Exploiting Non-Slip Wall Contacts to Position
Two Particles Using The Same Control Input

Shiva Shahrokhi, Member, IEEE, Jingang Shi, Benedict Isichei, and Aaron T. Becker, Senior Member, IEEE

Abstract—Steered particles offer a method for targeted ther-
apy, interventions, and drug delivery in regions inaccessible
by large robots. For example, magnetic actuation of particles
has the benefits of requiring no tethers, being able to operate
from a distance, and in some cases allows imaging for feedback
(e.g. MRI). This paper investigates position control of particles
using uniform forces (the same force is applied everywhere in
the workspace). Given a controllable field that can generate
bidirectional forces in three orthogonal directions, steering one
particle in 3D is trivial. Adding additional particles to steer
makes the system underactuated because there are more states
than control inputs. However, the walls of in vivo and artificial
environments often have surface roughness such that the particles
do not move unless actuation pulls them away from the wall. In
previous work, we showed that the individual 2D position of two
particles is controllable using global inputs in a square workspace
with non-slip wall contact [1]. Because in vivo environments are
usually not square, this paper extends the previous work to all
convex workspaces, and shows how this could be extended to
3D positioning of neutrally buoyant particles. We investigate
analytically an idealized variant of this problem with non-
slip boundaries and control inputs that are applied uniformly
to all particles in the workspace. This paper also implements
the algorithms in 2D using a hardware setup inspired by the
gastrointestinal tract.

Index Terms—Underactuated Robots, Motion Control, Path
Planning for Multiple Robot Systems, Configuration Space.

I. INTRODUCTION

ARTICLE swarms propelled by an external field, where
each particle receives the same control input, are common
in applied mathematics, biology, and computer graphics [2]-
[4]. The small size of these robots makes it difficult to perform
onboard computation. Instead, these robots are often controlled
by a broadcast signal. The tiny robots themselves are often
just rigid bodies, and it may be more accurate to define the
robot as the system that consists of particles, a uniform control
field, and sensing. Consider a system of point-particles in a 2D
planar workspace. Such systems are severely underactuated,
having 2 degrees of freedom in the shared planar control
input, but 2n degrees of freedom for the n-particle swarm.
Techniques are needed that can handle this underactuation.
Positioning is a foundational capability for a robotic system,
e.g. placement of brachytherapy seeds. In previous work, we
showed that the 2D position of each particle in such a swarm is
controllable if the workspace contains a single obstacle the size
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magnetic setup
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Fig. 1. Workspace and magnetic setup for an experiment to move one particle
from s1 to g1 and a second particle from s2 to g2 when all particles receive
the same control inputs, but cannot move while a control input pushes them
into a boundary.

of one particle [5]. However, requiring a single, small, rigid
obstacle suspended in the middle of the workspace is often an
unreasonable constraint, especially in 3D. This paper relaxes
that constraint, and provides position control algorithms that
only require non-slip wall contacts. We assume that particles in
contact with the boundaries have zero velocity if the uniform
control input pushes the particle into the wall.

The paper is arranged as follows. After a review of recent
related work in Sec. II, Sec. III introduces a model for
boundary interaction. We provide an algorithm to arbitrarily
position two particles in Sec. IV, and two shortest path results
for representative workspaces in Sec. V. Section VI describes
implementations of the algorithms in simulation and Sec. VII
describes hardware experiments, as shown in Fig. 1. We end
with directions for future research in Sec. VIIL

This paper is an elaboration of preliminary work in a con-
ference paper [1] which considered only square workspaces.
This work extends the analysis to convex workspaces and
3D positioning. This paper also implements the algorithms
in 2D using a hardware setup inspired by the anatomy of the
gastrointestinal tract.

II. RELATED WORK

Controlling the shape, or relative positions, of a swarm of
robots is a key ability for a range of applications [6]-[8].
Correspondingly, it has been studied from a control-theoretic
perspective in both centralized and decentralized approaches.
For examples of each, see the centralized virtual leaders in [9],
and the gradient-based decentralized controllers using control-
Lyapunov functions in [10]. However, these approaches as-
sume a level of intelligence and autonomy in individual
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robots that exceeds the capabilities of many systems, including
current micro- and nano-robots. Current micro- and nano-
robots, such as those in [11]-[13] lack onboard computation.

This paper focuses on centralized techniques that apply the
same control input to both particles. Precision control requires
breaking the symmetry caused by the uniform input. Symmetry
could be broken using particles that respond differently to
the uniform control signal, either through agent-agent reac-
tions [14], [15], or engineered inhomogeneity [16]-[19]. The
magnetic gradients of MRI scanners are uniform, meaning the
same force is applied everywhere in the workspace [20]. This
work, however, assumes a uniform control with homogenous
particles, as in [5], and breaks the control symmetry using
obstacles in the workspace.

Alternative techniques rely on non-uniform inputs, such as
artificial force-fields. Applications have included techniques
to design shear forces for sensorless manipulation of a single
object by [21]. [22] demonstrated a collection of 2D force
fields generated by six degree-of-freedom vibration inputs to
a rigid plate. These force fields, including shear forces, could
be used as a set of primitives for motion control to steer the
formation of multiple objects.

Similarly, much recent work in control using magnetic fields
has focused on exploiting inhomogeneities in the magnetic
field to control multiple micro particles using gradient-based
pulling [23]-[26]. Unfortunately, using large-scale external
magnetic fields makes it challenging to independently control
more than one microrobot unless the distance between the
electromagnetic coils is at the same length scales as the robot
workspace [23], [24], [27]. In contrast, this paper requires
only a controllable constant gradient in orthogonal directions
to position the particles.

If a control input causes the particles to collide with obsta-
cles at different times, inverting the control input does not undo
the action, as in [28]. Due to this lack of time-reversibility,
techniques that require a bidirectional graph, e.g. PRM [29]
and RRT* [30] are not suitable. Instead, this paper employs
a greedy search algorithm. For some configurations, we can
obtain the optimal solution. Section V provides shortest-path
results for two representative workspaces, squares and disks.
While common search strategies such as RRT [31] could be
used to generate solutions, our algorithm efficiently plans a
path that, every two moves, decreases the relative position
error between two particles.

III. BOUNDARY INTERACTION MODEL

In the absence of obstacles, uniform inputs move a swarm
identically. Independent control requires breaking this symme-
try. The following sections examine using non-slip boundary
contacts to break the symmetry caused by uniform inputs.
Our algorithms rely on holding one particle stationary by
pushing it into the boundary while moving the other particle.
These system dynamics can represent particle swarms in low-
Reynolds number environments, where viscosity dominates in-
ertial forces and so velocity is proportional to input force [32].
In this regime, the input force command u(t) controls the

velocity of the particles. If the i particle has position p;(t)
and velocity p;(t), we assume the following system model:

pi(t) € boundary and
N(boundary,, ) -u(t) <0 . (1)
else

0
u(t)

Here N(boundary,, ) is the normal to the boundary at
position p; () and the frictional force provided by the boundary
cancels any control force u(t) that pushes into the boundary.

The same model can be generalized to particles moved by
fluid flow where the vector direction of fluid flow u(t) controls
the velocity of particles, or for a swarm of particles that move
at a constant speed in a direction specified by a uniform
input u(t) [33]. As in our model, fluid flowing in a pipe has
zero velocity along the boundary. Similar mechanical systems
exist at larger scales, e.g. all tumblers of a combination lock
move uniformly unless obstructed by an obstacle. Our control
problem is to design the control inputs u(t) to deliver two
particles to goal positions.

We implemented a solution to this problem for square
workspaces in our previous work, [1]. Fig. 2 shows solutions
from a Mathematica implementation in a square workspace
for six representative configurations.

pi(t) =

IV. POSITION CONTROL OF TWO PARTICLES USING
BOUNDARY INTERACTION

This section presents an algorithm, Alg. 1, that uses non-
slip contacts with walls to arbitrarily position two particles in a
convex workspace. Workspaces are 2D convex polygons with
no internal obstacles. Assume two particles are initialized at s
and sy with corresponding goal destinations g; and go. Denote
the current positions of the particles p; and p,. Values .z and
.y denote the x and y coordinates, i.e., p1.z and p;.y denote
the z and y locations of p;. As an improvement over [1], Alg. 1
can now handle any convex workspace, including the special
limit case of a circular workspace. In the last subsection we
present techniques to control 3D positioning of two particles.

A. A Configuration Space

The configuration space for two particles is a four dimen-
sional manifold. Translating both particles the same amount is
a trivial operation, but changing the relative positions requires
boundary interaction. For this reason, our algorithms use the
two dimensional A configuration space. The A configuration
space is a set of all possible Ap values, defined as the
difference in position of the particles: Ap = ps — p;. We
use the A configuration space to plan move sequences that
achieve the desired relative spacing. Once the particles have
the correct relative spacing, they can be delivered to the goal
configuration in one move.

The A configuration space for an n-sided convex polygon
P can be constructed in a method analogous to computing
configuration space obstacles for polygons [34]. Translate n
copies of P so that each copy moves a different vertex of P to
(0,0). Because P is convex, the convex-hull of all these trans-
lated vertices is the boundary of the A configuration space.
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Fig. 2. Frames from an implementation of Alg. 1: two particle positioning using walls with non-slip contacts. Particles move from start positions (O, ),
to goal positions (0, 0). Dashed lines show the shortest route if particles could be controlled independently. Solid arrows show path given by Alg. 1. Gray
areas denote regions unaccessible by our motion planner. The particle start positions must be distinct (||s2 — s1]| > €), and at least one goal position must
be farther than € from the boundary, where € is a small but nonzero user-specified constant. The required number of moves increases from (a) to (f).
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Fig. 3. Workspace and A configuration space is shown for an arbitrary
convex polygon with n = 4 sides.

For an n-sided convex polygon, the A configuration space
is a 2n-sided convex polygon. Even-sided regular polygons
are a special case in which half the sides align and the A
configuration space is n-sided. An example A configuration
space construction is shown in Fig. 3: a four-sided workspace
is on the left, the four translated copies with dashed lines
outlining the convex hull is in the middle, and the resulting A
configuration space is on the right.

B. Two Particle Path-Planning

Algorithm 1 2-PARTICLEPATHPLAN(S1, 2, g1, g2, P, €)
Require: knowledge of starting (s1,s2) and goal (g1,¢2)
positions of two particles. P is a description of the
workspace. € is an error bound (e > 0).
(p1,p2) < (s1,82) > p1, pe are current positions
moves < {}
Ap < p2 —p1
Ag<—g2— g
while ||Ap — Ag||> € do

Rgpr < Compute 2-move reachable set
> use Alg. 2 or 3

Ag. <nearest point in Rggr to Ag

m <—move-to-wall corresponding to Ag,

: moves <— Append m to moves
10: (p1,p2) < ApplyMove m to (p1,p2)
1: Ap<p2—pi
12: moves <— Append g3 — ps to moves
13: return moves

AN

% 3

> translate to goal

The 2-move reachable set is the locus of points in the A
configuration space corresponding to any two-move sequence
where the first move brings one particle into contact with
the boundary, and the second move translates the second
particle without moving the first. For the given As (starting
configuration), the rightmost image of Fig. 3 draws the 2-
move reachable sets in transparent blue. Figure 4 shows the
starting and ending relative positions as As and Ag in the A
configuration space. The next subsections give procedures to
compute the 2-move reachable set. The k£ + 2-move reachable
set is constructed by the union of 2-move reachable sets
starting from the boundary of the k-move reachable set.

The goal is to use a shared control input to move the
particles within § of the goal positions, where J is an arbitrary

small number. We do this by first moving them within § of
the correct relative position and then translating the particles
to the goal. The relative position is ||Ag—Ap||=||(g2—91) —
(p2 — p1)l|-

Algorithm 1 assigns a uniform control input at every in-
stance. It first computes the 2-move reachable set. If the goal
relative position is in the 2-move reachable set, we move
particles to achieve that relative position. If it is not in the
2-move reachable set, we move particles to achieve the closest
point on this reachable set from Ag, which is Ag,.

Achieving a Ag. configuration requires two moves, the first
to move until one particle touches a boundary, and the second
to adjust the relative spacing by moving only the particle not
touching a boundary. Once the correct relative position has
been achieved, a final translation delivers both particles to
their goal destinations. Otherwise, we iterate until we reach
the goal.

C. Convex Polygonal Workspaces: 2-Move Reachable Set

Figure 4 shows six workspaces, their A configuration
spaces, and the k-move reachable sets that correspond to repre-
sentative initial conditions. Figure 5 highlights the construction
of the 2-move reachable sets for a square workspace. There are
four 2-move reachable sets, but the horizontal (and vertical)
reachable sets are equivalent in the A configuration space so
we can plan in this space and choose between the options to
minimize the total distance. Algorithm 2 computes the 2-move
reachable set for any convex workspace. The set is constructed
by considering each edge of the workspace. We name each
vertex as p; where 1 < ¢ < n. If one particle contacts edge
DiDi+1 before the other (one particle will always contact before
the other unless the particles are parallel to the wall), the
corresponding 2-move reachable set is a polygon, constructed
in lines 2-13 of Alg. 2. The union of these polygons for all n
sides is the 2-move reachable set of A configurations. Figure 6
illustrates the procedure to construct the 2-move reachable set
generated by collisions with the p;p; ;1 edge.

D. Convex Workspaces: Accessible Region

This algorithm allows two particles to be steered to arbitrary
positions as long as the initial particle positions are separated
by at least ¢, and at least one goal position is € distance from
a wall, where € is a small, positive, user-defined number. For
a square workspace where the length of each side is L, the
worst case path length is (\/5 + 2)L, and requires at most
five moves (see Fig. 2f). As the corner angles increase, the
number of moves required to access the entire configuration
space increases. As shown in Fig. 4, four moves are sufficient
for 3-sided regular polygons, and six moves accesses the entire
A configuration space for up to 8-sided regular polygons.
Eight moves is sufficient for polygons with less than 14-sides,
but we have not checked polygons with more sides. For a
circular workspace, with corner angles of 180°, the worst-
case configuration can only be approached asymptotically, as
explained in Section VI. If the polygon is irregular, more
moves may be required. The entire configuration space is
reachable in four moves for an acute triangle, but obtuse
triangles require six moves.
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Fig. 4. The A configuration space is all possible configurations of pa — p.
The sets reachable in two moves, called 2-move reachable sets, are drawn with
transparent blue polygons. A polygon with n sides has n 2-move reachable
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If Ag is in the 2-move reachable sets, we can achieve the required relative
position in two moves. If Ag is not in the 2-move reachable set, we define
a temporary goal Ag. (the closest point on the 2-move reachable set to Ag)
and apply two moves to achieve Ag.. We repeat this process until the relative
goal position is achieved. Higher-number reachable sets are drawn in distinct
colors.
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Fig. 5. Boundary interaction is used to change the relative positions of

the particles. Each particle gets the same control input. (left) If particle 2
contacts the bottom wall before particle 1 reaches a wall, particle 2 can reach
anywhere along the green line, and particle 1 can move to anywhere in the
shaded area. (middle) Similarly, if particle 2 contacts the right wall before
particle 1 reaches a wall, particle 2 can reach anywhere along the green line,
and then particle 1 can move to anywhere in the shaded area. (right) All
2-move reachable sets in the A configuration space.

Algorithm 2 REACHABLESETPOLYGON(s1, S2, 91, g2, P)

Require: knowledge of starting (si,s2) and goal (g1,¢2)
positions of two particles. P is a list of the vertices of
a convex polygon.

1: Rsgr + {}
2: for p; in P do
3: Dl < S1+ 82— p;
4 Pip1 & 51+ 82 — pi1
5: L+ pipi 4 > line (pg,pg_ﬂ)
6: l;,l;11 < intersections of L and polygon P
7 if p} not inside polygon P then
9: if pj, not inside polygon P then
10: Piy1 ¢ liva
11 D <« 39— 81— ([liy Vminy -, Pi] — Pl

[pi+1api+2a -++5 Umax li+1] - p2+1)
12: Rgser < Union of polygon D and Rggr

13: Return Rgsgr

E. Circular Workspaces: 2-Move Reachable Set

Algorithm 3 REACHABLESETCIRCLE(sy, S2, g1, g2)

Require: knowledge of starting (s1,s2) and goal (g1,¢2)
positions of two particles.

1: Calculate 9y, and Ymax > use (2)
2: Calculate v(%)) > use (3)
3: Calculate Iq,1s,13,14 > use (6)
4: Return the union of (I1,1s,13,14)

To compute the 2-move reachable set for a circular
workspace, first consider all possible first contact locations.
The set of boundary points that a particle can touch before
the other particle touches are two arcs from iy t0 Ymax
and from 7 + Yyin 0 T 4+ Ymax:

¥ € [Yrmin, Ymax] = 0+ [sin™! (42) — 2.2 —sin~' (42)], (2)

where dj2 = ||$1 — $2|», r is the radius of the workspace, and
the angle between two particles is 6§ = arctan(%).
A circle has an infinite number of sides, thus infinite

reachable sets. However, the 2-move reachable set can be
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Fig. 6. Steps to generate the 2-move reachable set when one particle collides with edge p;p;+1 of a convex polygonal workspace.
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Fig. 7. (a) The possible first contact points for the blue and red particles

are shown with blue and red arcs. (b) if the blue particle touches the wall at
Pmin (blue square) the other particle (red square) can move anywhere in the
pink region. Right bottom: if the blue particle touches the wall at 1) = 117—0"
(blue square) the other particle (red square) can move anywhere in the light
green region. (¢) The A configuration space for the corresponding starting
positions of the particles is shown. The possible 2-move reachable sets before
contact are shown in the A configuration as a blue region. If the blue particle
contacts the boundary at117pmin, the reachable A configuration is the red set,
™

or the green set if ¢ = S5+,

parameterized by the angle of first contact location 1, as
shown in Fig. 7.

Each @ value generates a 2-move reachable set that is a
chord of the disk, with interior angle  parameterized by :

() = cos™! (1 - dJ‘T(w» where: 3)
d1(¥) = 2|s1.py () — s2.py ()], (4)
Py () = rlcos(v), sin(v)]. (5)

The 2-move reachable sets with 7 difference in v value are

equivalent in the A configuration space. The reachable A
configuration set for any first contact point defined by v is
the area under a chord from angle ¢ — @ to ¥ + @, for
a circle of radius r centered at ¢ = r(cos(¢) — ), sin(¢p — ).
Two such chords are drawn in red and green in Fig. 7.

The equations for the four lines outlining the union of two-
move reachable sets are as follows:

11 = v 08 ¥imin — c05(y + Yinin) ©)
o Sin i = Sn(y + Vo)) 0< 7 < V(W)
Iy = r(cos Ymax — €08(Y + Ymax)
+8in Pmax — sin(y + 7/}maX)> V(¥max) <7 <0,
I = cos — cos( +7())
+sing —sin(t + (1))
L = cos s — cos(s = 1(¥))

+sing — sin(i — (1))

wmin < 7/1 < wmam

wmin < d} < T;Z}max-

We combine these boundaries to compute the 2-move reach-
able set summarized in Alg. 3. The motion-planner finds a v
that would enable us to reach Ag,, the nearest point in the
2-move reachable set to Ag. We first check if Ag, is in the
A configuration space chords defined by either i, Or Pmax
using the following two tests:

(Age.x — c.x)? + (Age.y — c.y)? > r* and ™)
(c.x — Age.x) cost + (c.y — Age.y) siny > rcos~y.

If Ag. is not in either chord, we draw a line from Ag,. to
the current relative position, Ap. This line is a chord of the
circle centered at c. The v to this chord obeys:

Ap.x — Agc.x). ®)

-1
Y = tan (Ap.y — Agey

The particles achieve Ag. in two moves. The first move
causes one particle to touch the wall at py, (5). The second
move achieves the required relative position.
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initial distance di2 for different numbers of total moves. Red vertical lines
correspond to the reachable sets for di2 = 0.1 and 0.3 in Fig. 9.

F. Accessible Workspace

The A configuration enables an iterative method to compute
the accessible workspace. Due to symmetry of the workspace,
the fraction of the A configuration space reachable in 2k
moves is a function of only the initial separation distance
di2. The angle 6 between the initial particle positions simply
rotates the reachable A configuration space. As long as the
initial configurations are distinct (s; # s2), the reachable
set grows quickly. This relationship is shown in Fig. 8. Only
antipodal locations are unreachable (]|ga — g1/ = 1), but can
be asymptotically approached. Indeed, even with a tiny initial
separation of dyo = 0.001, after 14 moves 90% of the A
configuration space is reachable. In two moves, the maximum
reachable fraction of 0.373 is achieved with dq5 ~ 0.81.

Two example sets of the reachable A configuration space
for dio = 0.1 and dy2 = 0.3 are shown in Fig. 9. After two
moves, dio = 0.1 reaches only 6.3% of the A configuration
space, but 30% in four moves, 55% in six moves, 75% in
eight, 86% in ten, 93% in twelve, and 96% in fourteen moves.
Though these images show reachable sets with initial particle-
to-particle angle § = 0, all sets for other 6 values can be
formed by rotating these solutions by 6.

G. 3D workspaces: Cylinders and Prisms

This section presents a method for extending Alg. 1 to 3D
in workspaces that are right cylinders or right prisms. For
ease of analysis, we assume neutrally buoyant particles, and
choose a coordinate frame so that the cylinder or prism has
end caps in the xy plane. The following method assumes the
two particles do not initially have the same x and y positions.
The method does not use any contacts with the end caps,
and so may be suitable for tubular lumens. First, we move
the closest particle to the boundary, which prevents its z-
coordinate from changing. We next apply actuation in either
the +2 direction to achieve the desired Az. Then the particles
are actuated away from the boundary and to the appropriate
z positions. Path planning continues using Alg. 1 to position
the particles to the desired x and y positions. As an example,

d1»=0.1, A reachable sets

dj>=0.3, A reachable sets

Fig. 9. Plots showing the 2, 4, 6, 8, 10, 12, and 14-move reachable sets in
the A configuration space for dj2 = 0.1 and 0.3. The numeric method used
for plotting strictly underestimates the reachable set.

Move 2

Move 1

Fig. 10. Illustration on how boundary contacts on the sides of a tube enable
3D positioning. Once one particle contacts a boundary, the other particle’s 2-
move reachable set is a prism formed by extending the 2D 2-move reachable
set in the £z direction.

consider Fig. 10 which shows a cylindrical workspace. The
blue particle starts in the blue disk and the red particle starts
in the red disk. The two candidate shortest-length paths that
touch the wall are shown with parallel arrows. Each arrow will
cause one of the particles to touch the wall, enabling the other
particle to move freely in the z-axis to achieve the required
relative position. This can be extended to other 3D workspaces
if the workspace can be locally approximated as a 3D prism or
cylinder. Workspaces that are tortuous or with many obstacles
are better handled by other path planners, such as RRT [31], or
[5], which used collisions with protrusions of the workspace
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to rearrange particles.

V. Two OPTIMAL RESULTS

Algorithm 1 provided a technique to bring two particles
to goal positions using global inputs, but did not optimize
path length. Changing the relative positions of particles in any
workspace requires making one particle contact the boundary.
In this section we present two results that can be incorporated
into Algorithms 2 and 3 to generate shorter motion paths.

A. Example: Shortest Path in a Square Workspace

If the goal configuration cannot be reached in one move but
can be reached in three moves, the shortest path has a simple
solution. The first move, m1, makes one particle contact a wall,
mo adjusts the relative spacing error to zero, and ms takes
the particles to their final positions. ms cannot be shortened,
so optimization depends on choosing the location where the
particle contacts the wall. Since the shortest distance between
two points is a straight line, reflecting the goal position across
the boundary wall and plotting a straight line gives the optimal
contact location, as shown in Fig. 11. There are four walls, and
four candidate solutions, but some candidate solutions may be
invalid because a different boundary is hit before the desired
first contact position in move m; (light grey regions) or invalid
because my cannot generate the goal relative spacing (dark
grey regions).

B. Shortest Path in Unit Disk that Intersects Circumference

The shortest path between two points in the unit disk
that intersects the circumference is composed of two straight
line segments and has an optimal contact point, as shown
in Fig. 12. The problem can be simplified by choosing the
coordinate system carefully. We define the z-axis along the
line from the circle center to the starting point: S = (s,0),
and define the point of intersection by the angle € from the
x-axis: P = (cosf,sin f). Define the final point £ by a radius
e and angle 3: E = e(cos 3, sin 3). Then the length of the two
line segments is

(5 —cos0)2 +sin? 6 + y/(ecos B — cos0)% + (esin f —sin6)2, (9)

which is minimized by choosing an appropriate 6 value.

total pith length

Fig. 12. The shortest path between two points .S to E in the unit disk that
intersects the circumference. The path length as a function of intersection
point, P = (cos 6, sin 6) is shown at right. See [35].

The length of the two line segments as a function of 6 is
drawn in the right plot of Fig. 12. There are several simple
solutions. If s is 1 or e is 0 or § is 0, the optimal angle 6* is
0.If eis 1 or s is 0, the optimal angle is 3. Label the origin
O. The optimal path satisfies the law of reflection off the unit
circle, with angle of incidence equal to angle of reflection.
The angle ZOPS (from the origin to P to ) is the same as
the angle ZOPE (from the origin to P to E). We name these
angles a. This can be proved by drawing an ellipse whose
foci are S and E. When the ellipse is tangent to the circle,
the point of tangency is P. Since the distance from the origin
to P is always 1, we can set up three equalities using the law

of sines: From triangle OSP: % = #ne4h) _ HSEJ;QH, and
from triangle OEP: =22 = %. If we mirror the point

S about line OP and label this point C, from triangle CEO:
sin(a+6) _ sin(20—3)

e ... lleE] - . .
Simplifying this system of equations results in s =

ecscl(ssin(20 — 5) +sin(B — 0)). Solving this last equation
results in a quartic solution that has a closed-form solution
with four roots, each of which can be either a clockwise or
a counterclockwise rotation 6, depending on the sign of 3,
with —7 < B < 7. We evaluate each and select the solution
that results in the shortest length path. For an interactive
Mathematica demonstration of this shortest path, see [35].
Because the closed form solution is long, it is included in
the paper attachments.

VI. SIMULATION

Algorithm 1 was implemented in Mathematica using parti-
cles with zero radius. Figure 13 shows frames of the algorithm
in two representative workspaces, square and disk, with two
arbitrary starting and goal configurations.

The contour plots in Fig. 14 left show the length of the path
for two different settings. The top row considers {s1, $2,¢1} =
{(0.2,0.2), (—0.1,—-0.1),(0,0)} and the bottom row considers
{s1,82,91} = {(0.2,0.2),(-0.1,—-0.1),(—0.2,0)}, each in
a workspace with » = 0.5, and gy ranging over all the
workspace. Fig. 14 left shows the number of moves and right
shows the total distance of the path. This plot shows the
nonlinear nature of the path planning. When the goal is in
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Fig. 13. Frames from reconfiguring two particles. Top six images show a polygonal workspace and the corresponding A configuration space with its 2-move
reachable sets. Bottom six images show a disk-shaped workspace and the corresponding A configuration space with its 2-move reachable sets. For each,
moves 1 and 3 are simple translations of both particles and so the reachable sets do not change. The reachable set morphs during move 2 because one particle
is held stationary by the boundary. See multimedia attachment for animations of each.

the middle of the workspace, a symmetry in the path length
is expected as the top row shows. The bottom row shows a
shift in the goal position which breaks the symmetry of the
path length in the workspace.

The worst-case occurs when the ending points are at an-
tipodes along the boundary (7 angular distance). This can
never be achieved but can be asymptotically approached as
shown in Fig. 15, which plots the smallest achievable  radius
about each goal position as a function of path length. Figure
16 shows the same concepts in a square workspace. Figure 16
top and middle row considers the particles for three arbitrary

starting and goal positions for the particles.

Thus far, this paper has considered the particles to be
unique. If particles are interchangeable, the path lengths often
decrease, which can be computed by running Alg. 1 twice, but
swap the goal positions for the second run and select the short-
est path. The bottom row of Fig. 16 considers interchangeable
particles with the same configuration as the middle row with
unique particles. The worst-case path lengths decrease by 33%,
60%, and 30% for the three test cases shown.
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Fig. 14. Circular workspace: contour plots showing the number of moves
and distance commanded if red particle’s goal position is varied in  and y.
Starting positions of red and blue particles (O, O) and goal position of blue
particle o are fixed. The top row has the blue particle’s goal position at the
origin, generating symmetric contour plots. Moving the blue particles’ goal
position to (—0.2,0), generates non-symmetric contour plots.
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Fig. 15. Circular workspace: the worst-case path length occurs when particles
must swap antipodes. This can never be achieved but can be asymptotically
approached. Plot shows decreasing error (radius § around goal positions) as
the number of moves grows. Red fit line is 8.66/(distance®), which has an
R-squared value of 0.77.

VII. EXPERIMENTAL RESULTS

To demonstrate Alg. 1 experimentally, we performed several
tests. Each used the same magnetic setup shown in Fig. 1.
Two different intestine models were employed, the first a 3D-
printed cross-section representation of a small intestine, and
the second a cross-section of a bovine stomach.

A. Magnetic Manipulation Setup

The magnetic manipulation system has two pairs of elec-
tromagnetic coils, each with iron cores at their centers, and
arranged orthogonal to each other. The iron core at the center
of each coil concentrates the magnetic field towards the
workspace. An Arduino and four SyRen regenerative motor

distance moved

distance moved distance moved

10
08
06
N X
04
02 Y
00
00 02 04 06 08 1O

number of moves

10 E
08
0.6

. 04

unique particles

unique particles

interchangeable particles

Fig. 16. Square workspace: starting positions of particles 1 and 2 (O, 0)
and goal position of particle 2 (0) are fixed, and ¢ = 0.001. The top row
of contour plots show the distance if particle 1’s goal position is varied in
z and y. The middle row shows the number of moves required for the same
configurations. The bottom row shows the same configuration but when the
particles are interchangeable.

drivers were used for control inputs to the coils. Finally, a
FOculus FO0134SB 659 x 494 pixel camera was attached to
the top of the system, focusing on the workspace which was
backlit by a 15 W LED light strip.

To obtain experimental data, the test samples (the phantom
intestine model and the bovine cross section) were placed
in laser-cut acrylic discs and then immersed in corn syrup.
Corn syrup was used to increase the viscosity to 12000 cP for
the experiments. Spherical 1 mm magnets (supermagnetman
#SP0100-50) were used as our particles. Our experimental
setup did not perfectly implement the system dynamics in
(1). In particular, the magnetic field in this setup is only
approximately uniform. The magnetic force is increasingly
nonuniform as distance from the center increases in both mag-
nitude and orientation. As shown in the video attachment, this
non-uniformity causes the particle closer to the coil to move
faster than the other particle. This phenomenon makes it easier
to increase particle separation than to decrease separation, but
this can be compensated because boundary collisions easily
decrease the separation. Also, magnetic forces are not exactly
parallel, but point toward the center of the activated coil.
Algorithm 1 still works despite these non-uniformities, but
sometimes requires additional iterations.

B. Intestine Phantom Model

The intestine phantom model was used first and was made
to mimic the geometry of an intestine and its villi. To model
the geometry of intestinal villi, the model consists of a circular
ring laser cut from 6 mm thick acrylic. The ring has an outer
diameter of 50 mm, an inner diameter of 46 mm, and sixty



Fig. 17.

2mm long protrusions on its inner surface. The top row of
Fig. 17 shows one experiment. Starting and ending positions
were printed beneath the workspace on transparency film. Our
algorithm successfully delivered the particles to goal positions
in 10 out of 10 trials. A video showing one trial of this
experiment is available in the supplementary materials.

C. Bovine Stomach Cross-section

Strips of cow stomach approximately 5 mm thick were cut
and sewn to acrylic cylinder and then glued to an acrylic
substrate using cyanoacrylate (superglue). This assembly was
then filled with corn syrup. The experiment is shown in Fig. 17
bottom row. Our algorithm successfully delivered the particles
to goal positions in 5 out of 5 trials. A video showing one trial
of this experiment is available in the supplementary materials.

VIII. CONCLUSION AND FUTURE WORK

This paper presented techniques for controlling the positions
of two particles using uniform inputs and non-slip boundary
contacts. The paper provided algorithms for precise position
control. The algorithms relied on calculating reachable sets
in a 2D, A configuration space. Extending Alg. 1 to 3D was
straightforward, but increased the complexity. Hardware ex-
periments illustrated the algorithms in ex vivo and in artificial
workspaces that mimic the geometry of biological tissue.

There are several avenues for future work beyond those
mentioned previously. This paper assumed friction was suffi-
cient to completely stop particles in contact with the boundary.
The algorithms would require retooling to handle small friction
coefficients. The techniques in [1] and [5] could be applied to
extend the analysis to more than two particles.

APPENDIX

We thank our anonymous reviewers for their advice which
improved the presentation and content of this paper, especially
the analysis of the reachable sets.

Frames showing particle positions before and after control inputs. Top row: small intestine phantom. Bottom row: cow stomach tissue.

The supplemental material includes four videos:

e Video 0OIModel.mov animates the concepts of uniform
control inputs and non-slip boundary contacts.

e Video 02DeltaConfigurationSpace.mp4  demonstrates
how the A configuration space is constructed for a
variety of workspaces.

e Video 03SimulationWorkSpaces.mp4 shows demonstra-
tions of motion planning in square and disc-shaped
workspaces.

e Video 04Hardware Experiments.mp4 shows an experi-
ment trial moving two particles to goal positions in a
small intestine phantom, then an experiment trial using
cow stomach tissue.

We also include four Mathematica Notebooks (.nb files) con-
taining simulation code.

o SquareWorkSpace.nb generates in a
workspace for two particles.
CircularWorkSpace.nb generates paths in a circular
workspace for two particles.
DeltaConfigurationSpacePolygon.nb  generates
configuration space for convex polygons
ShortestPathForADisk.nb analytical solution for shortest
path that touches a boundary from one position to another
position in a circular workspace.

paths square

the A
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