LANTHANIDE INDUCED SHIFTS IN PROTON NMR.

A STATISTICAL COMPARISON

A Thesis

Presented to the Faculty of the Department of Chemistry College of Arts and Sciences University of Houston

In partial fulfillment

of the Requirements for the Degree

Master of Science

Ъy

Einar Helmuth Goerland

May 1973

692691

To Linda

.

.

ACKNOWLEDGMENTS

The author would like to acknowledge Dr. M. Robert Willcott for his personal advice, The Upjohn Company for the use of its equipment and facilities and my supervisor, Dr. Warren J. Rabourn, for his understanding and encouragement.

Personal acknowledgments are too numerous to cover completely, but this paper would not have been submitted without the advice of Dr. Robert Lenkinski, and Jerry L. Decker.

LANTHANIDE INDUCED SHIFTS IN PROTON NMR.

.

A STATISTICAL COMPARISON

An Abstract of

A Thesis

Presented to the

Faculty of the Department of Chemistry

College of Arts and Sciences

University of Houston

In partial fulfillment

of the Requirements for the Degree

Master of Science

Ъу

Einar Helmuth Goerland

May 1973

ABSTRACT

Repetitive lanthanide induced shift, LIS, experiments were performed with $Eu(fod)_3$ and $Yb(fod)_3$ on four rigid organic molecules, 1-adamantanol, 1-adamantanamine, 2-adamantanol and 2-adamantanamine, to determine the precision of Demarco-Wenkert and ApSimon data reduction methods. Both methods gave essentially equivalent shift parameters. The Demarco-Wenkert shift parameters, \triangle obs plotted against [L]/[S], had 2 to 5 per cent precision. This could not be improved by replication. Greater precision, 1 per cent, was realized for ApSimon shift parameters, \triangle obs versus $\Sigma \triangle$ obs. $Yb(fod)_3$ was found to induce downfield shifts approximately 6.4 times as large as $Eu(fod)_3$ in 2-adamantanamine for the same L/S ratio.

TABLE OF CONTENTS

~

.

.

CHAPTER ·		PAGE
	DEDICATION	i
	ACKNOWLEDGMENTS	ii
	ABSTRACT	iii
	TABLE OF CONTENTS	iv
	LIST OF TABLES	vi
	LIST OF FIGURES	x
I.	INTRODUCTION	1
	A. General	1
	B. Background	1
	C. The Lanthanide Shift Reagent	4
	D. The Substrate	7
	E. Quantitation of LIS Data	7
	F. Application of LIS Data	14
	G. Statement of Purpose	17
II.	EXPERIMENTAL	19
III.	RESULTS AND DISCUSSION	22
	A. General	22
	B. Data Reduction with the Demarco-Wenkert Method	26
	C. Data Reduction with the ApSimon Method	70
	D. Comparison to Other Data Reduction Methods	78
	E. Results Compared to Scaled Literature LIS Parameters	79
	F. Comparison of Eu to Yb LIS Data	79

.

CHAPTER

IV. CONCLUSION

BIBLIOGRAPHY

APPENDIX

- A. List of Abbreviations
- B. Computer Program

PAGE

84

• .

LIST OF TABLES .

TABLE		PAGE
1.	Isotropic Shift Data for 4-Vinylpyridine and Line-width Data for 2-Picoline Adducts of Ln(dpm) ₃	5
2.	Index of Observed and Calculated Data Tables	23
3.	Run No. 1, Eu(fod) ₃ Induced Proton Shifts in 1-Adamantanol, in CDCl ₃ at 60 MHz	27
4.	Run No. 2, $Eu(fod)_3$ Induced Proton Shifts in 1-Adamantanol, in CDC1 ₃ at 60 MHz	28
. 5.	Run No. 3, Eu(fod) ₃ Induced Proton Shifts in 1-Adamantanol, in CDCl ₃ at 60 MHz	29
6.	Run No. 4, $Eu(fod)_3$ Induced Proton Shifts in 1-Adamantanol, in CDC1 ₃ at 60 MHz	30
7.	Run Nos. 1–4 Combined, $Eu(fod)_3$ Induced Proton Shifts in 1-Adamantanol, in CDC1 ₃ at 60 MHz	31
8.	Run No. 1, Yb(fod) $_3$ Induced Proton Shifts in 1-Adamantanol, in CDC1 $_3$ at 60 MHz	32
9.	Run No. 2, Yb $(fod)_3$ Induced Proton Shifts in 1-Adamantanol, in CDC1 $_3$ at 60 MHz	33
10.	Run No. 3, Yb(fod) ₃ Induced Proton Shifts in 1- Adamantanol, in CDC1 ₃ at 60 MHz	34.
11.	Run No. 4, Yb(fod) ₃ Induced Proton Shifts in 1-Adamantanol, in CDCl ₃ at 60 MHz	35
12.	Run Nos. 1-4 Combined, Yb(fod) ₃ Induced Proton Shifts in 1-Adamantanol, in CDC1 ₃ at 60 MHz	36
13.	Run No. 1, Eu (fod) ₃ Induced Proton Shifts in 1-Adamantanamine, in CC1 ₄ at 60 MHz	37
14.	Run No. 2, Eu(fod) ₃ Induced Proton Shifts in 1-Adamantanamine, in CC1 ₄ at 60 MHz	38

.

• .

LIST OF TABLES CONTINUED

•

•

.

TABLE		PAGE
1	5. Run No. 3, Eu(fod) ₃ Induced Proton Shifts in 1-Adamantanamine, in CC1 ₄ at 60 MHz	39
10	6. Run No. 4, Eu(fod) $_3$ Induced Proton Shifts in 1-Adamantanamine, in CC1 $_4$ at 60 MHz	40
1'	7. Run Nos. 1-4 Combined, Eu(fod) ₃ Induced Proton Shifts in 1-Adamantanamine, in CCl4 at 60 MHz	41
1	8. Run No. 1, Yb(fod) ₃ Induced Proton Shifts in 1-Adamantanamine, in CC1 ₄ at 60 MHz	42
19	9. Run No. 2, Yb(fod) ₃ Induced Proton Shifts in 1-Adamantanamine, in CCl ₄ at 60 MHz	43
20	0. Run No. 3, Yb(fod) ₃ Induced Proton Shifts in 1-Adamantanamine, in CCl ₄ at 60 MHz	44
2	1. Run No. 4, Yb(fod) ₃ Induced Proton Shifts in 1-Adamantanamine, in CCl ₄ at 60 MHz	45
2:	2. Run Nos. 1-4 Combined, Yb(fod) ₃ Induced Proton Shifts in 1-Adamantanamine, in CCl ₄ at 60 MHz	46
2	3. Run No. l, Eu(fod) ₃ Induced Proton Shifts in 2-Adamantanol, in CDC1 ₃ at 60 MHz	47
2	4. Run No. 2, Eu(fod) ₃ Induced Proton Shifts in 2-Adamantanol, in CDCl ₃ at 60 MHz	48
2	5. Run No. 3, Eu(fod) ₃ Induced Proton Shifts in 2-Adamantanol, in CDCl ₃ at 60 MHz	49
·2	6. Run No. 4, Eu(fod) ₃ Induced Proton Shifts in 2-Adamantanol, in CDCl ₃ at 60 MHz	50
2	7. Run Nos. 1-4 Combined, Eu(fod) ₃ Induced Proton Shifts in 2-Adamantanol, in CDCl ₃ at 60 MHz	51
2	8. Run No. 1, Yb(fod) ₃ Induced Proton Shifts in 2-Adamantanol, in CDCl ₃ at 60 MHz	52

LIST OF TABLES CONTINUED

.

.

TABLE		PAGE
29.	Run No. 2, Yb(fod) ₃ Induced Proton Shifts in 2-Adamantanol, in CDCl ₃ at 60 MHz	53
30.	Run No. 3, Yb(fod) ₃ Induced Proton Shifts in 2-Adamantanol, in CDCl ₃ at 60 MHz	54
31.	Run No. 4, Yb(fod) ₃ Induced Proton Shifts in 2-Adamantanol, in CDCl ₃ at 60 MHz	55
32.	Run Nos. 1-4 Combined, Yb(fod) ₃ Induced Proton Shifts in 2-Adamantanol, in CDC1 ₃ at 60 MHz	56
33.	Run No. 1, Eu(fod) ₃ Induced Proton Shifts in 2-Adamantanamine, in CCl_{l_4} at $60~{ m MHz}$	57
34.	Run No. 2, $Eu(fod)_3$ Induced Proton Shifts in 2-Adamantanamine, in CCl ₄ at 60 MHz	58
35.	Run No. 3, Eu(fod) ₃ Induced Proton Shifts in 2-Adamantanamine, in CCl ₄ at 60 MHz	59
36.	Run No. 4, Eu(fod) $_3$ Induced Proton Shifts in 2-Adamantanamine, in CCl $_4$ at 60 MHz	60
37.	Run Nos. 1–4 Combined, $Eu(fod)_3$ Induced Proton Shifts in 2-Adamantanamine, in CC1 ₄ at 60 MHz	61
38.	Run No. 1, Yb(fod) $_3$ Induced Proton Shifts in 2-Adamantanamine, in CCl $_4$ at 60 MHz	62
39.	Run No. 2, Yb(fod) $_3$ Induced Proton Shifts in 2-Adamantanamine, in CC1 $_4$ at 60 MHz	63
40.	Run No. 3, Yb(fod) $_3$ Induced Proton Shifts in 2-Adamantanamine, in CC1 $_{ m H}$ at 60 MHz	64
41.	Run No. 4, Yb(fod) $_3$ Induced Proton Shifts in 2-Adamantanamine, in CCl $_4$ at 60 MHz	65
42.	Run Nos. 1-4 Combined, Yb(fod) ₃ Induced Proton Shifts in 2-Adamantanamine, in CCl4 at 60 MHz	66

LIST OF TABLES CONTINUED

TABLE	•	PAGE
43.	Comparison of Shift Parameters Generated by the Demarco-Wenkert Method for 1-Adamantanol (V) and 1-Adamantanamine (VI)	67
44.	Comparison of Shift Parameters Generated by the Demarco-Wenkert Method for 2-Adamantanol (VII) and 2-Adamantanamine (VIII)	68
45.	Comparison of Shift Parameters Generated by the ApSimon Method for 1-Adamantanol (V) and 1-Adamantanamine (VI)	71
46.	Comparison of Shift Parameters Generated by the ApSimon Method for 2-Adamantanol (VII) and 2-Adamantanamine (VIII)	72
47.	Comparison of Demarco-Wenkert and Scaled ApSimon LIS Parameters for 1-Adamantanol	74
48.	Comparison of Demarco-Wenkert and Scaled ApSimon LIS Parameters for 1-Adamantanamine	75
49.	Comparison of Demarco-Wenkert and Scaled ApSimon LIS Parameters for 2-Adamantanol	76
50.	Comparison of Demarco-Wenkert and Scaled ApSimon LIS Parameters for 2-Adamantanamine	77
51.	Comparison of Shift Parameters to Scaled Literature LIS Parameters	81
52.	Least-Squares Correlation of Demarco Eu(fod) ₃ Shift Indexes versus Yb(fod) ₃ Shift Indexes	82
53.	Least-Squares Correlation of ApSimon Eu(fod) ₃ Shift Indexes versus Yb(fod) ₃ Shift Indexes	83

LIST OF FIGURES

.

FIGUR	E		PAGE
	1.	The Coordinate System	15
	2.	Proton Assignments for 1-Adamantanol and 1-Adamantanamine	24
	3.	Proton Assignments for 2-Adamantanol and 2-Adamantanamine	25

.

.

I.

INTRODUCTION

INTRODUCTION

A. General

Hinckley reported in 1969 that addition of the dipyridine adduct of <u>tris</u>-dipivaloylmethano-europium III, $Eu(dpm)_3 \cdot 2py$, to a carbon tetrachloride solution of cholesterol induced downfield proton chemical shifts in the NMR experiment⁽¹⁾. The induced chemical shifts separated some overlapping resonances and reduced parts of the spectrum to first order. These results are rationalized as contact, (spin delocalization) or pseudocontact (anisotropic) shift, or a combination of these two effects^(2,3).

Hinckley's first report⁽¹⁾ prompted intense activity in the field of paramagnetic shift reagents. In the intervening three years over 300 papers dealing with methodology and explanations of principles have appeared. Many points are still controversial and require careful study before elucidation.

B. Background

Hinckley was not the first to observe paramagnetically induced shifts in proton resonance spectra. Phillips, Looney and Ikeda found that Co^{2+} affected the proton spectra of n-propanol and n-hexanol⁽⁴⁾. Several years later, Eton, Josey, Phillips and Benson simplified proton spectra of organic molecules by using paramagnetic complexes⁽⁵⁾. Other papers have reported proton shifts, ascribed to dipolar pseudocontact, in rare-earth acetylacetonates⁽⁶⁾, tropolonates⁽⁷⁾ and acetates⁽⁸⁾.

There is general agreement that observed lanthanide induced shift, LIS, proton data can be reasonably explained by a simplified* form of the McConnell-Robertson⁽⁹⁾ pseudocontact equation,

$$\Delta = \frac{K (3 \cos^2 \theta - 1)}{r^3} , \qquad (1)$$

where r is the length of the radius vector from the metal atom to the resonating nucleus and θ is the angle of this vector with the principal magnetic axis of the lanthanide shift reagent, LSR. It is obvious for many cases that the principal factor influencing the magnitude of induced shift, for a particular proton, is the distance between it and the paramagnetic Ln ion. Thus protons closer to the Ln ion are shifted farther than those farther away.

Shortly after Hinckley's 1969 communication⁽¹⁾, Sanders and Williams reported that pyridine-free $Eu(dpm)_3$, I, was a more efficient LSR than the bipyridine adduct⁽¹⁰⁾.

* Axial symmetry is assumed in the simplified form.

Other workers explored the use of different lanthanide and Q-diketone combinations. $Pr(dpm)_3$ was reported to induce upfield proton shifts in substrate molecules⁽¹¹⁾. Rondeau and Sievers reported the europium chelate of 1,1,1,2,2,3,3,-heptafluoro-7,7-dimethyl-4,6-octanedione, Eu(fod)₃, II, to be more attractive due to its greater solubility⁽¹²⁾.

II

Chiral shift reagents, formed from chiral β -diketones such as 3-(tertbutylhydroxymethylene)- ∞ camphor, $III_a^{(13)}$ or others^(14,15) are capable of resolving the spectra of enantiomeric mixtures and even the prochiral methylene protons of ethanol.

C. The Lanthanide Shift Reagent

Lanthanide shift reagents are chelates of paramagnetic lanthanide (III) ions and β -diketone anions. Until now the most effective ρ -diketones seem to be $H(dpm)^{(1)}$, dipivaloylmethane, and $H(fod)^{(12)}$, 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6octanedione.

H(dpm) can readily be prepared in yields of 60 to 70 per cent by the method of Kopecky et. al.⁽¹⁶⁾. The procedure involves formation of the sodium enolate of pinacolone in dimethoxyethane by the action of sodium hydride. The enolate is then acylated <u>in situ</u> with methyl pivalate. Springer et.al. prepared H(fod) in 55 per cent yield by adding pinacolone to a sodium methoxide/ethylheptafluorobutyrate/ether slurry⁽¹⁷⁾.

The lanthanide ion is chosen by several criteria, (a) the direction of induced shift, (b) line broadening, and (c) relative shifting ability. $Eu(III)^{(1)}$ and $Pr(III)^{(11)}$ are most commonly used because they induce minimal line broadening. Yb(III) has also been used. In some cases, it induces downfield shifts approximately four times as large as Eu(III) for the same L/S ratio⁽¹⁸⁾. Horrocks and Sipe have investigated the action of eleven $Ln(dpm)_3$ complexes on the spectra of 4-vinylpyridine, 4-picoline N-oxide, and n-hexyl alcohol⁽¹⁹⁾. Some of their findings are summarized in Table 1.

Ln	Observed Vinyl Proton Shift (a)	Peak Width at Half Height (a) for Methyl of 2-Picoline
Pr	+ 6.6	5.6
Nd	+ 3.2	4.0
Sm	+ 0.8	4.4
Eu	- 3.5	5.0
ТЪ	+30.7	96
Dy	+33.8	200
Но	+24.0	50
Er	- 9.0	50
Tm	-23.6	65
Yb	-11.0	12

.

<u>Table 1</u>. Isotropic Shift Data for 4-Vinylpyridine and Line-width Data for 2-Picoline Adducts of $Ln(dpm)_3$

.

(a) Measured at 30° C for a lanthanide to substrate ratio of 0.125.

If $3 \cos^2 \theta - 1$ is a positive number, upfield shifts are observed for Pr, Nd, Sm, Tb, Dy, and Ho, while Eu, Er, Tm and Yb cause downfield shifts.

The actual structure of (dpm) and (fod) LSR's is not clear⁽¹²⁾. The availability of empty 5d, 6s and 6p orbitals in lanthanides allows them to accommodate electron pairs donated by Lewis bases and exhibit eightfold or greater coordination⁽²⁰⁾. The neutral LSR is thought to be a chelate in which the three bidentate ligands surround the hexacoordinated lanthanide⁽¹²⁾.

In the crystalline state, $Pr(dpm)_3$ has been found to exist as a dimer, IV,

in which each Pr atom is surrounded by seven $oxygens^{(12)}$. A single crystal x-ray has shown that one oxygen atom from each of the two bridging chelate rings is shared equally between the Pr $atoms^{(12)}$. Sievers and coworkers, who first synthesized $Ln(fod)_3$ complexes, observed that these preferred a monohydrated state⁽¹⁷⁾. It is thought that the water is hydrogen bonded to two perfluoropropyl side chains in the ligands and is not bonded to the metal $ion^{(12)}$.

The structure of two LSR-substrate molecules has been determined. Horrocks reported the crystal and molecular

6

structure of the bis(4-picoline) adduct of $Ho(dpm)_3$ <u>via</u> x-ray crystallography⁽²²⁾. The coordination sphere can be described as a square antiprism in which the picoline occupies apices of opposite square faces. Axial symmetry is not present in the solid state. Cramer and Seff have reported similar data for the solid dipyridine adduct of $Eu(dpm)_3^{(23)}$.

D. The Substrate

Lanthanide shift reagents have been used successfully with a variety of substrate functional groups. The main criterion for effective LIS seems to be the Lewis basicity of the substrate. Sanders and Williams comment that strong Lewis bases have large LIS's while moderate Lewis bases are shifted less⁽²⁴⁾, and report the following order of functional group effectiveness,

 $-NH_2 > -OH > C=0 > -O- > -CO_2R > -CN.$

Lanthanide induced shifts have also been observed for other functional groups: e.g. nitro $groups^{(24)}$, phosphines⁽²⁴⁾, thioethers⁽²⁵⁾, oximes⁽²⁶⁾, and amides⁽²⁷⁾, sulfoxides⁽²⁸⁾ and epoxides⁽²⁹⁾.

E. Quantitation of LIS Data

Several graphical and analytical methods have been used to describe the behavior of lanthanide induced shifts, LIS's, in terms of shift indexes or parameters. Hinckley was quick to note that the LIS is dependent on the LSR concentration relative to the substrate⁽¹⁾. This implies a fast exchange, on the NMR time scale between the complexed, and free substrate.

$$L + nS \longrightarrow LSn$$
 (2)

L represents the free LSR, S the unbound substrate and LS the bound substrate.

It is obvious that this equilibrium is temperature dependent, but the form of the dependence is not yet certain. Several reports have shown that the magnitude of LIS varies inversely with temperature (18,30) (i.e. greater LIS is observed at lower temperatures) and this qualitative feature is secure.

The equilibrium expression for a 1:1 LSR-substrate adduct (complex) is

$$\kappa_1 = \frac{[S] [L]}{[LS]} . \tag{3}$$

When a 2:1 LSR-substrate adduct is formed, the following equilibrium expression is applicable.

$$LS + S \Longrightarrow LS_2, \quad K_2 = \frac{[LS] [S]}{[RS_2]}$$
(4)

Reuben has shown the $K_2 = 4 K_1$ for an LSR with two equivalent and independent coordinating positions⁽³¹⁾.

The observed net chemical shift, \triangle , can be represented by

$$\Delta = \Delta m \frac{Sb}{St}, \qquad (5)$$

where \triangle m is the maximum shift of a given proton in the complex

relative to its uncomplexed shift. The concentration of bound substrate is S_b and the total concentration of substrate is S_t . Reuben has also shown that the intrinsic dissociation constant for n equivalent binding sites is

$$K = \frac{S_{f} (nL_{t} - S_{b})}{S_{b}}$$
(6)

where S_f is the concentration of free substrate and L_t the total LSR concentration. Substituting S_b/S_t by σ and rearranging equation (6) yields

$$\sigma = \frac{n \rho}{1 + \frac{K}{(S_t - S_b)}}, \qquad (7)$$

where $L_t/S_t = \rho$.

The observed net chemical shift can then be represented by

$$\Delta = \Delta \mathbf{m} \mathbf{p} \tag{8}$$

From this it follows that at very low LSR concentrations and constant S_t where $S_t >> S_b$, the plot of \mathfrak{G} or \triangle versus p will be linear. The slope of this line will be $n/[1 + K/S_t]$, where K is the intrinsic dissociation constant of the adduct. Demarco and Wenkert first applied this method of data manipulation⁽³²⁾, and defined an index. They plotted the \triangle Eu for each LSR increment, versus the mole ratio of LSR to substrate. Their substrates were rigid alcohols, <u>trans</u>- and <u>cis</u>-4-tert-buty1cyclohexanols, isoborneol, borneol, cholesterol and friedalanol. Linear plots were claimed for L/S ratios ranging from 0 to 0.7. Deviations of approximately 2% were observed at low LSR concentrations. Demarco and Wenkert defined a paramagnetic induced shift index, \triangle Eu as

$$\Delta_{Eu} = \int_{CDCl_3} - \int_{Eu(dpm)_3}^{n = 1}$$
(9)

where \int_{CDC1_3} is the substrate proton chemical shift without LSR and $\int_{Eu(dpm)_3}^{n=1}$ is the extrapolated proton chemical shift at and L/S ratio = 1.

Sanders and Williams subsequently reported similar results with $Eu(dpm)_3$ for a variety of substrates using L/S ratios up to 0.8⁽²⁴⁾.

Rondeau and Sievers investigated the effects of $Eu(fod)_3$ on ethyl propionate and di-<u>n</u>-butyl ther⁽¹²⁾. Since the greater solubility of fod complexes permits L/S ratios of greater than 1, they were able to demonstrate that the LIS leveled-off at L/S ratios of 1 or greater. Inaccurate knowledge of total LSR or substrate concentrations yields misleading values for shift parameters.

Algebraic manipulation of equation (7) can give

$$\frac{\mathbf{n}\mathbf{L}\mathbf{t}}{\mathbf{C}} = \mathbf{S}\mathbf{t} + \frac{\mathbf{K}\mathbf{S}\mathbf{t}}{(\mathbf{S}\mathbf{t} - \mathbf{S}\mathbf{b})} \cdot$$
(10)

Under the conditions $S_t \gg S_b$, equation (10) reduces to

$$S_{t} = \frac{nL_{t}}{\sigma} - K . \qquad (11)$$

With the substitution of $\frac{1}{\sigma} = \frac{\Delta m}{\Delta}$, equation (11) becomes

$$S_{t} = \frac{nL_{t} \triangle m}{\triangle} - K.$$
(12)

Kelsey has used equation (12) for evaluating shift data⁽³³⁾. He plotted S_t versus $1/\Delta$ with the condition that L_t be kept constant and S_t >> L_t. Experimentally, this method requires the incremental addition of substrate to an LSR solution of known concentration. Such a plot for the acetoxy protons of allyl acetate resulted in a straight line and numerical value for K. When n, in equation (9) is known, the slope yields accurate values of Δ m.

Solvent interactions and impurity interactions can cause problems(31). An impurity, such as water, reduces the apparent \triangle m and appears to raise the value of K. Substrate association with the solvent decreases the slope and value of \triangle m.

Plots of L_t versus S_t at constant σ can yield similar information. Another rearrangement of equation (7) leads to

$$L_{t} = \frac{S_{t} \delta}{n} + \frac{K \delta}{n (1-\delta)} . \qquad (13)$$

Sanders et.al. have used this method for the data reduction of methyladamantanol versus $Ln(dpm)_3$ in CCl₄ solution⁽³⁴⁾. The

experiment involves a series of LSR additions to various concentrations of substrate. Linear plots of L_t versus S_t with a slope of σ/n are obtained. If the value of n is known, Δ m and K can be determined at constant Δ .

Armitage et.al. have also reported an elaborate procedure which attempts to describe the equilibrium between the LSR and the substrate⁽³⁵⁾. They show how to calculate the equilibrium binding constant, K_B, and the bond or limiting chemical shift, Δ m, of the substrate molecule when it is associated with the lanthanide. The binding constant, K_B, for the process in equation 2 is defined as

$$K_{B} = \left[\frac{[LS]}{L][S]} = \left(\frac{[LS]}{[K] - [LS]}\right) \left([S] - [LS]\right) (14)$$

Equation 5, $\triangle = \triangle$ m Sb/St, can be rewritten as

$$\Delta = \Delta m \quad \frac{[LS]}{[S]} \quad . \tag{5b}$$

When equation 14 is solved for [LS], and substituted for[LS] in equation 5b (the [LS]² term is neglected), then

$$\Delta = \frac{K_{\rm B} [L] \Delta m}{1 + K_{\rm B} [S] + K_{\rm B} [L]} . \tag{15}$$

This can be rearranged to yield

$$[S] = [L] \bigtriangleup m\left(\frac{1}{\bigtriangleup}\right) - \left[\left(1/K_{B}\right) + [L]\right]. \quad (16)$$

12

Equation 16 shows that a plot of [S] versus $(1/\triangle)$ gives a straight line whose slope is [L] \triangle m and whose y intercept is - $((1/K_B) + L)$. Such a plot, it is claimed, can yield unambiguous values of \triangle m and K_B. The actual experimental procedure involves varying the substrate concentration at a constant LSR concentration with the restriction of S >> L.

Shapiro and Johnston⁽³⁶⁾ have investigated the two step LSR-substrate interaction mechanism (equations 2 and 4),

$$L + X \Longrightarrow LS$$
 (2)

$$LS + S \iff LS_2$$
. (4)

The induced shift via the two-step interaction is defined as

$$\Delta = \frac{1}{S} \left(x \Delta_1 + 2y \Delta_2 \right)$$
(17)

where X is the molar concentration of LS, \triangle_1 the limiting shift of the LS complex (\triangle m), y the molar concentration of LS₂ complex and \triangle_2 the limiting shift of the LS₂ complex.

Plots of $1/\triangle$ versus S at constant L under the conditions S >> L and plots of \triangle versus L/S at constant S (also S >> L) were observed to give reliable values of the limiting LIS value for the LS₂ species⁽³⁶⁾. ApSimon has developed a heuristic method of LIS data reduction⁽³⁷⁾. A set of internally scaled parameters is generated by plotting the shift of a given resonance, Δ_{i} , against the sum of all observed shifts, $\sum \Delta_{i}$, for each L/S ratio. Errors in LSR and substrate weighings or concentrations do not effect the results. The slopes of the resulting straight lines are a set of internally scaled shift parameters for all protons in the substrate. The main disadvantage of this method lies in the fact that absolute values of Δ m and K values cannot be derived by this method. The real advantages of this method are (a) the exact concentrations of LSR or substrate need not be known, (b) solvent effects or water need not effect the result, (c) shift data from several separate runs can be combined in one data work-up.

F. Application of LSR

The LIS phenomenon has, perhaps, its greatest potential as a tool for organic structural determination.

Willcott and coworkers have presented one attractive method for comparing reduced experimental LIS data with shifts calculated from the simplified McConnell-Robertson pseudocontact equation, equation $(1)^{(38)}$. This approach places the substrate at the center of a Cartesian coordinate system (Figure 1). The lanthanide is then incrementally moved over the surface of a sphere at

14

radius, d, where d is the assumed lanthanide to substrate distance. As the lanthanide is moved about the sphere's surface, its location is described in terms of (the ρ colatitude measured from the positive Z axis) and ϕ (the azimuth, measured counterclockwise from the X-Z plane)⁽³⁸⁾. A computer evaluation of the McConnell-Robertson variable is performed at each lanthanide position for all i protons assuming the principal axis is through the origin of the coordinate system. These numbers are then scaled by least squares against the relative observed shifts (\triangle H/H)_{oi} to give a set of calculated shifts $(\triangle H/H)_{ci}$. The agreement between generated and observed data is represented by an agreement factor, R, defined as 1/0

$$R = \left[\frac{\sum_{i} ((\triangle H/H)^{2}_{oi} - (\triangle H/H)_{ci})^{2} W_{i}}{\sum_{i} (\triangle H/H)_{oi}^{2} W_{i}}\right]^{1/2}$$
(18)

where W_i is a weighting factor.

Willcott et.al. have reported minimum agreement factors ranging from 0.032 for 2-adamantanol to 0.092* for cyclooctantetraene dimer epoxide(38).

* Refinements have yielded agreement factors of 5% for the dimer epoxide. M. R. Willcott and R. E. Davis, Private Commun.

G. Statement of Purpose

Quantitative LIS data reduction methods and their application have been discussed. To date, no statistical evaluation of the various data reduction methods has appeared.

It was the purpose of this work to perform repetitive LIS experiments on four rigid organic molecules, 1-adamantanol, 2-adamantanol, 1-adamantanamine and 2-adamantanamine. $Eu(fod)_3$ and Yb(fod)₃ were used to determine data consistency between different lanthanides. LIS data reduction was <u>via</u> the Demarco⁽³²⁾ and experimentally less demanding ApSimon⁽³⁷⁾ methods for all data sets. Where possible, calculated shift parameters were scaled for comparison to typical data reported in the literature.

Observed LIS data reduction must consider the following statistics concepts:

- <u>Appropriateness</u>. Do the chosen variables actually relate to and describe the phenomenon of interest: (Do the LIS parameters relate to the McConnell-Robertson model?) This question is a justification for the present work but is beyond its scope.
- Accuracy. Do the measurements approach the actual values of the chosen variables? This, again, cannot be determined without comparison to the McConnell-Robertson model.

3. <u>Preciseness</u>. How repeatable are the measurements?

That was the primary intent of this work.

II.

.

•

EXPERIMENTAL

EXPERIMENTAL

All Nuclear Magnetic Resonance (NMR) spectra were recorded on a Varian A-60 spectrometer at a constant probe temperature of 30° C. Both tetramethylsilane (TMS) and benzene were used as internal references for all measurements. All chemical shifts, \triangle , are reported in Hertz (Hz) downfield from TMS.

The LSR's used in these studies were Eu(III) <u>tris</u>-1,1,1,2,2,-3,3-hepthafluoro-7,7-dimethyl-4,6-octanedione and Yb(III) <u>tris</u>-1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedione, hereafter denoted as $Eu(fod)_3$ and Yb(fod)_3 respectively. These LSR's were obtained commercially and used without further purification. Prior to each set of runs, the LSR was dried over P40₁₀ <u>in vacuo</u> and aliquots of 10,10,20,40 and 80 mg were weighed out, placed into "home made" 6 mm test tubes and sealed with Parafilm. These manipulations were performed in a nitrogen-purged glove box to minimize the possibility of contamination by atmospheric moisture.

Substrate samples of 1-adamantanol, 2-adamantanol and 1-adamantanamine were obtained commercially. 2-Adamantanamine was prepared from 2-adamantanamine hydrochloride by a procedure analogous to that reported by Smith and Williams⁽³⁷⁾. Five grams (0.026 moles) of amine hydrochloride in 25 mls of distilled water were neutralized with 10% NaOH solution. The free amine was extracted with petroleum ether, washed four times with distilled water, dried over magnesium sulfate and rotary evaporated to yield 3.6 grams of crude 2-adamantanamine. Stock solutions of the alcohols and amines were prepared to assure uniform substrate concentrations for all eight runs in each series. The solutions were prepared as follows:

1-Adamantanol and 2-Adamantanol

After drying in vacuo, 0.381 grams (0.0026 moles) of alcohol were weighed out into a dry 5 ml volumetric flask. Commercial $CDCl_3$ (1% TMS) was added to make 5 mls of 0.5 molar solution. The stock solutions were prepared and stored in a nitrogen atmosphere.

1-Adamantanamine and 2-Adamantanamine

The 1-adamantanamine stock solution was prepared by weighing out 0.68 g (0.0045 moles) of freshly sublimed amine to a dry 5 ml volumetric flask. Molecular sieve dried CCl₄ with 1% TMS and 1% benzene was added to make 5 mls of 0.9 molar solution. A 0.88 molar 2-adamantanamine stock solution was prepared in the same manner. Freshly sublimed 2-adamantanamine (0.67 g) was dissolved in CCl₄ to make 5 mls of stock solution. The stock solution was prepared and stored in a nitrogen atmosphere.

Experiments were conducted in the following manner: Each sample was prepared by transferring 0.5 ml of substrate stock solution to a clean, nitrogen purged NMR tube <u>via</u> syringe. The substrate NMR spectrum was obtained. Then, the first 10 mg increment of LSR was added. The sample was given five minutes to reach probe temperature (30°C) prior to running the spectrum. This procedure was repeated for additional increments of 10, 20, 40 and 80mg of LSR. In some experiments, particularly those involving $Yb(fod)_3$, a smaller total of LSR, only four increments (10, 10, 20 and 40 mg), was used in order to minimize line broadening.

The observed shift data from each run were linearized <u>via</u> a computer least-squares procedure. The best fits for \triangle obs. versus L/S ratio (Method I) and \triangle obs. versus $\sum \triangle$ obs. (Method II) were calculated for each proton. These computations were performed on an IBM 1130 digital computer using a single precision, multiple regression program written by R. A. Issacs (copy in Appendix).

III.

RESULTS AND DISCUSSION

•

.
RESULTS AND DISCUSSION

A. General

Four repetitive, incrementally altered spectra were obtained for each of the substrate-LSR combinations listed in Table 2. Observed chemical shifts, \triangle obs (in Hertz relative to TMS) and the results of the Demarco and ApSimon data reductions are presented in the tables. Combined data from all spectra in each set were evaluated. These results are presented in a separate table following each set.

Substrate protons have been numbered according to their distances from the oxygen or nitrogen atom, as determined by measurement of Dreiding stereomodels. The closest proton was assigned the smallest number*.

Four distinct, separate, first-order proton resonances are observable in LSR modified spectra of 1-adamantanol, I, and 1-adamantanamine, II. Figure 2 illustrates the numerical proton assignments*.

At the highest LSR concentration, nine proton resonances are distinguishable in the spectra of 2-adamantanol, VII, and 2-adamantanamine, VIII. Figure 3 shows these proton assignments.

^{*} This is not according to IUPAC convention but simplifies the assignment of shift parameters.

LSR Substrate	<u>Eu(fod)</u> Table Nos.	<u>Yb(fod)</u> Table Nos.
1-Adamantanol, V Combined Runs	3–6 7	8-11 12
1-Adamantanamine, VI Combined Runs	13-16 17	18-21 22
2-Adamantanol, VII Combined Runs	23-26 27	28–31 32
2-Adamantanamine, VIII Combined Runs	33-36 37	38-41 42
Comparison of Demarco Eu and Yb	Shift Parameters	
1-Adamantanol	. 43	
l-Adamantanamine 2-Adamantanol 2-Adamantanamine	3 131	
Comparison of ApSimon Eu and Yb	Shift Parameters	•
1-Adamantanol	45	
I-Adamantanamine 2-Adamantanol 2-Adamantanamine	46	

Table 2. Index of Observed and Calculated Data Tables

.

.

. . .

.

V, R = -OHVI, $R = -NH_2$

VII, R = -OHVIII, $R = -NH_2$

Prior to describing the data reduction, a brief outline of concepts is in order. The three most important concepts are:

- 1. The mathematical relationship of $(3\cos^2\theta 1)/r^3$ is assumed to correlate LIS with the structure of the substrate.
- 2. Accurate LIS data are then the sets of numbers which give good correlations with $(3\cos^2\theta 1)/r^3$.
- 3. The precision of these LIS parameters is described by the deviation of the computation. The accuracy must be similar because deviations of the same magnitude are obtained for McConnell-Robertson correlations.

B. Data Reduction with the DeMarco-Wenkert method.

The Demarco-Wenkert method of data reduction, Method I on the data tables (Tables 3-42), was chosen because it is experimentally the easiest. Observed LIS, \triangle obs, was plotted <u>via</u> least-squares against the LSR to substrate ratio, L/S. The resulting shift parameters are summarized for V and VI in Table 43 and for VII and VIII in Table 44.

. There are two runs with unusually large deviations in shift parameters compared to the remaining runs in their respective sets. The first $Yb(fod)_3$ altered V (Table 8) has larger LIS than other runs of the set (Tables 9-11). This is

<u>Table 3</u>

Run No. 1

Eu (FOD)3 Induced Proton Shiftsa/in 1-Adamantanol, in CDC13 at 60 MHz

Eu (FOD)3				Mole Ratio		
(Total mg.)		_3_	2	<u> 4 </u>	$\angle \Delta$ Obs.	L/S
10	124	134	104	104	462	0.03 ⁸
20	152	142	112	108	514	0.077
40	198	156	127	125	606	0.154
80	294	184	168	142	788	0.308
160	486	241	228	192	1147	0.616
Slopes						
Method I	618.9	183.0	215.8	150.3		
90% 99%	4.17 7.42	1.35 2.4	11.6 20.7	9.57 17.0	•	
Method II	0.5281	0.1572	0.1842	0.1282		
90% 99%	0.0021 0.0053	0.0081 0.0145	0.0046 0.0116	0.0040 0.0101		•

.

a/ Hz downfield from TMS.

.

<u>Table 4</u>

Run No. 2

Eu (FOD)3 Induced Proton Shifts^a/in 1-Adamantanol, in CDC13 at 60 MHz

Eu (FOD)3		Proton				Mole Ratio
(Total mg.)	1	_3_	2	<u>4</u>	$\sum \triangle$ Obs.	L/S
10	121	134	104	100	459	0.038
20	146	143	111	107	507	0.077
40	196	155	132	116	599	0.154
80	297	186	166	144	793	0.308
160	484	242	228	192	1146	0.616
Slopes						
Method I	624.3	184.9	214.1	158.7		
90% 99%	10.2 18.1	3.78 6.72	8.47 15.1	5.8 10.3		
Method II Confidence Level	0.5281	0.1564	0.1811	0.1342		
90% 99%	0.0009 0.0023	0.0014 0.0036	0.0027 0.0068	0.0021 0.0052		

•

a/ Hz downfield from TMS.

.

、

<u>Table 5</u>

Run No. 3

Eu (FÓD)3 Induced Proton Shifts^{a/}in 1-Adamantanol, in CDC13 at 60 MHz

Eu (FOD)3		Proton				~ •	Mole Ratio
(Total mg.)		_1	_3_	2	<u> </u>	<u> </u>	L/S
10		126	135	105	101	467	0.038
20		151	141	112	108	512	0.077
40		200	156	133	118	607	0 .1 54
80		302	187	167	144	800	0.308
160		476	238	226	188	1128	0.616
Slopes							
Method I	•	602.6	178.7	208.9	149.5		
90% 99%	T	18.4 32.7	7.07 12.6	10.3 18.3	4.14 7.36	•	
Method II	1	0.5287	0.1568	0.1834	0.1311		·
90% 99%	L	0.0009 0.0016	0.0007 0.0013	0.0021 0.0034	0.0015 0.0027		

٠

a/ Hz downfield from TMS.

1

•

8

<u>Table 6</u>

Run No. 4

Eu (FOD)₃ Induced Proton Shifts^a/in 1-Adamantanol, in CDC1₃ at 60 MHz

Eu (FOD)3		Proton				Mole Ratio
(Total mg.)	1	3	2	<u>4</u>	ΔObs .	L/S
10	133	135	107	103	478	0.038
20	154	143	114	109	520	0.077
40	205	158	116	110	589	0.154
80	311	189	171	147	818	0.308
160	517	250	239	199	1205	0.616
Slopes						
Method I	664.4	197.4	235.3	167.9		
90% 99%	16.3 28.9	2.20 3.92	30.9 54.9	21.5 38.2		
Method II	0.5235	0.1554	0.1866	0.1343		
90% 99%	0.0097 0.0241	0.0034 0.0085	0.0079 0.0198	0.0052 0.0130		

a/ Hz downfield from TMS.

١

З

<u>Table 7</u>

.

٠

_

•

.

Run Nos. 1-4 Combined

	Eu (FOD) ₃ Induce	d Proton Shifts in	1-Adamantanol, ir	<u>CDC1₃ at 60 MHz</u>		
Eu (FOD)3		Pro	ton		~	Mole Ratio
(Total mg.)	1	_3_	2	4	$\sum \triangle$ Obs.	L/S
10	124	134	104	104	462	0.038
20	152	142	112	108	514	0.077
40	198	1 56 ·	127	125	606	0.154
80	294	184	168	142	788	0. 308
160	486	241	228	192	1147	0.616
10	121	134	104	100	459	0.038
20	146	143	111	107	507	0.077
40	196	155	132	116	599	0.154
80	297	186	166	144	793	0.308
160	484	242	228	192	1146	0.616
10	126	135	105	101	467	0.038
20	151	141	112	108	512	0.077
40	200	156	133	118	607	0.154
80	302	187	167	144	800	0.308
160	4 76	238	226	188	1128	0.616
10	133	135	107	103	478	0.038
20	154	143	114	109	520	0.077
40	205	158	116	110	589	0.154
80	311	189	171	142	818	0.308
160	517	250	239	199	1205	0.616
Slopes						
Method I	627.5	186.0	218.5	156.6		
Confidence Level						
90%	10.7	2.9	6.0	4.4		
99%	15.1	4.2	8.5	6.2		
Method II	0.5272	0.1562	0.1838	0.1316		31
Confidence Level						-
90%	0.0018	0.0006	0.0016	0.0014		
99%	0.0025	0.0009	0.0023	0.0020		

.

•

-

Run No. 1

	Yb (FOD)3 Induc	ed Proton Shifts ^a	/ in 1-Adamantanol	, in CDC13 at 60 M	Hz	
Yb (FOD) ₃ (Total mg.)	_1	Pro _3	ton	<u>14</u>	$\sum \triangle$ Obs.	Mole Ratio L/S
10	184	154	123	119	580	0.038
20	266	180	156	136	698	0.076
40	405	224	201	175	1005	0.151
80	638	300	282	248	1468	0.302
Slopes						
Method I	1698.9	546.7	588.2	491.3		
90% 99%	132.8 282.5	37.8 80.3	57.0 121.3	9.60 20.4		
Method II Confidence Level	0.5007	0.1610	0.1732	0.1445		
90% 99%	0.0170 0.0577	0.0053 0.0182	0.009 3 0.0316	0.0050 0.0172		

a/ Hz downfield from TMS.

•

ж

.

<u>Table 9</u>

Run No. 2

Yb (FOD)₃ Induced Proton Shifts^a/in 1-Adamantanol, in CDCl₃ at 60 MHz

Yb (FOD)3		Proton				Mole Ratio
(Total mg.)		3	2	4	$\sum \triangle Obs.$	L/S
10	142	142	111	106	501	0.038
20	176	152	120	116	564	0.076
40	259	178	153	136	726	0.151
80	408	227	203	176	1014	0.302
Slopes						
Method I	1015.2	325.5	355.9	265.3		
Confidence Level	00.0		07.0			
90% 99%	29.9 63.8	21.6	27.8 59.1	0.98	•	
Method II	0.5174	0.1658	0.1816	0.1351		
Confidence Level						
90%	0.0014	0.0014	0.0037	0.0020		
99%	0.0048	0.0050	0.0128	0.0069		

•

<u>a</u>/ Hz downfield from TMS.

<u>Table 10</u>

Run No. 3

Yb (FOD)₃ Induced Proton Shifts^{a/in} 1-Adamantanol, in CDC1₃ at 60 MHz

Yb (FOD)3		Proton				Mole Ratio
(Total mg.)		3	2	<u></u>	$\angle \triangle$ Obs.	L/S
10	144	144	111	107	506	0.038
20	184	154	123	118	579	0.076
40	268	181	156	138	743	0.151
80	427	231	209	180	1047	0.302
Slopes						
Method I Confidence Level	1073.8	333.5	375.3	275.7		
90% 99%	16.2 3 ¹ 4.5	11.6 24.8	21.3 45.2	3.0 6.4		
Method II Confidence Level	0.521645	0.162061	0.182423	0.133870		·
90% 99%	0.0019 0.0067	0.0019 0.0065	0.0031 0.0108	0.0019 0.0067		

٠

<u>a</u>/ Hz downfield from TMS.

<u>Table 11</u>

Run No. 4

	Yb (FOD)3 Induc	ed Proton Shifts ^a	in 1-Adamantanol,	in CDC1 ₃ at 60 MH	2	
Yb (FOD)3		Pro	ton		$\sum a = a$	Mole Ratio
(Total mg.)		_3_	2		$\Delta 008$.	L/S
10	142	142	111	106	501	0.038
20	179	152	122	117	570	0.076
40	267	180	156	137	740	0.151
80	406	226	202	176	1010	0.302
Slopes						
Method I	1004.3	322.0	349.4	263.9		
90% . 99%	63.3 134.6	16.7 35.6	35•7 75•8	5.6 11.9		
Method II Confidence Level	0.5178	0.1659	0.1804	0.1357		•
90%	0.0015	0.0019	0.0035	0.0032		
フフル	0,0051	0.0005	0.0120	0.0109		

٠

 \underline{a} / Hz downfield from TMS.

•

.

·

•

Run Nos. 1-4 Combined

Yb (FOD)3 Induced Proton Shifts in 1-Adamantanol, in CDC13 at 60 MHz

Yb (FOD)3		Prot	on	<u> </u>	Σ.	Mole Ratio
(Total mg.)		3	2	4	$\angle \Delta$ Obs.	L/S
10	184	154	123	119	580	0.038
20	266	180	156	136	698	0.076
40	405	224	201	175	1005	0.151
80	638	300	282	248	1468	0.302
10	142	142	111	106	50 1	0.038
20	176	152	120	116	564	0.076
40	259	178	153	136	726	0.151
80	408	227	203	176	1014	0.302
10	144	144	111	107	506	0.038
20	184	154	123	118	579	0.076
40	268	181	156	138	743	0.151
80	427	231	209	180	1047	0.302
10	142	142	111	106	501	0.038
20	179	152	122	117	570	0.076
40	267	180	156	137	740	0.151
80	406	226	202	176	1010	0.302
Slopes			·			
Method I	11 98	381.9	417.3	324.0		
Confidence Level				1.0		
90%	165.5	52.5	57.3	48.9		
99%	236.1	75.0	81.7	69.7		
Method II	0.5138	0.1637	0.1785	0.1415		
Confidence Level						
90%	0.0031	0.0009	0.0016	0.0013		
99%	0.0044	0.0013	0.0023	0.0019		

.

Run No. 1

<u>Eu (FOD)₃ Induced Proton Shifts^{a/} in 1-Adamantanamine, in CCl₄ at 60 MHz</u>

Eu (FOD) ₃ (Total mg.)	<u> </u>	Proton 3	2	<u> </u>	$\sum \triangle$ Obs.	Mole Ratio L/S
10	112	127	102	102	443	0.020
20	135	135	109	109	488	0.043
40	176	145	121	121	563	0.085
80	263	170	157	138	728	0.171
160	423	213	208	178	1022	0.341
Slopes					•	
Method I	969.9	266.6	335.6	232.4		
90% 99%	13.4 23.9	7.81 13.9	18.9 33.5	9.95 17.7	·	
Method II	0. 537	0.148	0.186	0.128		
90%	0.0016 0.0028	0.0009 0.0017	0.0035 0.0063	0.0029 0.005	·	

•

.

a/ Hz downfield from TMS.

<u>Table 14</u>

.

Run No. 2

	Eu (FOD) ₃ Induc	ed Proton Shifts ^a	/ in l-Adamantanami	ne, in CCl _{),} at 60	MHz	
Eu (FOD)3		Prot	on	·····	$\sum A$ or a	Mole Ratio
(Total mg.)	<u> </u>			4	$\angle \Delta $ UDS.	L/S
10	108	124	100	100	432	0.020
20	125	125	106	106	462	0.043
40	161'	141	117	117	536	0.085
80	235	162	138	138	673	0.171
160	380	201	195	166	942	0.341
Slopes						
Method I	851.5	245.8	294.7	205.4		
Confidence Level	7.03	16.4	19.3	20,4	•	
99%	12.5	29.3	34.3	36.3		
Method II Confidence Level	0.5329	0.1540	0.1844	0.1286		
90%	0.0026	0.0037	0.0058	0.0054		
99%	0.0047	0.0066	0.0103	0.0096		

.

•

a/ Hz downfield from TMS.

.

.

Ň

· 38

.

Run No. 3

Eu (FOD)3 Induced Proton Shifts^a/in 1-Adamantanamine, in CCl₄ at 60 MHz

Eu (FOD)3		Prot	Γ	Mole Ratio		
(Total mg.)			_2		$\angle \triangle$ Obs.	L/S
10 ·	103	125	100	100	428	0.020
20	117	129	104	104	454	0.043
40	154	140	115	115	524	0.085
. 80	223	160	136	136	655	0.171
160	357	195	187	174	913	0. 341
Slopes						
Method I	797.4	202.0	272 . 9	232.0		
90% 99%	12.0 21.4	7.73 13.7	14.1 25.1	5.69 10.1		
Method II Confidence Level	0.5235	0.1444	0.1792	0.1529		
90% 99%	0.0017 0.0009	0.0019 0.0034	0.0039 0.0069	0.0011 0.0020		

•

. •

33

 \underline{a} Hz downfield from TMS.

.

<u>Table 16</u>

Run No. 4

	Eu (FOD)3 Induc	ed Proton Shifts ^a	/in 1-Adamantanami	ne, in CCl ₄ at 60	MHz	
Eu (FOD)3	· · · · · · · · · · · · · · · · · · ·	$\sum A$	Mole Ratio			
(Total mg.)	<u></u>	_3_	2		$\Delta 0bs$.	L/S
10 .	99	123	99	99	420	0.020
20	115	127	103	103	448	0.043
40	1401	132	111	111	494	0.085
80	206	158	133	133	630	0.171
160	354	194	187	173	908	0.341
Slopes						
Method I	797.3	227.3	276.9	233.8		
90%	42.5	17.4	23.1	7.9		
99%	75.5	30.9	41.2	14.1		
Method II Confidence Level	0. 519	0.148	0.1807	0.1521		
90%	0.0036	0.0045	0.0032	0.0020		
99%	0.0064	0.008	0.0056	0.0035		

.

٠

1

a/ Hz downfield from TMS.

•

•

.

ł

<u>Table 17</u>

•

-

,

Run Nos. 1-4 Combined

.

	<u>Eu (FOD)₃ Induce</u>	d Proton Shifts in	n 1-Adamantanamine,	, in CCl ₄ at 60 MHz	3	
Eu (FOD)3	<u> </u>	Prot	:on		Σ.	Mole Ratio
(Total mg.)	_1	3	2	<u>4</u>	$\sum \Delta$ Obs.	L/S
10	112	127	102	102	443	0.020
20	135	135	109	109	488	0.043
40	176	145	121	121	563	0.085
80	263	170	157	138	728	0.171
160	423	213	208	178	1022	0.341
10	108 '	124	100	100	432	0.020
20	125	125	106	106	462	0.043
40	161	141	117	117	536	0.085
80	235	162	138	138	673	0.171
160	380	201	195	166	942	0.341
10	103	125	100	100	428	0.020
20	117	129	104	104	454	0.043
40	154	140	115	115	529	0.085
80	223	160 [°]	136	136	655	0.171
160	357	195	187	174	913	0.341
10	99	123	99	99	420	0.020
20	115	127	103	103	448	0.043
40	140	132	111	111	494	0.085
80	206	158	133	133	630	0.171
160	354	194	187	173	908	0.341
Slopes						
Method I	854.0	239.9	295.1	226.1		
Confidence Level			-1 1			
90%	39.5	11.4	14.4	6.9		
99%	55.9	16.2	20.4	9.8		
Method II	0.5299	0.1488	0.1831	0.1382		41
Confidence Level						·
90%	0.0015	0.0011	0.0013	0.0020		
99%	0.0021	0.0015	0.0019	0.0029		

•

.

<u>Run No. 1</u>

Yb	(FOD)3	Induced	Proton	Shifts ^a	in	1-Adamantanamine,	in	cc14	at	60	MHz

Yb (FOD)3		Proton						
(Total mg.)	1	_3_	2	<u> </u>	ΔObs .	L/S		
10	124	129	106	106	465	0.021		
20	150	143	115	115	523	0.042		
40	2041	157	130	130	621	0.084		
80	308	190	174	150	822	0.167		
Slopes								
Method I Confidence Level	1261.9	403.3	465.9	295.7				
90% . 99%	7.89 16.8	42.3 89.9	47.6 101.3	44.3 94.3				
Method II Confidence Level	0.5198	0.1664	0.1918	0.1219				
90% 99%	0.005 0.0107	0.0109 0.0052	0.0077 0.0164	0.0064 0.0137				

a/ Hz downfield from TMS.

.

.

١

4

.

٠.

•

.

.

Run No. 2

	Yb (FOD)3 Induc	ed Proton Shifts	in 1-Adamantanami	ine, in CCl ₄ at 60	MHz			
Yb (FOD)3		Proton						
(Total mg.)		3	2	<u>4</u>	$\angle \Delta$ Obs.	L/S		
10	120	128	104	104	456	0.021		
20	145	140	112	112	509	0.042		
40	206'	159	132	132	629	0.084		
80	315	193	176	152	836	0.167		
160	501	248	239	202	1190	0.334		
Slopes								
Method I	1221.4	378.4	437.4	306.6				
90% 99%	55.5 98.7	28 . 1 49.9	28 .5 50 . 6	23.4 41.7				
Method II	0.5209	0.1617	0.1866	0.1308				
90% 99%	0.0025 0.0044	0.0024 0.0043	0.0032 0.0058	0.0041 0.0074				

•

•

al. 1

a/ Hz downfield from TMS.

.

•

•

<u>Table 20</u>

Run No. 3

<u>Yb (FOD)₃ Induced Proton Shifts^{a/} in 1-Adamantanamine, in CC1₄ at 60 MHz</u>

Yb (FOD) ₃		3	Proton		\sum_{Δ} obs	Mole Ratio
(IOCal mg.)			<u> </u>			<u> </u>
10	• 124	130	106	106	466	0.021
20	152	140	114	114	520	0.042
40	207'	1 59	132	132	630	0.084
80	. 307	191	174	150	822	0.167
160	485	245	232	198	1160	0. 334
Slopes						
Method I	1149.4	364.4	408	286.8		
Source Lev 90% 99%	45.7 81.2	23.6 41.9	28.6 50.9	20.9 37.3	·	
Method II	0. 5202	0.1652	0.1849	0.1298		
90% 99%	0.0019 0.0034	0.0015 0.0027	0.0039 0.0069	0.0041 0.0072		

.

a/ Hz downfield from TMS.

.

<u>Run No. 4</u>

	Yb (FOD)3 Induc	ed Proton Shifts ^a	in 1-Adamantanami	ne, in CC14 at 60 1	MHz	
Yb (FOD)3		$\sum x = x$	Mole Ratio			
(Total mg.)	1	<u> </u>	2	4	$\Delta 0bs$.	L/S
10	128	131	107	107	473	0.021
20	152	141	115	115	523	0.042
40	211	. 159	132	132	634	0.084
80	317	194	176	153	840	0.167
160	502	251	239	203	1 195	0.334
Slopes						
Method I	1199.3	382.1	428.3	301.3		
90% 99%	47.4 84.3	20.8 37.0	25.0 44.5	15.7 27.9		
Method II Confidence Level	0.5189	0.1654	0.1854	0.1303		
90% 99%	0.0012 0.0021	0.0014 0.0025	0.0035 0.0061	0.0061 0.0034		

•

~/

.

a/ Hz downfield from TMS.

•

•

545

.

.

Run Nos. 1-4 Combined

4

Yb (FOD)3 Induced Proton Shifts in 1-Adamantanamine, in CC14 at 60 MHz

Yb (FOD)3		Prot	on		· ~-	Mole Ratio
(Total mg.)	1	_3_	2	<u> </u>	ΔObs .	L/S
10 .	124	129	106	106	465	0.021
20	150	143	115	115	523	0.042
40	204	157	130	130	621	0.084
80	308	190	174	150	822	0.167
10	120	128	104	104	456	0.021
20	145	140	112	112	509	0.042
40	206	159	132	132	629	0.084
80	315	193	176	152	836	0.167
160	501	248	239	.202	1190	0.334
10	124	130	106	106	466	0.021
20	152	140	114	114	520	0.042
40	207	159	132	132	630	0.084
80	307	191	174	100	022	0.107
160	405	. 245	232	190	1100	0.334
10	120	151	107	107	4/3	0.021
20	211	141	122	122	634	· 0.084
40 80	217	10/1	176	153	840	0.167
160	502	251	239	203	1095	0.334
Slopes						
Method I	1194.8	376.7	426.7	298.3		
Confidence Level	18.8	84	9.8	7.2		
99%	26.6	11.9	13.9	10.2		
Method II	0.5407	0.1706	0.1933	0.1349	•.	-
Confidence Level	0.0061	0 0021	0 0054	0.0021		5
99% ·	0.0087	0.0029	0.0033	0.0030		
		÷		-		

<u>Table 23</u>

Run No. 1

	<u> </u>	<u>a (rob/3</u> _	Induced 1	TOCOIL DI	11103-111	2-Adamatic	anoi, in t		00 1112		
Eu (FOD) ₃	<u> </u>	<u> </u>	2		Proton	6	7	8		$\sum \Delta obc$	Mole Ratio
<u>(local mg. /</u>	<u>_</u>		<u></u>							<u></u>	
10	274	154	140	114	114	114	114	114	114	1252	0.038
20	310	180	165	121	121	121	121	121	121	1381	0.077
40	372	222′	205	145	145	132	132	132	132	1617	0.154
80	498	308	286	186	176	162	158	154	148	2076	0.308
160	771	491	460	271	258	226	214	208	192	3091	0.616
200	886	564	531	307	288	250	236	227	205	3494	0.772
Slopes											
Method I	837	561	534	266	240	189	168	156	125		
90% 99%	13 22	11 18	9 15	6 9	8 13	6 10	4 7	5 8	5 9		·
Method II Confidence Level	0.2719	0.1824	0.1736	0.0865	0.0781	0.0614	0.0546	0.0507	0.0406		
90% 99%	0.0008 0.0013	0.0005 0.0009	0.0005 0.0008	0.0007 0.0012	0.0008 0.0014	0.0007 0.0011	0.0003 0.0005	0.0004 0.0006	0.0006 0.0010		

•

Eu (FOD), Induced Proton Shifts 2-Adamantanol, in CDC1, at 60 MHz

<u>a</u>/ Hz downfield from TMS.

Run No. 2

Eu (FOD)3 Induced Proton Shifts^a/in 2-Adamantanol, in CDCl3 at 60 MHz

Eu (FOD)3					Proton					Γ.	Mole Ratio
(Total mg.)	<u> </u>	2	_3_	<u> 4 </u>	5	6	_7_		_9	$\sum \Delta$ Obs.	L/S
10	273	1 54	140	114	114	114	114	114	114	1251	0.038
20	316	184	169	122	122	122	122	122	122	1401	0.077
40	385	231′	213	150	150	136	136	136	136	1673	0.154
80	549	342	319	198	198	170	168	164	158	2266	0.308
160	828	528	496	290	275	238	225	217	199	3296	0.616
Slopes											
Method I	954	642	611	305	279	214	191	176	144	•	
90% 99%	25 45	19 33	18 32	9 17	17 29	7 12	4 7	2 4	7.4 13		·
Method II	0.2713	0.1826	0.1738	0.0868	0.0796	0.0607	0.0543	0.0501	0.0409		
90% 99%	0.0009 0.0017	0.0008 0.0014	0.0009 0.0015	0.0012 0.0022	0.0016 0.0031	0.0014 0.0025	0.0003 0.0005	0.0003 0.0007	0.0010 0.0017		

•

 \underline{a} Hz downfield from TMS.

•

<u>Table 25</u>

Run No. 3

	Eu	<u></u>	luuced FI	OCOIL BILL		Adamaticat	101, 111 01	<u>7013 ac 0(</u>			
Eu (FOD) ₃ (Total mg.)	1	2	3	4	Proton 5	6	_7_	8	_9_	$\sum \Delta$ Obs.	Mole Ratio
10	293	168	152	117	117	117	117	117	117	1315	0.038
20	322	188	172	122	122	122	122	122	122	1414	0.077
40	396	238	219	154	154	138	138	138	138	1713	0.154
80	537	334	312	195	195	167	165	162	158	2225	0.308
160	845	534	506	295	280	241	228	221	201	3351	0.616
Slopes											
Method I Confidence Level	952	632	610	308	283	214	192	178	144	•	
90% 99%	32 57	16 29	16 28	16 28	15 27	14 25	8 14	7 13	7 12		
Method II	0.2709	0.1797	0.1737	0.0878	0.08055	0.0610	0.0545	0.0509	0.0409		
90% 99%	0.0016 0.0028	0.0009 0.0017	0.0011 0.0019	0.0012 0.0022	0.0020 0.0036	0.0013 0.0024	0.0004 0.0007	0.0004 0.0008	0.0012 0.0021		

•

Eu (FOD) Induced Proton Shifts^a/in 2-Adamantanol, in CDC13 at 60 MHz

 \underline{a} / Hz downfield from TMS.

١

6ħ

Run No. 4

١	Eu	(FOD)3 I	nduced Pr	oton Shi	tts=4n 2	-Adamanta	nol, in Cl	<u>DCI3 at 60</u>	<u>J MHZ</u>		
Eu (FOD)3					Proton					5	Mole Ratio
(Total mg.)	1	2	_3_	_4	_5	6	_7_	8	9	$\sum \Delta$ Obs.	L/S
10	273	155	140	113	113	113	113	113	113	1246	0.038
20	307	179	162	120	120	120	120	120	120	1368	0.077
40.	375	214	206	146	146	133	133	133	133	1619	0.154
80	517	321	298	187	188	163	160	158	153	2145	0.308
160	819	523	490	286	272	236	224.	216	198	3264	0.616
Slopes											
Method I	939	636	602	298	275	211	190	176	144	•	
90% 99%	27 48	29 51	15 27	14 25	9 15	14 25	9 16	6 11	3 6		
Method II	0.2703	0.1832	0.1733	0.0861	0.0792	0.0608	0.0548	0.0507	0.0414		
90% 99%	0.0003 0.0005	0.0026 0.0047	0.0005 0.0009	0.0012 0.0021	0.0016 0.0029	0.0012 0.0022	0.0006 0.0011	0.0004 0.0007	0.0009 0.0018		

٠

Eu (FOD) Induced Proton Shifts⁴in 2-Adamantanol, in CDCl₃ at 60 MH

 \underline{a} / Hz downfield from TMS.

<u>Table 27</u>

٠

.

Run Nos. 1-4 Combined

۶,

.

	Eu	(100/3-1				amancano	<u>11 000</u>	<u>13 ac 00 1</u>			
Eu (FOD)3					Proton					~	Mole Ratio
(Total mg.)	1	2	3	_4	5	6	_7	8	9	$\sum \Delta$ Obs.	L/S
10	274	154	140	114	114	114	114	114	114	1252	0.038
20	310	180	165	121	· 121	121	121	121	121	1381	0.077
40	372	222	205	145	145	132	132	132	132	1617	0.154
80	498	308	286	186	176	162	158	154	148	2076	0.308
1 60	771	49 1	460	271	258	226	214	208	192	3091	0.616
200	886	564	531	307	288	250	236	227	205	3494	0.772
10	273	154	140	114	114	114	114	114	114	1251	0.038
20	316	184	169	122	122	122	122	122	122	1401	0.077
40	3 ⁸ 5	231	213	150	150	136	136	136	136	1673	0.154
80	549	342	319	198	198	170	168	1 64	158	2266	0.308
160	828	528	496	290	275	238	225	217	199	3296	0.616
10	293	168	152	117	117	117	117	117	117	1315	0.038
20	322	188	172	122	122	122	122	122	122	1414	0.077
40	396	238	219	154	154	138	138	130	130	1713	0.154
80	537	334	312	195	195	167	165	162	158	2225	0.308
160	045	534	500	295	200	241	220	221	201	3371	0.010
10	273	155	140	113	113	113	113	113	113	1240	0.030
20	307	1/9	102	120	120	120	120	120	120	1610	0.077
40	5/2	214	200	187	188	162	155	+55 158	152	21/25	0.208
160	517 810	521	290	286	272	226	22/1	216	108	224)	0.500
100	019	945	490	200	212	230	224	210	190	5204	0.010
Slopes											
Method I	892.8	589 .1	517.3	285.8	259.9	201.3	179.7	166.5	134.3		
Confidence Level	~~ ~	• / •	1.5.0	- 0	0.0		1. 0	1. –	1. 1.		
90%	23.7	16.1	15.3	7.8	8.6	5.5	4.9	4.7	4.4		
99%	33+3	22.1	21.5	11.0	12.1	7.0	0.0	0.5	6.2		51
<u>Method II</u>	0.2712	0.1820	0.1736	0.0868	0.0791	0.0611	0.0546	0.0506	0.0409		
Confidence Level											
90%	0.0003	0.0005	0.0002	0.0003	0.0005	0.0004	0.0001	0.0001	0.0003		
99%	0.0005	0.0006	0.0003	0.0005	0.0007	0.0005	0.0002	0.0002	0.0004		

.

Eu (FOD)3 Induced Proton Shifts in 2-Adamantanol, in CDCl3 at 60 MHz

<u>Table 28</u>

.

٠

•

Run No. 1

7	Yb	(FOD)3 I	induced Pr	oton Shi	fts ^a in 2	-Adamanta	nol, in C	DC13 at 6	O MHz		
Yb (FOD) ₃		2	3	<u>h</u>	Proton		7	8	<u> </u>	$\sum \Delta obs$	Mole Ratio
10	· 363	217	<u> </u>	140	<u> </u>	138	134	134	134	1596	0.038
20	482	298	274	179	179	161	161	151	151	2036	0.076
40	698	446'	412	243	238	208	208	192	1 92	2937	0.151
80	984	648	602	337	322	273	273	250	235	3924	0.302
Slopes											
Method I	2320	1612	1511	733	678	508	518. 5	411	382		
90% 99%	334 711	2 15 458	199 422	92 196	107 228	59 126	70 150	42 90	73 154	•	
Method II Confidence Level	0.2667	0.1852	0.1734	0.0842	0.0780	0.0582	0.0595	0.0504	0.0440		
90% 99%	0.0012 0.0026	0.0002 0.0006	0.0004 0.0009	0.0009 0.002	0.0018 0.0038	0.0008 0.0017	0.0002 0.0004	0.0016 0.0034	0.0016 0.0035		

.

 \underline{a} / Hz downfield from TMS.

.

.

.

.

.

Run No. 2

Yb (FOD)₃ Induced Proton Shifts^a/in 2-Adamantanol, in CDC1₃ at 60 MHz

Yb (FOD)3	Proton										Mole Ratio	
(Total mg.)	<u> </u>	_2_	_3_	<u> 4 </u>	_5	6	_7_		_9_	$\Delta Obs.$	L/S	
10	392	238	217	145	145	140	140	134	134	1685	0.038	
20	513	324	297	190	179	168	168	157	157	2153	0.076	
40	712	460	424	250	244	211	211	196	196	2904	0.151	
80	1042	696	644	359	342	286	286	262	245	4161	0.302	
Slopes												
Method I Confidence Level	2427	1708	1593	790	740	544	544	479	412			
90% 99%	209 446	1 35 287	125 267	78 166	71 151	45 96	45 96	36 76	70 150	•		
Method II	0.2627	0.1848	0.1723	0.0856	0.0802	0.0588	0.0588	0.0518	0.0449			
90% 99%	0.0005 0.0011	0.0010 0.0021	0.0009 0.0019	0.0013 0.0029	0.0013 0.0027	0.0003 0.0007	0.0003 0.0007	0.0004 0.0008	0.0022 0.0046			

.

53

a/ Hz downfield from TMS.

<u>Table 30</u>

Run No. 3

Yb (FOD)3 Induced Proton Shifts 2-Adamantanol, in CDCl3 at 60 MHz

Yb (FOD)3				5	Mole Ratio						
(Total mg.)	1	2	3	<u> </u>	_5	6	_7_	8	9_	$\Delta Obs.$	L/S
10	335	198	181	138	128	128	128	128	128	1492	0.038
20	456	285	260	172	·172	155	155	146	146	1947	0.076
40	628	404	370	222	217	193	193	179	179	2585	0.151
80	923	607	560	318	309	257	257	236	222	3689	0.302
Slopes											
Method I	2178	1511	1402	670	659	477	477	406	351		
90% 99%	224 476	169 360	147 312	43 90	86 183	53 112	53 112	23 50	52 111		
Method II	0.2678	0.1859	0.1724	0.0822	0.0811	0.0587	0.0587	0.0497	0.0433		
90% 99%	0.0003 0.0007	0.0009 0.0020	0.0002 0.0004	0.0019 0.0040	0.0022 0.0049	0.0003 0.0005	0.0003 0.0005	0.0014 0.0031	0.0017 0.0036		

٠

a/ Hz downfield from TMS.

۱

<u>Table 31</u>

Run No. 4

	Yb	(FOD)3 1	nduced Pr	oton Shi	fts ^a /in 2-	-Adamanta	nol, in Cl	001 <u>3 at 60</u>	<u>) MHz</u>		
Yb (FOD)3					Proton				·	$\nabla \mathbf{A}$	Mole Ratio
(Total mg.)	1	_2_	<u> </u>	_4	5	6	_7_		_9	$\sum \Delta$ Obs.	L/S
10	• 326	194	175	135	135	126	126	126	126	1469	0.038
20	448	278	254	169	169	153	153	145	145	1914	0.076
40	632	406°	273	224	218	194	194	180	180	2501	0.151
80	960	630	580	329	316	255	255	243	228	3796	0.302
61 0000											
Stopes											
Method I Confidence Level	2360	1623	1 484	726	674	478	478	441	382		
90% 99%	188 400	1 35 287	430 914	34 73	39 83	64 137	64 137	19 41	50 106	•	
Method II Confidence Level	0.2729	0.1878	0.1716	0.0839	0.0779	0.0553	0.0553	0.0509	0.0441		
90% 99%	0.0085 0.0181	0.0064 0.0136	0.0284 0.0605	0.0017 0.0035	0.0010 0.0022	0.0036 0.0076	0.0036 0.0076	0.0015 0.0032	0.0031 0.0066		

٠

 \underline{a} / Hz downfield from TMS.

.

ì

.

55

<u>Table 32</u>

•

Run Nos. 1-4 Combined

Yb (FOD)3 Induced Proton Shifts in 2-Adamantanol, in CDCl3 at 60 MHz

Yb(FOD)3			$\sum \triangle$ obs.	Mole Ratio							
<u>(Total mg.)</u>	1	_2_	_3_		_5_	6	_7_	8	9	$\Delta 0bs$.	L/S
10	. 363	217	1 98	140	138	138	138	134	134	1596	0.038
20	482	298	274	179	179	161	161	151	151	2036	0.076
40	698	446	412	243	238	208 [.]	208	192	192	2937	0.151
80	984	648	602	337	322	273	273	250	235	3924	0.302
10	392	238	217	145	145	140	140	134	134	1685	0.038
20	513	324'	297	190	1 79	168	168	157	157	2153	0.076
40	712	460	424	250	244	211	211	196	197	2904	0.151
80	1042	696	644	359	342	286	286	262	245	4161	0.302
10	335	198	181	138	128	128	128	128	128	1492	0.038
20	456	285	260	172	172	155	155	146	146	1947	0.076
40	628	404	370	222	217	1 98	198	179	179	2585	0.151
80	923	607	560	318	309	257	257	236	222	3689	0.302
10	326	1 94	175	135	135	126	126	126	126	1469	0.038
20	448	278	254	169	169	153	153	145	145	1914	0.076
40 .	632	406	273	224	218	1 94	1 94	180	180	250 1	0.151
80	960	630	580	329	316	255	255	243	228	3796	0.302
Slopes						•					·
Method I	2321.4	1613.7	1497.5	730.0	688.1	501.8	501.8	441.7	381.7		
Confidence Level											
90%	106.3	74.2	98.1	31.7	30 . 1	26.3	26.3	19.4	22.1		
99%	151.5	105.9	140.0	45.3	42.8	37.5	37.5	27.7	31.6		
Method II	0.2671	0.1857	0.1733	0.0839	0.0790	0.0579	0.0579	0.0507	0.0442		
Confidence Level											
90%	0.0012	0.0009	0.0035	0.0005	· 0.0006	0.0005	0.0005	0.0003	0.0005		
99%	0.0018	0.0013	0.0049	0.0007	0.0008	0.0007	0.0007	0.0005	0.0007		

.

Run No. 1

	. /		
Eu (FOD) ₂ Induced	Proton Shifts ^a /	in 2-Adamantanamine,	in CCl, at 60 MHz

Eu (FOD) ₃	<u> </u>			1.	Proton			<u> </u>		$\sum \Delta \alpha h a$	Mole Ratio
(Iotal mg.)	<u> </u>	<u> </u>	<u> </u>						<u> </u>		L/S
10 ·	195	118	138	113	113	113	113	113	113	1129	0.022
20	216	130	150	115	115	115	115	115	115	1186	0.044
40	258	168	176	122	122	122	122	122	122	1334	0.088
80	347	238	232	149	147	147	142	138	138	1678	0.175
160	526	382	344	208	200	200	177	172	172	2381	0.350
200	600	442	391	235	227	222	194	187	187	2685	0.439
Slopes .											
Method I	984	791.4	615.9	302.7	280.4	271.9	198.9	181.8	181.8	·	
90% 99%	18.1 29.8	15.8 26.0	11.1 18.3	17.1 28.2	14.9 24.5	13.7 22.5	5.81 9.55	5.07 8.32	5.07 8.32		
Method II Confidence Level	0.2572	0.2065	0.1614	0.0803	0.0751	0.0715	0.0521	0.0479	0.0479		
90% 99%	0.0016 0.0024	0.0013 0.0020	0.0008 0.0012	0.0012 0.0019	0.0012 0.0019	0.0008 0.0013	0.0003 0.0005	0.0002 0.0003	0.0002 0.0003		

٠

.

a/ Hz downfield from TMS.

•
Run No. 2

	Eu	<u>(rob)3 r</u>	induced 11			L Additation	anamene, .		<u>c 00 miz</u>		
Eu (FOD) ₃ (Total mg.)		3	2	4	Proton 5	6	7	8	9	$\sum_{\Delta \text{ Obs.}}$	Mole Ratio L/S
10	• 194	112	136	111	111	111	111	111	111	1108	0.022
20	221	135	154	117	117	117	117	117	117	1212	0.044
40	266	1741	182	126	126	126	126	126	126	1378	0.088
80	359	247	240	154	150	150	141	141	141	1723	0.175
160	537	393	353	214	207	203	180	174	174	2435	0.350
200	613	442	407	243	235	230	200	192	1 92	2754	0.439
Slopes											
Method I	1008.6	800.9	647.1	320.3	299.2	286.3	210.3	190.0	190.0	•	
90% 99%	20.9 34.4	31.9 52.4	6.9 11.4	10.9 17.9	11.1 18.3	8.5 13.9	5.4 8.8	3•3 5•4	3.3 5.4		
Method II Confidence Level	0.2552	0.2027	0.1637	0.0810	0.0757	0.0724	0.0532	0.0481	0.0481		
90% 99%	0.0018 0.0029	0.0032 0.0053	0.0007 0.0011	0.0015 0.0024	0.0015 0.0025	0.0012 0.0020	0.0008 0.0013	0.0006 0.0009	0.0006 0.0009		

•

<u>Eu (FOD)</u> Induced Proton Shifts^a/in 2-Adamantanamine, in CC1₄ at 60 MHz

a/ Hz downfield from TMS.

•

٦

58

э

<u>Table 35</u>

Run No. 3

Eu (FOD) Induced	Proton	Shifts ^a /in	2-Adamantanamine,	in	CC1),	at	60 MHz
					T		

Eu (FOD) ₃	<u> </u>	<u>.</u>),	Proton					$\sum A = O h a$	Mole Ratio
(local mg.)		<u> </u>	<u> </u>		2				_9_		L/S
10	1 98	112	140	112	112	112	112	112	112	1122	0.022
20	226	138	156	116	116	116	116	116	116	1216	0.044
40	275	1801	188	128	128	128	128	128	128	1411	0.088
80	392	273	261	163	157	157	150	145	145	1843	0.175
160	600	439	389	233	225	220	192	195	185	2668	0.350
200	682	505	440	259	252	244	209	208	201	2993	0.439
Slopes											
Method I	1178.4	950 . 5	731.3	366.5	346.1	326.9	236.8	215.7	215.7	•	
90% 99%	35 . 1 53 . 5	30 . 1 49 . 5	22.5 37.0	14.4 23.6	13.4 22.0	11.1 18.2	6.4 10.5	5.2 8.6	5.2 8.6		
Method II Confidence Level	0.2580	0.2081	0.1601	0.0802	0.0757	0.0716	0.0518	0.0472	0.0472		
90% 99%	0.0013 0.0022	0.0018 0.0029	0.0010 0.0016	0.0013 0.0021	0.0016 0.0027	0.0011 0.0018	0.0005 0.0003	0.0006 0.0009	0.0006 0.0009		

a/ Hz downfield from TMS.

•

•

.

59

•

.

۰.

•

<u>Table 36</u>

Run No. 4

Eu (FOD) Induced Proton Shifts^a/in 2-Adamantanamine, in CCl₄ at 60 MHz

Eu (FOD) ₃	<u> </u>	2);	Proton		7	8	0	$\sum obs$	Mole Ratio
(local mg.)		<u></u>	<u> </u>	<u> </u>							
10	1 97	119	137	111	111	111	111	111	111	1111	0.022
20	222	136	154	116	116	116	116	116	116	1208	0.044
40	275	180'	187	128	128	128	128	128	128	1410	0.088
80	466	334	309	187	182	177	166	161	161	2143	0.175
160	566	414	370	223	216	210	197	190	190	2576	0.350
200	648	478	421	251	242	239	203	196	196	2874	0.439
Slopes .											
Method I	1082.2	875.2	680.2	341.1	318.4	306.9	231.9	212.7	212.7	•	
90% 99%	162 .3 266.7	135.2 222.1	105.6 173.6	42.8 70.4	39.1 64.3	33.5 55.0	35.1 57.6	30.6 50.3	30.6 50.3		
Method II Confidence Level	0.2545	0.2061	0.1602	0.0769	0.0742	0.0712	0.0514	0.0497	0.0497		
90% 99%	0.0016 0.0026	0.0019 0.0030	0.0013 0.0022	0.0010 0.0023	0.0012 0.0019	0.0017 0.0029	0.0016 0.0026	0.0015 0.0024	0.0015 0.0024		

•

a/ Hz downfield from TMS.

h

.

.

60

<u>Table 37</u>

• • • • •

.

Run Nos. 1-4 Combined

.

Eu (FOD)3 Induced Proton Shifts in 2-Adamantanamine, in CCl₄ at 60 MHz

Eu (FOD)3	<u></u>	•			Proton					~	Total Ratio
<u>(Total mg.)</u>	<u> </u>	2	3	<u> 4 </u>	_5	6	_7		_9	$\Delta \Delta$ Obs.	L/S
10	1 95	118	138	113	113	113	113	113	113	1129	0.022
20	216	130	150	115	115	115	115	115	115	1186	0.044
40	• 258	168	176	122	122	122	122	122	122	1334	0.088
80	347	238	232	149	· 147	147	142	138	138	1678	0.175
160	526	382	344	208	200	200	177	172	172	2381	0.350
200	600	442	391	235	227	222	194	187	187	2685	0.439
10	194	112'	136	111	111	111	111	111	111	1108	0.022
20	221	135	154	117	117	117	117	117	117	1212	0.044
40	266	174	182	126	126	126	126	216	126	1378	0.088
80	359	247	240	154	150	150	141	141	141	1723	0.175
160	537	393	353	214	207	203	180	174	174	2435	0.350
200	613	442	407	243	235	230	200	192	192	2754	0.439
10	198	112	140	112	112	112	112	112	112	1122	0.022
20	226	138	156	116	116	116	116	116	116	1216	0.044
40	275	180	188	128	128	128	128	128	128	1411	0.088
. 80	392	273	261	163 .	157	157	150	145	145	1843	0.175
160	600	439	389	233	225	220	192	185	185	2668	0.350
200	682	505	440	259	252	244	209	201	201	2993	0.439
10	197	111	137	111	111	111	111	111	-111	1111	0.022
20	222	136	154	116	116	116	116	116	116	1208	0.044
40	275	180	187	128	128	128	128	128	128	1410	0.088
80	466	334 ·	309	187	182	177	166	161	161	2143	0.175
160	566	414	370	223	216	210	197	190	190	2576	0.350
200	648	478	421	251	242	239	203	196	196	2874	0.439
Slopes											
Method I	1063	854	668	332.7	311.0	298.0	219.5	200.1	200.1		
Confidence Level	1.0		o((10.0	10.0	10 (~ ^	0.1	0.1		
90%	43	35.3	26.6	12.9	12.2	10.6	9.3	0.4 11 8	0.4 11 8		61
99%	00.3	49.4	51.5	10.0	11.6	14.9	13.1	11.0	11.0		
Method II Confidence Level	0.2565	0.2062	0.1612	0.0801	0.0749	0.0716	0.0529	0.0482	0.0482		
90%	0.0006	0.0008	0.0004	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004		
99%	0,0009	0.0012	0.0006	0.0007	0.0007	0.0007	0.0005	0.0005	0.0005		
						•					

<u>Table 38</u>

٠.

,

.

<u>Run No. 1</u>

	Yb	(FOD) <u>3</u> 1	Induced Pr	roton Sh	ifts ^a /in	2-Adamant	anamine,	in CCl ₄ a	t 60 MHz		
Yb (FOD)3					Proton					7	Mole Ratio
(Total mg.)	1	_3_	2	<u> 4 </u>	_5	6	_7	_8_	9	<u> と</u> Obs.	L/S
10	· 261	155	173	122	122	122	118	118	118	1309	0.021
20	356	218	227	143	143	143	143	134	134	1641	0.043
40	568	3531	345	197	188	188	188	169	169	2365	0.086
. 80	1065	672	620	338	320	300	280	253	243	4091	0.172
160	2007	1281	1138	606	544	504	466	412	384	7342	0.343
Slopes											
Method I	5477.1	3529.0	3025.1	1528.3	1334.1	1200.0	1078.6	922 .5	830.9		
Sonfiden ce Level 90% 99%	120.6 214.6	77.7 138.2	60.7 107.9	61.2 108.9	53.8 95.7	30.2 53.7	5.6 9.9	22 . 1 39 . 3	8.5 15.2	•	
<u>Method II</u> Confidence Level	0.2894	0.1865	0.1598	0.0808	0.0705	0.0634	0.0569	0.0487	0.0438		
90% 99%	0.0003 0.0006	0.0004 0.0007	0.0004 0.0007	0.0012 0.0022	0.0012 0.0021	0.0003 0.0005	0.0010 0.0019	0.0001 0.0001	0.0005 0.0009		

.

.

a/ .

Hz downfield from TMS. <u>a</u>/

•

•

. 62

.:

<u>Table 39</u>

Run No. 2

Yb (FOD)3 Induced Proton Shifts^a/in 2-Adamantanamine, in CCl₄ at 60 MHz

Yb (FOD)3				-	Mole Ratio						
(Total mg.)	1	3	2	4	_5_	6	_7_	8	9	$\sum \triangle Obs.$	L/S
10 [.]	• 299	180	194	130	130	130	124	124	124	1435	0.021
20	422	260	268	163	158	158	158	146	146	1879	0.043
40	750	4841	456	256	250	228	228	202	202	3056	0.086
80	1427	938	852	456	419	389	361	323	305	5470	0.172
Slopes											
Method I	7572.1	5096.2	4410.3	2193.7	1951.7	1737.0	1571.8	1334.4	1210.9		
Confidence Level 90% 99%	379.2 806.5	265.7 565.1	215 .5 458 . 3	144.2 306.7	111.1 236.2	121.3 257.9	19.8 42.1	73.9 157.1	36.8 78.3		
Method II Confidence Level	0.2796	0.1882	0.1629	0.0810	0.0721	0.0642	0.0579	0.0492	0.0447		
90% 99%	0.0005 0.0012	0.0008 0.0017	0.0008 0.0018	0.0013 0.0027	0.0016 0.0034	0.0016 0.0034	0.0025 0.0052	0.0005 0.0011	0.0013 0.0028		

,

<u>a</u>/ Hz downfield from TMS.

2

2

.

Run No. 3

	Yb	(FOD) ₃ 1	nduced P	roton Sh	ifts ^a /in	2-Adamant	anamine,	in CCl _{),} a	t 60 MHz	•	
Yb (FOD) ₃ (Total mg.)			2	<u> </u>	Proton	6	7	8	9	$\sum \Delta Obs$	Mole Ratio
10	• 220	205	<u></u>	128	128	128	128	128	128	1550	0.021
10	222	209	214	120	120	130	130	120	120	1999	0.021
20	465	287	287	175	166	166	166	152	152	2016	0.043
40	755	4781	454	255	248	226	226	201	201	3044	0.086
80	1499	971	880	466	428	394	368	328	310	5644	0.172
Slopes											
Method I	7799.0	5132.6	4458.9	2192.5	1954.0	1712.3	1534.0	1333.0	1210.0		
90% 99%	676 1438	486.9 1035.5	400.3 851.3	205.8 437.7	145.9 310.5	188.5 400.9	94.0 200	111.0 236	46.0 97		
Method II Confidence Level	0.2854	0.1879	0.1632	0.0803	0.0714	0.0627	0.0560	0.0488	0.0442		
90% 99%	0.0008 0.0016	0.0013 0.0029	0.0005 0.0011	0.0006 0.0013	0.0019 0.0039	0.0012 0.0027	0.0010 0.0023	0.0004 0.0008	0.0016 0.0035		

•

٠

<u>a</u>/ Hz downfield from TMS.

•

.

•

.

•

.

•**

<u>Run No. 4</u>

Yb (FOD)3 Induced H	Proton Shifts ^a	in 2-Adamantanamine,	in CCl ₄ at 60 MHz

Yb (FOD) ₃ (Total mg.)			2		Proton _5_	6	7	8	9	$\sum \triangle$ Obs.	Mole Ratio
10	• 332	206	215	139	139	139	139	129	129	1567	0.021
20	501	313	308	186	173	173	173	158	158	2143	0.043
40	830	521'	490	272	265	240	240	211	211	3280	0.086
80	1541	975	880	469	431	399	372	332	312	5711	0.172
<u>Slopes</u>											
Method I	8017	5100	4410	2184	1957	1728	1543	1344	1207	•	
90% 99%	190 404	136 289	95 203	79 168	72 154	93 197	6.2 13	47 100	29 62		
Method II	0.2916	0.1855	0.1604	0.0795	0.0712	0.0629	0.0561	0.0489	0.0439		
Confidence Level 90% 99%	0.0006 0.0012	0.0007 0.0015	0.0001 0.0003	0.0009 0.0021	0.0023 0.0050	0.0015 0.0033	0.0006 0.0024	0.0006 0.0012	0.0015 0.0032		

.

a/ Hz downfield from TMS.

•

Run Nos. 1-4 Combined

	Yb	$(FOD)_3$ I	nduced Pr	oton Shir	ts in 2-A	damantana	mine, in	CCI4 at C	<u>O MHZ</u>		
Yb (FOD)3				<u> </u>	Proton			<u>0</u>		$\sum_{i=1}^{n} c_{i} c_{i}$	Total Ratio
(Total mg.)	<u> </u>	_2_	<u></u>	<u> </u>		0		<u> </u>		$\Delta 008$.	L/ 5
10	261	155	173	122	122	122	118	118	118	1309	0.021
20	356	218	227	143	143	143	143	134	134	1641	0.043
40	568	353	345	197	188	188.	188	169	169	2365	0.086
80	1065	672	620	338	320	330	280	253	243	4091	0.172
10	299	180′	194	130	130	130	124	124	124	1435	0.021
20	422	260	268	163	158	158	158	146	146	1879	0.043
40	750	484	456	256	250	228	228	202	202	3056	0.086
80	1427	938	852	456	419	389	361	323	305	5470	0.172
10	332	205	214	138	138	138	138	128	128	1559	0.021
20	465	287	287	175	166	166	166	152	152	2016	0.043
40	755	478	454	255	248	226	226	201	201	3044	0.086
80	1499	971	880	466	428	394	368	328	310	5644	0.172
10	332	206	215	139	139	139	139	129	129	1567	0.021
20	501	313	308	186	173	173	173	158	158	2143	0.043
40	830	521	490	272	265	240	240	211	211	3280	0.086
80	1541	975	880	469	431	399	372	332	312	5711	0.172
Slopes											
Method I	7190	4694	4065	2005	1797	1591	1429	1229	1115		
Confidence Level				_				~ ~	0.		
90%	529	353	305	155	135	115	106	90	81		
99%	755	504	435	222	193	164	152	129	116		
Method II Confidence Level	0.2876	0.1868	0.1610	0.0805	0.0710	0.0633	0.0568	0.0489	0.0440		
ond	0 0012	0 0003	0 0004	0.0003	0.0005	0,0003	0,0004	0,0001	0,0003		
99%	0.0017	0,0005	0.0006	0.0005	0.0007	0.0005	0.0006	0.0002	0.0004		Q
1110		0.000/	0.0000	/		/					<u> </u>

		Proton							
	1	3	2	4					
<u>Slopes</u>									
$\frac{V - Eu(fod)_3}{Confidence}$	627.5	186.0	218.5	156.6					
90% 99%	10.7 , 15.1	2.9 4.2	6.0 8.5	4.4 6.2					
$\frac{V - Yb(fod)_3}{Confidence}$	1198	381.9	417.3	324.0					
90% 99%	165.5 236.1	52.5 75.0	57.3 81.7	48.9 69.7					
<u>VI - Eu(fod)</u> Confidence Level	854.0	239.9	295.1	226.1					
90%	39.5	11.4	14.4	6.9					
99%	55.9	16.2	20.4	9.8					
$\frac{VI - Yb(fod)_3}{Confidence Level}$	1194.8	376.7	426.7	298.3					
90%	18.8	8.4	9.8	7.2					
99%	26.6	11.9	13.9	10.2					

Table 43. Comparison of Shift Parameters $\frac{a}{}$ Generated by the Demarco-Wenkert Method for 1-Adamantanol (V) and 1-Adamantanamine (VI)

<u>a</u>/ Based on combined data from four runs.

	. Proton									
Slopes	1	_2	3	<u></u>	_5_	6	_7	8	9	
<u>III - Eu(fod)</u>	892.8	589.1	517.3	285.8	259.9	201.3	179.7	166.5	134.3	
90% 99%	23.7 33.3	16.1 22.7	15.3 21.5	7.8 11.0	·· 8.6 12.1	5.5 7.8	4.9 6.8	4.7 6.5	4.4 6.2	
$\frac{\text{III} - \text{Yb}(\text{fod})_3}{2}$	2321.4	· 1613.7	1497.5	730.0	688.1	501.8	501.8	441.7	381.7	
90% 99%	106.3 151.5	74.2 105.9	98.1 140.0	31.7 45.3	30.1 42.8	26.3 37.5	26.3 37.5	19.4 27.7	22.1 31.6	
$IV - Eu(fod)_3$	1063	854	668	332.7	311.0	298.0	219.5	200.1	200.1	
90% 99%	43 60.3	35.3 49.4	26.6 37.3	12.9 18.0	12.2 17.2	10.6 14.9	9.3 13.1	8.4 11.8	8.4 11.8	
$IV - Eu(fod)_3$	595 1	3843.9	3317.3	1661.9	1462.7	1310.3	1172.3	1009.6	908.6	
Confidence Lével 90% 99%	509 724	342.3 487.1	299.3 425.9	145.9 207.6	133.5 198.9	112.8 160.6	103.5 147.9	88.2 125.5	81.1 115.8	

Table 44.	Comparison of Shift Parameters <u>a</u> /	/ Generated by	the Demarco-Wenkert	Method f	or 2-Adamantanol	(VII)
	and 2-Adamantanamine (VIII)			•		

 \underline{a} / Based on combined data from four runs.

•

.

•

68

•

due to a manipulative error. The low solubility of V in $CDCl_3$ required slight heating of the solvent. Transfer of heated stock solution to the NMR tube <u>via</u> a cool syringe resulted in crystallization and partial loss of V. This larger L/S ratio caused a larger LIS.

The other noticeable deviation is in the first run of VIII with $Yb(fod)_3$ (Table 38). This run is possibly the best in the set (Tables 39-41). It was the only one run with freshly prepared stock solution. An NMR break-down delayed runs 2-4 for three days. During this time a small amount of white precipitate formed in the stock solution, in spite of its storage under nitrogen. This probable loss of VIII may have caused larger LIS.

The precision of this method ranges from 0.6 per cent (Table 18) to 15 per cent (Table 36) at the 90 per cent confidence level. The majority of deviations are between 2 and 5 per cent. It has been determined in these laboratories that the agreement between the experimental and the computed McConnell-Robertson model has been between 3 and 8 per cent. It therefore seems likely that Demarco-Wenkert shift parameters with a precision of 2 to 5 per cent can be successfully employed for structural determination. Experimental data with 2 per cent precision might be expected to give 2 per cent agreement factors.

It is apparent that the precision of the shift parameters (Demarco-Wenkert) is not increased by replication of data runs using our methodology. The precision of shift parameters from combined data runs (Tables 7, 12, 17, 22, 27, 32, 37, and 42) makes this point clear.

Note that our data were carefully obtained. All variables were controlled (i.e. same stock solution for all runs, dried and sublimed reagents, the same instrument, etc.). These experiments were done much more carefully than the lab data on which many uses of the computational model are based. Furthermore, the lack of detailed experimental description in the current literature might indicate that the reported LIS data were not carefully generated. There are obvious exceptions, Kelsey⁽³³⁾, Armitage⁽³⁵⁾ and Shapiro⁽³⁶⁾. Their data are very precise within the particular data sets and are probably accurate. However, even these carefully produced shift indexes were usually only determined once for each compound.

C. Data Reduction with the ApSimon Method

The heuristic ApSimon method of data reduction, Method II, .(Tables 3 to 42), was applied to data previously examined by Method I. The shift parameters calculated via this method are summarized for V and VI in Table 45 and for VII and VIII in Table 46.

	Proton						
Slopes	1	_2_	_3_	<u></u>			
$\frac{V - Eu(fod)}{Confidence}$	0.5272	0.1562	0.1838	0.1316			
90% 99%	0.0018 0.0025	0.0006 0.0009	0.0016 0.0023	0.0014 0.0020			
<u>V - Yb(fod)</u> Confidence Level	0.5138	0.1637	0.1785	0.1415			
90% 99%	0.0031 0.0044	0.0009 0.0013	0.0016 0.0023	0.0013 0.0019			
<u>VI - Eu(fod)</u> Confidence Level	0.5299	0.1488	0.1831	0.1382			
90% 99%	0.0015 0.0021	0.0011 0.0015	0.0013 0.0019	0.0020 0.0029			
<u>VI - Yb(fod</u>) ₃ Confidence Level	0.5407	0.1706	0.1933	0.1349			
90% 99%	0.0061 0.0087	0.0021 0.0029	0.0024 0.0033	0.0021 0.0030			

Table 45.	Comparison	of	Shift	Parameters	<u>a</u> /	Generated	Ъу	the	ApSimon	Method	for	1-Adamantanol	(V)	and
	1-Adamantar	nami	ine (VI	:)										

 $\underline{a}/$ Based on combined data from four runs.

•

.

.

÷

	Proton									
Slopes	1	2	_3_	<u>4</u>	_5_	6	_7	_8	9	
<u>VII - Eu(fod)</u> Confidence Level	0.2712	0.1820	0.1736	0.0868	0.0791	0.0611	0.0546	0.0506	0.0409	
90% 99%	0.0003 0.0005	0.0005 0.0006	0.0002 0.0003	0.0003 0.0005	0.0005 0.0007	0.0004 0.0005	0.0001 0.0002	0.0001 0.0002	0.0003 0.0004	
<u>VII - Yb(fod)</u> Confidence Level	0.2671	0.1857	0.1733	0.0839	0.0790	0.0579	0.0579	0.0507	0,0442	
90% 99%	0.0012 0.0018	0.0009 0.0013	0.0035 0.0049	0.0005 0.0007	0.0006 0.0008	0.0005 0.0007	0.0005 0.0007	0.0003 0.0005	0.0005 0.0007	
<u>VIII - Eu(fod)</u> Confidence Level	0.2565	0.2062	0.1612	0.0801	0.0749	0.0716	0.0529	0.0482	0.0482	
90% 99%	0.0006 0.0009	0.0008	0.0004 0.0006	0.0005 0.0007	0.0005 0.0007	0.0005 0.0007	0.0004 0.0005	0.0004 0.0005	0.0004 0.0005	
<u>VIII - Yb(fod</u>) ₃ Confidence Level	0.2876	0.1868	0.1610	0.0805	0.0710	0.0633	0.0568	0.0489	.0.0440	
90% 99%	0.0012 0.0017	0.0003 0.0005	0.0004 0.0006	0.0003 0.0005	0.0005 0.0007	0.0003 0.0005	0.0004 0.0006	0,0001 0.0002	0.0003 0.0004	

.

Table 46.	Comparison of Shi:	ft Parameters a/	Generated	by the	ApSimon	Method	for	2-Adamantanol	(VII)	and
	2-Adamantanamine	(VIII)								

 $\underline{a}/$ Based on combined data from four runs.

72

The increased precision (0.5 to 2 per cent at the 90 per cent confidence level) is very evident, particularly in runs that have significant deviations with Method I. The average deviation for this method is approximately 1 per cent. This increased precision is not surprising since the ApSimon method inherently has fewer sources of error. The Demarco-Wenkert procedure requires precise knowledge of the substrate concentration, the LSR concentration and the precise LIS of all protons at each lanthanide to substrate ratio. The ApSimon method requires only precise knowledge of the resonance position.

The precision of the ApSimon procedure places limits on the precision of structural determinations. The quality of observed data cannot be exceeded by the precision of the structural determination via the McConnell-Robertson model.

Tables 47 to 50 give a comparison of Demarco-Wenkert LIS parameters (I) and scaled ApSimon LIS parameters (II) for all four compounds. The scaling factor was obtained for the first proton. Agreement factors, R, were calculated using a simplified form of equation 18,

$$R = \sqrt{\frac{(\text{LIS I} - \text{LIS II})^2}{(\text{LIS II})^2}}, \qquad (19)$$

where LIS I and LIS II are the corresponding Demarco and . ApSimon LIS parameters. Agreement between I and II is better

<u>Table 47</u> .	Comparison of Demarco-Wen Parameters* for 1-Adaman	nkert and Scaled Aj tanol	pSimon LIS
Proton	<u>Eu(fod)</u> Method II	LIS Parameters Method I	Method II (Scaled) a/
1	0.5272	627.5	627.5
3	0.1562	186	186
2	0.1838	218.5	218.8
4	0.1316	156.6	156.6
	Agreement facto:	R = 0.0004	

<u>a</u>/ Scaling factor = 1190

	Yb(fod) ₃ LIS Parameters							
1	0.5138	1198	1198 Ь/					
3	0.1637	381	381.7					
2	0 . 1 785	417.3	416.2					
24	0.1415	324.	329.9					
	Agreement factor,	R = 0.004						

.

b/ Scaling factor = 2331.6

•

* From combined runs, Tables 7 and 12.

<u>Table 48</u> .	Comparison of Demarco-W Parameters* for 1-Adama	enkert and Scaled ApS ntanamine	Simon LIS
Proton	Eu(fod Method II) ₃ LIS Parameters <u>Method I</u>	Method II (Scaled) a/
1	0.5299	854.	854.
3	0.1488	239.9	239.8
2	0.1831	295.1	295.1
4	0.1382	226.1	222.7
	Agreement fact	or, $R = 0.003$	
,			

<u>a</u>/ Scaling factor = 1611.6

	Yb(fo	od) ₃ LIS Parameters	
1	0.5407	1194.	1194. <u>b</u> /
3	0.1706	376.	376.
2	0.1933	426.	426.
4	0.1349	298.3	298.
	Agreement fac	etor, $R = 0.0002$	

b/ Scaling factor = 2208.2

٠

* From combined runs, Tables 17 and 22.

	Т	Fu(fod) JTS Parameters	
Proton	Method II	Method I	Method II (Scaled) a
X.			(000202)
1	0.2712	892.8	892.8
2	0.1820	589.1	599.1
ろり	0.1736	517.3	571.5 285 7
	0.0791	259.9	260.4
6	0.0611	201.3	201
7	0.0546	179.7	179.7
8	0.0506	166.5	166.6
9	0.0409	134.3	134.6
	Agreement i	factor, $R = 0.04$	
<u>a</u> / Scaling factor	= 3292		
		Yb(fod) ₃ LIS Parameters	
1	0.0671		0001 b b/
2	0.2071 0.1857	2321.4	2321.4 - 1612.0
2	0.1733	1497.5	1506
ŭ	0.0839	730.0	729
5	0.0790	688.1	687
6	0.0579	501.8	503
Ϋ́	0.0579	501.8	503
G G	0.0207		38元 441
/		J== 1	JU 1

Table 49.	Comparison	of	Demarco-Wenkert	and	Scaled	ApSimon	LIS
	Parameters	f f	or 2-Adamantanol				

Agreement factor, R = 0.003

<u>b</u>/ Scaling factor = 8691.1

* From Combined runs, Tables 27 and 32.

	Eu(fc	d) ₃ LIS Parameters	
Proton	Method II	Method I	Method II (Scaled) <u>a</u> /
1 2 3 4 5 6 7 8 9	0.2565 0.2062 0.1612 0.0801 0.0749 0.0716 0.0529 0.0482 0.0482	1063 854 668 332.7 311 298 219.5 200.1 200.1	1063 855 668 332 310 297 219 200 200
<u>a</u> / Scaling factor	Agreement facto = 4144	or, $R = 0.001$	
		d) <u>3 LIS Parameters</u>	
1 2 3 4 5 6 7 8 9	0.2876 0.1868 0.1610 0.0805 0.0710 0.0633 0.0568 0.0489 0.0440	7190 4694 4065 2005 1797 1591 1429 1228 1115	7190 <u>b</u> / 4670 4025 2013 1775 1583 1420 1223 1100
	Agreement facto	pr, $R = 0.005$	
b/ Scaling factor	= 25,000		

Table 50.	Comparison of Demarco-Wenkert and Scaled ApSimon LIS
	Parameters* for 2-Adamantanamine

* From combined runs, Tables 37 and 42.

٠

4

.

than 1 per cent in most cases. This suggests that either method can be used to generate useful LIS parameters for structural determination via the McConnell-Robertson correlation.

The ease of the ApSimon method coupled with the fact that actual L/S ratios need not be known makes this a very attractive experimental technique of generating LIS parameters.

Preliminary investigations have indicated that shift parameters generated by the ApSimon method are as appropriate as those generated by other procedures to problems of structural determination (40).

D. Comparison to Other Data Reduction Methods

The observed LIS data manipulated via Method I and II do not lend themselves to work-up by the other methods discussed earlier in this paper. The Kelsey⁽³³⁾ method, for example, requires that the substrate by incrementally added to an LSR solution of known concentration. The method developed by Armitage and coworkers⁽³⁵⁾ involves varying the substrate concentration while maintaining a constant LSR concentration. Finally, Shapiro and Johnston⁽³⁶⁾ perform their experiments by keeping the concentration. All three of these methods require more time for the experiment and the data reduction, but give LIS values with a defined physical significance.

E. Results Compared to Scaled Literature LIS Parameters

Several papers have investigated LSR effects on adamantyl derivatives. Wahl and Peterson⁽⁴¹⁾ have studied the effects of Eu(dpm)₃ on CDCl₃ solutions of 1 and 2-adamantanol, V and VII. They reported the net shifts, \triangle W, for all protons of V at an L/S molar ratio of 0.4:0.6 and all protons of VII at an L/S molar ratio of 1. Table 51 compares scaled Eu(dpm)₃ shift parameters obtained from Wahl and Peterson to our Eu(fod)₃ shift parameters calculated by Method I. The best agreement (R = 0.022) is evident for the LIS parameters of V determined by Method I. Method I parameters from Method I for VII at an ratio of Solution of VII at an the solution of VII at an the solution of VII at an the solution of the LIS parameters of V determined by Method I. Method I parameters for VII are in reasonable agreement (R = 0.065). Shift parameters from Method I for VII diverge considerably from the literature data. The protons farthest away from the Ln appear to have the largest difference.

F. Comparison of Eu and Yb LIS Data

Reuben has suggested that observed lanthanide induced shifts might consist of both a contact and a pseudocontact term⁽³¹⁾. If all observed LIS is due to pseudocontact, then all internally scaled LIS parameters must agree for all lanthanides with the same substrate molecule. If the contact shift has the same behavior as the pseudocontact shift, then one cannot distinguish one from the other, although, variable amounts of each might be present. However, if contact shift behavior is radically

different from pseudocontact shift behavior, scaled data sets for different lanthanides such as Eu and Yb need not stand in a one to one correspondance for the same substrate.

 $Yb(dpm)_3$ has been shown to induce the smallest amount of contact shift (<u>vis</u>. 2 to 4 per cent) in the proton spectrum⁽⁴⁰⁾. An estimate of the amount of contact shift present in ¹³C LIS indexes of various pyridine bases in the presence of $Ln(dpm)_3$ LSR's has also been made⁽⁴⁰⁾.

The shift parameters obtained by Method I for $Eu(fod)_3$ were least-squares linearized against the corresponding $Yb(fod)_3$ shift parameters for compounds V-VIII (Table 52). The slopes obtained from this linearization were 1.86 for V, 1.38 for VI, 2.66 for VII and 6.40 for VIII. These slopes correspond to factors which can be used to convert Eu LIS parameters to Yb LIS parameters for the same substrate. A similar linearization of ApSimon LIS indexes (Table 53) gave values 0.949, 1.00, 0.998 and 1.07 for compounds V-VIII. Such results indicate that these proton shifts are either largely due to pseudocontact in both cases, or that the contact shift contribution mimics the pseudocontact behavior.

	Parameters		
	1-Adama	antanol, V	
Proton	<u>Ref. 40</u>	Method I	Scaled ^{<u>a</u>/Ref.40}
1 2 3 4	402 130 122 90	627 218 186 157	627 203 190 155
	Agreement fa	actor, $R = 0.022$	
<u>a</u> / Scaling	factor = 1.56		
	2-Adama	antanol, VII	
1 2 3 4 5 6 7 8 9	1500 900 870 449 413 391 341 320 298	893 589 517 286 260 201 179 166 134	893 536 517 267 246 223 203 190 177
	Agreement f	actor, $R = 0.065$	
<u>b</u> / Scaling	factor = 0.595		

٠

•

Table 51.	Comparison	of	Shift	Parameters	to	Scaled	Literature	LIS
	Parameters							

81

.

:

Table 52.Least-Squares Correlation of Demarco Eu(fod)3 Shift Indexes versusYb(fod)3 Shift Indexes

1-Adamanta	nol (V [.])
627.5	1198.0
186.0	381.9
218.5	417.3
150.0 Slope -	324.0
Deviation	1.005024
@ 90%	0.057
@ 99%	0.121
1-Adamantana	mine (VI)
854.0	1194.0
239.9	376.7
295.1	426.7
$\frac{220.1}{51000}$	290,3 1 27021)
Deviation	1,579514
@ 90%	0.090
@ 99%	0.192
2-Adamantan	<u>ol (VII)</u>
892.7 590.1	2321.0
509.1 517 2	1013.0
285 8	730 0
259.9	688.1
201.3	501.8
179.7	501.8
166.5	441.7
134.3	381.7
Slope	2.659
Deviation	
@ 90%	0.082
@ 99%	0.123
2-Adamantanam	ine (VIII)
· 1063.0	7190.0
854.0	4694.0
688.0	4065.0
332.0	2005.0
311.0	1797.0
298.0	1591.0
219.0	1429.0
200.0	1229,0 1115 o
200.0	6 h01608
Deviation	0.401000
@ 90%	0. 379477
@ 99%	0.570219

Table 53.Least-Squares Correlation of ApSimon $Eu(f \circ d)_3$ Shift Indexes versus
Yb(fod)_3 Shift Indexes

1-Adamantano	1 (V·)
0.5272 0.1562 0.1838 0.1316 Slope = Deviation	0. 0. 0. 0.	5138 1637 1785 1415 949
@ 90% @ 99%	0. 0.	034 073
1-Adamantanamin 0.5299 0.1488 0.1831 0.1382 Slope = Deviation	ne 0. 0. 0. 1.	(VI) 5407 1706 1933 1349 004
@ 90% @ 99%	0. 0.	061 130
<u>2-Adamantanol</u> 0.2712 0.1820 0.1736 0.0868 0.0791 0.0611 0.0506 0.0409 Slope = Deviation @ 90% @ 99%	(v 0. 0. 0. 0. 0. 0. 0. 0. 0.	11) 2671 1857 1733 0839 0790 0579 0507 0442 988 014 021
2-Adamantanamin 0.2565 0.2062 0.1612 0.0801 0.0749 0.0716 0.0529 0.0482 0.0482 Slope = Deviation	e (0. 0. 0. 0. 0. 0. 0. 0. 0. 1.	VIII) 2876 1868 1610 0805 0710 0633 0568 0489 0440 065
@ 90% @ 99%	0. 0.	063 095

IV.

CONCLUSION

CONCLUSION

The objects of this study were to find a readily workable method of obtaining relative LIS parameters, and determine how accurate and reliable this method is. A method requiring a minimum amount of experimental work and mathematical manipulation was desired.

This work has shown that relative shift parameters generated by the Demarco-Wenkert and ApSimon methods are essentially equivalent. Greater precision was realized with the ApSimon data manipulation in which observed LIS, \triangle obs, was plotted against the sum of observed shifts, $\Sigma \triangle$ obs. The accuracy can best be determined by correlation with the McConnell-Robertson model <u>via</u> the method of Willcott, Davis and Lenkinski⁽³⁸⁾.

BIBLIOGRAPHY

- (1) C. C. Hinckley, J. Amer. Chem. Soc., 91, 5160 (1969).
- (2) J. K. M. Sanders and D. H. Williams, <u>Tetrahedron Lett.</u>, 2813 (1971).
- (3) C. C. Hinckley, M. R. Klotz, and F. Patil, <u>J. Amer. Chem.</u> <u>Soc.</u>, <u>93</u>, 2417 (1971).
- (4) W. D. Phillips, C. E. Looney and C. K. Ikeda, <u>J. Chem.</u> <u>Phys.</u>, <u>27</u>, 1435 (1957).
- (5) D. R. Eaton, A. D. Josey, W. D. Phillips and R. E. Benson, J. Chem. Phys., 39, 3513 (1963).
- (6) D. R. Eaton, J. Amer. Chem. Soc., 87, 3097 (1965).
- (7) E. L. Muetterties and C. W. Wright, <u>J. Amer. Chem. Soc.</u>, <u>87</u>, 4706 (1965).
- (8) J. Reuben and D. Fiat, <u>Chem.</u> <u>Commun.</u>, 729 (1967).
- (9) H. M. McConnell and R. E. Robertson, <u>J. Chem. Phys.</u>, <u>29</u>, 136 (1958).
- (10) J. K. M. Sanders and D. H. Williams, <u>Chem.</u> <u>Commun.</u>, 422 (1970).
- (11) J. Briggs, G. H. Frost, F. A. Hart, G. P. Moss, and M. L. Staniforth, <u>Chem.</u> <u>Commun.</u>, 749 (1970).
- (12) R. E. Rondeau and R. E. Sievers, <u>J. Amer. Chem. Soc.</u>, <u>93</u>, 1522 (1971).
- (13) G. M. Whitesides and D. W. Lewis, <u>J. Amer. Chem. Soc.</u>, <u>92</u>, 6979 (1970).
- (14) H. L. Goering, J. N. Eikenberry and G. S. Koermer, (<u>ibid</u>.) <u>93</u>, 5913 (1971).
- (15) R. R. Frazer, M. A. Petit and J. K. Saunders, <u>Chem. Commun.</u>, 1450 (1971).
- (16) K. R. Kopecky, D. Nonhebel, G. Morris, and G. S. Hammond, J. Org. Chem., 27, 1036 (1962).

- (17) C. S. Springer, Jr., D. W. Meek, and R. E. Sievers, <u>Inorg.</u> <u>Chem.</u>, 6, 1105 (1967).
- (18) N. Ahmad, N. S. Bhacca, J. Selben and J. D. Wander, <u>J. Amer.</u> <u>Chem. Soc.</u>, <u>93</u>, 2564 (1971).
- (19) W. De W. Horrocks, Jr., and J. P. Sipe III, <u>J. Amer. Chem.</u> Soc., <u>93</u>, 6800 (1971)
- (20) G. H. Frost, F. A. Hart, C. Heath, and M. B. Hursthouse, Chem. Commun., 1421 (1969).
- (21) C. S. Erasmus and J. C. A. Boeyens, <u>Acta Crystallogr.</u>, <u>Sect. B</u>, <u>26</u>, 1843 (1970).
- (22) W. De W. Horrocks, Jr., J. P. Sipe III, and J. R. Luber, <u>J.</u> <u>Amer. Chem. Soc.</u>, <u>93</u>, 5258 (1971).
- (23) R. E. Cramer and K. Seff, Chem. Commun., 400 (1972).
- (24) J. K. M. Sanders and D. H. Williams, <u>J. Amer. Chem. Soc.</u>, <u>93</u>, 641 (1971).
- (25) H. Hart and G. M. Love, <u>Tetrahedron Lett.</u>, 125 (1971).
- (26) K. D. Berlin and S. Rengaraju, J. Org. Chem., <u>36</u>, 2912 (1971).
- (27) C. Beaute, Z. W. Wolkowski and N. Thoai, <u>Chem.</u> <u>Commun.</u>, 700 (1971).
- (28) K. K. Andersen and J. J. Eubel, Tetrahedron Lett., 5253 (1970).
- (29) M. R. Willcott, J. F. M. Oth, J. Thio, G. Plinke and G. Schroder, <u>Tetrahedron Lett.</u>, 1579 (1971).
- (30) L. Tomic, Z. Majerski, M. Tomic and De. E. Suuko, <u>Chem.</u> <u>Commun.</u>, 719 (1971).
- (31) J. Reuben, "Paramagnetic Lanthanide Shift Reagents in NMR Spectrocopy; Principles, Methodology, and Application", to appear in <u>Progress in Nuclear Magnetic Resonance Spectroscopy</u>, to appear 1973.
- (32) P. V. Demarco, T. K. Elzey, R. B. Lewis and E. Wenkert, <u>J. Amer.</u> <u>Chem. Soc.</u>, <u>92</u>, 5734 (1970).

- (33) D. R. Kelsey, J. Amer. Chem. Soc., 94, 1764 (1972).
- (34) J. K. M. Sanders, S. W. Hanson, and D. H. Williams, <u>J. Amer.</u> <u>Chem.</u> <u>Soc.</u>, <u>94</u>, 5325 (1972).
- (35) I. Armitage, G. Dunsmore, L. D. Hall, and A. G. Marshall, <u>Can. J. Chem.</u>, <u>50</u>, 2119 (1972).
- (36) B. L. Shapiro and M. D. Johnston, Jr., <u>J. Amer. Chem. Soc.</u>, <u>94</u>, 8185 (1972).
- (37) J. W. ApSimon and H. Beierbeck, Chem. Commun., 172 (1972).
- (38) M. R. Willcott, R. E. Lenkinski and R. E. Davis, <u>J. Amer. Chem.</u> <u>Soc.</u>, <u>94</u>, 1742 (1972).
- (39) G. W. Smith and H. E. Williams, J. Org. Chem., 26, 2207 (1961).
- (40) R. E. Lenkinski, unpublished Ph.D. dissertation, The University of Houston, 1973.
- (41) G. H. Wahl, Jr., and M. R. Peterson, Jr., <u>Chem.</u> <u>Commun.</u>, 1167 (1972).

APPENDIX

LIST OF ABBREVIATIONS

\triangle , (\triangle obs), δ ,	observed net chemical shift
Δ m	maximum shift of a given proton relative to its uncomplexed shift
△ Eu	Demarco-Wenkert shift index
dpm	dipivaloylmethane
fod	1,1,1,2,2,3,3,-heptafluoro-7,7-dimethy1-4,6- octanedione
ĸ	lanthanide shift reagent-substrate equilibrium constant
L .	lanthanide shift reagent
Lt	total lanthanide shift reagent
LSR	lanthanide shift reagent
LIS	lanthanide induced shift
P	ratio of total lanthanide shift
e*	angle of the colatitude measured from the positive
	Z axis in the Willcott-Davis-Lenkinski structural model
S	substrate
s _b	bound substrate
Sf	free substrate
S _t ·	total substrate
م	ratio of bound to total substrate, $S_{ m b}/S_{ m t}$
TMS	tetramethylsilane
θ	angular term of the McConnell-Robertson pseudocontact equation

|--|

```
-LOG-DRIVE----CART SPEC --- CART-AVAIL-- PHY DRIVE-----
    0000
                 0005
                               0005
                                            0000
-- V2-M10---- ACTUAL 16K CONFIG-16K ------
 // FOR
-*EXTENCED PRECISION
 *ONE WORD INTEGERS
 #IOCS(CARD,1132_PRINTER)
                          ي المراجعة المراجع الم
----*LIST SOURCE PRUGRAM
        REAL MULT, NUM, INTER, X(40), Y(40), X2(40), Y2(40), CALCY(40), DIF(40)
        INTEGER 0, PT1, PT2, E, ANS, ANSS
        COMMON TAB(34,5)
        WRITE(3,500)
 C
 C 500 FORMAT(' OPTION LIST',/,
    " $! (F)REQUENCY!,/;
 Π.
       s' (M)ULTIPLIER FOR AUTOMATIC POINT DELETION',/,
 . C
 C
       $' (C)ONFIDENCE LEVEL IN PERCENT',/,
     "$' (X)- NEW X ARRAY, OLD Y',/,
 Ċ
 С
       5' (Y)- NEW Y ARRAY, OLD X',/,
       $' (D)ATA X AND Y ARRAYS NEW!,/,
 C
      $' (R)EMOVE MAXIMUM DIFFERENCE',7,
       $' (P)RINT TABLE',/,
 С
 C
       $' (A)COMPUTE DATA POINT',/,
     __$* (E)ND*)
     25 1 L=0
        K = 0
        READ(2,220)((TAB(I,J),I=1,34),J=1,5)
   220 FORMAT(F5.1)
        WRITE(3,221 )TAB
    221 FORMAT( ', 16F6.1)
        WRITE(3,1)
      1 FORMAT(' NMR & ')
        PEAD(2,222
                      ) ANS
    222 FORMAT(12)
        WRITE(3,223)ANS
   223 FORMAT( ', I2)
        \Lambda NSS = 11
         FREQ=1.
7995 FORMAT(112)
      5 FORMAT( I2)
```

	IF(ANS - 9)777,786,777	
786	WRITE(3,778)	
778	FORMAT(' THE NUMBER OF ESTIMATES IS ')	
	PEAD(2,995)E	
	WRITE(3,223)E	
-990-	FORMAT(2F5.1)	
792	FORMAT(' THREE DATA POINTS IN ORDER 3F5.1')	
783	FORMAT(' THE DATA POINT IS',115)	
- 991	FORMAT(' THE TWO DATA POINTS IN ORDER, 2F5.1')	
785	FORMAT(3F5.1)	
	WRITE(3,779)	
779	FORMAT(' DATA POINTS BEFORE =1, AFTER =0')	
	READ(2,5)ITEST	
	WRITE(3,223)ITEST	
	IF(ITEST - 0)201,780,201	
201	WRITE(3,991)	
	READ(2,990)P2A,P2B	
	WRITE(3,224)P2A,P2B	
		·
		•
	WRITE(3,782)	
	$\frac{1}{2}$	
	PZL=(((PIL=PID)/FAL)+PZD/+PZL DT1=D2C/F	•
101		
	$\frac{1}{2}$	-4
780		•
100	F20-0 WRITE(3,991)	
	READ(2,990)P20,P2B	• •
	WRITE(3,224)P20, P28	• •
	WRITE(3.782)	
	RFAD(2.785)P1C.P1A.P1B	
	WRITE(3.224)P1C.P1A.P1B	•
	FAC = (P1B + P1A)/(P2B - P2A)	
	$P_{2C} = ((P_{1A} - P_{1B}) / F_{AC}) + P_{2A} + P_{2C}$	
	PT2=P2C/F	
784	CONTINUE	
·····	WRITE(3,783)PT2	
	CO TO 35	

- --

•• ••

777	IF(ANS - 5)27;202,27	•
202	2 LL=1	
*****	WRITE(3,2)	
2	2 FORMAT(' FREQUENCY IN MHZ=')	
	PEAD(2,220)FREQ	
	WRITE(3,221)FREQ -	
27	7 WRITE(3,7)	· .
7	7 FORMAT(' MULTIPLIE- FOR AUTOMATIC DELETION OF POINT PAIR')	
	PEAD(2,220)MULT	•
•	WRITE(3,221)MULT	•••
	IF(ANSS 2)100,900,100	
100	D WRITE(3,101)	
101	L FORMAT(CONFIDENCE LEVEL IN PERCENT=)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	READ(2,220)CONL	• • • • • • • • • • • • • • • • • • •
	WRITE(3,221)CONL	
	1F(ANSS - 3)26,900,26	
20		
29	PERMATC' NUMBER OF POINT PAIRS'I	
З	RETERIOR DATA!./.! X.Y-CARRIAGE RETURN!./.	
	\$' X.Y-CARRIAGE RETURN (INCLUDE DECIMAL PDINTS)')	
	$PO = 4 J = I \cdot N$	•
	READ(2,224) X(J), Y(J)	
224	4 FORMAT(14F5.1)	
	WRITE(3,221)X(J),Y(J)	
	X2(J)=X(J)	
	Y2(J)=Y(J)	
4	4 CONTINUE	
900	D	
	-X(J)=X2(J)	
_	Y(J) = Y2(J)	
8	B CONTINUE	
	k = 0	
24	$\frac{1}{1} \frac{1}{1} \frac{1}$	
203	2 IFNN	
	C VALL LEASINNYAYTYSLUPEYINIERYUALUTYUIF7	
	YINT == INTER*(1,/SLOPE)	

وساعد والاستعاد المادون والمحمد المسترك متصور والم
```
XC=XINT
    CALL PERC(INTER, CONL, N, X, Y, DIF, SLOPE, B, YC, YTOL, XC, XOP, XOM, D99)
 99 CONTINUE
    SSD=0.
    ∩0 9 J=1,N
    9 CONTINUE
    MUM = N
    VAR=SSD/(NUM-2.)
    SQRT(VAR)
    RSLOP =1./(SLOPE*FREQ)
   "YTOLL=(B/SLOPE)*RSLOP"
    IF(LLL - 0)601, 12, 601
601 WRITE(3,600)N
600 FORMAT( ' NUMBER OF POINTS= ',1147"
    WRITE(3,10)SSD,SD
 10 FORMAT(' SSD=', F12.6,4X, 'STANDARD DEVIATION=', F12.6)
 12 WRITE(3,13) SLOPE, B, RSLOP", YTOLL"
 13 FORMAT(' SLOPE=', F12.6,' DEVIATION + OR - =', F12.6,/,
   $' 1./(SLOPE*FREQUENCY)=',F12.6,' DEVIATION + OR -',F12.6)
   TIF(LLL - 0)204,550,204
204 WRITE(3,50)INTER, YC, YTOL
 50 FORMAT(' Y INTERCEPT=', F12.6, RANGE FOR Y=', F12.6,
  $ IS '+F12.6)
550 WRITE(3,51)XINT ,XOP,XOM
 51 FORMAT(' X INTERCEPT=',F12.6,' +',F12.6,' , -',F12.6)
   TF(LLL - 0)205,35,205
205 DIFM=0.
    PO 42 J=1.N
   IF(DIFM - ABS(DIF(J)))206,206,42
206 DIFM=ABS(DIF(J))
    I = J
 42 CONTINUE
 41 WRITE(3,14)
 14 "ORMAT(' ',10X, 'INPUT DATA',9X,8X, 'CALCULATED DATA',/,
  $' ',7X,'X',14X,'Y',12X,'CALC Y',10X,'DIF')
    PO 15 J=1.N
    WRITE(3,16)X(J),Y(J),CALCY(J),DIF(J)
 15 CONTINUE
 16 FORMAT( ',4F15.6)
    IF(LLL - 1)44,207,44
207 LLL=0
    GO TO 35
```

44	$\frac{4}{10} \frac{1}{17} \frac{J=1}{N} = \frac{M(11T+SD)}{17} \frac{17}{20}$	4
	7 CONTINUE	
35	5 WRITE(3.19)	
19	9 FORMAT(! OPTIONS !)	
	READ(2.222)ANSS	
	WRITE(3.223) ANSS	
	IF(ANSS - 1) 208.25.208	
208	8 IF (ANSS - 4)209.702.209	
209	9 IF(ANSS - 5)210,703,210	
210	0 JF(ANSS - · 6)211,26,211	
211	1 IF(ANSS - 12)212,26,212	
212	2 IF(ANSS - 9)213,786,213	
213	3 IF(ANSS - 2)214,27,214	
214	4 IF(ANSS - 8)215,43,215	annan arangena annang heimetherin a setera ya san santa ang ang ang ang ang ang ang ang ang an
215	5 IF(ANSS - 3)216,100,216	
216	6 IF(ANSS - 7)217,22,217	
217	7 IF(ANSS - 10)218,28,218	
218	8 GD TO 35	
702	2 NO 704 J=1,0	
	READ(2,705)X2(J)	
	WRITE(3,221) X2(J)	
704	4 CONTINUE	
703	3 DU 706 J=1,U	
. 704	WRITE(3)221) YZ(J) A CONTINUE	
100		
20	0 WD ITE/2.21)	
705	5 EORMAT(14E5.1)	
21) FORMATCI MAXIMUM POINT DELETED .GT. MULT*DIE!)	
	2 CONTINUE	
	DIFM=0.	
	I=1	
	PO 23 J=1,N	
	IF(DIFM - ABS(DIF(J)))219,219,23	
219	9 PIFM=ABS(DIF(J))	
··· ·· ·· · ·	I=J	
23	3 CONTINUE	
	WRITE(3,47)	
47	7 FORMAT(' LINE DELETED')	
	WRITE(3,16)X(I),Y(I),CALCY(I),DIF(I)	

والراوية والمانية الموطنية مسارية ومراوية المتهومة المتعو

•

M=N-1	
PD 40 J=I,N	
Y(J) = X(J+1)	
40 CONTINUE	
ж = K = K + 1	
GO TO 24	
31 VRITE(3,32) 32 CORMAT(1 FOUR DATA POINTS HAVE BEEN DELETED. 1./.	
\$' PLEASE REEVALUATE YOUR DATA')	
GO TO 35 ·	
33 WRITE(3,34)	
CO TO 35	
43 LLL=1	
CO TO 602	
28 CONTINUE	
END	
U'NREFEPENCED STATEMENTS	
99 41 ·	
FEATURES SUPPORTED	ð
ONE WORD INTEGERS	
EXTENDED PRECISION	
CORE REQUIREMENTS FOR	
COMMON 510 VARIABLES 820 PROGRAM 7 1656	
// DUP	
*DELETE NMK CART ID 0005 DB ADDR 4837 DB CNT 006E	
	· · ·
*STORE WS UA NMR	
CART IC 0005 DB ADDR 48CA DB CNT 006F	
\cdot	
	·

// JOB	
LOG DRIVE CART SPEC CART AVAIL PHY DRIVE 0000 0005 0005 0000	
V2 M10 ACTUAL 16K CONFIG 16K	
// FOR	
*EXTENDED PRECISION	
*UNE WURD INTEGERS *LIST SOURCE PROGRAM	
SUBROUTINE PERC(INTER,CONL,N,X,Y,DIF,SEOPE,B,YC,YTOL,XC,XOP,XOM,D) REAL INTER,X(40),Y(40),DIF(40) COMMON TAB(34,5)	
C=N ,	
SY=0.	
• × = 0 •	
• • • • • • • • • • • • • • • • • • •	
SDD=0. DO 11 I=1.N SX=SX+X(I)	
SXX=SXX+X(I)**2.	
SDD=SDD+DIF(I)**2.	
CALL STUDD(TNM2,CUNL,DIST)	
YDOT=SX/G	
PM=(DIST*SQRT(SDD))/(SQRT(G)*SQRT(G=2.)*SQRT(SXX)) R=(DIST*SQRT(SDD))/(SQRT(G=2.)*SQRT(SXX)) XM=YC*(1./SLOPE)-INTER*(1./SLOPE)	
YTOL = RM * SQRT(SXX+G*((XM-XDOT) **2.))	
C CALCULATIONS FOR RANGE OF X FROM OBSERVED X YDDT=INTER+SLOPE*XDOT	
PP=SLOPE+B/2.	
YDDTT=RM*SQRT(SXX)	
YOP=(BP*XDOT-(YDOT-YDOTT/2.))/BP	
PM=SLOPE-B/2. YOM=(BM*XDOT-(YDOT+YDOTT/2.))/BM PETURN	
END END	
· · · · ·	· ·

a algen an santas a la ang pang ang pang sa ang pang sa ang pang sa ang pang sa s

· ----

--

-

.....

• -

FEATURES SUPPORTED ONE WORD INTEGERS EXTENDED PRECISION		· · · · · · · · · · · · · · · · · · ·	
CORE REQUIREMENTS FOR PERC COMMON 510 VARIABLES	58 PROGRAM 314	•	
RELATIVE ENTRY POINT ADDRESS	IS 0045 (HEX)		
END OF COMPILATION			
// DUP			
*DELETF PERC CART ID 0005 DB ADDR 4837	DB CNT 0019	1	
*STORE WS UA PERC CART IN 0005 DB ADDR 4920	DB CNT 0019	· · ·	
· · · · · · · · · · · · · · · · · · ·			
		, - estatudination for an annan second second and a second second second second second second second second sec	
			· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·		a anay sa sa ana an ana an an ana an an ana an an a	

// JOB

۰,

LOG DRIVE CART SPEC CART AVAIE PHY DRIVE	· · · · · · · · · · · · · · · · · · ·	
V2 M10 ACTUAL 16K CONFIG 16K		
// FOR		
*ONE WORD INTEGERS *LIST SOURCE PROGRAM		
SUBROUTINE LEASI(N,X,Y,SLOPE,B,CALCY,DIF) PIMENSION X(40),Y(40),CALCY(40),DIF(40) SUMX=0.		
SUMY=0. SUMXY=0. SUMXX=0.		
DD 10 J=1,N SUMX=SUMX+X(J) SUMY=SUMY+Y(J)		
<pre>SUMXX=SUMXX+X(J)**2. 10 SUMXY=SUMXY+X(J)*Y(J) C=N</pre>		
<pre>PENOM=SUMX**2G*SUMXX SLOPE=(SUMX*SUMY-G*SUMXY)/DENOM B=(SUMX*SUMXY-SUMY*SUMXX)/DENOM</pre>		
DO 11 J=1,N CALCY(J)=SLOPE*X(J)+B 11 DIF(J)=Y(J)-CALCY(J)	· · ·	
ETURN		
FEATURES SUPPORTED ONE WORD INTEGERS EXTENDED PRECISION		· · · · · · · · · · · · · · · · · · ·
CORE REQUIREMENTS FOR LEASI COMMON O VARIABLES 24 PROGRAM 192		
RELATIVE ENTRY POINT ADDRESS IS OOIF (HEX)		
END OF COMPILATION		

.

// DUP

*DELETE LEASI CART IN 0005 DB ADDR 4837 DB CNT 000F *STORE WS UA LEASI CART IN 0005 DB ADDR 492A DB CNT 000F . . • , . . unity a myrannanga rhynniet y ydar balag af Nynydylwys y angl agwrag a syddiffan y aghlaa. Angelegau ardda brawn y · · ----

•

•

// JOB

-- - -

•

LOG DRIVE CART SPEC CART AVAIL PHY DRIVE 0000 0005 0005 0000	
V2 M10 ACTUAL 16K CONFIG 16K	
// FOR	
*EXTENDED PRECISION	
*ONE WORD INTEGERS	
*LIST SOURCE PROGRAM	
SUBROUTINE STUDD(TNM2;CONL;DIST) DIMENSION CONLL(5);DF(34) COMMON TAB(34:5)	.*
(0) = (0)	
C(N) + (2) = 05	
CONL(3) = 99	
CONT(4) = 99.5	
D_{1} 5 K=1.30	
G=K	
PF(K)=G	
5 CONTINUE	·
PF(31)=40 .	
rF(32)=60.	
DF(33)=120.	
<pre>DF(34)=10000.</pre>	•
PO 1 I=1,5	
II = I	
IF(ABS(CONL - CONLL(I)) - 0.01)2,2,1	
1 CONTINUE	
2 CONTINUE	
Γ_{0} 3 J=1,34	
JJ = J	
$IF(AUS(INM2 - DF(J)) - U_{\bullet}UII4,4,3)$	
3 CUNTINUE	
4 CUNTINUE DIST-TAR/LL II)	
1 1 3 1 = 1 AD (JJ) 1 1 1	
	······································

.

-.

FEATURES SUPPORTED

.

	ONE WORD INTEGERS EXTENDED PRECISION
	CURE REQUIREMENTS FOR STUDD COMMON 510 VARIABLES 134 PROGRAM 220
	RELATIVE ENTRY POINT ADDRESS IS 00A5 (HEX)
	END OF COMPILATION
	// DUP •
	+DELETF STUDD CART ID 0005 DB ADDR 4837 DB CNT 0010
	*STORE WS UA STUDD CART ID 0005 DB ADDR 4929 DB CNT 0010
_	
	۰

6.	3 2.9	2.3	2.1	2.0	1.9	1.8	1.8	1.8	1.8	1.8	1.7	1.7	1.7	1.7	1.7	teles-televise
1.	7 1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.6	1.6	
1.	6 1.6	12.7	4.3	3.1	2.7	2.5	2.4	2.3	2.3	2.2	2.2	2.2	2.1	2.1	2.1	
2.	1 2.1	2.1	2.1	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
2.	0 2.0	1.9	1.9	25.5	6.2	4.1	3.5	3.1	2.9	2.8	2.7	2.6	2.6	2.5	2.5	
2.	5 2.5	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.3	2.3	2.3	2.3	2.3	
2.	3 2.3	• 2.3	2.3	2.2	2.2	63.7	9.9	5.8	4.6	4.0	3.7	3.5	3.3	3.2	3.1	
3.	1 3.0	3.0	2.9	··· 2.9 ·	2.9	2.9	2.8	2.8	2.8	2.8	2.8	-2.8	2.8	2.7	2.7 -	
2.	7 🕺 2.7	2.7	2.7	2.7	2.6	2.6	2.5	127.0	14.1	7•4 "	5.6	~~4 . 7	[°] 4 . 3	4.0	3.8	• •
3.	6 3.5	3.5	3.4	3.3	3.3	3.2	3.2	3.2	3.2	3.1	3.1	3.1	3.1	3.1	3.0	•
3. NMR &	0 3.0	3.0	3.0	. 3.0	3.0	2.9	2.9	2.8	2.8							

5 FREQUENCY IN MHZ=

60.0

.

MULTIPLIE- FOR AUTOMATIC DELETION OF POINT PAIR

.

- .