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ABSTRACT

This thesis considers the regression analysis problem 

in which the estimators of the parameters are selected 

according to some criterion other than least squares. Two 

basic areas are considered. First, some basic properties 

are derived for the estimators that minimize the sum of the 

absolute values of the residuals raised to the X power. 

Both the homoscedastic and heteroscedastic cases are 

considered. Second, procedures for estimating weights for 

two types of heteroscedastic models are presented.
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CHAPTER I

INTRODUCTION

Fitting a curve to a set of data points is one of the 

basic problems in data analysis. This problem is usually 

approached by determining a general form of the curve such 

as Y = Xg where X is a vector of variables and g is a 

vector of parameters. However, due to the stochastic 

nature of the available data, the response Y cannot be 

observed. The actual observed quantity, Y, is the true 

response, Y, plus some random error, e. Thus, if n observa­

tions are made, the model becomes Y = Xg + e where Y is 

an (nxl) vector of observed responses, X is an (nxp) matrix 

of known values of the independent mathematical variables, 

g is a (pxl) vector of unknown parameters, and e is an (nxl) 

vector of random error with E(e) = 0.

The regression problem in statistics is to select the 

g such that some objective function is extremized. The 

choice of the objective function depends upon the applica­

tion and the distribution of the random error and no 

universal agreement has been reached.

The usual assumption is that the random error has a 

dispersion matrix equal to la2 where I is the (nxn) identity. 

Models with this form of variance are said to possess homos- 

cedasticity. If, in addition, -the random errors are normally 

distributed, then the maximum likelihood estimators of g 
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and the least squares estimators, that is, estimators that 

minimize the sum of the squares of the residuals, are 

identical. Furthermore, the Gauss-Markoff theorem shows 

that these estimators are unbiased and have minimum 

variance among all linear unbiased estimators [1]. In this 

context linear means that the estimators are linear combina­

tions of the Y vector. In addition, the mathematics for 

testing various hypotheses is very tractable. For these 

reasons the least squares estimators are usually accepted 

by the practitioner for this model.

If the variance does not meet the homoscedastic 

assumption, then the dispersion matrix of ee^ can be modeled 

by Vo2 where V is an (nxn) symmetric positive definite 

matrix. This type of dispersion matrix is called heteros- 

cedastic. Often the least squares estimators are used for 

this model. There are two basic reasons for this usage of 

the least squares estimators. First, and from a practical 

point of view perhaps the most important, the least squares 

procedure is much wider known and understood than any other 

technique. Second, due to the central limit theorem, the 

errors are often assumed approximately normal.

However, it is known [2] that least squares does not 

produce the linear unbiased minimum variance estimators for 

the heteroscedastic model, even if the data is normally 

distributed. There is even criticism of the use of least 
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squares for certain cases of the homoscedastic model. For 

example, if the errors are double exponential, then the 

estimators that minimize the sum of the absolute value of 

the residuals are identical to the maximum likelihood 

estimators [2]. The criterion of linear unbiased minimum 

variance estimators has been criticized since it may exclude 

some desirable estimators that are either biased or non­

linear [2, 3j 4, 5]. The criterion of the mean square error, 

which is the variance plus the square of the bias, has been 

proposed by some of the critics as an alternate to the linear 

unbiased minimum variance estimators.

There have been two general methods proposed to find

estimators that may be in some sense superior to the least

squares estimators. The first of these are estimates that

(1)min

where Y. is the 
J

£|Y - Y.|X 
j J d

considered has X = 1. The estimators so produced are called 

observation, is the predicted

response, and X a known constant. The case most often 

the minimum sum of absolute deviations estimators and have 

been proposed by Eddington in a footnote to one of Fisher’s 

papers C6], Herrey [72 and others.

The second general method for the heteroscedastic 

model consists of estimating the dispersion matrix and then

performing a least squares analysis where each data point 

has been weighted based upon the estimated dispersion matrix.
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This model has been proposed by many authors including 

Draper and Smith [22 and Daniels [82.

The remaining chapters of this thesis will be devoted 

to estimators of. the types described above. For the homos­

cedastic case. Chapter II will consider the expectation and 

variance of the estimators determined by the norm in (1) 

for X = 1 and X -> Chapter III will develop some basic 

properties of the estimators that satisfy the above norm 

for a general X. Chapter IV will consider the problem of 

estimating weights for weighted least squares. Finally, 

Chapter V will propose some related research projects.
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CHAPTER II

ESTIIVIATORS OBTAINED FROM LINEAR PROGRAMING

For the model Y = XB + e vjith X knovm, estimators of g 

that satisfy the criterion of minimizing the sum of absolute 

deviations or of minimizing the absolute value of the 

maximum deviations, Chebyshev's criterion, have been pro­

posed as alternates for fitting a curve to data [9, 10, 11].

It is also known that linear programming may be used to 

find the estimates for these criteria. However, the expecta­

tion, variance and covariance of these estimators are not 

known. Under very general conditions, this chapter will 

present formulas for the dispersion matrix and show that 

these estimators are unbiased. The variance of the predicted 

mean of future observations will also be derived. Finally, 

the variance of the estimators and the predicted mean of 

future observations will be shown to be at least as large 

as the corresponding variances obtained by the least squares 

criterion.

Model

This chapter will consider the model

Y = X8 + e (1)

where Y is an (nxl) matrix of observed responses, X is an 

(nxp) matrix of known constants, g is a (pxl) matrix of 
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unknown parameters and e is an Cn.xl) matrix of random error. 

Furthermore, it is assumed that E(e) = 0 and the dispersion 

matrix of ee^ is D(eeT) = la2- where a2 > 0 and is unknown. 

Let be the i^;1 rovr of X, then an individual observation 

of the response, Y^, may be expressed

Yf = X..S + Of, 1=1,2,. ..,n, (2)

where e^ is the i^ element of e.

The symbol b will denote the (pxl) matrix of the 

estimators of g. The i^ element of b will be written b .
i 

Let Y be the (nxl) matrix of the predicted response and Y^ 

the i^ element of this matrix. Thus

Y± = X^, 1=1,2,...,n. (3)

The assumption that b^ # 0, 1=1,2,...,p, will be made 

for the remainder of this chapter. As stated above, bj_ is 

an estimate of The probability that the continuous 

random variable b^ = 0 is zero, even if 3^ = 0. Thus the 

assumption is not a critical restriction to the following 

results. Actually, it is sufficient to make the weaker 

assumption that b^, 1=1,2,...,p, be basic variables in the 

optimal linear programming solution that will be described 

later.

Minimum Sum of Absolute Deviations

The minimum sum of absolute deviations criterion,

MSAD, selects the estimators of g such that
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n. - n
L [Y.-Y | = S |Y.-X bl (4)

1=1 1 i=l 1

Is minimum. According to Crocker [91, this criterion of 

fitting a curve to data was first proposed by Boscovich in 

3^7. The numerical difficulties that arise In the minimiza­

tion of the expression in (4) have limited the development of 

the procedure.

However, in the late 1950’s and early 1960’s, Wagner 

[10], Karst [12] and Fisher [13] formulated the problem as a 

linear program. Let d be an (nxl) matrix of deviations, and 

denote the i^*1 element by d^. The n equations analogous to 

(2) may be written

Yi = Xib + di» 1=1,2,...,n. (5)

Since d^ is not restricted as to sign and the simplex 

algorithm for solving linear programs requires the variables 

to be positive, the well-known device [14] of writing 

d^ = d^+ - d^~ where d/1" >_ 0 and d^- >_ 0 will be adopted.

With this notation, equation (5) became

Yi = X±b + d±+ - d.", i=l,2,...,n. (6)

The objective is to

minZlY. - Y I = minzlx.b + d,"1" - d." - X4bl 
1 i i1 1 i i i 1 1

= minZld.+ - d.~l = minZ(d.+ -rd.-). (7)
1 i i 1 i i

The last equality follows since in the simplex method d^+ 

and d,. ~ cannot both be simultaneously greater than zero. 

Thus the numerical estimates for the MSAD criterion can be 

found by solving the linear programming problem with the
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objective function given by (7) and constraints given by (6). 

It should be noted that b^ is not restricted as to sign 
4- _

either and needs to be written as b^ = b^ - b^ for the 

simplex method. However, the more notationally convenient b^ 

will be used except vzhere it is necessary to consider the 

sign of the estimates.

It is knovm [11] that for the nondegenerate case a 

linear program with n constraints will have n basic variables, 

i.e., nonzero variables, and the remaining nonbasic variables 

will be zero. Under the assumption that the estimates are not 

zero, then b^ > 0, 1=1,2,...,p, and thus are basic variables. 

There is a total of n basic variables, so n-p of the 

deviations must be basic. Also, there are n deviations, 

consequently p of the deviations must be zero or nonbasic 

variables. The specific set of the p nonbasic deviation 

variables is readily available from the solution to the 

linear programming problem. For ease of notation, relabel 

the constraints in equations (6) so that the p nonbasic 

deviations a.re in the first p rows. The initial tableau 

for b^ > 0, i=l,2,...,p, can be symbolized as

b d+ d~ V

X
P

04 
H

0 p,n-p

i H y

n 
vp5n-p Y

P

0 I 0 _T Yr n-p,p n-p n-p,p n-p r
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where X is the Cdxp) submatrix of X that corresponds to 
P

the p constraints that have zero deviations, X is the 

[(n-p)xpj submatrix of X corresponding to the remaining 

deviations, is the (pxl) submatrix of Y corresponding to 

the p nonbasic deviations, Y^ is the [(n-p)xij submatrix of 

the remaining elements of Y, I is an (sxs) identity and 0s. 

is an (sxt) null matrix.

In this notation b is given by the solution of the 

system

X b = Y . C8)
P P

However, it remains to be shown that the solution to (8) is 

identical to the MSAD estimators. It will now be proven 

that Xp is nonsingular and the MSAD estimators are uniquely 

given by b = ^p™1 .

The final tableau may be partitioned as

b d+ d" y

I A 0 -A 0 b
P p,n-p p,n-p m

0 Z D -Z -Dft«»

ftI

where A is a (pxp) matrix, Z is an [(n-p)xn] matrix, b is a 

(pxl) vector containing the MSAD estimates of g and d^ is 

the E(n-p)xp] vector of numerical values of the nonzero 

deviations, D is an E(n-p)x(n-p)] matrix with 1 or -1 on 

the principal diagonal and zeros elsewhere. The specific
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signs of the diagonal elements of D depend on the signs of 

in greater detail for this discussion.

initial tableau can be transformed to the final tableau by 

premultiplying by the matrix

A
B"1

Z

found in the columns of the

initial tableau that correspond to the identity matrix in

the final tableau. Thus B will have the form

0
B

D

0 A 0 0

ZD D

Thus 

and

Multiply B-1 times the

to obtain

A 0

Z D

X A 
P

I
P

X
P

X r

bm
d

n

X A
P

X A+DZ 
r

Define B-1 to be the matrix that occupies the same

I n-p

X
P

xr

AY
P

ZY +DY
P r

the deviations. It is not necessary to describe this matrix 

columns corresponding to d+ in the. initial tableau. The 

I = BB-1 n

The inverse of B"1. B, can be

0 p,n-p
D

Y
P

Y

X 1 = A.
P 

last column of the initial tableau 

columns as the original basic feasible solution, i.e., the 
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The I-ISAD estimators are then

= AY = X -1 Y . m P p P
Thus the MSAD estimators are equivalent to the solution of 

the system in (8). For computational purposes, the matrix 

X and Y can be found from the linear programming solution.P p
As an example, consider the problem of fitting the

model

Y = b1 + b2X

Y

to the data

X

1

The initial simplex 

di+

Y

1

2

3 

table au 

d2+

4

d2" d3“

3

is

d3 + di"bi t>2

1 1 1 0 0 -1 0 0 1

1 4 0 1 0 0 -1 0 2

1 3 0 0 1 0 0 -1 3

and the final tableau is

bi b2 di+ d2+ d3+ di" d2 d3 Y

1 0 4/3 -1/3 0 -4/3 1/3 0 2/3

0 1 -1/3 1/3 0 1/3 -1/3 0 1/3

0 0 -1/3 -2/3 1, 1/3 2/3 -1 4/3
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Thus

and

b = X 1 Y =
P P

2/3

1/3

as indicated by b in theJ m final tableau.

If some b.J
X . denote the PA

< 0, a similar result can be derived. Let 

i^h column of X and denote the matrix that
P

corresponds to X^ for the case by Xp*»

X . 1. -X . , X . , . , 
PA-1’ P»J P,J + 1 P A

The minus appears on X . since b. and not b.+ is basic. 
P,J J J

The matrix corresponding to A in B-1, A , will differ from 

A only in that the i^h row of A* has been multiplied by -1 

in order to place the correct (minus) sign on b.“. Let
J

4-l-v £
be the iUI1row of A. Then A can be written
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Let (A^X^ )s,t denote the s,t element of A%X*
P*

s^t

Then

(A*X*p)s,t =
s^j ,

5^3 > S = L ,

If S=j , t^ j

= (-Oj Xp;t) = -(a, Xpjt) = 0,.

If s/j a t=j

(AVpJs.t - apC-Xp^.) = -(«s Xp>J) = 0 •

If s=j , t=j 
Si 51

(A X* )s,t = -a.C-X. .) = a. X_ . = 1.
P J P»J J P»J

Thus the appropriate matrix for the equivalent system of 

equations is nonsingular and a unique solution exists. The 

above proof of nonsingularity can be easily extended to the 

general case of any subset of the b^’s being negative. It 

will be assumed for the remainder of this chapter that the 

correct signs have been applied to X^ and A in the system 

in (8).

Before continuing with development of the properties of 

the MSAD estimators, it is convenient to describe Chebyshev’s 

criterion for fitting a curve to data.

Chebyshev’s Criterion

It has been shovm [10] that the criterion of minimizing 

the absolute value of the maximum deviation may be formulated 

as a linear programming problem. However, a modification of 

the formulation given in [10] "is more convenient for the 

present purpose. Let d* be the absolute value of the
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maximum deviation. Any deviation d^ can be vzritten

d^ = d ~ cj_ where 0 <_ <_ 2d . Substitute into equations

analogous to (2), to obtain Y. = X.b + d - c.. Defineo » 11 1

56r^ >_ 0 such that -2d + c^ + r^ = 0 for 1=1,2,... ,n. The 

linear program,

minimize d*
56subject to Y. = X.b + d - c.

ii i

-2d + ci + r± = 0 
*

d > 0, cn. _> 0, r^ >_ 0

for 1=1,2,...,n, (9)

will minimize the absolute value of the maximum deviation. 

The program in (9) has 2n equations and 2n+l variables. 

Thus, there are 2n basic variables. If the regression 
56curve is not an exact fit, d will be nonzero and thus a 

basic variable. As in the MSAD case, assume that each 

bi, 1=1,2,...,p, is a basic (nonzero) variable. Thus, 

2n-p-l of the 2n variables c^ and r , 1=1,2,...,n, will ' 

be basic variables. The p+1 nonbasic variables, that is, 

variables that are zero, will be the remaining c^ or r^ 

variables. ■

If c^ is a nonbasic variable, i.e., Cj_ = 0, then from

(9) > 0; thus r^ is a basic variable. Furthermore, c^ = 0
%

implies that di = d . If r^ is a nonbasic variable, i.e., 
56 56r^ = 0, then c^ = 2d and d^ = -d . LetS^ = + 1 such that 

di = S^d*. Relabel the equation in (9) such that the p+1 
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equations of the form = X^b + S^d are first. Relabel 

the columns of the linear programming tableau such that the 

p columns corresponding to b^ are in the first p positions and 

the column corresponding to d% is in the (p+l)s^ position.

Let Xp+1 be a C(p+1) x(p+l) ] matrix such that the first p 

elements of the i^^1 row of X , . are the row of X that p+1
correspond to d^ = S^d* and the (p+l)5^ element of XD+1 

is for i=l,2,...,p+l. Let Yp+1 be a [(p+l)xl] matrix 

consisting of the first (p+1) elements of Y. The linear 

program in (9) is equivalent to the system of equations

¥p+i “ Xp+i*3 (10)

with solution

b - (W"1yp+i (11)

where b is a (p+1) matrix whose first p elements are the p 

estimates of g and the (p+l)s^ element is an estimate of 

d*. All the information required to form (10) and find its 

solution (11) is given by the solution to (9). The 

uniqueness proof is essentially identical to the MSAD case.

The Chebyshev’s criterion is equivalent to 

min lim L|d.|X.

If necessary, rescale the data so d^ > 1 for some i. Then 

the sum will be dominated by (d*)'’1 as X increases without 

bound. Thus minimizing the above limit is equivalent to 

minimizing the absolute value of the largest deviation.

This observation will be developed further in the next 

chapter.
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Properties of the' Estiniators

The properties of MSAD and. Chebyshev's estimators 

vector of parameters for the MSAD case and. g is the vector

for

for

system of equations

(.8) or (10) as

with solution

t

The expectation of the estimators obtained, by either

MSAD and t = p+1 for Chebyshev's

Yt.l

XtB

Yt,t

Yt.2

For either criterion, write the

Xt,2S

may be derived together. Adopt the notation that B is the 

E(Yt) = E

b = AYt

X g \ t, t

of parameters plus the quantity d* in the (p+l)s^ position

MSAD or Chebyshev's criterion may now be derived.

has expectation

X, B where X, . is the ifc^ 
t,i

Yt = v

Y's, say LY} is LLTa2 [15L Thus

An element of Y , Y, . , 1=1,2 b 5 1
E(Y, ) = E(X. . 3 + £. ) b • J- b e JL _L

E(b) = E(AYt) = AE(Yt) = AX^.B = 3 , 

since A-1 = X^. Thus the estimators are unbiased.

The dispersion matrix of any linear combination of the

row of X^_. It is also apparent that

a = bp+1‘ Let t = P 

criterion.

Chebyshev's criterion, i.e., let
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D(b) = AAtct2.

Now consider the properties of the mean of future 

observations at a p dimensional point, S, as predicted by 

the model, that is by

Y = Sb.

Then

E(Y) = SE(b) = Sg.

So Y is unbiased. The variance of Y is given by

P P mm
V(Y) = Z E S.S. Cov (b.,b.) = S^AA^Ss2. (12)

1=1 j=i 1 3 3 1 

■Comparison' with Least' Squares

The estimators of g using either MSAD or Chebyshev’s 

criterion are linear combinations of Y^_, thus they are a 

linear combination of Y. Furthermore, the estimators are 

unbiased. Thus by the Gauss-Markoff theorem the variance of 

a bj_ based on the MSAD or Chebyshev criteria is at least as 

large as the variance of an estimator for obtained from 

the least squares criterion.

To compare the variance of the mean of future observa­

tions for the MSAD case, partition

T TX1X = X X + 
P P

Then

m t
The rank of X is p so X X^ is positive definite and X X PPP r r
is positive semidefinite. Under these conditions, it can be 

shown [16] that
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[CX_)TX I"1 - CxTx)-1 = aat - (XTX)"1 
p p

is positive semidefinite. Thus

STAATSct2 > ST(XTX)-1Sa2.

The quantity on the left was shown in (12) to be the 

variance of the mean of future observations at the point, 

and it is well known that the quantity on the right is the 

corresponding variance obtained from least squares.

To compare the variance of the mean of future observa­

tions for Chebyshev’s criterion, partition

/Xp C\
X, = P (13)

\R Q/

where X is the (pxp) matrix of coefficients of b1,b2,...,b 
p P

in the first p equations, R is a (Ixp) matrix of coefficients 

of b1,b2,...,b for the (p+l)st equation, C is the (pxl) 

matrix of coefficients of d* for the first p equations, and

Q is the sign of the coefficient of d in the (p+1) 

xp\

X = R

X

same definition as for the MSAD case

Hence

(14)

From (13)

where X^ has the

bi>b2>

equation. Thus

T + X 1X r r

,bp and d*

XTX = X TX + RtR 
P P

Let be the [(p+1)x(p+l)] dispersion matrix for
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m . / x T + rtr \ / X T c + rtq\
(V )-l = 1 (X^X.J-1 = ( p -- P )

■a " 3 \ cT xp + str / \ cTc + qtq / •

The (pxp) dispersion matrix V for b1,b2,...,b in

Chebyshev's criterion is obtained by deleting the last row 

and column from V . It can be shown L16] that

V"1 = Xp7 Xp + RTR - (XpT C+RTQ)(CTC + QTQ)"1(CTXp + QTR). 

Since (C^C + Q^Q) is a scalar composed of the sum of p+1 

squares of 1 or -1, and (CTX + QTR)"1" = X T C + RTQ. Since
p P

the weighted sum of positive semidefinite matrices is 

positive semidefinite for non-negative weights [16],

X Tx + 1 (CTX + QTR)T (CTX + QTR) 
r r p+i p p

is positive semidefinite. As before, V - (XX) 1 is 

positive semidefinite and thus the variance of the mean of 

future observations for Chebyshev’s criterion will be at 

least as large as the variance for least squares.
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CHAPTER III

REGRESSION ACCORDING TO A GENERALIZED NORM

The three criteria discussed, in Chapter II can be , 

written as

mini|d^[(1) 

where d^ is the i^ deviation and X = 1 for MSAD, X = 2 

for LS and X increases without bound for Chebyshev’s 

criterion. This observation suggests a study of the cri­

terion in (1) for an arbitrary X. This chapter will show 

that the variance of the unbiased estimators for the homos­

cedastic model is at least as large as the least squares 

variance. For the heteroscedastic model it will be shown 

that for certain cases unbiased linear estimators exist 

that have smaller variance than least squares.

The first part of this chapter will assume that X > 1. 

This assumption will be relaxed toward the end of the 

chapter. Also, the notation of Chapter II will be adopted 

where applicable.

Separable Convex Programming Formulation

If X > 1, the criterion in (1) becomes convex and 

separable. For the model Y = Xg = e, write as before.

Y^ = X-b + d. . Let d. = a1 - u- where a. >_ 0 and u^ j> 0.

The variable a^ corresponds to-d^+ and u^ to d^ in 

Chapter II. The change in notation is used since aj_ and u^ 
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must be raised to a power. The criterion in (1) is expressed 

in this notation as

minzld^l^ = minEja^ - | = min(£a^ + Eu^^) (2)

since a^ and cannot be simultaneously nonzero.

Let f(z) = for X > 1 then fir(z) = X(X-l)z^"2, if 

z > 0 then f"(z) > 0 and f(z) is convex. Thus a^* and u^* 

are convex functions. Since the sum of convex functions is 

convex [17], the expression in (2) is convex. The system is 

obviously separable. The estimates, b, which satisfy the 

general criterion are obtained by the solution of the 

separable convex programming problem

min(Ea1x + Eu^x) (3)

subject to

Yi = Xib + ai - ui» 1=1,2,...^ 

ai >_ 0, Uj_ _> 0 •

An algorithm for solving separable convex programs is given 

in [173.

Let M be an upper bound on the absolute value of the 

deviations, that is, d* < M. Define c > 0 and q, a positive 

integer, such that cq = M.

First consider only the portion of the formulation 

relating to a^. Let f^(a^) be a piecewise linear function 

whose linear segments connect the points [(k-l)c,a^x] and 

[kc,a^X] for k=l,2,...,q. Denote the slope of the kbh line 

segment by Sik, k=l,2,..,q. Since f^Ca^) is convex.
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f. (a.)

Define the auxiliary variables

0

< kc

c

1=1,2 n.

These variables are bounded by

0 — aik — c for k=l,2

i=l,2

be such that

a.

Then

c qc

and

k=l,2c

aik
0

46 at
(k -l)c + (q-k )0 = ai (5)

* 
k c

aik =

a^ < (k-l)c 

(k-l)c < a.

46
(k -l)c <

kc <_ a^

T , , X Let k

x 
k=k

c (k*-l) c <_ a^

k*-l

, x x _.< k c < (k -1)c <

for k=l,2,...,q

x
Z a.v = (k -l)c + a- 

k=l

k=k*+l,k*+2,...,q

0 < Si]L < S^2 < ... < . By choosing c large

can be made arbitrarily close to a^.

a^ - (k-l)c

a. - (k -l)c

With this notation

= E5lkalk ' aix-

In an identical manner the equations 

(6)

(7)

and
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U1X - Eslkulk (8)

can be developed. 

The separable convex program in (3) can be written 

n q n q
tint s E Slkalk + E E Slku )

1=1 k=l 1=1 k=l

subject to

0 if a

Yi
q

= Xb + E 
k=l

q
a.. - E i 
lk k=l lk (9)

0 £ aik < c

0 £ uik c’
for 1=1,2,...,n 

k=l,2,... ,q.

where it is understood that a^^ = i(k-l) < c and

= 0 if uj_(k_q) < c. Hiller and Lieberman [17] show 

that the constraints on the slopes will cause the 

simplex method to automatically satisfy the last two 

restrictions. Thus the solution to the linear program in 

(9) gives the estimates for the criterion in (1).

Introduce the slack variables r^k and 1=1,2,...3n, 

k=l,2,...,q, such that the upper bounds on a^^. and u^^ hold 

as equalities. The linear program can be written in simplex 

form as 

n q n q
min( S E 8.. a.. + E E S.,u..)

1-1 k-1 lk lk 1-1 k-1 lk lk
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subject to

p q q
Y. = S X b. + y. a., -J- • n ill inj=l JJ- J k=l k=l lk

c = aik + rik

c = ulk + tlk (10)

for a ik - 01 uik - °’ rik i. °> hk i 0

1 -1,2,...,n, k—1,2,...,q.

The initial simplex tableau can be expressed as

b } aii ... anl
i

juli .•••. uni !r 
i ।

li. rni j ^li *** ^ni i Y
_________________ ____1_________________________ 1____i

x ' Al ... An
1

Lai ... ! OOOO

0 ' I .. . 0
1

! o ... o 1। ।
I . . . 0 io . . . 0 i cxl 

I 1
1 
1

। ।
i ।

1 1
1 1. ..

0 ' 0 . . . I
1

io . . . 0 '
1 1

> 
1 

o 
------

<

1 
o

1 !

• 
1

• 
1

• 
111 

o 
11 

_____
J

1 1

H
 

i

' 
11

• 
1

• 
i

• 
-1

11 
o 

1

0'0 ... 0 ' I ... 0 1 0 . . . 0 jl . . . 0 ' c
1

1 1
1 1 V

1
1

i 1
1 1
1 1

i i
i i • • •
i ।

o ! o ... o । io ... i ; । । o ... o Io ... i !c
1 1 v

where X is the ( nxp) matrix of known coefficients, Y is the

(nxl) matrix of observations, A^ is an (nxq) matrix that

contains zeros everywhere except for the fib row which is

all ones, cv is a (qxl) vector with each element equal

to c, I is a (qxq) identity and 0 denotes a null matrix.

The simplex formulation has n constraints on Y, nq

constraints relating a^^. and r^k , and nq constraints

relating and ^ik* ■1'he feas:i-ble region is enclosed by

the n+2nq equations. There are n+4nq variables, n of the
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Y‘s and nq of the a’s, u’s, r’s and t’s. The simplex method 

is thus equivalent to solving a system of n+2nq equations in 

n+2nq basic variables. The remaining 2nq variables will be 

identically equal to zero.

As before, assume that none of the estimates are 

identically zero, that is, the variables bi,b2,...,b are 

basic. The remaining n+2nq-p basic variables must be 

some of the aik, uik, rik and tlk, 1=1,2,...,n, k=l,2,...,q. 

The particular set of the basic variables is available in 

the final tableau of the simplex method.

Let the [(n+2nq)x(n+2nq)] matrix of coefficients of the 

equivalent system be denoted by H. The columns of H are the 

columns of the tableau in (10) that correspond to the n+2nq 

basic variables. Let H“i be the inverse of H and denote the 

Ci,j) element of H-1 by h^.. If necessary, relable the rows 

of the tableau such that the i^h row of H-1 defines b..i 
With this notation

n n+2nq
b. = S h.,Y, + c Z h... (11)

j=l J J j=n+l

The first n elements of the first p rows of H-1 are 

orthogonal to the first p elements of the first n rows of H. 

This observation may be proved by multiplying the i^^1 row of 

H"1 by the column in (10) that corresponds to b^

n n+2nq
■ E hl1xlj + E hu(0) = 1- 

j=l 1>l J j=n+l J
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1

column in (10)equality holds since theThe first

Multiply thesubmatrix

of H"1 by in (10)the column

0.

The expected value of b. be foundmay now

c

+ c

+ c

E(b. ) (12)c

The last equation results from- the orthogonality of X and

n
S 

i=l

n
X 

j = l

n
E 

j = l

h 
ij

n
I

J = 1

h. .
ij

is a

n+nq 
E 

j=n+l

E(b1)
n+nq

E
J=n+1

61+

hljxJl

hljE(Yi)

+ ...+(h. X il 11

hij

of H, the inverse of H 1

+...+h, (X in ]

Xjk6k) + c

)f3p 4- e

h. (0) = 0 
ij

(hH

n+nq 
E 

j=n+l

fth rpW

A

p 
h. . ( E 

1J k=l

: ,3,+...+x n1 1 np

X1P

n+nq
S h. . 

j=n+l

+ h12(X2151+...+X2pSp)

hl2X2p+---+hlnXnp^p

n+nq
E hij 

j=n+l

that corresponds to b^., jVi

= E(1 huYj+

n
h..X.. 

j=l 1J

h X +...+h, X )312 21 in Pl 1

n+nq
E hiJ j=n+l J

h1i(X.llB1+...+XlpBp)

the first p rows of H 1.
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The estimators that satisfy the criterion in (1) are 

linear combinations of the Y vector plus a constant which 

is identical to the bias, (11) and (12). Thus

b± = H±Y + K i=l,2,...,p (13)

E(bi) = + K 1=1,2,...,p (14)

n+2nq th
where K =c S h.. and H. is the 1 row of H. The quantity 

j=n+l 1

K is a constant for a given set of data and may be found 

from the linear programming solution. It may or may not 

be zero.

Unbiased Estimators

Since the bias, K, is known (13)a introduce 
%

bi = b± - K 1=1,2,...,p . (15)

Then
%

b. = H.Y (16)
i ■ i

E(b. ) = gl.

If V(b^) is the variance of b^, then the variance of b^ is

V(b±*) = V(b1-K) = V(bi). (18)

Thus b^*, 1=1,2,...,p, are unbiased linear estimators with 

the same variance as b^.

For the homoscedastic model, the Gauss-Markoff theorem 
% 

applies. Thus the variance of b^ will be at least as large

as the variance of the least squares estimators. However, 

the assumptions of the Gauss-Markoff theorem are not met by 
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the heteroscedastlc model. Therefore, this theorem cannot 

be used to compare the variances to the variances of the 

least squares estimators.

Contaminated Normal Model

Although the variance of the X-norm estimators for 

the general heteroscedastic model has not been compared to 

the variance of the least squares estimators, a comparison 

can be made for an interesting special case.

Tukey [18] has proposed the contaminated normal distribu­

tion as a model for the type of data often encountered. A 

sample from a contaminated normal with contamination 

coefficient G may be generated by considering a base distribu­

tion which is normal with mean p and variance o2 and a 

contamination distribution which is normal with mean p and 

variance <|>2a2. The observation is selected from the base 

distribution with probability 1-G and from the contamination 

distribution with probability G. Thus, data from a contaminated 

normal is heteroscedastic since the variance is a2 or ^2o2. 

Tukey suggests that = 3 and 0 < G < .1. He shows that 

although it takes literally thousands of data points to 

detect the difference between a normal and a contaminated 

normal, the properties of the two distributions differ greatly.

For the special model Y = b1 + b2X + e where the 

errors e are uncorrelated and selected from a contaminated
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normal, Forsythe L193 has shown by simulation that for

G > 0 values of x between 1 and 2 produce estimators that 

have smaller mean square error than the least squares 

estimators. The reduction seems significant since 

Forsythe states that "with 10% contamination least squares 

is approximately only 50% efficient and so it might be said 

that the usual technique throws away half of the data."

Since the mean square error is the variance plus the 

square of the bias [20] and the least square estimate of 

is unbiased
p

VCbi). + < V(b.)Tq

vCbp, < v(bl)LS 
at

V(t>i )A < V(bl)LS 1-1,2....,P 

where K is the bias of b^. Thus for this type data which 

is practically impossible to detect from a true normal [18], 

the estimators b^ , 1=1,2,...,p, based on the x-norm are 

unbiased, linear combinations of the Y vector and have 

variance less than the least squares estimators.

The Case of x < 1

The previous sections in this chapter have considered 

the x-norm with x > 1. This section will first extend the 

results to the case where x e (0,1) and then show that 

the case of x < 0 is uninteresting.

If x e (0,1), the separable convex programming formula­

tion does not apply since the objective function is concave.
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However, for X e (0,1) an algorithm that differs from the 

simplex in only the -way incoming and outgoing variables 

are selected has been developed [21]. Since the above 

discussion only uses the fact that the simplex solution .is 

equivalent to solving a linear system of equations, the 

proofs will apply for X e (0,1) as well.

If X £ 0, the criterion in (1) reduces to models that 

have little applicability. If. X = 0, then any b such 

that d^ 0, for 1=1,2,...,n, will produce n as the minimum 

value of (1).

If x < 0, then write

z ld± I A = E(l./|dil"X) 

and let t^ = l./|di|-X.

Since X < 0, then -X > 0, a t^ could be made as small as 

desired by choosing b such that d^ was very large. It is 

obvious that a choice of b exists that makes all d^, 

1=1,2,...,n, simultaneously as large as desired. Thus each 

t^ can be made arbitrarily close to zero and the sum can 

be made to approach zero. Since the expression in (1) is 

bounded below by zero, the minimum will occur when the 

deviations are arbitrarily large. The general regression 

problem attempts to find b vectors such that the deviations 

are in some sense small. The criterion in (1) with X < o 

thus produces uninteresting results.

The minimization of 5|d^|X produces large residuals, 

maximizing the sum will yield residuals small in a given 
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sense. However, the maximizing criterion will generate a 

class of uninteresting b vectors. Again write

maxi] A = maxz( 1/| dj, I" A)

where -X > 0. If 1 = 0, 1=1,2,... ,n, then the sum would 

contain an infinite term and would itself be infinite.

Thus only b vectors that had at least one d^ = 0 would 

maximize the expression.

Future' Study

To actually find the estimates of g for the contaminated 

normal that are linear unbiased and have variance smaller 

than least squares, it is necessary to solve the linear 

programming problem in (10). Unfortunately, the program 

in (10) may be very large and difficult to solve. The most 

efficient method of solving it is not known. Perhaps one 

of the existing separable convex programming algorithms can 

solve the problem efficiently. If not, perhaps the number 

of variables and iterations could be reduced by solving the 

problem like Forsythe [19] and using the results to 

initialize the linear programming procedure.
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CHAPTER IV

WEIGHTED LEAST SQUARES ANALYSIS

This chapter will consider the problem of estimating 

weights that will transform the heteroscedastic regression 

model to the homoscedastic model. Specifically, the 

model to be considered is

Y = Xg + e (1)

where Y is an (nxl) vector of observations, X is an (n*p)  

matrix of known constants, S is a (pxl) vector of unknown 

parameters, and e is an (nxl) vector of random errors such 

that E(e) = 0 and the dispersion matrix is DCee^) = Va2, 

where V is an unknown symmetric positive definite matrix 

and er2 > 0.

•

It is well known that least squares will not produce 

minimum variance estimators of g if the errors are not 

distributed as Io2, where I is the identity matrix [2, 8]. 

Draper and Smith [2] show that -there exists a symmetric

Two methods of estimating weights that will transform 

the model in (1) to a model in which D(ee^) = la2 will be 

developed. In addition, a criterion for selecting between 

sets of weights will be presented. Finally, examples of 

the procedures will be given.

Introduction to Weighted Least Squares 
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matrix W such that

WTW = V 

and that if the model in (1) is weighted by VI-1 then the 

errors of the weighted model will have a dispersion matrix 

of la2. The weighted model thus fulfills the hypothesis 

of the Gauss-Markoff theorem [ i] and the weighted least 

squares estimators will have minimum variance unbiased 

estimators.

The matrix V and the variance a2 are rarely known and 

must be estimated. Historically, the residuals obtained 

from the model with V = I are used to estimate V. A plot 

of the residuals against the estimated response will appear 

as a horizontal band if the condition of constant variance 

is met [ 2]. However, if the range of the residuals varies 

with the predicted response, then heteroscedasticity is 

indicated, that is, nonconstant variance. Thus a guess 

at V is used to produce a weighted model and the plot of 

the residuals is again examined for any signs of 

heteroscedasticity. If it appears necessary, another 

estimate of V can be made and the process continued until 

the analyst is satisfied with the residual plots.

This procedure for estimating V appears deficient in 

two areas. First, there is no numerical procedure to aid 

in determining the estimates of V. Secondly, it relies 

entirely on a graphical method,for choosing between estimators.
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This chapter will be addressed to these difficulties. The 

selection problem will be discussed in the next section 

followed by considerations of the estimation problem.

Selection Criterion

A criterion for choosing between estimates of V can be 

developed by estimating Va2, not V itself. Since V must 

be positive definite and o2 is positive, Vo2 is positive 

definite [2]. So there exists a nonsingular matrix W 

such that

WTW = WT = Vo2.

Let f = W1e. Then the expectation of f may be determined 

E(f) = ECW"^) = W-^Ce) = 0.

Since E(e) = 0, the dispersion matrix of ff^ is 

D(ffT) = E(ffT)

= W-1D(eeT)W-T

= W-1Vo2W-T

= w-1wwTw-T

= 1.1.

Thus weights based on a knowledge of Vo2 not only 

transform to a model with constant variance but also a 

model with a2 = 1.

Denote the usual unbiased estimator of o2 by s2. 

Hence, for the transformed model, E(s2) = 1. Estimators 

based on complete knowledge of, Vo2 produce estimates of s2 

that have expectation of 1.
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The heuristic selection criterion to be used in this 

chapter compares various estimates of Va2 by examining 

residual plots and by measuring the nearness of s2 to 1. 

Such a criterion might not produce the optimal transformation 

but at least the selected weights will have some properties 

of the optimal weights. Numerical studies, to be discussed 

later, show that fairly small changes in the weights can 

greatly influence s2. Thus the criterion appears to be 

reasonably sensitive.

It might seem that it is more difficult to estimate 

weights that will transform to a model with constant variance 

equal to 1 than it is to find weights that produce models 

that have only constant variance. However, as will be shown 

in the next section, it is actually easier to estimate Vc2 

than V itself.

Estimating Va2

Williams [22] has shown that one cannot expect to 

produce reliable estimates of weights unless there are at 

least ten data points for each weight estimated. This much 

replicated data is rarely available. In order to estimate 

weights with less data, some additional assumptions are 

necessary. For the remainder of this chapter, the matrix 

Vo2 will be assumed to be diagonal and will be denoted by D. 

The jth element on the main diagonal of D will be denoted
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by a2.. In addition, it will be assumed that a. is some 
J J

function of X. Two specific functions will be considered.

Next, aj will be assumed to be proportional to some power 

of the absolute value of the mean response at the jth point 

First, aj will be assumed to be a linear function of X.

in the factor space.

When o.
J

Rutemiller and Bowers have developed

a method of obtaining maximum likelihood estimators of B and 

y by using the method of scoring. Before considering 

Rutemiller and Bowers’ work in detail, it is worthwhile to 

pursue Rao’s method of scoring.

The Method of Scoring

Maximum likelihood estimators are traditionally 

determined by solving the system of equations that result 

from setting to zero the partial derivatives of the likeli­

hood function with respect to the various parameters. 

However, sometimes the resulting system cannot be analytically 

solved. In this case a numerical procedure can be used.

A general method for solving such systems would be to 

assume a trial solution and determine the difference between 

zero and the partials evaluated at the trial point. Based 

upon these differences, a new trial solution could be 

determined. This process can be repeated until the 

corrections become negligible.- The method of scoring [15]
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Is a mechanization of such a general procedure. Thus the 

method of scoring can be considered as a procedure of 

obtaining numerical solutions to the maximum likelihood 

equations that are so complex the traditional analytical 

solutions cannot be found.

Specifically, consider the random sample x ,x , ...,x 
12 11

with the joint distribution function L(x ,...,x , 0 ,... ,0 ),
1 nj 1 K 

where 6^, 9 are parameters to be estimated. Define

A as a (kxl) vector such that the i^h element of A is

"V.--, i=l,2,...,k. Denote by B the (kxk) matrix with the9 9. 1

ij^h element equal to -E

over the joint distribution. The matrix B is called the 

Fisher information matrix. Let be a (kxl) vector of 

initial estimates of the parameters 0 ,0,0^. An 

iterative procedure for finding an improved estimate of the 

parameters, “i+jj is given by

“i+l = ai + CB(a1)]-1A(ai), 1=1,2,...

where ACa^) is the A matrix evaluated at and BCctjJ is 

the Fisher information matrix evaluated at a^. The process 

stops when laj_+1 - ajJ < e ^or 501116 predetermined vector e. 

Although it seems the (kxk) matrix BCa^) would have to be 

inverted for each iteration, after some number of iterations, 

B(a^) changes very slowly with changes in the parameters a^. 

Thus B(a.) need not be inverted each time.
i

where the expectation is
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Wald [23] has shown that at convergence for a large 

sample size the matrix B-1 is the dispersion matrix of the 

parameters.

Gamma Weighted Least Squares

Rutemiller and Bowers [24] have applied the method of 

scoring to the problem of estimating g and y for the model

Yj = XjS + ej j = l,2,... ,n

where X- is the j^h row Of e j = l,2,...,n are

uncorrelated normal random variables with zero mean and 

the standard deviation cr^ is a linear function of the X 

variables, that is.

The log of the likelihood function for the normal distributed 

data becomes

InL = -nln/2F - Sln(zX,,p4) - (l/2)z(Y. - ZX,.g.)2(zX,.Y.)"2. 
j j_ J1 1 j J i Ji 1 iJii

For the method of scoring, let k = 2p where the first k

elements of A correspond to g and the last k correspond to y.

Now

’ JE(?xjui)"2(L^xdi6i)2x»d

for £=1,2,...,k

= -EWEXjihrl + e(yj -
for ^=1,2,...,k.
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B, = | = S X£1Xm1. ( X.,y,)-2
2.} m I 8 8 3 B / 1 J m J j J 1 1

\ p£ m/ J 2-
for &=1>2s.,p

m=l,2
■R _ TP / 3 2" 2TLIj |  RB^.m+P - 0

for £=1,2,...,p

m=l,2,... ,p 
fa^-lnL \ dY£3Ymh-2 XrnJ( Xj-tY1)

B _E/ii.lnL_L o 
3^9U

for £=1,2,...,p

m=l,2,.. . ,p

for £=1,2,... ,p

m=l,2>. . . ,p

Note that B may be partitioned as

or

Thus, only the (pxp) matrix m need be inverted. This 

derivation is a special case of Rutemiller and Bowers* work 

since they did not require Y and to be a linear function 

of the same variables. Apparently they did not notice the 

above partitioning since one of their examples meets the 

requirement but does not have this property
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The estimators published in [24] are correct but there 

are some errors in the dispersion matrix which are possibly 

due to the inversion of the (2px2p) matrix and not the (pxp) 

matrix.

After the estimates of r have been obtained, the matrix 

D = Ver2 can be estimated. By the assumptions of this case 

the diagonal element of D will be equal to a .2. If W 

is an (n*n) diagonal matrix with the jth. diagonal element 

equal to the estimate of then ViTW = VJWT = D. The 

inverse of W, W1, will be a diagonal matrix with the J th 

diagonal element equal to 1/aThis matrix 

can then be used as a weight matrix in a weighted least 

squares analysis. For future reference this weighted model 

will be called the gamma weighted least squares model (GWLS).

An Attempt to Extend the Method of Scoring

Much of the historical work on variance stabilization 

transformations [20] is based on the assumption that the 

variance is proportional to some power of the mean. Let

P1 = ?XH61’ 3 = 1,2,...,n. (3)

Such a model could be formulated by requiring the standard 

deviation of an observation to be

^4 = Ic| lu,|q, j=l,2,...,n. (4)
J J

It is necessary to include the absolute value signs since 

aj must be positive.
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It first appears that the method of scoring could be 

applied to this model. However, certain difficulties arise.

Let A be a (p+1) vector of parameters with the first p 

corresponding to B and the (p+l)st to q. If normality is 

assumed.

9ek
— InL „ । i i z ------------------- q z|p.|-lS(Vj)Xjk

+ |c[-2 zx |u1|-29-l[q(X.-V1)2S(>l.) + (Y.-p,)|V.|], 
4 J J J J J J J

k=l,2,...,p

Ap+1 ” = -=3-nlvJl + lc|"2 = (Y -p )2|p |-2<Un|p |
J d j d J d d

1 z > 0

(5)

whe re S(z) = - 0 z = 0

-1 z < 0 .

The model has only p+1 parameters since the = 0 d C
can be solved for c in terms of g , and q, yielding

zm-p^ipii-zqc = . (6)

Thus c acts like a variance where the residuals have been 

weighted by

The B matrix may be defined as

Bk = -E [a^lnLV |cr2ZX.kX.ll[2q2lcl2|pir2 + luj"29]

k=l,2,...,p

1=1,2,...,p
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Vp+i - Bp+I,k = -E(^)' =xJkr, s<"J)l"j|-1lnl"jl 

k—

r, = Y. - Y for j=l,2 v J J
Yj into k mutually exclusive classes such that n^ >_ 2 where 

n^ is the number of observations in the i^ class. Let

R = _p/d2lnL|_ o yflnlii M2tip+l,p+l 3q2 I 2 J(ln|u^|) .

Upon actually implementing this model, it was found 

that the method of scoring very seldom converged. The 

convergence seems to depend very heavily on the initial 

estimate of q.

While investigating methods for obtaining initial 

estimates of q, a method of estimating the v/eights of the 

original model was discovered. This method which is 

described below does not have as many numerical problems 

as the method of scoring and produces usable results. For 

these reasons, the method of scoring as applied to the 

model in (4) will not be pursued further.

CQ Weighted Least Squares

If the standard deviation and the means are related 

as in (4), an iterative procedure for estimating c and q is

as follows. First, perform a least squares analysis to

obtain the predicted responses, Y, and the residuals

n. Partition the range of the
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= LY^/ni. and Sj_2 = 2 r^2/(n^-l) where the sums are over 

all members of the class. Regress the k points accord­

ing to the model lns^=lnc + qln z^. The regression 

will yield values of q and In c.

With estimates of g, c and q known, a weight matrix 

W-1 may be constructed with the diagonal element of 

W-1 equal to j = l,2,n. A weighted least

squares analysis can be performed to produce new residuals 

for the next iteration. The method must be iterative since 

both si and z^ depend upon the current estimates of

When the weight matrix becomes an identity, the process 

should be terminated. Typically this happens when q becomes 

0 and c = 1, since a = 1 for the optimal weights.

This model will be referred to as the CQ weighted 

least squares model (CQWLS).

Examples

A program was developed to implement the methods and 

criterion cited above. Four sets of data were analyzed by 

least squares, gamma weighted least squares and CQ weighted 

least squares. Two of the data sets were data that had 

been previously published [25, 26]. One of the remaining 

data sets was data simulated according to the CQ model and 

the other was data simulated according to the gamma model.
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CQ Simulated Data

The first data set will be called the CQ simulated data 

since it was simulated with the standard deviation given in 

(4). The data consist of 93 points simulated from a line 

with = 1, 3 = 1, c = 0,1 and q = 1.5. The factor space 

is given in Appendix 1 along vrith the simulated response 

and the actual standard deviation. The independent variables 

consist of 63 points identical to the data in L25] with 30 

additional points augmented in order to Increase the density 

of the data in the region of high variability. The random 

numbers were generated by the IBM-provided subroutine 

GAUSS [27] with a starting seed of 139. Since the first few 

numbers from such a subroutine are often poor samples from 

the population, the first 10 numbers were discarded. It 

should be noted that this simulation produced results with 

a large range of standard deviation (1.11 to 26.25). As a 

result, the simulated response contained a large degree of 

variation.

The application of the method of scoring proposed by 

Rutemiller and Bowers did not converge, so the gamma 

weighted least squares procedure could not be used. 

Apparently, this case departs too far from the assumptions 

of linearity (2) made by Rutemiller and Bowers.

The convergence of the CQ weighted least squares method 

is shown by
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bl b2 $ error 
of b1

% error 
. of. b2

s

Actual 1.00 1.00

LS 6.08 0.67 508 33

CQ Iteration 1 1.98 0.88 98 12 4.48

CQ Iteration 2 1.53 0.91 53 9 2.42

CQ Iteration 3 1.24 0.94 24 6 1.56

CQ Iteration 4 1.02 0.96 2 4 1.07

The first iteration produced values of c and q of 0.097 and 

1.52s respectively. These values are very close to the 

actual simulated values of 0.1 and 1.5. The values of c and 

q for the final CQWLS results were 0.88 and 0.09, respectively, 

which are close to the theoretical values for the heteros- 

cedastic model of 1.0 and 0. The successive weights drove s 

in the weighted factor spaces from 4.48 to 1.07. The estimate 

of 1.07 is close to the theoretical value of 1. Therefore, 

it can be concluded that the weights were very near optimal. 

The residual plot for the LS case is shown in Figure 1 and 

for the CQWLS model in Figure 2. Figure 1 exemplifies the 

increasing range of the residuals which is typical of 

heteroscedastic models. On the other hand, the residuals 

from the CQWLS model in Figure 2 show no sign of nonconstant 

variance. For comparison purposes it should be noted that 

the scales of Figures 1 and 2 are different. However, it 

is the overall shape and not the scale that is of interest.



Figure 2
CQWLS Residual Plot for the CQ Simulated Data



Y

Figure 1
LS Residual Plot for the CQ Simulated Data
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The final results for both the LS and the CQWLS cases

are

Actual LS CQV/LS

bi 1 6.08 1.02

b2 1 0.6? 0.96

% of error in bl 508.00 2.00

1» of error in b2 37.00 4.00

The estimated, dispersion matrix for the LS case is 

/ 20.36 -0.65 \

\ - 0.65 0.026/

with an estimate of a2 of 353.82. The estimated dispersion 

matrix for the LS case is

/ 13.21 -1.06 \

\- 1.06 0.125/ .

The estimated variance and covariance of the estimators 

of g must be interpreted very carefully. For the model 

Y = Xg + e it is well known that (X^X)-1o2 is the dispersion 

matrix of the estimators of 8. Thus (XTX)-1s2 is an 

estimation of this matrix. This estimated dispersion matrix 

is with respect to the original factor space.

If the model is weighted by W1, where W-1 is the 

weight that will transform D(eeT) to I, then the weighted 

model becomes VI-1! = W1Xg + VI-1e.

An estimate of the dispersion matrix of the weighted 

estimators of 8 is (XTW"~-W-1X)-1. The estimators for each 
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model have the same expected value, namely 3, but their 

variances and covariances are not preserved under the 

transformation. Thus the matrix (XTW‘-Ttf~ 1X)”1 is an estimate 

of the dispersion matrix with respect to the weighted factor 

space, not the original space. Therefore, the estimate of 

the dispersion matrix from the LS analysis cannot be compared 

directly with the estimate of the dispersion matrix from 

the CQWLS analysis, since the independent variables are in 

different spaces.

A comparison can be made by considering the variance of 

the mean of future predictions at a known point. If S is a 

known point, then the predicted mean is Y = bS. It is well 

known that if V(b) is the estimated dispersion matrix of b, 

then the estimated variance of Y, V(Y), is

V(Y) = ST V(b)S.

If the estimate of V(b) is with respect to a weighted 

space, and S is weighted by a scalar weight w, then

Yw = b(ws)

V(Yw) = (wS)TV(b)(wS)

and V(Yr) = w2V(Y)w
V(Y) = w-2V(Yw).

Thus if w is the appropriate weight to transform S into 

the weighted space, the V(Y) in the original space may be 

computed by the above formula. The value of w for one of 

the points in the factor space -may be obtained directly 

from the w"1 used to transform the data. Weights for other
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points may be found by (4) where c, q and iq are replaced 

by their estimated value.

A meaningful way to study the relationships between 

the variance and the mean is to construct limits which give 

95% confidence that 95% of the distribution lies within 

these limits. Such limits are called 95% tolerance limits. [28].

Tolerance limits were constructed and are shown in 

Figure 3 along with the data points.

Since the limits in Figure 3 are limits on the mean of 

future observations, not all the data points need to fall 

within the band. However, the expected value should be in 

them. For simulated data the expected value is known. 

The LS limits do not include the expected or actual value 

for 28 < X 40. In addition, they do not appreciably 

increase in width as the variance increases. However, the 

CQWLS bands always include the expected value and their 

width increases in the regions of large variance. In addition, 

when the variance is very small, CQWLS produces limits that 

are smaller than the LS limits. Therefore, one must conclude 

that the CQWLS method not only produces better point estimators 

but also produces better interval estimators for the CQ 

simulated data.

Gamma Simulated Data

The other simulated data set was constructed to conform

to the gamma model (2). The same factor space that was used



Figure 3
Tolerance Limits for the CQ Simulated Data
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in the CQ simulation was used with yj = 0.1, and y2 = 0.1. 

The simulated responses and actual standard deviations are 

summarized in Appendix 1. Note that this example is not as 

variable as the CQ simulated data.

Starting with the LS estimates the RutemiIler and 

Bowers procedure converged in 15 iterations to produce the 

following results:

/i.oiX 
b = I ) 

\0.98/

0.045

0.105

D(b) =
0.0593

-0.0034

-0.0034

0.00032

D(y) =
0.029

-0.0017

-0.0017

0^00016

These values were then used to determine weights for

the gamma weighted least squares analysis. The results are

Actual LS GWLS CQWLS

bi 1 1. 81 1.01 0.96

b2 1 0.94 0.99 0.99

Io error in b x 82.0 1.0 4.0

Io error in b2 6.0 1.0 1.0

Weighted s2- 1.41 1.25
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The estimated dispersion matrix for the LS estimators in the 

original factor space is

/ 0.55 -0.018 \

\-0.018 0.0007/

with an estimated variance of 9.69. The estimated dispersion 

matrix for the OWLS and CQWLS estimator in the respected 

weighted factor spaces are

/ 0.88 -0.004 \

\-0.004 0.0004/

and 

/ 0.077 -0.004 \

\-0.004 0.0004/

The LS analysis produced results much better than for 

the C5 simulated data, perhaps due to the smaller variability 

of this data. The GWLS and CQWLS methods produced practically 

the same results, neither being able to drive s2 as close to 

1 as CQWLS did in the last example. However, comparing the 

estimates of B to the known values indicates that the values 

of s2 produced (1.4 and 1.2) are close enough to 1 to warrant 

use of the weights. Although not reproduced here, the 

residual plot for LS is very much like Figure 1 and the plots 

for G’.i’LS and CQWLS are very much like Figure 2.

The variance of at various points was calculated as 

before and 95% tolerance limits were set. These limits are 

summarized in Figure 4. The scale of Figure 4 Is such that 

the C-WL3 and CQWLS limits cannot be discerned.



54

Figure 4
Tolerance Limits for the Gamma Simulated. Data
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At the upper level of X, the LS limits again did not 

include the actual value as they should 95$ of the time. 

The GWLS and CQWLS limits are tighter than LS in the lower 

range of X and increase slightly as the variability Increases.

It can be concluded that for this example GWLS and CQWLS 

produced practically the same results although the data was 

simulated according to the gamma model. The results produced 

were somewhat superior to the LS results but not as markedly 

improved as for the last example.

Radio Sales Data

The next set of data is actual data that relates the 

sales of radios in the continental states and the District 

of Columbia to the effective buying income. The data consists 

of 49 points for the model Y = b1 + b2X and is recorded in 

[26], The results of the three analyses are

LS GWLS CQWLS

bl -11.79 -1.84 -1.79

°2 0.032 0.029 0.029

Weighted s2 3.92 3.20

The estimated dispersion matrix in the original factor

space for LS is

24.25

-0.002

-0.002

'0.00000041

with an estimated variance of 686.64. The estimated
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dispersion matrices in the appropriate weighted factor space 

for GWLS and CQWLS are
/ 12. 89 -0.004 \

- 0.004 0.0000035/

and
/ 6.35 -0.007 |

I- 0.007 0.000014 /

respectively.

The slope b2 was practically the same for each method, 

but the intercept, b1, from LS was different from the inter­

cept from the other two methods. Again both OWLS and CQWLS 

gave about the same results. Neither set of weights was 

able to drive s2 to 1 but produced results of 3.9 and 3.2, 

However, these transformations were begun with s2 = 686.67, 

for the data prior to transformation by W-1.

The residual plot for LS residuals. Figure 5, displays 

the spread of variance that is characteristic of a heteros- 

cedastic model. The residual plots from GWLS and CQWLS are 

quite similar and only the GWLS plot is shown in Figure 6. 

The most striking property exhibited in Figure 6 is not the 

constant band of residuals which indicates a constant 

variance, but the one observation that seems to be an outlier. 

The supposition that this point is indeed a sample from 

another distribution is strengthened by noting that this 

residual was generated by the District of Columbia data 

point and not from one of the data points from one of the states.
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Figure 6
GWLS Residual Plot for the Radio Sales Data
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Tolerance limits vzere calculated and the LS and CQWLS 

limits are shown in Figure 7« The CQWLS and GV/LS limits 

differ somewhat. The GWLS limits are wider in the lower 

ranges of X and are tighter in the upper ranges of X. The 

GWLS limits are not plotted, but a comparison with CQWLS 

limits for some specific points is given in Appendix 2. The 

CQWLS and GWLS limits increase in width in the upper levels 

of X where an increase in variability is indicated by the 

residual plots. Figures 5 and 6. The LS limits do not have 

this property. Since this data is not simulated, the true 

relation is not known. Thus it is difficult to choose 

between the GV/LS and CQWLS limits.

Stopping Distance Data

The last example is data relating the stopping distance

of an automobile and its speed [25] for the model

Y = bj + b2X + b3X2. The final point estimate results are

LS GWLS CQWLS

bj 1.838 1.593 1.545

bz 0.369 0.395 0.401

b3 0.066 0.066 O.O65

Weighted s2- 2.81 2.63

The LS estimated dispersion matrix in the original factor

space is



60.

70 0-

600-

50 0-

400-

30 0-

200- /

!
70-

60- 7
e

50-
LS Limits

40- CQWLS Limits

30

20

Log 
Sales

I h i

e

I I i i i i
~T
25

T 
5

ii 
// 
il 

11 
I / 

< I

T-
10

“T-

20

100-
90-
80-

Figure 7
Tolerance Limits for the Radio Sales Data

------------- r
• 15

Income

1000--
900-
80 0_

// j
4!
//!



61

is

/ 24.786 -2.506 0.532 \

with an estimate c

- 2.506 0.292

0.532 -0.007

)f a2 of 94.68. The

-0.007

O.OOOlj

GWLS estimated

dispersion matrix in the GWLS weighted factor space is

and the matrix foi

/ 9.764 -1.595
1-1.595 0.298

\ 0.045 -0.009

- CQWLS in the CQWLS

0.045

-0.009

0.0003/

weighted factor space

/ 13.499 -2.064 0.057 \

[- 2.064 0.360 -0.01
\ 0.057 -0.01 0.0003/

The interval estimates are shown in Figure 8. Again the

GWLS and CQWLS methods produced essentially the same results. 

The estimates of 3 differed from the LS estimates only 

slightly in the first component.

The residual plot for LS, Figure 9, indicates a non­

constant variance, while the residual plot for CQWLS, 

Figure 10, indicates constant variance. Thus the increase 

in width of the weighted limits is more indicative of the 

true state than the narrower LS limits. Based primarily 

on the tolerance limits, either one of the weighted estimators 

is preferred over the LS estimators.



Figure 8
Tolerance Limits for the Stopping Distance Data



Figure 9
LS Residual Plot for the Stopping Distance Data



Figure 10
CQWLS Residual Plot for the Stopping Distance Data



65

Evaluation of Methods

The four examples discussed in the last section along 

with others not reproduced can be used to evaluate the 

methods. For the heteroscedastic model, the weighting ' 

methods produced better overall results than LS. The 

weighted point estimates were markedly better than the LS 

estimates for the CQWLS simulated data. However, in other 

cases, such as the stopping distance data, the weighted and 

LS point estimates were essentially identical. In these 

cases the weighted interval estimates were more indicative 

of the underlying process, that is, they were wider than 

the LS limits in regions of high variability.

It may be possible to subjectively classify data 

according to the number of data points relative to the 

variability of the data. If there is very little data 

available, then LS seems to produce as good or better 

results than a weighted method because there is not enough 

information to accurately estimate the weights. If an 

extremely large amount of data is available, LS might not 

use the data as efficiently as GWLS or CQWLS, but LS 

apparently uses the large amount of data to produce good 

estimates.

The GVZLS simulated data has 93 data points and is not 

extraordinarily variable. Thus this data is an example of 

the large data class. Only when moderate amounts of data 
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relative to variability are available vrill weighted, methods 

produce better estimates. An example of such a case is the 

CQWLS simulated data. It has the same number of data points 

as the GWLS simulated data, but in this case 93 points can 

be considered as a moderate amount of data due to the large 

variability that the data possesses in the upper region.

Although both GWLS and CQWLS are of value, there are 

some reasons to prefer CQWLS over GWLS even though they 

often produce essentially the same results. First, CQWLS 

does not require the assumption of normality nor the 

assumption that the standard deviation is a linear function 

of the independent variables. The GWLS procedure seems to 

be sensitive to the violation of these assumptions, especially 

the second. This assertion is exemplified by the failure of 

the GWLS procedure to converge with the CQWLS simulated 

data. Of course, there are assumptions on the nature of the 

standard deviation for the CQWLS model as well (4). In 

general, CQWLS assumes that the standard deviation is a non­

linear function of the independent variables. However, for 

q = 1, this model reduces to a restrictive case of the GWLS 

model. The restriction is

Yi = cSj,, i=l,2,...,p.

Thus CQWLS reduces to some of the linear cases, while no 

special case of the GWLS model is non-linear.

Secondly, CQWLS is based entirely on the well-established 

concepts of least squares while GWLS is based on the method 
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of scoring. Thus it seems that it would be easier to 

explain C3WLS than GWLS to a potential user. This advantage 

of GC/7LS is certainly less technical than the one discussed 

previously. However, it may be more important to the prac­

titioner who is trying to persuade his managerial staff. In 

addition, CQ;ILS is relatively easy to add to an existing LS 

computer program while GVJLS requires the programming of some 

rather difficult and not well-known equations.

The above advantages of CQWLS are inherent in the 

procedure, while the next two observations may only have 

occurred because of the specific examples chosen. In these 

examples, at any rate, the tolerance limits produced by 

CQWLS were slightly wider in the very variable regions. 

Also, the estimates of s2 from CQWLS were always closer to 

the optimal value of one than the s2 produced by GWLS. 

From these examples one may conclude that if a 

weighted procedure Is Indicated, then CQWLS should be tried 

first. If It does not stabilize the variance, then the 

GWLS method may be tried.

Cf course, weights should not be applied to the homos­

cedastic data. This data can be found by an examination of 

the residual plots or by one of the quantitative methods 

available in the literature [29 , 30 , 313.
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CHAPTER V

AREAS OF FUTURE STUDY

The research described in the previous chapters has 

revealed some areas that would provide interesting research 

projects. This chapter will present these proposed studies 

and outline a procedure for conducting the research.

GerieraT Objectives

An interesting model studied is the heteroscedastic 

model Y = Xg + e where e is normal with zero mean and a 

diagonal dispersion matrix D with j=l,29...,n, on the 

main diagonal where

QJ = 1=1 l2xji6ll9-

This model was described in detail in Chapter IV. This 

model was selected for future study for three reasons. 

First, it is the historical model used in establishing 

variance stabilizing transformations [20] such as the square 

root, log and reciprocal transformations. Observed data 

is often better analyzed by one of these methods [8]. Thus, 

actual processes seem to exist that can be reasonably 

approximated by the proposed model. Second, it is a 

generalization of a special case of Rutemiller and Bowers* 

model. Third, the model reduces to the cr2I model when q = 0.

It is proposed that this model be used to predict 

future responses at points in a range, R. Then it is 
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desirable to determine estimates of g, c and q that will 

make good predictions. This study will be limited to 

linear estimators of g, that is, estimators of the form 

b = AY, where A is a (pxn) matrix.

Let S, a (Ixp) vector, be a point in the factor space. 

Then a prediction of the mean at S, Ys, is Yg = Sb where b 

is the estimate of g. However, the prediction of the mean 

is not the only quantity of interest. The variance of the 

prediction of the mean at S, o| is also important.

The best estimators of g, c and q might be defined as 

the estimators that produce the minimum varianced unbiased 

estimators of Ys and However, such estimators may not 

exist. Therefore, it may be better to define the best 

estimators at point S as the estimators that minimize the 

sum of the mean square error of Yg and as. That is,

CYS-Yg)2 + (as-cs)2. (2)

The standard deviation and not the variance is used so that 

both terms will have the same physical units.

If it is desired to predict within a given range R, 

then errors in the prediction for the entire range should be 

considered. Therefore, define the best estimators over R 

as the estimators that minimize

S [(Y -Y )2 + (a -aj2]ds.
— "D S O Ot> en
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This definition appears difficult to apply. A related 

discrete measure will therefore be used. Let 31,82,...}Sr 

be r prechosen points in R. Then the best estimators are 

those which minimize

2 [(Y .-Y .)2 + (o .-o )21=1 .LV S.X . s.l< . \ SI . si- (2)
r

Evaluating

The expression in (2) requires a knowledge of o|. For 

the class of linear estimators, that is, estimators of the 

form

(3)b =' AY

where A is a (pxn) known matrix, the formula for the

covariance of b- and b. may be derived. Let A. be the i^ 
i

row of A, then

Let A^. be the (i,j)^^ element of A. The covariance of b^

and b . as given by

Cov(bi,bj.) = ECb^) - E(b1)E(bj)

ECA^AjY) - E(b1)E(b.)

Z E A.-A^ E(Y.Y ) - E(b.)E(b.).R £ ik k SLV J

Since Y.^ and Y^ are uncorrelated.
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Cov(c./o.) = Z E A. A., E(Y. )E(Y )i J k £ ik jk k £
Sl^k

+ £ A.. A., [a2- + E(Y )2J - E(b.)E(b )
-LK J K K 1 j

= E E A. A., E(Y,)E(YJ - E(b.)E(b.)k £ ik jk k £ i j

+ E A A a2.
k lk jk k

Thus

Cov(b.,b ) = E A A a2. (4)
i J k Ik jk k

For the model under study this becomes

Cov(b.,b ) = c2 E A A I EX g l2q. (5)
1 J k ik jk £ k£ £

The dispersion matrix for b, D(|3,c,q), depends on 3, c and 

q. Then the variance at S is
T a| = SD(3,csq)S (6)

and

a2 = SD(b^3q)ST. (7)

Simulation Study

The complex nature of a2 indicates that isolating the 

best estimators by analytical methods would be very difficult, 

if not impossible. The best estimators may even be obtained 

by different methods for various types of data. However, it 

may be possible to develop an insight into the behavior of 

some estimators by a simulation study. This study will 

analyze the behavior of some possible estimators on 
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simulated data. Hopefully the results can be used to 

completely eliminate some of the estimators and develop 

criteria for selecting among the others. Some of the 

problems that will be encountered will be discussed in 

this section.

Estimators of g

Estimators of B that will be considered will have the 

general form of

b = AY.

Specifically, the study would consider LS, weighted LS, 

MSAD, weighted MSAD and Chebyshev’s estimators. The 

earlier chapters of this thesis showed how the A matrix 

may be determined for all estimators except weighted MSAD.

The weighted MSAD estimates may be obtained by merely 

changing the objective function of the linear programming 

problem to a weighted sum of deviations. Thus the A matrix 

can be determined in the same manner as for MSAD. However, 

it is not obvious what form the optimal weights should have. 

Two types of weights appear reasonable. First, the weights 

could have the same form as the LS weights, that is, weighted 

inversely to the standard deviation. Second, since the 

optimal weights for LS are the reciprocal of the standard 

deviations, it seems that the reciprocal of the mean 

deviation, 6, would be good weights for MSAD. Herrey [7] 
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states that for the normal distribution the mean deviation 

is given by

6 = /z/tt cr.

Thus the weights 1/6^ could be used. As little as is known 

about the relationship between LS, MSAD, either type of 

weighted MSAD and Chebyshev’s method, a preliminary study 

in which c and q are assumed known is proposed. Perhaps 

this study could at least determine the proper form of the 

weights for MSAD and exhibit data that could be analyzed 

better by a form of MSAD than by LS or weighted LS.

Estimates of c and q

There are two possibilities for estimating c and q. 

The first was described in Chapter IV in connection with 

the CQWLS method. This method produced reasonable estimates 

as shown by the examples.

In addition, it may be possible to determine maximum 

likelihood type estimators of c and q as an alternate to 

the first approach. First eliminate c from equations (5) 

and (6) of Chapter IV to yield

z(Y -y ) | p. | ”2cIln[ p | [E(Y -p )2| p | -2Q]2
j J J 1 J - a J J =0 (8)

Slnlp.l 2n
J J

where p. = 5X..g,. If (3 were known, equation (8) could be J J 1 1

solved numerically for q. The value of c could then be
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found by

2(Y.-]i )2| p. |“2q 
' J j ' J 

G = 
n

which is equation (6) of Chapter IV. The values of c and q 

so obtained would be the maximum likelihood estimates.

However, if g is estimated, the values of c and q are the 

maximum likelihood estimates with respect to the assumed 

value of &. This type of estimate of c and q will be 

called the relative maximum likelihood estimates and can be 

found if (8) can be solved numerically.

When weights are estimated, an iterative procedure for 
i thestimating c and q may be used. Let b denote the i 

estimation of g, c^ and q1 be the i^h relative maximum 

likelihood estimations of c and q. Use the LS or MSAD 

estimates for b1. Find 61 and q1. Use these values to 

estimate weights and use the weighted estimate of g for 

b1"1"-1-. The iterations are repeated for i=l,2,..., and 

terminated when the weight matrix approaches the identity.

Since the relative maximum likelihood estimators have 

not been studied, a comparison with the CQWLS estimators 

has not been made. Therefore, another preliminary study 

needs to be made to determine the best method of estimating 

c and q.
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Selection of Estimators

Perhaps selecting the best estimators for a given set 

of data is the most difficult problem that will be encountered 

in the study. Hopefully the simulation results can reduce 

the list of possible estimators to only a few candidates. The 

choice between the remaining estimators will have to be 

based on observable quantities. Some of the quantities that 

appear meaningful are the number of data points, n, the 

number of elements in 3, p, the distribution of the data in 

the factor space and some measure of the behavior of the 

variances over the factor space. These variables, possibly 

along with some others, could be used as independent variables 

in a regression analysis to predict the sum of the mean square 

errors of Yg and <ts. Possibly a separate prediction equation 

would have to be developed for each type of estimator. Then 

the estimator that had the lowest predicted mean square error 

could be selected.

Two of the variables need to be quantified in order to 

be used in the regression analysis. These variables are the 

distribution of the data in the factor space and the variability 

of the data.

It appears that more data is needed in regions of high 

variance than in regions of low variance. Thus, the distribu­

tion of the data points relative to the predicted mean seems 

important. One approach to quantify this property is concerned 
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with the range of the predicted responses. Let Ymax be the 

largest predicted mean in the entire region of interest 

and let Y . be the minimum of such predictions. Define 

Y^ as the point such that X percent of the range of the , 

prediction of Y is less than Y^, that is,

Y. = -2- (Y -Y . ) + Y . .
X 10 q max mm/ mm

The distribution of the data could be measured by the ratio 

of the number of data points that yield predictions between

Yqq and to the number of data points that predict 

between Yq and Y^q.

In a similar way several measures of the behavior of 

the variance can be presented. Define the coefficient of 

variation from Y., to Y,_ as
A 1 A 2.

S(xi,X2) 
tO1^2)= u(x1#x2)

where S(x1JX2) is the estimated standard deviation of the 

prediction between Y and Y and u(x ,xj is the mean of. Xi X2 12
the predictions between Y and Y . Some measures of the 

. A1 X2
heteroscedasticity are ^(80,100)/ip(0,20 ), 80,100)—xp(0,20) ,

ipCxm„Y,X +10)/ip(xTT1. ,X ,_+10) where x is the value from Y max' max Y mm’ mm max
the set'{0,10,20,30,40,50,60,70,80,90} that maximizes 

ip(X,X+10) and Xmj,n is the value from the same set that 

minimizes ip(X,X+10).

In order for the regression curves that will be used 

for selection of estimators to be generally applicable, 
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the simulated data used in the study needs to vary over 

fairly large ranges. Numerical experience gained from the 

research already conducted indicates that n should vary 

from 10 to about 150, p from 2 to 5, c needs to be small, 

say .1 or .05, q ranges from 0 to 3 and the distribution 

of the data points should vary from data with high concentra­

tion in the low ranges of Y to evenly distributed data with 

high concentration in the upper ranges of Y. Later it may 

be advisable to extend the range of p. It is felt that these 

ranges would make the selection curves valid over a reason­

able range of applicability.
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APPENDIX 1

CQ AND GAMMA DATA

X CQ aj CQ Y y CTj Y Y

4 1.11 3.34 .5 4.26
5 1.46 6.96 .6 6.39
5 1. 46 5.29 .6 5.71
5 1. 46 5.04 .6 5.60
5 1. 46 7.16 .6 6.4?
7 2.26 8.95 .8 8.33
7 2.26 3.91 .8 6.55
8 2.70 3.02 .9 7.00
8 2.70 11.60 .9 9.86
8 2. 70 11.12 .9 9.70
8 2.70 8.54 .9 8.84
9 3.16 14.16 1.0 11.31
9 3.16 10.49 1.0 10.15
9 3.16 6.74 1.0 8.97

10 3.64 11.11 1.1 11.03
10 3.64 11.49 1.1 11.14
10 3.64 12.55 1.1 11.46
12 4.68 18.35 1.3 14.48
12 4.68 14. 45 1.3 13.40
12 4.68 5.38 1.3 10.88
13 5.23 23.25 1.4 16.4?
13 5.23 10.87 1.4 13.16
13 5.23 14.69 1.4 14.18
14 5.80 9.80 1.5 13.66
14 5.80 15.62 1.5 15.16
15 6.40 21.08 1.6 17.27
16 7.00 30.29 1.7 20.22
16 7.00 12.37 1.7 15.87
16 7.00 5.21 1.7 14.14
17 7.63 20.24 1.8 18.52
17 7.63 17.54 1.8 17.89
18 8.28 19.16 1.9 19.03
18 8.28 20.67 1.9 19.38
18 8.28 25.75 1.9 20.54
19 8.94 15.8? 2.0 19.07
20 9.62 21.31 2.1 21.06
21 10.31 27.20 2.2 23.11
21 10.31 24.18 2.2 22.46
21 10.31 31.31 2.2 23.98
22 11.03 25.18 2.3 23.45
24 12.50 23.81 2.5 42.76
25 13.25 42.8? 2.6 29.30
25 13.25 15.15 2.6 23.87
25 13.25 16.38 2.6 24.11
25 13.25 39.55 2.6 28.65
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APPENDIX 1 (continued)

X CQ <Jj CQ Y Y a j Y Y

2.6 14.03 9.13 2.7 23.56
26 14.03 19.47 2.7 25.56
27 14.81 42.21 2.8 30.68
27 14. 81 34.10 2.8 29.15
28 15.61 32.72 2.9 29.69
28 15.61 41.04 2.9 31.23
29 16.43 44.55 3.0 32.65
29 16.43 22.87 3.0 28.69
30 17.26 20.81 3.1 29.17
30 17.26 32.17 3.1 41.21
30 17.26 24.53 3.1 29.83
31 18.10 30.50 3.2 31.73
35 21.60 52. 88 3.6 38.81
35 21.60 19.84 3.6 33.33
36 22.50 7.43 3.7 32.14
39 25.29 10.45 4.0 35.32
4Q 26.25 36.56 4.1 40.30
40 26.25 ' -33.51 ' 4.1 29.36

*36 22.50 71.11 3.7 42.6 0
36 22.50 73.38 3.7 42.98
36 22.50 81.41 3.7 44.30
36 22.50 4.81 3.7 31.70
36 22.50 48.17 3.7 38. 83
36 22.50 3.56 3.7 31.50
37 23.42 4.29 3.8 32.53
37 23.42 19.02 3.8 34.92
37 23. 42 13.42 3.8 34.01
37 23.42 7.69 3.8 33.08
37 23.42 -11.56 3.8 29.95
37 23.42 30.27 3.8 36.74
38 24.35 42.33 3.9 39.53
38 24.35 22.18 3.9 36.30
38 24.35 67. 48 3.9 43.56
38 42.35 4. 85 3.9 33.53
38 24.35 69.47 3.9 43.87
38 24.35 23.90 3.9 36.58
39 25.29 54.75 4.0 42.33
39 25.29 52.58 4.0 41.99
39 25.29 25.51 4.0 37.71
39 25.29 37.76 4.0 39.64
39 25.29 45.75 4.0 40.91
39 25.29 -14. 87 4.0 31.32
40 26.25 7. 84 4.1 35.82
40 26.25 89.16 4.1 48.52
40 26.25 44. 73- 4.1 41.58
40 26.25 14.69 4.1 36.89
40 26.25 45.95 4.1 41.77
40 26.25 15.19 4.1 36.97

* Points below the line were added to the factor space in [10]
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APPENDIX 2

GWLS AND CQWLS TOLERANCE LIMITS

POINT 
^3 
18

X
388

5933

LOWER
2

148

GWLS
UPPER

17
192

CQWLS 
LOWER

5
119

UPPER 
. 13 
22112 1136? 281 374 226 4309 16968 418 562 336 64547 22505 553 748 445 8588 28220 693 9 40 557 1078


