth figures are 2D projections of model results for constant mean stress

and constant deviatoric stress paths. As expected, for constant mean stress, plastic

strains increase with increasing deviatoric stress. Similarly, for constant deviatoric

stress, the plastic strains decrease with increasing mean stress. Qualitatively, the

modeled plastic strains for the constant mean and constant deviatoric stress paths are

correct. Future work will involve performing constant mean and constant deviatoric

66



stress path experiments and then validating the results by making predictions from

a triaxial stress path. This is a pretty unique and exciting result. If this proves to be

correct this is a giant leap forward in our ability to model the stress strain behavior

of rocks.

Figure 54: Matlab interface for calculating plastic strains along different stress paths. The
model is calibrated from a triaxial stress path to predict other stress paths. The
first figure is a triaxial stress path. The second shows the predicted constant
mean and constant deviatoric stress path results. The third and fourth are the
2D projections of figure 2. As expected, the plastic strains increase for increasing
deviatoric stress and decrease for increasing mean stress.

67



Chapter 4: Sample Characterization

The purpose of this chapter is to provide quantitative visual insight into sample

deformation. Thin sections were analyzed for samples of the Fontainebleau Sandstone,

Boise Sandstone, and Miocene sandstone. Both pre-test and post-test thin sections

were analyzed in order to quantify potential controlling sample characteristics and

the induced strains. Thin sections were scanned using transmitted light, and cross

polarized light, at 0 and 45 degree polarizer rotations from a Ziess Axio Imager with

an automated stage. The purpose of obtaining multiple images in transmitted light

was to obtain framework grain compositional information not directly available in

transmitted light alone. The following information was obtained using thin section

analysis:

� Porosity % (total area of segmented pores/total area analyzed)

� Contact ratio (total length of grain contacts/total framework grain perimeter)

� Cement %(total area of mineral cements/total area analyzed)

� Number of Cracks, total length of induced cracks, and crack orientation

� Framework Grain Mineralogy

In this section we discuss these properties for the samples that were analyzed. The

objective is to understand the modeling parameters as a function of sample charac-

terization.

4.1 Fontainebleau-1 Sandstone Characterization

MST tests were run on two sets of two Fontainebleau Sandstones, as discussed

in section 2.2.5. Figure 55 shows the full scale thin section scan of a Pre-test

68



Fontainebleau Sandstone. The whole thin section was not analyzed. Instead, the

thin section was divided into smaller tiles, and they were analyzed until the analyzed

statistics became constant as a function of the number of tiles analyzed.

Figure 55: Pre-test Fontainebleau-1 Sandstone thin-section. The black circles show the
regions from which tiles were selected for quantitative analysis. The scale bar is
0.2 in.

On average, 150 framework grains were analyzed for each sample, which resulted

in stable values for mineralogy, and contact. Any more grains analyzed did not change

the overall statistics. This was equivalent to 7 to 8 small tiles. The black circles on

Figure 55 show the regions where the tiles were selected to be analyzed. Figure 56

shows a single tile under transmitted light, and its analysis using internally developed

software named QPI (Quantitative Petrographic Interpretation ).

The porosity is quantified first, as shown in figure 57a. The software samples

a representative region of the blue dyed epoxy. The color associated with porosity

can then be expanded until the entire porosity area is selected. In this image, the

porosity is on the order of 12%. The next step is to hand draw all the contacts

69



among grains, as shown in 57b. The contacts are shown as red lines. -The contact

ratio is calculated by dividing the total length of the contacts among grains by the

total grain perimeter. For the Fontainebleau-1 Sandstone, the contact ratio is 0.22

(or 22%). After identifying grain contacts, quartz cement is quantified, as shown in

57c. Finally, the framework grainmineralogy is selected, and the final analyzed image

is shown in figure 57d. In this case, all the grains are quartz. The yellow color grains

are mono quartz, and the mustard color is poly quartz.

(a) Single image tile (b) Analyzed image in QPI

(c) 0 degree cross polar (d) 45 degree cross polar

Figure 56: The analyzed image shows the sampled porosity, percentage cement, contacts
between grains, and sampled grains. The scale bar is 200 microns.

Figure 58 shows the post-test axial thin section of the Fontainebleau-1.10 Sand-

stone sample. This sample was run to a confining pressure of 2500 psi (high stress

stage). An incipient failure surface can be seen at the top left of the thin section

image. The black circles show the regions from which the tiles were selected to be

analyzed.
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(a) sampled porosity (b) Contacts drew in red line

(c) Quantified Cements (d) Final image with grains

Figure 57: Workflow used to analyze the Fontainebleau Sandstone thin section. First, the
porosity (13%) is quantified, then contacts (22%), then cements (18%), and
finally, grains are quantified. The scale bar is 200 microns.

Figure 58: Post-test Fontainebleau-1-10 Sandstone thin-section image showing regions of
interest. The sample was tested to a confining pressure of 2500 psi. An incipient
failure surface can be seen in the thin-section. The black circles are the regions
from which tiles were selected for detailed analysis. The scale bar is 0.2 in.
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(a) Single image tile (b) Analyzed image in QPI

(c) 0 degree cross polar (d) 45 degree cross polar

Figure 59: The analyzed image shows the sampled porosity, percentage cement, contacts
between grains and sampled grains. The scale bar is 200 microns.

Figure 59 shows a single image tile in transmitted light, and its analysis using the

QPI software. The sampled porosity is approximately 12%, shown in the blue color.

The cement volume is approximately 14%. The cements are the regions colored pink

occurring as overgrowths on framework grains. The contact ratio among grains is

on the order of 0.26, or 26%. The yellow grains are mono quartz and the mustard

colored grains are poly quartz.

Figure 60 shows the post-test thin section of the Fontainebleau-1.9 Sandstone

sample. This sample was run to a confining pressure of 2000 psi (mid stress stage)

confining pressure. The black circles are the regions from which the tiles were selected

to be analyzed.
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Figure 60: Post-test Fontainebleau-1-9 Sandstone thin-section. The sample was run to a
confining pressure of 2000 psi. The black circled regions indicate where the tiles
were selected for analysis. The scale bar is 0.2 inch.

(a) Single image tile (b) Analyzed image in QPI

(c) 0 degree cross polar (d) 45 degree cross polar

Figure 61: The analyzed image shows the sampled porosity (12%), percentage cement
(17%), contacts (26%) between grains, and sampled grains. The scale bar is
200 microns.
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Figure 61 shows a single image tile in transmitted light, and its analysis using

the QPI software. The sampled porosity is on the order of 10%, shown in blue color.

The cement volume approximately 17%. The cements are the regions colored pink

occurring as overgrowths on framework grains. The contact ratio among grains is

approximately 0.26. All the grains are mono quartz.

Table 19 contains a summary of the characterization data for one pre-test and

two post-test samples of the Fontainebleau-1 Sandstone. There is a slight reduction

in porosity with increasing confining pressure. This is expected as porosity decreases

with increasing stress. The cement volume is almost constant. The contact ratio has

increased. This is also expected as a result of applied stresses and porosity decrease.

Table 19: Fontainebleau-1 Sandstone sample characterization summary.

Sample
name

Confining
pressure (psi)

Porosity
(%)

Cements
(%)

Contact ratio
(%)

FB-Pre 0 13 18 22
FB-1-9 2000 12 17 26
FB-1-10 2500 10 17 26

The cracks were counted separately by drawing them individually on each tile.

The purpose was to quantify the cracks present in the samples pre-test and post-test.

Specifically, we were interested in how the cracks evolve from pre-test to post-test

(intermediate stress stage) and post-test (final stress stage). The following criteria

was used to quantify a crack:

� A crack is identified if it is preferentially oriented with respect to a present day

grain contact at which stresses would be transmitted during testing.

� A crack is identified if it is oriented with respect to present day grain contact.

� A crack is also quantified if it connects along a contact and propagates through

the adjacent grains and cements boundaries.
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On average, 30% of the whole thinsection was examined. That area was sufficient

so that crack statistics stabilized, as shown in figure 62. The mean number of cracks

analyzed stabilized after 6 image tiles were measured. Examining more images did

not change the mean number of cracks. The number of cracks was then normalized

to per centimeter square area.

Figure 62: Mean cracks as a function of the number of image tiles analyzed for the
Fontainebleau 1.9 Sandstone sample. The mean stabilizes after segment number
6.

Figure 63 shows a post-test sample image tile for the Fontainebleau 1.10 Sandstone

sample. The cracks are generated during the MST test. Figure 64 shows the analyzed

image. The cracks are drawn in red and identified by hand. The cracks are counted,

and their orientation is determined using QPI. The cracks were identified following

the protocols outlined above.

Table 20 shows the total number of incremental cracks per square centimeter for

one Fontainebleau-1 pre-test and two post-test samples. Incremental cracks are those

cracks that are generated only at the specified stress stage. The table also contains

a column for vertical cracks only. The vertical cracks were identified as those whose

orientation was at a greater than 45 degree angle.
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Figure 63: The post-test image for Fontainebleau 1.10 Sandstone shows the cracks generated
during a MST test. The scale bar is 1000 microns.

Figure 64: The analyzed image for Fontainebleau 1.10 Sandstone shows the cracks drawn
on the tile with a red line. The cracks are counted along with their orientation.
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Table 20: Fontainebleau-1 Sandstone sample cracks summary.

Sample
name

Confining
pressure

incremental
cracks/cm.sq

Vertical inc.
cracks/cm.sq

FB-Pre 0 9 9
FB-1-9 2000 79 73
FB-1-10 2500 272 237

Figure 65 shows the total number of incremental vertical cracks versus end stage

stress. There is an exponential relationship. This shows that the sample is approach-

ing failure at a higher stage, and corresponds to the exponential increase in acoustic

emission events as a function of stress observed by Prakash (2018 ).

Figure 65: There is an exponential relationship between the total number of cracks as a
function of increasing stress stage.

4.2 Fontainebleau-3 Sandstone Characterization

Similar analyses were performed on Fontainebleau-3 Sandstone as those described

for the Fontainebleau-1 sandstone sample. The Fontainebleau-3 Sandstone has a per-

meability of 1 mD. Figure 66 shows the full scale thin section of pre-test Fontainebleau-

3 Sandstone. Similar to the approach outlined above, the whole thin section was not
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analyzed. Rather, the thin section was divided into smaller tiles, and they were

analyzed until the statistics became constant as a function of the number of tiles

analyzed.

Figure 66: Pre-test Fontainebleau-3 Sandstone thin-section. The black circles are the re-
gions from which the tiles were selected to be analyzed. The scale bar is 0.2
inch.

(a) Single image tile (b) Analyzed image in QPI

Figure 67: The analyzed image for the Fontainebleau-3 Sandstone pre-test shows the sam-
pled porosity (12%), percentage cement (15%), contacts between grains (27%),
and sampled grains. The scale bar is 200 microns.
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Figure 68: Post-test Fontainebleau-3.5 Sandstone thin-section. The black circles are the
regions from which the tiles were selected to be analyzed. The scale bar is 0.2
inch.

(a) Single image tile (b) Analyzed image in QPI

(c) 0 degree cross polar (d) 45 degree cross polar

Figure 69: An analyzed image for the Fontainebleau-3.5 Sandstone sample post-test shows
the segmented porosity(10%), cement volume (14%), contacts (29%) between
grains, and identified framework grains. The scale bar is 200 microns.
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Figure 67 shows a single image tile in transmitted light, and its analysis using

the QPI software. The sample porosity is on the order of 12%, shown in blue color.

The volume of cement is approximately 15%. The cements are the regions colored

pink occurring as overgrowths on framework grains. The contact ratio among grains

is approximately 0.27, or 27%. All the grains are mono quartz.

Figure 68 shows the full scale thin section image of post-test Fontainebleau-3.5

Sandstone. The whole thin section was not analyzed. Instead, the thin section was

divided into smaller tiles, and they were analyzed until the statistics became constant

as a function of the number of tiles analyzed.

Figure 69 shows a single image tile in transmitted light, and its analysis using

QPI software. The segmented porosity is approximately 10%, shown in blue color.

The volume of cement is approximately 15%. The cements are the regions colored

pink occurring as overgrowths on framework grains. The contact ratio among grains

is approximately 0.29, or 29%. All the grains are mono quartz.

Figure 70: Post-test Fontainebleau-3.4 Sandstone thin-section. The black circles are the
regions from which the tiles were selected for analysis. The scale bar is 0.2 inch.
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Figure 70 shows the full scale thin section of post-test Fontainebleau-3.5 Sand-

stone. The whole thin section was not analyzed. Instead, the thin section was divided

into smaller tiles, and they were analyzed until the statistics became constant as a

function of tiles analyzed.

Figure 71 shows a single image tile in transmitted light, and its analysis using the

QPI software. The segmented porosity is on the order of 9%, shown in blue color.

The volume of cement is approximately 17%. The cements are the regions colored

pink occurring as overgrowths on framework grains. The contact ratio among grains

is approximately 0.29, or 29%. All the grains are mono quartz.

(a) Single image tile (b) Analyzed image in QPI

Figure 71: A sample analyzed image for the Fontainebleau-3.4 Sandstone sample post-test
shows the segmented porosity (9%), volume of cement (15%), contacts between
grains (40%), and identified framework grains.

Table 21 contains a summary of the sample characterization data for one pre-

test and two post-test samples of the Fontainebleau-3 Sandstone sample. There is a

reduction in porosity with increasing confining pressure. This is expected as porosity

decreases with increasing stress. The percentage cement has remained constant. The

contact ratio has increased. This is also expected as a result of increasing applied

pressure and the associated decrease in porosity.
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Table 21: Fontainebleau-3 Sandstone sample characterization summary.

Sample
name

Confining
pressure (psi)

porosity
(%)

cements
(%)

Contact ratio
(%)

FB-Pre 0 12 15 27
FB-3-5 2000 10 14 29
FB-3-4 2500 9 15 40

The cracks were counted separately by drawing them individually on each tile.

The purpose was to quantify the cracks present in the samples pre-test and post-test.

Specifically, we were interested in how the cracks evolve from pre-test to post-test

(intermediate stress stage) and post-test (final stress stage).The protocol followed

was described above in the discussion of the Fontainebleau-1 Sandstone. 30% of the

tile area was examined, which was enough to generate stable statistics, as shown in

figure 62. The statistics were observed to stabilize at segment 6. Examining more

tiles did not change the mean number of cracks. The number of cracks was then

normalized to per centimeter square area .

Table 22: Fontainebleau-3 Sandstone sample cracks summary.

Sample
name

Confining
pressure

incremental
cracks/cm.sq

Vertical inc.
cracks/cm.sq

FB-Pre 0 9 6
FB-3-5 2000 31 20
FB-3-4 2500 59 50

Table 22 shows the total number of incremental cracks per centimeter squared

for the Fontaine- bleau-3 pre-test and two post test samples. Incremental cracks

are those cracks that are generated only at the specified stress stage. The table also

contains a column for vertical cracks only. The vertical cracks were determined whose

orientation was greater than 45 degree angle.

Figure 72 shows the total number of incremental vertical cracks versus end stage

stress. The exponential relationship shows that cracks are being generated at a faster
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rate at higher stress stage. This indicates that the sample is approaching failure.

Figure 72: There is an exponential relationship between total number of cracks and the end
stage stress.

4.3 Boise Sandstone Sample Characterization

Similar analyses were performed on Boise Sandstone samples as those performed

on the Fontainebleau Sandstone samples. Figure 73 shows the full scale thin section

scan of the pre-test Boise Sandstone sample. The whole thin section was not analyzed.

Instead, the thin section was divided into smaller tiles, and they were analyzed until

the statistics became constant as a function of the number of tiles analyzed.

Figure 74 shows a single image tile in transmitted light, and its analysis using

the QPI software. The segmented porosity is on the order of 25%, shown in blue

color. The volume of cement is approximately 2%. Note that in the case of the Boise

Sandstone cements include clay grain coatings (principally illite) and local feldspar

overgrowths. The identified cement is shown in the pink color, typically ovuring as

clay grain coatings. The contact ratio among grains is approximately 10%, signifi-

cantly lower than for the Fontainebleau. Framework grain analysis for this image of

the Boise Sandstone is approximately 38% k-feldspar, 37% quartz, 10% plagioclase
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feldspar, and 3% biotite and 10% lithic fragments.

Figure 73: Pre-test Boise Sandstone thin-section. The black circles are the regions from
which the tiles were selected for analysis. The scale bar is 400 microns.

(a) Single image tile (b) Analyzed image in QPI

(c) 0 degree cross polar

Figure 74: The analyzed image for the Boise Sandstone pre-test shows the sampled porosity,
percentage cement, contacts between grains, and sampled grains. The scale bar
is 400 microns.
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Figure 75: Post-test Boise Sandstone thin-section. The black circles are the regions from
which tiles were selected for analysis. The scale bar is 0.2 inch.

(a) Single image tile (b) Analyzed image in QPI

(c) 0 degree cross polar (d) 45 degree cross polar

Figure 76: An analyzed image for the Boise-1.1 Sandstone sample post-test shows the
segmented porosity, volume of cement, contacts among grains , and framework
mineralogy.
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Figure 75 shows the full scale thin section scan of a post-test Boise Sandstone

sample. The whole thin section was not analyzed. Instead, the thin section was

divided into smaller tiles, and they were analyzed until the statistics became constant

as a function of tiles analyzed.

Figure 76 shows a single image tile in transmitted light, and its analysis using QPI

software. The segmented porosity is on the order of 24%, shown in blue color. The

volume of cement is approximately 2%, principally comprising clay grain coatings.

The contact ratio among grains is approximately 10%. This image of the Boise Sand-

stone sample comprises approimately 36% k-feldspar, 37% quartz, 16% plagioclase,

4% biotite, and 10% lithic fragments.

Figure 77 shows the full scale thin section image of a post-test Boise Sandstone

sample. The whole thin section was not analyzed. Instead, the thin section was

divided into smaller tiles, and they were analyzed until the statistics became constant

as a function of the number of tiles analyzed.

Figure 78 shows a single image tile in transmitted light, and its analysis using

the QPI software. The sampled porosity is on the order of 22%, shown in blue

color. The percentage cement is approximately 2%, comprising primarily illitic grain

coatinbs. The contact ratio among grains is approximately 12%. This image of the

Boise-1.2 Sandstone sample contains approximately 40% k-feldspar, 30% quartz, 16%

plagioclase, 6% biotite and 5% lithic fragments .

Table 23 contains the summary of characterization data for one pre-test and two

post-test samples of the Boise Sandstone. There is a reduction in porosity with in-

creasing confining pressure. This is expected as porosity decreases with increasing

stress. Both cement and contact ratio have remained approximately constant, al-

though the contact ratio increases slightly. Table 24 shows the grain distribution.

The majority of grains are k-feldspar and quartz. There is also some illite clay, pla-

gioclase feldspar, biotite, and muscovite.
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Figure 77: Scan of post-test Boise Sandstone thin-section. The black circles are the regions
where tiles were selected for analysis.

(a) Single image tile (b) Analyzed image in QPI

(c) 0 degree cross polar (d) 45 degree cross polar

Figure 78: An analyzed image tile for the Boise-1.2 Sandstone sample post-test illustrating
the segmented porosity, volume of cement, contacts among grains, and frame-
work grain mineralogy.
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Table 23: Boise Sandstone sample characterization summary.

Sample
name

Confining
pressure (psi)

porosity (%) cements (%)
Contact ratio

(%)
BSE-Pre 0 25 2 10
BSE-1-1 2000 24 2 10
BSE-1-2 3000 22 1 11

Table 24: Boise Sandstone framework grain characterization summary.

Sample
name

K-spar
(%)

Quartz
(%)

Plagioclase
(%)

Biotite
(%)

Lithic fragments
(%)

Illite
clay (%)

BSE-Pre 38 37 10 2 10 3
BSE-1-1 36 37 10 4 10 2
BSE-1-2 40 30 16 6 5 3

The cracks were counted separately by drawing them individually on each tile.

The purpose was to quantify the cracks pre-test and post-test. Specifically, how

the cracks evolve from pre-test to post-test (intermediate stress stage) and post-test

(final stress stage). The protocol followed was similar to that for the Fontainebleau

Sandstone. On average, 30% of the tile area was examined, which was sufficient for

statistical analyses to become stable, as shown in figure 62. Statistics stabilized after

the analysis of 6 image tiles. Examining more slides did not change the mean number

of cracks. The number of cracks was then normalized to per centimeter square area.

Table 25: Boise Sandstone sample cracks summary.

Sample
name

Confining
pressure

incremental
cracks/cm.sq

Vertical inc.
cracks/cm.sq

BSE-Pre 0 7 4
BSE-1-1 2000 17 14
BSE-1-2 3000 68 55
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Figure 79: There is an exponential relationship between the total number of cracks and
stress at each stage.

Table 25 shows the total number of incremental cracks per centimeter square for

Boise Sandstone pre-test and two post test samples. Incremental cracks are those

cracks that are generated only at the specified stress stage. The table also contains a

column for vertical cracks only. The vertical cracks were identified as those orientation

was greater than 45 degree angle.

Figure 79 shows the total number of incremental vertical cracks versus end stage

stress. The exponential relationship shows that the cracks are being generated faster

at higher stress stages, indicating that the sample is approaching failure.

4.4 Miocene sandstone

MST tests were performed on two Miocene sandstone samples. One sample was

unloaded at a strain ratio of 0.5, while the second at a strain ratio of 0.3. The

purpose was to see the difference in damage as a function of the point selected for

unloading. The image analysis methodology is as previously described. One pre-test

Miocene sandstone thin section and two post-test Miocene sandstone thin sections
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were analyzed, and the results compared.

Figure 80: Pre-test Miocene sandstone thin-section. The black circles are the regions from
which tiles were selected for analysis.

(a) Single image tile (b) Analyzed image in QPI

(c) 0 degree cross polar (d) 45 degree cross polar

Figure 81: The analyzed image for Miocene sandstone pre-test shows the segmented poros-
ity, volume of cement, contacts among grains, and framework grain mineralogy.
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Figure 80 shows the full scale thin section scan of the pre-test Miocene sandstone.

The whole thin section was not analyzed. Instead, the thin section was divided into

smaller tiles, and they were analyzed until the statistics became constant as a function

of the number of tiles analyzed.

Figure 81 shows a single image tile in transmitted light, and its analysis using

QPI software. The segmented porosity is approximately 20%, shown in blue color.

The volume of cement is approximately 7%. All of the identified cements are present

as quartz overgrowths. The contact ratio among grains is on the order of 15%. The

Miocene sandstone frameword grain composition is given by: 20% feldspar, 70%

quartz, 3% plagioclase, 2% illite clay, and 2% shale clast.

Figure 82 shows the full scale thin section of post-test Miocene sandstone. The

whole thin section was not analyzed. Instead, the thin section was divided into smaller

tiles, and they were analyzed until the statistics became constant as a function of tiles

analyzed.

Figure 82: Post-test Miocene sandstone thin-section. The black circles are the regions from
which tiles were selected for analysis.
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Figure 83 shows a single image tile in transmitted light, and its analysis using

the QPI software. The sampled porosity is on the order of 19%, shown in blue color.

The volume of cement is approximately 6%. All of the identified cements are present

as quartz overgrowths. The contact ratio among grains is approximately 17%. This

Miocene sandstone sample has a framework mineralogy including: 15% feldspar, 71%

quartz, 2% illite clay, 2% shale clasts and 10% plagioclase.

(a) Single image tile (b) Analyzed image in QPI

(c) Analyzed image in QPI (d) Analyzed image in QPI

Figure 83: The analyzed image for Miocene sandstone post-test shows the segmented poros-
ity, volume of cement, contacts among grains, and the framework grain miner-
alogy.

Figure 84 shows the full scale thin section of the post-test Miocene-3 sandstone.

The whole thin section was not analyzed. Instead, the thin section was divided into

smaller tiles. Additional tiles were analyzed until the statistics became constant as a

function of the number of tiles analyzed.
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Figure 84: Post-test Miocene-3 sandstone thin-section. The black circle is the region from
where the tiles were selected to be analyzed.

(a) Single image tile (b) Analyzed image in QPI

Figure 85: An analyzed image tile for the Miocene-3 sandstone sample post-test shows
the segmented porosity, volume of cement, contacts among grains, and the
framework mineralogy.

Figure 85 shows a single image tile in transmitted light, and its analysis using the

QPI software. The sampled porosity is approximately 22%, shown in blue color. The

volume of cement is approximately 6%. All identified cement is quartz overgrowth.

The contact ratio among grains is on the order of 14%. The framework mineralogy of

this Miocene sandstone sample is: 15% feldspar, 5% quartz, 5% illite clay, 3% shale
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clasts and 5% plagioclase.

Table 26 contains the summary of the characterization data for one pre-test and

two post-test samples of the Miocene sandstone. There is a reduction in porosity

with increasing confining pressure. Porosity has reduced just 1% for unloading at a

strain ratio of 0.5. For a strain ratio of 0.3, the porosity is higher. This is likely due

to differences resulting from sample twinning. Cement volumes remain constant As

expected. The contact ratio has increased for the Miocene-1 sandstone sample. This is

expected as contacts increase at higher stress. For Miocene-3 sandstone, the contact

ratio has slightly decreased. Once again, this is likely due to differences resulting

from sample twinning, although the lower strain ratio at the unloading point may

also have influenced this number. Table 27 shows a summary of the framework grain

mineralogy. The majority of grains are feldspar and quartz. There are also some clay

clasts and chert.

Table 26: Miocene sandstone sample characterization summary.

Sample
name

Unload strain
ratio

porosity
(%)

cements
(%)

Contact
ratio (%)

MSE-Pre NA 20 7 15
MSE-1 0.5 19 6 17
MSE-3 0.3 22 8 14

Table 27: Miocene sandstone grains characterization summary.

Sample
name

K-spar
(%)

Quartz
(%)

Chert
(%)

Illite
clay (%)

Plagioclase
(%)

shale clast
(%)

MSE-Pre 20 70 3 2 5 2
MSE-1 15 71 0 2 10 2
MSE-3 15 75 2 5 5 3

The cracks were counted separately by drawing them individually on each tile.

The purpose was to quantify the evolution of the number of cracks as a function of

stress. The protocol followed was similar to that described above for the Fontainebleau
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Sandstone. 30% of the tile area was examined, which was sufficient to generate robust

statistics, as shown in figure. 62. The number of normalized cracks stabilized after

6 image tiles were analyzed. Examining more tiles did not change the mean number

of cracks. The number of cracks was then normalized to per centimeter square area.

Table 28 shows a summary of the Miocene sandstone sample cracks analysis.

Table 28: Miocene sandstone sample cracks summary.

Sample
name

Unload
strain ratio

incremental
cracks/cm.sq

Vertical inc.
cracks/cm.sq

MSE-Pre NA 22 15
MSE-1 0.5 130 81
MSE-3 0.3 66 38

Miocene-1 sandstone sample has more cracks as compared to the Miocene-3 sand-

stone sample. This results from the change in the point selected for unloading. Un-

loading at a strain ratio of 0.5 induces more damage to the sample than unloading at

a strain ration of 0.3.

4.5 Characterization Discussion

Analysis of cracks pre-test and post-test show that the number of cracks increases

exponentially as a function of intermediate and final stress stage. This is consistent

with our model base case assumption of the exponential distribution. The result is

also consistent with the exponential distribution of acoustic emissions observed by

Parkash et al. (2017).

In the introduction chapter, we have discussed that one of the main reasons for the

difference between static and dynamic properties is that the dynamic properties are

highly dependent on contacts among grains whereas cements impact the compressive

strength. Figure 86 shows a plot of M1 vs Contact ratio. In section 2.3.2 we have

discussed that M1 is the velocity (dynamic) measurement. The plot in figure 86 shows
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that the dynamic data is directly proportional to the contact ratio among grains for

different rock types.

Figure 86: M1 (dynamic data) vs contact ratio for different rock types. There is a linear
relationship between M1 and contact ratio.

Figure 87 is plot of maximum compressive strength (static data) vs percentage

cements. The plot shows that there is a direct linear relationship between the static

data and percentage cement.

Figure 87: Maximum compressive strength (static data) vs. percentage cement for different
rock types. There is a linear relationship between strength and cement volume.
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Figure 88: Total no. of cracks generated vs irrecoverable strains. There is no correlation
between the number of cracks generated and the percent irrecoverable strain.

We have discussed in detail that the physical mechanism that controls M1 is

acoustic velocity measurements. The non-linear elastic term M2 has been correlated

to irrecoverable strains. Figure 88 is a plot of the total number of cracks generated

post test vs. percent irrecoverable strains. There is no correlation between the number

of cracks generated and the percent irrecoverable strains. We then normalized the

cracks generated to the maximum deviatoric stress that the sample experienced during

testing. The samples that have experienced higher deviatoric stress generate more

cracks. Normalizing the number of cracks generated to the maximum deviatoric stress

allows us to compare the cracks generated at similar stress conditions as a function

of percent irrecoverable strain. Figure 89 is a plot of the total number of cracks

generated normalized to the maximum shear stress. The correlation is substantially

improved. A higher number of cracks generated results in higher irrecoverable strains.

The next step is to include the influence of porosity on the number of cracks

generated and irrecoverable strain. A lower porosity sample is expected to have more

cracks then as compared to a higher porosity sample. In a higher porosity sample,

the grains have more room to shift and turn instead of getting crushed, which is the
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case for a lower porosity sample. Figure 90 is the updated plot of the total number

of cracks generated normalized to maximum deviatoric stress and porosity versus

irrecoverable strains. The relationship is quite good now. For higher irrecoverable

strains, the number of generated cracks are higher.

Figure 89: Total number. of cracks generated, normalized to maximum shear stress vs.
irrecoverable strains. There is an improved correlation between the number of
cracks generated and percent irrecoverable strains. The higher the number of
normalized cracks generated the larger the irrecoverable strains.

Figure 90: Total no. of cracks generated, normalized to maximum deviatoric stress and
porosity vs. irrecoverable strains. There is an excellent correlation between the
normalized number of cracks generated and percent irrecoverable strains.
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The result in figure 90 establishes that irrecoverable strains are controlled by

the number of cracks generated, once we account for the change in porosity and the

maximum deviatoric stress applied. This provides us some intuition into the physical

mechanisms that controls irrecoverable strains. We have previously established that

M2 (hypermodulus)is related to irrecoverable strains. This means that the number of

cracks generated should also correlate with M2. Figure 91 is plot of the absolute value

of M2 versus the normalized number of cracks. A higher number of normalized cracks

corresponds to a higher value of M2 and a larger percent of irrecoverable strains.

The next step is to analyze how pre-test sample characterization parameters in-

fluence the number of cracks generated. This helps in predicting M2 directly from

pre-test sample parameters.

Figure 91: Total number of cracks generated, normalized to maximum deviatoric stress and
porosity vs M2. A higher number of cracks generated corresponds to higher
irrecoverable strains.

Figure 92 is a plot of the absolute value of M2 versus the volumes of porosity

and cements. There is a direct linear relationship between M2 and porosity. This

is expected as increasing porosity should result in higher irrecoverable strains. This

translates into a higher M2 value. Conversely, higher cement results in lower irrecov-
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erable strains and lower M2.

(a) M2 vs phi (b) M2 vs cements

Figure 92: M2 increases with increasing porosity and increases with decreasing cement
volume. This is expected as higher porosity should be related to higher irrecov-
erable strains, and a higher M2. Higher cement results in lower irrecoverable
strains and lower M2.

value. The correlation coefficients between M2 vs cements and M2 vs porosity are

0.74 and 0.88. The next step is to regress M2 with cements and porosity together

and see if a better correlation can be achieved. M2 can be written in term of porosity

and cements as

M2 = 1.07E7φ+ 6.9E6cmnt− 1.91E8. (33)

Where φ is porosity and cmnt is cements, both in percentage. The correlation co-

efficient for equation 33 is 0.98. This correlation factor is much better than the

individual correlation factors of 0.88 and 0.74 between M2 and cements and between

M2 and porosity respectively. Figure 93 is a plot showing the comparison between

measured and predicted M2 as a function of cements and porosity. M2 is predicted

using equation 33.
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Figure 93: Comparison of original and predicted M2 as a function of cements and porosity.
The blue points are the raw data and red points are predicted data. Equation
33 fits the data very well.

Figure 94 contains two plots of comparison between measured and predicted M2 as

a function of cements and porosity. M2 is predicted using equation 33. The predicted

data fits the original data quite well.

(a) M2 vs phi (b) M2 vs cements

Figure 94: Comparison of original and predicted M2 as a function of cements and porosity
on 2D plots. The red points are the raw data and blue points are predicted
data.

The above discussion gives some intuition into the physical mechanisms that con-

trol the modeling parameters, M1 and M2. M1 depends on the contact ratio, and M2

is controlled by the generation of cracks. The cracks depend on the amount of cement
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and sample porosity. We have not quantified the effects of mineralogy. Mineralogy

will also have effects on the modeling parameters, especially on the compaction model

parameters (ηo, kd, km) for plastic strains. Mineralogy will also control the creation

of cracks. We need the modified compaction model to predict irrecoverable strains for

samples having irrecoverable strains greater than 7%. The Fontainebleau Sandstone

and equally elastic materials will not need this correction. The triaxial test data can

simply be predicted using M1 and M2. Historically, the compaction model parameters

(ηo, kd, km) have been obtained by calibrating the model to a base case. Future work

will involve testing additional samples having irrecoverable strains greater than 7%.

Sufficient data will then be available to include the effects of mineralogy on the non-

linear elastic parameter and compaction model parameters. Table 29 is the summary

plot of modeling parameters for all the samples.

Table 29: Modeling parameters for every sample.

M1 M2 ηo kd km
Castlegate 1.50E+06 -5.30E+07 1.06E-04 512 -633

Austin chalk 1.70E+06 -1.04E+08 3.11E-03 606 -943
Austin Chalk-2 1.67E+06 -7.00E+07 4.22E-04 1000 -1100

Miocene-2 1.10E+06 -2.20E+07 7.86E-05 313 -210
BSE-1 1.24E+06 -8.00E+07 5.05E-04 115 -505
BSE-2 1.40E+06 -1.00E+08 2.15E-04 114 -200

Miocene-1 6.50E+06 -9.00E+07 4.69E-05 240 -195
FB-1.9-500mD 3.74E+06 -6.00E+07

NA
FB-1.10-500mD 2.16E+06 -5.50E+07
FB-3.5-1.1md 4.80E+06 -4.00E+07
FB-3.4-1.1md 4.15E+06 -3.40E+07

Berea 2.22E+06 -4.20E+07
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Chapter 5: Conclusions and Future work

5.1 Conclusions

1. A delineation of the separate mechanisms i.e. linear versus nonlinear effects in

the static elastic moduli has been documented using post-test sample charac-

terization.

2. A polynomial fit truncated at the quadratic term is fit up to the point of maxi-

mum curvature. The rest of the data, not captured by the fit, is interpreted as

plastic strains.

3. M1 is equal to the modulus obtained from velocity data at small strains, and

M2 (hypermodulus) correlates with the total percent irrecoverable strains.

4. The number of cracks generated is an exponential function of the confining

stress stage.

5. The number of cracks generated, normalized to the maximum deviatoric stress

and scaled to porosity, is related to irrecoverable strains and therefore M2.

6. M2 correlates with both porosity and cement volume.

7. A compaction model has been applied to predict plastic strains. The model

has three parameters, kd, km, and ηo, which can be calibrated by running a

multistage triaxial test.

5.2 Future Work

In the previous sections, we have documented that our model can be calibrated

by running an MST test on a sample of the formation of interest. The model can

then directly predict a triaxial test or the stress-strain behavior along any other stress
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path. We have validated the prediction for a triaxial stress path. We now need to

validate prediction for other stress paths by running tests along different stress paths

and comparing the model predictions. Future work will also involve modeling radial

strains. Plastic strains have been modeled assuming linear behavior of the compaction

model (Myers, and Hathon 2014). The linear model does not predict sample failure,

so nonlinear modeling should be performed for irrecoverable strains to predict sample

failure.

In its current form, the compaction model parameters (ηo, kd, km) have been

obtained by calibrating the model to a base case. Future work will involve running

additional samples that have irrecoverable strains higher than 7%. This should re-

sult in sufficient data to understand the influence of framework mineralogy on the

compaction model parameters.
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Appendix I

1 function k=LineCurvature2D(Vertices)

2 % This function calculates the curvature of a 2D line. It first fits

3 % polygons to the points. Then calculates the analytical ...

curvature from

4 % the polygons;

5 %

6 % k = LineCurvature2D(Vertices,Lines)

7 %

8 % inputs,

9 % Vertices : A M x 2 list of line points.

10 % (optional)

11 % Lines : A N x 2 list of line pieces, by indices of the vertices

12 % (if not set assume Lines=[1 2; 2 3 ; ... ; M-1 M])

13 %

14 % outputs,

15 % k : M x 1 Curvature values

16 %

17 %

18 %

19 % Example, Circle

20 % r=sort(rand(15,1))*2*pi;

21 % Vertices=[sin(r) cos(r)]*10;

22 % Lines=[(1:size(Vertices,1))' (2:size(Vertices,1)+1)']; ...

Lines(end,2)=1;

23 % k=LineCurvature2D(Vertices,Lines);

24 %

25 % figure, hold on;

26 % N=LineNormals2D(Vertices,Lines);

27 % k=k*100;
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28 % plot([Vertices(:,1) Vertices(:,1)+k.*N(:,1)]',[Vertices(:,2) ...

Vertices(:,2)+k.*N(:,2)]','g');

29 % plot([Vertices(Lines(:,1),1) ...

Vertices(Lines(:,2),1)]',[Vertices(Lines(:,1),2) ...

Vertices(Lines(:,2),2)]','b');

30 % plot(sin(0:0.01:2*pi)*10,cos(0:0.01:2*pi)*10,'r.');

31 % axis equal;

32 %

33 % Example, Hand

34 % load('testdata');

35 % k=LineCurvature2D(Vertices,Lines);

36 %

37 % figure, hold on;

38 % N=LineNormals2D(Vertices,Lines);

39 % k=k*100;

40 % plot([Vertices(:,1) Vertices(:,1)+k.*N(:,1)]',[Vertices(:,2) ...

Vertices(:,2)+k.*N(:,2)]','g');

41 % plot([Vertices(Lines(:,1),1) ...

Vertices(Lines(:,2),1)]',[Vertices(Lines(:,1),2) ...

Vertices(Lines(:,2),2)]','b');

42 % plot(Vertices(:,1),Vertices(:,2),'r.');

43 % axis equal;

44 %

45 % Function is written by D.Kroon University of Twente (August 2011)

46 % If no line-indices, assume a x(1) connected with x(2), x(3) ...

with x(4) ...

47 if(nargin<2)

48 Lines=[(1:(size(Vertices,1)-1))' (2:size(Vertices,1))'];

49 end

50 % Get left and right neighbor of each points

51 Na=zeros(size(Vertices,1),1); Nb=zeros(size(Vertices,1),1);

52 Na(Lines(:,1))=Lines(:,2); Nb(Lines(:,2))=Lines(:,1);

53 % Check for end of line points, without a left or right neighbor
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54 checkNa=Na==0; checkNb=Nb==0;

55 Naa=Na; Nbb=Nb;

56 Naa(checkNa)=find(checkNa); Nbb(checkNb)=find(checkNb);

57 % If no left neighbor use two right neighbors, and the same for ...

right...

58 Na(checkNa)=Nbb(Nbb(checkNa)); Nb(checkNb)=Naa(Naa(checkNb));

59 % Correct for sampeling differences

60 Ta=-sqrt(sum((Vertices-Vertices(Na,:)).ˆ2,2));

61 Tb=sqrt(sum((Vertices-Vertices(Nb,:)).ˆ2,2));

62 % If no left neighbor use two right neighbors, and the same for ...

right...

63 Ta(checkNa)=-Ta(checkNa); Tb(checkNb)=-Tb(checkNb);

64 % Fit a polygons to the vertices

65 % x=a(3)*tˆ2 + a(2)*t + a(1)

66 % y=b(3)*tˆ2 + b(2)*t + b(1)

67 % we know the x,y of every vertice and set t=0 for the vertices, and

68 % t=Ta for left vertices, and t=Tb for right vertices,

69 x = [Vertices(Na,1) Vertices(:,1) Vertices(Nb,1)];

70 y = [Vertices(Na,2) Vertices(:,2) Vertices(Nb,2)];

71 M = [ones(size(Tb)) -Ta Ta.ˆ2 ones(size(Tb)) zeros(size(Tb)) ...

zeros(size(Tb)) ones(size(Tb)) -Tb Tb.ˆ2];

72 invM=inverse3(M);

73 a(:,1)=invM(:,1,1).*x(:,1)+invM(:,2,1).*x(:,2)+invM(:,3,1).*x(:,3);

74 a(:,2)=invM(:,1,2).*x(:,1)+invM(:,2,2).*x(:,2)+invM(:,3,2).*x(:,3);

75 a(:,3)=invM(:,1,3).*x(:,1)+invM(:,2,3).*x(:,2)+invM(:,3,3).*x(:,3);

76 b(:,1)=invM(:,1,1).*y(:,1)+invM(:,2,1).*y(:,2)+invM(:,3,1).*y(:,3);

77 b(:,2)=invM(:,1,2).*y(:,1)+invM(:,2,2).*y(:,2)+invM(:,3,2).*y(:,3);

78 b(:,3)=invM(:,1,3).*y(:,1)+invM(:,2,3).*y(:,2)+invM(:,3,3).*y(:,3);

79 % Calculate the curvature from the fitted polygon

80 k = 2*(a(:,2).*b(:,3)-a(:,3).*b(:,2)) ./ ...

((a(:,2).ˆ2+b(:,2).ˆ2).ˆ(3/2));

81 function Minv = inverse3(M)

82 % This function does inv(M) , but then for an array of 3x3 matrices
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83 adjM(:,1,1)= M(:,5).*M(:,9)-M(:,8).*M(:,6);

84 adjM(:,1,2)= -(M(:,4).*M(:,9)-M(:,7).*M(:,6));

85 adjM(:,1,3)= M(:,4).*M(:,8)-M(:,7).*M(:,5);

86 adjM(:,2,1)= -(M(:,2).*M(:,9)-M(:,8).*M(:,3));

87 adjM(:,2,2)= M(:,1).*M(:,9)-M(:,7).*M(:,3);

88 adjM(:,2,3)= -(M(:,1).*M(:,8)-M(:,7).*M(:,2));

89 adjM(:,3,1)= M(:,2).*M(:,6)-M(:,5).*M(:,3);

90 adjM(:,3,2)= -(M(:,1).*M(:,6)-M(:,4).*M(:,3));

91 adjM(:,3,3)= M(:,1).*M(:,5)-M(:,4).*M(:,2);

92 detM=M(:,1).*M(:,5).*M(:,9)-M(:,1).*M(:,8).*M(:,6)-M(:,4).*M(:,2).*

93 M(:,9)+M(:,4).*M(:,8).*M(:,3)+M(:,7).*M(:,2).*M(:,6)-

94 M(:,7).*M(:,5).*M(:,3);

95 Minv=bsxfun(@rdivide,adjM,detM);
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Appendix II

1 classdef thesiscode exported < matlab.apps.AppBase

2

3 % Properties that correspond to app components

4 properties (Access = public)

5 UIFigure matlab.ui.Figure

6 kdEditFieldLabel matlab.ui.control.Label

7 kdEditField matlab.ui.control.NumericEditField

8 kmEditFieldLabel matlab.ui.control.Label

9 kmEditField matlab.ui.control.NumericEditField

10 DevMinEditFieldLabel matlab.ui.control.Label

11 DevMinEditField matlab.ui.control.NumericEditField

12 DevMaxEditFieldLabel matlab.ui.control.Label

13 DevMaxEditField matlab.ui.control.NumericEditField

14 MeanMinEditFieldLabel matlab.ui.control.Label

15 MeanMinEditField matlab.ui.control.NumericEditField

16 MeanMaxEditFieldLabel matlab.ui.control.Label

17 MeanMaxEditField matlab.ui.control.NumericEditField

18 MeanInitEditFieldLabel matlab.ui.control.Label

19 MeanInitEditField matlab.ui.control.NumericEditField

20 ThetaEditFieldLabel matlab.ui.control.Label

21 ThetaEditField matlab.ui.control.NumericEditField

22 UIAxes matlab.ui.control.UIAxes

23 compressibilityButton matlab.ui.control.Button

24 checkEditFieldLabel matlab.ui.control.Label

25 checkEditField matlab.ui.control.NumericEditField

26 UIAxes2 matlab.ui.control.UIAxes

27 UIAxes3 matlab.ui.control.UIAxes

28 UIAxes4 matlab.ui.control.UIAxes

29 DevoEditFieldLabel matlab.ui.control.Label
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30 DevoEditField matlab.ui.control.NumericEditField

31 MeanoEditFieldLabel matlab.ui.control.Label

32 MeanoEditField matlab.ui.control.NumericEditField

33 end

34

35

36 properties (Access = public)

37 mydata = load('data-1-14.mat'); % Description

38

39 end

40

41 methods (Access = public)

42

43 end

44

45

46 methods (Access = private)

47

48 % Code that executes after component creation

49 function startupFcn(app)

50

51 %mydata = load('data-1-14.mat');

52

53

54 end

55

56 % Button pushed function: compressibilityButton

57 function compressibility(app, event)

58 for k = 1:15

59

60 dev(k) = app.DevMinEditField.Value+k*500;

61 mean(k) = ...

dev(k)*app.ThetaEditField.Value+app.MeanInitEditField.Value;
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62 mean4000(k) = dev(k)*app.ThetaEditField.Value + ...

app.MeanInitEditField.Value-500;

63 mean5000(k) = dev(k)*app.ThetaEditField.Value + ...

app.MeanInitEditField.Value+500;

64 mean5500(k) = dev(k)*app.ThetaEditField.Value + ...

app.MeanInitEditField.Value+1000;

65 devo(k)=app.DevoEditField.Value;

66 meano(k)=app.MeanoEditField.Value;

67 end

68

69 kM = app.kmEditField.Value;

70 kM = app.kdEditField.Value;

71

72 for i = 1:15

73 compressibility(i) ...

=(1.01E-7)*exp((mean(i)-app.mydata.castle4000(1,2)) ...

*app.kmEditField.Value + (dev(i)- ...

app.mydata.castle4000(1,3))* app.kdEditField.Value);

74 compressibility4000(i) =(1.01E-7)* exp((mean4000(i)- ...

app.mydata.castle4000(1,2))* app.kmEditField.Value + ...

(dev(i)-app.mydata.castle4000(1,3))* ...

app.kdEditField.Value);

75 compressibility5000(i) =(1.01E-7)* exp((mean5000(i)- ...

app.mydata.castle4000(1,2))* app.kmEditField.Value + ...

(dev(i)- app.mydata.castle4000(1,3))* ...

app.kdEditField.Value);

76 compressibility5500(i) =(1.01E-7)* exp((mean5500(i)- ...

app.mydata.castle4000(1,2))* app.kmEditField.Value + ...

(dev(i)- app.mydata.castle4000(1,3))* ...

app.kdEditField.Value);

77 compressibility4500(i) =(1.01E-7)* exp((mean(i)- ...

app.mydata.castle4000(1,2))* app.kmEditField.Value + ...

(dev(i)- app.mydata.castle4000(1,3))* ...
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app.kdEditField.Value);

78 compressibilitym(i) =(1.01E-7)* exp((mean(i)- ...

app.mydata.castle4000(1,2))* app.kmEditField.Value + ...

(devo(k)- app.mydata.castle4000(1,3))* ...

app.kdEditField.Value);

79 compressibilityd(i) = (1.01E-7)* exp((meano(k)- ...

app.mydata.castle4000(1,2))* app.kmEditField.Value + ...

(dev(i)- app.mydata.castle4000(1,3))* ...

app.kdEditField.Value);

80 end

81

82 mean = mean.';

83 dev = dev.';

84 meano = meano.';

85 devo = devo.';

86 app.checkEditField.Value=dev(2);

87 %plot3(app.UIAxes,mean,dev,mean5000);

88

89 %%

90 j=1;

91

92 for i = 1:15

93 surface(j,1)= mean4000(i);

94 surface(j,2)=dev(i);

95 surface(j,3)=compressibility4000(i);

96 j=j+1;

97 end

98 for i = 1:15

99 surface(j,1)= mean(i);

100 surface(j,3)=compressibility4500(i);

101 surface(j,2)=dev(i);

102 j=j+1;

103 end
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104 for i = 1:15

105 surface(j,1)= mean5000(i);

106 surface(j,2)=dev(i);

107 surface(j,3)=compressibility5000(i);

108 j=j+1;

109 end

110 for i = 1:15

111 surface(j,1)= mean5500(i);

112 surface(j,2)=dev(i);

113 surface(j,3)=compressibility5500(i);

114 j=j+1;

115 end

116

117

118 %%

119 ax=app.UIAxes2;

120 %scatter3 (app.UIAxes,mean,dev,compressibility);

121 %hold(app.UIAxes);

122

123

124 scatter3(app.UIAxes2,meano,dev,compressibilityd);

125 app.UIAxes2.ZLim=[0 0.00001];

126 app.UIAxes2.YLim=[9000 13000];

127 app.UIAxes2.XLim=[7000 10000];

128

129

130 hold(app.UIAxes2);

131 scatter3(app.UIAxes2,mean,devo,compressibilitym);

132

133 scatter(app.UIAxes3,dev,compressibilityd);

134 hold(app.UIAxes3);

135 scatter (app.UIAxes3,dev,compressibility5500);

136 app.UIAxes3.YLim=[0 0.00002];
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137 app.UIAxes3.XLim=[9000 13000];

138

139 scatter(app.UIAxes4,mean,compressibilitym);

140 app.UIAxes4.XLim=[7000 10000];

141 app.UIAxes4.YLim=[0 0.00001];

142 hold(app.UIAxes4);

143 scatter (app.UIAxes4,mean,compressibility5500);

144

145

146

147 scatter3(app.UIAxes,surface(:,1),surface(:,2),surface(:,3));

148 %app.UIAxes.YLim=[9000 13000];

149 %app.UIAxes.XLim=[7000 10000];

150 app.UIAxes.ZLim=[0 0.000001];

151 hold(app.UIAxes);

152 tri = delaunay(surface(:,1),surface(:,2));

153 plot(app.UIAxes,surface(:,1),surface(:,2),'.')

154 %%

155 % How many triangles are there?

156 [r,c] = size(tri);

157 disp(r)

158 %% Plot it with TRISURF

159 trisurf(tri,surface(:,1), surface(:,2), ...

surface(:,3),'Parent',app.UIAxes);

160 %axis vis3d

161

162 end

163 end

164

165 % App initialization and construction

166 methods (Access = private)

167

168 % Create UIFigure and components
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169 function createComponents(app)

170

171 % Create UIFigure

172 app.UIFigure = uifigure;

173 app.UIFigure.Position = [100 100 913 671];

174 app.UIFigure.Name = 'UI Figure';

175

176 % Create kdEditFieldLabel

177 app.kdEditFieldLabel = uilabel(app.UIFigure);

178 app.kdEditFieldLabel.HorizontalAlignment = 'right';

179 app.kdEditFieldLabel.VerticalAlignment = 'top';

180 app.kdEditFieldLabel.Position = [51 588 25 15];

181 app.kdEditFieldLabel.Text = 'kd';

182

183 % Create kdEditField

184 app.kdEditField = uieditfield(app.UIFigure, 'numeric');

185 app.kdEditField.Position = [91 584 100 22];

186 app.kdEditField.Value = 0.002222;

187

188 % Create kmEditFieldLabel

189 app.kmEditFieldLabel = uilabel(app.UIFigure);

190 app.kmEditFieldLabel.HorizontalAlignment = 'right';

191 app.kmEditFieldLabel.VerticalAlignment = 'top';

192 app.kmEditFieldLabel.Position = [51 557 25 15];

193 app.kmEditFieldLabel.Text = 'km';

194

195 % Create kmEditField

196 app.kmEditField = uieditfield(app.UIFigure, 'numeric');

197 app.kmEditField.Position = [91 553 100 22];

198 app.kmEditField.Value = -0.001621;

199

200 % Create DevMinEditFieldLabel

201 app.DevMinEditFieldLabel = uilabel(app.UIFigure);
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202 app.DevMinEditFieldLabel.HorizontalAlignment = 'right';

203 app.DevMinEditFieldLabel.VerticalAlignment = 'top';

204 app.DevMinEditFieldLabel.Position = [29 519 47 15];

205 app.DevMinEditFieldLabel.Text = 'DevMin';

206

207 % Create DevMinEditField

208 app.DevMinEditField = uieditfield(app.UIFigure, ...

'numeric');

209 app.DevMinEditField.Position = [91 515 100 22];

210 app.DevMinEditField.Value = 7000;

211

212 % Create DevMaxEditFieldLabel

213 app.DevMaxEditFieldLabel = uilabel(app.UIFigure);

214 app.DevMaxEditFieldLabel.HorizontalAlignment = 'right';

215 app.DevMaxEditFieldLabel.VerticalAlignment = 'top';

216 app.DevMaxEditFieldLabel.Position = [26 480 50 15];

217 app.DevMaxEditFieldLabel.Text = 'DevMax';

218

219 % Create DevMaxEditField

220 app.DevMaxEditField = uieditfield(app.UIFigure, ...

'numeric');

221 app.DevMaxEditField.Position = [91 476 100 22];

222 app.DevMaxEditField.Value = 15000;

223

224 % Create MeanMinEditFieldLabel

225 app.MeanMinEditFieldLabel = uilabel(app.UIFigure);

226 app.MeanMinEditFieldLabel.HorizontalAlignment = 'right';

227 app.MeanMinEditFieldLabel.VerticalAlignment = 'top';

228 app.MeanMinEditFieldLabel.Position = [20 441 56 15];

229 app.MeanMinEditFieldLabel.Text = 'MeanMin';

230

231 % Create MeanMinEditField

122



232 app.MeanMinEditField = uieditfield(app.UIFigure, ...

'numeric');

233 app.MeanMinEditField.Position = [91 437 100 22];

234 app.MeanMinEditField.Value = 9000;

235

236 % Create MeanMaxEditFieldLabel

237 app.MeanMaxEditFieldLabel = uilabel(app.UIFigure);

238 app.MeanMaxEditFieldLabel.HorizontalAlignment = 'right';

239 app.MeanMaxEditFieldLabel.VerticalAlignment = 'top';

240 app.MeanMaxEditFieldLabel.Position = [17 406 59 15];

241 app.MeanMaxEditFieldLabel.Text = 'MeanMax';

242

243 % Create MeanMaxEditField

244 app.MeanMaxEditField = uieditfield(app.UIFigure, ...

'numeric');

245 app.MeanMaxEditField.Position = [91 402 100 22];

246 app.MeanMaxEditField.Value = 15000;

247

248 % Create MeanInitEditFieldLabel

249 app.MeanInitEditFieldLabel = uilabel(app.UIFigure);

250 app.MeanInitEditFieldLabel.HorizontalAlignment = 'right';

251 app.MeanInitEditFieldLabel.VerticalAlignment = 'top';

252 app.MeanInitEditFieldLabel.Position = [23 367 52 15];

253 app.MeanInitEditFieldLabel.Text = 'MeanInit';

254

255 % Create MeanInitEditField

256 app.MeanInitEditField = uieditfield(app.UIFigure, ...

'numeric');

257 app.MeanInitEditField.Position = [90 363 100 22];

258 app.MeanInitEditField.Value = 4500;

259

260 % Create ThetaEditFieldLabel

261 app.ThetaEditFieldLabel = uilabel(app.UIFigure);
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262 app.ThetaEditFieldLabel.HorizontalAlignment = 'right';

263 app.ThetaEditFieldLabel.VerticalAlignment = 'top';

264 app.ThetaEditFieldLabel.Position = [39 335 36 15];

265 app.ThetaEditFieldLabel.Text = 'Theta';

266

267 % Create ThetaEditField

268 app.ThetaEditField = uieditfield(app.UIFigure, ...

'numeric');

269 app.ThetaEditField.Position = [90 331 100 22];

270 app.ThetaEditField.Value = 0.33;

271

272 % Create UIAxes

273 app.UIAxes = uiaxes(app.UIFigure);

274 title(app.UIAxes, 'Title')

275 xlabel(app.UIAxes, 'Mean stress')

276 ylabel(app.UIAxes, 'Deviatoric stress')

277 app.UIAxes.GridAlpha = 0.15;

278 app.UIAxes.MinorGridAlpha = 0.25;

279 app.UIAxes.XGrid = 'on';

280 app.UIAxes.YGrid = 'on';

281 app.UIAxes.ZGrid = 'on';

282 app.UIAxes.Position = [245 402 286 201];

283

284 % Create compressibilityButton

285 app.compressibilityButton = uibutton(app.UIFigure, ...

'push');

286 app.compressibilityButton.ButtonPushedFcn = ...

createCallbackFcn(app, @compressibility, true);

287 app.compressibilityButton.Position = [91 282 100 22];

288 app.compressibilityButton.Text = 'compressibility';

289

290 % Create checkEditFieldLabel

291 app.checkEditFieldLabel = uilabel(app.UIFigure);
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292 app.checkEditFieldLabel.HorizontalAlignment = 'right';

293 app.checkEditFieldLabel.VerticalAlignment = 'top';

294 app.checkEditFieldLabel.Position = [39 247 37 15];

295 app.checkEditFieldLabel.Text = 'check';

296

297 % Create checkEditField

298 app.checkEditField = uieditfield(app.UIFigure, ...

'numeric');

299 app.checkEditField.Editable = 'off';

300 app.checkEditField.Position = [91 247 100 22];

301

302 % Create UIAxes2

303 app.UIAxes2 = uiaxes(app.UIFigure);

304 title(app.UIAxes2, 'Title')

305 xlabel(app.UIAxes2, 'Mean Stress')

306 ylabel(app.UIAxes2, 'Deviatoric Stress')

307 app.UIAxes2.XGrid = 'on';

308 app.UIAxes2.YGrid = 'on';

309 app.UIAxes2.ZGrid = 'on';

310 app.UIAxes2.Position = [556 410 300 185];

311

312 % Create UIAxes3

313 app.UIAxes3 = uiaxes(app.UIFigure);

314 title(app.UIAxes3, {'Constant Mean test'; ''})

315 xlabel(app.UIAxes3, 'Deviatoric stress')

316 ylabel(app.UIAxes3, {'compressibility'; ''})

317 app.UIAxes3.XGrid = 'on';

318 app.UIAxes3.YGrid = 'on';

319 app.UIAxes3.ZGrid = 'on';

320 app.UIAxes3.Position = [238 183 300 185];

321

322 % Create UIAxes4

323 app.UIAxes4 = uiaxes(app.UIFigure);
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324 title(app.UIAxes4, 'Constant deviatoric stress')

325 xlabel(app.UIAxes4, 'Mean Stress')

326 ylabel(app.UIAxes4, 'Compressibility')

327 app.UIAxes4.XGrid = 'on';

328 app.UIAxes4.YGrid = 'on';

329 app.UIAxes4.ZGrid = 'on';

330 app.UIAxes4.Position = [556 183 300 185];

331

332 % Create DevoEditFieldLabel

333 app.DevoEditFieldLabel = uilabel(app.UIFigure);

334 app.DevoEditFieldLabel.HorizontalAlignment = 'right';

335 app.DevoEditFieldLabel.VerticalAlignment = 'top';

336 app.DevoEditFieldLabel.Position = [39 194 36 22];

337 app.DevoEditFieldLabel.Text = 'Devo';

338

339 % Create DevoEditField

340 app.DevoEditField = uieditfield(app.UIFigure, 'numeric');

341 app.DevoEditField.Limits = [9000 13000];

342 app.DevoEditField.Position = [90 197 100 22];

343 app.DevoEditField.Value = 11000;

344

345 % Create MeanoEditFieldLabel

346 app.MeanoEditFieldLabel = uilabel(app.UIFigure);

347 app.MeanoEditFieldLabel.HorizontalAlignment = 'right';

348 app.MeanoEditFieldLabel.VerticalAlignment = 'top';

349 app.MeanoEditFieldLabel.Position = [33 159 42 22];

350 app.MeanoEditFieldLabel.Text = 'Meano';

351

352 % Create MeanoEditField

353 app.MeanoEditField = uieditfield(app.UIFigure, ...

'numeric');

354 app.MeanoEditField.Limits = [7000 10000];

355 app.MeanoEditField.Position = [90 162 100 22];
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356 app.MeanoEditField.Value = 8000;

357 end

358 end

359

360 methods (Access = public)

361

362 % Construct app

363 function app = thesiscode exported

364

365 % Create and configure components

366 createComponents(app)

367

368 % Register the app with App Designer

369 registerApp(app, app.UIFigure)

370

371 % Execute the startup function

372 runStartupFcn(app, @startupFcn)

373

374 if nargout == 0

375 clear app

376 end

377 end

378

379 % Code that executes before app deletion

380 function delete(app)

381

382 % Delete UIFigure when app is deleted

383 delete(app.UIFigure)

384 end

385 end

386 end
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