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ABSTRACT

Robotic fish, as an emerging member of marine robots, have received lots of attention

in recent years. Because of its unique propulsion mechanism, a large amount of re-

search work today focuses on robotic fish design. Due to the complex hydrodynamics,

the modeling of the robotic fish has become a challenging topic, and the research on

control and application is still in its beginning.

This study systematically introduces the development and application of a robotic

fish from the perspective of design, modeling, and control. A three-joint robotic fish

propelled by a Double-Slider-Crank (DSC) mechanism, which uses one DC motor to

achieve oscillating foil propulsion, is designed. From the design aspect, DSC helps the

robotic fish in mimicking a real fish’s two-dimensional free-swimming. The robotic

fish’s top speed is 0.35 m/s at 3 Hz, equivalent to 0.98 body length (BL) per second.

DSC also benefits the control of the robotic fish by independently adjusting its steering

and swimming speed. This characteristic is studied in a hydrodynamic model that

derives the thrust within a DSC frame. A semi-physics-based and data-driven linear

model is established to connect the bias angle to the robotic fish’s steering. A linear

model is used to design a controller, called event-trigger-control, to overcome the

adverse effects of communication drop-off.

Furthermore, the work is extended to a robotic fish application study that uses

robotic fish to estimate the flow field. Besides, the three-dimensional maneuverability

is also addressed by developing a buoyancy control device to change depth. Overall,

the proposed robotic fish has an excellent performance in free-swimming and shows

great application value in environmental surveys.
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Chapter 1

Introduction

1.1 Background and Motivation

Ocean covers approximately 71 % surface of the earth and carries nearly 90 % of

world shipping. The ocean-based industries, including ocean transportation, fishing,

aquaculture, and offshore energy, are closely related to human life. As one of the most

important tools for humans to explore the ocean, autonomous underwater vehicles

(AUVs) have attracted increasing attention in recent decades [5]. Most AUVs obtain

thrust through propeller, a heavy device with high energy consumption and large

acoustic noise [6]. These shortcomings hinder the development of compact-size AUVs

and limit their applications in large-scale and long-duration missions which require

less impact on marine habitats.

In contrast, millions of years of evolution have endowed fish with highly energy-

efficient and maneuverable swimming skills [7, 8]. Their propulsion mechanism is

promising for improving the propulsive efficiency and maneuvering capability of AUV.

Inspired by fish swimming, many engineers and researchers have designed and built
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a flapping-based propulsion mechanism that can inherit the advantages of fish swim-

ming and is favorable for AUV applications.

The primary efforts on robotic fish research can be divided into three categories:

design, modeling, and control [9]. Researchers adopt various layouts and attempt dif-

ferent actuators to imitate the swimming of fish, which is characterized by a unique

wave-like undulatory locomotion. The choices of propulsion mechanism include pec-

toral fin propulsion and caudal fin propulsion, and the choices of actuator include

motors, hydraulics or pneumatic, magnetic actuators, and smart materials. Although

robotic fish still has a gap to match the swimming performance of the real fish, its ad-

vantages, such as propulsive efficiency and simple mechanism, exhibit great potential

in applications.

An accurate dynamic model that reflects the status of the system and predict the

direction of evaluation would be of great benefit for a robot in its controller design and

applications. However, for a robotic fish, establishing such a model that calculates the

thrust produced by the fishtail is very difficult due to the complex interaction between

the muscles’ internal forces and the fluid’s external forces [10, 11]. An alternative ap-

proach is to establish a control-oriented model using well-developed system model

reduction and identification algorithms to bypass the complicated physical model.

The obtained model would be formatted in terms of a state-of-art representation of

differential equations that balances mathematical structure complicity and controller

design compatibility. Thus, the modeling work can be led in a control-oriented di-

rection so that the model can be used in controlling the robotic fish with the help of

modern control theory.

With a solid design and accurate model, robotic fish have demonstrated great

application value. A robotic fish can dive or rise with changeable speed and flexible
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steering. Current studies have shown that robotic fish can effectively complete trajec-

tory tracking, target following, and team swarming. With continuous improvements

of hardware performance, the direction of robotic fish study has gradually shifted to

establishing a comprehensive intelligent platform that integrates robotics, information

sensing, and wireless communication. Moreover, due to the high propulsive efficiency

and low cost of robotic fish, robotic fish is more suitable for large-scale and long time

deployment. This feature gives robotic fish a significant advantage in environmental

monitoring and data collecting. In this trend, overcoming the obstacles of underwater

communication and finding a practical application for robotic fish are required to be

sufficiently addressed.

1.2 Literature Review

1.2.1 Review of robotic fish design

It is well known that fish gain thrust by flapping their body and tail. Fish can be

classified into two categories according to the parts of their bodies that participate in

flapping: the median or paired fin (MPF) swimmers or body and caudal fin (BCF)

swimmers [12]. Compared to MPF swimmers, BCF swimmers have more body parts

involved in flapping. Their flapping is more aggressive so that they can obtain more

thrusts to accelerate and have better stability. Considering the main purpose of

researching robotic fish is to take advantage of the high propulsive efficiency of the

flapping, BCF swimmers are ideal models for robotic fish design.

There are four types BCF swimmers: anguilliform, subcarangiform, subcarangi-

form, and thunniform [13]. Anguilliform and subcarangiform fish have the most

significant swing amplitude. Their entire body participates in the swing, which gives
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them the best flexibility and maneuverability. Carangiform and thunniform swim-

mers only swing their tail parts. They usually have a large and strong caudal fin

to gain thrust. Most large-scale fish adopt the thunniform method to enhance their

long-distance swimming ability. In contrast, small-sized fish prefer anguilliform or

subcarangiform methods to survive in a compact environment and escape preda-

tors. The design of robotic fish focuses on mimicking the carangiform or thunniform

swimmer. Anguilliform and subcarangiform swimmers require high orders of degrees-

of-freedom (DOF), which is too complicated and less energy efficient. Carangiform

and thunniform swimmers have a better balance between the design complexity and

the propulsive efficiency.

Figure 1.1: BCF swim style [1].

The most straightforward configuration of designing a robotic fish is to add a

device that can generate flapping to make the robotic fish swim close to the category
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of thunniform. This type of design is often focused on a single-joint robotic fish

because its flapping only has one DOF [14]. The fishtail could be a mechanism that

converts a rotary motion to a reciprocating motion, or a servo system that precisely

outputs a sinuous motion. A stiff flapping motion and low propulsive efficiency are the

weaknesses of such design because most of the force is wasted in the lateral direction.

The use of passive flexible fin helps improve efficiency.

Carangiform and subcarangiform swimmers are characterized by a unique type

of undulatory locomotion. During swimming, the peduncle actuates the caudal fin

to form a rhythmic wave that passes from the head to the tail. Their spine can be

described as a traveling wave governed by a sinusoidal function. Fish benefit from

this undulatory locomotion to gain thrust [13] and reduce drag [15, 16]. The most

effective way to mimic a carangiform fish is designing a multi-joint robotic fish that has

multiple DOFs to imitate the undulatory locomotion [17]. In this layout, each joint of

the robotic fish has a specific angle, and the overall robotic fish body curve matches

the swimming curve. A typical multi-joint layout is the robotic fish adopting several

servos assembled serially to approximate a sine-wave-like poly-line. The phase and

amplitude of the flapping can be adjusted with an accurate synchronization between

servos.

A special design other than single-joint and multi-joint is the robotic fish driven

by a soft propulsion mechanism; their propulsion mechanism uses pneumatic/pump

[18], or tendon [19] to generate tail flapping. In this design, the flapping kinematics

is infinite dimensional. However, its flapping pattern, such as phase and amplitude,

is unchangeable compared to the multi-joint robotic fish.

The third type of design is smart material actuated robotic fish. Their flapping is

generated by the material’s deformation. Materials such as shape-memory alloy[20],
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ionic polymer-metal composite (IPMC) [21], and piezoelectric materials [22] have been

tested to form a propulsion mechanism. The design prospect of the smart material

actuated robotic fish is to pursue the ultimate energy efficiency and compact size.

The swimming speed is the major weakness of smart material actuated robotic fish.

(a) Single-joint layout. [14] (b) Multi-joint layout [17]

(c) Soft robotic fish [18] (d) Smart material fish [21]

Figure 1.2: Review of robotic fish design.

The servo-driven multi-joint layout is the mainstream design idea for robotic fish.

It has the best performance in mimicking the real fish with variable flapping fre-

quency and amplitude. It also has the best maneuverability proven by achieving

special maneuvers, such as quick start and sharp turn. Numerous research topics

have been studied using this type of robotic fish, such as propulsion efficiency, loco-

motion control, and special maneuvering. However, this type of design has a high

energy consumption due to multiple actuators being used. An accurate synchroniza-

tion between actuators is required, without which the propulsive efficiency could be

6



jeopardized.

Overall, the idea that using multiple actuators to design a multi-joint robotic fish

greatly increases the complexity of fabrication and control and reduces the superiority

of robotic fish compared to AUVs. An AUV could be fully actuated using multiple

actuators, but robotic fish is still under-actuated. Therefore, soft multi-joint robotic

fish, propelled by a pump or tendon to realize infinite DOFs flapping, has received

increasing attention in recent years.

Another trend in robotic fish design is a multi-joint design using one actuator.

This design aims to make the most of the motor’s speed to optimize the flapping

frequency, so that the robotic fish’s swimming speed is highly boosted. Some studies

have demonstrated that a multi-joint robotic fish driven by a DC motor can swim at

a very high-speed [23].

1.2.2 Review of robotic fish modelling

The kinematics of robotic fish could follow the model of the underwater robot,

whose rigid body dynamics are established in the Cartesian coordinate system. More

specifically, the positions are calculated in the inertial coordinate system, and the

velocity is obtained in the body-fixed coordinate. The major challenge in modeling

of robotic fish is calculating the force and acceleration governed by hydrodynamics.

The thrust obtained by tail flapping during swimming is highly complicated by the

hydrodynamic interaction between the fish body and the surrounding fluid.

When a fish displays significant undulatory movement, its caudal fin acts as an

oscillating foil that sheds momentum into the wake as alternating thrust-type vortices

for propulsion [13] (Fig. 1.3). It can be described as a two-DOF heave-pitch motion

with a phase shift between the heave and the pitch. Substantial research examines
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the oscillating foil’s hydrodynamic insight in generating force and momentum. They

use a special yoke mechanism that outputs two-DOF flapping to measure the force

of the oscillating foil at various frequencies and amplitudes. These studies bring the

connections between the magnitude of force and flapping configuration. Magnitude of

force may include thrust and drag, and flapping configuration may include frequency

and phase. The particle image velocimetry (PIV) studies use high-speed cameras to

analyze the flow motion around the fish body. They conclude that the fish’s oscillat-

ing foil amplifies the thrust by enlarging the wake effort and strengthening vorticity

[24]. Some hydrodynamics studies concludes that forward thrust is contributed by

lift-based and added mass forces [24], and the angle-of-attack (AOA) plays a signif-

icant role in determining propulsive efficiency [25]. The scaling law is emphasized

to identify the connection between the propulsion and oscillating foil with thrust

coefficient such as Strouhal number [26, 27]. However, these studies are unable to

propose an analytical method to calculate caudal fin propulsion due to the complex

hydrodynamics such as vortex ring behavior.

Figure 1.3: Undulatory locomotion.

In need of testing and controlling the robotic fish, researchers are investigating a

comprehensive fish model that includes kinematics and hydrodynamics to estimate

fish’s acceleration and speed mathematically. Most of these models are inspired by

the elongated body theory (EBT) proposed by Lighthill [28]. EBT captures the re-

active force between the fish body and the surrounding fluids with an added-mass
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effect from the energy conversion aspect. Some assumptions from EBT simplify the

model complexity so that the thrust can be calculated, as long as the shape of the

fish body is known. Some studies also include the quasi-steady wing theory to derive

a hydrodynamic lift force for flapping fin [29, 30]. This method is also very simple

and intuitive, but it ignores the tail’s deformation caused by body-flow interaction.

In total, most current models include more or less model reductions in both hydro-

dynamics and kinetic aspect. The fish model’s key points have been concentrated on

several elements, such as forward swimming speed, tail flapping frequency, and AOA.

The data-driven empirical models have also been investigated. They borrow the

ideas from either neutral network or linear regression to skip the complicated hy-

drodynamics. Even though these models may have limitations that only validate a

specific design or circumstance, they still perform promising outcomes in optimization

and controller design [31].

1.2.3 Review of robotic fish two-dimensional control

The control of robotic fish includes three levels of control task: locomotion control,

maneuvering control, and mission-level control. The locomotion control’s objective

is to achieve high propulsion efficiency. For example, in multi-joint robotic fish,

locomotion control is necessary to coordinate each actuator’s work following a specific

order [32, 33]. The locomotion control is the foundation of a robotic fish’s operation;

it ensures the tail flapping generate effective thrust to maneuver.

The second level is the maneuvering control that navigates the robotic fish through

a specific path or reaches a destination. Existing steering controls for robotic fish

have been mainly focused on error-based proportionalintegralderivative (PID) control

[34, 35, 36] and active disturbance rejection control[37]. The PID control can skip
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the complex hydrodynamic physics to control the steering and speed using feedback

and error. The model-based nonlinear control, using simplified dynamic models or

identified empirical models, can optimize the control performance in making the best

use of energy. The empirical model, obtained from input-output identification, has

been implemented to develop adaptive control [38] and sliding-mode control [39] .

Castano et al.[40, 41] developed a model predictive control and a back-stepping control

based on a nonlinear model, which is a simplified version of EBT hydrodynamic model

[42]. A linear quadratic regulator yaw control was developed for a three-dimensional

robotic fish [43]. However, experimental validation for this study was not provided.

With a well-developed low-level control, the ultimate goal is to control the robotic

fish to interact with environment and other robots in a certain application, which

is the third level control of the robotic fish. Various constraints such as energy and

communication, require the robotic to be operated with smart path planning and

condition monitoring. For example, path planning aims to find an optimal path that

navigates the robotic fish to the destination with the minimum usage of energy or

time. Swarm control [37, 44] and collision avoidance [45, 14] focus on control of

multiple robotic fish to safely cooperate with each other in a bounded area.

In recent years, the attention of robotic fish has gradually shifted to application.

The robotic fish could be deployed in large numbers and could work for a long time

because of their low-cost and high-efficiency characteristics. Inspired by the applica-

tion of drones in agriculture and environment monitoring, robotic fish can be widely

used in information collection and environmental monitoring. Researchers from Mas-

sachusetts Institute of Technology use robots to observe underwater ecology [46].

Researchers from New York University let the robotic fish swim with real zebrafish,
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so that they could study their behaviors [47]. Researchers from Michigan State Uni-

versity build robotic fish as a part of underwater communication network [48]. The

above examples illustrate that the robotic fish can be used as a remote intelligent

platform to provide information and data support for the offshore industry in many

categories.

1.2.4 Review of robotic fish depth control

Most current robotic fish research focuses on optimizing robots’ two-dimensional

(2D) maneuvering capabilities. However, three-dimensional (3D) maneuverability is

necessary not only for robotic fish but also for all other underwater robots. In nature,

fish use two sets of organs to adjust depth: gills and bladders are used to change

their density, and fins and tails to generate thrust in the vertical direction. Inspired

by these mechanisms, researchers developed two types of depth control methods to

inherit the 3D maneuvering capability for the underwater robot.

The first method is dynamic depth control. In this method, the robot is ini-

tially assumed to be neutrally buoyant or nearly neutrally buoyant, then the depth is

changed by vertical thrust obtained from actuators. The actuator can be a vertically

installed propeller so that the robot can directly maneuvers up and down [49, 50].

This design is very straightforward and effective, but it is not ideal for robotic fish

whose main purpose is to avoid using propellers. The alternative approach is adding

a rudder [51] to borrow some horizontal thrust to the vertical direction, or a spe-

cific center mass device to control the robot’s altitude orientation [52, 53, 46]. The

main idea for this approach is changing the pitch angle to borrow part of the thrust

from the horizontal direction to the vertical direction. Studies show that the dynamic

depth control is very effective and reliable to adjust depth, but it is unable to adapt
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to the density change of the surrounding fluid. This means if the robot’s internal

density changes, such as leaking or unloading, the actuators have to keep consuming

power to maintain depth.

The second method is buoyancy control. In this method, depth is changed by

controlling the volume of the robot. In theory, the buoyancy acting on a submerged

object is proportional to fluid displacement volume. The robot needs to reduce its

volume to sink and gain volume to float. One way to do this is using a motorized piston

or pump to push out and suck in water into an internal chamber to change the overall

robot’s volume. This method is very quick and highly sensitive. However, pushing

water out of a fluid-filled chamber will result in pressure dropping and temporary

vacuuming, which bring a strict standard requirement for robot’s structure design

and a high volume power source to power the piston or pump [54, 55, 56]. Another

way is using compressed air or compressible fluid to replace the volume occupied by

water. This method is widely adopted in submarines and many underwater robots

[57, 58], in which the water will be pushed out by the compressed air stored on-board.

The compressible fluid method needs an artificial bladder that could expand when

the compressible fluid is heated up or shrink when the fluid is cooling down [59, 60].

However, due to space constraints, adding a compressed air tank or fluid tank into a

small robotic fish is difficult.

The most effective way to control depth is combining both the dynamic method

and buoyancy method. Every individual method has its own pros and cons. When

both methods are combined, they can be used to overcome each other’s limitations.

The buoyancy depth control method can be used to overcome the density change

between the robot and surrounding water when the robot changes its load. It saves the

power consumed in maintaining depth using propellers in the long run. Consequently,
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(a) dynamic depth control [61] (b) buoyancy control. [62]

Figure 1.4: Review of robotic fish depth control.

the dynamic depth control method has a much faster response, allowing the robot to

go to its desired depth sooner, while the buoyancy control method slowly compensates

for the density differences.

For the robotic fish, the current existing buoyancy methods are not ideal due

to the compact size and limited energy storage. A viable solution to deploy the

buoyancy method is to produce the required gas on-board by using electrolysis to

convert the surrounding water into hydrogen and oxygen gases. In 2003, a micro

robotic fish developed by Nagoya University brought the idea of adjusting the depth

by electrolysis of water [63]. The fish were utilizing an ionic conducting polymer film

actuator which can electrolyze the water when the frequency of the applied voltage

is at a specific range. Cameron et al. [64] patented the concept of using water

electrolysis for the buoyancy control device (BCD). Um et al. [65] built a prototype

of the buoyancy device equipped with an IPMC electrolyzer. They showed that depth

control using electrolysis of water is achievable through an open-loop test. Chen et al.

[66] modeled the buoyancy device’s dynamics and developed the controller for depth

control. Keow et al. [3] improved the design of the buoyancy device and realized the

depth control in real-time, successfully positioning and maintaining the device at the

desired depth.
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1.3 Contributions of this Dissertation

1.3.1 Robotic fish design using a novel Double-Slider-Crank

mechanism

This work summarizes the advantages and disadvantages of single-joint robotic fish

and multi-joint robotic fish and explores the benefit of adopting only one DC motor

as the main actuator for a multi-joint robotic fish. A novel propulsion mechanism,

Double-Slider-Crank (DSC) that uses one DC motor to drive two joints, is designed for

a three-joint robotic fish. The mechanism converts a rotary motion into two flapping

motions with a constant phase shift to realize oscillating foil flapping. It is inspired

by large ocean fish, such as tuna and sharks, who make small turns by producing a

bent at the peduncle’s anterior while the peduncle and tail keep oscillating to produce

thrust. A servo motor is added in the first joint to direct the thrust generated by

DSC.

The DSC is designed in a compact size to act as peduncle and tail in this robotic

fish. The servo motor outputs a constant angle and does not participate in the

flapping. The servo motor and DSC form a hybrid propulsion system. This design

reduces the recoil of the fish head by moving the flapping motion of the caudal fin

far away from the robot’s mass center. It is worth noticing that using one DC motor

could restrict undulatory locomotion into a fixed pattern: the amplitude of each joint

and the phase shift between two joints are unchangeable. Swimming with a fixed

pattern is acceptable because the real fish normally use a fixed pattern in straight

swimming. The restricted undulatory locomotion is a trade-off to pursue fast and

stable forward swimming.
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In experiments, the robotic fish exhibit extraordinary stability and maneuverabil-

ity. The DSC flaps like a real fish, and the robotic fish can achieve a maximum

swimming speed of 0.35 m/s (0.98 BL/s) at a 3 Hz flapping frequency, which is

impressive for a compact size robotic fish.

1.3.2 Linear model of the robotic fish using Nomoto model

This work explores the feasibility of modeling the robotic fish from a marine ves-

sel perspective. The robotic fish developed in previous work has a hybrid propulsion

system in which the robotic fish can be classified into a marine vessel; the speed and

steering are independently controlled by the DC motor and the servo motor, respec-

tively. When deriving the dynamic model, the hydrodynamic model is calculated in

a third sub-coordinate, which is the coordinate of DSC. Since the actuation pattern

of DSC is fixed, its hydrodynamic model is relatively unchanged. An assumption is

proposed that the thrust acquired by the DSC is slightly affected by the servo’s angle,

therefore the thrust derivation is decoupled from the robotic fish’s kinematics.

Besides, a steering model expressed by a transfer function is investigated. Previ-

ously established linear models for steering of the robotic fish lack physical insight and

only consider simple maneuvering [67, 68]. The proposed model employs the Nomoto

model [69], a well-developed perturbation model for vessel control, to predict fish’s

steering. It is obtained from a system identification approach for various simulated

maneuverings. The identified model is tested in an observed-state feedback controller

to investigate its effectiveness. The results of the model identification and validation,

as well as a control experiment, are presented.
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1.3.3 Depth control of the robotic fish using soft actuator

This work addresses the challenge of depth control for a robotic fish. We develop

a compact 3D maneuverable robotic fish. The fish adjusts the buoyancy by using an

IPMC water electrolyzer to generate hydrogen and oxygen gases on board. When

positive buoyancy is needed, the hydrogen and oxygen gases are stored inside the

fish body, which increases the robot’s volume. To reduce buoyancy, the gases are

released by a solenoid valve to surrender volume. The robotic fish also consists of a

servo-driven tail to achieve 2D maneuvering. A 3D dynamic model is developed to

capture the robotic fish’s dynamics with buoyancy changes. Both experiments and

simulations have been conducted to validate the proposed robotic fish design and

model. This is the first time to demonstrate a 3D motion performed by a compact

robotic fish equipped with the water electrolyzer.

The model of the BCD is carefully examined to ensure its controllability. Con-

sidering the gas generation rate is limited by the physical characteristics of the elec-

trolyzer, an optimal trajectory is developed for the BCD with consideration of control

constrain and state constrain. This trajectory is obtained by using a virtual linear

model to solve a bang-bang-off-bang-bang minimum-time optimal control problem.

Simulation results have shown that the BCD is stable during the tracking, and the

control input and state are staying bounded within the allowable ranges.

1.3.4 Event-triggered-control of robotic fish in inconsistent

communication

We have conducted two studies on robotics applications. The first work addresses

the challenges of communication in deploying robotic fish. One of the most common
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implementations of robotic fish is to form a sensing network for environmental moni-

toring, such as oil leak detection and carbon dioxide monitoring. Among the existing

marine robots for environmental monitoring, the bio-inspired robotic fish has the

advantage of better maneuvering capabilities and less impact on marine ecosystems

[70, 71]. However, a challenge is raised when deploying robotic fish in a long-range

and multi-agent task. The operation of a multi-agent control system requires frequent

communications for path planning, collision avoidance, and data uploading [72, 45].

Hence, establishing a robot-involved monitoring system has a high requirement in

communication resources. The most current control algorithms require the robot to

be operated under a constant sampling period, and all robots need to be well syn-

chronized with a remote controller to exchange information. Thus, communication

failures such as delays and packet losses are unavoidable when intensive information

flooding into the network [73, 74]. In this work, we address this real-world chal-

lenge that a communication network with limited bandwidth could reduce the per-

formance of robotic fish; and a failure to maintain the constant-sampling rate (CSR)

could significantly undermine the robotic fish’s maneuvering, even leading to dam-

age. We develop a model-based event-triggered-control (ETC) to control the robotic

fish’s steering with fewer communication times between the remote controller and the

robotic fish. The robotic fish is tested in this configuration to reduce communication

usage and maintain performance when CSR fails.

1.3.5 Robotic fish application in motion tomography

Ocean-current plays an important role in the operation of marine vehicles [75].

When a marine vehicle, especially an underwater vehicle, is operated in a global

positioning system (GPS) denied environment, it relies on inertial sensors to track its
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position. The ocean-current induced flow, which will not be captured by the inertial

unit, would lead to a tremendous error in position estimation [76]. On the other

hand, ocean current impacts marine vehicles’ energy efficiency. When the vehicle’s

heading is along the direction of the flow, the vehicle’s energy consumption is at the

least, and the control of the vehicle is light. When the vehicle is traveling against the

flow, the vehicle needs to consume extra energy to cancel the movement caused by the

current. Considering the vehicle can only carry a limited amount of energy, ocean-

current brings an extra burden to vehicles. Overall, the perception of the flow field

could greatly help the vehicles in path planning[77] and improve energy efficiency.

Traditional ocean-current observations rely on information obtained through buoys

array and satellites. It is expensive and time-inefficient. An interest in using the po-

sition and velocity information of the vehicles to predict the ocean current is growing

by developing ocean-current observers for marine vehicles [78, 79]. However, their

sensing area is limited to where the vehicle passes, and a constant current is assumed

in these cases. Motion tomography is a technique that uses the vehicle’s navigation

information to estimate the flow field [80, 81]. By collecting the velocity and position

information from multiple vehicles, it can estimate the flow field of a larger area. This

technology provides a time-efficient and convenient way to monitor ocean currents.

One limitation of motion tomography is that it ignores the vehicle’s rigid-body

dynamics by considering the vehicle’s model as a first-order particle. In the real

application, the flow-induced forces and moments are non-neglectable, especially at

a small flow-vehicle scale. We introduce an active heading control to enable the

robotic fish to offset the error caused by flow-induced force. The simulation analysis

is provided, proving that using robotic fish can obtain an appropriate integration

error that is reasonable for motion tomography. Proposed controllers are tested in
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an experiment, and the obtained robotic fish trajectories lead to a good estimation

of the flow field.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 introduces the

design and fabrication of the robotic fish; Chapter 3 introduces dynamic modeling

and model reduction; Chapter 4 discusses the model-based control design, including

event-trigger control; The depth control device and 3D robotic fish are discussed in

Chapter 5; In Chapter 6, the application of robotic fish in motion tomography is

discussed; Conclusion and future work are discussed in Chapter 7.

19



Chapter 2

Robotic Fish Design

This chapter presents a robotic fish propelled by a double-slider-crank (DSC)

driven fishtail. The DSC is a mechanism that can convert DC motor’s rotation to

two-joint flapping. This character can be used to design a multi-joint robotic fish

that uses one DC motor to achieve undulatory locomotion. The design of DSC is

guided by a traveling wave equation that describes the flapping of real fish. After

multiple tests, the DSC has been proven to be an efficient propulsion mechanism for

robotic fish. The proposed robotic fish has a good performance in mimicking real fish

swimming and boosting swimming speed. By adding a servo motor to form a hybrid

propulsion system, the robotic fish can achieve two-dimensional free swimming. The

experimental result demonstrates that the robot can achieve a maximum 0.98 body-

length (BL) per second forward swimming speed.

2.1 Oscillating Foil

Fish obtain thrust through body flapping. Thus, the key in designing a robotic

fish is to make an actuator to generate a reasonable flapping motion. When fish is
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swimming, its wave-like body shape can be described as a traveling wave equation,

y(x, t) = (c1x+ c2x
2)[sin(kx+ ωt)]. (2.1)

Where y is lateral displacement, x is forward displacement, c1 and c2 are the quadratic

parameter, k is the body wave number, and ω is the angular frequency. When design-

ing a three-joint robotic fish (Fig. 2.1), one can discretize this wave into i = 1, 2, 3

segments at length li in the body-fixed coordinate, with origin [x0, y0] at the mass

center. The location of each joints is described as follows:

yi(xi, t) = (c1xi + c2x
2
i )[sin(kxi + ωt)],

li =
√

(xi+1 − xi)2 + (yi+1 − yi)2.

(2.2)

Figure 2.1: An illustration of a discretized traveling wave with three joints.

Let’s denote αi to be the absolute joint angle of i-th segment with respect to the

x-axis. For undulatory locomotion, αi can be written as a sinusoidal function with

an amplitude Ai and frequency ω,

αi(t) = Ai sin(ωt+ φi), i ≥ 1, (2.3)
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where φi is a constant phase shaft [82].

The undulatory locomotion makes the fishtail to flap like an oscillating foil. A

robotic fish needs at least two joints to realize an oscillating foil. The first joint’s

flapping can inherit a heave motion to the second joint’s pitch motion, so that the

tail flapping is a motion of 2 degrees of freedom (DOFs). An illustration of oscillating

foil achieved by a two-joint kinematics is shown in Fig. 2.2. The kinematics has a first

joint angle α1 = A1 sin(ωt), φ1 = 0. The first joint does not need large amplitude, so

A1 is small and α1 varies at a small range. Thus, the second joint’s horizontal motion

can be neglected and the lateral displacement of the second joint can be approximated

by y ≈ l1 sinα1. The second joint has the angle α2 = A2 sin(ωt+ φ2). The pitch and

heave motions can be represented as the time derivative of the second joint’s lateral

displacement and the time derivative of α2

Pitch: α̇2 = ωA2 cos(ωt+ φ2),

Heave: ẏ =
d

dt
l1 sin[A1 sin(ωt)] = ωl1A

′
1 cos(ωt).

The A′1 represents the amplitude of sin[A1 sin(ωt)], at 0 < A1 ≤ 1. It is noted that

φ2 produces the phase shift between two joints.

Figure 2.2: Kinematics of a three joint mechanism.

Define β2 = α2 − α1 as the angle increment between two joints, named relative
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angle. The β2 can also be represented by a sinusoidal function

β2(t) = B2 sin(ωt+ Ψ2), (2.4)

where B2 is the amplitude decided by A1 and A2. The phase Ψ2 is

Ψ2 = arctan
A2 sinφ2

A2 cosφ2 − A1

. (2.5)

Eq. 2.5 concludes that when a two-joint robotic fish is swimming with its tail flaps

like an oscillating foil, its flapping amplitude A1 and A2 are unchanged, and the tail’s

relative angle has a constant phase shift.

2.2 Double Slider Crank Mechanism

The design of DSC uses the conclusion of Eq. 2.5 to construct a constant phase

shift between the first and second joints relative angle. As shown in Fig. 2.3a, it

includes two slider-crank mechanisms driven by a pair of rotatory uni-axial plates.

Each slider-crank mechanism has a slider that is pin-slot mated with a double-layer

plate, which is driven by a DC motor. The mechanism diagram of DSC is shown in

Fig. 2.3b. The sliders are marked in a solid line and their sliding displacements are

marked as r3 and r4. The rotatory plate has a radius r2, and the crank is marked in

dashed lines. The support bar’s length is a sum of r1 and r5. The joints are marked

by yellow circles. θ1 is the relative angle of the first joint and θ4 is the relative angle

of the second joint. ϕ is the angle difference between two cranks. The kinematics of
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DSC are described in the following equations,

r3 =
√
r1 − (r2 sin θ2)2 + r2 cos θ2,

θ1 = arctan(
−r2 sin θ2

r3 − r2 cos θ2

),

θ3 = θ2 + ϕ,

θ4 = arctan(
r2 sin θ3 − r5 sin θ1

r2 cos θ3 − r5 cos θ1

)− θ1.

(2.6)

(a) An illustration of all components of the DSC mechanism.

(b) 2D kinematic diagram of DSC mechanism

Figure 2.3: An illustration of DSC mechanism.

When using the DSC to realize the oscillating foil, the ‘Slider1’ is connected to

the fish body. The plates and support bar are the first segment that oscillates about

‘Joint1’. While ‘Slider2’ connects to the caudal fin, and they form the second seg-

ments. At this circumstance, the θ1 = β1 and θ4 = β2 if one considers that the DSC
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is a two-joint mechanism similar to Fig. 2.2. When the rotatory plate is spinning at

a consent frequency, β1 and β2 can be approximated as

β1(t) = arcsin
r2

r1

sin(ωt),

β2(t) = arcsin
r2

r5

sin(ωt+ ϕ),

(2.7)

where ϕ denotes a constant phase shift. The β1 and β2 are numerically plotted in

Fig. 2.4, where the solid line indicates the βi simulated by Eq. 2.6 by considering

θ1 = β1 and θ4 = β2. The dashed line indicates the βi simulated by Eq. 2.7. One can

conclude from the plot that there is a phase shift between β2 and β1. Noticing that r5

is shorter than r1 so that the amplitude of ‘Joint2’ is larger than ‘Joint1’. However,

a shortened distance between the joint and plate axis could distort the sinusoidal

wave’s shape due to the forward stroke being unbalanced to the return stroke. To

moderate the distortion, the amplitude of oscillating is bounded within 0.5 rad.

The phase shift ϕ between the DSC’s two relative angles is determined by the

angle difference between two cranks, where ϕ is shown in Fig. 2.3b. ϕ can be selected

numerically to ensure that the phase shift in Eq. 2.3 is close to φ2 = 0.5π, which has

been concluded as an optimal phase shift for propulsive efficiency of oscillating foil

[83, 84].

2.3 Hybrid Propulsion System

DSC can use one motor to achieve oscillation foil. However, its oscillating ampli-

tude and phase are fixed so that the fish’s turning ability is limited. To overcome

this limitation, a servo motor is added in front of the DSC to enhance the turning

capability so that the servo motor and the DSC form a hybrid propulsion system;
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Figure 2.4: The plot of β1 and β2 with approximated sin wave.

the servo motor actuates the first joint, and the DSC actuates the second and third

joints, as shown in Fig. 2.5a. The operation of this hybrid propulsion system has two

modes; the ’two-joint flapping’ mode indicates the servo motor does not participate

in flapping. The robotic fish only use the DSC to gain thrust, and the servo motor is

held at a constant angle. The ’three-joint flapping’ mode indicates both servo motor

and the DSC participate in the flapping with the following manner,

δ(t) = B1 sin(ωt− ϕ′), (2.8)

where δ represents the output angle of servo motor, as shown in Fig. 2.5b. ϕ′ rep-

resents the reverse phase shift and ϕ′ ≤ ϕ. B1 is a constant coefficient with the

condition that B1 < arcsin r2
r1

. Under this mode, the servo motor flaps at the same

frequency as the DSC with a constant phase shift. An in-air demonstration of undu-

latory locomotion achieved in ’three-joint flapping’ mode is shown in Fig. 2.6. From

the snapshot, one can clearly observe that the servo motor lead the flapping of DSC.

The ’three-joint flapping’ generates a flapping with a larger wake area. It can

boost up the speed compared to the ’two-joint flapping’ mode. However, the ’two-

joint flapping’ is a more favorable mode. Holding the servo motor at a constant angle
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(a) Hybrid propulsion system in a robotic fish.

(b) Top view of the hybrid propulsion system.

Figure 2.5: The illustration of hybrid propulsion system.
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benefits the robotic fish in two aspects: on one hand, since the servo motor is closer

to the fish’s center of mass, its oscillation could aggravate the fish’s head movements,

on the other hand, resting the servo motor can save power.

Figure 2.6: Snapshots of the ’three-joint flapping’ in an air test.

2.4 Robotic Fish

There are three versions of robotic fish that have been developed. The first version,

in Fig. 2.7, was developed to verify the effectiveness of the DSC. This robotic fish uses

a 12 V DC motor and a 6V servo motor. It could achieve maximum 0.48 BL/s at 3
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Hz flapping frequency. The second version, in the bottom of Fig. 2.7a, was developed

to analyze the swimming speed between ’three-joint flapping’ mode and ’two-joint

flapping’ at low frequency. This robotic fish has a 12 V DC motor (FIT0441) with

an encoder. The encoder reads the DC motor’s angle position for the servo motor

to catch up the DSC’s flapping frequency and phase. The third version, in the top

of Fig. 2.7b, was developed for application study. This robotic fish does not equip

with a motor encoder and it was used to measure the maximum speed at ’two-joint

flapping’ mode. The robotic fish’s head and skeleton were printed by a 3D printer

(Ultimaker 3). The fish body was made of silicon rubber for waterproof purpose. The

DSC mechanism was fabricated by a CNC machine (Roland MDX540). The caudal

fin was made of high-density polyethylene terephthalate, which has relatively high

tensile (around 60 MPa). A pair of side fins were added to prevent rolling. The control

circuits consisted of a micro-controller, which translates the wireless command into

a corresponding pulse width modulation (PWM), and a Li-ion battery. The control

command was sent from a computer through Wi-Fi.

2.5 Swimming Test

In experiments, the robotic fish swam in a 2.4 m × 1.6 m pool. The robot’s

position was obtained through computer vision using a camera installed 2.4 m above

the water surface. Fish’s heading angle was derived from a series of positions to

reduce the heading angle error caused by the lateral recoil movements. The camera

acquisition frequency was 10 Hz, and the control signal was transmitted at a frequency

of 2 Hz.

The ’three-joint flapping’ and ’two-joint flapping’ are compared in forwarding
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(a) The first version.

(b) The second version (bottom) and third version (top).

Figure 2.7: Robotic fish
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speed. Since the robotic fish need time to achieve a stable speed, the measure-

ment counted the speed at the last two seconds in each test at the specific flapping

frequency. The result is shown in Fig. 2.8. In ’three-joint flapping’ mode, the micro-

controller reads the DC motor’s rotary speed through the encoder to calculate the

flapping frequency. That frequency was translated to a sinusoidal equation to guide

the servo motor’s flapping. The DC motor’s speed of the larger robotic fish was lim-

ited so that the servo motor can catch up the DC motor’s flapping frequency. At a

frequency range from 0.5 Hz to 1 Hz, the surge velocity of the ’three-joint flapping’

mode in each frequency was about 50% higher than its speed in ’two-joint flapping’

mode. Then maximum velocity was 0.178 m/s at 1 Hz, which was 0.4 BL/s.

Figure 2.8: Experimental result of forward speed in ’three-joint flapping’ and ’two-
joint flapping’ mode.

The fish of the third version was tested at a higher frequency range (from 1.8 Hz

to 3 Hz) for top speed and steering. The robotic fish accelerated from stationary at a

constant frequency and zero bias angle in the forward swimming test. The maximum

surge speed was 0.35 m/s, which was equivalents to 0.98 BL/s and achieved at 3 Hz.

As shown in Fig. 2.9, the fish swam about 2 m in 6 s. Due to the pool size, the

robotic fish was only allowed to free swim in 6 s. The achievable maximum speed was

believed higher than the current result.

In the steering experiment, the fish of the third version is tested from 1.8 Hz to
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Figure 2.9: Experimental snapshot of robotic fish swims at 3 Hz.

2.4 Hz, to maximize the swimming time. When the robotic fish is steering, the servo

motor kept a constant bias angle and the DSC works at a constant frequency. The

bias angle was assigned from -0.5 rad to 0.5 rad to test both left turning and right

turning. Robotic fish’s steering performance was evaluated by turning radius and

turning rate. The turning radius was denoted by fitting a circle to the trajectory

of the latest 3/4 of the testing period. The turning rate was derived by calculating

the heading angle changes over this period. The robot’s left and right turns cannot

be perfectly symmetrical because of the thrust from the first several flapping in the

experiment was not symmetrical. In Fig. 2.10a, the turning radius gradually decreases

when the bias angle is increasing. The turning rate, in Fig.2.10b, is almost linearly

increased by bias angle. It is worth noticing that the flapping frequency has a very

small impact on the radius, which is consistent with the study in [85]. The maximum

turning rate was 0.48 rad/s at a 0.5 rad bias angle, and the corresponding turning

radius was 0.37 m.
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(a) Steering speed versus bias.

(b) Steering radius versus bias.

Figure 2.10: Experimental result of steering.
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2.6 Chapter Summary

In this chapter, we introduce how the DSC mechanism is designed by following

the traveling wave equation. The DSC mechanism has a phase shift ϕ between its two

cranks so that it can realize a flapping in two DOFs, which makes the fishtail flap like

an oscillating foil. In robotic fish design, a servo motor is added in front of the DSC

to control thrust direction. Servo motor and DSC form a hybrid propulsion system

that enables robotic fish to swim on the water surface freely. The proposed robotic

fish is tested in experiments to examine its swimming speed and steering capability.

Overall, the proposed robotic fish propelled by the DSC mechanism demonstrates

strong maneuverability. In an experimental examination, the robotic fish can achieve

a maximum swimming speed of 0.35 m/s (0.98 BL/s).
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Chapter 3

Robotic Fish Modeling

The proposed robotic fish has a hybrid propulsion system to realize oscillating

foil flapping. The use of the hybrid propulsion system benefits the modeling work by

simplifying the flapping pattern and moderating the head shaking. In this chapter,

the dynamic model of robotic fish’s two-dimensional maneuvering is discussed. A

vectorized elongated body theory (BET) is used to calculate the thrust, while consid-

ering a normalized forward speed to decouple the thrust derivation from the robot’s

kinematics. The hybrid propulsion system also allows the robotic fish to be modelled

from the vessel’s perspective. The vectorized EBT model is reducted by inheriting

the ideal of the Namoto model to reflect robotic fish’s steering in terms of actuation.

The obtained linear model is validated in both simulation and experiment, and it is

further tested in designing a heading angle control using in air controllers.

3.1 Kinematics

The model of robotic fish is built in a rigid-body system with action of external

forces and momentum. The kinematics of robotic fish is described in the Cartesian
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coordinate system in 6 DOFs. As shown in Fig. 3.1, the position [X, Y, Z]T and ori-

entation [φ, θ, ψ]T of robotic fish is analyzed in an inertial coordinate, whose origin is

defined by O. Respectively, the linear velocity [u, v, w]T and angular velocity [p, q, r]T

is analyzed in the body-fixed coordinate, whose origin is defined by G.

Figure 3.1: Coordinates system.

The velocity are transferred from the body coordinate to the inertial coordinate

using the following equations:


Ẋ

Ẏ

Ż

 = J(φ, θ, ψ)


u

v

w

 , (3.1)

where the J(φ, θ, ψ) is the coordinate transformation matrix.

Several assumptions are introduced to simplify the modeling process of two-

dimensional maneuvering. Firstly, the pitch motion q and roll motion p are set
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constantly to be zero, because the pitch angle θ and roll angle φ are uncontrollable.

Secondly, the origin of the body-fixed coordinate coincides with the center mass of

robotic fish, hence the steering of the robotic fish is respect to the z-axis in body-fixed

coordinate. Finally, the fluid around the fish is considered inviscid so that the viscous

resistance on the fish body is ignored. Construct a velocity vector ν = [u, v, r]T for

two-dimensional maneuvering, and a vector of actuation τ = [Tx, Ty, NT ]T that in-

cludes the thrust from x and y direction in body frame and rotational moment caused

by thrust. The motion of the rigid body system can be expressed as

Mν̇ + C(ν)ν + D(ν)ν = τ. (3.2)

M is the inertia matrix including the mass of rigid body and fluid added mass

M = MRB + MA,

MRB =


m 0 0

0 m 0

0 0 Iz

 ,MA =


−Xu̇ 0 0

0 −Yv̇ 0

0 0 −Nṙ

 .
(3.3)

m is the robot’s mass and Iz is moment of inertia about z-axis. Xu̇ is defined as a

constant hydrodynamic added mass for fish body in x-axis, caused by acceleration

u̇, and Yv̇ and Nṙ are defined analogously. The added masses are calculated by

considering the entire body to an ellipsoid shape with a length of 0.03 meter and a

radius of 0.015 meter. With these added mass coefficients k11, k22 and k55 obtained

from Fig. 3.2, the added masses are calculated as

Xu̇ = −k11m, Yv̇ = −k22m, Nṙ = −k55Iz. (3.4)
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Figure 3.2: Chart of added mass coefficients [2].

C is a matrix term representing the Coriolis force. It describes the motion of the

robotic fish due to rotation about inertial coordinate.

C = CRB + CA,

CRB =


0 0 −mv

0 0 mu

mv −mu 0

 ,CA =


0 0 Yv̇v

0 0 −Xu̇u

−Yv̇v Xu̇u 0

 .
(3.5)

D is the matrix of hydrodynamic drag,

D =


X|u| 0 0

0 Y|v| 0

0 0 N|r|

 . (3.6)
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X|u|, Y|v|, N|r| are the linearized damping coefficients obtained through

X|u| =
d1

2
ρwsxcx|u|u

du

∣∣∣
ū
,

Y|v| =
d1

2
ρwsycy|v|v

dv

∣∣∣
v̄
,

N|r| =
dcr|r|r

dr

∣∣∣
r̄
.

(3.7)

cx, cy, cr are the drag coefficients, ρw is the density of water, sx and sy are robot’s

project area in x and y axes respectively. ū is the median of the range of the forward

speed, so as v̄ and r̄.

Combine Eq. 3.3, Eq. 3.5 and Eq. 3.6 together, the dynamic model of robotic fish

in 3 DOF is

(m−Xu̇)u̇− (m− Yv̇)vr +Xu|u| = Tx,

(m− Yv̇)v̇ + (m−Xu̇)ur + Yv|v| = Ty,

(Iz −Nṙ)ṙ + (Xu̇ − Yv̇)vr +Nr|r| = NT .

(3.8)

The derivation of Tx, Ty and NT are discussed in the next section.

3.2 Elongated Body Theory

EBT obtains the thrust by estimating the momentum convection from the body

of the fish to the surrounding flow. In EBT [85], the force is derived in an inertial

coordinate, as shown in Fig. 3.3. An index ζ ∈ [0, L], where L is the body length,

is defined to indicate the r column of fish from tail to head. [X(ζ), Y (ζ)] indicates

the movement of a selected body segment whose velocity vector is defined as Vζ =

[∂X
∂t
, ∂Y
∂t

]T . The reactive force Frf that summaries all the forces obtained from flapping
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can be written as

Frf =

(
miVnVmn̂−mi

1

2
V 2
n m̂

)
ζ=L

− d

dt

∫ L

0

miVnn̂dζ. (3.9)

The mi ' 1
4
πρd2 denotes the add-mass caused by the body segment’s motion, ρ is

the fluid density, d is the depth of segment, n̂ is the unit vector that indicates the

direction perpendicular to the curve of the segment, and m̂ is the unit vector that

indicates the direction tangential to the curve of the segment

m̂ =

∂X∂ζ
∂Y
∂ζ

 , n̂ =

−∂Y
∂ζ

∂X
∂ζ

 . (3.10)

Vn = V T
ζ n̂ and Vm = V T

ζ m̂ are the magnitudes of the component velocity along n̂ and

m̂ respectively.

Figure 3.3: Derivation of EBT.

Although EBT is widely accepted, it still has limitations in control-oriented ap-

plications because it is defined in infinite-dimension. For robotic fish, obtaining the

instantaneous body shape is impossible due to the complicated fluid-structure inter-

action. A feasible way to simplify the model is to consider the caudal fin at a quasi-

steady state, in which the fin has high stiffness and the fluid-structure interaction
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can be ignored at low frequency. The fin velocity is represented by its quarter-chord

point, which is at about 1
4

of the chord length behind the leading edge [30, 86]. This

assumption minimizes the fluid-structure interaction and reduces the complexity of

model.

It is worth noticing that EBT uses the relative velocity between the caudal fin

and surrounding flow to derive thrust. The relative velocity calculation needs both

velocity of caudal fin flapping and fish’s surge speed. The velocity of caudal fin is

normally analyzed in body-fixed coordinate of the robotic fish, and the surge speed is

reflected in robot’s kinematics. Thus, the thrust derivation is coupled with the robot’s

kinematics. One way to simplify this procedure is to normalize the relative velocity;

one can consider that the relative velocity has constant direction and magnitude so

that thrust derivation only relies on fin dynamics. The normalization of the relative

velocity is based on two assumptions; (1) The surrounding flow is considered closely

attached to the fish’s body and has not been heavily disturbed by the undulatory

motion. This assumption is concluded from several works that study the boundary

layer flow of an undulatory flapping. Although the vortices are also produced by the

head shaking or undulatory locomotion of the anterior body, they are small and not

strong enough to persist in the flow that will interact with the caudal fin [87]. The

undulatory motion helps the flow layer keep attached to the body [83], as long as the

velocity of the undulatory is smaller than flow velocity [88, 16]. Since the robotic fish

propelled by DSC has the characteristics of undulatory locomotion and low-amplitude

head movement, its surrounding flow can be assumed to be parallel to the peduncle

before entering oscillating foils. (2) Fish speed can be recognized as a time-invariant

factor. This assumption is inspired by a hydrodynamic study analyzing the force

from oscillating foil in different ambient flows. It concluded that flow speed has little
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impact on propulsion [89].

The model of the DSC-driven robotic fish can be simplified by using a normalized

relative velocity. When the fish is operated in ’two-joint flapping,’ it has a small

lateral head oscillation and the servo motor does not disturb the surrounding flow.

The surrounding flow can be considered stable in passing through the fish body and

then participate in the oscillating foil, even under a small bias angle from the servo

motor. Regardless of fish’s surge speed and bias angle, thrust forces can be derived

in the DSC frame, in which the only variable is flapping frequency. In the thrust

calculation, a constant flow speed is added into the quarter-chord point to compensate

the ignorance of surge speed. The entire approach basically minimizes the impact of

the environmental factors in the thrust derivation.

Concentrate on the body-fix coordinate with an individual coordinate for the DSC

mechanism. The thrust T is derived in the DSC frame, which is defined as Od−xdyd.

Its origin Od is located at the second joint of the fish tail, as shown in Fig. 3.4.

The servo motor produces the angle δ between the DSC frame Od − xdyd and robot

body-fixed frame G− xy, to add a bias angle to the oscillating foil.

Figure 3.4: Kinematic diagram of robotic fish and DSC.
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The angle of DSC’s first and second joint in Od − xdyd are written as

α1 = A1 sin(ω),

α2 = A2 sin(ω + 0.5π).

(3.11)

The quarter-chord point of caudal fin, which is represented as [xd, yd] in the DSC

coordinate, is calculated by

xd = l1 cosα1 + l2 cosα2,

yd = l1 sinα1 + l2 sinα2.

(3.12)

The caudal fin’s relative velocity, which is considered as the absolute velocity at the

inertial frame in EBT, is represented as

V =

ẋd − Vc
ẏd

 , (3.13)

where Vc is a scalar that represents a constant flow added in parallel to xd direction,

regardless of fish’s speed. In this term, the magnitude of component velocity are

Vn = −ẋd sinα2 + ẏd cosα2 + Vc sinα2,

Vm = ẋd cosα2 + ẏd sinα2 − Vc cosα2.

(3.14)

The unity vectors m̂ and n̂ at quarter-chord point can be written by

m̂ =

cosα2

sinα2

 , n̂ =

− sinα2

cosα2

 . (3.15)

Therefore, the reactive force in the DSC frame is represented by a vector, in which
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the first element is the component force in xd direction and the second element is the

component force in yd direction

−→
Frf =

Fxd
Fyd

 = −1

2
miV

2
n m̂+miVnVmn̂−miL

∂Vn
∂t

n̂. (3.16)

The reactive force denoted in the DSC’s frame needs to be converted to the fish’s

body-fixed coordinate

Tx
Ty

 = kF

cos δ − sin δ

sin δ cos δ


Fxd
Fyd

 , (3.17)

where kF is the force coefficient for model tuning. NT is obtained as

NT =

d0 + (l0 + l1 + l2) cos δ

(l0 + l1 + l2) sin δ

×
Tx
Ty

 , (3.18)

where × denotes the cross product of two vectors.

3.3 Model Reduction

In this section, a linear model that describes robotic fish’s steering associated with

the bias angle of the oscillating foil is derived. It is inspired by a well-known linear

Namoto model [69] for ocean vessels that can predict vessel’s yaw motion. In this

robotic fish, the swimming speed and steering are individually controlled by the DC

motor in DSC and the servo motor in the first joint. One can consider that the robotic

fish is equivalent to an ocean vessel in the motion. When the robotic fish initially
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swims straightly at a constant speed, its velocity u, v, r can be written as

u = u0 + u′, v = v′, r = r′. (3.19)

u0 is the initial velocity, u′, v′, r′ are small velocity perturbations. The condition

v0 = r0 = 0 is valid for straight swimming that the lateral and rotatory motions are

neglectable. The time derivatives of velocity are

u̇ = u̇′, v̇ = v̇′, ṙ = ṙ′. (3.20)

The bias angle δ in forward swimming is also considered as a perturbation, and so is

denoted as δ′. By this definition, the Tx in Eq. 3.17 is represented as

Tx = kF

 cos(δ0 + δ′)

− sin(δ0 + δ′)


T Fxd

Fyd

 = kF

 cos δ′

− sin δ′


T Fxd

Fyd

 , (3.21)

where δ0 = 0. For a small bias angle satisfying |δ′| ∈ (0, 0.35], one can take the

first order Taylor expansion to approximate the trigonometry of bias perturbation as

cos δ′ ≈ 1 and sin δ′ ≈ δ′. Also, the amplitude of reactive force is unchanged at a

constant frequency, its component force can be replaced by a mean value during a

period of flapping, which means Fxd = Fxd and Fyd = Fyd . Eq. 3.21 turns to be

Tx ≈ kF (Fxd − δ′Fyd). (3.22)
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Similarly, the Tx and NT turn to

Ty ≈ kF (δ′Fxd + Fyd),

NT ≈ kF (d0 + l)(δ′Fxd + Fyd)− kF l(δ′Fxd − δ′Fyd),
(3.23)

where l = l0 + l1 + l2 for simplification. If consider Fyd = 0 that the integral of

lateral force is zero for periodical flapping, Tx ≈ kFFxd , Ty ≈ kFFxdδ
′ and NT ≈

kFd0Fxdδ
′. The mean thrust Fxd = −0.035 N is obtained through simulation. Under

this assumption, a small bias angle has minimal effect on the thrust magnitude in x

direction, one can assume that

Tx = Tx0, Ty = T ′y, and NT = N ′T . (3.24)

The dynamic function Eq. 3.8 is rewritten as

(m−Xu̇)u̇
′ +X|u|u0 +X|u|u

′ = Tx0,

(m− Yv̇)v̇′ + (m−Xu̇)u0r
′ + Y|v|v

′ = T ′y,

(Iz −Nṙ)ṙ
′ +N|r|r

′ = N ′T .

(3.25)

The higher-order small perturbations, such as u′r′, are ignored. The Coriolis angu-

lar momentum Yv̇ − Xu̇ caused by the added mass is ignored to moderate the yaw

oscillation caused by the recoil head movement. The obtained perturbation model

decouples the sway motion and yaw motion from the surge motion. One can extend

this perturbation model to describe the steering of a robotic fish that is straightly

swimming at the beginning. Given the definitions m1 = m − Yv̇, m2 = m −Xu̇ and

m3 = Iz − Nṙ, a second-order steering model can be summarized by ignoring surge
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velocity and has the form

v̇
ṙ

 =

−Y|v|
m1

−m2u0
m1

0 −N|r|
m3


v
r

+

 Yδ
m1

Nδ
m3

 δ, (3.26)

where Yδ = kFFxd and Nδ = kFd0Fxd . Eq. 3.26 can be converted to a transfer function

that relates the bias angle to turning speed

r(s)

δ(s)
=

a1s+ a2

s2 + a3s+ a4

, (3.27)

where

a1 =
Nδ

m3

,

a2 =
Y|v|Nδ

m1m3

,

a3 =
m3Y|v| +m1N|r|

m1m3

,

a4 =
Y|v|N|r|
m1m3

.

The transfer function has two negative poles given by {−Y|v|
m1
,−N|r|

m3
}. In the robotic

fish operation, the steering speed may be heavily disturbed by the lateral oscillations

of the head and position actuation. Hence, deriving a transfer function

ψ(s)

δ(s)
=

1

s
· r(s)
δ(s)

, (3.28)

between the bias angle and the yaw angle by adding an integrator is more feasible for

implementation purposes.
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3.4 Model Validation

The vectorized EBT model is tuned by a least-square method to match the ex-

perimental data of forwarding speed and steering speed. In modeling the forward

speed, we tune the model to match the time response of the robotic fish’s swimming

speed at various flapping frequencies. The Fig. 3.5a shows the model fitting result

of matching the time response of velocity acquitted at 2 Hz and 3 Hz. In Fig. 3.5b,

the model validation result for steady-speed, from 1.8 Hz to 3 Hz, is shown. Due

to the pool size, the time period allowed for the forward swimming of robotic fish is

limited. Overall, the model has a good match to the experimental data at a measured

frequency. The dimensions and model parameters are shown in Table. 3.1.

Table 3.1: Parameters of dynamic model

d0[m] l0[m] l1 [m] l2[m] L[m] d[m]
0.04 0.042 0.058 0.022 0.04 0.08
cx cy cr sx[m

2] sy[m
2] Vc[m/s]

0.39 2.2 0.0055 0.0025 0.02 0.08
k1 k2 k3 kF I[kg m2] m[kg]
0.095 0.83 0.55 0.2 0.0047 0.9

The model also has a good agreement with the experimental data in steering.

It matches the steering radius and steering speed at different bias angles with a

considerable small error. We add an arbitrary initial fish pose in the simulation so

that the simulation has a better reflection of the real experiment. The experimental

result and dynamic model validation in steering radius versus bias angle shows in

Fig. 3.6a, and steering speed versus bias angle shows in Fig. 3.6b

Eq. 3.28 indicates the robotic fish’s steering can be approximated into a third-

order transfer function that has one zero and three poles. However, obtaining the
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(a) Experimental results and model prediction for time response of for-
ward speed at 2 Hz and 3 Hz.

(b) Experimental results and model prediction for steady-speed from 1.8
Hz to 3 Hz.

Figure 3.5: Model validation result in forward swimming.
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(a) Experimental results and model prediction for steering radius from
1.8 Hz to 2.4 Hz.

(b) Experimental results and model prediction for steering speed from 1.8
Hz to 2.4 Hz.

Figure 3.6: Model validation result in steering.
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transfer function from the model’s parameters could cause significant errors due to

the model has been highly simplified. A more feasible way to obtain the linear model

is approximating a model from input-output data. A subspace state-space system

identification (MOESP)[90] method was adopted to obtain a discretized linear model

through analyzing the excitation of a series of random pulse inputs. Applying MOESP

through experiments is unrealistic because the identification process requires a large

amount of data. The whole procedure needs the robot to move for a long period, and

the experiment needs a large area.

An alternative method for MOESP is that generates data through a simulation

based on the vectorized EBT model. In the simulation, fish dynamics is calculated

by a 2nd-order Runge-Kutta method with following equations:

ξ̇ =



ξ2 cos ξ5 − ξ4 sin ξ5

[(Tx −X|u|ξ2) +m1ξ4ξ6]/m2

ξ2 sin ξ5 + ξ4 cos ξ5

[(Ty − Y|v|ξ4) +m2ξ2ξ6]/m1

ξ6

(Nr − Y|r|ξ6)/m3

, (3.29)

where ξ = [X, u, Y, v, ψ, r]T is the state vector that represents the position and velocity

of the robotic fish . The simulation considers the sensing feedback as the robotic fish’s

positions obtained periodically through GPS. The positions is represented as [Xi, Yi]
T

with added artificial Gaussian noise for i = 1, 2, · · · which is a sample in time sequence.

Because MOESP requests the system be fully excited with all possible input value.

The robotic fish is simulated with a serial of random bias angle sent every 0.5 s (2

Hz). The position data were collected at every 0.2 s (10 Hz) with ±1 cm Gaussian
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noise to approximate the robot’s heading angle.

In model identification in Fig. 3.7a, the simulation was running for 100 seconds to

collect sufficient position data. The robotic fish started with a straightly swimming

at a constant speed. Then a serial of random bias input, varying between -0.3 rad to

0.3 rad, was sent to the robot to make the steering. The control input was sent every

0.5 s (2 Hz), which is also the frequency of discrete transfer function. Both input

bias angle and output yaw angle were sent to MOESP to approximate a linear model

that can fit the approximated heading angle. Because the input was random, the

maneuvering in each simulation was different. A total of 20 sets of linear models were

collected as a model bank for further analysis. In reality, the model-based prediction

and control focus on guiding the robot to finish an individual turn. A complicated

robot motion will be divided into several small maneuverings. Although MOESP

requires a large amount of data for accurate identification, the validation only needs

a much shorter period. In model validation, a 20-second simulation was conducted

with random input bias. In Fig. 3.7b, the simulation results were compared with

all models from the model bank ( only five shown in the figure) to evaluate models’

accuracy. The validation was repeated 50 times for all models. Their mean squared

errors (MSEs) were collected and compared, and the model with the lowest MSE was

selected. Its identified transfer function was

ψ(z)

δ(z)
=

−0.03081z2 + 0.02642z

z3 − 2.832z2 + 2.67z − 0.8381
. (3.30)

In comparison, the discrete form of analytical transfer function was calculated
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Figure 3.7: Linear steering model identification and validation.
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based on Eq. 3.27 and the parameters shown Table. 3.1, which is shown below

ψ(z)

δ(z)
=
−0.0046z2 − 0.0004z + 0.004

z3 − 2.768z2 + 2.55z − 0.781
. (3.31)

The identified transfer function Eq. 3.30 has a close denominator to analytical transfer

function, which ensures that they have similar stability. Although their numerator is

slightly different, their response can be unified by adding a control gain.

The linear model in Eq. 3.30 was also examined by comparing it with the time

response of the experiment. The experiment yaw angle was obtained by a category

of step bias input ranging from -0.5 rad to 0.5 rad. The same step input was sent

to the linear model, and the linear model output (in dashed line) was compared to

the experimental yaw angle (in solid line) in Fig. 3.8. One can notice that the exper-

imental data is heavily disturbed by fish shaking and computer vision error. From

observation, the linear model has an impressive accuracy in various bias angles. This

time response result indicates that the linear model’s identification and validation

through simulations can achieve a good agreement with the experimental data. Even

the vectorized EBT model is not control-orientated, it is still a reliable source to

obtain a linear model through model reduction and system identification.

3.5 Chapter Summary

In this chapter, the derivation of the dynamic model and linear model are in-

troduced. The kinematics of robotic fish is described in inertial coordinate. The

rigid-body dynamics and hydrodynamic are analyzed in robotic fish’s body-fixed co-

ordinate. A vectorized EBT method that combines added-mass effect and quasi-static
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Figure 3.8: The step response comparison between experimental data and linear
model output.

lift is applied when calculating the thrust of tail flapping. In addition, the thrust cal-

culation is concentrated in an individual DSC frame because of the special character

of the DSC mechanism that can achieve undulatory locomotion. Thus, the thrust cal-

culation is decoupled from the robotic fish’s kinematics, and the robot can be modeled

from the vessel’s perspective. Then the nonlinear dynamic model is simplified, fol-

lowing the idea of the Namoto model, to a linear transfer function that describes the

relationship between input bias and output yaw motion. Both nonlinear dynamic

model and linear model are validated in experiments and simulations. The nonlinear

dynamic model is further used in developing a simulation environment, and the linear

model is used for linear controller design.
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Chapter 4

Robotic Fish Control

In this chapter, steering control of robotic fish is discussed. The observed-state

feedback controller (OSFC) using the linear model derived in Chapter 4 is firstly intro-

duced. Simulation and experiment results demonstrate the accuracy and effectiveness

of the linear model in steering the robotic fish. After that, the event-trigger steer-

ing control of robotic fish is discussed to address the communication and computing

power challenge in robotic fish’s application. We combine the ideas of linear predictor

and event trigger rule to ensure the stability of robotic fish in inconsistent communi-

cation situations. Experimental results show that the event-trigger controller (ETC)

has the same performance as the error-based controller, and it is able to maintain the

performance when the communication frequency is dropped.

4.1 Observed-state Feedback Control

The OSFC demonstrates the effectiveness of the linear model in steering the

robotic fish. The transfer function in Eq. 3.30 is rewritten in a state-space form,

where x∗(k) ∈ R3×1 is the state variable, y∗(k) ∈ R is the output yaw angle ,and
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u∗(k) ∈ R is the input bias angle

x∗(k + 1) = Ax∗(k) +Bu∗(k),

y∗(k) = Cx∗(k).

(4.1)

The system matrices A, B and C are obtained as

A =


2.832 −1.335 0.8381

2 0 0

0 0.5 0

 , B =


0.25

0

0

 , C =

[
−0.1232 0.05285 0

]
.

One can conclude that the system with (A,B,C) is fully controllable and observable.

To provide a full state feedback, a discrete state observer is designed to use x̄∗(k) ∈

R3×1 to estimate x∗(k), with an observer gain of L ∈ R3×1

x̄∗(k + 1) = Ax̄∗(k) +Bu∗(k) + L[ψ(k)− Cx̄∗(k)]. (4.2)

The control input is calculated based on the state feedback gain K ∈ R1×3 and a

scalar Kd ∈ R for reference ψd(k) ∈ R

u∗(k) = Kx̄∗(k) +Kdψd(k). (4.3)

The OSFC was firstly developed and calibrated in simulations. Kz and Kd were

tuned in simulations to archive a critical damping condition that drove the system

rapidly to the desired value without overshooting and oscillation. The reference was

selected at ψd(k)=1 rad to take the best of the pool area and stretch control time

in simulations. The simulation time was 12 seconds which was sufficient for the
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controller to left-steering the robotic fish from stationary. In Fig. 4.1a, the bias of

servo firstly fully turned to the left, then back to normal. The turning process was

smooth, and the yaw angle was stabilized to the desired value. The controller gains

are

L =


−36.238

−76.058

−40.044

 , K =

[
−4.173 3.614 −3.115

]
, Kd = −3.344.

The same gain value was used in experiments, and robotic fish’s initial position

and pose were the same as in the simulation. As shown in Fig. 4.1b, the bias angle has

the same trend as in Fig. 4.1a. Because the robotic fish was starting from stationary,

the yaw angle calculation was heavily disturbed since the displacement was small.

Despite that, the control results were very close, from 2 seconds to 12 seconds between

simulations and experiments. The experimental results demonstrated that the linear

model had high accuracy and model-based steering control was feasible.

4.2 Event Trigger Control

The robotic fish have many advantages in mobile underwater sensor networks.

However, challenges also arise when controlling robotic fish in low visibility and GPS-

denied underwater environments. Due to the limited space, robotic fish is not an

appropriate carrier for some external sensors, such as scanning sonar. In most cases,

localization sensors are equipped in mother-ship, and the mother-ship transmits the

location information remotely through an underwater acoustic network. Acoustic un-

derwater communication has limited bandwidth, which could cause a reduced sam-

pling rate in feedback control. Due to the under-actuated dynamics of robotic fish,
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Figure 4.1: Observed-state feedback steering control.
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wireless control of robotic fish with such a drop in sampling rate has become a chal-

lenge. Hence, a control method that is less communication-intensive and robust to

drops in communication rates is highly desired to control robotic fish.

Standard feedback controls call for changing the values of controls at sampling

times that are independent of the state of the dynamics. However, such feedback

controls are not computationally efficient, because they could result in unnecessarily

frequent computation of new control values [91]. In many applications (especially

networked systems), such inefficiencies have been addressed using ETC that calls for

only changing control values when a significant enough event is detected, and then

the control is triggered [91, 92, 93]. Such events are usually modeled as instances

when a measurement from the system deviates from a prescribed value by more than

some prescribed amount. ETCs can significantly save bandwidth in communication

networks by reducing the number of communication times when the external sensor

must communicate with the local actuators. Since ETC takes a varying-sampling-rate

(VSR), which is less communication-intensive, ETC has a great potential in network

steering control of robotic fish for coastal monitoring. In this paper, we adopt a

trigger rule that evaluates the error of the hold state to define an event [94], and add

a linear-model-based predictor to form a periodic event-triggered control (PETC)

[95].
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4.2.1 Event trigger rule

A discrete state-space model for steering of robotic fish is obtained in Eq. 4.1. Its

error dynamic representation obtained as

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k),

(4.4)

where x, u, and y are defined as

x = x∗ − x∗ss, u = u∗ − u∗ss, and y = y∗ − ψd.

A, B, and C are system matrices from Eq. 4.1. x∗ss is the steady-state of x∗. u∗ss is

the steady-state of u∗. And ψd is a non-zero desired yaw angle.

The integration q ∈ R that integrals output error is defined as

q(k + 1) = q(k) + Cx(k). (4.5)

Define x′(k) = [x(k), q(k)]T , the full dynamics of the robotic fish with the integra-

tor can be written as

x′(k + 1) =

A 0

C I


︸ ︷︷ ︸

A′

x′(k) +

B
0


︸ ︷︷ ︸
B′

u(k), (4.6)
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where (A′, B′) is fully controllable. The state feedback controller is chosen as

u(k) =

[
−K H

]
︸ ︷︷ ︸

K′

x(k)

q(k)


︸ ︷︷ ︸
x′(k)

(4.7)

with a state feedback gain K ∈ R1×3 and an integral gain H ∈ R. Define Λ =

A′ + B′K ′. Since (A′, B′) is fully controllable, a pole assignment approach can be

used to select the gain K ′, such that Λ is a Hurwitz stable matrix.

Define V (x) = x′TPx′, where P is a symmetric positive definite matrix. Then,

the difference δV (x′(k)) = V (x′(k + 1))− V (x′(k)) satisfies

δV (x′(k)) = x′T (k)(ΛTPΛ− P )x′(k) < 0 (4.8)

for all nonzero states x′(k) of Eq. 4.7, because ΛTPΛ−P is a negative definite. Thus,

x and y will ultimately approach to zero.

On the contrary, the state variables in ETC are not sent to the robot at every

time instant. For each integer k ≥ 0, we define k− to be the previous event-triggering

time. The rule for computing the event triggering times is specified below. The state

variables are sent at the triggering time. We assume that the state variables are sent

at time k = 0. At any time k > 0, when the state variables are not sent, the control

input is obtained through a zero-order-hold, meaning

u(k) = K ′x′(k−). (4.9)

Let e(k) denote the error e(k) = x′(k−) − x′(k) between the value of the held state
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and the real-time state. Eq. 4.6 can be written as

x′(k + 1) = A′x′(k) +B′K ′(e(k) + x′(k))

= Λx′(k) +B′K ′e(k).
(4.10)

In this ETC case, δV satisfies

δV (x′(k)) = −x′T (k)Qx′(k) + 2x′T (k)ΛTPB′K ′e(k)

+ eT (k)K ′TB′TPB′K ′e(k),
(4.11)

where Q = −ΛTPΛ + P is a positive definite matrix.

For a given constant σ > 0, the event triggering times ti for i ≥ 1 are chosen, such

that the inequality

‖e(k)‖ ≤ σ ‖x′(k)‖ (4.12)

holds for all k ≥ 0, where the constant σ ≥ 0 will be specified and ‖·‖ is the usual

Euclidean norm defined in [96]. Combining Eq. 4.11 and Eq. 4.12 gives

δV (x(k)) ≤ −x′T (k)Qx′(k) + 2 ‖x′(k)‖
∥∥ΛTPB′K ′

∥∥ ‖e(k)‖+
∥∥K ′TB′TPB′K ′∥∥ ‖e(k)‖2

≤ −λmin[Q] ‖x(k)‖2 + 2σ
∥∥ΛTPBK

∥∥ ‖x(k)‖2 + σ2
∥∥KTBTPBK

∥∥ ‖x(k)‖2

≤ −
{
λmin[Q]− 2σ

∥∥ΛTPB′K ′
∥∥− σ2

∥∥K ′TB′TPB′K ′∥∥} ‖x′(k)‖2
,

(4.13)

where λmin[Q] is the smallest eigenvalue of Q. Since λmin[Q] > 0, there is a value ε > 0

such that the quantity in curly braces in Eq. 4.13 is positive for each σ ∈ (0, ε], which

provides an asymptotic stability decay estimate on δV . Thus, the system achieves

asymptotic stability, and reduces the sampling frequency, which decreases the need

for high bandwidth communication.
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4.2.2 ETC design

To implement event trigger rule in control of robotic fish. The PETC is introduced.

There are two modes of operations in PETC: ‘triggered’ mode and ‘non-triggered’

mode. In ‘triggered’ mode, communication is available between the robotic fish and

remote controller. The controller inside the robot works as a traditional state feedback

control using state variables observed in remote controller. In ‘non-triggered’ mode,

the communication between the remote controller and robot is unavailable, leaving

the controller to work without a feedback.

The overall control design can be described by the diagram as shown in Fig. 4.2,

where the green block represents the dynamics of robot with its local controller and

the orange block represents the dynamics of the remote sensor. Inside the robot,

Predictor-1 is used to estimate the state variable when communication is not triggered.

Integrator-1 is used to integrate the predicted heading angle tracking error. Control

input u combines both the state feedback control and the integration of tracking error

with different gains K and H. On the remote sensor side, a computer vision sensor

is used to calculate heading angle y. y is sent to Observer to estimate state variable

x. Predictor-2 is the mirrored Predictor-1. Integrator-2 is the mirrored Integrator-

1. Integrator-3 is used to integrate the actual heading angle tracking error. When

an event is triggered, the communication between robot and remote sensor will be

established. Variables z1 and z2 in Predictor-1 and Predictor-2, respectively, will

be replaced by estimated state variable x. Variables q1 and q2 in Integrator-1 and

Integrator-2, respectively, will be replaced by q3 in Integrator-3.
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Figure 4.2: Control diagram of PETC.

In the remote controller, a sensor measures robotic fish’s yaw angle ψ and calcu-

lates y for observer. The observer is defined as

x̄(k + 1) = Ax̄(k) +Bu(k) + L[y(k)− Cx̄(k)], (4.14)

where x̄(k) ∈ R3×1 is the estimate of x(k) and L ∈ R3×1 is the observer gain that

ensures the convergence of observer.

In ‘non-triggered’ mode, we follow the idea of embedded predictor proposed by

[95] to have an open-loop predicted state variables z. z can prevent the zero-order-

hold of control input u when x̄ is unavailable for the robot. The dynamics of the

predictor is defined by

zi(k + 1) =


Azi(k) +Bu(k) (Non-triggered)

Ax̄(k) +Bu(k) (Triggered),

(4.15)

where zi ∈ R3×1, and i = 1, 2. z1 represents Predictor-1 whose dynamics are defined

in Eq. 4.15. Predictor-2, defined as z2, has the same dynamics as z1. These two
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predictors run simultaneously and work at the same sampling rate as the remote

controller. These two predictors use the same system matrices (A,B) as the ones

used in the observer to estimate the state variables.

Through integration of output error, Integrator-3 is used to estimate the unknown

disturbance caused by the modeling error and external turbulence. Then the distur-

bance is actively rejected by adding an extra term in control input u. Integrator-1,

represented by q1 ∈ R, runs inside the robot. Integrator-2, q2 ∈ R, runs in remote

controller. q1 and q2 have the same dynamics as

qi(k + 1) =


qi(k) + Czi(k) (Non-triggered)

q3(k + 1) (Triggered),

(4.16)

for i = 1, 2. Integrator-3 is running in the remote controller and has the dynamics

q3(k + 1) = q3(k) + y(k). (4.17)

It is updated using y to represent the ‘true’ error, similar to the observer representing

the ‘true’ state variables. With x̄, z and q are defined, control input u discussed in

Eq. 4.9 is rearranged as

u(k) =


−Kz1(k) +Hq1(k) (Non-triggered)

−Kx̄(k) +Hq3(k) (Triggered).

(4.18)

H ∈ R is an integral gain.

u is calculated using the ‘true’ error and the ‘true’ state variables from the remote

controller in ‘triggered’ mode. In ‘non-triggered’ mode, u is calculated using the error
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and state variables estimated inside the robot. The quantities z2 and q2 can mirror

the calculation of u for the observer because they have the same dynamics as z1

and q1. Thus, the observer can clone the u, which is calculated inside the robot in

‘non-triggered’ mode, to calculate x̄(k).

The event triggering rule Eq. 4.12 is interpreted as


‖z2(k)− x̄(k)‖ ≤ σ ‖x̄(k)‖ ⇒ (Non-triggered)

‖z2(k)− x̄(k)‖ > σ ‖x̄(k)‖ ⇒ (Triggered).

(4.19)

A constant σ ≥ 0 is specified as a threshold. The trigger rule is running concur-

rently with the state dynamics and determines which mode the system operates in at

each time k > 1. The condition ‖z2(k)− x̄(k)‖ > σ ‖x̄(k)‖ is defined as the ’event’,

indicating that predictor’s estimation accuracy is unsatisfied.

Advantages of adding predictors can be summarized into two aspects. For the first

aspect, compared to Eq. 4.12, x(k−) is replaced by z2(k) to prevent the zero-order-

hold in ‘non-triggered’ mode. Thus, instead of monitoring the error between the value

of held state and real-time state, the triggering rule evaluates the state variables error

between the predictor and the observer. Otherwise, the controller keeps using the last

stored x(k−) to calculate u, and u is unchanged until ‘triggered’ mode. For the second

aspect, since u can be calculated by z2(k) in ‘non-triggered’ mode, it indicates that

the communication is not necessary to be triggered at every moment. In other words,

the predictors help save the communication resources.

A task divider is added to divide a complicated task into multiple sub-tasks that

each sub-task runs in an individual sub-frame. As shown in Fig. 4.3, one sub-task

starts when the robotic fish is swimming straightly. A regulation control makes the

robotic fish turn once to narrow the tracking error down. When the tracking error
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is close to zero, as the robotic fish is swimming straightly again, a new sub-task is

assigned for the next maneuvering. Because the fish model is based on velocity per-

turbations in Eq. 3.19 during straight swimming, the model in Eq. 3.26 is considered

to be deviated from the nonlinear model Eq. 3.8 at the equilibrium condition that

∆r = 0 and ∆δ = 0. The robotic fish is controlled to approach the equilibrium

condition in each sub-task. When a new sub-task is assigned, x̄ and zi is reset be-

cause ∆r ≈ 0 and ∆δ ≈ 0. Thus, the error caused by the unmodeled dynamics and

disturbance will not be inherited to the next sub-task.

Figure 4.3: The illustration of task divider.

4.2.3 Simulations

In the simulation, the nonlinear fish dynamics is simulated using a 2nd-order

Runge-Kutta method described in Eq. 3.29. The simulation assumes that robotic

fish’s position is obtained through an external sensor at a constant sampling rate.

Yaw angle ψ(k) is calculated using position data. The position acquisition in real

circumstances may contain sensing errors, and the yaw angle calculation is highly

disturbed by fish head’s swing movement. A Gaussian noise with ± 0.02 m magnitude

is added to the obtained fish position. Control objective is to control robotic fish’s
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swimming direction to a desired reference yaw angle ψd. In simulations, the robotic

fish starts from standstill and swims with a constant flapping frequency of 2 Hz. After

3 seconds of straight swimming, the controller starts to steer the robot. A constant

communication rate (CCR) of 2 Hz is the default sampling rate. The controller design

is based on the linear model Eq.4.4 and observer Eq.4.14, with

L = [−36.23,−76.05,−40.04]T ,

K = [3.45,−3.04, 2.67], and H = 0.05.

(4.20)

as the coefficient matrices.

In Fig. 4.4a, the PETC with σ = 0.2 to track the ψd =0.25π rad is shown. Its

bias control input u(k) is plotted as a solid line in Fig. 4.4b. We view the reception of

x̄(k) as a triggered communication from the remote controller to the robot. We note

that the PETC has a total of 13 triggers during the 25 second simulation. The ‘event’

plot Fig. 4.4c shows how the event is triggered in terms of (4.19) in Section 4.2.2.

When the trigger is applied, the value of ‖z2(k)− x̄(k)‖ is immediately lowered. More

specifically, the state estimate comparison (the second state) between the observer

and predictor from 10 s to 15 s is shown in Fig. 4.4d. It shows predictors’ estimation

is corrected when the trigger is applied.

Fig. 4.5 shows how the PETC behaves with various values of σ. It is clear that

σ=0.1 causes the most triggers, from Fig. 4.5a. A smaller σ leads to not only a lower

threshold, but also more frequent communication to constrain the ‖z2(k)− x̄(k)‖. In

the current circumstance, the external disturbance is not dramatic, σ value can be

selected based on how much communication resources need to be saved.

While the PETC can reduce the number of triggers and save communication re-

sources, its performance can also be maintained when the communication sampling
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(a) Output. (b) Input.

(c) Trigger rule. (d) Predictor.

Figure 4.4: Simulation result of PETC for a step reference.

(a) Input at σ = 0.1. (b) Trigger rule at σ = 0.1.

(c) Input at σ = 0.4. (d) Trigger rule at σ = 0.4.

Figure 4.5: Simulation result of PETC with different σ.
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rate drops. The controller is tested at a reduced communication rate (RCR) case, in

which the communication sampling rate drops to 0.5 Hz. An OSFC is designed for

comparison. When communication is unavailable, we consider the situation is equiv-

alent to a non-triggered mode. Hence, the control law for OSFC can be represented

as

u(k) =


−Kx̄(k−) +Hq3(k−) (Non-triggered)

−Kx̄(k) +Hq3(k) (Triggered),

(4.21)

using the same definition of (k−) in Eq. 4.9. Fig. 4.6a shows how the OSFC behaves

in the RCR case. Because only 11 triggers are available and u(k) is held constant

between triggers, the OSFC has a large error in ψ and u(k) exhibits oscillations. In

Fig. 4.6c, the PETC in the RCR case is shown. A much smaller steady-state error in

ψ is exhibited, and u(k) has only 3 triggers with no obvious oscillation.

(a) OSFC at 0.5 Hz (b) OSFC at 0.5 Hz

(c) PETC at 0.5 Hz. (d) PETC at 0.5 Hz.

Figure 4.6: Simulation results of OSFC and PETC at 0.5 Hz communication rate.
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4.2.4 Experiments

In experiments, the robot swam in an above-ground swimming pool that was 10

meters in length and 5 meters in width. The observer and trigger-rule ran on a laptop

computer which communicated with the robotic fish through Wi-Fi. Robotic fish’s

position was obtained through computer vision using a camera installed 5 m above

the pool. The source of sensing noises are errors in computer vision and waves in the

swimming pool. The feedback gain was adjusted to K = [3.7,−3.33, 2.93] to account

for the model uncertainty. The controller was tested by a comprehensive task. The

first sub-task requires the robotic fish to steer to 0.25π rad in 15 seconds with a 2 Hz

communication rate. The second sub-task requires the robotic fish to steer to 0.5π

rad with a 0.3 Hz communication rate. Besides PETC and OSFC, we implemented

a PID controller with Kp = 0.6, Ki = 0.005, and Kd = 0.4 for comparison.

In Fig. 4.7a, the PETC with σ = 0.2 is shown. The desired and achieved yaw

angles are shown in the first plot, and the bias control input u(k) is plotted as a

solid line in the second plot. Red circles represent each trigger. The PETC needs

8 triggers, and ψ response has a negligible overshoot with an average of 9 s settling

time. The ‘event’ subplot shows that the triggering rule makes the prediction error

converge to zero in CCR case. When the second sub-task begins, the prediction

error is reset to zero. In the second sub-task, the trigger rule has less capability

to constrain the prediction error. Hence, the output shows more overshoots and

oscillations. However, the PETC still makes u(k) converge to zero. The experimental

results using OSFC are shown in Fig. 4.7b. The controller received x̄(k) from the

observer at every communication instance after 5 seconds of straight swimming. We

consider the reception of x̄(k) as a triggered communication from the remote controller

to the robot, and also use a red circle to represent each trigger. In CCR case, we
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note that the OSFC triggers 30 times at 2 Hz communication rate and has a good

performance. After the communication rate dropping to 0.3 Hz, the OSFC needs

only 5 triggers, and u(k) is held constantly between two triggers. As a consequence,

there is a more obvious oscillation in the yaw plot after 20 seconds. The PID control

exhibits a similar result in Fig. 4.7c.

Experimental trajectories for PETC, OSFC, and PID are plotted in Fig. 4.8a. The

robotic fish starts from an initial yaw angle of 0 degrees. The value of ψd is selected

so that the robotic fish is firstly required to track a 45-degree heading angle, followed

by a 90-degree heading angle. The yaw oscillation of the OSFC and PID in the RCR

case are shown as green and blue lines. Snapshots of the robot using PETC are in

Fig. 4.8b.

The control performances in terms of numbers of triggers and mean-square-error

at steady-state are listed in Table. 4.1. Each control is tested in 5 repeated exper-

iments to collect the data. Table. 4.1 shows that PETC sacrifices some tracking

accuracy to save communication resources, and its performance is consistent when

the communication sampling rate drops. The experiments exhibit consistency with

the simulation.

Table 4.1: Performance of controllers

Sub-task 1 (2 Hz) Sub-task 2 (0.3 Hz) Total
#Triggers MSE #Triggers MSE #Triggers MSE

PETC 3 0.115 5 0.121 8 0.118
OSFC 30 0.051 5 0.476 35 0.263
PID 30 0.083 5 0.336 35 0.209
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(a) Experimental result of PETC.

(b) Experimental result of OSFC.

(c) Experimental result of PID.

Figure 4.7: Experimental results.
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(a) Trajectory of robot.

(b) Snapshots for PETC

Figure 4.8: Experimental trajectory and snapshots of robotic fish.
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4.3 Chapter Summary

This chapter discusses the steering control of robotic fish based on a linear model.

A transfer function is proposed in Chapter 3 to model robotic fish’s yaw motion with

respect to bias, which is controlled by a servo motor. A state-space model is de-

rived from the transfer function to develop a state observer that could estimate the

internal state vector using bias input and yaw output. Two types of controllers are

designed: one is a traditional state-feedback controller with full state feedback from

an observer, and the other is an event-trigger controller with predictors. The devel-

opment of ETC addresses the challenge of communication inconsistency in robotic

fish’s deployment. The performance of error-based control and traditional OSFC is

highly sabotaged when feedback information is not provided on time. The proposed

ETC has predictors and integrators to estimate state-vector and output error with-

out feedback information. An event trigger law monitors the error of state-vector

estimation to determine the timing of providing feedback. Using ETC benefits the

deployment of robotic fish in saving communication resources and increasing robust-

ness. Under ETC, the feedback information is not necessary to be sent to the robot

at every sampling time. Thus the communication resource is saved. When commu-

nication frequency is inconsistent, the bias of robotic fish is kept adjusted instead of

zero-order-hold so that the steering control performance is maintained.
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Chapter 5

Three-dimensional Robotic Fish

Three-dimensional (3D) maneuverable robotic fish is highly favorable because of

its abilities in underwater maneuvering. The most existing robotic fish lack vertical

maneuverability because the size of depth control mechanism is too big to fit in a small

underwater robot. Well-developed underwater robots usually adopt the dynamics

control method because this method changes depth quickly. The buoyancy control

method should be complementary for extreme circumstances, such as weight changes

and emergency ascent. Some robotic fish employ dynamic control methods using

pectoral fin and center mass devices, and they have received good results. However,

due to its compact size and limited energy storage capability, adopting the buoyancy

control method is still challenging for robotic fish. In this chapter, a compact 3D

maneuverable robotic fish focusing on the buoyancy control method is developed.

It equips with an onboard water electrolyzer that generates gases for depth change.

The design concept, dynamic model, and experiments are discussed to demonstrate

the maneuverability of robotic fish in the vertical direction. The robotic fish’s major

component, buoyancy control device (BCD), is discussed with a state-of-art dynamic

analysis to demonstrate its novelty and potential. In this chapter, the BCD design,
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modeling, and experiments were conducted by my labmate Alicia Keow. Based on

her model and identified parameters, I developed the optimal trajectory planning

considering input constraint and velocity constraint and integrated the BCD with

robotic fish to achieve 3D maneuvering capability. I also conducted modeling and

testing of 3D maneuverable robotic fish.

5.1 3D Robotic Fish

5.1.1 Overall structure of robotic fish

The overall design of the fish is shown in Fig. 5.1a. It has a total length of 0.32 m

and a weight of 0.8 kg. The head is covered with silicon rubber to balance the weight.

A single-joint caudal fin design is adopted because of its simplicity and reliability

for two-dimensional swimming. The caudal fin is actuated by a servo motor which

could output a sinusoidal pattern flapping with 30 degrees amplitude. The embedded

circuit consists of a micro-controller and a 7.4 V Li-ion battery. The swimming speed

of robotic fish is changed by fishtail’s flapping frequency, and the steering is governed

by the bias angle of flapping. An BCD is used for depth control.

BCD consists of three components: a gas chamber, a solenoid valve, and a IPMC-

enabled electrolyzer. The IPMC-enabled electrolyzer is at the bottom of the gas

chamber and submerged in water. IPMC is made by a Nafion membrane compressed

by two acrylic frames. Two pieces of titanium, on both sides of the membrane, act as a

pair of electrodes (Fig. 5.2). The Nafion membrane is an electron and anion insulator

but is permeable to cations. When a voltage is applied across the electrodes, the

accumulation of charge occurs across the electrodes. The permeable membrane in

the IPMC allows the hydrogen ions to penetrate and combine with free electrons on
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(a) 3D robotic fish prototype.

(b) 3D robotic fish assembly.

Figure 5.1: 3D robotic fish.
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the cathode to form hydrogen gas. On the other side, oxygen gas is produced by

the anode. When going up is needed, the electrolyzer will keep generating hydrogen

and oxygen gas, and the gas is stored in the gas chamber. The gas displaces the

volume occupied by water so that the overall system’s volume increases. Therefore,

the buoyancy is increased. The volume of the gas chamber is 9 × 10−6m3. The

gas occupies only a slight chamber space. Therefore it does not impact the robotic

fish’s front-rear weight balance. When going down is needed, the stored gas will be

released by the solenoid valve so that the volume is surrendered to water. Therefore

and buoyancy is decreased. Overall, BCD uses a gas chamber and a solenoid valve to

change the density of the entire system so that net vertical accelerations are produced.

Figure 5.2: Electrolyzer assembly.

5.1.2 Dynamic model of robotic fish

A four-dimensional dynamic model is developed based on the Cartesian coordinate

system with O − XY Z, standing for the inertial coordinate frame, and G − xyz,

standing for body-fixed coordinate frame [85]. The following assumptions are given

to simplify the model. The roll and pitch motions are not considered because they
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are unchanged and uncontrollable. Also, the body axis origin coincides with the

center of mass, which is also the center of rotation. Let u, v, w be the linear velocity

components and r be the z-axis angular velocity in body-fixed coordinate. ψ be the

angle between coordinates (Fig. 5.3). The coordinates transformation equation is



Ẋ

Ẏ

Ż

ψ̇


=



cosψ − sinψ 0 0

sinψ cosψ 0 0

0 0 1 0

0 0 0 1





u

v

w

r


. (5.1)

In body-fixed coordinate, a simple rigid-body dynamics model is adopted , consid-

Figure 5.3: Cartesian coordinate system of 3D robotic fish.

ering Fx, Fy, Fz to be the force component at xyz-axis, and N to be the rotational

moment

m(u̇− vr) = Fx,

m(v̇ + ur) = Fy

mẇ = Fz,

Iṙ = N.

(5.2)
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Because BCD doesn’t change pitch angle, the robotic fish’s vertical motion is sepa-

rately analyzed from two-dimensional motion.

In two-dimensional motion, the external forces and moments in Eq. 5.2 can be

sorted into two parts, namely, the thrust f(·) from the fishtail and the drag force D(·)

on the fish body

F(·) = f(·) +D(·). (5.3)

Here we neglect the viscous resistance by assuming the fluid surrounding the fish is

inviscid. The drag force is calculated based on the body’s shape. Because the robotic

fish belong to the category of single-joint robotic fish, thrust is obtained from the

caudal fin’s pure oscillating. A quasi-state model [29] that ignores the elasticity of

caudal fin is adopted. In this method, only the force produced from the caudal fin is

considered. The thrust produced by the caudal fin comes from two aspects: the lift

force generated when the fin goes through the flow, and the fluid inertial force caused

by added mass phenomenon.

In the body-fixed frame, as shown in Fig. 5.3, α represents the tail’s flapping angle.

Since the tail is made from a high stiffness plastic board, the thrust is considered

generated at the center of mass of the caudal fin, whose coordinate [x1, y1] is given

by:

x1 = l0 + l1 cosα,

y1 = l1 sinα.

(5.4)

The fin’s center point has velocity U1 = [ẋ1, ẏ1]. It is assumed that the robotic fish

is steady in a constant flow of Um, which is regarded as the relative flow caused by

the fish’s forward swimming. Let U be the relative velocity to the flow at the center
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point of the tail (Fig. 5.3). The angle of attack γ of the tail is obtained as follows

U =
√
ẏ1

2 + (ẋ1 − Um)2,

γ = α + arctan
( ẏ1

ẋ1 − Um

)
.

(5.5)

In Fig. 5.3, the lift force fl is perpendicular to U . Based on the added mass

theory [97], the fluid inertia force fv is perpendicular to the fin. These forces are as

fl = πρLCU2 sin γ,

fv = −0.5πρLC2 d(U sin γ)

dt
,

(5.6)

where ρ is the fluid density, L and C are the span and chord of the caudal fin,

respectively. The resultant forces fx and fy acting on the body are obtained as

fx = (fl cos γ + fv) sinα,

fy = (fl cos γ + fv) cosα.

(5.7)

We only consider the drag force from fish body. Ax and Ay are the projected body

areas along the x and y axes. CDx and CDy are the respective drag coefficients. Thus

the drag force components along the x and y axes are

Dx =
1

2
CDx ρAx u

2,

Dy =
1

2
CDy ρAy v

2.

(5.8)

When the servo motor outputs a constant bias angle, the unbalanced lateral force

will generate a torque N acting about the point G, as follows:

N = fyx1 − fxy1. (5.9)
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In the vertical direction, the displacement Z = 0 is defined at the water surface,

and vertical velocity is denoted as w. While ignoring changes in pitch angle, the

equation of motion is

mẇ = fG − fB −Dz,

fB = ρg(V1 + V2),

Dz =
1

2
ρAzCDzw|w|.

(5.10)

fG represents the gravity. fB represents the buoyancy. Drag force Dz acts along the

direction opposite to w, in which CDz is the drag coefficient, Az is the projected body

areas along the vertical direction. V1 is the constant volume of the device, which

includes all the in-compressible rigid parts. V2 is the gas volume in the gas chamber.

From experiments, following parameters are obtained.

Table 5.1: Parameters of 3D robotic fish

l0 l1 L C
0.05 m 0.04 m 0.09 m 0.05 m
V1 Vchamber Ax Ay
7.96× 10−4m3 9× 10−6m3 0.01 m2 0.03 m2

Az CDx CDy CDz
0.015 m2 0.4 2.2 0.2
Qin Qout I m
1× 10−7m3/s 1× 10−7m3/s 0.025 kg/m2 0.8 kg

5.1.3 Forward swimming and turning test

While two-dimensional swimming is not the focus of 3D robotic fish, basic tests

were conducted at the water surface to collect data for model validation. The swim-

ming speed was tested in various flapping frequencies without bias angle. The steering

test kept the bias angle at ±30 degrees and measured the angular velocity at various

flapping frequencies. The simulation results, derived through the parameters from
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Tab. 5.1, are compared with experimental data in Fig. 5.4a for forward swimming,

and in Fig. 5.4b for steering.
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(b) Turning velocity.

Figure 5.4: Experimental and simulation data of robotic fish’s two-dimensional swim-
ming.

5.1.4 Three-dimensional maneuverability test

The 3D maneuverability test focuses on investigating the robotic fish’s vertical

maneuvering performance. Two types of tests were conducted to exhibit the fish’s

vertical maneuverability; the spiral motion combines the fish’s turning motion with

vertical motion. It requires the robotic fish to perform steering while descending or

ascending. In Fig. 5.5, the robotic fish started from the bottom to rise while keep

turning clockwise. In experiments, the voltage applied to the IPMC electrolyzer is 3

V, and the flapping frequency of the tail is 1 Hz. With a lower gas generation rate,

it takes 44 s for fish to reach the surface while finishing a 900 ◦ turn. The snapshot
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presents a clear spiral path made by fish.

Figure 5.5: Experimental snapshots of robotic fish’s spiral motion.

A vertical motion test examines the robotic fish’s performance in changing and

maintaining its depth. During that test, buoyancy needs to be adjusted by the cor-

poration of electrolyzer and valve. In an open-loop control experiment in Fig. 5.6,

snapshots record the fish making six depth changes in 3 minutes. The fish starts from

the tank bottom and electrolyzer spends 30 s to surmount the volume insufficiency

and start to lift the fish. Then solenoid valve releases a small amount of gas and lets

the fish remain steady at 15 cm for 20 s. The electrolyzer then lifts the fish to 30 cm
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and makes it stay for another 20 s. After that, the fish moves up and down by keep-

ing the electrolyzer running and periodically releases gas. This experiment proves the

maneuverability of the robotic fish in the vertical direction and the effectiveness of

this design.

Figure 5.6: Experimental snapshots of robotic fish’s vertical motion.
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5.2 Buoyancy Control Device

BCD is the core component of 3D robotic fish. Its design and performance

determine the mobility of the robotic fish in the vertical direction. Previously, a

proportional-integral-derivative (PID) controller was developed by my labmate Alicia

Keow for BCD to maintain depth, and a pressure sensor provided the depth feedback

[3]. Due to the slow gas generation rate, BCD’s maneuvering is restricted in order

to avoid control saturation. This section discusses detailed BCD dynamics, as well

as a one-dimensional trajectory planner. The trajectory planner is based on optimal

control theory. It considers the constraint of system input and system state. The goal

of this trajectory planner is to find the quickest path for BCD while staying bounded

within an allowable input range.

BCD has three major components: a solenoid valve, a gas chamber, and a water

electrolyzer. Water electrolyzer produces hydrogen and oxygen gases. It sits below a

gas chamber and is immersed in the surrounding fluid. The gas chamber is designed

to store the gas produced from the electrolyzer. Gases are accumulated at the top

of the chamber due to gravity, displacing water and increasing buoyancy. The inlet

of the solenoid valve locates at the top of the gas chamber, while its outlet connects

to the exterior. Turning on the solenoid valve allows the gas to escape and decreases

the buoyancy. The schematic of BCD is shown in Fig. 5.7.

The electrolyzer is actuated by voltage, which is interpreted by pulse-width mod-

ulation (PWM) to change the speed of gas generation. The gas generation rate is

linearly related to applied voltage. At a steady-state, the flow of charge from the volt-

age source to the IPMC is proportional to the movement of hydrogen ions across the

membrane, which also represents the rate of hydrogen gas generation. Experiments

that run at the atmospheric pressure record the time of the electrolyzer filling a gas
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Figure 5.7: Schematic of BCD [3].

tube in various voltage conditions. The electrolyzer is tested from 3 V to 5 V at a 0.5

V step while recording the current and time needed for the electrolyzer to generate 6

ml gas. The result in Fig. 5.8a shows that at 3 V, electrolyzer needs 290 s to collect

the gas, which denotes a gas generation rate of 2 × 10−8m3/s. Respectively, at 5 V,

the electrolyzer needs 85 seconds to collect the gas, which denotes a gas generation

rate of 7 × 10−8m3/s. Based on repeated measurements, the average gas generation

rate is 5× 10−8m3/s at 4.5 V and the average gas release rate is 3.5× 10−6m3/s. The

power consumption at each voltage is displayed in Fig. 5.8b.
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Figure 5.8: Gas generation test result

5.2.1 BCD model

The model of BCD is similar to Eq. 5.10 in Z-axis with the vertical velocity defined

as Ż and acceleration defined as Z̈. The origin is Z = 0. The equation of motion is

mZ̈ = mg − fB −Dz,

fB = ρg(V1 + V2),

Dz = C ′DŻ|Ż|,

(5.11)

where C ′D is a generalized drag coefficient. From the equation, the buoyancy is ad-

justed by changing the volume V1 and V2. The difference between V1 and V2 as

following: V1 includes all the rigid volume of the device, which is in-compressible and

time-invariant; V2 represents the volume occupied by gas, which is compressible and

90



time-variant. It is well known that the water pressure is increased by depth, so the

same amount of gas cannot provide constant buoyancy with the variation of depth.

A necessary step in modeling the BCD is finding the instantaneous gas volume inside

the chamber. From Chen’s work [98], V2 can be written as

V2 =
Patm(Vin + V3)

Patm + ρgZ
, (5.12)

where Patm represents the atmospheric pressure, Vin is an arbitrary initial volume at

the surface, and V3 is the gas volume increment from the actuators if under atmo-

spheric pressure. Combine Eq. 5.11 and Eq. 5.12 leads to

Z̈ = g − ρg

m
[V1 +

Patm(Vin + V3)

Patm + ρgz
]− C ′D

m
Ż|Ż|. (5.13)

Define V0 as the standard volume needed to keep the system in neutrally buoyant

condition. From Eq. 5.11, with zero acceleration and drag force, V0 will be

V0 =
m

ρ
− V1. (5.14)

Note that V0 is a constant value. Whenever V2 equals to V0 in underwater, the system

will be neutrally buoyant. Here the mass added to the system from the liquid-gas

conversion is neglected. Inserting V0 into Eq. 5.13, it can be reorganized as

Z̈ =
c1V3 + c2Z + c3

Patm + ρgZ
− C ′D

m
Ż|Ż|, (5.15)

c1 = −Patmρg
m

, c2 =
V0ρ

2g2

m
, c3 =

ρgPatm(V0 − Vin)

m
.

Define state variables as x1 = Z, x2 = Ż, and x3 = V3. The nonlinear dynamic
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function can be written as


ẋ1

ẋ2

ẋ3

 = f(.) =


x2

c1x3+c2x1+c3
Patm+ρgx1

− C′
D

m
x2|x2|

u

 . (5.16)

Control input u = dV3/dt is the rate of change of the volume. At f(.) = 0, the

equilibrium point x1eq can be selected at any depth. For example, If the equilibrium

point is selected at water surface, then ẋ1 = ẋ2 = ẋ3 = 0, and Vin = V0. If the

equilibrium point x1eq is not on water surface, Veq denotes the required surface volume

that makes system to be neutrally buoyant at x1eq. In this case, Vin is

Vin = Veq = V0 +
V0ρg

Patm
x1eq. (5.17)

The explicit system behavior is analyzed around the equilibrium point, [x1eq, 0, 0],

Vin = Veq. Firstly, the input u is eliminated from the equation, thus x3 = 0 and the c1

can be removed from the equation. Let x′1 = x1 − x1eq represent the depth variation

regarding to the equilibrium depth. Hence, the system is modified to be

ẋ′1
ẋ2

 =

 x2

c2x′1
Px1eq+ρgx′1

− C′
D

m
x2|x2|

 , (5.18)

and modified equilibrium point changes to x0 = [0, 0].

The equilibrium x0 is unstable if existing a decrescent function V : R+×Rn → R
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such that for initial time t0.

(i)V̇ (t, x) is a locally positive definite function

(ii)V (t, 0) = 0 ∀t ≥ t0

(iii)∃ a point x0 6= 0 arbitrarily close to 0 s.t.V (t0, x0) ≥ 0

In this analysis, the system is in time invariant. We define a function V = x′1x2 that

has V (0) = 0 and V (x) > 0 for some x which are arbitrarily close to 0. Take the time

derivative on V and we have

V̇ =
c2x
′2
1

Px1eq + ρgx′1
+ x2

2(1− C ′D
m
x′1sign(x2)). (5.19)

If |x′1| < min
{
Px1eq
ρg

, m
C′
D

}
, then Px1eq+ρgx

′
1 > 0 and 1−D

m
x′1sign(x2) > 0. One can con-

clude that V̇ is locally positive definite over the ballBr and r ∈ (0,min
{
Px1eq/ρg,

m
C′
D

}
).

As shown in Fig. 5.9b, V̇ is locally positive definite around the origin. This instability

conclusion also can be checked by the phase plot, for x1eq = 5 as shown in Fig. 5.9c.

Any initial state located in the second and fourth quadrant will try to approach the

equilibrium point. After that, the state will shift to the first and third quadrant and

move to infinity. This instability analysis indicates that any disturbance will lead the

stable BCD to be either sinking to the bottom or jumping out of the surface.

5.2.2 Velocity constraint

Eq. 5.19 identifies the system Eq. 5.16 is unstable. A control saturation will lead

the system to an irreversible failure, especially during diving. Identifying the system

constraint is an essential step in designing the controller. The input constraint can

93



(a) Plot of V (b) Plot of V̇

4 4.5 5 5.5 6

x1

-1

-0.5

0

0.5

1

x
2

(c) Phase portrait diagram at 5m

Figure 5.9: Stability analysis at equilibrium point.
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be represented by umax, which is the limitation of the actuator. When BCD is diving,

the instantaneous gas volume is decreasing due to water pressure increasing, thus

the electrolyzer needs to keep generating gas resisting volume loss. Diving velocity

needs to be bounded to accommodate the input constraint. With considering the

drag force, x2max is reached at

∃x2max ∈ R : |u| = umax and ẋ2 = 0. (5.20)

When diving, x2 > 0, apply Z̈ = ẋ2 = 0 at Eq. 5.15, it turns out to be

c1x3 + c2x1 + c3

Patm + ρgx1

=
C ′D
m
x2

2. (5.21)

Move x3 to the left hand side

x3 =
C ′D
Patm

x2
2x1 +

C ′D
ρg

x2
2 −

ρgV0

Patm
x1 − (Vin − V0). (5.22)

The control input u can be denoted by taking the time derivative of x3

u =
C ′D
Patm

x3
2 −

ρgV0

Patm
x2 + 2ẋ2x2(

C ′D
Patm

x1 +
C ′D
ρg

). (5.23)

When ẋ2 = 0, the third term of the equation can be removed, which leads to umax

∣∣∣∣ C ′DPatm
x3

2max −
ρgV0

Patm
x2max

∣∣∣∣ = umax. (5.24)

With umax, x2max can be found by solving the cubic equation. x2max sets up a bound-

ary to guarantee device’s safety. Gas generation still could stop BCD from descending

when velocity within boundary. Whenever the velocity exceeds this boundary, it will
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drop to the bottom.

We use a simulation to explain the velocity boundary x2max. The simulation is

based on the model parameters from previous Keow’s work [3]. The parameters are

list in Tab. 5.2. In this simulation, velocity constraint is obtained at the initial depth

at 5m. Based on Eq. 5.24, the maximum diving velocity x2max is 0.0208 m/s. In

testing the velocity constraint, the model is simulated at the an initial velocity range

0.0208 ± 0.005m/s. The position-velocity trajectories of this initial velocity range

are shown in Fig. 5.10, in which a red line highlights the trajectory of the initial

velocity x2(0) = x2max. From the phase plot, the upward trajectory x2(0) < x2max

(in blue) indicates the gas generation is able to recover the BCD from sinking, while

the downward trajectory x2(0) > x2max (in green) indicates the BCD will sink to the

bottom. The trajectory of x2(0) = x2max sits in between, indicating the BCD can

temporarily maintain its velocity.

Table 5.2: Parameters of BCD

Patm g m ρ C ′D
101325 Pa 9.8 N/kg 0.5 kg 997 kg/m3 0.25
V1 V0 Ks ûmax Zeq
4× 10−6m3 5× 10−4m3 0.3 1× 10−6m3/s 5 m

5.2.3 Optimal jerk trajectory

The trajectory of BCD is designed by optimal control theory [99]. A virtual system

is introduced and applied into a typical newton’s second law system, which indicates

the vertical maneuvering of the BCD. A virtual state is defined as x̂3 = z̈ to represent

acceleration. Thus, a linear representation of the virtual system is given as

ẋ1 = x2, ẋ2 = x̂3, ˙̂x3 = û. (5.25)
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Figure 5.10: Phase plot near constraint.

Virtual control û is a jerk, which is the third time derivative of the displacement.

One can take another time derivative in (5.16) to find the jerk. When acceleration is

very small, û can be treated linearly to u close to initial position x1(t0)

û =
c1u

Patm + ρgx1

+
(c2Patm − c1ρgx3)x̂3

(Patm + ρgx1)2
+

2C ′D
m

x̂3x2

≈ c1u

Patm + ρgx1(t0)
.

(5.26)

The input constraint is transferred from umax to ûmax by Eq. 5.26. A safety coefficient

Ks ∈ (0, 1) is chosen to make sure that there is enough margin before the system

exceeding the control boundary. The constraint of the jerk ûmax can be approximately

represented as

|û(t)| ≤ ûmaxKs ≈
c1umax

Patm + ρgx1(t0)
Ks. (5.27)

The jerk trajectory aims to make BCD accelerate from zero and avoid unrealistic

changes in velocity. The control target is minimizing the total time. The performance

index is defined by

J =

∫ tf

t0

1dt = tf − t0. (5.28)
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Applying Lagrange multiplier method to adjoin the performance index and the state

function, Hamiltonian equation H can be formed as

H(x(t), λ(t), û(t)) = 1 + λ1(t)x2(t) + λ2(t)x̂3(t) + λ3(t)û(t), (5.29)

where λi is a Lagrange multiplier. Assuming x∗, λ∗ and u∗ are the optimal value of

the state and control, according to the Ponryagin principle, the minimization of the

Hamiltonian equation can be shown as

H(x∗(t), λ∗(t), û∗(t)) ≤ H(x∗(t), λ∗(t), û(t))

= min
|û|<ûmax

H(x∗(t), λ∗(t), û(t)).
(5.30)

It leads to

λ∗3(t)û∗(t) ≤ λ∗3(t)û(t), (5.31)

where |û| < ûmax, implying the minimum of the right side is

min
|û|<ûmax

λ∗3(t)û(t) = −ûmax|λ∗3(t)|. (5.32)

Thus, the control law can be applied as

û∗(t) =


−ûmaxKs λ∗3(t) > 0

∅ λ∗3(t) = 0

ûmaxKs λ∗3(t) < 0

. (5.33)

It is clear that the control law follows the bang-bang method, which is one of the

approaches to deal with the input constraint problem [100]. The sign of λ3 is related

to the boundary condition. The boundary conditions are x(t0) = [x1(t0), 0, 0], x(tf ) =
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[x1(tf ), 0, 0], and x1(tf ) > x(t0). The acceleration’s direction needs to be changed

twice, which requires jerk’s direction to be changed three times. Define three change

timings as T1, T2, T3 and initial time as T0. Hence, the acceleration, velocity, and

displacement need be integrated from the jerk, along with three time periods

û∗(t) =


ûmaxKs T0 6 t < T1

−ûmaxKs T1 6 t < T2

ûmaxKs T2 6 t < T3

x(T3) = (

∫ T3

T2

+

∫ T2

T1

+

∫ T1

T0

)ẋ(t)dt+ x(T0).

(5.34)

Equation Eq. 5.34 is solved numerically by Broyden’s method [101], which is

rn+1 = rn − A−1
n F (rn), (5.35)

where A is Jacobian matrix of rn, then nth is iteration of [T1, T2, T3]. F (r) is defined

as

An = An−1 +
F (rn)

‖sn‖2
2

sTn ,

F (rn) = f(rn) + f
′
(rn)(rn+1 − rn) = 0,

sn = rn − rn−1,

where f(r) is the function of [T1, T2, T3] after n iterations.

For a small displacement, the transit velocity may not exceed the constraint. In

this case, a bang-bang method with two switching times is optimal. If the velocity is

outside of the constraint due to the big maneuvering, the bang-bang method needs

to be modified to the bang-bang-off-bang-bang (BBFBB) method. State constraint

is

|x2(t)| 6 x2maxKs. (5.36)
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The jerk will be turned off when |x2(t)| reaches the x2maxKs, which brings an off period

and a pair of on-off timing. Therefore, a total of six control actions are needed: start-

end timing T0 and T5, two switch timing T1 and T4, as well as on-off timing T2 and T3.

The whole track is divided into three sections, two individual bang-bang trajectories

and one off period. The boundary condition is

Bangbang1


Initial = [x1(T0), 0, 0]

Final = [x1(T2), x2maxKs, 0]

Off


Initial = [x1(T2), x2maxKs, 0]

Final = [x1(T3), x2maxKs, 0]

Bangbang2


Initial = [x1(T3), x2maxKs, 0]

Final = [x1(T5), 0, 0]

.

The control law is

û∗(t) =



ûmaxKs T0 6 t < T1

−ûmaxKs T1 6 t < T2

0 T2 6 t < T3

−ûmaxKs T3 6 t < T4

ûmaxKs T4 6 t < T5

. (5.37)

T1−5 and the corresponding optimal trajectory x∗(t) are solved from the numerical

solution. T1, T2 and T5 − T3 can be found by integrating jerk to velocity x2maxKs,

also the displacement of bang-bang section. With the constant velocity during the

off control, we calculate the time T3 − T2 and solve T3, T4 and T5. The existing of

on-off timing T2 and T3 increases the time consumption, resulting the trajectory are

not global optimal anymore. But it is still the conditional optimal trajectory with

100



the consideration of safety. All the state signals can be referred for controller design.

5.2.4 Trajectory planner

Here we demonstrate two types of trajectory. In the first demonstration, the

bang-bang method plans the trajectory for BCD to dive from depth 5m to 5.05m, as

shown in Fig. 5.11. At that time, the velocity does not exceed the velocity boundary,

which is indicated by the red dashed line in the figure, and the jerk switches twice. In

Fig. 5.12, the trajectory planner switch to BBFBB method to dive from depth 5m to

6 m. The trajectory is smooth and velocity is bounded. The acceleration and depth

signal are the reference signal for the tracking controller.
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Figure 5.11: Bang-Bang method

Fig. 5.13 shows a BCD experiment using the optimal trajectory [4]. The ex-

periment was done by my labmate Alicia Keow. The trajectory was planned for
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Figure 5.12: BBFBB method

BCD to move from x1(t0)= 0.74 m to x1(tf)= 0.3 m, with the input constraint of

|ûmax| = 1.2 × 10−7m3/s. Alicia Keow designed a PDA control to track the optimal

trajectory. The experiment results show no overshoot or steady-state oscillation, and

BCD traverses smoothly between two depths. The diving speed of BCD had not

reached the velocity boundary because the displacement was small, that is why the

bang-bang trajectory was applied.

5.3 Chapter Summary

This chapter discusses the study of robotic fish’s maneuverability in the vertical

direction. The proposed 3D maneuverable robotic fish equips with a BCD to adjust

depth. The BCD has an IPMC enabled water electrolyzer that generates hydrogen

and oxygen inside the robot. The robotic fish adjusts its overall density by storing
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Figure 5.13: Experimental result of BCD with an optimal trajectory [4].
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and releasing the gas to produce a net buoyancy to maneuver vertically. The robotic

fish also equips a servo motor for two-dimensional maneuvering. In experiments, the

robotic fish demonstrates diving to tank bottom and floating to water surface. It also

demonstrates a spiral motion that steers the robotic fish while rising.

Considering the importance of BCD, BCD’s dynamic model is further investigated

to analyze BCD’s controllability and stability. The BCD is identified as an unstable

system with input constraint and state constraint. To ensure safety in vertical ma-

neuvering, an optimal trajectory planner is proposed to prevent breaking the speed

limit and saturating control input. The trajectory can slowly guide BCD to adjust

depth smoothly, and the concept is tested in an experiment.
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Chapter 6

Robotic Fish Enabled Motion

Tomography

It is obvious that the ocean current plays an important role in the operation of

marine vehicles. When marine vehicles are surveying in a confined area, the per-

ception of the flow field of this area greatly helps the vehicles in path planning and

improve energy efficiency. Traditional flow observations rely on information obtained

through buoys and satellites. It is expensive and time-inefficient. Therefore, using the

position and velocity information of the vehicles to predict the flow field can signifi-

cantly improve work efficiency. Motion tomography is a technique that uses vehicles’

navigation information to estimate the flow field. By collecting data from multiple

vehicles, the estimation accuracy can be improved, and a larger flow field area can be

observed. This technology provides a time-efficient and convenient way to monitor

ocean currents.

Robotic fish is an ideal agent for environment sensing tasks due to its maneu-

verability and multi-functional. Using robotic fish to sense the flow field can greatly

benefit transportation and environment study. To qualify the work, we add an active
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heading control (AHC) to moderate the passive heading change caused by the flow

field. With the position and direction data collected from multiple trips, a vectorized

flow map could estimate the flow field with considerable accuracy.

6.1 Mechanism

Motion tomography uses the trajectory of a moving vehicle to recover the flow

field of a specific area and describe the field using a map of vectors. Since ocean

currents affect marine vehicle’s motion, the vehicle’s trajectory is a combined effort

of vehicle’s propulsion thrust and flow-induced forces and moments. The predicted

trajectory is a trajectory caused by vehicle’s thrust only without surrounding flow.

If there is no flow in the sensing area, the actual trajectory is equal to the predicted

trajectory. The motion-integration error, denoted as d, is the shift between the actual

trajectory and predicted trajectory. It is a result of flow-induced forces and moments

with the integration of time. In motion tomography, the key step is to obtain the

motion-integration error d. Thus, a first-order particle model is used to describe the

kinematics of the moving vehicle with a constant velocity sh. Define r̃ ∈ R2×1 as the

position of the predicted trajectory, then vehicle’s velocity is represented as

˙̃r(t) = sh

(
cosψ

sinψ

)
, (6.1)

where ψ is the heading angle of the vehicle. It is easy to find that the predicted

trajectory is derived by considering the vehicle is moving straightly and without

affecting the flow field. Respectively, the vehicle’s actual velocity is represented as a
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combined effect of predicted velocity and flow [102]

ṙ(t) = sh

(
cosψ

sinψ

)
+ f(r, t), (6.2)

where r ∈ R2×1 is the position of actual trajectory, and f ∈ R2×1 represents the flow

vector at position r during the period t ∈ (t0, tf ). Thus, the motion-integration error

is denoted by subtracting the predicted trajectory from the actual trajectory

d =

∫ tf

t0

(
ṙ(τ)− ˙̃r(τ)

)
dτ =

∫ tf

t0
f(r, τ)dτ. (6.3)

Because of flow f(r, t) is position-dependent and time-dependent, the actual trajectory

of moving vehicle is high likely a irregular curve. In real circumstances, the vehicle

takes time to go through the sensing field, and the motion-integration error is only

accessible at t = tf . The flow field cannot be observed in a time-variant manner. Two

assumptions are made to simplify the motion tomography problem.

For the first assumption, the flow field is considered time-invariant in [t0, tf ], hence

the flow field can be represented as f(r, t) → f(r). The other assumption is that the

vehicle velocity is considered to be sh all the time. Therefore, the actual velocity of

the vehicle, represented by str, is a combination of vehicle velocity and the flow, and

it is position-dependent,

str(f(r)) = ‖r‖ =

∥∥∥∥sh(cosψ

sinψ

)
+ f(r)

∥∥∥∥ . (6.4)

However, the actual trajectory, in most cases, is shown as a curve and defined by γ.
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An arc length parameter ` is introduced for the actual trajectory that

d` = str(f(r))dt. (6.5)

Substituting Eq. 6.5 into Eq. 6.3, the integration error obtained through one trajectory

is

d =

∫
γ

f(r)

str(f(r))
d`. (6.6)

To cover a large area, a feasible way is to discretize the domain D (sensing area)

into P grid cells, with R columns and S rows, P = RS. A cell index j = {1 · · ·P} is

defined to indicate jth cell Dj. When a vehicle passes through a the sensing area, its

position and velocity in each grid cell will be recorded, and the flow field within this

cell is normalized by a vector started from the center of the cell. The assumptions

mentioned previously are also validated in each cell, both the flow in each cell and

vehicle’s heading are constant. Thus, vehicle’s velocity in jth cell is

sjtr(fj) =

∥∥∥∥sh(cosψj
sinψj

)
+ fj

∥∥∥∥ . (6.7)

When the vehicle goes through jth cell, the length of trajectory within the cell is

denoted as Lj that

Lj =

∫
γ[Dj ]

d` =
∥∥∥rfj − r0

j

∥∥∥ . (6.8)

The above equation indicates that the actual trajectory curve within one cell is ap-

proximated into a straight line, which is defined by the entering position r0
j and the

exiting position rfj . Hence the entire actual trajectory in D is reconstructed by a

polyline. As shown in Fig. 6.1, the entering position r0
j is the exiting position rfj−1 of

the past cell, while the length is calculated as the distance between the entering and
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exiting positions within the cell.

Figure 6.1: The trajectory of a vehicle in two connecting cells.

Based on the discretization setting, the integration error Eq. 6.6 is rewritten as

d =
P∑
j=1

Lj (̄f)

sjtr(fj)
fj, (6.9)

where f̄ = [̄fx, f̄y]. f̄x = [fx,1, fx,2, · · · , fx,P ]T is x component of flow vector in each

cell, and f̄y = [fy,1, fy,2, · · · , fy,P ]T is y component of flow vector for each cell. More

specifically, the integration error is also separately accumulated in x direction and y

direction,

dx =
P∑
j=1

Lj (̄f)

sjtr(fj)
fx,j,

dy =
P∑
j=1

Lj (̄f)

sjtr(fj)
fy,j.

(6.10)

An accurate flow field estimation requires multiple trajectories to cover as many

grid cells as possible. Assuming K trajectories are collected, and i = {1 · · ·K} is the
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index for each trajectory, the Eq. 6.10 is rewritten as

dx = L(̄f)̄fx,dy = L(̄f)̄fy, (6.11)

where dx = [dx,1, dx,2, · · · , dx,K ]T and dy = [dy,1, dy,2, · · · , dy,K ]T . L(̄f) is a memory

matrix that collects the trajectory length in each grid cell for each trajectory

L(̄f) =


L(1,1) (̄f)

s
(1,1)
tr (f1)

· · · L(1,P ) (̄f)

s
(1,P )
tr (fP )

...
. . .

...

L(K,1) (̄f)

s
(K,1)
tr (f1)

· · · L(K,P ) (̄f)

s
(K,P )
tr (fP )

 .

Based on the knowledge of each trajectory and the motion-integration error, the

motion tomography problem turns to an optimization problem in which a nonlinear

function

L(̄f)̄f = d, (6.12)

is approximated with an optimal estimation of f̄ so that the estimation has the best

match of the actual flow field. The Kaczmarz method [80] is employed to solve the

Eq. 6.12 by iterating the following optimization process

f̄
k+1

= argmin
f̄

1

2

∥∥∥f̄− f̄
k
∥∥∥2

,

subject to di = Li(̄f
k
)̄f,

(6.13)

where k denotes the number of iterations.

In Fig. 6.2, a simulation demonstrates how motion tomography works using a

moving vehicle driven by a first-order particle model. The sensing area is a 10 meter

× 10 meter domain, and it can be divided in to 36 cells. An artificial flow field is
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added at the center of the domain, and it is defined by the following function

f(r) = h1e
−h2(X−X0)2−h2(Y−Y0)2 , (6.14)

where h1 and h2 are parameters that define the magnitude and density of the field,

X0 and Y0 are the centers of the field. The function builds an artificial vector field

similar to the electrical field caused by a positive charge; the vector radiates out

from the center with decreasing magnitude. When the vehicle moves within the

domain, the artificial vector field pushes the vehicle away from the center. When

the vehicle has been pushed out of the domain, in which the strength of flow is too

weak to disturb the vehicle, the vehicle continues to move in its original direction.

The predicted trajectory, indicated by a green arrow in Fig. 6.2, is calculated using

the vehicle’s velocity before entering the domain and the time vehicle stays in the

domain, following by Eq. 6.1. The actual trajectory in every cell, indicated by black

arrows, is calculated through Eq. 6.8. The motion-integration error is the difference

between two trajectories.

Estimating the flow field of the entire domain needs the actual trajectory covering

every cell. In Fig. 6.3a, a simulation demonstrates a vehicle traveling the flow field 24

times to cover every cell in the domain. It is worth noticing that the vehicle barely

passes the center because the repulsion is strong in the center of the flow field. Using

the motion-integration errors from all trajectories, the flow field is estimated through

Eq. 6.13 and shown in Fig. 6.3b. The flow field within a cell is concentrated at the

center of the cell and is represented by a vector. The entire flow field is represented

by 24 vectors indicated by blue arrows, and the estimation result is very close to the

artificial flow field (red arrows) using Eq. 6.14.
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Figure 6.2: Illustration of the actual trajectory and the predicted trajectory.

6.2 Active Heading Control

In motion tomography, the predicted trajectory is derived through a first-order

particle model, which ignores the rigid-body rotation. The first-order particle model

is applicable if the sensing field is much larger than the vehicle. In this case, the flow

field around the vehicle can be considered uni-directional, and the flow-induced force

is uniformly acting on the vehicle. Thus, the flow would not lead to a rotational force,

and the vehicle only drifts without heading change. However, in some environments,

such as inland rivers and lakes, the sensing area is small, and the flow field is chaotic.

The flow-induced force may not uniformly act on the vehicle, and the flow-body

interaction can cause a rotational force that turns the vehicle. In this scenario, the

assumption of actual trajectory in Eq. 6.13 is no longer standing. Also, the heading

change of vehicle can cause an extra motion-integration error and deteriorate the
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(a) Illustration of the multiple trajectories.

(b) Result of flow field estimation.

Figure 6.3: Motion tomography using 24 trajectories.
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accuracy of motion tomography. Therefore, the vehicle’s rigid-body dynamics should

be considered when the sensing area is small or the flow field is irregular.

Considering that we use a robotic fish to map the flow field of a confined area, the

robot’s motion of dynamics can be represented by a simple three-degree-of-freedom

rigid body dynamic model as shown in the following form

d

dt



X

u

Y

v

ψ

r


=



ucos(ψ)− vsin(ψ)

Tx−X|u|u+mvr

m

usin(ψ) + vcos(ψ)

Ty−Y|v|v−mur
m

Tr

NT+Nf−N|r|r

I


. (6.15)

The indexes follow the definition in Fig. 3.1. The rigid body dynamics considers fluid

drag, Coriolis force, and rotational force. Assuming that the flow applied to fish body

is not uniformly distributed, as shown in Fig. 6.4a, the flow-induced forces bring not

only a displacement, but also a moment about the fish inertia. Two assumptions

are made to establish a simple model for the dynamics of nonuniform flow toward a

rigid body. The first one is that, the nonuniform flow is summarized as two major

flow vectors that separately work at the fish head and tail. The net force induced

by these two flows causes a rotational force Nf that leads to the fish rotation. The

other assumption is to assume the flow-induced force has the same direction as the

flow vector, and its strength is proportional to the vector’s magnitude. With these

two assumptions, we can model the flow-induced rotation in Fig. 6.4b. ~f1 indicates

the flow vector applied to the fish head. Respectively, the force vector corresponding

to ~f1 is represented by k ~f1. In addition, ~f2 and k ~f2 represent the flow velocity vector
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and force vector acting on fishtail. One can assume that the acting spot in head and

tail has the same distance to the center of mass, ~l1 is the position vector from the

center of mass to head, and ~l2 is the position vector from the center of mass to tail.

~l1 and ~l2 have equal magnitude and opposite directions. Hence the moment caused

by ~f1 is
〈
k ~f1, ~l1

〉
, where 〈·〉 is a cross product. So as

〈
k ~f2, ~l2

〉
is caused by ~f1. The

net moment acting at the center of mass is

Nf =
〈
k ~f1, ~l1

〉
+
〈
k ~f2, ~l2

〉
. (6.16)

(a) Nonuniform flow. (b) Flow-induced moment.

Figure 6.4: Flow-induced moment in the body-fixed frame of robotic fish.

The flow-induced rotation exaggerates the motion-integration error by including

the displacement caused by heading change. In other words, predicting the trajectory

as a straight line is not valid anymore. In order to make the robotic fish become

capable of motion tomography, an active control aiming to correct the flow-induced

rotation could be added. As shown in Fig. 6.4b, the flow-induced moment Nf is offset

by NT , which is the moment generated from thrust. The active control makes the
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following relation stand

NT +Nf −N|r|r ≈ 0. (6.17)

This equation indicates that AHC aims to counteract the moment caused by the flow,

allowing the robotic fish to behave like a particle model.

During implementation, AHC uses the robotic fish’s pose as feedback. The control

target is maintaining the pose of robotic fish unchanged when swimming inside the

sensing area. Consider the measured heading angle of robotic fish is ψ̄0
j , the controller

is designed as

u(t) = Kp(ψ̄
0
1 − ψ̄(t)) +Ki

∫
(ψ̄0

1 − ψ̄(t))dt. (6.18)

It is clear that a proportional-integral control law is adopted with Kp as proportional

gain and Ki as integral gain. u(t) is the control effort that steers robotic fish. ψ̄0
1

is the heading at the moments the robotic fish enters the sensing area. The control

target is maintaining the pose of robotic fish unchanged when swimming inside the

sensing area. The controller design skips derivative control because the pose keeps

oscillating due to the robotic fish’s head motion.

The simulation in Fig. 6.5 demonstrates how a robotic fish driven by a rigid-body

model behaves in a flow field with and without AHC. In Fig. 6.5a, the non-AHC case

shows that the flow field leads to the heading change of robotic fish and eventually

results in a huge integration error. It is easy to observe that the robotic fish leaving

the field has a different heading compared to the second it enters the sensing area. In

Fig. 6.5b, AHC corrects the heading during the swimming, making sure the heading is

consistent from the moment entering to the moment exiting the field. Therefore, the

integration error is much smaller than the case in Fig. 6.5a, and the result is very close

to the simulation that uses a first-order particle model for demonstration in Fig. 6.2.

116



Overall, adding AHC significantly reduces the impact of the flow-induced rotation,

making the collected position and velocity data reasonable for motion tomography

6.3 Experiment and Simulation

In experiments, motion tomography was performed in an above-ground swimming

pool that was 10 meters long and 5 meters wide, shown in Fig. 6.6. The flow field

was realized by installing a 3/4 horsepower submersible pump to generate a water jet

toward the water surface, making a radiation-like flow field similar to Eq. 6.14. The

pump was placed at the center of the pool. The sensing area was defined as a 5-meter

long, 3-meter wide rectangle. The robotic fish used in this experiment was developed

from previous project. It has 0.3 meters in length and 0.9 kilograms in weight. It

swam at a constant speed of 0.25 m/s in experiments, and its location and pose were

captured by a camera installed 5 meters above the pool. The computer recognized

robotic fish’s position and pose through a computer vision algorithm. The control

signals were calculated in MATLAB and transmitted wirelessly through Wi-Fi.

We first examined the effectiveness of AHC using the robotic fish. The controller

in Eq. 6.18 is reorganized into discrete-time form with proportional gain is Kp = −1.2

and integral gain is Ki = −0, 005. The negative value is because the steering direction

is opposite to the control direction for robotic fish. As shown in Fig. 6.7a, the pump

was placed at the corner of the pool. The robotic fish was tested three times, starting

from the same position with the same initial pose. In the first run (trajectory on

the left), the pump was turned off. The fish can swim straightly without external

flow. In the second run (trajectory on the right), the pump was turned on, and

the fish swam without AHC. The flow from the water jet dramatically changed the

robotic fish’s heading, and the fish was quickly being pushed away. In the third
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(a) Without AHC.

(b) With AHC.

Figure 6.5: The simulation of AHC.
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Figure 6.6: Experiment configuration.

run (trajectory in the middle), we kept the pump turned on and enabled AHC for

robotic fish. The AHC effectively adjusts fish’s heading angle to limit its variation,

and the recorded snapshot exhibits a consistent pose. The performance of AHC is

demonstrated in Fig. 6.7b. The robotic fish’s heading is bounded within ± 0.3 rad

of the initial heading ψ̄0
1 when the robotic fish is entering the sensing area. The large

error after t=16 s is due to the robotic fish hitting the wall after leaving the sensing

area. The control input demonstrates a quick controller response, which provides a

robust adjustment to reject the flow-induced moment.

These experiments obtained a similar result from Fig. 6.2, in which the simulation

was driven by a first-order particle model. One can consider the first run was the

predicted trajectory mentioned in Eq. 6.1, which neglects the external flow, and the

third run was an actual trajectory. With these two trajectories, a reasonable motion-

integration error can be obtained. Thus, the robotic fish was qualified to perform

motion tomography with the help of AHC.

The next experiment collected 24 trajectories of robotic fish with the pump turned
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(a) Experimental trajectories.
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(b) Experiment result of AHC.

Figure 6.7: Experimental illustration of flow-induced rotation and AHC.
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on. The entire sensing area was divided into 60 cells, and the pump was placed close to

the center of sensing area. In order to ensure that the robotic fish swam through each

cell, the robotic fish was started from the corners of the pool and swam towards the

pump. All collected trajectories are shown in Fig. 6.8, where four numbers indicate the

starting position of robotic fish. The flow field was estimated from these trajectories

and the estimated results are shown in Fig. 6.9a. Similar to Fig. 6.3b, a blue vector

started from the center of the cell represents the estimated flow in this cell. The

entire vectorized flow field exhibits a radiating distribution from the center area.

Because the flow field at the center of the sensing has the highest strength, none

of the trajectories can touch that region. Therefore, the estimation for the center

of the field appears blank. A denser grid improves the resolution of the flow field

estimation. In Fig. 6.9b, the estimation using 240 cells exhibits more details of the

flow field. The streamline and trend of the flow field are much clearer than the result

shown in Fig. 6.9a. Overall, experimental results successfully were used to reproduce

the map of the flow field. With AHC’s help suppress the heading change effectively,

the validity of the data collected by the robotic fish for motion tomography appears

to be solid.

6.4 Chapter Summary

In this chapter, the motion tomography enabled by robotic fish is discussed. The

mechanism of motion tomography relies on a first-order particle model that neglects

the rigid-body dynamics of marine vehicles. This assumption raises a limitation that

the rigid-body dynamics cannot be ignored when performing motion tomography

in a confined area with a chaotic flow field. To address this problem, an AHC is

developed for the robotic fish to offset the rotational moment caused by flow-induced
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Figure 6.8: Collected trajectories using robotic fish.

(a) Flow field estimation in 60 cells. (b) Flow field estimation in 240 cells.

Figure 6.9: Flow field estimation using experimental data.
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force. The concept is studied in a simulation using a simplified rigid-body dynamic

model. To further prove the effectiveness of AHC and the feasibility of using robotic

fish to perform motion tomography, experiments were conducted using a giant indoor

pool and a submersible pump. Multiple trajectories of robotic fish were collected,

seeking to recover the flow field generated by a water jet. These experiments lead to

a promising result that the robotic fish is able to perform a good flow field estimation

work with the help of AHC.
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Chapter 7

Summary and Future Work

This dissertation addresses the challenges associated with the design, modeling,

control, and application of robotic fish. From a system perspective, the conclusion of

this dissertation can be summarized as follows.

• Chapter 2 focuses on demonstrating the maneuverability of the robotic fish

driven by the DSC mechanism. The novel design of the DSC mechanism ensures

that the fishtail flaps like an oscillating foil. In robotic fish design, a servo motor

is added in front of the DSC to form a hybrid propulsion system that enables

robotic fish to swim on the water surface freely. The proposed robotic fish is

tested in experiments to examine its swimming speed and steering capability.

• In Chapter 3, the derivation of the dynamic model is benefited from the DSC

design which is guided by a traveling wave equation. Additionally, the thrust

calculation is concentrated in an individual DSC frame because DSC can achieve

undulatory locomotion. Thus, the thrust calculation is decoupled from the

robotic fish’s kinematics, and the robot can be modeled from the vessel’s per-

spective. The nonlinear dynamic model is simplified to a linear transfer function
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following the idea of the Namoto model that describes the relationship between

input bias and output yaw motion. The nonlinear dynamic model is further

used in developing a simulation environment, and the linear model is used for

linear controller design.

• In Chapter 4, the steering control of robotic fish based on the linear model is

discussed. A state-space model is derived from the transfer function proposed

in Chapter 3 to develop a state observer that estimates the system state vector

using bias input and yaw output. Two types of controllers are designed. One

is a traditional state-feedback controller OSFC, and the other is PETC. PETC

addresses the challenge of communication inconsistency in robotic fish’s deploy-

ment. It has a model-based predictor which estimates state-vector and output

error without feedback information. Under PETC, the feedback information is

not necessarily to be sent to the robot at every sampling time. Thus the commu-

nication resource is saved. When communication frequency is inconsistent, the

bias of robotic fish is continuously adjusted instead of zero-order-hold so that

the steering control performance is maintained. The advantage of PETC with

respect to OSFC and PID are demonstrated in experiments and simulations.

• Chapter 5 discusses the study of robotic fish’s maneuverability in the vertical

direction. The proposed 3D maneuverable robotic fish equips a BCD to adjust

depth. The BCD has an IPMC-enabled water electrolyzer that can generate

hydrogen and oxygen inside the robot. The robotic fish adjust its overall den-

sity by storing and releasing the gas to produce a net buoyancy to maneuver

vertically. The robotic fish also equips a servo motor for two-dimensional ma-

neuvering. In experiments, the robotic fish demonstrates a spiral motion that

steers the robotic fish while rising. Considering the importance of BCD, its
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dynamic model is further investigated to analyze BCD’s controllability and sta-

bility. BCD is identified as an unstable system with input constraints and state

constraints. To ensure BCD’s safety during vertical maneuvering, an optimal

trajectory planner is proposed to prevent BCD from breaking the speed limit

and saturating control input. The trajectory can slowly guide BCD to adjust

depth smoothly, and the concept is tested in an experiment.

• In Chapter 6, the motion tomography enabled by robotic fish is discussed. The

mechanism of motion tomography relies on a first-order particle model that

neglects the rigid-body dynamics of marine vehicles. This assumption raises

a limitation that the rigid-body dynamics is not ignorable when performing

motion tomography in a confined area with a chaotic flow field. To address

this problem, an AHC is developed for the robotic fish to offset the rotational

moment caused by flow-induced force. This concept is studied in a simulation

using a simplified rigid-body dynamic model. To further prove the effectiveness

of AHC and the feasibility of using robotic fish to perform motion tomography,

experiments were conducted using a giant indoor pool and a submersible pump.

Multiple trajectories of robotic fish were collected, expecting to recover the flow

field generated by a water jet. Experimental results have validated that the

robotic fish can perform a good flow field estimation work with the help of

AHC.

7.1 Current Limitation and Future Works

We also considered the limitation of the current work. The critical thinking and

future work can be summarized as following:
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• Firstly, The study of linear models in time domain hasn’t been sufficiently

addressed due to the limitations of experimental facilities; the model valida-

tion should include experimental data from different swimming patterns. In

model reduction, many variables are assumed time-invariant or change in a

small range. Although these assumptions benefit model derivation, they limit

the model’s generality and the robustness of the model-based controller. Be-

cause the model’s parameters will inevitably migrate in practical application,

errors caused by unmodeled dynamics and model uncertainties could be am-

plified with time. In future work, we will focus on online model identification

and adaptive control research. Adding an observer that can adaptively monitor

the model’s parameters will improve the model’s accuracy and the controller’s

robustness.

• Next, the study of 3D maneuverable robotic fish requires more efforts in combin-

ing dynamic depth control and buoyancy control. Current work is only focused

on the development of BCD using an onboard water electrolyzer. Although it

demonstrates vertical maneuvering with low energy cost, its shortage, such as

slow response speed and low gas generation rate, should not be ignored. Our

ongoing project uses both depth control methods, a vertically installed pro-

peller and a Proton-exchange membrane enabled BCD, to control an ROV with

the time-varying load. It is believed to be the most advanced depth control

approach for ROV. We hope this project can benefit our robotic fish design

by developing a compact dual-method BCD specifically for robotic fish. More-

over, we have separately studied the robotic fish in the planar maneuvering

and vertical maneuvering, but these two concepts have not yet been combined.

Subsequent work includes investigating the model and control of a robotic fish
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with five DOFs with a newly developed BCD. By that, the maneuverability

of robotic fish would be significantly enhanced, and the application value of

robotic fish would be greatly expanded.

• Last, developing applications for robotic fish is also the direction of our future

focus. For now, good preliminary results in robotic fish’s application study

are achieved with an ingenious setup for the lab-scale experiments to reflect

complex real-world environments. We still need to move our scope from the

laboratory to the real outdoor environment, where the robotic fish’s capabili-

ties will ultimately be challenged. When testing the robotic fish, we have tried

the field test of robotic fish swimming in the ocean and lake, and the experi-

ment results prove the design’s reliability. Therefore, our goal is to add a more

comprehensive positioning and perception device to the robotic fish so that we

can collect more valuable data from experiments in nature.
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