BRACHISTOCHRONE PROBLEM SOLVED BY INVARIANT IMBEDDING,

DYNAMIC PROGRAMMING, AND QUASILINEARIZATION METHODS

‘A Thesis
Presented to
the Faculty of the Department of Mechanlcal Engineering

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Mechanlcal Englnesering

by .
Moo=-Zung Lee

June, 1966

.

363713

ACKNOWLEDGEMENT

The author wishes to express his sincere gratltude
to his adviser Dr., D. Muster, Professor and Chalrman of
the Department of Mechanical Engineering, University of
Houston, for his encouragement, guidance and careful
arrangements of discussions with several people during
the study and writing of this thesls, Among these, the
author is particularly in debt to Dr. R. E. Kalaba of
the Rand Corporation who suggested this problem with
keys to the solution and contributed many valuable
references. Assistance received from Drs. I. Organick,
S. R. Parker, and S. B. Childs, (2ll of. the University

of Houston), is greatly apprecilated,

111

BRACHISTOCHRONE PROBLEM SOLVED BY INVARIANT IMBEDDING,

DYNAMIC PROGRAMMING, AND QUASILINEARIZATION METHODS

An Abstract of a Thesis
Presented to
the Faculty of the Department of Mechaniocal Engineering

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Mechanlical Engineering

by
Moo=-Zung Lee

June, 1966

ABSTRACT

In such. fields of current interest as optimal control
and orbit determination, non-linear two-point boundary-
value problems arise, the numerical solutions for which
are diffi&ult to obtain, In this thesis, some of the useful
tools for treating problems of this naturé - invariant
imbedding, dynamic programming, and quasilinearization are
studied by means of the brachistochrone problem. The three
approaches are used separately and in combination. Computer
programs using MAD language are presented. The results are

compared with the classical solutiouns.

TABLE OF CONTENTS

ACKNOWLEMEMENTS S 0 005 0PSO OO SO OEOEEOOOINOEOSIDONODNPCEDODN VNS

LISTOF FIGURES 0000600 00000000000 OOSOOESIPOEEPRSDO PO

LIST OF_.TABLES ® 0 0000 00 PGP OGO ROLOOIONOEBIOETBSOEOENOSEOE OIS

LIST OF PROGRAMS G0 P 0 00 G0 0RP PG OPOEOOOOEOIERPROSOEOEONOSLSTPCDS

LIST OF SYMBOLS 0 0000 C0 SO OPCOLERNIPOICEOEOPOEINPOCEOOOETEO TGS

CHAPTER

I.
II.
III.
Iv.
v.

INTRODUCTION ceeovevocsasccccasnsaccss
INVARIANT IMBEDDING eoeeeococcccccccses
DYNAMIC PROGRAMMING +eeosoococscssvess
QUASILINEARIZATION eseevossssocossnsse
COMPARISONS AND COMBINATIONS eeeeosese

CONCLUSIONS S 000 000 0000000000000 000ORIBLOESOIEOOEESTOSS

APPENDIX PO 0 GO D OGO OOOOOR OIS OIS EEINGIOESOEOIEBIBOIIPTPPOEOEDST®DS

BIBIJIOGMHI OO 00 T SO D OO OOEELP OO OO OPNOESOOLELEEBTOESOEOS OB

Page
iii

vii

ix

xi

20
46

59
82

84
87

Figure
1.2-1
2.4-1

2-4"‘2
2.4-3
2. bty

2.4-5
2.4-6

2.4-7
3e1-1
3.1-2
3.3-1
3.3-2
3.3-3
3.b=1
3.4-2
3.4-3
3o b=k
3.4-5
3.4-6
3.5-1
3.6-1

LIST OF FIGURES

Possible Paths for the Least Time eeeee

Initial Slopes and the Range of
Independent Varlable eccecscescccsvosce

(A) w as a funotion of a
(B) was a function 0f C cesecesesnesee

Slopes Along the Optimum Path in
x-u Plane LRI BN BN BN BN RN B A R B B B N N BN RE BN BN BN BB BN AN I

Slopes Along the Optimum Path as
aFunCtion ofx.....'...............

Geometry of Equation (2.4=11) ceceveccees

Initial Slopes Obtained from Invariant
Imbedding 9000008 eNssORRPRIISIOEOIROIOIOOTS

Flow Chart of Invariant Imbedding eeeee.
Two-Decislon Two-Stage ProcCessS sseeesee
Two-Decision Multistage Process eeesees
Multi-Declislion Process .eeeescecccescee
Grid Points in x-y Plane ecececcecccccse
Optimal Path °1'd0 vecesseesssssnesesee
Stage K = N = 1 ceeecsvccccsssscssosnscse
Stage K = N = 2 seeeveesscscscececcsces
Geometry of the Principle of Optimality
Possible Paths from d1 £O B soeecccnces
Filgure of an EXampPle eceecscscessossscssse
Figure of an EXAmDle scecesoscssccsssss
Backward ScCheme ccseeevessecssscccscnns

Possible Paths from A to dl sec0cscsssse

.

vii

Page

11
1

11
13

15
17
20
21
23
23
23
25
25
25
28
28
28
29
32

Figure
3.6-2
3.6-3

3.7-1

3.8-1
3.8-2

3.8-3

b,1-1
b,2-1

5e2-1

543=1

LIST OF FIGURES (con't)

Forward Scheme ® 9 6900 C 0 OO PNOS OISO OEOOEEEOSDS

Geometry of the Reverse Principle of
.Optimallty P S CE PO CIQREOEPNOEOEDNOEOIOEONOSOEOITDS

Figure of Equatlon (3.7-1) escevesscses
Elements of Cost MatriX seceecccccescsnss

Optimal Curves Obtalned by Dynamic
Programming teo0s0vss0sscssv0ssssese e

Flow Chart, Forward Method of Dynamic
PrograMing O 5 0 00 000000006 00000000000

Newton—RaphSon MethOd sevoPOOLOOOENINOIEOEDINGODL

Abstract Procedure of Quasilineariza-

tion ® 50 000 SO0 OOO OGN OEELOOPBEOPIOBROEENNDSCOGDS

Slope Characteristics and Searching

Region ® 000050000000 B OO OO CEOSOSOONPSPOOE PSR

Regions to be Searched in Various Cases

viii

Page
32

32
33
37

39

In
46

55

62
6L

Table

LIST OF TABLES

Initial Slopes Obtained by Invariant
Imbedding ® & 5 000 0 00O PO ON OEE SN OO OSSN ESPSSS

Minimum Travelling Time Obtained by
Dynamic ProgramMing cceecscceccccccscscs

Grid Number and Accuracy in Dynamic

Progre-mmlng P 00 ¢ 0090 OO P OO OL OSSO OSSOSO OODN

Convergence of un(x) to u(x) by Quasi-
linearization,.(800.discrete points) ..

Convergence of un(x) to u(x) by Quasi-
linearization , (400 discrete points) .

Minimum Travelling Time Obtained by
QuaSilinearization R R R R N W)

U(x) Obtained by Joint Use of Dynamio
Programming and Quasilinearization

U(x) Obtained by Joint Use of Invariant
Imbedding and Quasilinearization eceees

ix

Page
16

40
40
52
53
54
67

68

LIST OF PROGRAMS
Program Page

2-1 Brachistochrone Problem with Free End
Conditions Solved by Invarliant
Imbedding ® 9 0 0 0 9 O O 0O " OO OO VO OO OO OO PO S PSS O 18

3-1 Brachistochrone Problem with Two-Point
Constraint Solved by Forward Method of
Dynamic Programming eeeeeccscescccscsss 42

3=-2 Brachistochrone Problem with Free-End
Conditions Solved by Backward Method
of Dynamic Programming eeeeceececeseeoscss Ll

4~1 Brachistochrone Problem Solved by
Quasilinearization ® O & 00 00 &V OO S OB P OO RN 56

5-1 Forward Method of Dynamlec Programming,
Searching Within Restricted Region .eee. 69

5-2 Brachistochrone Problem with Free End
Conditions Solved by Joint Use of
Invariant Imbedding and Dynamic
Programm1n8 ¢ 0 0O 0 0 0 09O OO OO O S OO G OE LN SN ?o

5-3 Brachistochrone Problem Solved by Joint
Use of Dynamic Programming and
Quasilinearizatlon .ecececscesccesescese 73

5-4 Brachistochrone Problem with Free-End
Conditions Solved by Joint Use of
Invariant Imbedding and Quasilinea-
rization Q..I’.......O....l.....l...‘..' 78

delx, dx,sXx

dely, dy,Ay

&

LIST OF SYMBOLS-
Definition.

Initial position along x-axls
Starting point
Constants
Terminal point
Initial state
Interpolated value of state variable
Small increment of x
Small increment of y
Infiniteslimal chord length

Infinltesimal time

| Optimal function

Functional

Constant of gravitational acceleration

Functional
Homogeneous solution
State counter

State counter

Stage counter
Integer constants
The origin
Particular solution
State counter

Stage counter in quasilinearization

xi

Symbol

H

5 00q Hf oﬂ

M

sl
e)

LIST OF SYMBOLS (con't)

Definition

Slope function (text)

Radius of base circle (appendix)

Time

State variable

Starting value of u

Terminal value of u

Veloclity

Slope

Independent variable

Starting value of x

Terminal value of x

Dependent variable

Starting value of y

Terminal value of y

Angular displacement of base circle

Angular veloclty of base circle

xii

CHAPTER I
INTRODUCTION
1.1 INITTIAL-VALUE PROBLEM AND BOUNDARY-VALUE PROBLEM

Consider a second oxrder ordinary differential equation
¥" ="G(y,y") | (1.1-1)
with initial conditions

Y(O) = 01 ' (a)
y'(0) = o, (b)

(1.1-2)

The determination of a solution to Eq.(1.1-1) subject to
conditicus Eq.(1.1-2) is known as an initial-value problemn.

By putting u=y, w=y', Egs.(1.1-1) and (1.1-2) become

u' = w u(0) = c, (a)

c, (b)

’ (1.1=3)

w' = G(u,w), w(0)

which are integrable directly.

Modern slectronic computers provide the means for
obtaining numerical solutions of systems of simultaneous
non-linear (or linear) ordinary differential equations
subject to a set of initial conditions, with accuracy and
speed. However, in some fundamental problems the constraints

are not initial values but are in the form

u' = w u(0) = c, (a)

(1.1=4)
w' = G(u,w), w(xT)= cq (b)

where X is the terminal value of the independent varlable x.

(1)

The problem is called a two-point boundary-value problen,
since values are prescribed at two distinct points, x=0 and

X=Xq.

1.2 THE BRACHISTOCERONE PROBLEM 1

As an'gxample of a two-point boundary-value problen,
the differential equation of brachistochrone problem is
derived as follows:

Given two polnts in a space containing a constant
gravitational force field, we wish to find a frictionless
‘path from a higher point to a lower point along which a

particle will slide in minimum time,

A(0,0) XT X

.B<XI' 95’T)

Figure 1.2-1
Possible Paths for the Least Time

In Fig. 1.2-1, It is obvious that the particle will

1 From Greek, fraxioJed, shortest and %pdves, time, a term
invented by Jean Bernoulli (1667-1748) in 1694 to denote a
curve along which a body passes from one fixed point to
another in the shortest time. When the directive force is
constant, the curve is a cycloid.

traverse minimum distance along the straight-line path ACB.
Along the curved path ADB the particle picks up speed sooner,
but travels a longer route. The optimal path of least time
may be found by balancing these considerations properly.

Let us denote the initial point as the origin, set up a
coordinate system as shown in Fig. 1.2-1 and call the terminal
point (xT,yT). We know that the particle velocity, .- v,
in the plane of the fleld, 1s equal to ,IEE; at any
position in the field, independent of its horizontal position.

Since an infirnitesimal arc length, ds is given by

as = [(a0? + (@n)?] /2 = 14312 eax,

the time of descent 1s expressed by
- 2 1/2
e ot [.
o V 0 2ey
(1.2=1)
where g 1s the gravitational constant. We seek a function
y=y(x) which satisfies the constraint conditions y(0)=0,

y(xr)=yr, and which minimizes the integral T,
The Euler equation for Eq.(1.2-1) is

2yy" + y'2 + 1 =0 (1.2=2)

or in the form of Eq.(1.1=1)

PR L AL (1.2-3)
2y

subject to the boundary conditions

0 (a)

X (o)

1.3 A NUMERICAL SOLUTION OF TUWC-POINT BOUNDARY-V!LUE PROEBLEM

y(0)

y(xl,)

(1.2-k)

In order to solve an n-th-oxder ordinary diffexrentiazl
equation nﬁﬁerically, ordinary ccmputing techniques call for
a knowledge of ¥y ¥'y ¥"y eos y(n_1) at eilther the starting
roint x=0 or the terminal point X=Xmpe In the brachisto-
chrone problem, we have one value at one end and another at
the other,

In order to solve a problem of this nature, we may
choose a value of y' 0), say Cly» and integrate the equation
using y(0)=c1, y'(0)=04 as initial values. If the value at
the terminal point, y=y(xq) obtained in this way agrees
sufficiently closely with the desired value Jps We accept
this as the solution. Otherwise, we vary the value of cy
and recompute the terminal value until agreement at the
boundary is satisfactory.

This 1s not an ideal procedure for a number of reasons.
First, it is difficult to estimate in advance the required
amount of computing time which will be needed. Second,
stipulating a certaln accuracy at the end point does not
guarantee equal accuracy throughout whole range of x, from

x=0 to x=xp. Third, the results obtained from the i-th

iteration

y(k)i = y[i(kﬂi for 0£x(k)=keax€xq (1.3-1)

are not utilized to improve the solution in the (i+1)-th try.
In addition, a proper first estimate of the solution'may be
difficult to establish.

1.4 RBECENT APPROACHES

As we shall see in the following chapters, theories of
invariant iﬁbedding and dynamlic programming transform
boundary-~value problems to initial-value problems by introduc-
ing new state variables, and lmbedding a specific problem in
a famlly of similar problems, Invarlant imbedding provides
information of initial slopes from given terminal slopes in
a very short computing time. The Euler equations obtalned
in the course of applying calculus of variations are, in
most cases, difficult to solve; dynamic programming provides
a means of by-passing this hurdle. On the other hand,
quasilinearization attacks these problems by linear approxi-
mation techniques combined with a concept analogous to making
2

approximations in policy space [14] The approximations are

constructed to yleld rapid and monotone convergence.
The theory and techniques mentloned above were developed

mainly by Bellman, Kalaba and their colleagues [3-21,24] .

2 Number in bracket refers to identically numbered
references in the bibliography.

.

CHAPTER II
INVARIANT IMBEDDING
2.1 PRINCIPLE OF INVARIANT IMBEDDING

In 1943, Ambarzumian introduced a new approach to the
study of atmospheric scattering problems [f]. This approach
was extended b& Chandrasekhar who gave it the name "principle -
of invariance"[f]. In recent years, Bellman and Kalaba
generalized this methodology and called it "the principle of
invariant 1mbedd1ng"Eﬂ. It can be stated as follows:

"Given a physical system, S, whose state at any time t

1s specified by a state vector, x, we consider a

process which consists of a family of transformations

applied to this state vector.

Suitably enlarging the dimension of the original vector

by means of additional components, the state vectors

are made elements of & space which is mapped into
itself by the famlily of transformations. In this way -
we obtain an invariant process, by imbedding the
original process within the new family of processes.

The functional equations governing the new process are

the analytic expression of this invariance, "

In other words, we derive equations for the values of
the dependent varlables at a fixed value of the independent
variable as a function of interval on which the boundary
value problems are specified.

Many applications of this theory in such diverse areas

(6)

as radlative transfer, neutron transport, diffusion and heat
conduction, scattering and random walk, and wave propagation
can be found in recent literature [3,5,6,7,8] . In this report,
the fundamental technique is applied to a problem well-known
in classical calculus of variatlons.

2.2 IMBEDDING PARTICULAR PROBLEM IN A FAMILY OF PROBLEMS

In the study of a spring-mass system, customarily we
write y=y(t), indicating the dependence of the solution upon
t. DMore generally, the solution is also a function of ¢, the -
initial value of y; hence, we write y=y(c,t). This implies .
that the study of a particular solution of a differential
equation may be carried out by studying a family of solutions;
It also constitutes the keystone of the theory of invariant
imbedding and forms the base for the theory of dynamic pro-
gramming.

Although imbedding a particular problem in a family of
problems appears to complicate rather than simplify the.
problem, 1its Jjustification lies in the fact that we can
construct a bridge spanning the particular problem and other
members of the family, which is utilized to determine the
characteristics of the particular member of the family.

2.3 DBRACHISTOCHRONE PROBLEM WITH FREE-END CONDITIONS

A brachistochrone path connecting the initial point A(0,c)
and any point on the terminal line X=B ls characterized by '

minimizing the functional

B =
T = bj_L_g_SX_l_~ ax (2.3-1)
0 8y ‘

where the dependent variable 1s subject to the initial condition

y(0) = ¢ (2.3-2)

and y 1s free at the terminal line x=B. Such a problem is said
to have one varlable end point.
From Eq.(1.2-3), the optimal path is the solution of the

Euler equation

g o= - Y (2.3-3)
2y
subject to initial condition y(0)=c. The other boundary value
is not glven explicitly; however, from the statement of the
problem and the fact that the minimum-time path from any point
on the terminal line to the terminal line itself is equal to

zero, we have the so-called natural boundary conditionﬁ‘ﬂ
y'(B) =0 (2,3-4)

We seek to find the missing initial value y'(0). so that
we can integrate Eq.(2.3-3) directly to obtain a solution. In
the following section we show how to compute, by invariant
imbedding, the missing initial slopes from the gilven terminal
slores.

2.4 DERIVATION OF EQUATIONS [18]

We rewrite Eq.(1.1-3) with ©,=0, ©¢,=0. that is,

ut = w, u(0) =c¢ (a)
(2.4=1)
wl

it

G(u,w), w(xr)= 0 | (b)

.

Figure 2.4-1
Initial Slope and the Range of

Independent Variable

From Fig. 2.4~1 we can see that, for similar problems, the
initial slopes depend upon the range of the independent
variable x. Initial slope u’(0)=W1 is optimum for xp=B,,

while u’(0)=w2 is proper for xp=B, 3. If we fix xp at B, and
consider various starting points at x=a along x-axis, then the

initial slope at x=a 1s a function of a (Fig.2.%-2). We write
u'(a) = r(a) for 0 € a £ Xq (2.4=-2)

By permitting the parameter a to vary from xT to 0, we
construct a family of similar problems with different range
of x for each member of the family. Furthermore, for a

particular value of a, say 8=a,, the initial slopes differ

3 At the cusps of a cycloid the slope 1s infinitely
large, but here we must choose finite values for use
in the computation. On this base we assume w(0) to be
finite but large at the cusps.

10

according to the starting position c=u(0). Therefore we write
u'(a) = w(a) = r(c,a) (2.4-3)

realizing that the correct slope depends upon the starting
value of x as well as the initial position u(x). By permit-
ting ¢ or a"to vary, or ¢ and a simultaneously, we actually
investigate a famlly of problems of similar nature.

Let us assume the process begins _af x=a, with slope b1 .
After moving along the optimal path to x=at+ax the slope

becomes'bz(as is shown in Figs.2.4-3 and 2.4-4), and
2
w(a+ax) = w(a) + w'(a)ax + 0 BAXQ] (2.4-4)
Recall Eq.(2.4-3) and replace w(a) by r(c,a); we obtain
] ' , . 2)
w(atdx) = r(c,a) + w'(a)ax + 0[(ax)?] (2.4-5)

On the other hand, the general functional relationship
Eq.(2.4-3) holds equally well for x=a+Ax, that is

w(atax) = r(d,a+ax) ' (2.4-6)

where 4 is the value of dependent variable u at x=a+ax,

which may be expressed by

d u(a+ax)

u(a) + u'(a)ax + 0[(ax)?]

= ¢ + W(a)'AX+O[(AX)2]

= ¢ + r(c,a)Ax + O[(AX)?'] (2.4-7)

We substitute Eq.(2.4-7) into Eq.(2.4-6) introduce the second

.

11

1

0 B b4
w
4 0
w
w |
uv 2

(4) | (B)

Figure 2.4-2

(A) w as a function of a
(B) w as a_ function of ¢

0 Y atax 0 a a+AX

X X
T T o oo
' |
{ |
I i
o \| |
21N |
4 |
i
|
Cy [T
b
u 2
Y
Figure 2.4-3 Figure 2.4-4
Slopes Along the Optimel Path Slopes Along the Optimal path

in x-u Plane as a function of x

12

expression of the slope at x=a+ax and obtain
w(atax) = r [§+r(c,a), a+Ax] (2.4-8)

By equating the right-hand sides of Eq.(2.4-5) and Eq.(2.4-8)

we obtain

r(c,a) + w'(a)rax = r[c+r(c,a)-Ax, a+ax]
In order to express r(c,a) as a function of r(c,a+sx), let us

take 4x sufficiently small and for the first approximation

r[c+r(c,a):ax, atax] 2 r(c+r(c,a+ax)-Ax, a+ax)
(2.4-10)

to rewrite Eq.(2.4-9) as

r(c,a) = r[c+r(c,a+Ax)-Ax, a+Ax] - w'(a+ax) Aax
(2 4=11)
From the geometry of Fig. 2.4-5, if the slopes of curves
passing through all grid points at x=a+4x are‘known, the
slopes of different curves passing through grids at x=a are
computed as follows.
1. Take the slope at p, w:r(oi,a+Ax) as the first approxi-
mation of the slope at q.
2. Locate 4 by equation d:ci+r(ci,a+Ax%Ax,
3. Compute the slope of curve at d by linear interpolation
of r(ci,a+Ax) and r(ci+1,a+Ax).
4, Compute r(c,,a) using Eq.(2.4-11),
5. Repeat steps 1~4 for all other points at x=a,

c‘: e _ N U((l:IG.D uCC“.a-PAﬂ')
. ? ~ %
O
N
\\ w= I (C, ansn)
W=rza)N
Ng= Cc+ r and)wad
Cird o= —— —
U(Ciﬂ,d.) L./(Cl;*j’ afA’X)

uy

Figure 2.4-5

Geometry of Eq.(2.4-11)

6. Repeat steps 1~5 to regenerate the slopes for all grid

points at the neighboring stage in the left-hand side.
Using Eq.(2.4-11) with the free-end conditions r(ci,xT)=0,
we can determine the slope function r at all grid points
at a =X, -AaX, a = X -24X and so on,

Consider the computing procedures outlined above. In

14
step 2, we assigned r(ci,a+£x) in predicting 4; in step 3,
both r(cl,a+Ax) and r(ci+1,a+Ax) contribute to the estimation
of the slope of optimum curve passing through d. The position
of & and its slope combined with Eq.(2.4-11) make estimation
of r(ci,a) possible. The roles of the neighboring members of
the family"of the problems are obvious.

It is not wasteful to expand the dimension of the
' problem by invariant imbedding, because we imbed a difficult
or unsolvable problem in a family of similar problems which
becone easier to handle after'the mutual relations existing
between the members of the group are used. As a byproduct,

a series of problems are solved in one stroke instead of Just
obtaining a particular solution for a single problen. This
serliles of results also supplies a more complete picture of
the effect of each parameter on the resulting function.

As an example, a group of brachistochrone problems with
x=0~314,15926, ug=0~400 and with natural boundary conditions
at terminal line were solved by taking 100 grids in both x
and u axes. Computation of the initial slopes at varilous
starting points of u at x=0 takes 6,1 sec execution timel+
using IBM 7094 computer, The results of 20 cases of initial
slopes are compared with the analytical solution in Table 2-1,
The computer program in MAD language used to obtain these
results is shown in Program 2-1. In Fig.2.4-6 the initial

slopes r(c,a) obtained from invariant imbedding are shown,

In tnis thesis all conmputing times were obtained with
prograns using the same approach and philosophy. Change in
either of these could produce significant changes in absolute
computing times. On this basis, we have considered computing

times as a criterion of comparison.

15

100

- e
g TFH I T T R

- T Il R e ol B o o o o B ¥\.\ \\\\
t—4~- +—4-=% —+- +— t— ——— — t— —t —t— ~ 4+ {-—1 — n\\ — s -4
- S HA A HH H HH LA LTy)
- > e A 14
e 1 TTrT - JV\\._ll.,\\\ i \“ A1 T

t— - e 4 \.\\.v\.|.| .!,l\!\ ~ 1 . oa- -
[y S - .l“\\\ 1 & - |\f}L

|} 1L+ - \V*..

\!

80

A\
\
AW
!
i
N
\
\
N\
AN
\A
N
i\
T
1

\

t
NI
\
AN
N
hN
i
N
]
|
|
S

T
1
AN
1
i
b
7
Py
I

N\
RN
.

60

N

AN

1
i
j
)

Stage Number k

Lo

~

TN

AN

|
|
'I
@)
.
AN
Uf‘\
N
TN
]
f
T
L]
I
"\C)II
AR
!
[
11
|
]
T
[
|
I
T

—t

20

Initial Instants a = 100m(k/100)

1N

T
|
o LI
: i
R
|
|
T
T
1
T
i
T
|
¥

T
t —
S N
IR
..%
T
R
T
i
: 3
M
C
1
!
I
il
|
1
T |
™ 1
T T
|
T T
t
i
H
T S
|
1
1
t +
|
L

1w

o
(8 ‘o)ax sodorg T8BTITUT

Fig. 2.4-6 Initial Slopes Obtained from Invariant Imbedding

16

Table 2-1
Initial Slopes Obtained by Invariant Imbedding

Teking 100x100 grid points between
x=0n100%, y=0~400 feet

Grid Starting Initial Slopes Initial Slopes
Number Points (Invariant Imbedding) (Classical)

I u(I) - w(I) w(I)

5 «20000000E 02 ¢35818700E 01 #30228241E 01
10 «400000C0E 02 «21314888E 01 e20489414E 01
15 ¢599999G69E 02 «16331606E 01 «16062053E 01
20 «80000000E 02 #13481355E 01 ¢13373163E 01
25 +«10000000E 03 «11561425E 01 ¢11514445E 01
30 «12000000E 03 «10146379E 01 «10131552E 01
35 «14000000E 03 «90489530E 00 «90529212E 00
490 «16000C00E 03 «81680938E 00 «81835540E 00
45 «18000000E 03 «714431062E 0O e 74657554E 00
50 +20000000E 03 «68348686E 00 #68620315E 00
55 «22000000E 03 «63167808E 00 «63467290E 00
60 «24000000E 03 «58699879E 00 ¢59015734E 00
65 «26000000E 03 «54806749E 00 . «55131213E 00
70 «28000000E 03 ¢51384442E 00 «51712201E 00
75 «30000000E 03 «48352921E 00 «48680358E 00
80 «32000000E 03 2 45648604E 00 «45974129E 00
85 «34000000E 03 043213662E 00 e 43544406E 00
90 «36000000E 03 «40979266E 00 e41351479E 00
95 «38000000E 03 «38868529E 00 ¢39362881E 00

100 «40000000E O3 «36815135E 00 ¢37551792E 00

s

/ Read aonrnc/
Prin?t Dota

{

Telx w X7/ Amax

dely = y1T/ Lmax

!

L Z
j-——"d.!' I>fmd»\’

rb

| :

: ¥(I) = o

, T

| [fo/d(&').—:r o j
|

e

Fizure 2.4-7
Flow Chart of

Inveriant Imbedding

17

- :

yars
[T ™~ N\Aetkomax-t, -/, rc=<0

L 3B
..
~ Z=0 1 I >Tmax
v

I S=y(5)+ Rold(T) < dal/ % —I

-6

|Rolo(x)) < co

Rol/a(X)

7= Tmaxs]

R [Rotdd Cre0-£310 (1]

[s=-yol/dssy
+ Rold(T)

Rz [Rofdl3) - Rotcl(7-0)

x[.S’y(-T")}/de/y
Y + Rold(x~1)

[Rold (1)} > r0@
Rold{ty= * ;06 X

Rnew (X)) = £+

Y1+ Ro1d)Y Y- det s, (D)

L]
K= Zvbegor « /0
Z = Infeger « TFrep
7

Z Y3 Rotdin),

R PROGRAM 2 -1 -

e e R BRACHISTOCHRONE PROBLEM WITH FR!;ZE END.CONDITIONS_SOLVED_BY__
R INVARTANT IMBEDDING — ——————

$ COMPILE MADs EXECUTEs PRINT OBJECTs DUMP 3

INTEGER I+ Js Ks IMAXs JMAXs KMAXs KPs Ms IFREQ _ o

e DIMENSION Y(1000), ROLD(1000)s RNEW(1000)

EQUIVALENCE (IMAXs JUMAX) _ .

START — ——.

- . READ AND PRINT DATA IMAX9 KMAX; YT9 XT9_IFREQ L
DELX = XT/KMAX . _

DELY = YT/IMAX N —_— o

e oo — THROUGH L1s FOR I=031s1leGeIMAX

-) Y{I) = I%DELY ___ ___

ROLD(I) = O — — —

THROUGH L2s FOR K = (KMAX=1)s. =1ls Kele_ 0 —

- X = K#DELX -

— _ WHENEVER K <Ee O

—_ PRINT RESULTS K- X
- —— PRINT COMMENT—_$
- —— -1 SLOPE - M_%
— — ——— END OF- CONDITIONAL-

-

YA 1)

- ——— - THROUGH L3s FOR I=0s-1s-TeGe-IMAX
——— — S = Y{I) + ROLD(I)*DELX
— —— — WHENEVER +ABS«(ROLD(I))ele 1lE-6

— — R ROLD(IY —
- M I - .

- _ - CR WHENEVER ROLD(I)—elLeQ, —_ ——
. THROUGH L4 sFOR J=ls=1s JeEeOD «0ORe _(SeGe Y(Jtl)_..AND SeLEeY(J))

nn

— — WHENEVER J +Ee_0 S

— J =1
—— END OF CONDITIONAL - -)

R = (ROLD(JLI=RCLDAJ=1))*(S~Y.(J=1))/DELY. +_ROLD(J~—- l)

~ M= J _ — - — S _

- OTHERWISE .
. THROUGH L5sFOR J=Is1lsJeEeIMAX eORe(SeGaY(J)—eANDeSsLELY (J+1))
L5 o _
WHENEVER - JeEe - JMAX - - — -
- ~J = JMAX-1 —
S . END OF CONDITIONAL — B _
— _ R = (ROLD(J+1)=ROLD(J))%*(S=Y(J))/DELY + ROLD(J)

[— M = J — - - —

— END OF CONDITIONAL— - — — —_—

WHENEVER oABSe(ROLD(I)) oGeo 1lE6

ROLDI(I) = 1E6%¥(ROLD(IN/(ABS.(ROLD(I))))

END OF CONDITIOANL
Y{Q0) = 1le
RAEWITI) =
WHENEVER K oEe O oANDe (I/IFREQI*IFREQ oEe I

R+(1+ROLD(I)*ROLD(I)I¥DELX/(2%Y(I))

RINT-FORMAT IMBEDs Is Y(I)s ROLD(I)s M B
____ EaD OF CONDITIONAL __
L3
 THROUGH L6s FOR I = Osls I 4Ge IMAX -
ROLD(I) = RNEW(I) -
L6 -~
L2 .
) TRANSFER TO START L
VECTOR VALUES IMBED = $ 1110y 2E20.8s 1110 _ *$ __
END OF PROGRAM T ~ _
S DATA T T T
IMAX = 100, KMAX= 100s YT=400es XT=314.15926, IFREQ=5%

CHAPTER III
DYNAMIC PROGRAMMING
3.1 DISCRETE MULTISTAGE TWO-DECISION PROCESS

A problem with the property that, at each of a finite

set of times t1, tz, ...tn, a decision is to be chosen from

a finite set of possible decisions, 1s called a discrete

multistage declsion process. If one of m possible decisions
must be chosen at each time and the process consists of n
such stages, there are (m)n possible different seqﬁencescﬂ‘
n decisions. Our aim is to find the optimal sequence of

decisions among these (m)n'possible cases.

Flgure 3.1"1

Two-decision, Two-stage Process, .

Let ug look at a two-decision two - stage minimum-cost
problem., We define the term minimum ‘Cost’ as the minimum ex-
penditure (in dallars), or minimum travelling time (in sec).
At starting point A we must choose between the paths Ac1B
and AczB, depending upon which one yields the lesser cost.
If the cost of each section of the paths in Fig.3.1-1 are

known, the decision to be made at A is a simple matter.

>

(20)

21
cost Ac1 + cost 01B

Cost AB = min . (3.1=1)

cost A02 + cost 02B

In the multistage two-decision process shown in Fig.3.1-2,
suppose the‘optimal declsion is found to be Ac1 in the first
stage; we ask for another decision at Gy One path should be
chosen out of two possible paths c1d1B and c1d2B. The cost

of o1B is given by

1
cost c1d2 + cost dzB

cost c¢,d, + cost d1B
[(301-2)

Cos?t c1B = min

C /d1\\\
- ™, ___T~~_
A _Z-==> B
\o /dB—- ”///

Figure 3.,1-2

Two-decision, Multistage Process.

‘If cost c1d2B is found to be less than that of c1d1B, next
decision must be made at dz. The same procedure is repeated

at each stage in all subsequent stages.

22

3.2 MARKOVIAN-TYPE PROCHESSES

We 1ﬁtroduce an assunmption concerning the cost pyoperty
of a network in order to make valid the statements of the
previous section., In effect, we assume that the cost of any
established path of a network does not change after it has
been combined with the later stages of the network. A formal
statement of this assumed property is due to Markov and given
in [12]:

"After any number of decisions, say k, we wish the effect
of the remaining n-k stages of the declision process upon
the total return to depend oniy upon the state of the
system at the end of the k-th decision and the subse-
quent‘decisions."

3.3 MULTISTAGE MULTI-DECISION PROCESSES

In a multistage multi-decislion process, 1f one of m
possible paths must be chosen at each decislion time, the

problem is still intrinsically the same as for a two-decision

process (Fig.3.3-1). That 1is,

cost AB = min (cost Ac, + cost ciB) (3.3-1)

For a more general illustration, ietus construct a grid
of points in x-y plane as shown in Fig. 3.3-2. As shown in

Flg.3.3-3 the optimum path ¢ do i1s found by considering costs

i
determined as follows:

cidJ + dJ

cost cido = min cicJ + °Jdk + dkdo (3.3-2)

d
o

°1°J + cho

“(j, k=0,1, 2, ... 1)

23

Figure 3.3-1

Multi-decision Process

)
O
1
|
|

4
&

Qo ¢o

A Ca ° d; . 630

O

e

Cze oo €0 .B Ckik— —% dk
|
C e T e €o CQL o
0 > Y x
Figure 3.3-2 Figure 3.3-3

Grid points in x-y Plane Optimum path ci-do

2k

In the brachistochrone problem, by taking grid slzes ‘
sufficiently small, we may approximate the optimum path from

to dJ on the nearest neighboring stage as the dlagonal

3.4 THE PRINCIPLE OF OPTIMALITY

Recali Eq.(3.3-2) and Fig.3.3-1, if there exists at
least one stage between Cy and B, then the costs of ciB for
i=0,1,2,..,.m, should be completely known before making deci-
sion at A, For a multistage process, we start the decision
making at the stage nearest to B, After the costs le at the
stage k=n-1 have been found (as shown in Fig.3.4-1), the cost

from any grid €y at stage k=n-2 1s expressed by

cost e,B = min (cost eifj + cost fJB) (3.4-1)
J =0,1,2, ...m.
Similar but more lengthy procedures are repeated for the

points d, at stage k=n-3, with the cost diB expressed as

i

cost d,B = min (cost diej+cost eij+cost qu) (3.4-2)

j’q 031,2, see me

Consider the right hand side of Eq.(3.4-2). It contains m2
number of cases. The (cost eij+cost qu) has been computed

at the previous stage k=n-2; therefore, Eq.(3.4-2) may be
simplified as

cost d,B = min [cost dye,+(cost e,f +cost qu)]

= min (cost die3+ cost eJB)

J = 0’1,2, eeos I, (30}"’-3)

Figure 3.4-1

Stage k =n - 1

YA

25

Stage k =n - 2

~
b — Qe -0 - —0 —

Figure 3.4-2

k=93 hep-p Fzmeg

Figure 3.4-3

Geometry of the Principle of Optimality

26

2 to

which reduces the number of cases to be studied from m

m for one grid point 4 This simplification is legitimate

1.

only when cost e,B is not changed after being combined with

J
the othexr section diej; however, our original assumption that
the process“is to be Markovian satisfies this condition.

For particular point ey Eq.(3.4~3) may be written in

detall as
(d1ej + eJB
dzej + eJB
cost dieJB = minJ TRt (3.4-4)
d,e, + e,B
17 J
(e" fixed) [N B B BN B BN BN BN N
sdmeJ + eJB

Equation (3.4-4) with geometry of Fig.3.4-3 shows that no
matter from which point di one comes to eJ, the optimum path
eJB found in the previous stage constlitutes a part of the
optimal path from di to B. This basic principle of dynamic
programming has been called by Bellman "“the principle of
optimality" [4 , 12, 14], that is,

"An optimal policy has the property that whatever the

initial state and initial declsion are, the remaining

decislions must constitute an optimal policy with regard

to the state resulting from the first decision."

On the other hand, for a fixed point di’ Eqe(3.4=3) may

be written as

27

(die1 + e1B
die2 + ezB

cost dieJB = min < et (3.4-5)
diej + eJB
'(difixed) o o9 o0 00e 00
\ dlem + emB

It is important to note that Eq.(3.4-5) does not mean

cost diB = min(cost diej)

B)
(3.4-6)

+ min(cost:e

3

For arbitrary given cost on each chord shown in Fig.3.4-5, if

we apply Eq.(3.4-5) we obtailn

die1B

cost diB = min diezB =

dieBB

However, applying Eq.(3.4-6) in two

min d,e, + min e,B = 148 = 9

173 J
min Be, + min e.d L+ly = 8

J R N ’

148 = 9
245 = 7 =7 (3.4-7)
b+d = 8

ways we have

(J=1 ’2,3)

) (3-“""8)
(J=1,2,3)

For a three-stage process shown in Fig.3.4-6

(146410 = 17 5
148+ 5 = 14

cost 4,8 = min {)
243+10 = 15
(2+4+4+ 5 =11

it
—
-—

(3.4-9)

28

L}

¥
» -

Figure 3.4-4 Figure 3.4-5
Possible Paths from d, to B Figure of an Example
y 1

Figure 3.4-6

Figure of an Exzample

29

while for j, k=1, 2
min diej + min ejfk + min £, B = 146410 = 17
(3.4-10)
Obviously a multistage decision process problem cannot be
solved bty meking optimal single declsions sequentially. It
is not the ;ost value of each section but the composite effect

that is calculated.
3.5 INVARIANT IMRBEDDING AND DYNAMIC PRCGRAMMING

In computing the optimum costs from fi to B or from eJ
to B, in effect, we imbedded a particular problem in a family
of sixilar problems. Each member of the famlly has the same
terminal point B, with different initial values. This leads
to a recursive solution working backward from the terminal
roint arnd eventually including point A, It 1s called a

backward solution,.

.4

: step backward
/\ _—~ /‘\ .
/,o———---o-———

7

A V'
< e — o - —
(\\\\ B
\ N — e - —
\
N o — } clear up forward
0 i o—

Figure 3.5-1

Backward Scheme

30

By Eq.(3.4-1) above we cannot actually make a proper
decislon at stage k=n-2 unless the costs fiB’ for i=0, 1,

2, ... m, are knovn., On the other hand, we do not know which
nember of the family of optinum paths fiB will finally consti-
tute the optimum path AB we are seeking. This 1is to say, the
results of the process stream at all intermediate stages are
unknown before the problem is completely solved. The cost
eguations cannot become immediately useful in solving multi-
stage problems, Thils difficulty is overcome by employing
invariant imbedding techniques in two steps [22],

In the first step, we start from the last stage proceed-
ing backward to the initial stage, construct a table for each
stage, relating the optimal decisions to the corresponding
values of the objective functlon for each value of the state
varlable entering any particular stage. The stage for which
the table 1s to be constructed is considered as the initial
stage., At the k-th stage in the n-stage decislion process,
all downstream stages are considered as an (n-k)-stage
rrocess for which the optlmum decision and the optimunm
objective function are already obtained and listed in the
table constructed in the previous stage.

The second step is to determine the optirum policy- -
optirzal sequence of decislons, for the entire process by neans
of table-entry techniques utilizing all the tables constructed.
For exanmple, if at the initial stage we found that Ac5B is

optimum among aciB, the optimum decision at A 1is AOS’ from

31

the table made at the stage k=1 we plck up the optimum
decision at state 05, say 05d3. The decision at state d3 is
found from the list made et k=2, In this way, we finally get

a series of decisions as A-cs-da-e2 "'.fh'B'

3.6 REVERSE PRINCIPLE OF OPTIMALITY

If we imbed the specific problem in a family of problers
with fixed 1nitial point A and various terminal points which
include the objective point B, the solution is called a
forward solution.

As shown in Fig.3.6-1,

(diagonal path) (3.6-1)

j+cjdj) (3.6-2)

cost Ac

J J
N min (Ac

cost Ac

cost Ad

In Fig.3.6-3. if the optimum path from A to d3 is found to be

A03d3; then instead of investigating

cost ch + cost cjd3 + cost d3ei (3.6-3)

fOI‘j=1, 2, 3, eee IO,

cost Adge, is given by

cost Ad3e1

min (cost ch+ cost ch3+ cost d3e1)

min (cost Ad3 + cost djei)

]

If we continue to proceed in this way, we have used the
principle of optimality in reverse order. Dreyfus calls:

this "reversed principle of optimality"® [21] stating:

yn Y i
Srep Lormond
/‘“‘ N
T
‘ ! | N
A —— —— - A\
{ i N\
[! RN
———m = = D
1 1 : d
\ | ”—‘l———"l’//
_:_4/C/elo,- [bLockward
[- I i
3
Figure 3,.6-1 Figure 3.6-2
Possible Paths from A to di Forward Scheme
|
Y
&eo do 2 7
] 17
sl Sl e]
{ N !
{ NS I
A Czo d2g \ o °
1 I \ | :
C;(l} dlt‘:' \'c °
i i ' [
) ! | | -
K

Geometry of the Reverse Principle

Of Optimality

32

3.7

33
"An optimal sequence of decisions in a multistage
decision process problem has the property that whatever
the Tinal decision and state preceding the terminal one,
the prior decisions must constitute an optimal sequence
of cdeclsions leadlng from the initial state to that state
preceding the terminal one,"

EULER EQUATION DERIVED FROM DYNAMIC PROGRAMMING

(0,0) N2 ot

X
omee

Flgure 3.7-1
Figure for Equation (3.7-1)

Let f(x,y) = the minimum time required to travel from

R(x,y) on the optimal path to the final

point B(Xp,¥qp). (3.7-1)

Divide (xT-O) into n equal segments with grid size

x = (xp-0)/n (3:.7-2)

34
Suppose r(x,y) is at the last stage with k=n-1, then

1+y'2

2gy

fn_1(x,y) = min Ax | (3.7-2)

Consider the left-neighboring stage with k=n-2

f_2(%¥) = minimun time for travelling from R, to B

2
‘1+y'
=min i\ 22y AX + fn_1 (x,¥) (3.7-2)

y'
Gererally
1+y'2
fk(X,y) = mi;l;l N 2gy AX + fk—1 (x,y) (3.7=5)
Since
L+ = X+ AX (3.7-6)
and
Vo1 = T t AV, (3.7-7)

Eq.{(3.7-5) may be written as

1+y'2

f(x,y) = nin *AX + T(x+AX,y+AY) (3.7-8)
v' 2gy

This recurrence relation is equivalent to those developed in

Section 3.4, and is the key to the solution.

Let

T+y?*

35

and expand Eq.(3.7-9) in Taylor's serles

£(x,y)

min [Feax+f(x,y)+f A X+ _eny+0 (A.X)z]
v X ¥

= min [Feax+f(x,;y)+f_cax+f (y'-ax)+0 (Ax)z]
v X y

=f(x,y) + min [F-AX+-f cAZHL sy axt0 (AX)2]
y' X J

(3.7-10)
Here the term f(xX,y) in the right-hand side is taken from the
bracket because it is defined as the minimum time of path
obtained from the optimally chosen y'. In addition, minimum
over y' is equivalent to minimum over y since the grid sizes
are chosen constant for all stages throughout the process.

Neglecting high-order terms, Eq.(3.7-10) becomes

0 = m;p (F+f_ +y fy) (3.7-11)

This non-linear partial differential equation governing the
ovtimum vath is equivalent to two equations, For optimally

chosen y',

0O=F+f_+y° fy (3.7-12)

To extremize the right-hand side of Eq.(3.7-11), its dif-

ferentiztion with respect to y' must vanish, that is,
+ £ (3.7-13)
If we differentiate Eq.(3.7-12) with respect to y, we have

F, + £y * V' fyy =0 (3.7-14)

36
Similarly, if we differentiate Eq.(3.7-12) with respect to x,
we have

_gg.Fy, + fxy + ¥ fyy = 0 (3.7-15)

By subtracting Eq.(3.7-14) from Eq.(3.7-15), we finally

obtain Euler's equation

S r P =0 (3.7-16)

For our particular case, F is defined in Eq.(3.7-9), and

we substitute

yl
F_' = . (3.7-17)
v N 2ey (14y'%)
' 2
F, - A1ty (3.7-18)
Aeg ()t

in Eq.(3.7-16), With some manipulation, this yields
L w12
1+ 7 = ¢/y (3.7-19)

which is identical to the results derived by the classical
.5
metnod ~ .,

3.8 PBRACHISTOCHRONZ PROEBLEM SOLVED BY DYNAMIC PROGRANMNING

A farily or brachistochrone problems starting at x = 0,
¥y = 0 ané& terminating at different point on x=100% are solved by

using the forward method of dynamic programming. Taking 100

™2

2
Appendix Eq.(A-5)

37

grid points in the y direction, we first construct a matrix
whose elements represent the costs of dlagonal paths of =a
channel with two nearest neighboring colurns as the edges of
the channel, For a 20-stage process with 10 sets of solutions
printed out, the execution takes 35.1 sec using IE{ 7094
computer. in this 20-stage 100-decision process, we actually
solved 20 x 100 = 2000 similar problems., In Table 3-1, the
ninimum ftravelling times obtained by this method are compared

with those obtained by classical solution methods.

HV[

Pigure 3.8-1

Elements of Cost Matrix

£s can te seen in Table 3-2, the accuracy of the solution

cepends greatly upon the number of grid points chosen. A large

38

nunber of grid points not only increases the computing time
but also introduces merxory problems. For instance, a 40-
stage, 150-decislion process requires 22500 memory locations
for the cost matrix and 6000 for the policy matriz. Memory
overlapping was experienced when 28800 memory locations were
assigned fér arrays in a program run by IEM 7094 computer
which hes 32768 such locations available., This implies a
sufficient number of memory locations were not reserved for
execution.

In Fig.3.8-2 the optimal paths for a 20-stage, E&0-
declsion process are shown.

Let us suppose the problem is to find the path of least-
travelling time from the origin to the terminzal line x = Zps
where yp is unspecified, as mentioned in Section 2.3, this
free-end condition only changes one boundary condition from
vosition constraint to slope constraint. If forward method
is used, we choose the curve which gives the mininum-time of
travelling among all 100 cases with different terminal points
on the same terminal line, If backward scheme 1s employed,
the optimal slopes are zero at the stage nearest to the termi-

nal line, This approach is demxonstrated in Program 3-2.

39

15 20

Stage Counter k
10

a
A
= | TT AT
N N.- R S . W\ \\. :4’“1
= O Y I A v/ B A ‘
\ \ / \\
N T \ e - A -
4, Y- _~ .\ | 4 \V\\ \ \\
R %, \ \ i \ / W74 o A
/, \ v I y 7 P4 77 Py
- 1 A\ W —— |/ — \\ - MV.!J:%\zx Pl by 7~ —
| AN A L e
\ \\ .\)\Iif\\Nf’. ol o]
V. apAuy- Eg
|1 it\.\\\\,iV\ i B = [
/] 7 7 £y ~
\ Z \\\) o
.\‘1\“\ _ m 9D}]
LT e s
el TR —] oo o
wd ol e
_ L1 £ w0 .
VIS 7))
ol] [« VIR S
P2 O
JI!!(]X‘..TuS.C _
_ _ I | _
|
_ |]
[00) NOF By AN o Q \O [aV4
— N ha = = n\ “M o~ S

I JI93Uno) 94849

0~ 400 feet)

y:

0~100% ,

imal curves Cbtained by Dynamic Programming
(x

Opti

Minimum Travelling Time Obtalned by Dynamic Programming

x=0~100%, y=0~400 feet

Table 3-1

40

Taking 20 grid points in x-direction, 100 in y-direction

10
20
30
40
50
60
70
80
90
100

y(I)
(feet)

40

80
120
160
200
240
2890
320
360
400

Grid Number and Accuracy in Dynamic Programming

From (0,0) tO (100%X,400) feet

D. P.
T(I)

(sec) -

7290703
6040467
5695519
5071579
5.60058
5456509
5658637
5.64761
5473690
5084633
5497084

Tabie 3=-2

Classical

¥(I)

(sec)

7082955
636233
5691442
567980
556763
5453633
5656104
5662525
5671746
5482950
5695554

Classical Solution T=5.95554 sec

Grid Number

~r

20
20
20
20
20

40
40
40

rd
40

20
40
60
80
100

20
40
60
80
100

Computing Time

(sec)
8e4
118
175
254
3561

9.5
15,1
2661
40463
585

Minimum Tinme

of Trav,

(sec)
606087
5098005+
5097555
5697141
5697084

6029473
6.05224
5097666
5697303
5497186

Error

(%)
176
Oo4l
0634
0627
Qe27

5070
1.61
035
0«29
027

L1

-3

v= é‘f,,l 23(3-dy)
+ g Eahy |}

r—

|
|
|
f
|
|
1
|
|
| Y
|
1
1
4
|
|
!
!
|

r
| |
Reod onrnd ?)
. | '
Prrnr Dofo I ' |
+ ¥ |
I]
4 f
/PJ -/ma.r +7 l I /Vf(I)aJ((O,K) *
Jpz mimox +2 L leensz A= I
Aot mAmax +1 | | [
& : I L 3 I
| I J=0 L, T OImax I
It = KT/ Kmox ' l ‘ 7’
o = ¥ T may | : : T = T(T)+olt(71) : |
Aon = Iy /e x : | I I
| FI(77 <« o< | l Kxlrtager = b
] P
== P
N/ oX
= I~ I
i | = |2
‘ | | -
e | | L 73 | | RE = P(x.x). Torr
I . L] ‘
Z=T I I imov : | N7 = o] f ‘
|l =g T PR
Tw0 ond T =0 I ! } | RE, P(E/)
P | 4 '} ! |
ds:{(a«)’-«- + | : A
2%
[(z-7)dy] } \ i : | |T=r- Pn)
i |
| L
|
|
|
|
|
|
|
|

-6
i (Ix)= 9%, HOD
Y =%
UL T)= IH(5 7)] @
L .
L
(Construct Cost Aforrir) (M‘m‘zm':d/zbn) (Lonet Gotomams Aos; -‘_y)

, Figure 3.8-3
Flow Chart: Forward Method of Dynamic Programming

.

R ~ PROGRAM 3-1

R BRACHISTOCHRONE PROBLEM WITH TWO-POINT CONSTRAINT SOLVED BY

R FORWARD METHOD OF DYNAMIC PROGRAMMING

$ COMPILE MAD, EXECUTE, PRINT OBJUECT, DUMP

~ DIMENSION Y(101)s T(101)s NT(101l)s P(6200sDIM)y

T 1 DT(10300s TIME)

-) VECTOR VALUES DIM = 2,40,0

VECTOR VALUES TIME = 20,0

EQUIVALENCE (DIM(1)sKP1), (DIM(2) sKMAX) s (TIME(1)s1IP2),

 I{TIME(2)s IP1) T

INTEGER Is Js Ky IMAXs KMAXs Ps BETA, IP1ls IP2, KP1ly RIs I1»

"1 FREQs KP ~

~ START ~ "READ AND PRINT DATA XT»s YT» IMAXs> KMAXs FREQs KP

IP1 IMAX + 1

IP2 IMAX + 2

nonon

KP1 KMAX + 1

DX = XT/KMAX
DY = YT/IMAX
THROUGH LO» FOR J = Osls JuGeIMAX

THROUGH LOy FOR I = Jy 1y IeGe IMAX

WHENEVER T eEe O osANDe J oFEe O

DT(JsI) = 1E5

OTHERWISE

DS = SORT.(((I J)*¥DY) ePe2 + DX*DX)

V = 44013 * (SQRT 4 (J%DY) + SQRTe(I*DY))

DT(Js1) = DS/V.

DT(IsJd) = DT(JsI)

END OF CONDITIONAL

P(0s0) = 0

THROUGH L1y FOR K 1y 1y K «Ge KMAX

THROUGH L2, FOR I Osls IeGelIMAX

WHENEVER K oEe 1

NT(I) = DT(OsI)

P(IsK) = I

OTHERWISE

ALPHA = 1537

THROUGH L3y FOR J = 0y 1y J oGe IMAX

TT = T(J) + DT(Js 1)

WHENEVER TT eLe ALPHA

ALPHA = TT

BETA =_I-J -

END_OF CONDITIONAL

NT(1) = ALPHA
P(I,K) = BETA
 _END_OF _CONDITIONAL

3

WHENEVER (K/KP)%KP +Ee K

PRINT COMMENT $0%

PRINT RESULTS K

PRINT COMMENT $0 I Y(I)

1 P(IsK) T(I)y $

o END OF CONDITIONAL

. THROUGH L&4s FOR I = Osls IeGelIMAX

WHENEVER (I/FREQ)*FREQ eEe I «ANDe (K/KP)*KP oEe K

Y(I) = I*#DY

PRINT FORMAT BRACHT» Ts Y(17s P(ISKIsNT(T)

END OF CONDITIONAL

CTOI) = NT(I)

L&
Ly T o

TAN = ODY/DX .

PRINT COMMENT $1 seeee THE BEST POLICY secee *$
- ~ THROUGH L5s FOR II = IMAX»=FREQs II «Le O

YT = II*¥DY

PRINT COMMENT 0

PRINT COMMENT $0 THE TERMINAL. COMDITION IS $

PRINT RESULTS IlIs XTs YT
_ PRINT COMMENT %0 K X

1 _*> SLOPE P(IsK) $

1 =11 i

THROUGH L6s FOR K = KMAXs =1» KelLe 0

.WHENEVER (K/KP)*KP +Es K ﬁ

RE = P(IsK)*TAN

X = K*DX

Y = IxDY ~

PRINT FORMAT POLICYs Ky X9 Ys REs P(IsK)

END _OF CONDITIONAL A

I = I=-P(I,K)
L6

L5 - -

VECTOR VALUES BRACHI = $ 110» E30e6s 110s E30.6 *3%

VECTOR VALUES POLICY = $ 1110s 3E2048y 1110 *$%
N TRANSFER TO START

_ END_OF PROGRAM
% DATA S
XT = 3144159269 YT= '400es IMAX=100s KMAX= 20y FREQ =10, KP=2% -~

R ~ PROGRAM 3-2

R 3 BACKWARD METHOD OF DYNAMIC PROGRAMMING

R BRACHISTOCHRONE PROBLEM WITH FREE END CONDITIONS SOLVED BY

$ COMPILE MAD, EXECUTEs PRINT OBJECTs DUMP

DIMENSION Y(100)s T(100)s NT(100)s P(22005DIM)DT(10300sTIME)_

VECTOR VALUES DIM = 25 0» O

VECTOR VALUES TIME = 2s O»s

0
EQUIVALENCE (DIM(1)sKP1)y (DIM(2) sKMAX)s (TIME(1)92IP2)y

 1(TIME(2)sIP1) T

INTEGER I, IIs IP1ls IP2s IMAXs ISy Js

__1Ks KP1ls KMAXs Ps BETAs FREQ

START_____ READ AND PRINT DATA XTs YT, IMAXs KAMX», FREQ
IP1 = IMAX_+ 1
— IP2 = IMAX + 2
KP1 = KMAX + 1
DX = XT/KMAX
DY = YT/IMAX

THROUGH LOs FOR J = 0» 1y J eGe IMAX

THROUGH LOs FOR 1 Jy 1o I «Ge IMAX

WHENEVER 1 «Fe O oANDe J eFe O

DT(Js I) = 1E5

OTHERWISE

DS = SQRTe(((I-J)*DY)ePe2 + DX*DX)

\% 44013%(SQRTe(J*¥DY) + SQRT«(I*DY))

DT(Jsl) = DS/V

DT(1IsJ) = DT(Js1)

END OF CONDITIONAL

Lo

THROUGH L1, FOR I Os 1s I «Ge IMAX

P(I,KMAX)_ = 0

T(I) = O

Y{I)= 1%¥DY

Ll

THROUGH L2s FOR K = KMAX=1y —1s K olLe O

THROUGH_L3s FOR 1 Os 19 I «Ge IMAX

ALPHA = 1E37

_T(0) = _1E5

__ THROUGH L& FOR J = Os 1y J +Ges IMAX

TT = T(J) + DT(IsJ)

WHENEVER TT oLe ALPHA

ALPHA = TT

BETA =

J-1
END_OF _CONDITIONAL

NT(I) =
P(I’K) =

ks

PRINT COMMENT $0S$
PRINT RESULTS K

PRINT COMMENT $ I Y(I)

1 P(IsK) NT(I)

THROUGH L5y FOR I = 1sly I oGe IMAX

WHENEVER (I/FREQ)*FREQ eEe 1

PRINT FORMAT BRACHI, Is Y(I)s P(IsK)s NT(I)
END OF CONDITIONAL

B Tty = NT(D)
L5 ———
L2 .] R
L PRINT COMMENT $ THE BEST POLICYS
o THROUGH L6s FOR _I1 = FREQs FREQs II oGe 80
L YO = I11xDY _
_ ___ __ PRINT TOMMENT $0% __ - B
PRINT_COMMENT_$ THE_STARTING POINT IS $
. PRINT RESULTS IIs YO
PRINT COMMENT $0 K ' NT(I) Y
o ! o SLOPE $
_ I = 11 S
" THROUGH L7s FOR K = 04 1s K +Ge KMAX
. PRINT_FORMAT POLICY, Ko NT(I)s Y(I)s P{TIsK)
- I = I + P(IsK)
L7
L6 o o
VECTOR VALUES BRACHI = $ 1110s 1E3048s 1110s 1E3048 *$%
VECTOR VALUES POLICY = $ 1110y 2E20.8s 1110 *$
TRANSFER_TO_START '
L END_OF PROGRAM
$_ DATA

 XT = 3144159265 YT=400.s IMAX=100s FREQ=10s KMAX=20%

CHAPTER IV

QUASILINEARIZATION
4,1 NEWTON-RAPHSON-KANTOROVICH METHOD

v

y=f(xy)+(x-x,) £ (x4)

y=£(x)

Figure 4.1-=1

Newton-Raphson Method

Consider a monotone decreasing, convex function f(x), we
approximate £{(x) by a linear function of x determined by the

value and slope of the function f(x) at x = Xge
f(x) = f(xo) + (x-xo)of'(xo) (Go1=1)

Putting f(x) = 0, we obtain for the first approximation

f(xo)

f'(xo)

X

(4.1-2)

(46)

7

The process ls repeated at X, leading o a new value X, and

so on. The general recurrence relation is

f(x)
___jiL__ (4.1=3)

This sequeﬁbe of approximation ylelds the root of
f(x) =0 (4.1-4)

It has been shown that the convergence is monotonic and
quadratic [19] .
Replacing y by u, and y' by w, Eq.(1.2=3) may be‘rgwrit-

ten as

2
U" = - ——— = G(u,W) (4-1"5)

2 u
Let uo(x) be some initial approximation and consider the
sequence un(x). Applying Newton-Raphson technique we

construct the recurrence relationships

" G 3G
Wi+l = G(u,w) + (un+1_un)?§§1+'(Wh+1'wh)25ﬁ£
(4.1-6)
Ung1(0) = Fg, Wy (xp) = Jp (%.1-7)

Our aim is to produce a sequence of functions u1(x), uz(x),
coo un(x) which converges to the solution of the original

function u(x).

The concept characterized by Eq.(4.1-6) is an extension

Lg

of the Newton-Raphson method to functional space which has
been introduced by Kantorovich and is called Newton-Raphson-
Kantorovich (NBK) technique [iﬂ . It.is essentlally the
first-order terms in power-series expansion of function G(u,w)
about the point W »

4.2 QUASILINEARIZATION

Consider a differential equation of the form
A(x) u" 4+ B(x) u' + ¢(x) =0 (4.2-1)

3ecause of 1its linearity, the principle of superposition
holds. If p 1s the particular solution of the non-homogeneous

equation
A(x) u" + B(x) u' + C(x) = G(u,w) (4.2-2)

It can be shown that the linear combination p + c1h1 + 02h2
4

where 01 and 02 are constants and h1 and h2 are solutions of

the homogeneous equation, also satisfies Eq.(4.2-2), that is

u=7p+ c1h1 + c2h2 (4.2-3)

For an m-order differential equation, the general solution may

be written in the form

m

u= > oh +0p (4.2-4)
k=1

The m conditions imposed on the m unknown functions may be

expressed as

49

m
2 ckhk(-fl) = o) p(ﬁ) : (4.2-5)
k=1 ' ' :

(Q,=0, 1’ 2, -oom'1.)
If we substitute Eq.(%.2-5) in Eq.(4.1-6), we obtain

p" + c1h1 + czh2

G 'aG

=G + (p+c, h +e hz) + (p* +oyh, tooh,) S

(4,2-6)
By equating the coefficients of Eq.(4.2-6), we obtain

p" =G+ (p-u)2+ (pr-wSE (4.2-7)
n - p2C 26
h1 = h1bu + h{ o (4.2-8)
n — _'O_C_}_ _@Q_
h2 - h23u + hé W . (4-2'9).

Let us choose the initial conditions
p(0) = 0, p'(0).-= 0 (4.2-10)
and the condlitions on the homogeneous solutions of

(4.2-11)

i
o

By (0)

1, h'(0)

(H.2-12)

L
-—t

hy(0) = 0, hy'(0)

50
which insures that the Wronskian
h (x) hy(x)

W(x) = 220 (4.,2-13)
h!(x) h} (x)

Thus we have a set of initial wvalue problems whose soluticns
and their derivatives are readlly produced numerically on the
interval of x = O~ xp. The solution of Eq.(4.1-6) subject to
boundary conditions Eq.(&.1-7) and thelr derivatives 1is expres-

sed by

u(x)

p(x) + 01h1(x) + czhz(x) (ko2~14)

w(x) = p(x) + c1h;(x) + czhé(x) (4.2-15)

where ¢y and 02 are constants to be determined from the linear
algebraic equations obtained by substituting x = 0, and x = X q

respectively into Eq.(4.1-7)

yp (4,2-17)

p(zp) + e h (xp) + ¢ h,(xq)

In other words, we produce a particular solution and two
independent homogeneous solutions on tbe interval x = OAJxT~

ead determine the constants cy and e, to satisfy the boundary
conditvions of Eq.(4.1-7). The process of Eqs.(4.2-7) to (4.2-17)
is repeated to compute a new approximation of u(x).

In the derivation of Eq.(4.2-7) ‘to Eq.(4.2-8), equation

51
(4.2- 6), the NRK technique is applied in the abstract plane
perpendicular to the x-axis at each point of x.

The computational scheme is shown in Fig.4.2-1 and the
computer program follows.

The computational results of two brachistochrone curves
using stréight—line initial approximations are compared with
analytical solutions in Table 4-1 and Table 4-2. In Table 4-1
an error can be seen near the singularity point x =0, y = 0,
Elsewhere, accuracy to five diglts or more was obtained by
3-iteration of quasilinearization in the proglem of Table 4-2,

Straight-line approximations falled to converge for the
cycloidal paths of range greater than half of a complete cycle,
Since the constant multipliers ¢, and ¢, are determined solely
at the two end points, a complete cycle of the cycloidal path
with singularities at both ends cannot be solved by this

method.

52

Table 4-1

Convergenecy of un(x) to u(x) by Quasilinearization

Take 800 discrete points

k uo(x) u1(x) uz(x) uj(x) u(x)

0 <00000CE 01 oOO0Q000E 00O «OOQ000E 00 «000000E 00 «000000E
40 o100000E 02 «147406E 02 «415132E Q1 <454858E 02 o457040C
B0 ¢200000E 02 o446946E 02 «656419E 02 <700734E 70 «702014E
40 o100000E 02 &247406E 02 o415132E 02 o454858E 02 «457040E
80 o200000FE 02 o446946E 02 o656419E 02 S700734E 02 «702714E
120 o300000E 02 o622185E 02 o848638E 02 o893294E 02 +895121FE
160 «400Q00E 02 o779257E 02 «101082E 03 o105424E 03 4105593E
200 +500000t 02 6921473t 02 115130k 03 4119275E 03 ¢119430E
240 o600000E 02 4105095E 03 «127470E 03 131380E 03 «131523E
280 ¢700000E 02 o116920FE 03 138396k 03 L142051E 03 ¢142181E
320 o80C000E 02 o127734E 03 «148105E 03 4151495E 03 «151614FE
360 o9QC000E 02 +137624E 03 «156744E 03 L159863E 03 o159971E
400 «10C00CE 03 o146668E 03 «l164420FE 03 o167264E 03 «167361E
440 o1100UUE 03 o194919E 03 «171212E 03 173782E 03 4173870E
480 o120000E 03 o162429E 03 «177189E 03 o179483E 03 +179560E
520 ¢130000E 03 4169240E 03 ¢182400E 03 184417TE 03 «184484E
560 ¢140000E 03 +175390E 03 ¢186886E 03 L,188625E 03 +188682E
600 o150000E 03 o180911E 03 «190680E 03 L192140E 03 +192187E
640 o160000E 03 o185830E 03 «193807E 03 L194986E 03 +195024E
680 17000ULE 03 (190176 03 196289E 03 L197182E 03 4197211E
720 <180000E 03 ¢193974E 03 «198142E 03 L198744E 03 «198764E
T60 «190000E 03 4197242E 03 199376k 03 4199682E 03 +199691E
800 «200000E 03 «200000E 03 «200000E 03 200000E 03 «200000E

0o
02
02
02
02
02
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03

20

40

60

80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

Convergency of un(x) to u(x) by Quasilinearization

Uy (x)

+200000E
0204709E
«209417E
«214126E
«218835E
e223544E
0228254E
e232961E
«237670E
«242379E
«247087E
s251796E
«265505€E
0261214E
«265922E
«2T70631E
«275340E
«28C049E
0 284757E
e 289464E
¢294175E

03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03

Table 4-2

Take 400 discrete points

u, (x)

«200000E
«210149E
«219541E
«228225E
0236242E
0243629E
2250417E
e256637TE
e 262313E
s 26T7468E
0272121E
¢ 276291E
«279993E
+283241F
«286049E
0288426E
«290383E
¢291929E
«293072E
«293818E
0294175E

03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03

u, (x)

«200000E
«210341E
«219860E
«228626E
«236698E
«244122E

«250936E

¢257173E
0262861E
«268023E
«272680E
«276849E
«280544E
«283777E
«286560E
«288901E
«290807E
«292284E
©293335E
«293965E
e 294175E

03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03

u3(x)

+200000E
«210341E
«219860E
0»228627E
«236698E
e244122E
«250936E
«257173E
e262861E
«268023E
«272680E
«276849E
«280544E
«283778E
«286560E
«288901E
«290807E
e292284E
¢293335E
e293965E
«294175E

03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03

53

u(x)

«200000E
«210341E
+219859E
«228626E
¢236698E
0 244121E
«250935F
«257172E
«262860E
«268023E
«272680E
«276849E
»280544E
«283777E
«286560E
«288901E
«290807E
¢292284E
«293335E
0293965E
«294175E

03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03

Table 4-3

Minimum Travelling Time Obtained by Quasilinearization

(ug = 0)
Terminal Trav. Tinme Trav. Tine Error
Points (Q.L) (Classical)
‘ iter=5
u(xy) (1) (1) (%)
200 553719 553633 0016
240 556174 5656104 04013
280 5662580 5662525 0010
320 571787 571746 0«007
360 5482979 582950 0005
400 595571 5095554 0003

ABSTRACT PROCEDURE OF QUASILINEARIZATION

Initiating u(j)

1
.

Solve p(j), hl(j), ho(j])
&s initisl value problems

|
|
| using Egs.(4.2-7)=-(L4.2-12)
|
i Apply boundery conditions
| p(0) +cqhy(0) +c2h2(0) =a
{ p(xp)+eqhy (xp)+cpho(xp) =D
or

} p(0) +cqhy(0) +02h2(0) =g
| ﬁ(xT)+clh&(xT)+c2hé(xT) =b’
l or

o p(0) + clha(0)+02h§(0) =a’
: p(XT)+°1h1(XT)+°2h2(XT) =b
| p(0) + ¢ h9?05+c h5(0) =&

11 272

f prT)+clh1(xT)+c2hé(xT) =b’
!
; Solve for c¢q and c2
|
: (350 (T)v0qmy (D eaghg(3)
| wl3)=pl§)+eqn] (3)+epn ()

I

Figo 2-‘-02"1

55

R

T % COMPILE MAD, EXECUTE,

DIMENSION Y(10)s F(10)»

1U(800)s W(B0O0)sDPA(800)y

INTEGER ITERs ITMAXs Ko

PROGRAM
BRACHISTOCHRONE PROBLEM SOLVED BY QUASILINEARIZATION

PRINT OBJECTs

DUMP

Q(10)sPA(800)s H1(800)s H2(800)
DH1(800)»s DH2(800)s QT(800)

KPs KMAXs COUNT

14

PRINT COMMENT $ DATAS
READ AND PRINT DATA UO» |
DX = XT/KMAX

UTs ITMAXs KMAXs XTs EPS,KP

DY (UT-UO) /KMAX

TAN (UT-UO)/XT
THROUGH LOs |

T 11

" KeGeKMAX

L4

FOR K
X = K#DX

U(K) UO+DY*K

W(K) = TAN _

THROUGH L1ls FOR ITER :

- 191s ITER «Ge ITMAX

PA(O) = O.

H1(0) :

,nlln

= 1
H2(0) 0

DPA(O)

= 0.
DH1(0) = 0

DH2(0) l.

Y(1) PA(O)

Y(Z) = DPA(0)

“Y(3) = H1(0)

Y(4) = DH1(0)

Y{5) H2(0)

r
Hou ll N ll Il

Y(6) DH2(0)

X O,

THROUGH LRKs FOR K 1

EXECUTE SETRKD.(é;Y(l),F(l),Q;X,DX)

1y, KeGeKMAX

CALLRK S = RKDEQ.(0) _

WHENEVER S eEe 1

F(1) Y(2)

WHENEVER F(1) Ge EPS

eGe
_ Fl1) EPS

END OF CONDITIONAL

F(3) = Y(4)

——— WHENEVER F(3)_eGe. EPS

F(3) ERPS - .
__END OF_CCNDITIONAL

F(5) Y(6)

WnINEVER F(5) eGe EPS

__ F{5) EPS

END OF CONDITIONAL

GU = (le+W(KI®W(K))/(2%¥U(K)*U(K))

WHENEVER GU «Go 1E6 -

GU = 1E6

"END OF CONDITIONAL

GW = —-W(K)/7U(K)

WHENEVER oABSe(GW) oGeo 1lE6

GW = 1E6%{GW/(oABS«(GW)))

END OF CONDITIONAL

F(2) = GUH(Y(1)=2.%U(K)) + GW*(Y(2)-W(K))
B WHENEVER oABSe(F(2)) +Ge EPS
T F(2) = EPS*(F{2)/(eABSe(F(2))))
- ~ END OF CONDITIONAL
o Fla) = GUXY(3) + GW*Y(4)
B . WHENEVER oABSe(F(4)) oGe EPS _
Fl4) = EPS®(F(4)/(aABSe(F(4))))
___ END OF CONDITIONAL
F(6) = GUXYI(5) + GW*Y(6)

WHENEVER «ABSe(F(4)) «Ge EPS

F(6) = EPS*(F(6)/(<ABS«(F(6))))

END OF CONDITIONAL

TRANSFER 7O CALLRK

OTHERWISE
T PA(K) = Y(1)
- TOHI(K) = Y(3)
- o H2(K) = YI(5)
___DPA(K)Y = YI(2)
DHI(K) = Y(4)
~ DH2(K) = Y(6)

" END OF CONDITIONAL

DIN = Hl(O)*HZ(KMAX) - H1(KMAX)*H2(0)

AP = U0 - PA(O) -
BP = UT — PA(KMAX) L
Cl = (AP¥H2(KMAX)-BP#H2(0))/DIN
C2 = (-AP*H1(KMAX)+BP*H1(0))/DIN

PRINT COMMENT $0%

PRINT COMMENT $0%

PRINT RESULTS ITERo Cls_ C2

PRINT COMMENT $ K X

— 1 H1) H2 U
2 QT s
THROUGH L2s FOR K = Os 1, K oGe KMAX

- UCK) = PA(K) + C1¥ H1(K) + C2% H2(K)
W(K) = DPA(K) + CI1#DHI(K) + C2¥DH2(K)
X = K¥DX _

— WHENEVER K «Ee O

B QT = 0. .
OTHERWISE

DS = SQRTel (U(K)=U(K=1))ePe2+ DX*DX)

V = 4. OlB*(SORT.(U(K))+SORT (U(K=1)))

QT = QT + DS/V

END _OF CONDITIONAL

L2

L1

$ DATA
U0=200.5

____Ut0) = 0601 -

WHENEVER (K/KP)%¥KP oEoe K i) B)

PRINT FORMAT LINEAR, Ks XsPA(K)sHL(K)sH2(K)sU(K)sW(K),QT

END G~ CONDITIONAL

VECTOR VALUES LINEAR

= $ 1155 1E1244, 6E1748 %5 ~
TRANSFER TO START _

END OF PROGRAM S A.'f—H<W

UT=294417495s ITMAX=3s KMAX=400s XT=314.15926, EPS=100,KP=20%

CHAPTER V
COMPARISONS AND COMBINATIONS

5.1 CCNPARISONS

As e have seen in the previous chapters invariant
imbedding, dynamlc programming and quasilinearization, each
has sone ﬁbwerful characteristics. Quasilinearization is the
most accurate technique at the expense of relatively long
cornvuting time. Invariant imbedding requires very short
corputing time but gives only 1lnitial slopes and the results
rnay be only approximately correct. Dynamic programming ranks
between invariant imbedding and quasilinearization in accuracy
and coxputing costs,

The slze of problers which can be handled by dynamic
programming is limited by the memory avallable in a computer,
Invariant 1xbedding and quasilinearization have no renmory
problen, but the former should be combined with another
rethod to produce state and cost functions; the latter
converges only when a proper initiel guess to. the solution
ras been made.

Invarient imbedding and quasilinearization make use of
the differential equation obtained from Euler's equation of
the calculus of variations. Dynamic programming coxpletely
bypasses this derivation, although we showed that Euler's
equatlion nay be obtained from recurrence relations based on
the principle of optimality. However, no differential equa-

tlon which characterizes the optimum path was used in the

(59)

60

minimization process. This powerful feature of dynanic
prozrarming is especlally useful in the case where ZEuler's
equation does not exist or is difflcult to solve.

Another significant aszect is that invariant inbedding
and quasllinearizatlon are not sulted to handie computatlons
wnich inclﬁde such features as the cusps of a cycloid where
the slopes are infinity. Dynamic programming which treats
contvinuous systems as discrete multi-stage processes is free
of this trouble because the slopes are found between adjoin-
ing stages instead of at values of the state variable.

5.2 DVNANIC PROGRAMMING WITH SEARCHING OVER A RESTRICTED REGION

As mentioned above, dynamic programming bypasses Euler's
equation., In the brachistochrone problem, Euler's equation
which characterizes the optimum path is known. We seek to
Tind a way to utilize the differential equation obtained from
Euler's equation to minimize the searching required in dynamic
prograrming. We note that Eq.(1.2-3)

1+y'2
y" = -T<O, for y>»0 (5.2-1)

implies the slope is monotone decreasing. It can be seen that
Eq.(5.2-1) with boundary conditions

y(0) = ¢, y(xq) = ¢, (5.2-2)

or y(0) = ¢y, y(xq) = cq (5.2-3)

cescribes cycloids which are single-valued functions. Let us

61

consider a forward-scheme of dynamic programming. If the
slope at state g, in the k-th stage is greater than (or equal
to) zero (as is shown in Fig.5.2-1 (A)), then point pJ (where
the optimum curve crosses (k-1)~-th stage) must lie below or
at a level with Q. It follows that in minimizing the time
of travel from the initial point O to point q; in the k-th

stage, we have only to search over the region y £ Qys that 1is

cost Oq1 = min (Opj+qui) J=1,2,3,¢0.m

min (Opj+qui) j=1’2’39"'i

min (Opj+qui) J=i,1-1, ...2,1.
(5.2"‘“’)
Furthermore, since the function 1s single-valued, the

search rzy be terminated where the minimized cost function

begins to increase., Then, Eg.(5.2-4) becomes

cost Oq; = min (Opj+qu1)s J=1,1-1, ... 1¢.

(5.2-5)
vhere 1f 1g the lower 1limit of the grid counter in the region
to be searched. Similarily, for the slope at qi<:0, the

region to be searched 1s restricted to
:(= 1, 1+1’ i+2, -ooih (5.2-6)

wnere 1h is the upper limit.
A forward-solution using the partial-search technique

described above is shown in Program 5-1. It reduced the

(A)

0 4/ 4 x
!
|
|
|
|
|
|
‘ }

!

| T Region 70 b€

Searcher

y V ! !

(B)

Pigure 5.2-1

Slope Characteristics and
Searchlng Reglon

62

63
computing time from 35.1 sec to 15 sec in solving a 20-stage,

100-decision process with 10 sets of the solutions printed

out.

PROGRAVNTING

The technique of searching over a restricted region 1is
effective especlally whnere the absolute values of slopes are
small. For the steep curves shown in Fig.5.3-1 (B) and (C),
the usefulness of the feature is not as significant. Since
dynamic programming 1ls a marching process; the optimum slopes
at pi(fozn¢=1,2,...m) are known a priori. We may take
advantage of this information. Locate pJ from 9y using the
slore at Py s then search several grids in the neighborhood
¢l thils predicted position to obtaln the optimum value pj
{fig. 5.3-1 (D)). This can be accomplished successfully by
joint use of invariant imbedding and dynamic programming[}gL
that is, predicting the slopes by invariant imbedding and
then searching in fthe neighborhood by dynamic programning,

For a 20-stage, 100-decision process with 10 sets of
solutions printed out, the computing time using this combi-
nation was 14.1 sec in comparison with 35.1 sec by dynamic
prograrming only, and 15 sec using the partial-searching
rethod. Searching was restricted to £2 grids in the vicinity

of the predicted point.

&l

M

(B)

(4)

Figure 5,3-1

Reglions to be Searched in Various Cases

65

5.4 DYNANMIC PRCGRAMUING AND QUASILINEARIZATION

As nmentioned previously, the coarse grids used in
dynamic programming result in polygonal curves which may
deviate significantly from what we know to be exact solution.
Finer grids. may improve the accuracy of the solution but a
too~-fine grid introduces a memoxry problem with the computer.
On the other hand, quasilinearization ylelds very accurate
results but is expvensive and 1ts convergence depvends greatly
upon near-correctness of the initlal estimate of the solution.
In general, a stralght line 1s the simplest inltial estimation;
however, in the bxrachistochrone problem the solutlon counverges
only where the boundary point does not exceed a half-cycle
of a cycloid.

Combined use of dynamic programming and quasilineari-— -
zation compensates for the weaknesses of each. By this
redictor-corrector method, we solve the problem approximately
by first using the dyrnamic programming procedure with very
coarse grids, and then take thils solution as fhe initial guess
to the solution whose accuracy 1s improved by a few applica-
tions of quasilinearization.

rrogram 5-3 uses dynanlc programming in the maln progran
end quasilinearization as a corrector in external function.
In Table 5-1 the results of taking 20x40 grids in dynanic
programming, and 2 applications of quasilinearizations for
each solution are showa. Computing time was 50.5 sec waich

would be less than that for quasilinearization.

5.5 INVARIANT TMBEDDING AND QUASTLINTABI7ATTON

Another predictor-corrector scheme combines invariant
imbedding (used to predict the slopes) and quasilinearization
(used to correct the solution resulting from the first and to
produce the cost and state functions simultaneously) [1g],

Consid;r & problem beginning at point (c,a). If the
starting point at x=a 1s close to the terminal line x=x,, the
slopes at il initial points c, may be estimated as zero and
after a few iterations of quasllinearization it converges to
the correct value r(c,a). The same procedure 1is repesated at
X=a-AL, X=2-24%, and so on. In effect, we solve 2000 problems
for a 20-stage, 100-decision process. If the range of the
~ndependent variable 1s sufficlently small, we may use
invariaat imbedding in a straight-forward manner to produce
trhe initial slopes at all iaitial wvalues in x=0, Using these
initial slopes and the other given initial conditions, the
differential equation is inftegrated numerically by the Runge-
Kutta method To produce the first estimate, which ray be
corrected by quasilinearization. This elliminates the time-
consuning quasilinearization steps at the intermedlate stages.
Of course, by using this procedure no knowledge of the
solutions at the intermediate stage can be extracted.

This comrbination was used in Program 5-4 with one appli-
cation of quasilinearlzaticn. Solutions of a problem with
initial value ¢=200 and free-end conditions were conpared
with those obtained by quasilinearization with a straight--

line initial estimate in Table 5-2,

67

Table 5-1

Minimum Trovelling Tine Obtained by Joint Use ¢f

Dyramic Programming and Quasilinearization

xp=0, yp=0, Zp=1007T, yr=0~L400 feet

Y D.P. D.P., and Q.L. Clcssical
iter=2

&0 . 6404867 636369 6055233

20 595519 5691569 5.81442
220 571579 568095 5.6798C
160 5560058 5056864 5056763
200 5656509 553718 5653633
240 558637 5656173 5656104
280 5647561 5662579 5062525
320 5673690 571786 571746
360 584633 582978 5482950
400 597084 595570 5¢95554

k

40

80
120
160
200
240
180
320
360
400

68

Table 5-2

u(x) Obtained by Joint Use of Invariant Imbedding
and Quasllinearlization

Take 100x100 grid points in invariant imbedding
400 discrete points in Q.L.

Q.L.iter=t Q.L.iter=2 I.I.and Q.L. Classical

iter=1

«21954105E 03 «21985933E 03 «21985918E 03 ¢21985937E
»236241T6E 03 ¢23669814E 03 ¢23669769E 03 ¢23669809E
¢25041730E 03 ¢25093545E 03 +25093470E 03 «25093532E
026231297E 03 «26286060E 03 ¢26285956E 03 026286044E
«27212100E 03 «27268004E 03 «27267870E 03 e27267995E
e27999292E 03 «28054369E 03 «28054209E 03 ¢28054369E
«28604860E 03 «28656031E 03 ¢28655839E 03 ¢28656035E
«29038306E 03 «29080698E 03 229080476E 03 «29080707E
«29307187E 03 ¢29333534E 03 ¢29333279E 03 #29333540E
¢29417494E 03 e29417494E 03 ¢29417201E 03 029417495E

03
03
03
03
03
03
03
03
03
03

R " PROGRAM 5=-1 — —
~ R FORWARD METHOD OF DYNAMIC PROGRAMMING
R SEARCHING WITHIN RESTRICTED REGIONS

_$ COMPILE MAD, EXECUTE _

INTEGER JSTARTy JSTEPs SW

- ________R ®¢e®ecs0c0e

R SAME AS PROGRAM 3 - 1

R e0e®0s0 000

THROUGH L2s FOR I = Os 1y I oGe IMAX

WHENEVER K «Ee 1

NT(I) = DT(Os1I)

P(IsK) =1

OTHERWISE

ALPHA = 1E36

WHENEVER P(IsK=1) «GEe O-

JSTEP = ~1

JSTART = 1

WHENEVER JSTART «Ge IMAX

_JSTART = IMAX

END OF CONDITIONAL

OTHERWISE

JSTEP =1

JSTART = 1

WHENEVER JSTART eLe O

JSTART = 0 __

END_OF_CONDITIONAL

END OF CONDITIONAL

SWw =1

THROUGH L3y FOR J = JSTARTs JSTEPy SW_eEe 2 oORs JelLeO

1.0Re JeGo IMAX

TT = T(J)_ + DT(Js1)

WHENEVER TT elLe ALPHA

ALPHA = TT

BETA = I-J

OTHERWISE

SW = 2

END OF CONDITIONAL

NT(I) = ALPHA

P(IsK)_= BETA

END_OF CONDITIONAL

Rﬁ-oo’oooooo‘_

R_SAME_AS PROGRAM 3 - 1

R“

END OF PROGRAM

70

“M‘ R PROGRAM 5 -2 B
R BRACHISTOCHRONE PROBLEM WITH FREE END CONDITIONS™ N
R . SOLVED BY JOINT USE OF ~ .] -
R DYNAMIC PROGRAMMING "AND INVARIANT IMBEDDING eeees

$ COMPILE MADs EXECUTEs PRINT OBJECT, DUMP

DIMENSION Y(100)s T(100}s NT(100)y JPRED(100), ROLD(100)s

1P(2200901M)9 DT(103003TIME)

1(TIME(2)s IP1)

VECTOR VALUES DIM = 250,50

VECTOR VALUES TIME = 20,0

EQUIVALENCE (DIM(1)sKP1),s (DIM(2)sKMAX)s (TIME(I)s IP2))

INTEGER Is IIs IPls IP2y IMAXs Jy JL» JH» JPRED, IS

1Ky KP1s KMAX,s Ps BETA, FREQ

READ AND PRINT DATA XTs YT, IMAXs KMAXs FREQ

IP1 IMAX + 1

IP2 = IMAX + 2

KP1 = KMAX + 1

DX = XT/KMAX

DY = YT/IMAX

TAN DY/DX

THROUGH LOy FOR J = 0s 1y J «Ge IMAX

THROUGH LOs FOR T = Jy 1y I oGe IMAX

WHENEVER I oEe O o¢ANDe J oEe O

DT(Js1) = 1E5

OTHERWISE

DS = SQRT(((I=J)*DY) ePes2 + DX*DX)

V = 44013 % (SQRTe(J*DY) + SQRTe(I%DY))

DT(Js1) = DS/V

DT(IsJ) = DT(JsI)

END_OF CONDITIONAL

LO

THROUGH L1ly FOR I = Os 1y I oGe IMAX

P(1+KMAX) =
ROLD(I)

T(I)

= 0
- 0
Oe
I*

Y(I)

THROUGH L2» FOR K = KMAX=1s =1s K oLe O _

_EXECUTE _IMBEDe ___(YsROLDsDX»sDY s IMAXsJPRED)

THROUGH L3s _FOR_ I = 09 19 I «Ge IMAX

JL = I +_JPRED(I) =2

WHENEVER _JL_eLe O

JL = 0

END OF CONDITIONAL

JH = JL +_4

WHENEVER JH «Ge IMAX

JH = IMAX

END_OF CONDITIONAL

TONT(IY

~ ALPHA = TT

END OF CONDITIONAL

~ PRINT COMMENT $0%

— ROLD(I)= P(IsK)*TAN

1

ALPHA = 1E37

T(0) = 1E5

THROUGH L4s FOR J = JLy 19 J «Ge JH
TT = T(J) + DT(1IsJ)

WHENEVER TT oLe ALPHA

BETA = J-I

" ALPHA

P(IsK) = BETA ~

__ PRINT COMMENT $0%
~ PRINT RESULTS K

PRINT COMMENT $0 I Y(I)

P(IsK) NT(I) T JPRED %

THROUGH LSs FOR I = 19 1y I oGe IMAX

WHENEVER (I/FREQ)*FREQ TeEe 1

PRINT FORMAT BRACHI» Is Y(I)s PUI»K)s NT(I)y» JPRED(I)

END OF CONDITIONAL

T(I) = NT(I)

L5

L2

PRINT COMMENT $0 THE BEST POLICY $

THROUGH L6s FOR II = FREQs FREQs II +Ge 80

YO = IT%DY

PRINT COMMENT $0%

PRINT COMMENT $ THE STARTING CONDITIONAL ISS$

PRINT RESULTS I1s YO

PRINT COMMENT $0 K NT(I) Y

SLOPE SLOPE(INTEGER)S

I = II

THROUGH L7y FOR K = 0y 1ls K «Ge KMAX

RE = P(I+K)*TAN

PRINT FORMAT POLICYs Ks NT(I)s Y(I)y REs P(I,4K)

I = 1 + P(I,K)

_ifij —
L6

VECTOR VALUES BRACHI = s_;;;ql_;53o 8y 1110y 1E30e8, 1115%%
VECTOR VALUES POLICY = $ 1110y 3E20.8s 1110 *§
TRANSFER TO START

END_OF PROGRAM

$ COMPILE MAD, PRINT OBJECTs DUMP

T INTEGER Is IMAXs Js JPREDs P

T THROUGH L1s FOR I = 0y 1s I «Ge IMAX

" WHENEVER.ABSe (ROLD{(I))eLe 1lE~6

EXTERNAL FUNCTION (Y,ROLD’DX’DYyIMAX,JPRED)

DIMENSION RNEW(100) T

ENTRY TO IMBED.

Y{(0) = 0Oel

TAN = DY/DX

S = Y(I) + ROLD(I1)*DX

R = ROLD(I) ~

OR WHENEVER ROLD(I) eLe O

_ THROUGH L23sFOR J=Is=1sJeEe0 eORe(SeGaY(U=17 JANDSSeLESY{J))

WHENEVER J +Ee O

J=1

END OF CONDITIONAL

R = (ROLD(J)-ROLD(J- 1))*(5 =Y (J=1))/DY + ROLD(J-1)

OTHERWISE

THROUGHL3,FOR J=141sJe ,Ee IMAX ¢ORe(SeGeY{J)aANDeSeLELY(J+1})

L3

WHENEVER J «Ee IMAX

R = ROLD(IMAX)

OTHERWISE

R = (ROLD(J+1)=ROLD(I)I*(S=Y(J))/DY + ROLD(J)

END OF CONDITIONAL

END OF CONDITIONAL

WHENEVER +ABSe(ROLD(I)) +Ge 1E6

ROLD(I) = 1E6*(ROLD(I)/(ABS. (ROLD(I) 1))

END OF CONDITIONAL

RNEW(I) = R+(1, +RQLD(I)*ROLD(I))*DX/(Zp*Y(I))

JPRED(I) = RNEW(I)/TAN

L1

THROUGH L4s FOR I = 0s 1y 1 oGe IMAX

L4

'END_OF FUNCTION

ROLD(T) = RNEW(I)

FUNCTION RETURN

% DATA __<“77
XT=314e15926s YT=400es IMAX=100y FREQ=10s KMAX=20%

7R " PROGRAM 5-=13 S
- 7R ~ BRACHISTOCHRONE PROBLEM SOLVED BY JOINT USE OF
R ~ DYNAMIC PROGRAMMING AND QUASTLINEARIZATION

5 COMPILE MAD EXECUTE9 "PRINT OBJECT, DUMP_

DIMENSION Y(80) s T(80)s NT(80)s P(1800sDIM)s DT(6600sTIME) s _

1YR(6)s FR(6)s QR(6)» PA(B00)s HL(800)s H2(800)y DPA(B0O0)s _
2DH1(800)s DH2(800)s U(800)s W(800)

VECTOR VALUES DIM = 25050 _

VECTOR VALUES TIME = 250,0

EQUIVALENCE (DIM(1),KP1),s (DIM(2)sKMAX) s (TIME(I)»IP2),

1(TIME(2)s_IP1)

INTEGER I, IMAXs IFREQ»s IPly IP2s II, ITERs ITMAXo
1J, N -

2 Ky KKy KMAXs QKs QKMAXs KPls KPy

3P, BETAs R _

START __

READ AND PRINT DATA XTs YTs YO» IMAX, KMAX, KK, ITMAX, IFREQ
QKMAX = KK*KMAX

KP = QKMAX/20
IP1 = IMAX + 1
IP2 = IMAX + 2
KP1 = KMAX + 1
DX XT/KMAX
DY = (YT=YO)/IMAX
H . DX/KK

Hin uin

= DY/DX
100.

AN
EPS

R CONSTRUCTING_ MATRIX FOR DELTA T
THROUGH LOs FOR_J = Osls JeGeIMAX
THROUGH LOs_FOR I = Js 1s IeGe IMAX

WHENEVER I oEe_ O oANDe J eEs O

DT(JsI) =_1ES

OTHERWISE_ _ L

DS = SQRT<(((I=JI*DY).P.2 + DX¥DX) B
V = 44013 * (SQRT(J¥DY) + SQRT«(I*DY))
DT(JsI) = DS/V
DT(I»J) = DT(Js1)
END OF_CONDITIONAL

R DYNAMIC PROGRAMMING = FORWARD _SOLUTION
P(0s0) = O .
PRINT COMMENT $0 1 Y
1 P(IsKMAX) NY S

"1y K oGe KMAX _

THROUGH L1ls FOR K _
1

= 1,
THROUGH L2s FOR I = 0y 1s I «Ge IMAX

WHENEVER K oEe¢ 1

NT(I) = DT(0s1)
P(IsK) = I -
OTHERWISE

ALPHA = 1E37
THROUGH L3s FOR J = Oy 1y J eGe

MAX

TT = F(J) + DT(Js 1)

WHENEVER TT oLe ALPHA

ALPHA = TT
T BETA = I-J
END OF CONDITIONAL
R
NT(I) = ALPHA
P(1sK)_ = BETA
- END OF CONDITIONAL T
L2
THROUGH L&4s FOR I = Osls leGeIMAX
B WHENEVER K «Ee KMAX «AND. (I/IFREQ)XIFREQ eEol
T Y(1) = 1=xDY - o
PRINT FORMAT BRACHIs Is Y(I)s P(IsK)s NT(I)
END OF CONDITIONAL
T(I) = NT(I)
L4
L1

R IDENTIFY THE_BEST | POLICY AND PREPARE FOR QeLs CORRECTION

THROUGH L5s FOR II=IMAXs ~IFREQs Il oL IFREQ

UT = 1Ix%DY

U0 = Q. _ o

PRINT COMMENT $1 SOLUTION WITH END POINT AT $

PRINT RESULTS 11 uT

PRINT_COMMENT %0 K X ’ Y
1 L SLOPE P(IsK) $

I = 11

W(QKMAX) = P(I,KMAX)*TAN

THROUGH L6y FOR QK = QKMAXs =19 QK oLe 0

WHENEVER (QK/KK)*KK oEe QK

K = QK/KK

SF = P(IsK)*TAN

U(QK) = I#DY

WHENEVER QK «NEe O

W(QK-1) = SF

END OF CONDITIONAL

I = I-P(I,K)

OTHERWISE

W(QK-1) = SF
UIQK) = U(QK+1)=W(QK)*H

END OF CONDITIONAL

WHENEVER (QK/KP)¥*KP +Ee QK
XA = QK¥*H

\: - —

_ _ PRINT FORMAT POLICYs QKs XAs U(QK)s W(QK)s P(IsK) _
__ END OF CONDITIONAL -

L6 _ﬁ o o . B
TR QUASILINEARIZATION CORRECTOR] .
T 7 EXECUTE QUASI (UsWsQTsPAsHLsH2 sQKMAX sEPS» I TMAX sH»UOSUT)

" PRINT COMMENT $0% - T
- PRINT COMMENT $ QK X PA -)

F o 1 Hl - H2 U v s
THROUGH L9s FOR QK = 03 KPs QK «Ge QKMAX
X = H®QK T - -
" PRINT FORMAT LINEAR»s QKsXsPA(QK)sH1(QK)sH2(QK) »U(QK) s W(QK)
L9
T PRINT RESULTS QT __
L5

TRANSFER TO START - T
VECTOR VALUES BRACHI = $ 1110s E30.8s 1110s E30+8 *%

VECTOR VALUES POLICY = $ 1110s 3E20.8s 1110s 1E20.8 *$

VECTOR VALUES LINEAR = $ 115y 1E1l4e4y 5E17¢8 *$

END_OF PROGRAM

$ COMPILE MAD, EXECUTE, PRINT OBJECTs DUMP

EXTERNAL FUNCTION (UsWsQTsPAsHLsH25sQKMAX sEPS, 1TMAX sHsUO»UT)
DIMENSION DPA(800)s DH1(800)s DH2(800)s FR(10)s YR(10)sQR(10)"
INTEGER 1,IMAXsIFREQs ITERs ITMAXsKsKKsKMAXsQK » QKMAX

" ENTRY TO QUASI, —
R ITER-TH APPROXIMATION

THROUGH L7s FOR ITER = 1sls ITER «Ge ITMAX

Ul0) = 06,01

_ PA(O)‘= Oo o
_ HI(O) =,.1' _
H2(0) = Oe
DPA(O)= 0o B o
DH1(0)= Oe
DH2(0)= 1o
T YR(1) = PAL(O)
___ YR(2) = _DPA(O)
~_ YR(3) = H1(0)
YR(4) = DH1(0) -
_ YR(5) = H2(0)
YR(6) = DH2(0)
— o0 {9

EXECUTE SETRKDe(63sYR(1)sFR(1)sQRsXsH)

CALLRK

THROUGH L8»s FOR QK = 131s QK «Ge QKMAX
S = RKDEQ.(0)

WHENEVER S eEe 140

FR(1) = YR(2)

WHENEVER FR(1) +G. EPS

FR(1) = EPS

END OF CONDITIONAL

FR(3) = YR(4&4)

WHENEVER FR(3) +Ge EPS
FR(3) = EPS .

END OF CONDITIONAL

FR(5) = YR(6)

WHENEVER FR(5) «G. EPS

FR(5) = EPS

END OF CONDITIONAL

GU = (1e+W(QK)*W(QK))/ (2. %U(QKI*¥U(QK))

WHENEVER GU +Ge 1E6

GU = 1lE6

END OF CONDITIONAL _

GW = =W(QK)/u(QK)

WHENEVER <ABSo(GW) Ge 1E6

GW = 1E6%(GW/(eABSe (GW)))

END OF CONDITIONAL _ .

FR(2) = GU*(YR(1)=2.%¥U(QK)) + GW¥(YR(2) = W(QK))
WHENEVER «ABSe(FR(2)) «Ge EPS -

FR(2) = EPS*¥(FR(2)/(«ABSL(FR(21))))

END OF CONDITIONAL

FR(4) = GU*YR(3) + GW*YR(4)

v

L8

DH1(QK)

WHENEVER «ABS«(FR(4)) «Ge EPS
FR(4) = EPS*¥(FR(4)/(ABSL(FR{4)}))

END OF CONDITIONAL
FR(6) = GU*YRI(5) + GW¥YR(6)

WHENEVER +ABSe(FR(6)) «Ge EPS B
FR(6) = EPS*(FR(6)/(«ABSe(FR(6))))

END OF CONDITIONAL

TRANSFER TO CALLRK

OTHERWISE

PA(QK) YR(1)

H1(QK) = YR(3)

H2 (QK) YR{(5)

DPA(QK) YR(2)

YR(4)

DH2 (QK) YR(6)

END OF CONDITIONAL

DIN = H1(0)¥*H2{QKMAX) - Hl(OKMAX)*HZ(O)

AA Uo - PA(O)

BB = UT - PA(QKMAX) _

C1 (AA®HZ(QKMAX)_ = BB*HZ(O))/DIN

c2 (—AA*HI(OKMAX) + BB#*H1(0)) /DIN

"

PRINT RESULTS Cls C2

THROUGH L10s FOR QK = Osls QK eGe QKMAX

W(QK) = DPA(QK) + Cl*DHl(QK)_+ CZ*DHZ(QK)

UGQK) = PA(QK) + C1% HI(QK) + C2% H2(QK)

WHENEVER_ QK _«Es O

OT=O.

OTHERWISE

DS = SQRT.(}U(OK)-U(QK ~1))ePe2 + H*H)

V = 44013%(SORT4(U(QK)) + SQRTs(U(QK=1)))

QT = QT _+ DS/v _

Lio
L7

END_OF CONDITIONAL

% DATA

YO _=

Oo’

KK —209

XT
17

FUNCTION RETURN

END_OF FUNCTION

= 314,15926s YT = 400es IMAX = 40s KMAX

20,

"IFREQ = _

MAX = 2%

4y

1 M,

1KK

~ COMPILE MAD,

1PA(800)s H1(800)s H2(800)s DPA(800), DH1(800)s DH2(800)s _
2U(800)s W(800)

PROGRAM 5-4

BRACHISTOCHRONE PROBLEM WITH FREE END CONDITIONS SOLVED BY
_eee JOINT USE OF INVARIANT IMBEDDING AND QUASILINEARIZATION

EXECUTEs PRINT OBJECT» DUMP

INTEGER 1, IFREQy . J9 JMAX o KKy | KP9KMAX9

KK
DIMENSION Y(100)»

IMAXs ITERs ITMAX, K

"ROLD(800)s RNEW(800)s YR(6)s FR(6) QR(6)

EQUIVALENCE (IMAXs JMAX)

READ AND PRINT DATA XT» YO»s0YT» IMAXs ITMAXs IFREQs KMAXs KPy
EPS

DX = XT/KMAX

DY = (YT-YO)/IMAX

THROUGH L1s FOR I=0slyleC

« IMAX

Y(I) I#DY

ROLD(I)

f—__O .

1 SLOPE

- M

THROUGH L4sFOR J=19=19 JeEeO_ .

R FIND INITIAL SLOPE BY INVARIANT'IMBEDDING

(KMAX-KK) s

-KK

THROUGH L2s FOR K KeLe O

X K#*DX

~ WHENEVER K «Ee O

PRINT COMMENT SOINITIAL CONDITIONS $

PRINT RESULTS K » X

PRINT COMMENT $ 1

M5

END OF CONDITIONAL

THROUGH L3s FOR I=0y 1

S Y(I)_ + ROLD(I)*DX*KK

WHENEVER +ABSe(ROLD(I))elLe

R = ROLD(I)
I

OR WHENEVER ROLDI(T)__

Y(I)

leGe IMAX

1E~6

oleOe

«AND. S.LE.Y(J))

sORe (SeGe Y(J—l)

WHENEVEh J oEe O

J 1

END OF CONDITIONAL
R = (ROLD(J)=ROLD(J=1))*(S=Y(J=1))/DY + ROLD(J=1)
M= J

OTHERWISE

“THROUGH L5sFOR J=TslsJeEeIM

LS

WHENEVER JeEe

“END OF CONDITIONAL

.OR.(S GeY(J) . .AND S LE Y(J+1))

JMAX

J = JMAX-1 —
END OF CONDITIONAL —
R = (ROLD(J+1)=ROLD(JY)*(S=Y(J))/DY + ROLD(J)
M= J

~ WHENEVER «ABSe(ROLD(I)) «Ge 1E6

 ROLD(I) = 1E6%(ROLD(I)/(+ABS<(ROLD(I))})
END OF CONDITIOANL
Y(0) = 0.1 S L o
~ RNEW(I) = R+(1+ROLD(T)*ROLD(I))*DX*KK/(2e*Y (1))
_ WHENEVER KeEsO oANDe (I/IFREQ)¥IFREQ ¢Ee 1

~ PRINT FORMAT IMBEDs Is Y(I)s ROLD(I), M
END OF CONDITIONAL

L3
THROUGH L6s FOR I = 0s 1, I <Gs IMAX
T ROLD(I) = RNEW(TI)
e T T
L2

R INITIAL INTEGRATION

THROUGH L7» FOR I = IFREQs IFREQs I .G« IMAX

uo = Y(Iy
YR = Y(IY T
" YR(2) = ROLD(IY_
X=Oo

EXECUTE SETRKDe(2,YR(1)sFR(1)sQRsXsDX)
THROUGH LRK1s FOR K = lsls K oGe KMAX
RK1 S = RKDEQ4(0) __
WHENEVER 'S +Ee 1.
FR(1) = YR(2)

FR(2) = =(le + FR{1)*FR(1))/(2e*YR(1))
TRANSFER TO RK1

OTHERWISE__
U(K) = YRI(1)
W(K) = YR(2)
END OF CONDITIONAL

LRK1

R USE Qs L+ AS A _CORRECTOR R
THROUGH L8s FOR ITER = 131y ITER «Ge ITMAX

PA(O) = Os
H1(0) = 1.

~ H2(0) = Oe S
DPA(O)= 0. o
DH1(0)= 0.

— DH2(0)= 1o _ _ L
YR{1) = PA(O) T
YR(2) = DPA(O)

YR(3) =_ H1(0) _ N

. YR(4) = DH1(0) . .
YR(5) =_ H2(0) -
YR(6) = DH2(0) .
X = Oo B

 EXECUTE SETRKD«(6sYR(1)sFR(1)sQRsXsDX)
__ THROUGH LRKs FOR K = 15l KeGeKMAX
CALLRK S = RKDEQ«(0)

" WHENEVER S eEe 1e0

FR(1) = YR(2) _

WHENEVER FR(1) +Ge EPS

FR(1) = EPS _

END OF CONDITIONAL

FR(3) = YR(4) _

WHENEVER FR(3) +Ge EPS

FR(3) = EPS e

END OF CONDITIONAL

FR(5) = YR(6) _

WHENEVER FR(5) «G. EPS

FR(5) = EPS

END OF CONDITIONAL

GU = (1e+W(K)¥W(K))/(2e%U(K)*U(K))

WHENEVER GU «Ge 1E6

GU = 1E6

END OF CONDITIONAL

GW = =W({K)/U(K)

WHENEVER oABSe«(GW) oGe 1E6

GW = 1E6%(GW/(+ABSe (GW)))

END OF CONDITIONAL

FR(2) = GU*(YR(1)-2.%U(K)) + GW¥(YR(2) = W(K))

WHENEVER «ABSe(FR(2)) _«Ge EPS

FR{2) = EPS*¥(FR(2)/(«ABS.(FR(2))))

END OF CONDITIONAL o

FR(4) = GU*YR(3) + GW¥YR(4) _

WHENEVER +ABSe(FR(4)) «Ge EPS

FR(4) = EPS*(FR(4)/(eABSL(FR(4))1})

END OF CONDITIONAL

FR(6). = GU*YR(B5) + GWxYR(6) _

WHENEVER oABSe(FR(6)) «Ge EPS

FR(6) = EPS*(FR(6)/(eABS.(FR(6))))

END OF_ CONDITIONAL

TRANSFER_TO_CALLRK

LRK

OTHERWISE

PA(K) _ = YR(1)

H1(K) = YR(3) _
H2(K) = YR(5)_ _
DPA(K)_=_YRI(2)

DH1(K) = YR(4)

DH2(K) = YR(6)

END OF CONDITIONAL

DIN = H1(0)¥DH2(KMAX) = DHI1 (KMAX)*H2(0)

AA = UO - PA(O)

~_ PRINT RESULTS Is UOs ITER

Cl = (AA*DH2(KMAX) + DPA(KMAX)*H2(0))/DIN
C2 = (-AA®DH1(KMAX) - DPA(KMAX)¥*H1(0))/DIN

PRI;'T COMMENT $0%

PRINT RESULTS Cls C2

PRINT_COMMENT $ K X PA

H1 H2 U \

2 QT %

THROUGH L9s FOR K = 0s 15 K «Ge KMAX
U(K) = PA(K) + Cl% HL(K) + C2% H2(K)
W(K) = DPA(K) + C1%DHI(K) + C2¥DH2(K)
X = K¥DX _
WHENEVER K «Ee O
QT=O.
OTHERWISE
DS = SQRTe((U(K)=U(K=1))ePa2+ DX¥%DX)
V = 44013%(SQRTW(U(K)I+SORTL(U(K=1)))
QT = QT + DSV o
END OF CONDITIONAL
WHENEVER (K/KP)#KP +Ee K B B -
PRINT FORMAT LINEAR»s Ks» XsPA(K)sHL(K) sH2(K)»U(K)sW(K)»QT
END OF CONDITIONAL

e Ut0) = 0.001
L8 -
) PRINT COMMENT_$0%
L7 _ __ _
TRANSFER TO START
___ VECTOR VALUES IMBED = $_ 1110s 2E20e8s 1110 *$ N
VECTOR VALUES LINEAR = $ 1I5s 1E12+4s 6E1748 *S$
~ END OF PROGRAM
__$ DATA o o

XT = 3144159265 YO=0es YT=400es IMAX=100sI1TMAX=1, KMAX=400sIFREQ =10,
KP=20, KK=4, EPS=100%

CONCLUSIONS

lModern digital computers can solve a great number of
initial—vélue problems with accuracy and speed. The
conventional method of solving two-point boundary-value
problezs by estimating initial slopes does not make effi-
cient use of their capabilitlies. 1In addition, the accuracy
achieved at the boundary polints does not guarantee equal
accuracy throughout at intermediate points. The first
difficulty may be mitigated by using the technique c¢f invari-
ant inbedding or dynamic programming, while the accuracy
in the interval may be improved significantly by quasilinea-
rization.

The convergence of solution obtalned by quasilineari-
zation depends solely upon the sultability and closeness of
the initial estimate to the solution. This original estimate
ray be obtalned by invariant imbedding or dynamic prograznming.
A major difficulty in applying quasilinearization arises in
obtaining the multipliers from high-dimensional systems of
linear algebralc equations. Serious errors may result when
inaccurately determined multipliers are used in combinations
of solutions. Invariant imbedding eliminates this difficulty
by producing functions which yield the unknown initial values
directly [18]

Dynamic programming reduces, in large scale, the labor
of searching for optimal paths. Since it bypasses the require-

ment for knowing the differential equation governing the

(82)

83

optimal curve, it is particularly suited for solving multi-
stage multi-decision problems where the differential equation
does not exist. If the differential equation governing the
optimal path can be derived or a continuous problem giving
differential equation is solved as a discrete multistage
nultidecision process, the computing time may further be
reduced by using the technique of searching over a restricted
reglon either by utilizing the slope characteristics of the
differential equation or by joint use with invariant inbed-
ding. Accuracy of dynamlic programming depends upon the
fineness of the selected grid, but the size of the problem

is lirited by the available memory of a computer. Coumbin-
ing dynamic programming and quasllinearization avolds this

difficulty while producing accurate results.

APPENDIX
CLASSICAL SOLUTION OF BRACHISTOCHRONE PROBLENM

The brachistochrone problen requlires that we find the
path of least-time between two points in a gravitational
fileld. Since gravitational force is the only force acting

on the mass, the travelling tilme may be expressed as

£
B °p
T =j dt ds S oy
0 2gy

b

F(y,y') dx (A-1)

0

vwhere ds stands for the infinitesimal chord length, V 1s the
velocity, and g 1s the constant of gravitational acceleration.
In order to minimize T, we apply Euler's equation to the

integrand ¥, that 1is,

2r _ d [oF } = 0 _ (A-2)
oy 2y
where
1+y'2
P = (A-B)
2gy

By performing the operation required by Eq.(A-2) we are led

to the equation

y o= - A (A-k)
2y

(84)

85

which nay be integrated to yleld

c 4
y
where 4 is a constant of integration.

In turn, by manipulation of the terms and performing a

second integration, we obtain
C
X = — (u - sinu) + c, (A-6)
2

where u = cos'1(1-2y/c1) and c, is the second constant of
integration. Since the path starts at the origin, at x =y = 0,

u = 0, which implies that ¢, = 0., Thus, we are led to the

2
solution

c
X = — (u - sinu) (a)
2
(A-7)
1
¥y = — (1 = cosu) ()
2

‘nich we recognize ag the parametric form of the equation
for a cycloid, that is

x=1r(9 - sin o) (a)
(A-8)

y=x(1 - cosg) (b)

86
where T (=c1/2) is the radius of the base circle, and
9 (=u) is the angular displacement of the base circle.
It cen be shown that the travelling time along a cycloidal

vath 1s gilven by

t = Jue 6 = 2L (4-9)

where d = {g/r 1s a constant for particular cycloidal path.
In summary:
The path of least-time in a gravitational field is
a part of a cycloid., The travelling time along any
section of the cycloid 1s proportional to the angular
displacement of the base circle by‘which that sectlion
oy the curve is generated. The angular velocity of
the base circle <« is constant (=Ag/r), where r is
the radius of the base circle and g 1s the constant of

gravitational acceleratlon.

BIELICGRAPEY

ahbarzumiam, V. A, Y"On the Scattering of Light by a
Diffuse Medium," C-mmt, rend, Doklady Acad, Sci,

U.R,S.5. V.38, p. 2357, 1943,

Chandrasekhar, S., Roldlative Trangfer, Oxford University
Press, London, 195C.

Bellman, R. E. and R, E. Kalaba, "On the Principle of
Invariant Imbedding and Propagation Through Inhomo-

geneous Fedia," Proc, Nat, Acad, Sci, USA V., 42
(1956), pp. 629-632.

Bellman, R. E,.,, Dynamic Progrzmming, Princeton University
Press, Princeton, iNew Jersey, 1957.

Bellman, R. E. and R. E. Kalaba, "On the Principle of
Invariant Imbedding and Diffuse Reflection fron
Cylindrical Regions," Eroc, Nat, Aced, Sci, USA,

V. 43 (1957), pp. 514-517,

Bellwan, R. 8., R. E, Kalaba, and G. M. Wing, "On the
Principle of Invariant Imbedding and One-dirensional
Neutron Multiplication," Proc, Nat, Aced, Sci, USA,

V. 43 (1957), pp. 517-520.

Bellmen, R. E. and R. E. Kalaba, "Random Walk, Scattering,
and Invariant Imbedding 1. One-dimensional Discrete
Case," FProc, Nat, Acad, Sci, USA, V. 43 (1957), obp.
930-933.

Bellman, R. E., R. E. Kalaba, and G. M, Wing, "Invariant
Imbedding and Mathematical Physics-I: Particle
Processes," J, of Mathematical Physics, V. 1 (1960),
pr. 280-308.

Bellwman, R., R. E. Kalaba, and G. M. Wing, "Dissipation
Function and Invariaent Imbedding, 1", Proc. Nat,
Aced. Sci, USA, V. 46 (1960), pp. 11k5=1147,

Bellman, R. E., R. E. Kalaba, and G. M. Wing, "Invariant
Imbedding, Conservation Relations, and Non-linear
Equations with Two-point Boundary Values," Exoc,
Nat. Acad. Sci, USA, V. 46 (1960?, pp. 1258-1280.

Bellwan, R. &,, R. E, Kalaba, and G. M. Wing, "Invariant
Inmbedding and Reduction of Two-point Boundary Values
Provlems to Initial Value Problems," Eroc. Nat, Acad,
Sci. USA, V. 46 (1960) pp. 1646-1649,

(87)

88

Bellman, R. E., Adaptive Control Process, A guided tour,
Princeuon University Press, Princeton, New Jersey,

1960.

Bellrwan, R. E, and R, E, Kalaba, "On the Fundamental
Equations of Invariant Imbedding-I," Proc. Nat., Acad,
Sci, USA, V. 47 (1961), pp. 336-338.

Bellman, R. E. and S, Dreyfus, Apvlied Dynamic Programming,
Princeton University FPress, Princeton, New Jersey,

1962,

Bellman, BR. BE., H. Kagiwada, and R. E. Kalaba, "A Compu-
tatlional FProcedure for Optimal System Design and
Utilization," Proc. Nat. Acad. Sci. USA, V. 48
(1962), pp. 1524-1528,

Bellman, R, E. and R, E. Kalaba, Dynamic Prosramming,
Invariant Imbedding and Quaslilinearization, Conva-
risons and Interconnections, the Rand Corporation,
Santa nonica, California, 1964,

Bellman, R, E., H. Kagiwada, R. E. Kalaba, and R. Spidhar,
Invarient Imbedding and Nonlinear Filtering Theory,
the Rand Corporation, Santa nonica, California, 1964,

Bellman, R. E., H, Kagiwada, and R. E. Kalaba, Numerical
Studies of A Two-voint Nonlinear Boundary Value
Yroblem Using Dynamic rrogramming, Invarisnt Imbed-
dinz, end Guasilinearization, the Rand Corporation,
Santa lkonica, Califoxrnia,1964.

Bellman, R. E. and R. E. Kalaba, Guasilinearization and
Boundary Value Problems. American nlsevier Publishing
Co., New York, 1905.

Bellman, R. E., H. Kagiwada, and R, E. Kalaba, Invariant
Imbedding and the Numerical Integration of Roundary
Value Problem tTor Unstable Systems of Ordlnaty Dif-
Tferentlal Equations, the Rand Corporation, Santa
lionica, California, 1965.

Dreyfus, Stuart E., Dynamic Programming and the Calculus
of Variations, tne Rand Corporation, Santa noalca,
California, 19 5

Fan, Lian-Tsen, and Chiu-Sen Wan, The Discrete MNinimum
Principle-~A Study of Multistaege System Optimization,
Jomnn Wiley aad Soas, hew York, 1904,

Hildetond, Francis B., Advanced Calculus for Avvlications,
rrenvice-dall, Inc., New Jersey, 1902.

89

[24] Kalaba, R. E., "Computational Considerations for Some
Deterministic and Adaptive Control Processes,”
Optimization Technicues, Edited by George Leitman,
Academic Press, 1662,

[25] Tou, Jurious, Nodern Control Thzoxrvy, McGraw-Zill, New
York, 1965,

