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ABSTRACT

In such fields of current interest as optimal control 

and orbit determination, non-linear two-point boundary- 

value problems arise, the numerical solutions for which 

are difficult to obtain. In this thesis, some of the useful 

tools for treating problems of this nature - invariant 

imbedding, dynamic programming, and quasilinearization are 

studied by means of the brachistochrone problem. The three 

approaches are used separately and in combination. Computer 

programs using MAD language are presented. The results are 

compared with the classical solutions.
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CHAPTER I

INTRODUCTION

1.1 INITIAL-VALUE PROBLEM AND BOUNDARY-VALUE PROBLEM

Consider a second order ordinary differential equation

y” = G(y,y*)

with Initial conditions

y(0) = c1 (a)

y’(0) = c2 (b)

(1.1-D

(1 .1-2)

The determination of a solution to Eq.(1.1-1) subject to 

conditions Eq.(1.1-2) is known as an initial-value problem.

By putting u=y, w=y’, Eqs. (1.1-1) and (1.1-2) become

u* = w u(0) = c. (a)
(1.1-3)

w* = G(u,w)1 w(0) = Cg (b)

which are integrable directly.

Modern electronic computers provide the means for 

obtaining numerical solutions of systems of simultaneous 

non-linear (or linear) ordinary differential equations 

subject to a set of initial conditions, with accuracy and 

speed. However, in some fundamental problems the constraints 

are not initial values but are in the form

u’ = w , u(0) = c, (a)1 (1.1-4)
w* = G(u,w), w(xT)= c3 (b)

where x™ is the terminal value of the Independent variable x.

(1)
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The problem Is called, a two-point boundary-value problem, 

since values are prescribed, at two distinct points, x=0 and 

X=Xp.
1 .2 THE BRACHISTOCHRONE PROBLEM 1

From Greek, shortest and ^pd^os-, time, a term
invented by Jean Bernoulli (1667-17^8) in 169^ to denote a 
curve along which a body passes from one fixed point to 
another in the shortest time. When the directive force is 
constant, the curve is a cycloid.

As an example of a two-point boundary-value problem, 

the differential equation of brachistochrone problem is 

derived as follows:

Given two points in a space containing a constant 

gravitational force field, we wish to find a frictionless 

path from a higher point to a lower point along which a 

particle will slide in minimum time.

A(0,0)

B(x-r,yI,)

Figure 1 .2-1

Possible Paths for the Least Time

In Fig. 1.2-1, It is obvious that the particle will 
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traverse minimum distance along the straight-line path ACB. 

Along the curved, path ADB the particle picks up speed, sooner, 

but travels a longer route. The optimal path of least time 

may be found, by balancing these considerations properly.

Let us denote the Initial point as the origin, set up a 

coordinate system as shown In Fig. 1.2-1 and call the terminal 

point (x^jy^,). We know that the particle velocity, vy 
In the plane of the field, Is equal to J 2gy at any

position In the field, Independent of Its horizontal position. 

Since an infinitesimal arc length, ds is given by

ds = [(dx)2 + (dy)2] 1/2 = Jl+(y*)2 *dx, 

the time of descent is expressed by

(1.2-1)

where g Is the gravitational constant. We seek a function * 
y=y(x) which satisfies the constraint conditions y(0)=0, 

y(x^,)=y , and which minimizes the integral T.

The Euler equation for Eq.(1.2-1) is

p2yy” + y’^ + 1 =0 (1.2-2)

or In the form of Eq. (1.1-1)

y" = - -J+y'?. (1.2-3)
2y

subject to the boundary conditions



u-

y(0) = 0 (a)
(1.2-4) 

yC^) = (b)

1*3 A ^MERICAL solution of TWO-POINT BOUMDARY-V/LUS problem

In order to solve an n-th-order ordinary differential 

equation numerically, ordinary computing techniques call for 
a knowledge of y, y’, y”, ... y^n-1^ at either the starting 

point x=0 or the terminal point x=xT. In the brachisto

chrone problem, we have one value at one end and another at 

the other.
In order to solve a problem of this nature, we may 

choose a value of y*( 0), say c^, and Integrate the equation 

using yCO)^^ y*(0)=c^ as Initial values. If the value at 

the terminal point, obtained In this way agrees

sufficiently closely with the desired value yT, we accept 

this as the solution. Otherwise, we vary the value of c^ 

and recompute the terminal value until agreement at the 

boundary is satisfactory.

This Is not an Ideal procedure for a number of reasons. 

First, It Is difficult to estimate in advance the required 
amount of computing time which will be needed. Second, 

stipulating a certain accuracy at the end point does not 
guarantee equal accuracy throughout whole range of x, from 

x=0 to x=xrp. Third, the results obtained from the i-th 

iteration

yCk)^, = y[x(k)]^ for 0^x(k)=k»Ax^xT (1.3-1) 
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are not utilized to improve the solution in the (1+1)-th try. 

In addition, a proper first estimate of the solution may be 

difficult to establish.
1.4 RECENT APPROACHES

As we shall see In the following chapters, theories of 

invariant imbedding and dynamic programming transform 

boundary-value problems to initial-value problems by introduc
ing new state variables, and imbedding a specific problem in 

a family of similar problems. Invariant Imbedding provides 

information of initial slopes from given terminal slopes in 

a very short computing time. The Euler equations obtained 

In the course of applying calculus of variations are, In 

most cases, difficult to solve; dynamic programming provides 

a means of by-passing this hurdle. On the other hand, 

quasilinearization attacks these problems by linear approxi

mation techniques combined with a concept analogous to making 

approximations in policy space The approximations are

constructed to yield rapid and monotone convergence.

The theory and techniques mentioned above were developed 
mainly by Bellman, Kalaba and their colleagues [3-21,24] .'

Number in bracket refers to identically numbered 
references in the bibliography.



CHAPTER II

INVARIANT IMBEDDING

2.1 PRINCIPLE OP INVARIANT IMBEDDING
In 19^3> Ambarzumian introduced, a new approach to the 

study of atmospheric scattering problems [l] . This approach 

was extended by Chandrasekhar who gave it the name "principle • 
of invariance" [2] . In recent years, Bellman and Kalaba 

generalized this methodology and called it "the principle of 
invariant imbedding"Q. It can be stated as follows:

"Given a physical system, S, whose state at any time t 

is specified by a state vector, x, we consider a 

process which consists of a family of transformations 

applied to this state vector.

Suitably enlarging the dimension of the original vector 

by means of additional components, the state vectors 

are made elements of a space which is mapped into

Itself by the family of transformations. In this way * 

we obtain an invariant process, by-imbedding the 

original process within the new family of processes.

The functional equations governing the new process are 

the analytic expression of this invariance. "

In other words, we derive equations for the values of 

the dependent variables at a fixed value of the independent 

variable as a function of Interval on which the boundary 

value problems are specified.

Many applications of this theory in such diverse areas

(6)
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as radiative transfer, neutron transport, diffusion and heat 

conduction, scattering and random walk, and wave propagation 
can be found in recent literature 8j . In this report,

the fundamental technique is applied to a problem well-known 

in classical calculus of variations.

2.2 IMBEDDING PARTICULAR PROBLEM IN A FAMILY OF PROBLEMS

In the study of a spring-mass system, customarily we 
write y=y(t), indicating the dependence of the solution upon 

t. More generally, the solution is also a function of c, the • 
initial value of y; hence, we write y=y(c,t). This implies i 

that the study of a particular solution of a differential 

equation may be carried out by studying a family of solutions. 

It also constitutes the keystone of the theory of invariant 

imbedding and forms the base for the theory of dynamic pro

gramming.

Although imbedding a particular problem in a family of 

problems appears to complicate rather than simplify the. 

problem, its Justification lies in the fact that we can 

construct a bridge spanning the particular problem and other 

members of the family, which is utilized to determine the 

characteristics of the particular member of the family.
2.3 BRACHISTOCHRONE PROBLEM WITH FREE-END CONDITIONS

A brachistochrone path connecting the initial point A(o,c) 
and any point on the terminal line x=B is characterized by 

minimizing the functional
--------- r

T = ■+ dx (2.3-1)
J0N 2sy
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where the dependent variable is subject to the Initial condition

y(0) = c (2.3-2)

and y is free at the terminal line x=B. Such a problem is said 

to have one variable end point.
From Eq.(1.2-3), the optimal path is the solution of the

Euler equation

y*' ------ HZlL (2.3-3)

2y

subject to initial condition y(0)=c. The other boundary value 

is not given explicitly; however, from the statement of the 

problem and the fact that the minimum-time path from any point 

on the terminal line to the terminal line itself is equal to 
zero, we have the so-called natural boundary condltion[l 4]

y*(B) = 0 (2.3-4)

We seek to find the missing initial value y’(0). so that 

we can Integrate Eq.(2.3-3) directly to obtain a solution. In 

the following section we show how to compute, by invariant 

Imbedding, the missing initial slopes from the given terminal 
slopes.
2.4 DERIVATION OF EQUATIONS [l 8]

We rewrite Eq.(1.1-3) with c^O, C2=0e is,

u’ = w, u(0) = c (a)
(2.4-1)

w’ = G(u,w), w(xp)= 0 (b)
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Initial Slope and. the Range of

Independent Variable

From Fig. 2.4-1 we can see that, for similar problems, the

Initial slopes depend upon the range of the Independent 
variable x. Initial slope u,(0)=w1 Is optimum for Xp=B1 , 

while u'(0)=w2 Is proper for xp=B2 If we fix Xp at B, and 

consider various starting points at x=a along x-axls, then the 
Initial slope at x=a is a function of a (Fig.2^4-2). We write

u*(a) = r(a) for 0 a Xp (2.4-2)

By permitting the parameter a to vary from X/p to 0, we 

construct a family of similar problems with different range 

of x for each member of the family. Furthermore, for a 

particular value of a, say a=a1, the initial slopes differ

At the cusps of a cycloid the slope Is infinitely 
large, but here we must choose finite values for use 
in the computation. On this base we assume w(0) to be 
finite but large at the cusps.
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according to the starting position c=u(0). Therefore we write

u’(a) = w(a) = r(c,a) (2.4-3)

realizing that the correct slope depends upon the starting 
value of x as well as the initial position u(x). By permit

ting c or a'to vary, or c and a simultaneously, we actually 

investigate a family of problems of similar nature.
Let us assume the process begins at x=a, with slope b^. 

After moving along the optimal path to x=a+Ax the slope 
becomes bg (as is shown in Figs.2.4-3 and 2.4-4), and

w(a+4x) = w(a) + w,(a)*^x + 0 [(ax)2] (2.4-4)

Recall Eq.(2.4-3) and replace w(a) by r(o,a); we obtain 

w(a+Ax) = r(c,a) + w’(a)’Zix + oQax)2] (2.4-5)

On the other hand, the general functional relationship
Eq. (2.4-3) holds equally well for x=a+2Xx, that is

w(a+Ax) = r(d,a+Ax) (2.4-6)

where d is the value of dependent variable u at x=a+Ax, 

which may be expressed by

d = u(a+hx)
= u(a) + u’(a)«Ax + 0[(Ax)2] 

o= c + w (a)*Ax + 0 [(ax) ]
= c + r(c,a)*Ax + 0[(ax)2] (2.4-7)

Vie substitute Eq.(2,4-7) into Eq.(2.4-6) Introduce the second
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Figure 2.4-2

(A) w as a function of a
(B) w as a. function of c

Figure 2.4-3 Figure 2.4-4

Slopes Along the Optimal Path Slopes Along the Optimal path 
in x-u Plane as a function of x
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expression of the slope at x=a+zxx and obtain

w(a+Ax) = r [c+r(o,a), a+Axj (2.4-8)

By equating the right-hand sides of Eq.(2.4-5) and Eq.(2.4-8) 

we obtain

r(o,a) + w,(a)*Ax = r£c+r(o,a)*AX, a+^x]

(2.4-9)

In order to express r(o,a) as a function of r(o,a+hx), let us 

take ax sufficiently small and for the first approximation

r[c+r(c,a)'AX, a+^x'j = r[o+r(c,a+Ax)«Ax, a+4x] 

(2.4-10)

to rewrite Eq.(2.4-9)

r(o,a) = r |c+r( c,a+Ax)»ax, a+AxJ - w* (a+Ax)»Ax

(2.4-11)

From the geometry of Fig. 2.4-5, if the slopes of curves 

passing through all grid points at x=a+hx are known, the 

slopes of different curves passing through grids at x=a are 
computed as follows.
1. Take the slope at p, w=r(c1,a+^x) as the first approxi

mation of the slope at q.
2. Locate d by equation d-ci+r( c1,a+Ax)*Ax ,

3. Compute the slope of curve at d by linear interpolation 
of r(ci,a+Ax) and r(oi+1,a+Ax).

4. Compute r(cjL,a) using Eq. (2.4-11).

5. Repeat steps 1~4 for all other points at x=a.
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I

Figure 2.4-5

Geometry of Eq.(2.4-11)

6. Repeat steps 1^5 to regenerate the slopes for all grid 

points at the neighboring stage In the left-hand side.
Using Eq.(2.4-11) with the free-end conditions r(ci,xT)=0, 

we can determine the slope function r at all grid points 

at a = Xj> - ax, a = x^ -2 ax and so on.

Consider the computing procedures outlined above. In 
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step 2, we assigned. r(c^,a4-Ax) in predicting d; In step 3» 

both rCc^^ja+Ax) and r(c,+1 ,a+z>.x) contribute to the estimation 

of the slope of optimum curve passing through d. The position 
of d and Its slope combined with Eq.(2.4-11) make estimation 

of r(c1$a) possible. The roles of the neighboring members of 

the family of the problems are obvious.

It Is not wasteful to expand the dimension of the 

problem by invariant Imbedding, because we Imbed a difficult 

or unsolvable problem In a family of similar problems which 
become easier to handle after the mutual relations existing 

between the members of the group are used. As a byproduct, 

a series of problems are solved In one stroke Instead of just 

obtaining a particular solution for a single problem. This 

series of results also supplies a more complete picture of 

the effect of each parameter on the resulting function.

As an example, a group of brachistochrone problems with 
x=0'v31 4.15926, u^=0a>400 and with natural boundary conditions 

at terminal line were solved by taking 100 grids In both x 

and u axes. Computation of the Initial slopes at various 
/ 4starting points of u at x=0 takes 6.1 sec execution time 

using IBM 709^ computer. The results of 20 cases of Initial 

slopes are compared with the analytical solution In Table 2-1. 

The computer program In MAD language used to obtain these 
results is shown In Program 2-1. In Fig.2.4-6 the Initial 

slopes r(c,a) obtained from invariant Imbedding are shown.

In this thesis all computing times were obtained with 
programs using the same approach and philosophy. Change In 
either of these could produce significant changes In absolute 
computing times. On this basis, we have considered computing 
times as a criterion of comparison.
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In
it
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c,
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)

20 U0 60 80 100
Stage Number k

Initial Instants a = 100ic(k/100)

Fig. 2.I4.-6 Initial Slopes Obtained from Invariant Imbedding
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Table 2-1

Initial Slopes Obtained, by Invariant Imbedding

Taking 100x100 grid points between 
x=0~1 00k, y=0~400 feet

Grid 
Number

Starting 
Points

Initial Slopes 
(Invariant Imbedding)

Initial Slopes 
(Classical)

I u(I) w(I) w(I)

5 .20000000E 02 .35818700E 01 .30228241E 01
10 •40000000E 02 •21314888E 01 •20489414E 01
15 .59999999E 02 •16331606E 01 •16062053E 01
20 .80000000E 02 •13481355E 01 •13373163E 01
25 •10000000E 03 .11561425E 01 •11514445E 01
30 .12000000E 03 •10146379E 01 •10131552E 01
35 e14000000E 03 •90489530E 00 •90529212E 00
40 •16000000E 03 .81680938E 00 •81835540E 00
45 .18000000E 03 •74431062E 00 .74657554E 00
50 •20000000E 03 •68348686E 00 •68620315E 00
55 •22000000E 03 .63167808E 00 •63467290E 00
60 •24000000E 03 •58699879E 00 .59015734E 00
65 .26000000E 03 •54806749E 00 •55131213E 00
70 .28000000E 03 .51384442E 00 •51712201E 00
75 .30000000E 03 •48352921E 00 •48680358E 00
80 .32000000E 03 •45648604E 00 •45974129E 00
85 •34000000E 03 •43213662E 00 .43544406E 00
90 .36000000E 03 .40979266E 00 •41351479E 00
95 .38000000E 03 •38868529E 00 .39362881E 00

100 .40000000E 03 •36815135E 00 •37551792E 00
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Figure 2.^-7

Flow Chart of

Invariant Imbedding
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PROGRAM 2-1  

R BRACHISTOCHRONE PROBLEM WITH FREE END.CONDITIONS—SOLVED-BY—
R INVARIANT IMBEDDING   

$ COMPILE MAD, EXECUTE, PRINT OBJECT, DUMP
INTEGER I, J, K, IMAX, UMAX, KMAX, KP, M, IFREQ   

  DIMENSION Y(IOOO), ROLD(IOOO), RNEW(IOOO)
EQUIVALENCE (IMAX, UMAX)  _

START   _
READ AND PRINT DATA IMAX, KMAX, YT, XT,_IFREQ  
DE LX = XT/ KM AX  ________
DELY = YT/IMAX — -
THROUGH LI, FOR J=0,1♦I.G.IMAX
Y(I) = I*DELY  
ROLD(I) = 0.   

LI _ ____ _____ ________ ______ _________________ ______ __ __________
 

THROUGH L2, FOR K = ( KMAX-1) 1 ,-K. L 0—
---------------------  X = K*DELX - ---------------------------------------------------------------------------------------------------------

_____ WHENEVER K .E. 0------------------------------------—------------------- ----- ------ —--------------____  
 PRINT RESULTS K- ,-X----------------------------------- -________-________—___ __ 7___________

   PRINT COMMENT—$  1   Y-( I-)-
1 SLOPE - M— $--------------------------------------------------------------------------------------------------

—----------- END OF- CONDITIONAL------------------------------------- ——-— ---------------- ---------------------- —---------

---- --------- ------- THROUGH L3, FOR I =0 1 ,-I .G.-IMAX-----------------------------------------—-------- ---------------  
------------------ — S = Yd) + ROLD(I)*DELX----------------------------------------------------------------------------------------------

------------------ WHENEVER • ABS. ( ROLD ( I ) ) . L. IE-6---------------------------------------------------------------- -----------
- - - R = ROLD(I)------------------------- ---------------------------------------------------- ------------------------------- M = I ------- --------- ------------------------------- :------------------------------------- -------------    

   . OR WHENEVER ROLD ( I )-«L .0. —-  
 THROUGH LA,FOR J=I,^1,-J.E.O_.OR.-(S.G.Y(J-l)_.AND.S.LE.Y(J))

- L4  
 - WHENEVER J .E.-O ---------------------------

._____  J = 1 —
  END OF CONDITIONAl -    

R = ( ROLD (J-)-ROLD-(-J--L.)-)*(S-Y-LJ-L) )/DELY—+-ROLD (J-J-) 
M = J ■------------ - ------- -----   

OTHERWISE ■ - ------------- - -------------------—------- --------------
- -------------------THROUGH L5,FOR J=I,1,J•E.I MAX .OR.(S.G.Y(J)-.AND.S.LE.Y(J+l))

L5 -------- -------------- ------- ■---------------------------------------------------------------  
---------- ----- ------ WHENEVER - J.E. UMAX--------------------------------------------------------------------------------------------------   
— — - J = JMAX-1 ------------------- ------------------ -----------------------------------------------------------     

     END OF CONDITIONAL —- —  ----------------- -  
------------------ R = (ROLD( J+1)-ROLD(J) )*(S-Y( J) l/DELY +-ROLD(J)-------------- --------------------  

- -------- _ M = J - ------------- ------------------------------------ ------------------------------------------------------    
— END OF CONDITIONAl------------------- ------------- ------ -------------------------- ------- ---------  
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WHENEVER . ABS» ( ROLD ( I ) ) <,G«> 1E6  
_ ROLD(I) = 1E6*( ROLD( I )/( .ABSo (ROLD( I ) ) L)  

END OF CONDITIOANL 
Y(0) = 1.  

R.\EW(I) = R+(1+ROLD(I)*ROLD(I))*DELX/(2*Y(D)
WHENEVER K .E. 0 .AND. (I/1 FREQ)*I FREQ •£•_!
pr:nt-format iy.bed, ' i ♦ yc i )» rold(d> m_  

  E,',D OF CONDITIONAL  
lb y _ _ _ 
 THROUGH L6» FOR I = 0 ♦ 1» I G .IMAX I______ ;

" ’ ROLD(I) = RNEW(I) J  __________
L6 
L2 __  _

 _ TRANSFER TO START  ‘   J
VECTOR VALUES' IMBED = $ ll'10> 2E20.8, 1110 *$ 
END OF PROGRAM  ’'  

$ DATA    
IMAX =_100, KMAX= 100,YT=400., XT=314.15926, IFrEO=5*



CHAPTER III

DYNAMIC PROGRAMMING
3.1 DISCRETE MULTISTAGE TWO-DECISION PROCESS

A problem with the property that, at each of a finite 

set of times t1 , to, ...t„, a decision is to be chosen from 

a finite set of possible decisions, is called a discrete 

multistage decision process. If one of m possible decisions 

must be chosen at each time and the process consists of n 
such stages, there are (m)n possible different sequences of 

n decisions. Our aim is to find the optimal sequence of 
decisions among these (m)n possible cases.

Figure 3»1-1 

Two-decision, Two-stage Process. .

Let us look at a two-decision two «. stage minimum-cost 
problem. We define the term minimum#cost”as the minimum ex

penditure (in dallars), or minimum travelling time (in sec). 

At starting point A we must choose between the paths Ac^B 

and ACgB, depending upon which one yields the lesser cost. 

If the cost of each section of the paths in Fig.3.1-1 are 
known, the decision to be made at A is a simple matter.

(20)
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, cost Ac1 + cost o^B

Cost AB = min « (3.1-D

kcost AC2 + cost C2B

In the multistage two-decision process shown in Fig.3.1-2, 

suppose the" optimal decision is found to be Ac1 in the first 

stage; we ask for another decision at o1 . One path should be 

chosen out of two possible paths c1d1 B and c^ d2B. The cost • 

of o.|B is given by

Cost CjB = min
cost c1d1 + cost

Lcost o1 d2 + cost

d^

d2B
(3.1-2)

Figure 3.1-2

Two-decision, Multistage Process.

If cost c1d^B is found to be less than that of c^d^B, next 

decision must be made at dg. The same procedure is repeated 

at each stage in all subsequent stages.
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3.2 MARKOVIAN-TYPE PROCESSES

We Introduce an assumption concerning the cost property 

of a network In order to make valid the statements of the 

previous section. In effect, we assume that the cost of any 

established path of a network does not change after It has 

been combined with the later stages of the network. A formal 

statement of this assumed property Is due to Markov and given 
In [l 2] :

”After any number of decisions, say k, we wish the effect 

of the remaining »-k stages of the decision process upon 

the total return to depend only upon the state of the 

system at the end of the k~th decision and the subse
quent decisions."

3.3 MULTISTAGE MULTI-DECISION PROCESSES

In a multistage multl-declslon process, If one of m 

possible paths must be chosen at each decision time, the 
problem Is still intrinsically the same as for a two-decision 

process (Fig.3.3-1). That Is,

cost AB = mln (cost Ac^ + cost c^B) (3.3-1)

For a more general Illustration, let us construct a grid 

of points In x-y plane as shown In Fig. 3.3-2. As shown In 

Flg*3»3-3 the optimum path oidQ Is found by considering costs 

determined as follows:

c.d. + d.d1 j Jo
cost c.d^ = mln c.c 1 o 1

^l°j + °jdo

‘ (j, k = 0, 1, 2, ... I)

+ Cjdk + Mo (3*3-2)
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Figure 3.3-3Figure 3.3-2

Grid, points In x-y Plane Optimum path c^-d-0
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In the brachistochrone problem, by taking grid, sizes 

sufficiently small, we may approximate the optimum path from 

c^ to dj on the nearest neighboring stage as the diagonal

THE PRINCIPLE OF OPTIMALITY

Recall Eq.(3.3-2) and Fig.3.3-1* If there exists at 

least one stage between c^ and B, then the costs of c^B for 
1=0,1,2,...m, should be completely known before making deci

sion at A. For a multistage process, we start the decision 

making at the stage nearest to B. After the costs f^B at the 
stage k=n-1 have been found (as shown in Fig.3.^-1), the cost 

from any grid e^ at stage k=n-2 is expressed by

cost e.B = mln (cost e.f. + cost f.B) (3.^-1)
* X J J

j = 0,1,2, ...m. 

Similar but more lengthy procedures are repeated for the 

points d^ at stage k=n-3, with the cost d^B expressed as

= 0,1,2

simplified as

p Consider the right hand side of Eq.(3.^-2). It contains m 
number of cases. The (cost e^f^+cost f^B) has been computed 

at the previous stage k=n-2; therefore, Eq.(3.^-2) may be 

cost djB = mln (cost d^e^+cost e^f^+cost fqB) (3.^-2) 

m.

cost d^B = min £cost d^ej+icost e^f^+cost f^B)] 

= min (cost <1^6^+ cost e^B) 

... m.j = 0,1,2, (3.^-3)
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Figure 3*^-1 '

Stage k = n - 1

Geometry of the Principle of Optimality
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2 which reduces the number of cases to be studied from m to

m for one grid point d^.. This simplification is legitimate

only when cost e.B is not changed after being combined with

the other section d^e; however our original assumption that

the process is to be Markovian satisfies this condition.
For particular point e., Eq.(3.4-3) may be written in

detail as

'd^j + e^B 

d2ej + e B

cost = mln

(6j fixed)
4lej + eJB

+ ejB

(3.4-iH

Equation (3«^-^) with geometry of Fig.3.4-3 shows that no 

matter from which point d^ one comes to e^, the optimum path 

e^B found in the previous stage constitutes a part of the 

optimal path from di to B. This basic principle of dynamic 

programming has been called by Bellman "the principle of 
optimality" [4 , 12 , 14], that is,

"An optimal policy has the property that whatever the

initial state and initial decision are, the remaining 

decisions must constitute an optimal policy with regard

to the state resulting from the first decision."

On the other hand, for a fixed point d^, Eq.(3.4-3) may 

be written as
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cost d. e.B = mln

that Eq.(3.4-5) does not meanIt is important to note

(3.4-6)

For arbitrary given cost on each chord shown in Fig.3-4-5

we apply

(3-4-7)

applying Eq.(3.4-6) in two we haveHowever ways

mln 2,3) (3.^-8)
min 2,3)

in Fig.3.4-6For a three-stage process shown

1+6+10 =

14
(3-4-9)

15
2+4+ 5 = 11

-(d^ fixed)

cost d^B = mln

cost d^B = min (cost d-^Sj) + mln (cost ■ e.B)

Eq.(3*4-5) we obtain

d.e^ + e B 1 m m

? = 11

dlej + ejB

dle1 + CfB

4le2 + e2B

B6j + min ©jd^ = 4+4 = 8
d. e, + mln e.B =1+8 = 9

d^^ = 1+8 = 9 

d1e2B =2+5=7 

d^^B = 4+4 = 8-

1+8+ 5 = 
cost d^B = min <

if
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I

Figure

Possible Paths from to B

Figure 3.4-5

Figure of an Example

Figure 3*4-6

Figure of an Example



while for j, k = 1 , 2
min d.e. + min e.f. + min f.B = 1+6+10 = 1? 1 J J K K

(3.^-10)

Obviously a multistage decision process problem cannot be 

solved by making optimal single decisions sequentially. It 

is not the cost value of each section but the composite effect 

that is calculated.

3.5 INVARIANT IMBEDDING AND DYNAMIC PROGRAMMING

In computing the optimum costs from f^ to B or from e J
to B, in effect, we imbedded a particular problem in a family 

of similar problems. Each member of the family has the same 

terminal point B, with different initial values. This leads 

to a recursive solution working backward from the terminal 

point and eventually Including point A. It is called a

backward solution.

Figure 3«5-1

Backward Scheme
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By Eq.(3.4-1) above we cannot actually make a proper 

decision at stage k=n-2 unless the costs for 1=0, 1, 

2, ... m, are known. On the other hand, we do not know which 

member of the family of optimum paths f^B will finally consti

tute the optimum path AB we are seeking. This Is to say, the 

results of the process stream at all Intermediate stages are 

unknown before the problem Is completely solved. The cost 

equations cannot become Immediately useful In solving multi

stage problems. This difficulty Is overcome by employing 
Invariant imbedding techniques In two steps [22].

In the first step, we start from the last stage proceed

ing backward to the Initial stage, construct a table for each 

stage, relating the optimal decisions to the corresponding 

values of the objective function for each value of the state 

variable entering any particular stage. The stage for which 

the table Is to be constructed Is considered as the Initial 

stage. At the k-th stage in the n-stage decision process, 
all downstream stages are considered as an (n-k)-stage 

process for which the optimum decision and the optimum 

objective function are already obtained and listed in the 

table constructed In the previous stage.
The second step Is to determine the optimum policy- 

optimal sequence of decisions, for the entire process by means 

of table-entry techniques utilizing all the tables constructed. 

For example, If at the Initial stage we found that Ac^B Is 

optimum among ac^B, the optimum decision at A is Ac^, from
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the table made at the stage k=1 we pick up the optimum

decision at state c say ccdQ. The decision at state 43 Is

found from the list made at k=2. In this way, we finally get 

a series of decisions as A-c^-d^-e^
3.6 P.EVERS3 PRINCIPLE OF OPTIMALITY

If we Imbed the specific 

with fixed Initial point A and 

Include the objective point B, 

forward solution.
As shown in Fig.3.6-1,

problem in a family of problems 

various terminal points which 

the solution is called a

cost cost Ac J (diagonal path)

cost Adj, = mln (Ac.+c.d.)

(3.6-1)

(3.6-2)

In Fig.3.6-3. If the optimum path from A to d^ Is found to be

Ac^d^, then Instead of Investigating

cost ACj + cost Cjdj + cost d^e^ 
for j = 1, 2, 3, ... m.

cost Ad^Cj, Is given by

cost Adoe. = min (cost Ac.+ cost c4do+ cost doe.) 
D i J J 3 3 1

= mln (cost Ad^ + cost d^e^)

(3.6-4)

If we continue to proceed in this way, we have used the 

principle of optimality In reverse order. Dreyfus calls 
this "reversed principle of optimality" [21.1 stating:
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Figure 3.6-1

Possible Paths from A to

Figure 3.6-2

Forward Scheme

Figure 3.6-3

Geometry of the Reverse Principle
Of Optimality
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11 An optimal sequence of decisions In a multistage 

decision process problem has the property that whatever 

the final decision and state preceding the terminal one, 

the prior decisions must constitute an optimal sequence 

of decisions leading from the Initial state to that state 

preceding the terminal one."

3.7 EULER EQUATION DERIVED FROM DYNAMIC PROGRAI-IMING

Figure 3*7-1
Figure for Equation (3*7-1)

Let f(x,y) = the minimum time required to travel from 

R(x,y) on the optimal path to the final 

point B(xp,yT). (3*7-1)

Divide (xjp-O) Into n equal segments with grid size

x = (xT-0)/n (3*7-2)
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(3.7-2)

Consider the left-neighboring stage with k=n-2

travelling from

(3.7-2)

Generally

(3.7-5)N 2gy

Since

(3.7-6)

(3.7-7)yk+i

Eq.(3.7-5) may be written as

(3.7-8)

This recurrence relation Is equivalent to those developed. In

Let

(3.7-9)F

=min
y*

fk(x,y)

Section 3.^, and Is the key to the solution

f(x,y) = mln 
y*

Suppose r(x,y) Is at the last stage with k=n-1, then

R2 6° B

fn_1(x,y) = mln

1+y'2

,2’ i+y1

n-1(x’y)

= mln
y

n = minimum time for

1+y*2 
2gy

i+y12 
2gy

' I i-t-y’2
---- .Ax + f(x+4x,y+Ay)

/I 2gy
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and. expand. Eq.(3.?-9) in Taylor’s series

f(x,y) = mln [ F-z-x+f(x,y)+f -Ax+f •zxy+0 (ax)2] 
y* L x y

0 = mln (F + f + y’ f ) (3.7-11)JL J
y

This non-linear partial differential equation governing the 

optimum path Is equivalent to two equations. For optimally 

chosen yr,

° = f + fx + y* fy (3.7-12)

To extremlze the right-hand side of Eq.(3.7-11), its dif

ferentiation with respect to y* must vanish, that is,

0 = Fyl + fy (3.7-13)

If we differentiate Eq.(3.7-12) with respect to y, we have

F + f + y f = 0 (3.7-14)
V V V

= mln [ F-Ax+f(x,y)+f «AX+f (y’-zsx)+0 (ax)2] 
y, l x y

=f(x,y) + mln F F-Ax+f ’Ax-i-f • y’. ax+0 (ax)2 ] 
y, l x y J

(3.7-10)

Here the term f(x,y) In the right-hand, side Is taken from the 

bracket because It Is defined as the minimum time of path 

obtained from the optimally chosen y*'. In addition, minimum 

over y’ Is equivalent to minimum over y since the grid sizes 

are chosen constant for all stages throughout the process.
Neglecting hlgh-order terms, Eq.(3.7-10) becomes 0 * * * * * * V
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Similarly, If we differentiate Eq.(3*7-12) with respect to x, 

we have

p , + f + y* f = 0 (3*7-15)y' xy 3 yy

By subtracting Eq.(3*7-1^) from Eq.(3*7-15), we finally 

obtain Euler1s equation

— F , - F = 0 (3*7-16)
dx 3 3

Por our particular case, F Is defined In Eq.(3*7-9), and 

we substitute

(3*7-17)

(3*7-18)

In Eq.(3.7-16). With some manipulation, this yields

1 + y*2 = c/y (3*7-19)

which is Identical to the results derived by the classical 

method .

3*8 BRACHISTOCHRONE PROBLEM SOLVED BY DYNAMIC PROGRAMMING

A family of brachistochrone problems starting at x = 0,

y = 0 and terminating at different point on x=1OOft are solved by 

using the forward method of dynamic programming. Taking 100

Appendix Eq.(A-5) 
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grid, points in the y direction, we first construct a matrix 

whose elements represent the costs of diagonal paths of a 

channel with twTo nearest neighboring columns as the edges of 

the channel. For a 20-stage process with 10 sets of solutions 

printed out, the execution takes 35-1 sec using IE4 709^ 

computer. In this 20-stage 100-decision process, we actually 

solved 20 x 100 = 2000 similar problems. In Table 3-1i the 

minimum travelling times obtained by this method are compared 

with those obtained by classical solution methods.

Figure 3*8-1
Elements of Cost Matrix

As can be seen in Table 3-2, the accuracy of the solution 

depends greatly upon the number of grid points chosen. A large 
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number of grid, points not only increases the computing time 

but also introduces memory problems. For instance, a Po

stage, 150~d.ecision process requires 22500 memory locations 
for the cost matrix and. 6000 for the policy matrix. Memory 

overlapping was experienced, when 28800 memory locations were 
assigned, for arrays in a program run by IBM 709^ computer 

which has 32768 such locations available. This Implies a 

sufficient number of memory locations were not reserved, for 

execution.
In Fig.3.8-2 the optimal paths for a 20-stage, 80- 

decision process are shown.

Let us suppose the problem is to find the path of least

travelling time from the origin to the terminal line x = x-p, 

where y^ is unspecified, as mentioned in Section 2.3, this 

free-end condition only changes one boundary condition from 

position constraint to slope constraint. If forward method 

is used, we choose the curve which gives the minimum-time of 

travelling among all 100 cases with different terminal points 

on the same terminal line. If backward scheme is employed, 

the optimal slopes are zero at the stage nearest to the termi
nal line. This approach is demonstrated in Program 3-2,
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Figure 3.8-2

Optimal curves Obtained, by Dynamic Programming 
(x=0~100%, y=0^400 feet)



Table 3-1

Minimum Travelling Time Obtained, by Dynamic Programming

40

x=0~1 00K, y=0'v400 feet
Taking 20 grid, points in x-d.irectlon, 100 in y-d.irection

D. P. Classical

I y(D T(I) Y(D krror

(feet) (sec) (sec)

0 0 7e90703 7.82955 0.98
10 40 6.40467 6.36233 0.67
20 80 5.95519 5.91442 0.69
30 120 5.71579 5.67980 0.63
40 160 5.60058 5.56763 0.59
50 200 5.56509 5.53633 0.52
60 240 5.58637 5.56104 0.46
70 280 5.64761 5.62525 0.40
80 320 5.73690 5.71746 0.34
90 360 5.84633 5.82950 0.29

100 400 5.97084 5.95554 0.27

Table 3-2

Grid. Number and. Accuracy in Dynamic Programming
From (0,0) to (1003t,^00) feet 
Classical Solution T=5.9555^ sec

Grid. Number Computing Time Minimum Time 
of Trav.

Error

T y (sec) (sec)
20 20 8.4 6.06087 1.76
20 40 11.8 5.98005 ' 0.41
20 60 17.5 5.97555 0.34
20 80 25.4 5.97141 0.27
20 100 35.1 5.97084 0.27

40 20 9.5 6.29473 5.70
40 40 15.1 6.05224 1.61
40 60 26.1 5.97666 0.35
40 80 40.3 5.97303 0.29
40 100 58.5 5.97186 0.27
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Figure 3•8-3
Flow Chart: Forward Method of Dynamic Programming



  
   

 —42 -
    

1 R "P ROG R A M 3 - 1 ‘ *

R BRACHISTOCHRONE PROBLEM WITH TWO-POINT CONSTRAINT SOLVED~BY^~
R FORWARD METHOD OF DYNAMIC"PROGRAMMING

 
$ COMPILE MAD, EXECUTE, PR I NT^OB JECT", ^DUMP ~

DIMENSION Y(101), T(101) , NT(101) , P( 6200,DIM), 
1 DT(10300, TIME)

VECTOR VALUES DIM = 2♦0,0
VECTOR VALUES"TIME = 2♦0,0
EQUIVALENCE (DIM(1),KP1)♦ (DIM(2),KMAX)♦ (TIME(1)♦IP2)♦ 

1(TIME(2), IP1)
INTEGER I, J, K, IMAX, KMAX, P, BETA, IP1, IP2, KPI, RI♦ II, 

1 FREQ, KP

START READ AND PRINT DATA XT, XT, IMAX, KMAX, FREQ, KP
~ IPl = IMAX + 1

IP2 = IMAX *" 2
 KPI = KMAX+ 1

 DX = XT/KMAX 
  DY = YT/IMAX  

 THROUGH LO, FOR J = 0,1, J.6.IMAX
 THROUGH LO, FOR I = J, 1, I.G. IMAX

WHENEVER I .E. 0 .AND, J ,E. 0  
DT(J,I) = 1E5  

_OTHER WISE  
DS = SORT.(((I-J)*DY).P.2 + DX*DX )
V = 4.013 * (SORT.(J*DY) + SORT.(I*DY))
DT (J, I ) '= DS/V "

_____________ DT ( I ♦ JI = DT’( J, I)______________________________________________________________  
_________________ END OF CONDlf fONAL____________________________________________________________  
_'_L0 " 

P (0,0)- = o  
THROUGH LI, FOR K = 1, 1, K .G. KMAX 
THROUGH L2, FOR I = 0,1, I.G.IMAX 
WHENEVER K .E. 1 
 NT(I) = DT(O,r)
P(I,K)= I 

_____________ otherwise
ALPHA =’1E37   
THROUGH L3, FOR J = 0, 1, J .G. IMAX  
TT = T (J )_ 4-"DT ( J, 1)  

_ WHENEVER TT .L. ALPHA
ALPHA = TT ________ 
BETA =_I-J  

 END OF CONDITIONAL
' L3 " '  " __________________________________________ ______ 

  NT(I) = ALPHA -
PC I,K) = BETA _   
END OF CONDITIONAL

 
L2 

 
 



 
   

 
 

WHENEVER (K/KP)*KP ,E. K
print COMMENT $0$
PRINT RESULTS K
PRINT COMMENT $0 I Y(I)

1 P(I,K) T( I) $
END OF CONDITIONAL

____THROUGH L4» FOR I = O»l, I.GUMAX
WHENEVER (I/FREQ)*FREQ •E. I .AND. (K/KP)*KP .E. K
YCI) = I*DY
PRINT FORMAT BRACHI, I ♦ Y(I), P(I,K),NT( I )
END OF CONDITIONAL
T( I) = NT(I )

L4
LI

TAN = DY/DX
print COMMENT $1 ........... THE BEST POLICY........... *$

THROUGH L5> FOR II = IMAX»-FREQ> II .L. 0 
YT = II*DY

"PRINT COMMENT $0$
PRINT_COMMENT_$0 THE TERMINAL COMDITION IS $
PRINT RESULTS II» X’T» YT

PRINT "COMMENT $0  K X_____________________ Y
 1 SLOPE P( I »K) $_

 I = II
THROUGH L6, FOR K = KMAX, -1, K.L. 0
WHENEVER (K/KP)*KP 
RE = P(I,K)*TAN

• E. K

 X = K*DX
Y = I*DY
PRINT FORMAX POLICY* Kt X> Y> RE» P(I»K)  
END OF CONDITIONAL :,

_________________ I = I-P(I»K )___________________________________
 L 6  
L5    

VECTOR VALUES BRACHI = $ 110, E30.6, 110, E30.6 *$
VECTOR VALUES POLICY = $ 1110, 3E20.8, 1116 *$
TRANSFER TO START _ ____________________
END OF PROGRAM

$ DATA ____
XT = 314.15926, YT= '400., IMAX = 100, KMAX= 20, FREQ =10, KP=2*

 
 

 

 
 

 

  
 



  
  

  

  

_R  P R O G R A M_ 3 - 2 

3 "r brachistochrone problem with free end conditions solved-byZT 
R BACKWARD METHOD OF DYNAMIC PROGRAMMING

  
$ "compile mad> execute, print object ♦"dump""' ~ ~

  
J ~ ' DIMENSION Y(IOO) OJfo'oTrTNT ("100 ) ♦ P ( 22 QOTdTm'h PT" ("10300717ME~)

____VECTOR VALUES DIM = 2 ♦ J) ♦ 0 ~________
VECTOR VALUES TIME = 2, Ot 0  
EQUIVALENCE ( DIM_( 1 ) ♦KPl)^ ( DI M( 2 )_♦ KMAX ) , ( T I ME (1) ♦ IP2 ) ♦

1 (TI ME ( 2 ) » IP1)  _ ________________________________
 INTEGER I, IIw IPlf IP‘2f IMAX, IS> Jf
IK, KPI, KMAX, P, BETA, FREQ 

START READ AND PRINTDATA XT, YT, IMAX, KAMX, FREQ  
I P1 = I MAX + 1 

  IP2 _= IMAX A 2
KPI = KMAX + 1______________________________
DX = XT/KMAX  
DY = YT/IMAX __________________________________________________
THROUGH LO, FOR J = 0, 1, J .G. IMAX  
THR0UGH L0, FOR I = J, 1, I .G. IMAX  ____________________________

 WHENEVER I .E. 0 .AND. J •£• 0  
 DT(J, I) = 1E5___________________________________________________________

OTHERWIS E   __________________________________________________
 DS = SORT.(((I-J)*DY).P.2 + DX*DX )  

 V  = 4.013 * (SQ RT.(J*DY) + SQRT.(I*DY))  
DT ( J ,J ) = DS/V
 DT ( I , J ) =_ DTJ J_, L)
END OF CONDITIONAL  

___ LO_____________
THROUGH L1, FOR I = 0, 1, I .G. IMAX  

 _ ______ P( I ,KMAX ) = 0___________________________________________________________________
_____________ t (i) = o.________________________________________________________ ;_______________

Y (I)= I*DY  
LI  

______ THROUGH L2, FOR K = KMAX-1, -!♦ K .L. 0
 THROUGH_L3, FOR I = 0, 1, I .G. IMAX  

_________ ALPHA = 1E37________________________________________________ _
TCO) = 1E5 *  
THROUGH L4, FOR J = 0, 1, J .6. IMAX 

 TT = T(J)_ +_DT(J,J)
 WHENEVER. TJL_.L. ALPHA

 ALPHAl_=._TT ___ _____________________ ___ ______________
BETA = J-1 __
END OF CONDITIONAL _

L4   ____
NT( I ) = ALPHA
P(I,K) = BETA 7

L3   

   
   

  



   
   

   

 
  

PRINT COMMENT $0$ 
PRINT RESULTSJ<_ ________'

’  PRINT COMMENT $ I________________  Y(I )  
1 P ( I ♦ K )_ NT (I) $___________ _

THROUGH L5> FOR I_= 1»1, L..G.JMAX  
_ WHENEVER ( I /FREQ ) *FREQ_. E._I ___ _______________________________ '

PRINT FORMAT BRACHI, I» Y(I)» P(I»K)» NT(I)  
END OF CONDITIONAL _
T ( I ) =" NT ( I )   

L5  
L2 

 PRINT COMMENT S THE_BEST POLICY$_
THROUGH L6 > FOR _ I I = FREQ >_FREQ G ._80___________________________ 

YO = II*DY _
   PRINT COMMENT $0$  

PR INT_COMMENT_$ THE STARTING POINT IS $  
PRINT RESULTS II* YO  
 PRINT COMMENT_SO K ‘NT ( I )Y  
1 SLOPE $   

 I = II  
  THROUGH L7, FOR K_ = _0»_l» K .G.„KMAX

 PR INT FORMAT POLICY* K, NT(I)> Y(I)» P(I*K)
I = I + P ( I»KJ

L7
L6  ________________________________

VECTOR VALUES BRACHI = $ II10* 1E30.8* 1IIP* 1E30.8 *$
VECTOR VALUES POLICY = $ 1110* 2E20.8* 1110 *$
TRANSFER TO START ;___________________________________
E N D__0 EL_P R 0 G R AM  

$ D ATA ______________ ______________________________________________
XT = 314.15926* YT=400.» IMAX = 100» FREQ=10» KMAX = 20*~

 

 
 

 

 
 

 
 

 

 
 

 
 



CHAPTER IV

QUASILINEARIZATION

4.1 NEVJTON-RAPHSON-KANTOROVICH METHOD

Figure 4.1-1

Newton-Raphson Method.

Consider a monotone decreasing, convex function f(x), we 

approximate f(x) by a linear function of x determined by the 

value and slope of the function f(x) at x = xQ.

f(x) = f(x0) + (x-x0)»f *(x0) (4.1-1)

Putting f(x) = 0, we obtain for the first approximation

X1 = x0 "
f*(xo)

(46)

(4.1-2)
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The process is repeated, at x1 leading to a new value and.

so on. The general recurrence relation is

^+1
f<xn) 
f'(xn)

(**.1-3)

This sequence of approximation yields the root of

f(x) = 0 (4.1-4)

It has been" shown that the convergence is monotonic and. 
quadratic {19] .

Replacing y by u, and y’ by w, Eq.(1.2-3) may be rewrit

ten as

1 + w2 
u" = - --------- -  G(u,w)

2 u
(4.1-5)

Let Uq(x) be some initial approximation and. consider the 

sequence un(x). Applying Newton-Raphson technique we 

construct the recurrence relationships

u"n+i = G(u,w) + + (wn+1-»n)|^

(4.1-6) 

un+1(0) = y0’ "n+l^f) = ^T (4.1-7)

Our aim is to produce a sequence of functions u^x), u2(x), 

... u^(x) which converges to the solution of the original 

function u(x).
The concept characterized by Eq.(4.1-6) is an extension 
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of the Newton-Haphson method to functional space which has 

been introduced by Kantorovich and is called Newton-Raphson- 
Kantorovich (NEK) technique (19] . It is essentially the 

first-order terms in power-series expansion of function G(u,w) 

about the point un.
4.2 QUASILINEARIZATION

Consider a differential equation of the form

A(x) u" + B(x) u* + C(x) = 0 (4.2-1)

Because of its linearity, the principle of superposition 

holds. If p is the particular solution of the non-homogeneous 

equation

A(x) u" + B(x) u* + C(x) = G(u,w) (4.2-2)

It can be shown that the linear combination p + c^ + 

where c1 and c^ are constants and h1 and are solutions of 
the homogeneous equation, also satisfies Eq.(4.2-2), that is

u = p + c1h1 + o2h2 (4.2-3)

For an m-order differential equation, the general solution may 

be varitten in the form
m

u = °khk + p (4.2-4)
k=1

The m conditions imposed on the m unknown functions may be 

expressed as
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m
5 ckhk(/) = ” p(/> (^.2-5)

k=1

( £= 0, 1 , 2, ... m-1 .)

If we substitute Eq.(4.2-5) in Eq.(4.1-6), we obtain

(4.2-6)

By equating the coefficients of Eq.(4.2-6), we obtain

"d G G
= G + (!*«,»>,+02»2)-^r + (P'+Olhl'+O2h2,)^

p" + c^" + c2h2

p" =G + (P-un)f^+ (p'-w)^ (*.2-7)

h1 =h1^+ hl'^ <^2-8>

h2 =h2^+ h2^ (4-2-?>.

Let us choose the initial conditions

p(0) = 0, p*(o) = 0 (4.2-10)

and the conditions on the homogeneous solutions of

h1(0) = 1, h1’(0) = 0 (4.2-11)

h2(0) = 0, h2’(0) = 1 (4.2-12)
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vjhlch insures that the Wronskian

h1 (x) h2(x)

W(x) = . =^: 0

- h* (x) h^(x)

(4.2-13)

Thus we have a set of initial value problems whose solutions 

and. their derivatives are readily produced numerically on the 
interval of x = O^x.^. The solution of Eq.(4.1-6) subject to 

boundary conditions Eq.(4.1-7) and their derivatives is expres

sed by

u(x) = p(x) + c^^x) + c2h2(x) (4.2-14)

w(x) = p(x) + c^'tx) + c2h2(x) (4.2-15)

where c1 and c2 are constants to be determined from the linear 

algebraic equations obtained by substituting x = 0, and x = x^ 
respectively into Eq.(4.1-7)

p(0) + c^^O) + c2h2(0) = y0 (4.2-16)

p(xT) + c^^xrp) + c2h2(xT) = yT (4.2-17)

In other words, we produce a particular solution and two 

independent homogeneous solutions on the interval x = O^x^- 

and determine the constants c^ a^d e2 to satisfy the boundary 

conditions of Eq.(4.1-7). The process of Eqs.(4.2-7) bo (4.2-17) 

is repeated to compute a new approximation of u(x).'

In the derivation of .Eq.(4.2-7) to Eq.(4.2-8), equation
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(^.2- 6), the NEK technique is applied in the abstract plane 

perpendicular to the x-axls at each point of x.
The computational scheme Is shown In Fig.4.2-1 and the 

computer program follows.

The computational results of two brachistochrone curves 

using straight-line initial approximations are compared with 
analytical solutions In Table 4-1 and Table 4-2. In Table 4-1 

an error can be seen near the singularity point x = 0, y = 0. 

Elsewhere, accuracy to five digits or more was obtained by 
3-iteratlon of quasilinearization In the problem of Table 4-2.

Straight-line approximations failed to converge for the 

cycloidal paths of range greater than half of a complete cycle. 

Since the constant multipliers c1 and c2 are determined solely 

at the two end points, a complete cycle of the cycloidal path 

with singularities at both ends cannot be solved by this 

method.



52

Table 4-1

Convergency of ^(x) to u(x) by Quasilinearization

Take 800 discrete points

k u0(x) u^x) u2^x) u5(x) u(x)

0 eOOOOOCE 01 •000000E 00 •OOOOOOE 00 •OOOOOOE 00 •OOOOOOE 00
40 elOOOOOE 02 •147406E 02 •415132E 01 •454858E 02 •457040E 02
80 »200000E 02 •446946E 02 •656419E 02 •700734E 70 •702014E 02
40 olOOOOOE 02 •247406E 02 •415132E 02 •454858E 02 •457040E 02
80 o200000E 02 •446946E 02 •656419E 02 •700734E 02 •702714E 02

120 o300000E 02 •622185E 02 •848638E 02 •893294E 02 •895121E 02
160 •400000E 02 •779257E 02 •101082E 03 •105424E 03 •105593E 03
200 •5000006 02 •9214736 02 .1151306 03 .119275E 03 .119430E 03
240 •600000E 02 .105095E 03 •127470E 03 .131380E 03 •131523E 03
280 •700000E 02 •116920E 03 .1383966 03 •142051E 03 •142181E 03
320 •800000E 02 •127734E 03 •148105E 03 •151495E 03 •151614E 03
360 •900000E 02 •137624E 03 •156744E 03 •159863E 03 •159971E 03
400 •lOOOOOE 03 •146668E 03 •164420E 03 •167264E 03 •167361E 03
440 • HOOOUt 0 3 •1549196 03 •171212E 03 •173782E 03 •173870E 03
480 •120000E 03 •162429E 03 •177189E 03 •179483E 03 •179560E 03
520 •130000E 03 •169240E 03 •182400E 03 •184417E 03 •184484E 03
560 •140000E 03 •175390E 03 •186886E 03 •188625E 03 •188682E 03
600 •150000E 03 •180911E 03 •190680E 03 •192140E 03 •192187E 03
640 •160000E 03 •185830E 03 •193807E 03 •194986E 03 •195024E 03
680 •170000b 03 •1901766 03 .1962896 03 •197182E 03 •197211E 03
720 •180000E 03 •193974E 03 •198142E 03 •198744E 03 •198764E 03
760 •190000E 03 •197242E 03 .1993766 03 •199682E 03 •199691E 03
800 •200000E 03 •200000E 03 •200000E 03 •200000E 03 •200000E 03
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Table 4-2

Convergency of u^tx) to u(x) by Quasilinearization

Take 400 discrete points

k u0(x) u1 (x) u2(x) u^Cx) u(x)

0 .200000E 03 •200000E 03 •200000E 03 .200000E 03 .200000E 03
20 .204709E 03 .210149E 03 .210341E 03 •210341E 03 •210341E 03
40 -209417E 03 ♦219541E 03 •219860E 03 •219860E 03 •219859E 03
60 v214126E 03 .228225E 03 .228626E 03 ♦228627E 03 .228626E 03
80 c218835E 03 •236242E 03 .236698E 03 .236698E 03 •236698E 03

100 .223544E 03 ♦243629E 03 .244122E 03 .244122E 03 •244121E 03
120 .228254E 03 .250417E 03 •250936E 03 ♦250936E 03 .250935E' 03
140 •232961E 03 .256637E 03 .257173E 03 .257173E 03 •257172E 03
160 .237670E 03 .262313E 03 .262861E 03 •262861E 03 .262860E 03
180 •242379E 03 •267468E 03 •268023E 03 .268023E 03 .268023E 03
200 .247087E 03 .272121E 03 •272680E 03 •272680E 03 .272680E 03
220 .251796E 03 ♦276291E 03 •276849E 03 •276849E 03 .276849E 03
240 »265505E 03 .279993E 03 •280544E 03 •280544E 03 .280544E 03
260 .261214E 03 •283241E 03 •283777E 03 .283778E 03 .283777E 03
280 •265922E 03 .286049E 03 •286560E 03 .286560E 03 •286560E 03
300 .270631E 03 •288426E 03 •288901E 03 .288901E 03 •288901E 03
320 .275340E 03 .290383E 03 •290807E 03 .290807E 03 •290807E 03
340 .280049E 03 •291929E 03 .292284E 03 .292284E 03 •292284E 03
360 .284757E 03 •293072E 03 •293335E 03 •293335E 03 •293335E 03
380 .289464E 03 •293818E 03 •293965E 03 .293965E 03 .293965E 03
400 •294175E 03 •294175E 03 .294175E 03 •294175E 03 •294175E 03
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Table 4-3

Minimtun Travelling Time Obtained, by Quasilinearization

(u0 = 0)

Terminal Trav. Time Trav. Time Error
Points (Q.L) (Classical)

it er =5
( 3-rp ) T(I) T(I) w

200 5.53719 5.53633 0.016
240 5.56174 5.56104 0.013
280 5.62580 5.62525 0.010
320 5.71787 5.71746 0.007
360 5.82979 5.82950 0.005
400 5,95571 5.95554 0.003
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PROGRAM 4-1 

R brachistochrone PROBLEM SOLVED BY QUASILINEARIZATION

$ COMPILE MAD* EXECUTE, PRINT OBJECT, DUMP' 

2 DIMENSION Y(10), F(10), Q ( 10 ) ,PA ( 8 00 ) ♦ HK800), H2(800^,  
1U(8OO), W ( 800 ) ,DPA ( 800 ) , DHK800) , DH2(800), QT(800) 

INTEGER ITER, ITMAX, K, KP, KMAX♦ COUNT  
START

PRINT COMMENT'S ‘DATA! 
 READ AND PRINT DATA UO, UT, ITMAX, KMAX* XT, EPS,KP
 DX = XT/KMAX   
 "DY = (UT-UOl/KMAX

TAN = (UT-UO)ZXT  
 THROUGH LO, FOR K = 1*1, K.G.KMAX

 X = K*DX  
 U(K) = UO+DY*K

W(K) = TAN 
LO  

’ THROUGH LI, FOR ITER = 1,1, ITER .G. ITMAX 
PA(0) = 0. 
HKO) =1.   
H2(0) = 0. J   
 DPA(0)_= 0.  

D H1 ( 0 )  = 0 .  
________ D H 2 (0 )  = 1.

Y ( 1 )_=_PA (0 )  
Y(2) _=_DPA( 0 )  
Y ( 3 ) =_H 1 ( 0 )    ~ 
Y(4) = DHl(O) _______________
Y(5) = H2(0)  
Y(6) = DH2(0J ._____________________ _________
X = 0. _______________.

 _  EXECUTE SETRKD. (6 ,Ym ,Fm ,Q,X,DX_)
THROUGH LRK, FOR K = 1*1* K.G.KMAX ____ ____________

CALLRK S = RKDEQ.(O)   
WHENEVER S .E. 1.  
F(l) = Y(2f  

2 WHENEVER" F (1).G. EPS
 Fd) = EPS  _______________________ _

-----------  - - END OF CONDITIONAI—  -
  F(3) = Y(4) :________________________  

WHENEVER F(3)_.G._ EPS ___   
  F(3) = EPS     

END OF_ C 0 N D IT I ONA L _ __

 

 
FCS) = Y(6)  

  WHENEVER F ( 5_)_.G._EPS 
  FCS) = EPS

 END OF CONDITIONAL   
  

 
     
    

 



 
    

 
 

  
 

GU = (l.+W(K)*W(K))/(2*U(K)*U(K))  
WHENEVER GU .G. 1E6     
GU = 1E6     
’END OF CONDITIONAL  

GW = -W(K)/U(K)  
WHENEVER =ABS.(GW) .G. 1E6 '   
GW = lE6*(GW/(OABS.(GW)))  
END OF CONDITIONAL 
F(2) = GU*(Y(l)-2e*U(K)) + GW*(Y(2)-W(K)) 
WHENEVER oABSe(F(2)) .G." EPS

 F(2) = EPS*(F(2)/(.ABS.(F(2) ) f)
END OF CONDITIONAL

 F(4) = GU*Y(3) + GW*Y('4)  
WHENEVER .ABS.(F(4)) ,G. BPS’  
F(4) = EPS*(F(4’/(•ABS•(F(4)))) 
END OF CONDITIONAL
F(6) = GU*Y(5)'+ GW*Y(6) 

 WHENEVER .ABS.(F(4)) .G, EPS
 F(6) = EPS*(F(6)/(.ABS.(F(6)))) 

END OF CONDITIONAL 
 TRANSFER TO CALLRK

 OTHERWISE 
  PA(K) _= Y(l)

HKK) = Y(3)
H2(K) = Y(5)
DPA(K) = Y(2) ___
DH1 ( K ) __=2Y ( 4 )  

 DH2(K) = Y(6') ________ ______ ______________________
"   END OF CONDITIONAL ______________

LRK  " " '  ________ ’

 
D IN = H1(0)*H2(KMAX) - H1(KMAX)*H2(Q )

"____ AP =_UO ->A(O) ~ ■" .,
BP =JJT - PA(KMAX)_  
Cl = ( AP*H2(KMAX)-BP*H2(0))/DIN
C2 =”(-AP*Hl(KMAX)+BP*Hl(O) )"/DIN
PRINT^COMMENT $0$ 

___________print comment_ $o$_ _____ ____ ___
 PRINT RESULTS ITER, C1»_C2_  "

PR I NT_ COMMENT $ K X_________________ PA
1 H1_Z___H2 U W
2 QT $  __ _

 
; THROUGH L2, FOR_K = 0» 1, K .G« KMAX L

U(K) = PA(K) + Cl* H1(K)_+_C2* H2(K)
W(K) = DPA(K) + C1*DH1(K) + C2*DH2(K)
 X = K*DX 
WHENEVER K .E._0_____________________________ _  
QT = 0.  
 OTHERWISE ;
DS =_SQRT.( (U(K)-U(K-l)).P»2+ DX*DX -1

 V = 4.013* ( SORT . ( U (_K) ) +SQRT . ( U ( K^.1 ) ) ) ___________________
QT _= QT + DS/V _ :______________________________________________
END OF CONDITIONAL    

  

 



 
 

WHENEVER (K/KP)*KP .E. K 
PRINT FORMAT LINEAR, K, X»PA(K),H1(K),H2(K),U(K),W(K),QT

L2 END Or" CONDITIONAL 
U(O) = O.O1 

LI
VECTOR VALUES LINEAR = $ 115, 1E12.4, 6E17.8 _*S  __
TRANSFER TO START  *   ~
END Or PROGRAM  

$ DATA
U0=200., UT=294.17495, ITMAX=3, KMAX=400, XT=314.15926, EPS=100,KP=20*

  
 

 
 

 
 

   
 
 

 
 

 
 

 

 

   
 

   
    

   
 

 
  

   
   

   
 

  
     

 
   



CHAPTER V

COMPARISONS AND COMBINATIONS

5.1 COMPARISONS

As '.ie have seen in the previous chapters invariant 

imbedding, dynamic programming and quasilinearization, each 

has some powerful characteristics. Quasilinearization is the 

most accurate technique at the expense of relatively long 

computing time. Invariant imbedding requires very short 

computing time but gives only initial slopes and the results 

may be only approximately correct. Dynamic programming ranks 

between invariant imbedding and quasilinearization in accuracy 

and computing costs.

The size of problems which can be handled by dynamic 

programming is limited by the memory available in a computer. 

Invariant imbedding and quasilinearization have no memory 

problem, but the former should be combined with another 

method to produce state and cost functions; the latter 

converges only when a proper Initial guess to- the solution 

has been made.

Invariant imbedding and quas11Inearizatlon make use of 

the differential equation obtained from Euler’s equation of 
the calculus of variations. Dynamic programming completely 

bypasses this derivation, although we showed that Euler’s 

equation may be obtained from recurrence relations based on 

the principle of optimality. However, no differential equa

tion which characterizes the optimum path was used In the 

(59)
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minimization process. This powerful feature of dynamic 

programming is especially useful in the case where Euler’s 

equation does not exist or is difficult to solve.

Another significant aspect is that invariant Imbedding 

and quasilinearization are not suited to handle computations 
which include such features as the cusps of a cycloid where 

the slopes are infinity. Dynamic programming which treats 

continuous systems as discrete multi-stage processes is free 

of this trouble because the slopes are found between adjoin

ing stages instead of at values of the state variable.

5.2 DYNAMIC PROGEAMMING WITH SEARCHING OVER A RESTRICTED REGION

As mentioned above, dynamic programming bypasses Euler’s 

equation. In the brachistochrone problem, Euler’s equation 

x/hich characterizes the optimum path is known. We seek to 

find a way to utilize the differential equation obtained from 

Euler’s equation to minimize the searching required in dynamic 
programming. We note that Eq.(1.2-3)

i+y’2
y" = - <0, for y>0 (5.2-1)

implies the slope is monotone decreasing. It can be seen that 
Eq.(5.2-1) with boundary conditions

y(o) = c1, y(xT) = c2 (5-2-2)

or y(0) = c1, y(xT) = c^ (5.2-3)

describes cycloids which are single-valued functions. Let us 
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consider a forward-scheme of dynamic programming. If the 

slope at state In the k-th stage is greater than (or equal 

to) zero (as is shovm in Fig.5.2-1 (A) ), then point p^ (where 

the optimum curve crosses (k-1)-th stage) must lie below or 

at a level with q^. It follows that in minimizing the time 

of travel from the initial point 0 to point q^ in the k-th 

stage, we have only to search over the region y q^, that is

cost Oq^ = min (Op^+p^q^) j=1,2,3,...m

= min J=1,2,3,...i

= min (Opj+p.^) j=l,i-1, ...2,1.

(5.2-4)

Furthermore, since the function is single-valued, the 

search may be terminated where the minimized cost function 

begins to increase. Then, Eq.(5.2-4) becomes

cost 0q1 = mln (Op^+p^q^ J=i, 1-1, ... 12.

(5.2-5)
t.’here 12 is the lower limit of the grid counter in the region 

to be searched. Similarlly, for the slope at q^^^O, the 

region to be searched is restricted to

j = 1, 1+1, 1+2, ...ih (5.2-6)

where ih is the upper limit.

A forward-solution using the partial-search technique 

described above is shown in Program 5-1 • It reduced the



Figure 5.2-1

Slope Characteristics and
Searching Region



computing time from 35.1 sec to 15 sec in solving a 20-stage, 

lOO-decision process with 10 sets of the solutions printed, 

out.

5.3 COMBINATION OF INVARIANT IMBEDDING AND DYNAMIC

PROGRAMMING

The technique of searching over a restricted, region is

effective especially where the absolute values of slopes are 
small. For the steep curves shown in Fig.5.3-1 (B) and. (C), 

the usefulness of the feature is not as significant. Since 
dynamic programming is a marching process,' the optimum slopes 

at p^(for j2.=1 ,2,.. .m) are known a priori. We may take

advantage of this information. Locate p, from using the

slope at p^, then search several grids in the neighborhood

of this predicted position to obtain the optimum value pd
(Fig. 5.3-1 (D) ). This can be accomplished successfully by 
joint use of invariant Imbedding and dynamic programming^ 8] 

that Is, predicting the slopes by invariant Imbedding and 

then searching In the neighborhood by dynamic programming.

For a 20-stage, 100-declslon process with 10 sets of 

solutions printed out, the computing time using this combi
nation was 1^.1 sec In comparison with 35«1 sec By dynamic 

programming only, and 15 sec using the partlai-searching 
method. Searching was restricted to ±2 grids In the vicinity 

of the predicted point
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(B)

(C) (D)

Figure 5-3-1

Regions to be Searched, in Various Cases
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5.4- DYNAMIC PROGRAMMING AND QUASILINEARIZATION

As mentioned, previously, the coarse grids used in 

dynamic programming result in polygonal curves which may 

deviate significantly from what we know to be ezact solution. 

Finer grids., may improve the accuracy of the solution but a 

too-fine grid introduces a memory problem with the computer. 

On the other hand, quasilinearization yields very accurate 

results but is expensive and its convergence depends greatly 

upon near-correctness of the initial estimate of the solution. 

In general, a straight line is the simplest initial estimation 

however, in the brachistochrone problem the solution converges 

only where the boundary point does not exceed a half-cycle 

of a cycloid.
Combined use of dynamic programming and quasilineari-- 

zatlon compensates for the weaknesses of each. By this 

predictor-corrector method, we solve the problem approximately 

by first using the dynamic programming procedure with very 

coarse grids, and then take this solution as the initial guess 

to the solution whose accuracy is improved by a few applica
tions of quasilinearization.

Program 5-3 uses dynamic programming in the main program 

and quasilinearization as a corrector in external function. 
In Table 5-1 the results of taking 20x40 grids in dynamic 

programming, and 2 applications of quasilinearizations for 

each solution are shown. Computing time was 50•5 sec which 
would be less than that for quasilinearization.
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5.5 I^ARIANT IMBEDDING »ATD QUASILIX?-"^.TZATTON

Another predictor-corrector scheme combines invariant .> 

imbedding (used to predict the slopes) and quasilinearization 

(used to correct the solution resulting from the first and to 
produce the cost and state functions simultaneously) [i gj .

Consider a problem beginning at point (c,a). If the 

starting point at x=a is close to the terminal line x=x,2, the 

slopes at all initial points c^ may be estimated as zero and 

after a few iterations of quasilinearization it converges to 

the correct value r(c,a). The same procedure is repeated at 

x=a-AX, x=a-2Ax, and so on. In effect, we solve 2000 problems 

for a 20-stage, 100-declsion process. If the range of the 

independent variable is sufficiently small, we may use 
invariant imbedding in a straight-forward manner to produce 

the initial slopes at all initial values in x=0. Using these 

initial slopes and the other given initial conditions, the 

differential equation is Integrated numerically by the Runge- 

Kutta method to produce the first estimate, which may be 

corrected by quasilinearization. This eliminates the time

consuming quasilinearization steps at the intermediate stages. 
Of course, by using this procedure no knowledge of the 

solutions at the Intermediate stage can be extracted.

This combination was used in Program 5-^ with one appli

cation of quasilinearization. Solutions of a problem with 

initial value c=200 and free-end conditions were compared 

with those obtained by quasilinearization with a straight- 

line initial estimate in Table 5-2.
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Table 5-1

Minimum Travelling Time Obtained, by Joint Use of

Dynamic Programming and. Quasilinearization

x,-p=O, yT=0, x.-p=100 7t, yq-^0~400 feet

yT D.P. D.P. and Q.L. 
lter=2 Classical

*Y U 6o40467 6=36369 6=36233
£.0 5=95519 5.91569 5=31442

120 5=71579 5=68095 5=67980
160 5=60058 5.56864 5=56763
200 5=56509 5.53718 5.53633
240 5.58637 5.56173 5.56104
280 5=64761 5.62579 5=62525
320 5.73690 5.71786 5.71746
360 5.84633 5.82978 5.82950
400 5.97084 5.95570 5.95554



k

40 
80

120 
160 
200 
240 
180 
320 
360 
400
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Table 5-2

u(x) Obtained by Joint Use of Invariant Imbedding 
and Quas11Inearlzation

Take 100x100 grid points in invariant Imbedding
400 discrete points in Q.L.

Q.L.iter=1

21954105E 03
23624176E 03
25041730E 03
26231297E 03
27212100E 03
27999292E 03
28604860E 03
29038306E 03
29307187E 03
29417494E 03

Q.L.lter=2

.21985933E 03
•23669814E 03 
•25093545E 03 
.26286060E 03
•27268004E 03 
.28054369E 03 
•28656031E 03
•29080698E 03 
•29333534E 03 
•29417494E 03

I.I.and Q.L. 
lter=1

•21985918E 03
•23669769E 03
•25093470E 03
.26285956E 03
.27267870E 03
.28054209E 03
.28655839E 03
•29080476E 03
•29333279E 03
•29417201E 03

Classical

.21985937E 03
•23669809E 03
•25093532E 03
•26286044E 03
•27267995E 03
•28054369E 03
•28656035E 03
•29080707E 03
•29333540E 03
•29417495E 03
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R P R_0 G R A M_ 5 - .1" 1   

ZTk FORWARD method~of~dynamic"PROGRAMMING
 R SEARCHING WITHIN RESTRICTED REGIONS

 $_COMPILE_MAD, EXECUTE  
 INTEGER JSTARTt JSTEP# SW  

R  
. R SAME AS PROGRAM 3-1

R
THROUGH L2» FOR I = O» 1, I .G. IMAX  
WHENEVER K .E, 
NT( I ) = DT(0,I)  
P ( I ♦ K ) = I

_________  otherwise 
ALPHA = _1 E 3 6  
 WHENEVER P ( I , K-l) .GE. O' _

__  JSTEP = -1
JSTART = I  

__________________WHENEVER JSTART .G. IMAX___________________________________________________ _  
 JSTART = IMAX 
 ""END OF CONDITIONAL

0 T H E R WIS E  
__________  JSTEP = 1________________________
_____________JSTART =_I

WHENEVER JSTART .L. 0
  JSTART_= 0  

_________________ EN D 0 F_CO N DITI ON A L________
 ENDO F_C 0N DITIONAL_____________________________________
SW = 1 .
 THROUGH L3> FOR J = JSTART» JSTEP> SW •E« 2 .OR. J.L.0
1.OR. J.G ._I MAX_________________________________________________________________________________

TT = T(J) + DT(J>I) _______________________________
WHENEVER. TT .L, ALPHA  
alpha = TT_________________ :_________________ :___________________________________
BETA = I-J  
0 T H E R WIS E;. 

____________ _SW = 2_
END OF CONDITIONAL  

___ L3________________  
NT( I ) = ALPHA  

 P(I,K)_= BETA  '  
END OF CONDITIONAL  

L2  
 R_

 
R_ SAME_AS PROGRAM 3-1 _____________________________________________

.........................
END OF PROGRAM ___
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R PROGRAM 5-2
—

R BRACHISTOCHRONE PROBLEM WITH FREE END CONDITIONS
R SOLVED BY JOINT USE OF
R DYNAMIC PROGRAMMING AND INVARIANT IMBEDDING .....

$ COMPILE: MAD, EXECUTE, PRINT OBJECT, DUMP

DIMENSION Y(100), T(100), NT(XOO), JPRED(XOO), ROLD(XOO),
1P(22OO.DIM), DT(10300,TIME)

VECTOR VALUES DIM = 2,0,0
VECTOR VALUES TIME = 2»0,0
EQUIVALENCE (DIM(1)»KP1)» (DIM(2)»KMAX)» (TIME(1)» IP2)»

1(TIME(2)» IP1)
INTEGER !♦ II. IP1, IP2, IMAX. J. JL. JH. JPRED. IS,

IK, KPI. KMAX, P, BETA, FREQ

. START READ AND PRINT DATA XT, YT, IMAX, KMAX, FREQ
IPX = IMAX + 1
IP2 = IMAX + 2
KPI = KMAX + 1
DX = XT/KMAX
DY = YT/IMAX
TAN = DY/DX
THROUGH LO, FOR J = 0, 1, J .G. IMAX
THROUGH LO, FOR I = J, 1, I .G. IMAX
WHENEVER I .E. 0 .AND. J .E. 0
DT(J,I) = 1E5
otherwise
DS = SORT.(((I-J)*DY) .P.2 + DX*DX)
V = 4.013 * (SQRT.(J*DY) + SQRT.(I*DY))
DT(J,I) = DS/V
DT(I,J) = DT(J,I)
END OF CONDITIONAL___________________________________________________

LO
THROUGH LX, FOR I = O» 1, I .G. IMAX

------------------------- --_P (I , KMAX.) =_0___________________________________________________________
_ ROLD.(I.)_=__0___________________________________________________________
T(I) = 0.

------------- -

Yd) = I*DY
LX

THROUGH L2, FOR K = KMAX-1, -1, K .L. 0
EXECUTE IMBED. (Y,ROLD,DX,DY,IMAX,JPRED)
THROUGH L3, FOR I = 0, 1, I .G. IMAX
JL = I + JPRED(I) - 2
WHENEVER. JL_.L._0
JL = 0
END OF CONDITIONAL
JH = JL + 4
WHENEVER JH .G. IMAX
JH = IMAX

__________________END OF CONDITIONAL_______________________________
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ALPHA = 1E37   
T(0) = 1E5 '   
THROUGH L4, FOR J = JL» 1» J .G. JH 
TT = T(J) + DT(I,J) " “ ~

 WHENEVER TT .L. ALPHA ”
ALPHA = TT
BETA = J-I
END OF CONDITIONAL

L4
NT( I ) = ALPHA
P(I*K) = BETA
ROLD(I)= P(I*K)*TAN

L3
PRINT COMMENT $0$
PRINT COMMENT $0$
PRINT RESULTS K
PRINT COMMENT $0 I Yd )

1 P(I*K) NT(I) JPRED $
THROUGH L5* FOR I = 1* 1* I .G. IMAX
WHENEVER (I/FREQ)*FREQ .E. I
PRINT FORMAT BRACHI* I* Yd)* P(I*K), NTd)* JPRED(I)
END OF CONDITIONAL 
T(I) = NT( I ) 

L5 
L2

PRINT COMMENT $0 THE BEST POLICY $ 
THROUGH L6» FOR II = FREQ* FREQ* II .G. 80 
YO = IT*DY
PRINT COMMENT $0"$  
PRINT COMMENT $ THE STARTING CONDITIONAL ISS 
PRINT’ RESULTS II* YO  
PRINT COMMENT $0 K NT(I) Y

_______ 1 '  SLOPE SLOPE( I NT EGER f$
I = 11

 THROUGH L7* FOR K = 0* 1* K .G. KMAX
 RE = P(I*K)*TAN  

 PRINT’FORMAT POLICY* K* NT(I)♦ Y( I ) * RE* P(I*K)
I = I + P(I ,K) 

L7 J________
L6 ;   

VECTOR VALUES BRACHI = $ 1110* 1E30.8* 1110* 1E30.8, 1115*$
_______ VECTOR VALUES POLICY = $ 1110* 3E20,8* 1110 *$ "

TRANSFER"TO START  
 END OF PROGRAM   
  

 
 

 
  

 
   

  
    



  
    

    
     

 
   

$ COMPILE MAD, PRINT OBJECT, DUMP
EXTERNAL FUNCTION ( Y,ROLD,DX,DY, IMAX,"JPRED)
DIMENSION RNEW(100)  
INTEGER I, IMAX, J, JPRED," P
ENTRY TO ""IMBED.  

 Y(0) = 0.1
 TAN = DY/DX  
 THROUGH LI, FOR I =0, 1, I .G. IMAX

S = Yd) + ROLDd )*DX  
WHENEVER.ABS. (ROLD(D).L. IE-6
R = ROLDCI)“  

2 OR WHENEVER ROLDd) .L. 0.    _  __
THROUGH L2,F0R J=I,-1,J.E.O .OR . ( S.G.Y ( J-l") . AND.S • LE. Y (J ) )

__ L2 ; ;""   
WHENEVER J .E. 0   

"J = 1 " "
 END OF CONDITIONAL

R = (ROLD(J)-ROLD(J-l))*CS-Y(J-Y) )/DY + ROLD(J-l)
OTHERWISE
THROUGHL3,FOR J=I,1 ,J.E.IMAX .OR.(S.G.Y(J).AND.S.LE.YCJ-H ))

L3   "" _______________________________________________________
^WHENEVER J . E._ IMAX
R = ROLDdMAX) 
OTHERWISE   
R = (ROLD(J+1)-ROLD(J))*(S-Y(J))/DY + ROLD(J)
END OF CONDITIONAL
END OF CONDITIONAL  
WHENEVER .ABS. ( ROLD (I ) ) ,G. _1E6  

_________________ ROLD d) = 1E6*(ROLD(I)/(. ABS.( ROLD(I))) )________________________________  
END OF JEOND ITI ONAL ‘
RNEW ( I ) = R+ ( 1 ,+ROLD ( I )*ROLD( I ) )*DX/(2,*Yd ) )
J PRE Dd) = RNEW ff)/TAN

LI ________________ __________________________________
THR0UGH L4, F0R I = 0, 1, I .G. IMAX  

_____________ ROLDTi") = RNEW"( I)______________________________________________________________
L4 /  

FUNCTION RETURN
 "END OF FUNCTION   

 $ DATA"      ____  
XT = 314. 15926, YT=400. , IMAX = 100", FREQ = 10, KMAX=20*
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R PRO G R A M 5_- 3 
 

 
R^ BRACHISTOCHRONE PROBLEM SOLVED BY JOINT USE OF

   r _"dynamic“programming_and' quasilinearizationL

  
$ COMPILE. MAD, EXECUTE, PRINT OBJECT, DUMP^  

 DIMENSION Y(80), T ( 80 ) , NT(80), P(18OO,DIM), DU 6600 ,T I MEH
1YR(6), FR(6), QR(6) , >A(800) ,"''Hl(800) , H2(800) ,jDPAL(8002j»
'2DH 1(800), DH2 ( 800 ) , U( 800 ) , W (800)^ _______________

VECTOR VALUES DIM = 2,0,0  
VECTOR VALUES TIME = 2,0_,0   _   

L EQUIVALENCE (DIM(l),KP1), (DIM(2),KMAX), (TIME(1),IP2) , 
1< JI ME ( 2 )_♦! P.1)

INTEGER I, IMAX, IFREQ, IP1, IP2, II, ITER, ITMAX, 
U,   
2 K, KK, KMAX_, QK , QKMAX , KPI, KP ♦
3P, BETA, R_ ______________

START   _________________________________
READ AND P RI NT DATA XT, YT, YO, IMAX, KMAX, KK, ITMAX, IFR~EQ 
QKMAX = KK*KMAX  
K P = Q K M A X / 2 0 _________________

_______ I P1 = I MA X + 1
IP 2^ IMAX + 2_________________________________________________________________
K Pl = KMAX + 1________________________________________________________________
DX =_ XT/KMAX  

_________ D Y_ = (Y T-YO)/IMA"X  
H =_DX/KK ____________________________________

_________________ JAN_ =_DY/DX_____________________________________________________________________  
_________________ E P S _t_1 00 ._______________________________________________________  

 
r" constr~uctTng ~^atr~ix~f'or delta t

. THROUGH L0♦ FOR J = 0,1, J.G.IMAX
THROUGH L0, FOR I = J, I, I.G. IMAX
WHENEVER I .E. _0,AND. J .E. 0_____________________________________________
'D T (J, I ) =_1 E 5 _________________________________________________________

0 T H E R WIS E

 
DS = SORT. ( ( (I-J)*DY) .P.2 + DX*DX )  

_________________ V = 4.013 * (SQRT.(J*DY) + SQRT.(I*DY))
DT ( J, I )_= DS/V  

 D T ( I ♦ J ) = D T ( J , I)
END OF_CONDITIONAI

 

 
LO  

 R DYNAMIC7 PROGRAMM I NG FORW ARD*-SOLUT I ON 
 P(0,O) = 0 ____________

PRINT COMMENT $0 I  Y________
1 PCI,KMAX) NY" $

 
  

    
 



   
    

   

     

 THROUGH Ll» FOR K .G._KMAX_  
 THROUGH L2» FOR I = 0» iVl .G. IMAX  "
 WHENEVER K .E. 1 ' '

NT ( I ) = DT(0>I ) __
 P(I,K) = f 

 OTHERWISE _____________  _ ____________________ _
 ALPHA = 1E3 7 ’

 THROUGH L3» FOR J = 0» 1» J .G. IMAX __________________________________'
TT = T(J) + DT(j,I) __ ______________
WHENEVER. TT_ .L. ALPHA

 ALPHA = TT ' ___________
 BETA = I-J ________________

 END OF CONDITIONAL __________

 NT(I) = ALPHA ~
P(I♦K)_ = BETA _____________________________________________________________

 END OF CONDITIONAL ’_______________________________________

 THROUGH L4» FOR I =rO»"172Y.GTlMAx”3Z
 WHENEVER K .E. KMAX .AND. (I/IFREQ)*I FREQ .E.I

 Y(I) = I*DY ___________
PRINT FORMAT BRACHI, I» Y(I)> P(I»K), NTH)  
END OF COND ff I ONA L

 T(I) = NT(I )  

R IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORRECTION  
THROUGH L5 ♦ FOR II = IMAX» -IFREQ> II .L~. IFREQ  

  UT = I I *DY _______ __________________
 UO = 0. 

 PRINT C0MMENT_$ 1 SOLUTION WITH END POINT AT $
PRINT_RESULTS_II, UT
PR INT COMMENT $0 K X _______ Y
1 SLOPE P(I»K) $__________________________
_I = II  
 W (OKMAX )_=_P( I ♦ KMAX)*TAN __
THROUGH L6> FOR QK = QKMAX, -1» QK ,L. 0  
WHENEVER (QK/K.K)*KK .E. QK  _______  

= QK/KK ’ ~~
 SF = P(I,K)*TAN , _

 U(QK) = I*DY2 __________________
WHENEVER, QK .NE._0  
W(QK-l) = SF  

 END OF CONDITIONAL ____
I = I—P( I»KJ  

 OTHERWISE  
W(QK-l) = SF  
U(QK) = U(QK+1)-W(QK)*H 

"END OF CONDITIONAL  
"WHENEVER (QK/KP)*KP .E. QK  ____

XA = QK*H
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PRINT FORMAT POLICY, OK, XA,_U(QK), W (OK ) ,_PJ I , K )  _

 
END OF CONDITIONAL-   

L6  

 R QUASILINEARIZATION CORRECTOR ' 
 EXECUTE QUASI. (U,W ,QT ♦ PA ,H1, H2 ,QKMAX_, EPS, I TMAX ,H ,UO ,UT)

 X = H*QK     _ 

PRINT COMMENT $0$
 PRINT COMMENT $ QK X PA

1 Hl • H2 U VS
THROUGH L9, FOR QK = 0, KP, QK .6. QKMAX

 PRINT FORMAT LINEAR, QK ♦ X , PA (QK ) ,H 1 ( QK ) ,H2 ( QK ) ,U ( QK ) , w’(QK)
___ L9___________

PRINT RESULTS QT______________________________ _____________________________
____L5

END OF PROGRAM

  

 
   

   
 
  

   
  

  
    

     
   

  

   
  

__________________TRANSFER TO START_______________ __________ ________________ " ____________
VECTOR VALUES BRACHI = $ 1110, E30.8, 1110, E30.8 *$
VECTOR VALUES POLICY = $ 1110, 3E20.8, 1110, 1E20.8 *$
VECTOR VALUES LINEAR = $ 115, 1E14.4, 5E17.8 *$
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$ COMPILE MAD» EXECUTE, PRINT OBJECT, DUMP 
EXTERNAL FUNCTION (U,W,QT»PA,H1,H2,QKMAX»EPS,ITMAX♦H,UO,UT) 
 DIMENSION DPA(8OO), DHK800), DH2(800), FR(10)» YR(10)♦OR(10) 

INTEGER I,IMAX,IFREQ,ITER, ITMAX♦K,KK♦KMAX,OK,QKMAX
 ENTRY TO QUASI.'

R ITER-TH APPROXIMATION" 
THROUGH L7, FOR""ITER"= 1,1, ITER .G. ITMAX 
U(0) = 0.01 

 PA(0) -= 0.  
HKO) = 1. 

 H2(0) ="0. 
 DPA(O)= 0."

DH1(O)= 0.
DH2(0)= 1.  
YR(1) =' PA(O)  

____________ Y R ( 2 ) =_D P A (0 ) ___________________________________________
  YR(3) = HKO)  

____ YR(4) = DHK0) 
____ ' YR ( 5 ) = H2 ( 0 ) '  ' "
  YR(6) = DH2J0)'" ______________________ __________

 X = 0.
EXECUTE SETRKD.(6♦YR(1),FR(1),QR,X,H) 
THROUGH L8, FOR QK = 1,1, QK .G. QKMAX 

CALLRK S = RKDEQ.JOJ

WHENEVER S .E. 1.0
FR(1) = YR(2)
WHENEVER FR(1) .G. EPS
FR(1) = EPS
END OF CONDITIONAL
FRO) = YR(4)
WHENEVER FRO) .G. EPS
FRO) = EPS
END OF CONDITIONAL
FR(5) = YR(6)
WHENEVER FR(5) .G. EPS
FR(5) = EPS
END OF CONDITIONAL
GU = (l.+W(QK)*W(QK))/(2.*U(QK)*U(QK) )
WHENEVER GU .G. 1E6
GU = 1E6
END OF CONDITIONAL
GW = -W(QK)/U(QK)
WHENEVER .ABS.(GW) .G. 1E6
GW = lE6*(GW/(.ABS.(GW)))
END OF CONDITIONAL
FR(2) = GU*(YR(1)-2.*U(QK)) + GW*(YR(2) - W(QK))
WHENEVER .ABS.(FR(2)) .G. EPS
FRO) = EPS*(FR(2)/(.ABS.(FR(2))) )
END OF CONDITIONAL
FRO) = GU*YRO) + GW*YR(4)

 
   

    
  

   



   

7?  

WHENEVER .ABS.(FR(4)) .G. EPS  
FR(4) = EPS*(FR(4)/(.ABS.(FR(4) ) } ) 
END OF CONDITIONAL   

__FR(6) = GU*YR(5) + GW*YR_(6)
WHENEVER .ABS.(FR(6)) .G. EPS   “ 
FR(6) = EPS*(FR(6)/(.ABS.(FR(6)))) 

 
END OF CONDITIONAL   

    
  TRANSFER TO CALLRK '

OTHERWISE_ ______________________________________________________________
PA (OK) "= YR(1) __ _____________________________________

 H1 ( OK ) = Y R ( 3 )    
- H2(QK) = YR(5)  

DPA(OK) = YR(2) 
DHKQK) = YR (4) "

_DH2(QK) = YR(6)‘ ___Z
END OF C0NDITIOJNAL"  ______________________ _________

L8__________   
J________ _______DIN = Hl(0)*H2(QKMAX) - Hl(QKMAX)*H2(0 )

AA = UO - PA(O)  
BB = UT - PA(QKMAX)/ _ 
Cl = ( AA*H2(QKMAX) - BB*H2(0))/DIN  
C2 = (-AA*H1(QKMAX) + BB*H1(0))/DIN  
PRINT RESULT_S C1>_ C2 "
THR0UGH_L10, FOR OK = 0»1,_OK__.G« QKMAX  

"W(QK) = DPA~(QK) + C1*DH1(QK) + C2*DH2(QK)   
  U(OK) = PA(QK) + Cl* HKQK) + C2* H2(QK)  

 WHENEVER OK .E. 0________________________________________
 OT = 0. '  _______________________
 otherwise  _____________________ _
DS _= SORT. ( (U(QK)-U(QK-l) ) .P.2 + H*H) 
V = 4.013*(SQRT.(U(QK)) + SORT.(U(QK-1) ) )
 QT = QT + DS/V .
E N D_O F_CON DITIONAL;

__ lio_ _ __ :  
___ LT  __ _ _ __

FUNCTION RETURN:  
 

 
 END OF_FUNCTION __________

$ DATA      
__ YO_= O.,_XT = 314.15926. YT = 400.> IMAX = 40» KMAX = 2Qt IFREQ = 4»

KK =20. ITMAX = 2* 
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R PR0GRAM_5-4   

R BRACHISTOCHRONE PROBLEM WITH FREE end conditions SOLVED BY 
R_... JOINT USE OF INVARIANT IMBEDDING AND QUASILI NEARIZATI ON

$COMPILE_MAD» EXECUTE, PRINT OBJECT, DUMP   

INTEGER I, IMAX, ITER/'ITMAX, IFREO^J, JMAX,_K, KK, KP,KMAX,
 1 M, KK-

DIMENSION Y(100), ROLD(8OO), RNEW(8OO), YR(6), FR(6), OR(6) , 
1PA(8OO), HK800) ,"'H2(800)"/ DPA(800) , DHl(800) , DH2(800)”,
 "2U(8OO), W(800)  

EQUIVALENCE (IMAX, UMAX) 
START 

 READ AND PRINT DATA XT,' YO,OYT, IMAX, ITMAX, IFREQ”, KMAX, K P, 
IKK, EPS ~  

DX = XT/KMAX "
DY = (YT-YO)/fMAX  

_THROUGH L1 ♦ FOR 1=0,1, L, G . I MAX
Y(I) = I* DY " ~________________________________________________

 ROLD( I L 5__0.
LI

R FIND INITIAL SLOPE_BY_ I NVAR'lANT I MlBED'DING_____________________________
_________ _______ THROUGH L2', FOR'K = (KMAX-KK), -KK, K.L. 0 _ _________________ _

X = K*DX
WHENEVER K .E. 0
PRINT COMMENT SOINITIAL CONDITIONS $
PRINT RESULTS K , X
PRINT COMMENT $ I Y(I)

1 SLOPE M $
END OF CONDITIONAL
THROUGH L3> FOR 1=0, 1, I.G. IMAX
S = Y(I) + ROLD(I)*DX*KK
WHENEVER .ABS.(ROLD(I)).L. IE-6
R = ROLD(I)
M = I
OR WHENEVER ROLD ( I )_. L . 0 .   
 THROUGH L4>F0R J=I,-1, J.E.O .OR. (S.G.Y(J-l) .AND.S.LE.Y(J)) 

___L4 -  
WHENEVER J .E. 0  
J =1 
END OF CONDITIONAL   
 R = (ROLD(J)-ROLDCJ-l))*(S-Y(J-l) )/DY + ROLD(J-1 )
M = J    
OTHERWISE   
THROUGH L5,FOR J=1,1,J.E.I MAX .OR.(S.G.Y(J) ^AND.S^LE.nJ + l>>

__ L5  " _________________________ "____2____ '_____ 1"     
 WHENEVER J.E. JMAX   

 J = JMAX-1  
 END OF CONDITIONAL 

 R = J ROLD ( J+_l )_-RO_LD (J)')*(S-Y (J) )/DY + ROLD (J)
M = J  

 'END OF CONDITIONAL   
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 WHENEVER .ABS. (ROLDd ) ) .G. 1E6  _
ROLDd) = 1E6*( ROLD( I )/( .ABS. (ROLD( I ) ) ) )  I____ 1 
END OF CONDITIOANL    
Y(0) =0.1    "
 RNEW(I) = R+(1+ROLD(I)*ROLD(I))*DX*KK/(2.*Yd))  

WHENEVER K.E.O .AND. J I/I FREQ)* I FREQ .E. I  
PRINT FORMAT IMBED, I» Y(I), ROLDd)\ M  

  END OF CONDITIONAL
__ L3 _ ____ - ’ ■ _ ___________________ '____________________ _  

THR0UGH_L6, FOR_ I = 0, 1, I .G. IMAX
ROLD( I ) = RNEW( f) _______________ _________

L6 - - -

L2
R INITIAL INTEGRATION'
 THROUGH L7, FOR 1 = I FREQ, IFREQ, I .G. I~MAX  

UO = Y(I)  
 YR(1) = Yd) ' __________________________

  YR(2) = ROLDd)_ _____________
X = 0. „ \ ——
EXECUTE SETRKD. ( 2 ,YR( 1 ) ,FR( 1) ,QR,X,DX ) ' __

J THROUGH LRK1, FOR K = 1,1, K .G. KMAX _________________
RKd__________S = RKDEQdO) '________________________________________ '______________________

WH E N E V E R_ S . E . 1.  
FR(1) =JYR(2_)  
FR(2) = Jid . + FR( 1 )*FR( 1) )/<2.*YR( 1) )
TRANSFER TO RK1________________________________________________________________  

OT HER WIS E
U(K) = YR(1) _____________________________________________
W(K) = YR(2)  _____________________________________________________
END OF CONDITIONAL     

LRK1 

R USE Qi_L._AS A CORRECTOR
THROUGH L8, FOR ITER = 1,1, ITER .G. ITMAX  
PA ( 0 )  =0 •  
Hl(0)_=_! .  
H2(0) = 0.  
D P A ( 0 ) = 0 .  
DH1 ( 0 ) = '_0 . ' _______________________________________________
DH2(0)= 1.
YR(1) =_ PA"(O)  
 YR(2) >_DPA(O)
YR(3) =J Hl(0) ______

 

 
YR ( 4 ) =_ DH 1 ( 0 )   

 
_________________ YR ( 5 )_ =_ H2 ( 0 )

 _____ YR(6) = DH2(0)
_______  X = 0.  "

EXECUTE SETRKD.(6,YR(1),FR(1),QR,X,DX)
"THROUGH LRK, FOR K'= 1,1, K.G.KMAX 

CALLRK S = RKDEQ.(O)   
  

  
   

  



   
  

 80  
   

 
whenever s •E._l.o_ __ ____

  FR(1) = YR(2) __
  . WHENEVER FR (1 ) .G. EPS_

__FR(1) = EPS 
END OF CONDITIONAL   
FRO) = YR(4)  
WHENEVER FRO) .G._EPS  

"" FRO) = EPS
END OF CONDITIONAL 

I FRO) = YR(6)
WHENEVER FR(5) .G. EPS" _  
FR(5) = EPS ________________

 END OF CONDITIONAL   
 GU = (l.+W(K)*W(K) ) / ( 2 «*U (K )*U(J<))
 WHENEVER GU .6. 1E6      

GU = 1E6  
  END OF CONDITIONAL

GW = -W(K)/U(K)  
 WHENEVER .ABS.(GW) .G. 1E6    

GW = 1E6*(GW/(.ABS.(GW MJ
  END OF CONDITIONAL    

FR ( 2 ) = GU* ( YRJ 1) -2 .*_U ( K )J + GW*(YR(2 ) - W(K) )
WHENEVER . ABS.(FR(2) )_ .G. EPS  
FR(2) = EPS*(FR(2)/(.ABS.(FR(2))) )
END OF_CONDITIONAL  
 FR(4) = GU*YR(3) +_GW*YR_(4)  

_________WHENEVER . ABS . ( FR (4JJ_ .G EPS
FR ( 4 ) _5__E PS* ( FR ( 4 )7( .ABS. ( FR(4) ) ) )  
END OF CONDITIONAL  
FR(6)_ = GU*YR(5) + GW*YR (6)  
W H E N E V E R . A B S . ( F R („6 ) ) . G ._ E P S __________________
FR(6) = EPS*(FR(6)/(.ABS.(FR(6)) ) )  

__________________E ND 0 F_ C 0 N DO I ONA L___________________________________ ________________________
TRANSFER TO CALLRK___________________________ '________________________________

_________________ OTHERWISE_____________________________________________________________________
PA(K ) = YR(1)
Hl ( K ) __=_YR ( 3 )    
H2(K) = YR(5).
DPA(K)_=_YR(2 )  

'_________ DH1 ( K )=_YR (4 )______________________ ________ ________________________ ___
JDH2(K) = YR (6)   

END OF CONDITLONAL  
LRK_________  

 DIN = H1 ( 0 ) *DH 2 (_KM AXJ_-_PH 1 ( KMAX ) *H2_(0)
AA =_UO - PA(0)  
 Cl = ( AA*DH2(KMAX)_+ DPA(KMAX)*H2(0))/DIN  

  C2 = (-AA*DH1(KMAX) - DPA(KMAX)*H1(0))/DIN_  
~1 PRL’.'T COMMENT $0$ 'J~  

PRINT RESULTS I> UO♦ ITER  
"  PRINT RESULTS Cl> C2 ' ~ 

PRINT COMMENT $ "K X PA  
 1 Hl___ ’ H2 U ’ V

 2 QT S’    
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THROUGH L9> FOR K = 0» 1\ K .G. KMAX  
U(K) = PA(K) + Cl* HKK) + C2* H2(K)  
W(K) = DPA(K) + C1*DH1(K) + C2*DH2(K)   
X = K*DX 
whenever k »e. b  
QT = 0.  
otherwise  
DS = SQRT.( (U(K)-U(K-l)).P.2+ DX*DX )   
 V = 4eO13*(SQRT. (U( K) )+SQRT. 

QT = QT + DS/V 
END OF "CONDITIONAL 
WHENEVER (K/KP)*KP .E« K  '
PRINT FORMAT LINEAR, K, X, PACK), HKK) ,H2 ( K ) ,U ( K ) , W ( K ) ,QT
END OF CONDITIONAL 2

L9 ____________________________________ ______
____ U ( 0 ) = 0.001_________'_________________________________ ’___________________________  
L8 " ' " ""______________________________________________________________

PRINT COMMENT_$O$ ________________ _ 
L7 _   "   

TRANSFER TO START 
VECTOR VALUES IMBED~= 1110, 2E20.8, 1110 *$ 
VECTOR VALUES LINEAR = $ 115, 1E12.4, 6E17.8 *_$_
END OF PROGRAM'   

$ DATA. _  
XT = 314.15926, Y0=0., YT=400., IMAX = 100,ITMAX = 1, KMAX = 400,fFREQ =10, 
KP=20, KK=4, EPS=100* 

  
   

  
   

  
    

 
 
 

 
  

  
    

  
     

    
  



CONCLUSIONS

Modern digital computers can solve a great number of 

initial-value problems with accuracy and speed. The 

conventional method of solving two-point boundary-value 
problems by estimating initial slopes does, not make effi

cient use of their capabilities. In addition, the accuracy 

achieved at the boundary points does not guarantee equal 
accuracy throughout at intermediate points. The first 

difficulty may be mitigated by using the technique of invari

ant imbedding or dynamic programming, while the accuracy 

in the interval may be improved significantly by quasilinea

rization.

The convergence of solution obtained by quasilineari

zation depends solely upon the suitability and closeness of 

the initial estimate to the solution. This original estimate 

may be obtained by invariant imbedding or dynamic programming. 

A major difficulty in applying quasilinearization arises in 

obtaining the multipliers from high-dimensional systems of 

linear algebraic equations. Serious errors may result when 

inaccurately determined multipliers are used in combinations 

of solutions. Invariant imbedding eliminates this difficulty 

by producing functions which yield the unknown initial values 
directly [18],

Dynamic programming reduces, in large scale, the labor 

of searching for optimal paths. Since it bypasses the require

ment for knowing the differential equation governing the 

(82)
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optimal curve, it is particularly suited, for solving multi

stage multi-decision problems where the differential equation 

does not exist. If the differential equation governing the 

optimal path can be derived or a continuous problem giving 

differential equation is solved as a discrete multistage 

multidecision process, the computing time may further be 

reduced by using the technique of searching over a restricted 

region either by utilizing the slope characteristics of the 

differential equation or by joint use with Invariant imbed

ding. Accuracy of dynamic programming depends upon the 

fineness of the selected grid, but the size of the problem 

is limited by the available memory of a computer. Combin

ing dynamic programming and quasilinearization avoids this 

difficulty while producing accurate results.



APPENDIX

CLASSICAL SOLUTION OF BRACHISTOCHRONE PROBLEM

The brachistochrone problem requires that we find, the 

path of least-time between two points In a gravitational 

field.. Since gravitational force Is the only force acting 

on the mass, the travelling time may be expressed, as

t . p « = fSB
Jo Jo V V 0 12gy

b
F(y,y*) dx 

o
(A-1)

where d.s stands for the infinitesimal chord length, V is the 

velocity, and g is the constant of gravitational acceleration. 

In order to minimize T, we apply Euler’s equation to the 

Integrand F, that is,

0F d FdF " 
'dy dx L 0 y • . (A-2)

where ----- ;
1+y*^
F = -----

2gy
(A-3)

By performing the operation required by Eq.(A-2) we are led

to the equation

y" i+y‘ 
2y

(A-4)

(8^)
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which may be integrated, to yield.

(A-5)

where c1 is a constant of Integration

In turn, by manipulation of the terms and. performing a 

second, integration, we obtain

x = --- (u - slnu) + c
2

(A-6)

where u = cos“^ (1 -2y/c1 ) and. C£ is the second, constant of

integration. Since the path starts at the origin, at x = y = 0, 

u = 0, which implies that c^ = 0. Thus, we are led. to the 

solution

(a)(u - slnu)x =

(A-?)

(b)(1 - cosu)y =

which we recognize as the parametric form of the equation 

for a cycloid, that is

x = r( 9 - sin 6 ) (a)
(A-8)

y = r( 1 - cos 9) (b)
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where r (=0^/2) is the radius of the base circle, and 

G (=u) Is the angular displacement of the base circle.

It can be shown that the travelling time along a cycloidal 

path Is given by

t = J r/g’ 6 = (A-9)

where CD = g/r1 is a constant for particular cycloidal path.

In summary:
The path of least-time in a gravitational field is 

a part of a cycloid. The travelling time along any 

section of the cycloid is proportional to the angular 

displacement of the base circle by which that section 

of the curve is generated. The angular velocity of 
the base circle go is constant (=g/r' ), where r is 

the radius of the base circle and g is the constant of 

gravitational acceleration.
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