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Abstract

High temperature mechanical behavior of materials is of critical importance in

a variety of contexts: next-generation reentry vehicles, hyper sonic flights, nuclear

plants, engines, among many others. Creep is the dominant failure mechanism for

materials used in such applications. Atomistic design of next-generation ultra-high-

temperature ceramic composites as well as a thorough understanding of the various

complex micro-mechanisms of creep damage using state-of-the art atomistic methods

is the main goal of this dissertation. There are two challenges that need to be overcome

to accomplish this endeavor. The first one is aptly amplified in a quote by Professor

Nabarro (2002) “The creep rate in a land-based power station must be less than

10−11s−1... The present state of knowledge reveals specific questions that call for

experimental investigation. Theory will contribute, but atomic computation, with a

time scale of 10−11s, will not handle processes that take 1011s”.

The other is that for the materials of interest, the so-called ultrahigh-temperature

ceramics (ZrB2 and HfB2), atomistic potentials are not available. No type of atomistic

methodology (molecular dynamics, Monte Carlo) can proceed without this. Further-

more, since oxidation and various related chemical reactions play a key role in the

damage of such materials at high temperatures, the atomistic potential must be able

to account for reactions. First-principle calculations are indeed possible without an

empirical force field but such computations present severe limitations of the size scales

they can access and of course, the enormous difficulty of modeling finite temperatures.
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In short, in this dissertation, I will focus on two aspects that can potentially pave

the way for modeling high temperature behavior of ceramics: development of ReaxFF

potentials for ZrB2 / HfB2 using quantum chemistry tools and implementation of

algorithms that allow access to time scales relevant to creep deformation and damage.
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Chapter 1

Introduction

1.1 High temperature mechanical behavior: creep

deformation and damage

Creep damage is defined as the progressive (time-dependent) reduction in the

ability of materials to resist stress. At stresses far lower than the yield stress, pro-

vided that the temperatures are “high” enough, time-dependent deformation ensues

leading eventually to fracture and hence failure. This mode of deformation and dam-

age is of critical importance in all scenarios where materials are subjected to temper-

ature above half the melting temperature. As example, SnPb eutectic solder is used

extensively in electronics. The melting temperature of this material is low enough

that it even creeps at room temperature. Accordingly, reliability of our electronics

devices depends on the design against creep. Airplanes, engines, nuclear reactors

among many others are engineering situations where creep is the dominant failure

mechanism.

Figures 1.1 and 1.2 show possible micro structural deformations that occur dur-

ing creep, and how they affect the macro scale behavior properties. Vacancies are

common defects that exists in any crystal. However, both the concentration of these

vacancies, and their mobility increase exponentially with the temperature. The for-

mation of voids is therefore, very common at temperatures higher than 0.5Th. The
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nucleated voids or cavities can form anywhere in the structure. However, they do

energetically prefer to nucleate at the grain boundaries, triple junctions, and second

phase particles. Once nucleated, these voids grow, coalescence and eventually form

cracks that propagate to fail the material. During this process, the microscopic state

of the material is quite complex. Any macroscopically applied stress is redistributed

due to grain boundary and volume diffusion and grain boundary sliding. The lat-

ter can lead to high stress concentrations when the sliding boundaries impinge upon

second phase particles. These stresses, in turn, may be relaxed by diffusion. The

primary mechanisms for void growth on the grain boundaries are diffusion and dislo-

cation glide-climb in the adjacent crystal.

Figure 1.1: A schematic showing the outline of different micro mechanics models

2



While the general picture of creep deformation and damage is understood, de-

spite many decades of research, several open questions still remain. For example,

in modeling grain boundary sliding, as will be explained in later chapters, atomistic

and some macroscopic aspects of various creep micromechansims still remain poorly

understood e.g. grain boundary sliding constitutive law, void nucleation rates among

others.

Figure 1.2: Schematic of creep damage across various length scales
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1.2 Ultra high temperature materials: properties

and applications

Driven by the “need for speed” in new potential aerospace applications, re-

searchers have shown a lot of interest in Ultra High Temperature Ceramics (UHTCs)

for what they offer of a unique combination of excellent mechanical and thermal

properties ([1], [2], [3]). UHTCs are typically Borides, Carbides, and Nitrides of the

transition metals (group 3 to 12). However, early transition metals (group 3-4) are

generally preferred because of their higher melting and oxidation temperatures. For

instance, Hafnium Di-Boride (HfB2) and Zirconium Di-Boride (ZrB2), which are the

materials of interest in this work, are preferred over others because of their outstand-

ing properties (high melting temperature, stable oxides, high young modulus, ...).

1.2.1 Properties

There are different properties, based on which, materials can be characterized.

For instance, materials with higher Young moduli are stronger, those with higher

melting temperatures are more resistant to extreme heat, and those with lower ther-

mal conductivity can serve as better insulators to extreme environment.

In table 1.1, we collect some of the significant mechanical and thermal properties

for different UHTCs and metals. Aluminum (Al), Copper(Cu), and Gold (Au) are

added to the table to highlight the difference between metals and UHTCs.

4



Table 1.1: Mechanical and thermal properties for some UHTCs and metals

Material Young
Modulus
[Gpa]

Melting
T.[◦C]

Thermal
Exp. [◦C−1]

Thermal
Conduct.
[Wm−1◦K−1]

Mohse
Hardness

HfB2 530 3380 7.6 104 8-9
ZrB2 500 3245 8.3 60 8-9
TiB2 551 3225 7.7 25 8-9
TaB2 257 3040 8.4 36.2 8-9

Al 70 660 23.1 237 2.75
Cu 120 1080 16.5 401 3.0
Au 79 1060 14.2 318 2.5

* Data collected from [4], [5], [6], and [7]

Table 1.1 shows clearly that all UHTCs are characterized by high strength and

hardness (above 8 on the Mohrs hardness scale) due to the strong covalant bonds

present between their elements. They also exhibit much higher melting temperatures

than metals (above 3000 ◦C), lower thermal expansion coefficients (6 to 8.5 10−6 K−1),

and lower thermal conductivity, which enables them to serve as coating materials.

Despite all these interesting thermo-mechanical properties, these materials are still

unsuitable for many refractory applications because of their susceptibility to oxidation

at high temperatures [8], [9] [10] [11] [12] [13] [14].

These properties, although presented for a small set of materials, present the

general trend for this class of ceramics (Borides, Carbides, and Nitrides). However,

each group of these have some specific properties due to the chemical and structural

differences between atoms: In fact, borides, for instance, and more specifically ZrB2

and HfB2, are the most promising materials, and those attracting most of the interest

([15], [16]). They benefit from the very strong bonding between Boron atoms as
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well as strong metal to Boron bonds. Their HCP structure, where layers of B atoms

are connected in Graphene-like rings, and alternating with metal sheets give them

a high but anisotropic strength as single crystals. Compared to other classes of

UHTCs, Borides exhibit higher thermal conductivity (75 - 105 Wm−1◦K−1) [17] [18]

and lower coefficients of thermal expansion (5 - 7.8 10−6 ◦K−1) and improved oxidation

resistance. Carbides, in general, tend to have higher melting point and young modulus

than other ceramics because of their covalent Carbon networks(3980 ◦C for TaC).

However, they are much more brittle and more susceptible to oxidation. Nitrides,

such as HfN, have similarly strong covalent bonds and are of critical importance

in the microelectronics industry, but their refractory nature makes them especially

difficult to synthesize and process.

1.2.2 Applications

Thanks to the excellent properties discussed above, UHTCs are used in a wide

range of applications. For instance, they are being investigated as possible thermal

protection systems (coatings for materials subjected to high temperatures) [19], as

blades for reactor turbines, or even as high temperature shielding for hyper-sonic

vehicles [20]. The surfaces of these vehicles experience extreme temperatures (higher

than 2500◦C), and a strong flow of oxidizing plasma. Such conditions makes the

current generation of thermal protection system materials unable to withstand the

considerably higher forces and temperatures, and thus limit the design of orbital

re-entry bodies and hyper-sonic vehicles to UHTCs [21] [22].
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Hafnium and Zirconium Di-Borides, specifically, are developed for this purpose

(to handle the excess of forces and temperatures). They are also widely used in boiling

water reactor fuel assemblies due to their strong corrosion resistance.

In a nutshell, UHTCs, and specifically ZrB2 and HfB2 -studied in this work-

are prospective materials for all applications requiring both thermal resistance and

mechanical strength. However, the major challenge this class of materials is facing is

its susceptibility to oxidation. Indeed, significant efforts are underway to find possible

oxidation enhancements for Di-Borides (by adding different kinds of impurities). Such

a development, will allow UHTCs to be more useful in the various aforementioned

approximations.

1.3 Outline of the dissertation

Following is the outline of the dissertation. In chapter 2, we present the detailed

development of reactive force fields for ZrB2 and HfB2. It will be shown that the

developed potential allows accounting for chemical interactions with Oxygen (O),

Carbon (C), Silicon (Si), and Tungsten (W). Illustrative examples are given related

to extracting diffusion properties and ion bombardment.

In chapter 3, we explain one possible (and promising) methodology to account

for long-time effects in atomistic simulations.

In chapter 4, we provide the first example of the use of the long-time-scale atom-

istic methods. Specifically, we derive the constitutive law for grain boundary sliding.
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We choose Al for this illustration since other works have performed conventional MD

calculations for this material to achieve the same goal.

In chapter 5, we attempt to settle a long standing controversy regarding void

growth: can voids grow via shear loop emission?

In chapter 6, we return to one of the key motivating materials and study grain

boundary sliding in ZrB2 and then diffusion in chapter 7.

Finally, and before the concluding chapter, we investigate one of the key phenom-

ena in creep for UHTCs (diffusion) in chapter 7. We use some electronic calculations

to explain the different diffusion mechanisms in pure and doped ZrB2.
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Chapter 2

ZrB2 and HfB2 reactive potential

2.1 Introduction

Molecular Dynamics (MD) are the most frequently used atomistic simulation

approach. In the context of N-body system, the coordinates and velocities of atoms

are determined by numerically solving the Newton’s equations of motion ( equation

2.1 ) for the whole set of particles. Forces between particles and potential energy

are defined by inter atomic force fields. These force fields (or potentials) do entirely

define the function, V (x), and allows the MD to yield the trajectories.

mi.
d2xi
dt2

= −dV (x1, x2, x3...)

dx
. (2.1)

While there is no exact analytic expression for V (x), much work have been done

to find reasonable models. Each model only works for the specific range of materials

it was designed for. For example, one of the simplest models is the Lennard-Jones

potential which only has three parameters and is useful to predict well interactions

between pairs of neutral atoms or molecules. If this potential is used for ZrB2 for

example, it will poorly predict most of the properties. Other potentials like Tersoff,

Stillinger Weber, and EAM are used. e.g. EAM is designed for metals, Tersoff is

useful for covalent materials ...
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One class of the potentials is called reactive (or bond order potentials). It also

contains Finnis-Sinclair and Tersoff potentials, and provides the advantage of consid-

ering the strength of bonds between two atoms to be variable, and dependent on the

local environment, which allows us to model reactions more easily.

In this chapter, we develop the so-called ReaxFF potential [23] for ZrB2 and

HfB2. The developed potential will also account for reactions with some elements of

interrest like Silicon, Carbon, Oxygen, and Tungsten.

2.2 Theoretical formulation

The energy of the atomistic system is divided into different partial energy con-

tributions [23] as illustrated in the following equation :

Esystem =Ebond + Elp + Eover + Eunder + Eval + Etors + Epen + EC2

+ Etriple + Econj + EH−bond + Evdwaals + Ecoulomb, (2.2)

where the different energy contributions, respectively, stand for : Bond energy, lone

pair energy, over-coordination energy, under-coordination energy, valency energy, tor-

sion energy, penalty energy, C2 correction energy, triple bond energy, conjugation

energy, Hydrogen bond correction energy, Van Der Waals energy, and coulomb en-

ergy. Although we have the most general energy expression, it is always useful to

look closer to each contribution, and neglect the terms that are not relevant for our
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specific problem. The formulation can then be simplified, and useless calculations

can be avoided. For that purpose, the energy expression can be simplified to :

Esystem = Ebond + Eover + Eunder + Eval + Evdwaals + Ecoulomb. (2.3)

The contribution of each of these partial energies will be detailed in equations (2.4)

to (2.37).

2.2.1 Bond order

The main difference between reactive and non reactive potentials is the concept

of bond orders, which evaluate the degree of connection between two atoms. In

regular potentials, the value of the bond order is an integer (0 if the atoms are not

connected, 1 if it is a simple bond, 2 if it is a double bond, and 3 if it is a triple bond).

However, in the ReaxFF potential, it’s rather a real number ranging from 0 to 3 (0 is

the limiting case where the atoms are very far from each others). Its expression is a

function of the inter atomic distances rij, and is given by equations (2.4), (2.5), (2.6),

and (2.7) as follows:

BO′ij = BO′σij +BO′πij +BO′ππij, (2.4)

BO′σij = exp

[
Pbo1.

(
rij
r0
σ

)Pbo2

]
, (2.5)
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BO′πij = exp

[
Pbo3.

(
rij
r0
π

)Pbo4

]
, and (2.6)

BO′ππij = exp

[
Pbo5.

(
rij
r0
ππ

)Pbo6

]
. (2.7)

The contribution of each type of bonding (σ, π, and ππ) varies from 0 to 1 and

is added separately to the total bond order, which is calculated between each pair of

atoms regardless of the connectivity. Pbo1, Pbo2, Pbo2, Pbo3, Pbo4, and Pbo6 are to be

fitted against Quantum Mechanics data later.

2.2.2 Bond order correction

From the equations above, the calculated bond orders only depend on inter-

atomic distances between each pair. Obviously, the picture is more complicated than

that: The connectivity between two C atoms distant by 2 Å , for example, should

be different if they are put in different environments. The bond order correction is

then needed to slightly modify the previous result. The following equations ((2.8) to

(2.18)) present the mathematical formulation of the correction:

∆′i = −V ali +

neighbors(i)∑
j=1

BO′ij, (2.8)

∆′i
boc

= −V aliboc +

neighbors(i)∑
j=1

BO′ij, (2.9)

BOij
σ = BO′ij

σ
.f1(∆′i,∆

′
j).f4(∆′i, BO

′
ij).f5(∆′j, BO

′
ij), (2.10)
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BOij
π = BO′ij

π
.f1(∆′i,∆

′
j).f1(∆′i,∆

′
j).f4(∆′i, BO

′
ij).f5(∆′j, BO

′
ij), (2.11)

BOij
ππ = BO′ij

ππ
.f1(∆′i,∆

′
j).f1(∆′i,∆

′
j).f4(∆′i, BO

′
ij).f5(∆′j, BO

′
ij), (2.12)

BOij = BOσ
ij +BOπ

ij +BOππ
ij, (2.13)

f1(∆′i,∆
′
j) =

1

2

[
vali + f2(∆′i,∆

′
j)

vali + f2(∆′i,∆
′
j) + f3(∆′i,∆

′
j)

+
valj + f2(∆′i,∆

′
j)

valj + f2(∆′i,∆
′
j) + f3(∆′i,∆

′
j)

]
,

(2.14)

f2(∆′i,∆
′
j) = exp(−Pboc1.∆′i).exp(−Pboc1.∆′j), (2.15)

f3(∆′i,∆
′
j) = − 1

Pboc2
.ln

(
1

2
.
[
exp (−pboc2.∆′i) + exp

(
−Pboc1.∆′j

)])
, (2.16)

f4(∆′i, BO
′
ij) =

1

1 + exp
(
−Pboc3.

(
Pboc3.BO′ij.BO

′
ij − ∆′i

boc
)

+ Pboc5
) , and (2.17)

f5(∆′j, BO
′
ij) =

1

1 + exp(−Pboc3.(Pboc3.BO′ij.BO′ij − ∆′j
boc) + Pboc5)

, (2.18)

where ∆i is an over-coordination variable showing how much the atom is over or

under coordinated. If ∆i is positive, the specific atom is, then, making more bonds

(
∑neighbors(i)

j=1 BO′ij) than it should (vali ). The correcting functions f1, f2, f3, f4,and f5

decrease the value of the bond orders to relax the over-coordination. If ∆i is negative,

the specific atom is making less bonds than it should, and the correcting functions

increase the value of the bond orders to relax the under-coordination. After correcting

the bond orders, we calculate separately the different types of energy of the system

(bond energy, over-coordination energy, under-coordination energy, valence energy,

Van Der Waals energy, and coulomb energy).
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2.2.3 Bond energy

Equation (2.19) is used to calculate the bond energy. The shape and value of

the energy is mainly dictated by the choice of the parameters Ppb1 and Ppb2, and have

the form of equation 2.19 and figure 2.1:

Ebond = −De
σ.BOσ

ij.exp
[
Pbe1

(
1 − (BOσ

ij)
Pbe2
)]

−De
π.BOπ

ij −De
ππ.BOππ

ij.

(2.19)

Figure 2.1: Bond energy profile

2.2.4 Over-coordination energy

Even after the bond order correction, which aims to remove the over-coordination

or under-coordination of the system, the system might not fully converge to the real

valency. Therefore, an over-coordination penalty energy is imposed to the system

to ensure further convergence. The form of the energy presented in the following

equations ((2.20) to (2.22)) quickly vanishes to 0 when ∆i is negative or positive and
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small:

∆i = −vali +

neighbors(i)∑
j=1

BOij, (2.20)

∆i
lpcorr = ∆i −

∆i
lp

1 + Povun3.exp
(
Povun4.

[∑neighbors(i)
j=1 (∆j − ∆j

lp)(BOij
π +BOij

ππ)
]) ,

(2.21)

Eover =

∑nbonds
j=1 Povun1.De

σ.BOij

∆i
lpcorr + V ali

.∆i
lpcorr.

[
1

1 + exp
(
Povun2.∆i

lpcorr
)] . (2.22)

Based on the above equations, a typical over-coordination energy should look

like figure 2.2.

Figure 2.2: Over-coordination energy profile

2.2.5 Under-coordination energy

The under-coordination energy is only meaningful when two atoms have π or ππ

bonds. The choice of the parameters Povun2, Povun5, Povun6 ensures that the energy
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vanishes when ∆i > 0. Its expression is given by:

Eunder = −Povun5.
1 − exp(Povun6.∆i

lpcor)

1 + exp(Povun2.∆i
lpcor)

. (2.23)

2.2.6 Valence energy

The valence energy is a penalty added to the system if the equilibrium angles

are not satisfied. Eval (given by equation (2.24)) vanishes when angles are equal to

Θ0 and takes positive values otherwise. The shape and the amplitude of this function

is determined by the set of parameters Pval1− > Pval10, and is in general similar to

figure 2.3,while the following equations show the expression of the valence energy

contribution:

Figure 2.3: Valence energy profile

Eval = f7(BOij).f7(BOjk).f8(∆j).(Pval1−Pval1.exp(−Pval2(Θ0(BO)−Θijk)
2), (2.24)

16



f7(BOij) = 1 − exp(−Pval3.BOij
Pval4), (2.25)

f8(∆j) = Pval5 − (Pval5 − 1).
2 + exp(Pval6.∆j)

1 + exp(Pval6.∆j) + exp(−Pval7.∆j)
, (2.26)

SBO =

neighbors(j)∑
n=1

(BOΠ
jn+BOΠΠ

jn )+(1−
neighbors(j)∏

n=1

exp(−BO8
jn)(−∆angle

j −Pval8.nlp,j),

(2.27)

∆j
angle = −valjangle +

neighbors(j)∑
n=1

BOjn, (2.28)

SBO2 = 0 SBO < 0

= SBOPval9 0 < SBO < 1

= 2 − (2 − SBO)Pval9 1 < SBO < 2

= 2 SBO > 2, and (2.29)

Θ0(BO) = Π − Θ0,0.(1 − exp[−Pval10.(2 − SBO)]). (2.30)

2.2.7 Van Der Waals energy

In addition to bonded interactions, non-bonded interactions are also accounted

for in the reactive potential : Repulsive interactions at short inter-atomic distances (or

Van Der Waals forces) are given by equation (2.34). Where the taper correction, given

by equation (2.31), is used to smooth the transition and to avoid energy discontinuities
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when atoms jump off the cut-off radius. The taper expression is given by :

Tap = Tap0 +Tap1.r
1
ij+Tap2.r

2
ij+Tap3.r

3
ij+Tap4.r

4
ij+Tap5.r

5
ij+Tap6.r

6
ij+Tap7.r

7
ij,

(2.31)

Tap0 = 1,

Tap1 = 0,

Tap2 = 0,

Tap3 = 0,

Tap4 = − 35

R4
cut

,

Tap5 = − 84

R5
cut

,

Tap6 = − 70

R6
cut

, and

Tap7 = − 20

R7
cut

. (2.32)

While the Van Der Waals energy is given by:

f13(rij) = [rPvdw1
ij + (

1

γw
)Pvdw1 ]

1
Pvdw1 , and (2.33)

Evdw = Tap.Dij.[exp(αij.[1 − f13(rij
rvdw

])]. (2.34)
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2.2.8 Coulomb energy

Coulomb energy is the second type of non-bonded interactions in ReaxFF poten-

tial. In contrast to Van Der Waals, the Coulomb energy is a long range interaction,

and its expression is given by equation 2.35. The following expression shows how a

shielding factor (γij) is used to avoid divergence for small distances:

Ecoulomb = Tap.
qi.qj

[r3
ij + ( 1

γij
)3]

1
3

. (2.35)

Typical Coulomb and Van Der Waals energy profiles are shown in figure 2.4.

Figure 2.4: Coulomb and Van Der Waals energy profiles

2.3 Training set and weights

The quality of any potential is, in general, defined by three properties : The

choice of the training set, the accuracy of Quantum Mechanics (or experimental)

data, and the accuracy of the fitting procedure.
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The first crucial step in developing a good potential is, then, choosing the best,

and more exhaustive training set. Although the main materials of interest for our

problem are ZrB2 and HfB2, they will not be the only species appearing in the po-

tential. In fact, these materials are in general associated with other atomic species:

For instance, SiC is often added to these ceramics (appears as grains in ZrB2 lattice).

Tungsten, as well as Oxygen are also interacting species (generally present at the

surfaces and grain boundaries).

In order for the potential to be able to well predict these interactions, a wide

training set defining the behavior of all these materials should be considered :First,

properties of the pure materials in their most common crystalline structure (Zr, Hf,

B, Si, C, O, W) are studied: Equations of state, dissociation curves, defect energies

and surface energies calculations are performed. Each of these properties have a

special role in making the potential accurate and reliable. In fact, if we ignore the

errors resulting from the fitting procedure, the potential should be able to predict

flawlessly all the training set data. Other properties are not guaranteed to be well

predicted. However, if the main physical phenomena is well described, all emerging

properties should follow. For example, if the potential makes a good estimate of the

stacking fault energies, it should follow that dislocation nucleation is well described.

If vacancy formations and migration energies are well defined by the potential, all

diffusion properties will follow as well.

For our case, the equations of state are important to fit the lattice constant,

the binding energy, and the bulk modulus of the material(obtained by deriving the
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equation of state twice) and are given by equation 2.36. If the equations of state are

well fitted, so will be all these properties.

The dissociation curves are also important because they define energetically how

two atoms form or break a bond, since we aim to study interactions, this will be an

important feature. Defect energies (or vacancy formation energies) are important to

define the diffusion properties of the materials. Surface energies dictates the energy

of voids and allows us to model simulations with less than ideal coordination.

Now, it is necessary to specify the weight of every property in the error function

that will be minimized. This choice is subjective, but, it is guided by our choice of

“how much do we care about each property”. For the reasons explained above, we

do chose the weights as appears in figure 2.5. It is important to remember here, that

these weights are those for pure crystals, and not the final weights.

Figure 2.5: Error function weight for pure crystals
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All the properties defined above, are for sure important, but are not enough to

characterize our reactive potential. In fact, compound elements (ZrB2 for example)

do have Zr-B bonds in addition to Zr-Zr and B-B, which cannot be characterized only

by means of pure crystals.

Since seven atom species are present in our potential, a full characterization of

all possible reactions requires the identification of 7 atomic properties (Zr, Hf, B, Si,

C, O, W), 28 different bond properties (Zr-Zr, Zr-Hf, Zr-B, Zr-Si, Zr-C, Zr-O, Zr-W,

Hf-B, Hf-Si, Hf-C, Hf-C, Hf-O, Hf-W, B-B, B-Si, B-C, B-O, B-W, Si-Si, Si-C, Si-O,

Si-W, C-C, C-O, C-W, O-O, O-W, W-W), and about 200 angle properties (Zr-Zr-Zr,

Zr-Zr-B, ...). However, it it not practically possible to include that large number of

Quantum Mechanics data points. A wise choice should then be done to decide which

properties to simulate.

We, then, consider only the commonly known alloys (ZrB2, HfB2, ZrC, HfC,

ZrO2, HfO2, SiC, B2O3, ZrW, HfW). These compounds, although they do not present

an exhaustive list of the possible reactions, they do provide descent knowledge about

the most important bonds. Other bond properties will be extrapolated as will be

shown in the following sections.

In addition to equations of state, dissociation curves, defect energies, and surface

energies, other properties are only significant in alloys, and thus are added to the

training set. In fact, the heat of formation of alloys such as ZrB2 is a fundamental

property that defines the energetics of ZrB2 formation. The charge distribution is also

important in defining the Coulombic interactions and is only significant in compound
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structures (all charges are zero in pure crystals). The weights of these properties are

summarized in figure 2.6.

Figure 2.6: Error function weight for alloys

Combining these two sets, our final training set is composed from both pure

crystals, and alloys. The final weights are presented in table 2.1.

Table 2.1: Final weights for the error function

property weight (pure) weight (alloy) total weight

Equations of state 20 15 35
Dissociation curve 12.5 7.5 20

Defect energies 10 7.5 17.5
Surface energies 7.5 5 12.5

Heat of formation – 10 10
Charge distribution – 5 5
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2.4 Quantum calculations

To generate our training set, we need to collect reliable data either from quantum

calculations or experiments. In general, experimental results are more accurate, and

should be chosen over the quantum calculations if available. However, since we do not

have these experimental results for all materials, we chose to be consistent are run our

quantum calculations to obtain all properties. We, then, use the VASP package [24]

to generate our training set. We do also make sure, that for every type of simulation,

the results are convergent with respect to the number of K-points.

2.4.1 Equations of state

Equations of state are of fundamental importance in defining the strength and

equilibrium properties of materials. In fact, equation 2.36 shows how to extract the

bulk modulus from a volume expansion equation of state, as

E = E0 +
9

8
B0V0

((
V0

V

)2/3

− 1

)2

, (2.36)

where, E0 is the total cohesive energy, B0 the bulk modulus, V0 the equilibrium

volume, and V the volume of deformed state.

If we consider the absolute energies, these curves can also provide us with the

cohesive energy, and equilibrium volume of the materials. For clarity, we normalize

the equations of state with respect to the equilibrium volume and cohesive energy, and

we present the relative energy of the lattice with respect to (δ =
(
V0

V

)2/3−1) to extract
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the bulk modulus. Cohesive energies and equilibrium volumes of the structures are

then presented separately.

Figures 2.8, 2.7, 2.9, and 2.10 present the equations of state of the pure elements

and some of the possible compounds, while table 2.2 summarizes the obtained binding

energies, bulk modulus, and lattice parameters.

(a) Oxygen equation of state (b) Zirconium Di-Oxide equation of state

(c) Hafnium Di-Oxide equation of state (d) Boron Tri-Oxide equation of state

Figure 2.7: Oxygen, and Oxides equations of state

25



(a) Zirconium equation of state (b) Hafnium equation of state

(c) Boron equation of state (d) Silicon equation of state

(e) Graphite equation of state (f) Tungsten equation of state

Figure 2.8: Pure elements equations of state (Zr, Hf, B, C, W,and Si)
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(a) Zirconium Di-Boride equation of state (b) Hafnium Di-Boride equation of state

(c) Zirconium Carbide equation of state (d) Hafnium Carbide equation of state

(e) Silicon Carbide equation of state

Figure 2.9: Borides and Carbides equations of state
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(a) Zirconium Tungsten equation of state (b) Hafnium Tungsten equation of state

Figure 2.10: Tungstates equations of states

Table 2.2: Properties summary for pure elements and alloys

entity structure atoms lattice constant[Å ] binding energy [eV] bulk modulus [Gpa]

Zr sc 4 4.45 -7.36 93.60
Hf sc 4 4.36 -6.73 115.99
B hex. 36 4.85 — 12.43 -7.34 255.42
Si dc 8 5.41 -5.20 94.73
W bcc 2 3.18 -10.11 324.75
C c 8 4.23 — 2.44 — 6.23 -8.84 207.02
O – 2 – -1.85 –

ZrB2 c 6 3.13 — 5.43 — 3.51 -8.28 262.81
HfB2 c 6 3.09 — 5.36 — 3.46 -8.38 273.75
ZrC c 8 4.65 -9.01 248.08
HfC c 8 4.58 -9.24 260.35
SiC c 8 4.33 -7.32 227.83

B2O3 hex 15 4.31 — 8.30 -7.79 223.84
ZrO2 c 12 5.06 -8.70 255.36
HfO2 c 12 4.98 -8.97 298.81
ZrW bcc 2 3.30 -8.53 182.05
HfW bcc 2 3.27 -8.70 203.03

The used structures for our simulations are the most common structure for each

material, although the crystalline structure may not seem in agreement with what

is commonly known. In fact, for simplicity reason (of the fitting procedure), we
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choose to convert the structures, when possible to cubic systems. For example ZrB2

crystallizes in HCP structure, but can be converted to a cubic system as shown in

figure 2.11. Similar changes are made for HfB2, C, B ...

Figure 2.11: ZrB2 conversion : hcp to cubic

2.4.2 Crystal dissociation curve

The dissociation curves are important in estimating the exact bond distances

and energies for breaking and formation. It is important to note that these Quantum

Mechanics calculations are not straight forward: Since the electronic shell is not fully

filled in dimers, spin polarized calculations have to be done.

Figure 2.13 show the binding energy per atom with respect to inter-atomic dis-

tance for the pure elements in our potential,while figures 2.12,2.14, and 2.15 describe

the dissociation for binary elements. Oxygen dissociation is also added (but, since
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Oxygen is present in gas phase and no crystalline structure is possible, we only con-

sider an O2 molecule dissociation).

(a) Oxygen dissociation (b) Zirconium Di-Oxide dissociation

(c) Hafnium Di-Oxide dissociation (d) Boron Tri-Oxide dissociation

Figure 2.12: Oxygen and Oxides dissociation curves
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(a) Zirconium dissociation (b) Hafnium dissociation

(c) Boron dissociation (d) Silicon dissociation

(e) Tungsten dissociation (f) Graphite dissociation

Figure 2.13: Pure elements dissociation curves
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(a) Zirconium Di-Boride dissociation (b) Hafnium Di-Boride dissociation

(c) Zirconium Carbide dissociation (d) Hafnium Carbide dissociation

(e) Silicon carbide dissociation

Figure 2.14: Borides and Carbides dissociation curves
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(a) Zirconium Tungsten dissociation (b) Hafnium Tungsten dissociation

Figure 2.15: Tungstates dissociation curves

2.4.3 Mulliken charge distribution

Charge distribution is an important property in reactions, which is only relevant

for binary elements (because all atoms in pure crystals have the same electronega-

tivity). For binary materials, the charges tend, in general, to lean toward the more

electronegative atoms species. We should note here, that the electronegativity is an

atomic property (presented in table 2.3), and does not depend on the crystalline

structure.

Table 2.3: Electronegativity of Zr, Hf, Si, B, C, O, and W

Atom Hf Zr W Si B C O

electronegativity 1.3 1.4 1.7 1.8 2.0 2.5 3.5

Electronegativity, in general, increases from left to right and from bottom to top

on the periodic table. That explains why Oxygen is the most electronegative element
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in our list. Table 2.4 shows how the charges are distributed for some binary materials.

Table 2.4: charge distribution for alloys

alloy atom charge

ZrB2 Zr +0.50
B -0.25

HfB2 Hf +0.44
B -0.22

SiC Si +0.35
C -0.35

ZrC Zr -0.29
C +0.29

HfC Hf -0.02
C +0.02

ZrO2 Zr -1.12
O +0.56

HfO2 Hf -1.20
O +0.60

ZrW Zr +0.11
W -0.11

HfW Hf +0.09
W -0.09

2.4.4 Surface energies

Physically, the surface energy quantifies the disruption of atomic bonds that

occur when a surface is created. Since the surface energy depends on the orientation

of the crystal, it will also indicate which surface is most likely to be created (the

orientation with the lowest surface energy). Mathematically it is given by

γ =
Eslab − Ebulk

2.A
. (2.37)
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In principle, calculating an accurate surface energy does require surface relax-

ation (sometimes, even a reconstruction and neutralization with H atoms is required).

However, in this work, we only calculate single point energies based on bulk coordi-

nates (we only remove the periodicity for the surface in question). On the one hand,

getting the correct surface structures for many structures is tricky, and requires a

large unit cell and long computational time. On the other hand, although the calcu-

lated surface energies won’t be exact, this won’t decrease any of the accuracy of the

potentials since we will be fitting the same configuration and we will be comparing

energies of similar structures. Figures 2.16, 2.17,2.18, 2.19, and 2.20 present surface

energies obtained for pure crystals, Borides, Carbides, Oxides, and Tungstates.

Figure 2.16: Pure elements surface energies
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Figure 2.17: Borides surface energies

Figure 2.18: Carbides surface energies
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Figure 2.19: Oxides surface energies

Figure 2.20: Tungstates surface energies

2.4.5 Heats of formation

Heat of formation (HOF) of a compound describes the difference between energy

states of the compound and the pure elements. This physical property is different

than the reaction activation energy (HOF describes the difference between initial and
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final energies, while activation energy reflects the barrier between them). Figure 2.21

presents the different values for the formation energies.

(a) Borides heats of formation (b) Carbides heats of formation

(c) Oxides heats of formation (d) Tungstates heat of formation

Figure 2.21: Heats of formations for carbides, borides, oxides, and tungstates

Some conclusions can be drawn from these figures: Oxides have very high heat of

formation energies, they are easy to form and they are stable. Tungstates have very

low heats of formation (sometimes positive) because the simulated structures does not

reflect the real structures (in reality Zirconium Tungstate, and Hafnium Tungstate are

present in more complex structures (Zr(WO4)2 and Hf(WO4)2)and with much lower
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energies), but for our purpose, we are fitting energies to energies of similar structures,

so it is not important whether these structures are the lowest energy structures or

not. Zirconium and Hafnium Di-Borides have fairly high formation energies (3 to 4

eV) while Carbides have relatively low heats of formation (1 to 3 eV).

2.4.6 Intrinsic defect energies

Defect energies (or Vacancy Formation Energies), are needed for accurate mod-

eling of diffusion related processes. For pure elements, VFE are of a single kind,

however, for compounds, two or more vacancy formation energies may exist (one for

each element). Table 2.5 summarizes our calculations for the defect energies for pure

elements while table 2.6 summarizes the VFE for binary alloys.

Table 2.5: Vacancy formation energy for pure elements

Atom Bulk energy energy with defect number of atoms vacancy formation energy

Zr -293.83 -282.46 32 2.19
Hf -339.70 -326.85 32 2.23
Si -47.57 -38.50 8 3.12
C -80.95 -63.55 8 7.28
W -224.71 -206.92 16 3.74
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Table 2.6: Vacancy formation energy for compounds

Crystal Bulk energy number of atoms Atom energy with defect defect energy

ZrB2 -99.34 12 Zr -85.40 5.66

B -88.20 2.86

HfB2 -100.55 12 Hf -86.62 5.55

B -89.42 2.76

ZrC -72.09 8 Zr -55.48 7.59

C -61.12 1.95

HfC -73.97 8 Hf -57.06 7.65

C -62.57 2.15

SiC -55.52 8 Si -45.37 5.83

C -46.97 5.13

ZrO2 -104.42 12 Zr -80.41 15.3

O -94.19 1.52

HfO2 -107.62 12 Hf -83.02 15.6

O -96.93 1.72

ZrW -159.47 16 Zr -147.31 2.19

W -148.83 0.67

HfW -167.41 16 Hf -155.12 1.82

W -156.40 0.54

40



2.5 Fitting procedure

Four types of parameters are to be fitted in this potential : General parame-

ters, atomic parameters (valence, electronegativity, ...), bond parameters (amplitude,

equilibrium distance, decay speed, ...), and angular parameters (equilibrium angle,

...). For each of these, we need to provide an initial guess (reasonable enough) to help

the fitting code converge within a reasonable time.

General parameters are easy to provide since most of the previously developed

ReaxFF potentials do have similar (or close parameters). Table A.2 provide a list of

these parameters with a small description, and their values.

Atomic properties are also easy to provide because of two reasons. First, some

atomic properties are available from previous works (Silicon properties from lithium

silicon potential [25], Oxygen properties from Hydrocarbon potential [26] ....). These

parameters are fitted using an available fitting code and provide the values of param-

eters in Table A.3. a description of these parameters is given in A.1.

Bond properties are probably the most important and are those who define the

behavior of the bond (length, strength, nature ...). Each of these properties is de-

scribed in table A.4, and the final values of the parameters are given in A.6 and A.5.

It is important to note that for the bond parameters we do not have initial guesses,

we suppose that the value of a parameter is the average of its values for pure elements

(for example, if a parameter P0 has a value of 3 for Zr-Zr bond, and a value of 4 for

B-B bond, we will assign a value of 3.5 for this parameter in the Zr-B bond.
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Angular terms are less important for most materials and do represent the varia-

tion in strength of the bonds with respect of the angles between atoms (table A.7)

2.6 Results and applications

After providing the initial guess, a code developed by Van Duin [26] is used to

fit the parameters. An estimate of the averaged errors is presented in table 2.7, while

two MD applications are performed to verify the performance of the potential.
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Table 2.7: Estimation of the error (percentage)

parameter eq. of state dissociation Defect E. Surface E. HOF charge

Zr 05 12 09 12 — —

Hf 04 08 05 04 — —

B 08 14 * * — —

C 03 07 00 10 — —

Si 02 07 00 04 — —

W 07 06 05 12 — —

O 10 15 — — — —

ZrB2 09 11 21 10 — —

HfB2 05 07 13 14 00 09

SiC 12 05 17 05 00 05

ZrC 03 04 22 04 01 03

HfC 07 04 04 07 01 11

ZrO2 12 10 25 08 00 05

HfO2 11 09 11 14 00 05

B2O3 14 12 * * 03 09

ZrW 02 06 06 06 12 10

HfW 04 11 11 09 15 22

*: not calculated

2.6.1 Ion bombardment

The above developed ReaxFF is a reactive empirical bond order potential that

is able to model the formation and dissociation of bonds by using the bond order

concept. It has been parameterized to model atomic reactions. Thus, in order to
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illustrate the potential and investigate its ability to capture physical phenomena that

are not included in the training set, we performed MD simulations of B bombardment

on Zr crystal (figure 2.22).

Figure 2.22: Ion bombardment simulation setup

A bulk of 40Å x 40Å x 70Å (4690 atoms) of Zr was used as a substrate, and a

beam of B was bombarded at room temperature onto the Zr bulk. A total of 200 B

atoms were bombarded with a velocity of 2.1 Å /s and a time step of 0.2 fs. Figure

2.23 illustrates clearly that the potential faithfully created atom connectivity between

B and Zr atoms.

During the ion-bombardment process, the B atoms injected into the Zr crystal

create a disordered state. Under “ideal” conditions, HCP structure of ZrB2 is expected

in the regions of interaction. However, the kinetics of such a phase formation is very
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slow at room temperature. Therefore, during the ion-bombardment process, when

the Zr matrix loses its cubic structure and is not able to navigate the high-energy

barriers to the HCP structure, a (meta stable) amorphous state is induced.

Figure 2.23: Snapshot of the samples after the atom bombardment

A standard way to characterize the amorphous state is by tracking the changes in

the radial distribution functions (RDFs), the bond angle distributions (BADs), and

the average internal energy (U). A combination of these three analyses will confirm

the creation of ZrB2 amorphous phase around the bombardment zone.

To investigate this further, we used the same sample (1372 Zr atoms with 200

B atoms). After the relaxation of the sample at room temperature, the average dis-

tances, angles, and energies are investigated. Figure 2.24a clearly shows the presence

of different peaks associated with first, second, and third neighbors that dominate

the structure of the system. However, unlike a perfect crystal, close to the neighbor

distances, some atoms are placed at non-ideal distances because of the injection of

B interstitials into the bulk. The first neighbor is placed at 3.21 Å in the original
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structure and retains the same average configuration in the bombarded structure.

However, a wider range of distances (3 Å to 3.5 Å ) is observed. This confirms the

presence of the ZrB2 amorphous phase. Investigation of the angle distribution reveals

the same trend as the RDF analysis (figure 2.24b). Since the bond angle distribution

of an amorphous phase is different than that of a crystal phase by the presence of

off-equilibrium angles (meta-stable states), the distributions are wider than for pure

Zr.

Calculating of the internal energy of the system is another way to verify the

amorphization of the material: internal energy for amorphous materials is in general

higher than that of a crystalline material with the same number of atoms. During

the MD simulation, the internal energy per atom increased from -74.12 to -77.14

kcal/mol. This increase is associated with the amorphization of the ZrB2 bulk.

2.6.2 Layers reaction

The purpose of this work is to observe reactions between Zr and B layers and

to study the relevant properties: reaction barriers, temperature dependence, and

reaction rates. The model that we have consists of one layer of Zr (20 Å thick),

and one layer of B (12 Å thick) distant by 2 Å (figure 2.25). By letting the system

relax the reaction begins in the surface, and we observe collective motion of Zr and

B atoms to form an amorphous state at the boundary. This reaction, even though

more realistic, does not allow us to extract the real energy barriers because of the

collective motion (figure 2.25).
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(a) Radial Distribution Function for pure Zr bulk
(solid) and Zr bulk after B bombardment (dashed)

(b) Bond Angle Distribution function for pure Zr bulk
(solid) and Zr bulk after B bombardment (dashed)

Figure 2.24: Analysis of both bond lengths and angles for the bombarded system
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Figure 2.25: Collective motion during reaction (50K)

The above presented result confirms that a reaction is taking place between Zr

and B atoms, and that ZrB2 (in amorphous state) is formed. But, It is very hard to

interpret quantitatively the energy barriers and reaction paths because of collective

motion. In fact, Zr, and B atoms on both surfaces move at the same time toward each

others making the apparent energy barriers insignificantly high (because the barriers

are associated with collective atoms motion).

To solve this problem, we assume that the reaction environment does not affect

much the barriers. We, then, freeze all atoms during the reaction except one (allowing

one atom to react at a time). Once the atom settles in its new minimum energy

configuration in the surface, we release the second atom, then the third ... until a

reasonable number of atoms have reacted.We then extract the barriers that every
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atom crossed, and we average them. For that purpose we use a slightly smaller

structure, having 3 layers (figure 2.26).

Figure 2.26: Initial setup of the layers

Using this configuration, the reaction occurs step by step until satisfaction, and

the energy barriers can be easily recorded. The final state is shown in figure 2.26,

and the average energy barriers are found to be around 0.91 eV (ranging from 0.5 eV

to 2 eV).

Figure 2.27: final reaction of the layers
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2.7 Conclusion

We have developed a reactive force field for ZrB2 and HfB2 that will pave the

way for accurate finite temperature atomistic simulations of these important ceramic

compounds. Most of the possible reactants where also included in the potential to

ensure a wider range of use. This objective was achieved by generating a substantial

training set of Quantum Mechanics data for a wide variety of structures and energetic

situations relevant to high temperature behavior (surface energies, heat of formations,

charge distributions, dissociation curves...). The potential should, then, predict well

a wide range of simulations for different purposes. It can even be adjusted if needed

by adding some Quantum Mechanics points relevant to the studied physical phenom-

ena into the training set. The surface and bulk energetics of the potential compare

very well with density functional calculations. A simple ion-bombardment molecular

dynamics simulation, predicated on the developed potential, confirmed the ability of

the potential to model the formation and reaction of the expected bonds. An amor-

phous state was formed in the bombarded zone and was captured by means of radial

distribution and bond angle distribution analysis.
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Chapter 3

Atomistic simulations and the time scale

barrier: a new approach

3.1 Introduction

Atomic simulations have become more and more omnipresent in the last two

or three decades, and are playing a critical rule in understanding material behavior.

This is due to two reasons: On the one hand, advances in computers’ speed, memory,

and storage are allowing atomic simulation to be used in new fields, previously inac-

cessible because of computing limitations [27]. On the other hand, the accuracy of

the simulation results has encouraged many researchers to complement experiments

with this approach.

Moreover, atomic simulations, and more specifically Molecular dynamics (MD)

can be useful, at time, to replace expensive or dangerous experiments [28]. MD

can, as well, explore and calculate at length and time scales not easily accessible

by experiments [29], [30]. Samples, input loads, and measurements are much more

flexible in simulations, as well: One can change the size or the shape of the sample

in few minutes without the need to re-manufacture.

However, MD has two main limitations that severely limits its capabilities :

(i) Small length scale: each mole of material has about 1023 atoms. With the

most powerful supercomputers, MD can barely reach 1010 atoms [31](the equivalent
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of few hundreds nanometers configurations). Moreover, knowing that many materials

have grain sizes of micrometers, their correct structures can never be duplicated

by MD. However, most of the simulations use grain sizes easily accessible by the

available computing power. This length scale limitation is also valid for any physical

property. This shortcoming is generally overcome by parallelising the space domain

over different processors [32]. However, this solution is not very efficient because

the computation time does not vary linearly with the size (the number of processors

does).

(ii) Short time scale: MD simulations are based on solving the set of Newton’s

equations of motion at different time steps. The typical Debye frequency for most

materials is about 1013 Hz [33], which require at least 10−15s intervals to accurately

perform the numerical integration schemes. For instance, a million iterations will be

equivalent only to 1 ns in experimental time, making the strain rates extremely high

and nonphysical. A typical tensile test strain rate would be around 10−7 to 102 for

experiments [34] [35], while around 108 to 1010 for MD simulations [36]. Molecular

Dynamics,then, cannot provide trustful insights on time dependent phenomena (creep

rates, sliding velocities, void nucleation rates ...).

The same time scale limitation can be explained from a different perspective :

Knowing that most of the interesting dynamics requires the passage of the system

from a local minimum to another through an infrequent rare event, the system should

remain in some energy basin for a long time (millions or billions of MD time steps
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depending on the energy barrier). Obviously, such a rare event cannot be accessible

in MD simulations.

Different attempts have been made to address this time scale limitation, and

several solutions havr been proposed (often called accelerated molecular dynamics).

Examples include meta-dynamics [37], hyper-dynamics [38], parallel replica dynam-

ics [39], temperature accelerated dynamics [40], activation relaxation technique and

others [40].

3.1.1 Parallel replica dynamics

This method is the most accurate, and the simplest, but not the most promising.

It’s based on running, in parallel, several replicas of the systems in different proces-

sors. All the replicas are independent, but once the required transition happens in

some processor P0, all processors are stopped and all replicas are reassigned to the

new configuration obtained after the transition. The enhancement achieved by this

method is linear in the number of processors (if you have 10−6 probability to cross a

barrier with one processor, you will have n.10−6 probability if you have n replicas).

3.1.2 Hyper-dynamics

The hyper-dynamic approach is based on modifying the potential surface V (r) of

the system, by adding a positive bias potential ∆V (r) inside the wells, (figure 3.1).
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Figure 3.1: Schematic of the hyper-dynamic method : a bias potential ∆V (r) is added to
the well to decrease the activation energy

Knowing that the probability of escape from a potential well is exponential to

the barrier, we can easily see how much effective this method is. However, it is a

challenging task to derive the bias potential. On the one hand, it should be zero

at all the dividing surfaces (which are not known). On the other hand, the system

must still obey the Transition State Theory for dynamics on the biased potential.

However, if such a bias potential is constructed, we obtain a trajectory that evolves

correctly from state to state at an accelerated pace. The average boost provided by

hyper dynamics is given by equation 3.1:

boostHyperdynamics =
thyper
tMD

=< exp(
∆V (r))

Kb.T
) >b, (3.1)

where the <>b indicates an average over the trajectory on the biased potential.

3.1.3 Temperature accelerated dynamics

In the temperature-accelerated dynamics method (TAD), we do not speed up the

simulation by adding a biasing potential, but rather by increasing the temperature.

By doing so, transitions occur more rapidly and the dynamics of the system are called
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“thermally accelerated”. While the obtained rates do not reflect the real dynamics

at the original temperature, an extrapolation back to the temperature of interest

is performed. The TAD method is less accurate than the previous two methods

because it relies on the Harmonic Transition State Theory (explained later in this

chapter) which is acceptable for limited applications. The TAD method often gives

substantially more boost than hyper-dynamics or parallel-replica dynamics, and the

obtained trajectory is allowed to wander on its own to find each escape path (exactly

like the previously explained methods).

Many other methods and algorithms have been developed to address, the same

issue ([40] have presented a very good review on all these methods). Nevertheless,

the above presented remain the most effective and commonly used.

In the present work, we chose one of the hyper dynamics variants (called Au-

tonomous Basin Claim) to accelerate the dynamics of the problem. The Nudged

Elastic Band, Finite Temperature String, Kinetic Monte Carlo, and Transition state

theory where used afterward to enhance the results and provide trustful and accurate

results. The next section provides the readers with a detailed description of all the

used tools involved in this work.
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3.2 How to cross the time scale barrier ?

3.2.1 Autonomous Basin Climb

The Autonomous Basin Climb method was first developed and used by S. Yip

and A. Kushima ([41], [42], [43], [44]) and is based on the following concept:

Figure 3.2: Schematic of concept of ABC

1- We start from an initial configuration R0 stable under the applied bound-

ary conditions of the problem. If the initial configuration is not a local minimum
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(not a stable configuration), we apply a minimization to drive the system to a local

minimum).

2- a Gaussian penalty function centered at the local minimum and given by

equation 3.2 is added to the system. The amplitude and spread of the penalty are

defined by W and σ and their values depend on the studied problem. (figure 3.2, step

1):

pE = W.exp(
−∆R

σ2
), (3.2)

where W and σ are parameters.

3- when the penalty is added, the configuration R0 is no longer a local minimum,

the structure is again minimized (to R1) (figure 3.2, step 2).

4- an iterative process is repeated on 2 and 3 until the system crosses this barrier

and reaches an other well (this state is captured by finding that the total potential

energy at Rn (E + pe) is not different than E (figure 3.2, step 3)

The power of the ABC resides in its ability to find a path based on the real dy-

namics of the system, the more time ABC is simulated, the more the energy landscape

is sampled, the more configurations on the path we have.

However, it is important to note that ABC always over estimates the energy

barriers (because the system might be stack in some artificial local minimums higher

than the saddle point before converging to the new energy well). Consequently, a

wise decision would be to use the power of each method and only get the list of
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configurations on the needed path from ABC. An other method (NEB) will then be

used to exactly obtain the energy barriers

3.2.2 Nudged Elastic Band

NEB (or Nudged Elastic Band) is a powerful tool to identify the lowest energy

path for a rearrangement of a group of atoms from one stable configuration to another.

It has been widely used to find barriers for reactions, and collective atom motion in

MD and DFT calculations.

The method consists in starting from a set of replicas linearly interpolated from

an already known initial and final state (as a first guess of the Minimum Energy Path

[MEP]). Each image is connected to its two neighbors by a spring force. The energies

of the replicas are then minimized to generate the final MEP. The total energy (that

has to be minimized) consists of normal, and tangential parts (eq 3.3,3.4, and 3.5) as

follows:

Fi = F t
i + F n

i , (3.3)

F t
i = Ki+1.(Ri+1 −Ri) −Ki.(Ri −Ri− 1), and (3.4)

F n
i = −GradV (Ri). (3.5)

As a limit case scenario, we can think of a very weak chain of springs: Half of

the replicas will converge back to the initial image, while the rest will converge to the

final state. The system will have then coincident replicas (which is not helpful for our
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purpose). By increasing the spring forces, we ensure that all replicas do reproduce a

path by allowing them to go to the lowest possible energy state that the spring will

allow. In this work, we use the initial and final replicas (provided by the ABC), and

we use the NEB to find the exact barrier.

3.2.3 Finite Temperature String

The Finite Temperature String method (or FTS) is an algorithm that has the

same objrctive as NEB (to find the energy barrier and path between 2 known states).

This method is mainly used for the study of rare events such as conformational

changes of macro molecules, nucleation events during phase transitions, or chemical

reactions that occur within a long timescale. The barriers between different confor-

mations in such processes are very high compared to the thermal fluctuations, and

the do require an unusually high thermal fluctuation to jump over these barriers. The

method samples the energy landscape and determines the iso-probability surfaces for

the transition. Upon weighting these surfaces by the equilibrium probability distribu-

tion, we obtain an effective transition pathway (a tube in configuration space inside

which conformational changes occur with high probability). A detailed explanation

of the FTS process can be found in [45].
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3.2.4 Kinetic Monte Carlo

Kinetic Monte Carlo (or KMC) is a computer simulation approach that finds the

time evolution of processes. Without going into general algorithmic details, we only

present the way KMC is applied for atomistic simulations.

By using the ABC and NEB, the obtained result is a path sequence with a

barrier estimate for each transition. We made here, a very important assumption:

We assumed that the configuration will always cross the lowest barrier, and that the

ABC will always provide the lowest barrier.

These assumptions are not necessarily correct: On the one hand, the Autonomous

Basin Climb is an approximate method (while accumulating the penalty energies, the

code can oversee a barrier of 2 eV and goes to a barrier of 2.5 eV just because of

some numerical artifacts). On the other hand, even if the code works perfectly, and

crosses the 2 eV barrier, we do not know for sure that it should have done that from a

physical vewpoint. In fact, jumping from a state to an adjacent state is a probabilistic

event that follows the Boltzmann distribution. Therefore, an accurate calculation of

the path should be done by calculating the jump probabilities.

KMC is a tool, that when applied to atomistic simulations can help us do so.

a simple example is shown below to explain : suppose a potential energy landscape

that only have 5 local minimums. The barriers for each possible jump is presented in

table 3.1
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Table 3.1: Barriers between states

state 1 2 3 4 5

1 - 0.6 0.5 0.7 0.7
2 0.9 - 0.8 1.1 0.6
3 0.5 0.4 - 0.7 0.6
4 0.9 0.6 0.7 - 1.2
5 0.8 0.7 0.9 0.5 -

If we suppose that the system always chooses the lowest energy barrier, the

system will follow the following path : 1−− >3 (0.5 eV), 3−− >2 (0.4 eV), 2−− >5

(0.6 eV), 5−− >4 (0.5 eV). To use the KMC, we start by converting the barriers

matrix into a jump probability matrix following the Boltzmann distribution:

kAB = ν ∗ exp(−∆E

Kb.T
). (3.6)

Supposing that T = 750K, we obtain table 3.2

Table 3.2: jump frequencies between states

state 1 2 3 4 5

1 - 9.3 108 4.4 109 2.0 108 2.0 108

2 9.0 106 - 4.2 107 4.1 105 9.3 108

3 4.4 109 2.11010 - 2.0 108 9.3 108

4 9.0 106 9.3 108 2.0 108 - 8.6 104

5 4.2 107 2.0 108 9.0 106 4.4 109 -

Now once we have the jump frequencies, we can convert them into jump proba-

bilities by dividing each jump frequency by the sum of all the possible jumps starting

from that configuration (table 3.3). We then obtain table 3.3:

61



Table 3.3: jump probabilities between states

state 1 2 3 4 5

1 - 16% 77% 3% 3%
2 1% - 4% 0% 95%
3 17% 79% - 1% 4%
4 1% 82% 17% - 0%
5 1% 4% 0% 95% -

Obviously, since the process is probabilistic, the obtained result won’t be the

same each time we run the KMC. For example, from the previous example, we obtain

these following paths from two separate runs

1 −− > 2 −− > 5 −− > 4 −− > 2 −− > 5 −− > 4 −− > 3 −− > 1 −− > 3,

1 −− > 3 −− > 2 −− > 5 −− > 4 −− > 2 −− > 5 −− > 2 −− > 3 −− > 5.

3.2.5 Transition State Theory

Transition State Theory is based on the fact that the rate at which a system

transitions across a dividing surface can be exactly expressed as the average absolute

value of the velocity of the system normal to the dividing surface weighted by the

equilibrium probability that the system resides on the dividing surface [46]. Mathe-

matically, that can be translated to equation 3.7:

kab[S] =

√
kBT

2mπ
Za
−1, (3.7)
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where Kab[S] is the transition rate across the dividing surface S,kB is the Boltzmann

constant, T is the temperature, m is the effective mass, and V (x) is the potential

energy in the R configuration.

The TST formulation is, in its most general form, extremely accurate for the

systems where the potential wells are bigger than the thermal fluctuations, Which

covers a very wide range of applications. However, In general, the calculation of

the partition function is computationally very expensive, and becomes practically

impossible for more than few atoms. The dividing surfaces S are also very hard to

obtain in a 3N dimensional space.

For that reason, less demanding versions of TST using relaxed assumptions have

been developed. Although less accurate, these variations of the original method are

more accessible and useful for practical purposes.

Variational TST (or VTST) assumes that the dividing surface is the one mini-

mizing the total frequency transition of the system given by :

ν = 2kab[S]Pa[S], (3.8)

where Pa[S] is the probability that the system resides in state a. To solve this highly

non-linear minimization problem, the dividing surface is obtained by an iterative

process (from which the “Variational” notation comes).

Alternatively, PTST assumes that a potential energy ridge S exists between

the two states, and considers that ridge to be the dividing surface. Harmonic TST
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(or HTST), assumes that both wells and saddle points are locally quadratic, which

physically equates to assume that material properties are temperature independent.

This, surely is a crude assumption, but it allows to remove the integral from the

partition function and convert it to an easily calculable entity (eq. 3.9) as

kab[S] =

√
kBT

2mπ
Za
−1, (3.9)

where νi
initial (respectively νi

saddle) represents the ith normal frequency of the system

at the bottom of the well (respectively, at the saddle point).

Simple Harmonic TST (or SHTST) is the most simplistic TST model. It assumes

that all normal frequencies are equal to the debye frequency of the material. The

transition rate can, then, be given by eq 3.10:

kab = νe
− ∆V

kBT . (3.10)
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Chapter 4

Grain boundary sliding mechanisms

4.1 Introduction

At low enough temperatures (low compared to half the homologous temperature)

crystalline materials exhibit irrecoverable deformation provided the imposed mechan-

ical stresses exceed the so-called yield threshold [47]. For all practical purposes, this

deformation is considered to occur instantaneously. At high temperatures, however,

even at stresses well in the elastic regime, irrecoverable deformation occurs gradually

over an extended period of time. At the micro scale, this time-dependent deformation

is predicated on several viscous processes such as grain boundary and volume diffu-

sion, grain boundary sliding, dislocation glide-climb, void nucleation, void growth

and others ([48] [49] [50] [51]). These micro mechanisms exhibit characteristics relax-

ation times that range from seconds to years (depending on the level of applied stress

and temperature). This “creeping” deformation behavior is the predominant cause

of failure in materials that are subject to high temperature environment: ice glaciers,

nuclear reactors, air crafts, electronics among others ([52] [53] [54]), e.g. Sn-Pb alloys

are extensively used in electronics and the melting temperature of this class of alloys

is low enough that at even room temperature, creep eventually (in conjunction with

other factors) leads to failure [54].
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It is now well recognized that grain boundary sliding (GBS) is a key deformation

and damage mechanism in creep [55]. Grain boundary sliding is the phenomenon

of relative sliding of crystalline interfaces or grains in a slow viscous manner upon

application of a macroscopic stress. The sliding is accommodated by grain boundary

diffusion, volume diffusion and in the case of metals, dislocation glide/climb within

the adjacent grains.

Although work on grain boundary sliding dates back more than sixty years,

some of the first quantitative studies on this are those by Raj and Ashby [56] who

presented an analytical study of this phenomenon based on accommodation by grain

boundary and volume diffusion. This most widely used paradigm indicates a linear

dependence between strain and sliding rate with the absence of any threshold stress.

Extensive theoretical and experimental literature now exists which outline a number

of (sometimes) contradictory observations. For example, Chauhan et. al. [57] studied

the problem from the experimental side, and used an ultra-fine grained Al alloy (300

nm grain size) and observed qualitatively a threshold stress for grain boundary sliding.

The proposed value of threshold was found to be about 10 Mpa (23 times lower than

the yield strength of the experiment). For further details, the reader is referred to

the review article by Langdon [58]. Despite the extensive focus on this phenomenon,

several issues still remain open or at least, relatively unsettled, e.g. (i) In case of

diffusion dominated creep, is the stress-sliding rate relation linear, as predicted by

Raj and Ashby [56]? (ii) Is there a threshold stress for grain boundary sliding? (iii)

What is the qualitative form of the constitutive law for grain boundary sliding?
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Given the advent of computational power and the concomitant development in

atomistic simulation methods, that is a logical route to take to answer the aforemen-

tioned questions and in general clarify the atomistics of grain boundary sliding. To

that end, Qi and Krajewski [59], in a nice work, carried out a molecular dynamics

study of a shear test on an Al bicrystal. This study was carried out at 750 ◦K to in-

vestigate the effect of applied force and grain boundary mis-orientation on sliding. A

linear relationship between constant sliding velocity and applied stress was observed,

although the linear fit had positive intercepts indicating a critical value of applied

stress below which no sliding was perceived. In other words, their work appears to

confirm the linear relation between stress-sliding albeit a sharp threshold stress is

predicted (around 0.2 GPa for the material simulated), which is about 10 times lower

than the yield strength for the 6nm grain size used in the simulation [60].

While the work by Qi and Krajewski provided important insights, there is a fun-

damental limitation of classical molecular dynamics methodology that has prompted

us to reexamine this problem with alternative approaches. As is well known, classical

molecular dynamics can only handle time-scales of the order of a few pico to nano-

seconds. While this is sufficient for several classes of problems, it is a serious deficiency

when it comes to the study of creep related phenomena, where the relaxation times

are in seconds and sometimes years. In other words, in classical molecular dynamics,

the applied strain rate is several orders of magnitude faster than typical grain bound-

ary sliding rates thus preventing for simulations to truly capture the time-dependent

nature of the irreversible creep deformation process.
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In this Chapter, we employ a sequence of methods to extract a realistic con-

stitutive law for grain boundary sliding and answer some of the questions raised in

the preceding paragraphs. We choose Al bi-crystal as a model material system al-

beit our approach can be repeated for any material. One motivation for choosing

this particular system is that conventional molecular dynamics based results by Qi

and Krajewsky [59] are already available, thus facilitating a comparison. Our work is

paved by the recent success of the potential energy surface sampling approach (the so-

called autonomous basin climbing algorithm [41]). Yip and co-workers have confirmed

its applications to several time-dependent problems such as viscosity of supercooled

liquids, creep relaxation of metals, and void nucleation rates ([42] [43] [61]).

4.2 Grain boundary formation

We start the study by duplicating the same structure and boundary conditions

used in [59] (figure 4.1). The sample consist of two grains (6nm x 4nm x 2nm each)

juxtaposed along the x direction with a mismatch of about 25.2◦. Both grains have a

common z axis oriented along the <1 -1 0> directions, while the x and y directions

are oriented along <110> and <001> for the first grain (blue), and along <332> and

<1 1 -3> for the second grain (green). These orientations insure a mismatch angle

of about 25.2◦.
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Figure 4.1: Schematic for the Aluminum grains’ size and orientations

It is important to note that if we use periodic boundary conditions, 2 grains will

be formed (one at the interface, and one at the boundary of the simulation cell). We,

then, create a 3mn vacuum from each side of the box to ensure that the grains only

interact to form one grain boundary. The periodicity along y and z directions are

conserved to simulate infinite grain interfaces (figure 4.2).

Figure 4.2: Multi-scaling schematic : using a 6 nm sized grains to model an infinite bi-
crystal
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By having the 2 grains closely juxtaposed, a simple NPT relaxation at finite

temperature allows the atoms to freely move and fill the interface in the lowest possible

energy configuration. The relaxation was performed at room temperature for about

1 ns, and the grain boundary was formed successfully (figure 4.3).

Figure 4.3: Snapshot of the Aluminum grain boundary after relaxation

The grain boundary energy of the formed interface was calculated using equation

4.1

γGB =
Esample − (Eslabs + n.Eatom)/2

A
, (4.1)

where Esample is the energy of the bi-crystal, Eslabs is the sum of the energies of

both grains if they were separated by a vacuum, Eatom is the binding energy per

atom calculated on an Aluminum bulk, n is the total number of atoms, and A is

the area of the grain boundary (∆y.∆z). The obtained grain boundary energy was

γGB = 0.580J/m2, which compares well with Qi et. al. [59] (0.548J/m2).
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After forming the boundary at 300◦K, we rise the temperature to 750◦K (0.8 the

homologous temperature of Aluminum) to reach the creep deformation regime. This

temperature rise was performed at a slow rate under NPT conditions. Once the ulti-

mate temperature was reached, we relax the structure again at constant temperature

and pressure for 50 ps to remove any residual stresses. Finally, we minimize the whole

structure using the conjugate gradient method to ensure that the configuration lies

in a perfect local minimum.

Figure 4.3 shows the initial structure of the grain boundary interface prior to

applying any shear stress. This configuration, is then loaded by 2 opposite forces on

both sides to simulate the shear (as shown in figure 4.4) : The displacements at the

two ends of the system are constrained in both x and y direction to avoid dangling

atoms (5 Å from each side),a load on the z direction is then applied at an adjacent

region from both sides of the grain (20 Å from each side), and the largest region is

kept free of any boundary condition to allow the grain boundary stress to be relieved

freely during the sliding without over constraining the problem (35 Å from each side).

The corresponding shear stress along the grain boundary is obtained by equation 4.2

τ =
f.n

A
, (4.2)

where τ is the shear stress, f is the applied force per atom, and n is the number of

atoms in the moving zone.
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Figure 4.4: Boundary conditions for the grain boundary sliding problem

4.3 Procedure

Having defined all the boundary conditions of the problem, we now discuss the

procedure we follow to obtain the correct dynamics of the problem. The first step

consists in sampling the potential energy surface under the applied shear stress. This

is done using the Autonomous Basin Climb (ABC) algorithm developed by Kushima

and Yip et al. ([41], [42], [43], and [44]), and based on the meta-dynamics concept

introduced in 2002 by Laio and Parinello [62]. The strength of this method lies in its

ability to find the final state without prior knowledge. Through a series of iterations,

the Algorithm moves the system from one energy basin to an other via a series of

small activation and relaxation steps, to finally output a list of stable configurations

that the system visited successively under given boundary condition (e.g. shearing in

the present case).
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The process starts from the local minimum configuration obtained after the grain

boundary formation. Then, a 3N dimensional Gaussian penalty function Ep(r), cen-

tered at the minimum configuration, is added to the system, as

Ep = W.exp

[
−(r − r0)

2.σ2

]
, (4.3)

where r and r0 are respectively, the atomic configuration, and the minimized config-

uration with all previous penalties at any iteration. W is a parameter and defines

the amplitude of the gaussian (in eV),while σ determines its width. Once the penalty

function is added, the minimum configuration transforms into a saddle point because

of the gaussian nature of the penalty, the system is, then, again relaxed and a penalty

energy centered at current position is added. This process is repeated till the accumu-

lation of the penalty energies is enough to make the system cross the easiest barrier

and reach a new basin. Following this process, the algorithm “explored” a small part

of the potential energy topography on the the path of the sliding, and allowed us to

obtain the local minimums that the system should visit when the shear is applied.

The ABC method do also provide an approximation of the transition barrier by iden-

tifying the configuration with the highest penalty energy inside the well as the saddle

point. This assumption always over-estimates the barriers, and is not, in general,

accurate. Repeating this procedure further, will allow us to explore and sample more

and more the path and obtain the needed configurations (which will be used later to

extract the jump rates using the Transition State Theory).
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We should allude, at this point, that the choice of these parameters is crucial,

and should be carefully adjusted in accordance with the physics of the problem. For

example, if we suspect the problem to have barriers of around 1 eV, choosing W = 5

will not make any sense because the algorithm will cross the barrier in one iteration

and might even jump to a further local minimum without seeing the closer ones.

However, if we chose a W = 0.01 for the same problem, the algorithm will be stack

forever trying to fill the well.

Gathering the configurations on the path of the sliding, and an approximation

of the barriers from ABC, can provide - by itself - some insight of the mechanisms

during the mechanical load, but, it is not the fine purpose of this study. In fact, to

retrieve the correct transition rates, the collection of the exact barriers in crucial.

4.4 Results and discussion

At an applied stress of 170 MPa, the mechanism for accommodation of grain

boundary sliding appears to be grain boundary diffusion as evident from the atomistic

pictures of the grain boundary interface on xy projection, as shown in figure 4.5. We

observe no evidence of dislocation based accommodation and this may be anticipated

given the extremely small sizes of the grains.
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Figure 4.5: Snapshot of the grain boundary at different instants during the sliding

Since the penalty energies added to the system are cumulative, the potential

topography might be biased in some areas, which can lead to a lack of accuracy in

the configurations of the obtained minima. The obtained barriers are in general over

estimated because of the nature of the algorithm. To increase the accuracy of our

simulations, the structures of the bi-crystal corresponding to the obtained minima are

extracted and then minimized individually using conjugate gradient iteration tech-

nique. Nudged Elastic Band (NEB) simulation between these minima is performed

in a sequential order of time of evolution with 24 replicas between each consecutive

minima. The sliding path and energy barriers are then obtained accurately.

Like the ABC method, the output of the NEB simulation is an ordered sequence

of minima and saddle points on the sliding trajectory. However, the barriers and

the configurations are not approximate at this level 4.6. The time corresponding to

each transition event is then calculated using the harmonic transition state theory

(equation 4.4) as
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tA−−>B =

(
ν.exp

[
−∆EA−−>B

Kb.T

])−1

, (4.4)

where ∆E is the energy barrier between A and B, ν is the characteristic frequency

factor approximated to 1013Hz, T is the temperature, and Kb is the Boltzmann

Constant. Having the transition time needed to cross each barrier on the path 4.7

and the sliding distance at each configuration, 4.8 the sliding rate can be obtained by

mean of a linear interpolation of the time dependent sliding 4.9.

Figure 4.6: Energy of transition between local minima from NEB
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Figure 4.7: GB sliding for every transition between successive minima

Figure 4.8: Time for barrier transition (used in the calculation of time by Transition State
Theory)
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Figure 4.9: Grain boundary displacement as a function of time (by correlating sliding to
time for transition)

The points i and j correspond to the same pair of minima in all the plots.4.8 shows

non-uniform sliding for different transitions and this is due to non-continuous sliding

of the grain boundary. Larger obstacles can make the system deform slower over

many transitions and there may be a sudden sliding after the obstacle is overcome.

In the current study, a comparison between our constitutive equation and those found

by [59] are presented in 4.10.
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Figure 4.10: A plot of grain boundary velocity against corresponding applied shear stress

The constitutive equation showing the dependence of sliding rate with applied

stress is given in equation 4.5 as

ṡ = C.sinh(
τ

A.τyield
), (4.5)

where ṡ is the grain boundary velocity in Å/s, and τ is the shear stress in MPa. Here,

A is a material constant and τyieldis the yield strength of material. For the present

case, we found C = 27.
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Figure 4.10 suggests that a threshold may exist for grain boundary sliding, but

it is well below that estimated from atomistic simulation using molecular dynamics

and is quite low (and we may claim that practically speaking there is no threshold for

grain boundary sliding). For getting an exact value of threshold stress ABC simulation

needs to be done at lower stress close to the yield point value for aluminum using

more computational resources for quick convergence. If the time corresponding to a

sliding of 1.5% strain is in hours, then we can conclude that for all realistic engineering

applications, that value is the threshold stress.

This combination of the used algorithms (ABC, NEB, and HTST) is surely an

improvement against conventional MD, our results can be improved further. The

accuracy of barrier estimation can be improved by using the finite temperature string

method, which is more suitable for high temperature problems. The assumptions

inherent in simple harmonic approximation for transition state theory may be relaxed

as well, and a more realistic sliding path can be generated using Kinetic Monte Carlo.

However, for the specific purpose of this paper, where no complex dislocation motion

or grain rotation is observed, we believe that, certainly qualitatively, our results are

reasonable. Future work is anticipated that will employ some of these aforementioned

refinements and investigate cases where dislocation accommodation is evident.
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Chapter 5

ZrB2 grain boundary sliding

5.1 Introduction

Due to the importance of ZrB2 for high temperature applications, we now, repeat

the grain boundary sliding study for this material.

HCP systems (like ZrB2), have a wider range of grain boundary types because

of the anisotropy: The same misfit angles lead to different grains depending on the

direction. A study on some of these types of GB and their properties are described

in [17].

The strength of a grain boundary is mainly defined by it’s associated energy:

a higher grain boundary energy generally signifies a more disordered interface. For

these reasons, boundaries orthogonal to [0001] directions are in general (depending

on the angle) less energetic than those in other planes.

5.2 Grain boundary formation

We chose to study two types of grain boundaries shown in figures 5.1 and 5.2.

The grain boundary along the x axis is formed by combining grain 1 and 2, while the

grain boundary along the z axis is formed by combining grain 1 and 3.

1. Grain 1 has 2577 atoms (945 Zr 1632 B) and is oriented along < 110 > (x),

< −110 > (y), and < 001 > (z).
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2. Grain 2 has 2529 atoms (945 Zr 1584 B) and is oriented along < 1 − 10 > (x),

< 110 > (y), and < 001 > (z).

3. Grain 3 has 2424 atoms (840 Zr 1584 B) and is oriented along < 1 − 10 > (x),

< 110 > (y), and < 001 > (z).

These orientations ensure a misfit of 30 ◦around the z axis for both cases. For

the 3 grains, the size of the sample is the same (30Å x 30Å x 30Å ), but since the

orientations are different, the number of atoms is, as well.

Zirconium (red) and Boron (blue) are always present in different z planes. Each

Zirconium atom have 6 Zirconium neighbors in the same plan (figure 5.2), while each

Boron have three neighbors. The orientation of the grains is 60 degree periodic (a

mismatch of 60 deg, will be equivalent to no mismatch).

A small gap of 2 Å was left for the atoms to give them some freedom to form

the new bonds at the boundary, and the grain boundary energy is computed for both

structures. Figures 5.1 and 5.2 show the two different ways a grain boundary can be

formed with two similar grains.
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Figure 5.1: ZrB2 grain boundary along the z axis

Figure 5.2: ZrB2 grain boundary along the x axis
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To form the final grains, a NPT relaxation was performed (to allow the system

to change its volume). After 1ns, the grains are fully relaxed and the internal stress

is found to be very close to zero.

The grain boundary energy is defined for ZrB2 the same way it is defined for

Aluminum. (equation 4.1). It is important to mention that it is more challenging

to obtain the correct energetics of the system, because boundaries are less organized,

and take much longer to equilibrate.

Calculating the bulk energies for the 3 grains is, then, not straight forward

because of the HCP structure of ZrB2 crystal. In fact, when using an orthogonal box,

the hexagonal structure of ZrB2 makes the edges of the box irregular, and thus causes

the bulk energy calculation to be incorrect. To turn around this problem, we use a

different approach to calculate the bulk energy of each grain: We use non-orthogonal

boxes having 30◦tilt to match the HCP structure. This way, all the boundaries

are smooth and the potential energy can be associated with the bulk energy. The

energy per atom is then calculated and the total energy of each grain is estimated by

multiplying the energy per atom by the number of atoms.

Table 5.1: Energy per atom for ZrB2

Potential Airebo Tersoff

Total Energy -28283 -21346
number of atoms 3000 3000

Energy/atom -9.4276 -7.1154

Figure 5.3 shows, as an example, how is the first grain non orthogonal box oriented.
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Figure 5.3: Non orthogonal ZrB2 box

Using table 5.1 , the bulk energies of the 3 grains is obtained. The slab en-

ergies (needed to calculate the grain boundary energy) are calculated using a NPT

simulation for 1 ns followed by a conjugate gradient minimization. Using the obtain

values, we calculate the grain boundary energy (table 5.2). After making sure the

grain boundary energy is correct, and that the grain boundary is correctly formed,

we take a closer look at the boundary.
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Table 5.2: Grain boundary energy for ZrB2

Potential Airebo Tersoff

Grain 1 -24295 -18336
Grain 2 -23842 -17995
Grain 3 -22852 -17247

Slab 1 (x) -22019 -17708
Slab 1 (z) -23282 -17925

Slab 2 -21736 -17328
Slab 3 -21116 -16882

GB 1 (x) -45766 -35562
GB 2 (z) -45635 -35096

GBE1 [Jm−2] 3.20 2.16
GBE2 [Jm−2] 2.27 1.68

Figure 5.4: ZrB2 grain boundary formed along the x axis

We can clearly see the alteration of the grain: The 6 Boron atoms ring that the

Zirconium atoms used to sit in between (for a top view of the structure is biased,

they were deformed to 7 and 5 atoms rings (highlighted in green and red). In the

Zirconium plane, the same phenomena was observed. This alteration is a typical

grain boundary deformation mechanism observed in most materials having ring-like

structures (Graphene for example). Figure 5.4 clearly shows this alteration.
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5.3 Procedure

After forming both grain boundaries, and checking their corresponding energies,

we chose to run our ABC simulations for the grain formed along the x axis because it

is closer to what is observed experimentally. The simulation set up we performed is

very similar to the Aluminum grain boundary sliding simulation. After we created the

grain boundary, we divided each grain into 3 parts : a free zone toward the boundary

to make sure atoms are free to slide without over constraints (417 atoms from each

side), a moving zone in the middle, where we applied the shear load (800 atoms from

each side), and a fixed zone at the edge to ensure the stability of the simulation (1336

atoms from each side). Figure 5.5 shows the simulation set up explained above.

Figure 5.5: ZrB2 grain boundary formed along the x axis
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5.4 Results and discussion

We now run now our ABC simulations to observe qualitatively and quantitatively

the grain boundary sliding mechanisms. By running the simulations, we found that

the grains slide the same way Aluminum grains does. To conclude, we again do

not observe any dislocation based defects. Diffusion is found to be the dominant

physical phenomena happening at the boundary. If we use a bigger sample, we might

give enough space for the system to nucleate dislocations. Similar to Aluminum,

Zirconium Diboride have a much lower threshold stress than what MD simulations

predict.
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Chapter 6

Void growth mechanisms

6.1 Introduction

The study of the nucleation and growth of voids in metals is of great interest

for the understanding of failure under mechanical loading. For this reason, void

growth has been studied extensively in the past three decades from a continuum

mechanics standpoint. Experimental, computational, and analytical research has

been devoted to analyze void growth and coalescence in different materials and under

various loading conditions.

Interestingly, it has been first found by Stevens et. al. [63], that voids experienc-

ing a high strain rate tensile load grow by dislocation mechanisms and that diffusion

does not contribute because of the short time scale the phenomena take. Since void

growth is in general associated with large strain rates, it cannot be accomplished by

vacancy diffusion since there is no sufficient time for diffusive mass transport.

MD simulation by Traiviratana [64] on metals indicate that these dislocations

were generated at the void surface after a critical shear strain have been reached. How-

ever, the geometric nature of these dislocations is still a controversial matter(prismatic

loop or shear loop). The difference between these two kinds of dislocation loop emis-

sions is that prismatic loops have a burgers vector not in the plane of the loop, in

contrast with shear loops which have burgers vector lying in the loop plane. Lubarda
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et al. [65] and Traiviratana et al. [64] have proposed that both prismatic and shear

dislocation loop emissions from void surfaces when experiencing high stress concen-

trations serve as a vehicle to transport atoms away from void surfaces resulting in

further growth. Recently, Traiviratana et. al [64] have been challenged by Bulatov

et al. [66] about the nature of the dislocation loops. they claim that shear loops do

not contribute in void growth. other authors also share the same point of view and

consider prismatic loop as the unique mechanism for growth [67] [68].

There is an apparent disagreement between two groups of researchers on this

issue. And in this work, we try to observe the nature of the dislocations loops and

verify the geometry they are presented in.

6.2 Void growth atomistic simulations

Since we don’t know in advance which structure and void size will be enough

to get the needed space for the dislocations to nucleate and move freely, we model 3

different structures with voids. We use Copper as a matrix, and we generate 3 cubic

structures presented in table 6.1.

The 3 structures are shown in figures 6.1a to 6.1f where the blue and red color

coding are based on the centro symmetry parameter. The atoms close to the void

are, then, shown in different colors since they have lower coordination numbers.
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(a) First sample schematic
(b) Sliced view for the void in the first sam-
ple

(c) Second sample schematic
(d) Sliced view for the void in the second
sample

(e) Third sample schematic
(f) Sliced view for the void in the third sam-
ple

Figure 6.1: Schematics and void sliced views in different samples
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Table 6.1: Samples used for Void growth simulations

Sample 1 Sample 2 Sample 3

dimension [nm] 7.21 14.42 36.05
dimension [lattices] 20 40 100
number of atoms 32000 256000 4000000

void diameter [nm] 1.08 2.16 3.24
void fraction 0.78% 1.39% 0.30%

In order to excite the void, we apply a tensile stress on both edges of the structure

(around 0.0001 eV/Å per atom, or 13 Mpa). What we should expect is either the

collapse or the growth of the void. We should also expect the nucleation of some

dislocations either from or toward the void. To visualize our structures, we use the

OVITO software and we filter the atoms using the centro symmetry parameters to

observe the dislocations.

Figures 6.2 and 6.3 show how does the dislocations nucleate and propagate for

the two first samples. Qualitatively, we observe 4 dislocations emerging from the void.

These extra half planes are clearly shown in figure 6.2. Figure 6.3, however, show a

different aspect of these dislocations: By changing the centro symmetry filter, we are

able to observe the so-called dislocations loops emerging from the void.

Quantitatively, to calculate the dislocation velocities, we just compute the dis-

tance traveled, and the number of MD steps that the simulation took. The dislocation

velocity is expressed as

Vdislocation =
d

nbsteps.tstep
, (6.1)

92



where nbsteps is the number of steps the dislocation needed to cross the structure, and

tstep is the MD time step (1fs). Table 6.2 summarizes the dislocation velocities for

the different samples.

Table 6.2: Dislocation velocities in Cu

d [Å ] nbsteps tstep Vd

sample 1 44 500 10−15 8800m.s−1

sample 2 88 950 10−15 9260m.s−1

sample 3 160 1850 10−15 8650m.s−1

The observed dislocations from previous fiigures are of prismatic nature. After

they reache the edges for the first time, a series of other edge dislocations start

nucleating from the surface. They move toward the center of the sample(the void),

and get pinned when they get close enough to the void.

To calculate the void size is a very tricky operation since the shape might change

to either an elliptic or irregular shape. To circumvent this problem, and calculate

accurately the size of the void after each step, we use the following procedure:

1. We export the atoms coordinates to Matlab.

2. We ID the atoms at the edge of the void by mean of centro symmetry parame-

ters.

3. We delete all other atoms (from all steps).

4. We fit their coordinates to an ellipsoid using Matlab predefined functions.

5. We calculate the inside volume of the ellipsoid.
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(a) time step 180000 (b) time step 180250

(c) time step 180500 (d) time step 180750

Figure 6.2: Dislocation nucleation and motion snapshot for the first sample

94



(a) time step 240000 (b) time step 240250

(c) time step 240500 (d) time step 240750

Figure 6.3: Dislocation nucleation and motion snapshot for the second sample
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We should note here that we didn’t observe a noticeable growth in volume for

the void. This can be either due to the inaccuracy of calculating the void or to the

short time scale we could reach (the void just grow by few burgers vectors).
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Chapter 7

Diffusion and impurity characterization

for ZrB2

7.1 Introduction

A very important feature in understanding creep mechanisms in UHTCs is diffu-

sion. Diffusion can, in general, be calculated by computer simulations using different

ways: Molecular Dynamic calculations -for instance- is one of the most popular ways

that can help understand vacancy diffusion rates by averaging the square displace-

ments of the atoms [69], [70]. This process is, more or less, straight forward, and the

diffusion constant is directly deducted from the MD simulation using equation (7.1):

< x2 >= qi.D, (7.1)

where < x2 > is the mean square displacement, qi is a numerical constant which

depends on the dimensionality: qi = 2, 4, or 6, for 1, 2, or 3 dimensional diffusion,

and D is the diffusion constant.

However, such a property strongly depends on the potential used (which may

in some cases have a poor prediction of the activation barriers and the melting

temperature), and the obtained result is not often accurate. In fact, to obtain ac-

ceptable results, the potential should be extremely precise in catching the correct
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vacancy/interstitial energies, migration energies, and the entropy of the vacancies

(which is harder to obtain).

An alternative way to work around the strong requirements of the potential is

Quantum Calculations. Quantum Mechanics are known to be accurate, and more

fundamental (have very little approximations compared to MD). However, they are

much more computationally expensive, making the modeling of thousands of atoms

and directly obtain the mean square displacements impossible.

Therefore, the obtaining of the correct diffusion constant goes through the cal-

culation of different physical properties that can be combined to obtain the diffusion

constant. Three main properties are to be calculated: the vacancy formation en-

ergy, The vacancy migration energy, and the entropy associated with the vacancy

formation. The total diffusion is then given by:

D = a2.ν∗.exp(
−∆Sf
KB

).exp(−∆Hf + ∆Hm

KB.T
). (7.2)

The above equation can be much more complicated if there are multiple diffusion

paths or diffusing species. This can be observed, for example, for amorphous struc-

tures [71] or in alloys or structures with many present different atom types [72]. In

the following sections, each term in equation (7.2) is calculated separately, while in

the final section, we will summarize, and present the final diffusion properties.
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7.2 Diffusion in pure ZrB2

7.2.1 Free atoms energy

The first step in calculating the different terms in equation (7.2) from Quantum

Mechanics calculations is to get the correct free atom energies: These energies will be

subtracted later from the total energy to obtain the potential energy that characterizes

the bonds between atoms, as shown in equation (7.3):

Epot = Etot − Eatom. (7.3)

The VASP package [24] was used to run all our simulations (including obtaining

the free atom energies), and the GGA (Generalized Gradient Approximation ) [73],

known to be more accurate in estimating bond energies, was chosen. It is important

to mention that other, more accurate, functional approximations exist [74] [75], but

are more computationally expensive, and thus, where not used.

Since obtaining the correct energetics of the atoms is primordial, we used two dif-

ferent methods: single atom calculation, and crystal calculation. The first -classical-

method consists in placing one atom in a large box, and calculating the energy of

the system. A spin polarized calculation is necessary in this case : the code recal-

culates the electronic structure and spin orientations for the single atom electrons.

However, depending on the atom type, the convergence of the calculation may require

a larger or smaller box size to eliminate the wave functions overlap (because of the
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periodicity). This can be observed especially for the Zirconium atom, where a full

convergence was not achieved (7.1). In our example, the box size was varied from 4Å

to 20Å to visualize the convergence, and the results are presented in figure 7.1 and

table 7.1.

Table 7.1: Zr,Hf,W,and B atom energies (in eV) for different size boxes

Box size (Å ) 4 6 8 10 12 16 20

Zr -4.93 -2.40 -2.14 -2.14 -2.23 -2.37 -2.14
Hf -5.89 3.60 -3.29 -3.29 -3.29 -3.52 -3.52
B -0.84 -0.35 -0.32 -0.32 -0.32 -0.32 -0.32
W -5.65 -4.64 -4.63 -4.63 -4.63 -4.63 -4.63

Figure 7.1: Convergence of the energies of the single atoms as function of the box size

The above obtained results -coming from a quantum calculation- can be con-

sidered accurate and trustful. However, they depend on the used pseudo-potential

approximation. Different algorithms (LDA, GGA, HYBRID, ...) do provide in gen-
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eral results that are up to 30% different. This incertitude can be accumulated in a

large sample leading to non-correct diffusion constants. Therefore, we used a second

method, that eliminates any effect for the pseudo-potential approximation, providing

a more accurate estimate of the energies.

The second method is based on using the binding energies of the most stable

crystalline structures for the different species. The concept of this method is simple :

The binding energy (available experimentally) Ebind, is deducted from the total energy

Etot to obtain the free atom energy Eatom. This second methods is more accurate

because of two main reasons: First, crystal calculations are more accurate using the

VASP package (this is the case for most Quantum Mechanics software). Second,

the artifact of the functional approximation will disappear since we are scaling our

energies to experimental binding energies. Equation 7.4 gives the atom energy as

function of the binding and total energies,expressed as

Eatom =
Etot
n

− Ebind, (7.4)

where Etot is the total energy calculated for the bulk structure, n the number of atoms

in a unit cell, and Ebind is the binding energy per atom. Table 7.2 present the atom’s

energies obtained using this method.

It’s clear from tables 7.1 and 7.2, and from figure 7.2 that the energies of the

free atoms are consistent using both methods (maximum error of 0.5 eV). However,

for the reasons explained earlier, we believe the second method is more accurate, and
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Table 7.2: Zr,Hf,W,and B atom energies using the binding energy method

Atom type n Etot Ebind Eatom

Zr 4 -33.92 -6.25 -2.23
Hf 4 -39.43 -6.40 -3.45
B 36 -238.67 -5.81 -0.81
W 2 -25.94 -8.90 -4.07

thus will be used in the remaining of this work to calculate the potential energies of

the different configurations.

Figure 7.2: Comparison between atom energies obtained by both methods

7.2.2 Structure relaxation

After defining each atom energy, we can obtain the potential energy of each

system by performing a bulk VASP energy calculation, and subtracting the energies

of the free atoms ([76], [77]). The different vacancy formations energies have to be
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calculated following equation 7.5

Vf = Ebulk.
n− 1

n
− Evac, (7.5)

where Ebulk is the energy of the original system, Evac the energy of the system with

one vacancy, and n the total number of atoms. Since the systems of interest for our

study are ZrB2 and HfB2, we start by optimizing the structures and lattice constants

to ensure exact Ebulk energy calculation. These exact parameters are computed and

presented in figure 7.3 and table 7.3.

Figure 7.3: Equations of state for ZrB2 and HfB2

(a) In-plane equation of state for ZrB2

HCP crystal
(b) Out of plane equation of state for ZrB2

HCP crystal

(c) In-plane equation of state for HfB2

HCP crystal
(d) Out of plane equation of state for HfB2

HCP crystal
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Table 7.3: ZrB2 and HfB2 structures

structure a c c/a E/lattice

ZrB2 (our work) HCP (P6/mmm 191) 3.183 3.523 1.107 -20.93
ZrB2 ([78]) HCP (P6/mmm 191) 3.170 3.533 1.114 —

HfB2 (our work) HCP (P6/mmm 191) 3.163 3.500 1.107 -21.21
HfB2 ([79]) HCP (P6/mmm 191) 3.141 3.470 1.105 —

Now that we have optimized our structures, it is time to start investigating the

diffusion terms, one by one. We will then start by the vacancy formation energy, the

migration energy, and the entropic change. Finally we will gather all the information

and summarize the diffusion rates.

7.2.3 Vacancy formation energy

The first term in equation 7.2 is the vacancy formation energy, which is a measure

of the energy loss accompanied with creating a vacancy. It can be also viewed as a

measure of the strength of atomic bonds directly bonded to a specific atom (the

stronger the bonds are, the higher the energy required to remove the atom is).

To create the vacancies, we start from the -previously- obtained optimal geome-

tries : We create an HCP bulk containing 24 atoms (2x2x2 lattices), and we remove

separately a Boron atom, a Zirconium atom (or Hafnium), and a ZrB2 tri-atom (or

HfB2). After relaxing the structures with vacancies, we obtain the required vacancy

formation energies using equation 7.5.

From the results presented in Table 7.4, different conclusions can be found:
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Table 7.4: Vacancy formation energies in ZrB2 and HfB2

structure E[eV] Vacancy energy[eV]

ZrB2 -167.45
ZrB2 - V(Zr) -155.75 4.72
ZrB2 - V(B) -158.13 2.34

ZrB2 - V(ZrB2) -137.67 8.85
HfB2 -169.73

HfB2 - V(Hf) -158.13 4.52
HfB2 - V(B) -160.42 2.23

HfB2 - V(HfB2) -139.64 8.87

- Because the structure of ZrB2 and HfB2 are very similar and the atomic prop-

erties of Zr and Hf are also similar, the vacancy formation energies in ZrB2 and HfB2

are very close (maximum difference of 0.2 eV).

- Boron atoms are the smallest and the lightest atoms, they have the lowest

binding energy, and they are only bonded to 3 other Boron atoms. Thus, they are the

easiest to remove. However, Zirconium atoms are bigger, heavier, strongly bonded,

and have six immediate Zirconium neighbors (figures 7.4 and 7.5). It follows that the

Boron vacancy formation energy is much lower than the Zirconium (or Hafnium).

Figure 7.4: Zirconium vacancy
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Figure 7.5: Boron vacancy

It also follows from equation 7.6 that the concentration of Boron vacancies is higher

for any given temperature, (figure 7.6).

Cv = exp(
−∆Hf

KB.T
). (7.6)

Figure 7.6: Vacancy concentration of different atomic species at high temperatures
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7.2.4 Vacancy migration energy

The vacancy migration energy is defined as the barrier that the configuration

needs to cross to move the vacancy from one site to an other (figure 7.7). The higher

the barrier is, the more difficult the vacancy can move, and the lower the diffusion

constant is. Unlike the vacancy formation, different vacancy migration energies can

be associated with a single vacancy: In fact, once the vacancy is present, it can follow

different paths. For example, Boron vacancies can either move to a neighbor Boron

site on the same basal plane, or can cross the basal plane to move to the Zirconium

plane. Depending on the barrier it needs to cross, only one path will be favorable

because of the exponential nature of the diffusion expression.

Figure 7.7: Vacancy migration energy cartoon
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In principle, we should only study the migration energies of Boron vacancies

because other types of vacancies are less likely to exist (Zr vacancies are 106 to

1012 times less probable to exist, while ZrB2 vacancies are 1015 to 1030 times less

probable to exist depending on the temperature). However, we present in this section

the migration energies of all different types of vacancies in ZrB2 to achieve a full

characterization of the problem (HfB2 will have similar diffusion properties).

The Nudged Elastic Band method (described previously) is used for this purpose:

The same samples are used, and the initial and final states are associated with systems

having neighbor vacancies (figure 7.7). After relaxing both structures, NEB is run to

find the minimum energy path between these two configurations. The path energies

of the Boron and Zirconium vacancies are presented in figure 7.8 and table 7.5.

Figure 7.8: Vacancy migration energies for Zr and B atoms
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Table 7.5: Vacancy migration energies in ZrB2 and HfB2

structure migration energy [eV]

V(B) in ZrB2 1.81
V(Zr) in ZrB2 3.88

In binary HCP structures where Boron settles in parallel -graphene like- sheets

(like ZrB2 and HfB2), it it very hard for Boron vacancies to jump over the metal

layers. The metal vacancies are also less likely to cross the Boron layers because of

the large migration energies associated with these paths. Consequently, the diffusion

of both species in crystalline ZrB2 occurs in the basal planes. Moreover, analyzing

the values of the migration energies (table 7.5), we can easily conclude that the Boron

atoms are more likely to move than the Zirconium atoms.

7.2.5 Entropy variation

The third term in defining the diffusion constant is the entropy change. The

presence of a vacancy is always associated with a change in the entropy of the system.

This change is a keyfactor in determining the diffusion prefactor, shown in equation

7.7:

D0 = a2.ν∗.exp(
−∆Sf
KB

). (7.7)

The entropy of a system can be obtained by integrating its density of state. Such a

calculation is performed using VASP, and the entropy of the different systems is pre-

sented in table 7.6. Once again, the similarity between ZrB2 and HfB2 is astonishing.
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Table 7.6: Entropy variation for different systems

configuration DOS S[Kb] ∆S[Kb] a[A] D0[m2s−1]

ZrB2 172 5.147 — — —
ZrB2 - V(B) 158 5.062 -0.085 3.18 9.30 10−8

ZrB2 - V(Zr) 168 5.124 -0.024 1.84 3.30 10−8

ZrB2 - V(ZrB2) 150 5.011 -0.137 3.18 8.83 10−8

HfB2 154 5.037 — — —
HfB2 - V(B) 142 4.956 -0.081 3.16 9.22 10−8

HfB2 - V(Hf) 150 5.010 -0.026 1.83 3.25 10−8

HfB2 - V(HfB2) 134 4.897 -0.139 3.16 8.70 10−8

The Boron vacancy in both structure is not associated with much entropy variation,

however the other types of vacancy are more entropically unfavorable.

7.2.6 Diffusion constants

After gathering the results from all previous sections, we have now, all the in-

gredients to calculate the diffusion constants in ZrB2. Qualitatively, it is the Boron

specie that dominates the diffusion. Being smaller and lighter, with lower binding

energies, Boron vacancies can nucleate orders of magnitude more often than Zirco-

nium vacancies. Moreover, they can migrate easily with a barrier of less than 2eV

inside the Boron basal plane. If Boron tries to move out of plane, it will face a much

larger barrier because it will have to brake strong Zr-Zr bonds to sit in between. In

the Zirconium plane, the atoms are much heavier and bigger, the bonds are stronger

(every Zr is bonded to six other atoms), and the distance the vacancy needs to cross

is larger. This makes the diffusion inside the Zirconium plane very hard and energet-

ically expensive. Quantitatively, table 7.7 presents a summary of the data collected
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through the previous sections for Zr, Hf, and B vacancies,while figure 7.9 shows the

total diffusion between 1300K and 2300K.

Table 7.7: Zirconium, Hafnium, and Boron vacancy properties

atom formation E. [eV] migration E. [eV] total barrier [eV] prefactor[m2s−1]

Zr 4.72 5.22 9.94 3.30 10−8

Hf 4.52 5.22 * 9.74 3.25 10−8

B (in ZrB2) 2.34 1.81 4.15 9.30 10−8

B (in HfB2) 2.23 1.81* 4.04 9.22 10−8

* : approximated to be the same as in ZrB2

Figure 7.9: Diffusion coefficients for B, Hf, and Zr atoms in ZrB2 and HfB2

7.3 Effect of presence of Tungsten as impurity

It has been observed by several studies ([80], [81] ...) that the presence of im-

purities in UHTCs do have in general an important role. Specifically, Tungsten is
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believed to have a very important role in changing creep properties. In fact, one of

the dominant creep mechanisms in ZrB2 multi-grain systems is grain boundary rota-

tion. This phenomena tends to reduce when Tungsten is doped into the system. A

possible explanation is that when Tungsten is added, it diffuses into the grain bound-

aries accommodating for the residual stresses. If Tungsten diffuses in ZrB2 faster than

Boron, this can explain and validate the experimentally observed results.

7.3.1 Tungsten in ZrB2 : interstitial or substitute ?

For the purpose of finding the effect of Tungsten, we start by identifying the way

it can be present in a ZrB2 lattice: Substituting one of the atoms, or sniffing into

an interstitial site (in the Zr plane, in a B plane, or in a plane in between). The

accommodation with the lowest energy would be the one that Tungsten would prefer

to settle in.

Physically, that would depend on the atomic physical properties : If the size

of the impurity is reasonably similar to the matrix atoms, a substitution would be

favorable. But, if the size of the impurity is fairly small, it will try to find its way

inside the lattice without kicking out any atom.

From results presented in table 7.8, we clearly see that the W atom is relatively

big and that its properties are quiet similar to Zr and Hf, but different than B. Thus,

we should expect a very high interstitial energy and small Zr (or Hf) substitution

energy.
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Table 7.8: Atomic properties for Zr, Hf, B, and W

Atom atomic radius [pm] inter-atomic distance [pm]

Zr 206 [82] 320∗

Hf 208 [82] 315∗

B 87 [82] 185∗

W 193 [82] 274∗

∗ : DFT calculation result

Table 7.9 validates our previous conclusions, and shows the different substitution

and interstitial energies. If the substitution is the favorable mechanism, the Tungsten

atoms should substitute those of similar atomic radii and inter-atomic distances (table

7.8). If the interstitial is the favorable mechanism, the Tungsten, will in general try to

find the largest empty site it can fit in (in between the planes can be a favored spot).

Moreover, since the Zirconium atom size is very close to Tungsten, the substitution

mechanism is dominant. This can be seen from the huge difference in the energetics

of the different configurations.

Table 7.9: Tungsten substitution/interstitial energies

configuration Energy [eV] Subst./Int. Energy [eV]

ZrB2 -167.68 —-
W substituting Zr -168.17 -0.49
W substituting B -162.64 +5.05

W interstitial in Zr plane -164.76 +9.51
W interstitial in B plane -164.91 +9.37

W interstitial in between planes -165.68 +8.63

To seek the effect of the Tungsten doping, we investigate both direct and indirect

effects : The direct effect (covered in the next section) is the contribution of Tungsten
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diffusion into the overall diffusion, while the indirect effect (covered in the following

section) is the effect of the presence of Tungsten in changing the Boron and Zirconium

diffusion properties.

7.3.2 Tungsten diffusion constant in ZrB2

To find the Tungsten diffusion properties, we calculate its vacancy formation and

migration energies, and the entropy variation in a ZrB2 with 4% molar W. A sample of

24 total atoms is considered, where only 1 Tungsten atom is substituting a Zirconium

atom (7 Zr, 16 B, 1 W). Such a composition have around 4.2% W. Table 7.10 presents

vacancy formation and migration energies of Tungsten (and a comparison with Zr and

B vacancies) while 7.11 shows the diffusion prefactor for the three species.

Table 7.10: Vacancy formations and migration energies

atom formation Energy [eV] migration Energy [eV] total barrier [eV]

Zr 4.72 5.22 9.94
W 4.15 6.51 10.66
B 2.34 1.81 4.15

Table 7.11: Entropy variation for Tungsten vacancy

configuration DOS S ∆S a D0

ZrB2 (with W) 176 5.170 — —
ZrB2 - V(B) 171 5.141 -0.029 1.84 3.29 10−7

ZrB2 - V(Zr) 160 5.075 -0.095 3.18 9.20 10−7

ZrB2 - V(W) 154 5.036 -0.134 3.18 8.84 10−7
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From the results presented in the above tables, it is clear that Tungsten diffuses

slowly in the ZrB2 lattice. and that its diffusion constant is comparable with Zirco-

nium. The hypothesis of W diffusing to accommodate for the grain boundary rotation

is then to be removed. However, The impurity atom might have an indirect effect

(the presence of W may increase the diffusivity of the other species in the compound).

7.3.3 Effect of Tungsten on Boron and Zirconium diffusion

constants

To find out about the effect of Tungsten, we need to re-calculate the Zirconium

and Boron diffusion properties (formation, migration, entropy) in the ZrB2 4% W. A

sample of 24 atoms (16 B, 7 Zr, 1 W) is considered. Table 7.12 shows the B vacancy

formation and migration energy with and without the presence of W.

Table 7.12: Boron vacancy energies with and without Tungsten

atom Vac. form. Energy Vac. mig. Energy total activation barrier

B in ZrB2 1.81 eV 2.34 eV 4.15 eV
B in ZrB2 (4 % W) 1.80 eV 1.65 eV 3.45 eV

The above presented table shows clearly that Tungsten stimulates the Boron

atoms to diffuse more: Although the vacancy formation energy did not change, the

migration energies dropped significantly allowing the Boron atoms to move more

freely.
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7.4 Conclusion

The presence of Tungsten does not have much of a direct effect at low concen-

trations. At about 4% molar, the diffusion of Tungsten doesn’t reach any where

near Boron diffusion because it will be present in the Zirconium planes which does

not contribute much in the diffusion. However, the presence of Tungsten effects the

Boron vacancy migration energy (dropping it from 2.34 eV to 1.65 eV) and make

Boron more favorable to move, thus, increasing the Boron diffusion by 2 orders of

magnitude at 2000K.

It is important to mention that all the obtained results are for bulk diffusion,

and that grain boundary diffusion was not considered. However, although we didn’t

notice any clear effect on bulk diffusion when Tungsten is present, it is still likely that

Tungsten will diffuse through the grains affecting directly the overall grain boundary

diffusion since grain boundaries are, in general, known for attracting the impurities.
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Chapter 8

Conclusions and future work

8.1 Conclusions

In this dissertation, we tried to investigate different aspects of Ultra High Tem-

perature Ceramics creep properties, by implementing a new atomistic approach that

is able to simulate creep mechanisms.

1. Since we used atomistic simulations, we had to start by developing a new

inter-atomic potential for ZrB2 and HfB2. We chose the so-called “ReaxFF” po-

tential, because of its ability to simulate bond formation/breaking, and to simulate

reactions. We, chose Zirconium and Hafnium Di-Borides as example UHTCs and we

incorporated in the potential the ability to react with Silicon, Carbon, Oxygen, and

Tungsten.

2. We, then, presented a full methodology to overcome the classical time scale

issues that Molecular Dynamics have. First, we implemented the Autonomous Basin

Climb method, which served to explore the energy landscape of the system under a

specific load. Then, we used the Nudged Elastic Band, the Kinetic Monte Carlo, and

the Transition State Theory methods to estimate the exact paths and time needed

for any physical phenomena to happen.

3. We used the developed methodology to comment on some open problems in

time dependant mechanisms : We obtained a real time scale grain boundary sliding
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constitutive law, and we determined that a small threshold stress do prevent the

grains from sliding because of built static friction.

4. Since it is well known that diffusion is one of the key features in determining

creep properties, we characterized diffusion in ZrB2. We, then, found that Boron is

the dominant specie in diffusion, and that it diffuses much faster that Zirconium. The

presence of Tungsten as impurity was also found to stimulate the Boron vacancies to

nucleate more and move faster, allowing the system to have faster diffusion.

At the end, we do not claim that, in this dissertation, we present the magic solu-

tion to any time dependent problem, but we believe we present a reasonable approach

that can be used to overcome the MD time scale limitation. The methodology is very

powerful in the sense that it can be applied to any physical problem with a reasonable

number of atoms. However, there still exist several limitations, that future research

should be dedicated to refine.

8.2 Possible Future Work

Although this dissertation presents the solutions for some creep related proper-

ties, a wide spectrum of enhancements can emerge from this work:

A larger training set for the ZrB2 system can be generated with better fitting

accuracy can provide us with a potential that would be more efficient for reactions.

Including dislocation energies and enhancing the surface calculations can also improve

the quality of the developed potential.
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The whole combination of algorithms, can be properly coded in an automated

way to ease its use. On the other hand a more sophisticated coding would allow us a

better paralellisation, and would allow us to investigate larger systems. Replacing the

Nudged Elastic Band by the Finite Temperature String, and the Harmonic Transition

State Theory by the Variational Transition State Theory should also enhance the

accuracy of our results.

The Grain Boundary Sliding simulations we performed can also be made more

realistic by studying realistic grain sizes. Unfortunately, for the time being, we can

only simulate a small number of atoms using our methodology.
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Chapter A

ReaxFF parameters
Table A.1: Description of atomic parameters

parameter description

cov.r σ covalant radius

cov.r2 π covalant radius

cov r3 ππ covalant radius

valency Valency of the atom

nb. el number of valence electrons

a.m Atomic mass

Rvdw Van Der Waals radius

Evdw Van Der Waals dissociation energy

gammavdW Van Der Waals shielding

val1 valence energy parameter

val3 valence energy parameter

val4 valence energy parameter

ov/un OOver/under coordination

gammaEEM EEM shielding

alpha Van Der Waals parameter

chiEEM EEM electronegativity

etaEEM EEM hardness

Eunder Under coordination energy

13BO1 Bond order correction

13BO2 Bond order correction

13BO3 Bond order correction

Elp Lone pair energy
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Table A.2: Description of general parameters

parameter suggested value description

Povun3 50.0000 Over coordination parameter

Povun4 9.8407 Over coordination parameter

Pcoa1 21.2839 Valency angle conjugation parameter

Ptrip2 3.0000 Triple bond stabilization parameter

Ptrip3 6.5000 Triple bond stabilization parameter

Povun5 0.9782 Under coordination parameter

Ptrip4 1.0250 Triple bond stabilization parameter

Povun6 6.3452 Under coordination parameter

Povun7 11.6274 Under coordination parameter

Rcut 10.0000 Upper Taper-radius

Pval1 33.8667 Valency under coordination

Pval2 88.6186 Valency angle/lone pair parameter

Pval3 1.0563 Valency angle

Pval4 2.0384 Valency angle parameter

Pval5 7.5203 Double bond/angle parameter

Pval6 0.3989 Double bond/angle parameter: overcoord

Pval7 3.9954 Double bond/angle parameter: overcoord

Pcoa2 2.1645 Conjugation

γvdw 1.4553 !vdWaals shielding

Pval5 2.8921 Valency angle conjugation parameter

Povun1 7.1783 Over coordination parameter

Povun2 1.4473 Over coordination parameter

Pval6 3.1353 Valency/lone pair parameter

Pcoa3 1.6052 Valency angle conjugation parameter
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Table A.3: Initial values for atomic parameters

parameter/specie Zr Hf B C Si W O

cov.r 2.6153 2.5844 1.6831 1.3817 2.2977 2.3101 1.2450

cov.r2 * * 1.0000 1.1341 1.2962 2.0154 1.0548

cov r3 * * * 1.2114 * 1.9777 0.9094

valency 4.0000 4.0000 3.0000 4.0000 4.0000 4.0000 2.0000

nb. el 4.0000 4.0000 3.0000 4.0000 4.0000 4.0000 6.0000

a.m 91.244 178.49 10.811 12.000 28.060 183.90 15.999

Rvdw 2.3435 2.3435 1.6500 1.8903 1.8550 2.0511 2.3890

Evdw 0.2201 0.2201 0.0500 0.1838 0.2176 0.1526 0.1000

gammavdW 47.463 47.463 2.3847 2.1346 5.1210 11.241 13.845

gammaEEM 0.6797 0.6797 1.0000 0.7807 0.5947 0.8474 1.0898

alfa 11.258 11.258 9.0923 9.7558 11.714 10.211 9.7300

chiEEM -1.000 -1.000 5.6220 5.9895 4.2033 2.1454 8.5000

etaEEM 7.8853 7.8853 7.4077 6.0000 5.5558 6.2584 8.3122

Eunder -5.000 -5.000 0.1000 34.935 21.711 4.2140 37.500

Eover 0.0000 0.0000 80.000 79.558 139.39 0.0000 116.07

Elp 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

* : property was not considered in the study
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Table A.4: Description for bond parameters

parameter description

Edis1 σ bond dissociation energy

Edis2 π bond dissociation energy

Edis3 ππ bond dissociation energy

Pbe1 Bond energy

Pbe2 Bond energy

kov Over coordination penalty

Pbo1 Bond order parameter 1

Pbo2 Bond order parameter 2

Pbo3 Bond order parameter 3

Pbo4 Bond order parameter 4

Pbo5 Bond order parameter 5

Pbo6 Bond order parameter 6

ovcorr Over coordination BO correction
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Table A.5: Initial values for alloys bond parameters

bond Edis1 Edis2 Edis3 pbe1 pbe2 pbo1 pbo2 pbo3 pbo4 pbo5 pbo6

Zr-B 192.4 0.000 0.000 0.168 0.014 -0.12 11.77 -0.20 15 -0.20 15

C-O 106.4 153.4 56.58 0.637 0.443 -0.13 5.640 -0.33 09 -0.33 19

Zr-Hf 75.60 0.000 0.000 -0.22 0.387 -0.10 7.341 -0.20 15 -0.20 15

Zr-C 115.1 49.59 39.00 -0.49 0.400 -0.44 7.033 -0.10 08 -0.10 08

Zr-Si 78.53 0.000 0.000 -0.17 0.437 -0.11 8.341 -0.20 15 -0.20 15

Zr-O 110.3 72.50 25.00 0.037 0.521 -0.11 6.920 -0.15 12 -0.15 22

Zr-W 87.08 0.000 0.000 -0.22 0.387 -0.10 7.341 -0.20 15 -0.20 15

Hf-B 76.82 0.000 0.000 0.355 0.365 -0.09 7.961 -0.20 15 -0.22 15

Hf-C 118.6 49.59 39.00 -0.49 0.400 -0.44 7.033 -0.10 08 -0.10 08

Hf-Si 82.05 0.000 0.000 -0.17 0.437 -0.11 8.341 -0.20 15 -0.20 15

Hf-O 110.6 72.50 25.00 0.012 0.496 -0.11 6.420 -0.15 12 -0.15 22

Hf-W 90.60 0.000 0.000 -0.22 0.387 -0.10 7.341 -0.20 15 -0.20 15

B-C 116.3 49.59 39.00 0.081 0.379 -0.43 7.653 -0.10 08 -0.12 08

B-Si 79.75 0.000 0.000 0.405 0.415 -0.10 8.961 -0.20 15 -0.22 16

B-O 108.3 72.50 25.00 0.592 0.474 -0.10 7.040 -0.15 12 -0.17 22

B-W 88.30 0.000 0.000 0.355 0.365 -0.09 7.961 -0.20 15 -0.22 15

C-Si 121.5 49.59 39.00 -0.44 0.450 -0.45 8.033 -0.10 08 -0.10 08

C-W 130.1 49.59 39.00 -0.49 0.400 -0.44 7.033 -0.10 08 -0.10 08

Si-O 113.5 72.50 25.00 0.062 0.546 -0.12 7.420 -0.15 12 -0.15 22

Si-W 93.53 0.000 0.000 -0.17 0.437 -0.11 8.341 -0.20 15 -0.20 15

O-W 122.1 72.50 25.00 0.012 0.496 -0.11 6.420 -0.15 12 -0.15 22
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Table A.6: Initial values for pure elements bond parameters

bond Edis1 Edis2 Edis3 pbe1 pbe2 pbo1 pbo2 pbo3 pbo4 pbo5 pbo6

Zr-Zr 72.08 0.000 0.000 -0.22 0.387 -0.10 7.341 -0.20 15 -0.20 15

B-B 74.53 0.000 0.000 0.935 0.344 -0.08 8.581 -0.20 15 -0.25 16

C-C 158.2 99.18 78.00 -0.77 0.414 -0.77 6.726 -0.20 01 -0.25 01

O-O 142.2 145.0 50.00 0.250 0.605 -0.12 5.500 -0.10 09 -0.10 29

Si-Si 84.98 0.000 0.000 -0.12 0.487 -0.12 9.341 -0.20 15 -0.20 16

Hf-Hf 79.12 0.000 0.000 -0.22 0.387 -0.10 7.341 -0.20 15 -0.20 15

W-W 102.1 0.000 0.000 -0.22 0.387 -0.10 7.341 -0.20 15 -0.20 15

Table A.7: Description for angular parameters

parameter description

Θ0 180 ◦- (equilibrium angle)

Ka 1st force constant

Kb 2nd force constant

Pconj Valence conjugation

Pv2 Under coordination

Kpenal Penalty energy

Pv3 Energy/bond order
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