# BRACHISTOCHRONE PROBLEM SOLVED BY INVARIANT IMBEDDING, DYNAMIC PROGRAMMING, AND QUASILINEARIZATION METHODS

A Thesis

Presented to

the Faculty of the Department of Mechanical Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree Master of Science in Mechanical Engineering

Ъу

Moo-Zung Lee

June, 1966

363713

#### ACKNOWLEDGEMENT

The author wishes to express his sincere gratitude to his adviser Dr. D. Muster, Professor and Chairman of the Department of Mechanical Engineering, University of Houston, for his encouragement, guidance and careful arrangements of discussions with several people during the study and writing of this thesis. Among these, the author is particularly in debt to Dr. R. E. Kalaba of the Rand Corporation who suggested this problem with keys to the solution and contributed many valuable references. Assistance received from Drs. I. Organick, S. R. Parker, and S. B. Childs, (all of the University of Houston), is greatly appreciated. BRACHISTOCHRONE PROBLEM SOLVED BY INVARIANT IMBEDDING, DYNAMIC PROGRAMMING, AND QUASILINEARIZATION METHODS

An Abstract of a Thesis

Presented to

the Faculty of the Department of Mechanical Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree Master of Science in Mechanical Engineering

рд

Moo-Zung Lee

June, 1966

#### ABSTRACT

In such fields of current interest as optimal control and orbit determination, non-linear two-point boundaryvalue problems arise, the numerical solutions for which are difficult to obtain. In this thesis, some of the useful tools for treating problems of this nature - invariant imbedding, dynamic programming, and quasilinearization are studied by means of the brachistochrone problem. The three approaches are used separately and in combination. Computer programs using MAD language are presented. The results are compared with the classical solutions.

# TABLE OF CONTENTS

| ACKNOWLEDGEMENTS                | Page<br>iii |
|---------------------------------|-------------|
| LIST OF FIGURES                 | vii         |
| LIST OF TABLES                  | ĨX          |
| LIST OF PROGRAMS                | x           |
| LIST OF SYMBOLS                 | xi          |
| CHAPTER                         |             |
| I. INTRODUCTION                 | 1           |
| II. INVARIANT IMBEDDING         | 6           |
| III. DYNAMIC PROGRAMMING        | 20          |
| IV. QUASILINEARIZATION          | 46          |
| V. COMPARISONS AND COMBINATIONS | 59          |
| CONCLUSIONS                     | 82          |
| APPENDIX                        | 84          |
| BIBLIOGRAPHY                    | 87          |

# LIST OF FIGURES

.

| Figure Pa |                                                         |    |
|-----------|---------------------------------------------------------|----|
| 1.2-1     | Possible Paths for the Least Time                       | 2  |
| 2.4-1     | Initial Slopes and the Range of<br>Independent Variable | 9  |
| 2.4-2     | (A) was a function of a<br>(B) was a function of c      | 11 |
| 2.4-3     | Slopes Along the Optimum Path in x-u Plane              | 11 |
| 2.4-4     | Slopes Along the Optimum Path as<br>a Function of x     | 11 |
| 2.4-5     | Geometry of Equation (2.4-11)                           | 13 |
| 2.4-6     | Initial Slopes Obtained from Invariant<br>Imbedding     | 15 |
| 2.4-7     | Flow Chart of Invariant Imbedding                       | 17 |
| 3.1-1     | Two-Decision Two-Stage Process                          | 20 |
| 3.1-2     | Two-Decision Multistage Process                         | 21 |
| 3.3-1     | Multi-Decision Process                                  | 23 |
| 3.3-2     | Grid Points in x-y Plane                                | 23 |
| 3.3-3     | Optimal Path o <sub>1</sub> -d <sub>0</sub>             | 23 |
| 3.4-1     | Stage $k = n - 1$                                       | 25 |
| 3.4-2     | Stage $k = n - 2$                                       | 25 |
| 3.4-3     | Geometry of the Principle of Optimality                 | 25 |
| 3.4-4     | Possible Paths from d <sub>i</sub> to B                 | 28 |
| 3.4-5     | Figure of an Example                                    | 28 |
| 3.4-6     | Figure of an Example                                    | 28 |
| 3.5-1     | Backward Scheme                                         | 29 |
| 3.6-1     | Possible Paths from A to d                              | 32 |

•

vii

# LIST OF FIGURES (con't)

| Figure         |                                                      |    |
|----------------|------------------------------------------------------|----|
| 3.6-2          | Forward Scheme                                       | 32 |
| 3.6-3          | Geometry of the Reverse Principle of<br>Optimality   | 32 |
| 3.7-1          | Figure of Equation (3.7-1)                           | 33 |
| 3.8-1          | Elements of Cost Matrix                              | 37 |
| 3.8-2          | Optimal Curves Obtained by Dynamic<br>Programming    | 39 |
| 3 <b>.</b> 8-3 | Flow Chart, Forward Method of Dynamic<br>Programming | 41 |
| 4.1-1          | Newton-Raphson Method                                | 46 |
| 4.2-1          | Abstract Procedure of Quasilineariza-<br>tion        | 55 |
| 5.2-1          | Slope Characteristics and Searching<br>Region        | 62 |
| 5.3-1          | Regions to be Searched in Various Cases              | 64 |

•

.

. •

# LIST OF TABLES

| Table |                                                                                        | Page |
|-------|----------------------------------------------------------------------------------------|------|
| 2-1   | Initial Slopes Obtained by Invariant<br>Imbedding                                      | 16   |
| 3-1   | Minimum Travelling Time Obtained by<br>Dynamic Programming                             | 40   |
| 3-2   | Grid Number and Accuracy in Dynamic<br>Programming                                     | 40   |
| 4-1   | Convergence of u (x) to u(x) by Quasi-<br>linearization, (800.discrete points)         | 52   |
| 4-2   | Convergence of $u_n(x)$ to $u(x)$ by Quasi-<br>linearization , (400 discrete points) . | 53   |
| 4-3   | Minimum Travelling Time Obtained by<br>Quasilinearization                              | 54   |
| 5-1   | U(x) Obtained by Joint Use of Dynamic<br>Programming and Quasilinearization            | 67   |
| 5-2   | U(x) Obtained by Joint Use of Invariant<br>Imbedding and Quasilinearization            | 68   |

.

..

# LIST OF PROGRAMS

| Program        |                                                                                                                                | Page |
|----------------|--------------------------------------------------------------------------------------------------------------------------------|------|
| 2-1 ]          | Brachistochrone Problem with Free End<br>Conditions Solved by Invariant<br>Imbedding                                           | 18   |
| 3-1 Ï          | Brachistochrone Problem with Two-Point<br>Constraint Solved by Forward Method of<br>Dynamic Programming                        | 42   |
| 3-2 1          | Brachistochrone Problem with Free-End<br>Conditions Solved by Backward Method<br>of Dynamic Programming                        | 44   |
| 4-1 ]          | Brachistochrone Problem Solved by<br>Quasilinearization                                                                        | 56   |
| 5-1 I          | Forward Method of Dynamic Programming,<br>Searching Within Restricted Region                                                   | 69   |
| 5 <b>-</b> 2 I | Brachistochrone Problem with Free End<br>Conditions Solved by Joint Use of<br>Invariant Imbedding and Dynamic<br>Programming   | 70   |
| . 5-3 I        | Brachistochrone Problem Solved by Joint<br>Use of Dynamic Programming and<br>Quasilinearization                                | 73   |
| 5-4 I          | Brachistochrone Problem with Free-End<br>Conditions Solved by Joint Use of<br>Invariant Imbedding and Quasilinea-<br>rization: | 78   |

4

•

LIST OF SYMBOLS.

| Symbol.                        | Definition,                            |
|--------------------------------|----------------------------------------|
| .a                             | Initial position along x-axis          |
| A                              | Starting point                         |
| <sup>b</sup> 1, <sup>b</sup> 2 | Constants                              |
| В                              | Terminal point                         |
| c                              | Initial state                          |
| đ                              | Interpolated value of state variable   |
| delx, dx, $\Delta x$           | Small increment of x                   |
| dely, dy, y                    | Small increment of y                   |
| ds                             | Infinitesimal chord length             |
| đt                             | Infinitesimal time                     |
| f                              | Optimal function                       |
| F                              | Functional                             |
| g                              | Constant of gravitational acceleration |
| G                              | Functional                             |
| <sup>h</sup> 1, <sup>h</sup> 2 | Homogeneous solution                   |
| ì                              | State counter                          |
| Ĵ                              | State counter                          |
| k                              | Stage counter                          |
| l,m,n                          | Integer constants                      |
| 0                              | The origin                             |
| p                              | Particular solution                    |
| q                              | State counter                          |
| Qk                             | Stage counter in quasilinearization    |

xi

. •

-

# LIST OF SYMBOLS (con't)

| Symbol                    | Definition                          |
|---------------------------|-------------------------------------|
| r                         | Slope function (text)               |
| r                         | Radius of base circle (appendix)    |
| t                         | Time                                |
| u                         | State variable                      |
| uo                        | Starting value of u                 |
| $\mathtt{u}_{\mathrm{T}}$ | Terminal value of u                 |
| V                         | Velocity                            |
| W                         | Slope                               |
| x                         | Independent variable                |
| ×o                        | Starting value of x                 |
| x <sub>T</sub>            | Terminal value of x                 |
| У                         | Dependent variable                  |
| У <sub>О</sub>            | Starting value of y                 |
| У <sub>T</sub>            | Terminal value of y                 |
| θ                         | Angular displacement of base circle |
| ω                         | Angular velocity of base circle     |

.

.\*

### CHAPTER I

#### INTRODUCTION

## 1.1 INITIAL-VALUE PROBLEM AND BOUNDARY-VALUE PROBLEM

Consider a second order ordinary differential equation

$$y'' = G(y, y')$$
 (1.1-1)

with initial conditions

$$y(0) = c_1$$
 (a)  
 $y'(0) = c_2$  (b) (1.1-2)

The determination of a solution to Eq.(1.1-1) subject to conditions Eq.(1.1-2) is known as an initial-value problem. By putting u=y, w=y', Eqs.(1.1-1) and (1.1-2) become

$$u' = w$$
,  $u(0) = c_1$  (a)  
 $w' = G(u, w)$ ,  $w(0) = c_2$  (b)  
(1.1-3)

which are integrable directly.

Modern electronic computers provide the means for obtaining numerical solutions of systems of simultaneous non-linear (or linear) ordinary differential equations subject to a set of initial conditions, with accuracy and speed. However, in some fundamental problems the constraints are not initial values but are in the form

$$u' = w$$
,  $u(0) = c_1$  (a)  
 $w' = G(u,w)$ ,  $w(x_m) = c_3$  (b)  
(1.1-4)

where  $\mathbf{x}_{\mathrm{T}}$  is the terminal value of the independent variable x.

(1)

The problem is called a two-point boundary-value problem, since values are prescribed at two distinct points, x=0 and  $x=x_{T}$ .

1.2 THE BRACHISTOCHRONE PROBLEM <sup>1</sup>

As an example of a two-point boundary-value problem, the differential equation of brachistochrone problem is derived as follows:

Given two points in a space containing a constant gravitational force field, we wish to find a frictionless path from a higher point to a lower point along which a particle will slide in minimum time.



Figure 1.2-1 Possible Paths for the Least Time

In Fig. 1.2-1, It is obvious that the particle will

<sup>&</sup>lt;sup>1</sup> From Greek,  $\beta_{2}axio_{3}o_{3}$ , shortest and  $2\rho o_{3}o_{3}o_{3}$ , time, a term invented by Jean Bernoulli (1667-1748) in 1694 to denote a curve along which a body passes from one fixed point to another in the shortest time. When the directive force is constant, the curve is a cycloid.

traverse minimum distance along the straight-line path ACB. Along the curved path ADB the particle picks up speed sooner, but travels a longer route. The optimal path of least time may be found by balancing these considerations properly.

Let us denote the initial point as the origin, set up a coordinate system as shown in Fig. 1.2-1 and call the terminal point  $(x_T, y_T)$ . We know that the particle velocity, V, in the plane of the field, is equal to  $\sqrt{2gy}$  at any position in the field, independent of its horizontal position. Since an infinitesimal arc length, ds is given by

ds = 
$$[(dx)^2 + (dy)^2]^{1/2} = \sqrt{1+(y^*)^2} \cdot dx$$
,

the time of descent is expressed by

$$T = \int_{0}^{x_{T}} \frac{ds}{v} = \int_{0}^{x_{T}} \left[ \frac{1+y^{2}}{2gy} \right]^{1/2} dx$$

$$(1.2-1)$$

where g is the gravitational constant. We seek a function  $\neq y=y(x)$  which satisfies the constraint conditions y(0)=0,  $y(x_T)=y_T$ , and which minimizes the integral T.

The Euler equation for Eq.(1.2-1) is

$$2yy'' + y'^2 + 1 = 0 \qquad (1.2-2)$$

or in the form of Eq.(1.1-1)

$$y'' = - \frac{1+y'^2}{2y}$$
(1.2-3)

subject to the boundary conditions

$$y(0) = 0$$
 (a)  
 $y(x_{T}) = x_{T}$  (b) (1.2-4)

### 1.3 A NUMERICAL SOLUTION OF TWO-POINT BOUNDARY-VALUE PROBLEM

In order to solve an n-th-order ordinary differential equation numerically, ordinary computing techniques call for a knowledge of y, y', y", ...  $y^{(n-1)}$  at either the starting point x=0 or the terminal point x=x<sub>T</sub>. In the brachistochrone problem, we have one value at one end and another at the other.

In order to solve a problem of this nature, we may choose a value of y'(0), say  $c_4$ , and integrate the equation using  $y(0)=c_1$ ,  $y'(0)=c_4$  as initial values. If the value at the terminal point,  $y=y(x_T)$  obtained in this way agrees sufficiently closely with the desired value  $y_T$ , we accept this as the solution. Otherwise, we vary the value of  $c_4$ and recompute the terminal value until agreement at the boundary is satisfactory.

This is not an ideal procedure for a number of reasons. First, it is difficult to estimate in advance the required amount of computing time which will be needed. Second, stipulating a certain accuracy at the end point does not guarantee equal accuracy throughout whole range of x, from x=0 to  $x=x_T$ . Third, the results obtained from the i-th iteration

$$y(k)_{i} = y[x(k)]_{i}$$
 for  $0 \le x(k) = k \cdot \Delta x \le x_{T}$  (1.3-1)

are not utilized to improve the solution in the (i+1)-th try. In addition, a proper first estimate of the solution may be difficult to establish.

## 1.4 RECENT APPROACHES

As we shall see in the following chapters, theories of invariant imbedding and dynamic programming transform boundary-value problems to initial-value problems by introducing new state variables, and imbedding a specific problem in a family of similar problems. Invariant imbedding provides information of initial slopes from given terminal slopes in a very short computing time. The Euler equations obtained in the course of applying calculus of variations are, in most cases, difficult to solve; dynamic programming provides a means of by-passing this hurdle. On the other hand, quasilinearization attacks these problems by linear approximation techniques combined with a concept analogous to making approximations in policy space [14].<sup>2</sup> The approximations are constructed to yield rapid and monotone convergence.

The theory and techniques mentioned above were developed mainly by Bellman, Kalaba and their colleagues [3-21,24].

<sup>&</sup>lt;sup>2</sup> Number in bracket refers to identically numbered references in the bibliography.

## CHAPTER II

## INVARIANT IMBEDDING

### 2.1 PRINCIPLE OF INVARIANT IMBEDDING

In 1943, Ambarzumian introduced a new approach to the study of atmospheric scattering problems [1]. This approach was extended by Chandrasekhar who gave it the name "principle of invariance"[2]. In recent years, Bellman and Kalaba generalized this methodology and called it "the principle of invariant imbedding"[3]. It can be stated as follows:

"Given a physical system, S, whose state at any time t is specified by a state vector, x, we consider a process which consists of a family of transformations applied to this state vector.

Suitably enlarging the dimension of the original vector by means of additional components, the state vectors are made elements of a space which is mapped into itself by the family of transformations. In this way we obtain an invariant process, by imbedding the original process within the new family of processes. The functional equations governing the new process are the analytic expression of this invariance."

In other words, we derive equations for the values of the dependent variables at a fixed value of the independent variable as a function of interval on which the boundary value problems are specified.

Many applications of this theory in such diverse areas

(6)

as radiative transfer, neutron transport, diffusion and heat conduction, scattering and random walk, and wave propagation can be found in recentliterature [3,5,6,7,8]. In this report, the fundamental technique is applied to a problem well-known in classical calculus of variations.

## 2.2 IMBEDDING PARTICULAR PROBLEM IN A FAMILY OF PROBLEMS

In the study of a spring-mass system, customarily we write y=y(t), indicating the dependence of the solution upon t. More generally, the solution is also a function of c, the initial value of y; hence, we write y=y(c,t). This implies a that the study of a particular solution of a differential equation may be carried out by studying a family of solutions. It also constitutes the keystone of the theory of invariant imbedding and forms the base for the theory of dynamic programming.

Although imbedding a particular problem in a family of problems appears to complicate rather than simplify the problem, its justification lies in the fact that we can construct a bridge spanning the particular problem and other members of the family, which is utilized to determine the characteristics of the particular member of the family.

## 2.3 BRACHISTOCHRONE PROBLEM WITH FREE-END CONDITIONS

A brachistochrone path connecting the initial point A(0,c)and any point on the terminal line x=B is characterized by minimizing the functional

$$T = \int_{0}^{B} \sqrt{\frac{1 + (y')^{2}}{2gy}} dx \qquad (2.3-1)$$

where the dependent variable is subject to the initial condition

$$y(0) = c$$
 (2.3-2)

and y is free at the terminal line x=B. Such a problem is said to have one variable end point.

From Eq.(1.2-3), the optimal path is the solution of the Euler equation

$$y'' = - \frac{1+y'^2}{2y}$$
 (2.3-3)

subject to initial condition y(0)=c. The other boundary value is not given explicitly; however, from the statement of the problem and the fact that the minimum-time path from any point on the terminal line to the terminal line itself is equal to zero, we have the so-called natural boundary condition[14]

$$y'(B) = 0$$
 (2.3-4)

We seek to find the missing initial value y'(0). so that we can integrate Eq.(2.3-3) directly to obtain a solution. In the following section we show how to compute, by invariant imbedding, the missing initial slopes from the given terminal slopes.

2.4 <u>DERIVATION OF EQUATIONS</u> [18] We rewrite Eq.(1.1-3) with  $c_1=0$ ,  $c_2=0$ . that is,

. •

$$u^{*} = w$$
,  $u(0) = c$  (a)  
 $w^{*} = G(u, w)$ ,  $w(x_{T}) = 0$  (b)  
(2.4-1)



Figure 2.4-1 Initial Slope and the Range of Independent Variable

From Fig. 2.4-1 we can see that, for similar problems, the initial slopes depend upon the range of the independent variable x. Initial slope  $u'(0)=w_1$  is optimum for  $x_T=B_1$ , while  $u'(0)=w_2$  is proper for  $x_T=B_2^{-3}$ . If we fix  $x_T$  at B, and consider various starting points at x=a along x-axis, then the initial slope at x=a is a function of a (Fig.2.4-2). We write

$$u'(a) = r(a)$$
 for  $0 \le a \le x_{p}$  (2.4-2)

By permitting the parameter a to vary from  $x_T$  to 0, we construct a family of similar problems with different range of x for each member of the family. Furthermore, for a particular value of a, say  $a=a_1$ , the initial slopes differ

 $<sup>^{3}</sup>$  At the cusps of a cycloid the slope is infinitely large, but here we must choose finite values for use in the computation. On this base we assume w(0) to be finite but large at the cusps.

according to the starting position c=u(0). Therefore we write

$$u'(a) = w(a) = r(c,a)$$
 (2.4-3)

realizing that the correct slope depends upon the starting value of x as well as the initial position u(x). By permitting c or a to vary, or c and a simultaneously, we actually investigate a family of problems of similar nature.

Let us assume the process begins at x=a, with slope  $b_1$ . After moving along the optimal path to x=a+ax the slope becomes  $b_2$  (as is shown in Figs.2.4-3 and 2.4-4), and

$$w(a+\Delta x) = w(a) + w'(a) \cdot \Delta x + 0 [(\Delta x)^2]$$
 (2.4-4)

Recall Eq.(2.4-3) and replace w(a) by r(c,a); we obtain

$$w(a+\Delta x) = r(c,a) + w'(a)\cdot\Delta x + 0[(\Delta x)^2] (2.4-5)$$

On the other hand, the general functional relationship Eq.(2.4-3) holds equally well for  $x=a+\Delta x$ , that is

$$w(a+\Delta x) = r(d, a+\Delta x) \qquad (2.4-6)$$

where d is the value of dependent variable u at  $x=a+\Delta x$ , which may be expressed by

$$d = u(a+\Delta x)$$
  
= u(a) + u'(a)· $\Delta x$  + 0[( $\Delta x$ )<sup>2</sup>]  
= c + w (a)· $\Delta x$  + 0[( $\Delta x$ )<sup>2</sup>]  
= c + r(c,a)· $\Delta x$  + 0[( $\Delta x$ )<sup>2</sup>] (2.4-7)

We substitute Eq.(2.4-7) into Eq.(2.4-6) introduce the second









Figure 2.4-3

Slopes Along the Optimal Path in x-u Plane

٠.



Slopes Along the Optimal path as a function of  $\mathbf{x}$ 

expression of the slope at  $x=a+\Delta x$  and obtain

$$w(a+\Delta x) = r \left[c+r(c,a), a+\Delta x\right] \qquad (2.4-8)$$

By equating the right-hand sides of Eq.(2.4-5) and Eq.(2.4-8) we obtain

$$r(c,a) + w'(a) \cdot \Delta x = r[c+r(c,a) \cdot \Delta x, a+\Delta x]$$
  
(2.4-9)

In order to express r(c,a) as a function of  $r(c,a+\Delta x)$ , let us take  $\Delta x$  sufficiently small and for the first approximation

$$r[c+r(c,a)\cdot\Delta x, a+\Delta x] \cong r[c+r(c,a+\Delta x)\cdot\Delta x, a+\Delta x]$$
  
(2.4-10)

to rewrite Eq.(2.4-9) as

$$r(c,a) = r[c+r(c,a+\Delta x)\cdot \Delta x, a+\Delta x] - w'(a+\Delta x)\cdot \Delta x$$

$$(2.4-11)$$

From the geometry of Fig. 2.4-5, if the slopes of curves passing through all grid points at  $x=a+\Delta x$  are known, the slopes of different curves passing through grids at x=a are computed as follows.

- Take the slope at p, w=r(o<sub>1</sub>,a+Ax) as the first approximation of the slope at q.
- 2. Locate d by equation  $d=c_1+r(c_1,a+\Delta x)\cdot \Delta x$ .
- 3. Compute the slope of curve at d by linear interpolation of  $r(c_{i+1}, a+\Delta x)$  and  $r(c_{i+1}, a+\Delta x)$ .
- 4. Compute  $r(c_{i},a)$  using Eq.(2.4-11).
- 5. Repeat steps 1~4 for all other points at x=a.



Geometry of Eq.(2.4-11)

6. Repeat steps 1~5 to regenerate the slopes for all grid points at the neighboring stage in the left-hand side. Using Eq.(2.4-11) with the free-end conditions  $r(c_1, x_T)=0$ , we can determine the slope function r at all grid points at  $a = x_T - \Delta x$ ,  $a = x_T - 2\Delta x$  and so on.

Consider the computing procedures outlined above. In

step 2, we assigned  $r(c_1, a+\Delta x)$  in predicting d; in step 3, both  $r(c_1, a+\Delta x)$  and  $r(c_{1+1}, a+\Delta x)$  contribute to the estimation of the slope of optimum curve passing through d. The position of d and its slope combined with Eq.(2.4-11) make estimation of  $r(c_1, a)$  possible. The roles of the neighboring members of the family of the problems are obvious.

It is not wasteful to expand the dimension of the problem by invariant imbedding, because we imbed a difficult or unsolvable problem in a family of similar problems which become easier to handle after the mutual relations existing between the members of the group are used. As a byproduct, a series of problems are solved in one stroke instead of just obtaining a particular solution for a single problem. This series of results also supplies a more complete picture of the effect of each parameter on the resulting function.

As an example, a group of brachistochrone problems with  $x=0\sim314.15926$ ,  $u_T=0\sim400$  and with natural boundary conditions at terminal line were solved by taking 100 grids in both x and u axes. Computation of the initial slopes at various starting points of u at x=0 takes 6.1 sec execution time <sup>4</sup> using IBM 7094 computer. The results of 20 cases of initial slopes are compared with the analytical solution in Table 2-1. The computer program in MAD language used to obtain these results is shown in Program 2-1. In Fig.2.4-6 the initial slopes r(c,a) obtained from invariant imbedding are shown.

In this thesis all computing times were obtained with programs using the same approach and philosophy. Change in either of these could produce significant changes in absolute computing times. On this basis, we have considered computing times as a criterion of comparison.





Fig. 2.4-6 Initial Slopes Obtained from Invariant Imbedding

# Table 2-1

# Initial Slopes Obtained by Invariant Imbedding

# Taking 100x100 grid points between x=0~100x, y=0~400 feet

.

| Grid<br>Number                                                                              | Starting<br>Points                                                                                                                                                                                                          | Initial Slo<br>(Invariant Imbe                                                                                                                                                                                                                                                               | opes<br>edding)                                                                 | Initial Sl<br>(Classic                                                                                                                                                                                                       | opes<br>al)                                                                     |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| I                                                                                           | u(I)                                                                                                                                                                                                                        | w(I)                                                                                                                                                                                                                                                                                         |                                                                                 | w(I)                                                                                                                                                                                                                         |                                                                                 |
| 5<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>65<br>70<br>75<br>80 | .20000000E 0<br>.40000000E 0<br>.59999999E 0<br>.80000000E 0<br>.10000000E 0<br>.12000000E 0<br>.14000000E 0<br>.1600000E 0<br>.18000000E 0<br>.20000000E 0<br>.24000000E 0<br>.28000000E 0<br>.30000000E 0<br>.32000000E 0 | 2 •35818700E<br>2 •21314888E<br>2 •16331606E<br>2 •13481355E<br>3 •11561425E<br>3 •10146379E<br>3 •90489530E<br>3 •90489530E<br>3 •90489530E<br>3 •81680938E<br>3 •74431062E<br>3 •63167808E<br>3 •63167808E<br>3 •58699879E<br>3 •54806749E<br>3 •51384442E<br>3 •48352921E<br>3 •45648604E | 01<br>01<br>01<br>01<br>01<br>01<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>0 | •30228241E<br>•20489414E<br>•16062053E<br>•13373163E<br>•11514445E<br>•10131552E<br>•90529212E<br>•81835540E<br>•74657554E<br>•68620315E<br>•63467290E<br>•59015734E<br>•55131213E<br>•51712201E<br>•48680358E<br>•45974129E | 01<br>01<br>01<br>01<br>01<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>0 |
| 85<br>90<br>95                                                                              | •34000000E 0<br>•36000000E 0<br>•38000000E 0                                                                                                                                                                                | 3 •43213662E<br>3 •40979266E<br>3 •38868529E                                                                                                                                                                                                                                                 | 00<br>00<br>00                                                                  | •43544406E<br>•41351479E<br>•39362881E                                                                                                                                                                                       | 00<br>00<br>00                                                                  |
| 100                                                                                         | •40000000E 0                                                                                                                                                                                                                | 3 •36815135E                                                                                                                                                                                                                                                                                 | 00                                                                              | •37551792E                                                                                                                                                                                                                   | 00                                                                              |

•

.



| -                                    | 18                                                                                                                                                                                                                                                                                     |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a wa ana ina kata ina daga na kata i |                                                                                                                                                                                                                                                                                        |
|                                      | R PRUGRAM 2 - 1                                                                                                                                                                                                                                                                        |
|                                      | R BRACHISTOCHRONE PROBLEM WITH FREE END CONDITIONS_SOLVED_B<br>R INVARIANT IMBEDDING                                                                                                                                                                                                   |
| 5 COMPILE                            | MAD, EXECUTE, PRINT OBJECT, DUMP<br>INTEGER I, J, K, IMAX, JMAX, KMAX, KP, M, IFREQ<br>DIMENSION Y(1000), ROLD(1000), RNEW(1000)<br>EQUIVALENCE (IMAX, JMAX)                                                                                                                           |
|                                      | READ AND PRINT DATA IMAX, KMAX, YT, XT, IFREQ                                                                                                                                                                                                                                          |
|                                      | Y(I) = I*DELY ROLD(I) = 0.                                                                                                                                                                                                                                                             |
| _1 _                                 |                                                                                                                                                                                                                                                                                        |
|                                      | X = K*DELX                                                                                                                                                                                                                                                                             |
|                                      | THROUGH L3, FOR $I=0$ , $1$ , $I \cdot G \cdot IMAX$<br>S = Y(I) + ROLD(I) * DELX<br>WHENEVER $\cdot ABS \cdot (ROLD(I)) \cdot L \cdot 1E-6$<br>R = ROLD(I)<br>M = I<br>$CR$ WHENEVER ROLD(I) $- L \cdot O \cdot OR - (S \cdot G \cdot Y(J-1)) \cdot AND \cdot S \cdot LE \cdot Y(J))$ |
| _4                                   | WHENEVER J • E•0<br>J = 1<br>END OF CONDITIONAL<br>R = (ROLD(J)-ROLD(J-1))*(S-Y(J-1))/DELY_+_ROLD(J-1)<br>M = J                                                                                                                                                                        |
| -                                    | OTHERWISE<br>THROUGH L5,FOR J=I,1,J.E.IMAX_OR.(S.G.Y(J)AND.S.LE.Y(J+1))                                                                                                                                                                                                                |
| -5                                   | WHENEVER J.E. JMAX                                                                                                                                                                                                                                                                     |
|                                      |                                                                                                                                                                                                                                                                                        |

\_

|       |                                              | NUSENEVER ABS (ROLD(I)) -G. 1F6                           |
|-------|----------------------------------------------|-----------------------------------------------------------|
|       |                                              |                                                           |
| -     |                                              | ROED(1) = 168*(ROED(1))(ABS*(ROED(1)))                    |
|       | -                                            | END OF CONDITIOANL                                        |
|       |                                              | Y(0) = 1.                                                 |
|       |                                              | R = R + (1 + RO! D(1) * RO! D(1)) * DELX/(2 * Y(1))       |
|       |                                              |                                                           |
|       |                                              | WHENEVER K •E• 0 •AND• (171FREG)*IFREG •E• 1              |
|       |                                              | PRINT-FORMAT IMBED, I, Y(I), ROLD(I), M                   |
|       |                                              | END OF CONDITIONAL                                        |
|       | 12                                           |                                                           |
|       | -                                            |                                                           |
|       | ···· · ·                                     | $IHROUGH \ L6, \ FOR \ I = O_{FI} I_{O} G_{O} IMAX \_ \_$ |
|       |                                              | ROLD(I) = RNEW(I)                                         |
|       | L6                                           |                                                           |
|       | 12                                           |                                                           |
|       | L2                                           |                                                           |
|       | • •                                          | TRANSFER TO START                                         |
|       |                                              | VECTOR VALUES IMBED = \$ 1110, 2E20.8, 1110 *\$           |
|       |                                              | END OF PROGRAM                                            |
|       | ¢ DATA                                       |                                                           |
| ····· | _J DATA                                      |                                                           |
|       | IMAX = 100                                   | J, KMAX= 100, YT=400., XT=314.15926, IFREQ=5*             |
|       |                                              |                                                           |
|       |                                              | · · · · · · · · · · · · · · · · · · ·                     |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
| -     |                                              |                                                           |
| -     |                                              |                                                           |
| -     |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
| -     |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              | ·                                                         |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       | <u>.                                    </u> |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
| _     |                                              |                                                           |
|       | · • ••••••••••••••••••••••••••••••••         |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              | · · · · · · · · · · · · · · · · · · ·                     |
|       |                                              |                                                           |
|       |                                              |                                                           |
|       |                                              |                                                           |

.19

#### CHAPTER III

## DYNAMIC PROGRAMMING

### 3.1 DISCRETE MULTISTAGE TWO-DECISION PROCESS

A problem with the property that, at each of a finite set of times  $t_1, t_2, \ldots t_n$ , a decision is to be chosen from a finite set of possible decisions, is called a discrete multistage decision process. If one of m possible decisions must be chosen at each time and the process consists of n such stages, there are  $(m)^n$  possible different sequences of n decisions. Our aim is to find the optimal sequence of decisions among these  $(m)^n$  possible cases.



Figure 3.1-1 Two-decision, Two-stage Process.

Let us look at a two-decision two-stage minimum-cost problem. We define the term minimum cost as the minimum expenditure (in dallars), or minimum travelling time (in sec). At starting point A we must choose between the paths  $Ac_1B$ and  $Ac_2B$ , depending upon which one yields the lesser cost. If the cost of each section of the paths in Fig.3.1-1 are known, the decision to be made at A is a simple matter.

> . (20)

$$Cost AB = \min \begin{cases} cost Ac_1 + cost c_1B \\ cost Ac_2 + cost c_2B \end{cases}$$
(3.1-1)

In the multistage two-decision process shown in Fig.3.1-2, suppose the optimal decision is found to be  $Ac_1$  in the first stage; we ask for another decision at  $c_1$ . One path should be chosen out of two possible paths  $c_1d_1B$  and  $c_1d_2B$ . The cost of  $c_1B$  is given by

Cost 
$$c_1 B = \min \begin{bmatrix} \cos t c_1 d_1 + \cos t d_1 B \\ \cos t c_1 d_2 + \cos t d_2 B \end{bmatrix}$$
 (3.1-2)



### Figure 3.1-2

Two-decision, Multistage Process.

If cost  $c_1 d_2 B$  is found to be less than that of  $c_1 d_1 B$ , next decision must be made at  $d_2$ . The same procedure is repeated at each stage in all subsequent stages.

## 3.2 MARKOVIAN-TYPE PROCESSES

We introduce an assumption concerning the cost property of a network in order to make valid the statements of the previous section. In effect, we assume that the cost of any established path of a network does not change after it has been combined with the later stages of the network. A formal statement of this assumed property is due to Markov and given in [12]:

"After any number of decisions, say k, we wish the effect of the remaining n-k stages of the decision process upon the total return to depend only upon the state of the system at the end of the k-th decision and the subsequent decisions."

### 3.3 MULTISTAGE MULTI-DECISION PROCESSES

In a multistage multi-decision process, if one of m possible paths must be chosen at each decision time, the problem is still intrinsically the same as for a two-decision process (Fig.3.3-1). That is,

$$cost AB = min (cost Ac_i + cost c_iB)$$
 (3.3-1)

For a more general illustration, let us construct a grid of points in x-y plane as shown in Fig. 3.3-2. As shown in Fig.3.3-3 the optimum path  $c_{id_0}$  is found by considering costs determined as follows:

$$\operatorname{cost} c_{i}d_{0} = \min \begin{cases} c_{i}d_{j} + d_{j}d_{0} \\ c_{i}c_{j} + c_{j}d_{k} + d_{k}d_{0} \\ c_{i}c_{j} + c_{j}d_{0} \end{cases} (3.3-2)$$

$$(j, k = 0, 1, 2, \dots i)$$



Figure 3.3-1 Multi-decision Process



Figure 3.3-2

Grid points in x-y Plane

Figure 3.3-3

Optimum Path ci-do

In the brachistochrone problem, by taking grid sizes sufficiently small, we may approximate the optimum path from  $c_1$  to  $d_j$  on the nearest neighboring stage as the diagonal  $\overline{c_1 d_j}$ .

# 3.4 THE PRINCIPLE OF OPTIMALITY

Recall Eq.(3.3-2) and Fig.3.3-1, if there exists at least one stage between  $c_1$  and B, then the costs of  $c_1$ B for i=0,1,2,...m, should be completely known before making decision at A. For a multistage process, we start the decision making at the stage nearest to B. After the costs  $f_1$ B at the stage k=n-1 have been found (as shown in Fig.3.4-1), the cost from any grid  $e_1$  at stage k=n-2 is expressed by

cost 
$$e_i B = min (cost  $e_i f_j + cost f_j B)$  (3.4-1)  
 $j = 0, 1, 2, \dots m.$$$

Similar but more lengthy procedures are repeated for the points d, at stage k=n-3, with the cost d, B expressed as

cost 
$$d_i B = min (cost d_i e_j + cost e_j f_q + cost f_q B) (3.4-2)$$
  
 $j,q = 0,1,2, \dots m.$ 

Consider the right hand side of Eq.(3.4-2). It contains  $m^2$  number of cases. The (cost  $e_j f_q + \cos f_q B$ ) has been computed at the previous stage k=n-2; therefore, Eq.(3.4-2) may be simplified as

$$cost d_{j}B = min \left[cost d_{j}e_{j}+(cost e_{j}f_{q}+cost f_{q}B)\right]$$
$$= min (cost d_{j}e_{j}+cost e_{j}B)$$
$$j = 0,1,2, \dots m. \qquad (3.4-3)$$





Figure 3.4-1 .

Stage k = n - 2

Figure 3.4-2

Stage k = n - 1





. •

Geometry of the Principle of Optimality
which reduces the number of cases to be studied from  $m^2$  to m for one grid point  $d_i$ . This simplification is legitimate only when cost  $e_jB$  is not changed after being combined with the other section  $d_ie_j$ ; however, our original assumption that the process is to be Markovian satisfies this condition.

For particular point  $e_j$ , Eq.(3.4-3) may be written in detail as

$$\operatorname{cost} d_{i}e_{j}B = \min \begin{cases} d_{1}e_{j} + e_{j}B \\ d_{2}e_{j} + e_{j}B \\ \cdots \\ d_{1}e_{j} + e_{j}B \\ \cdots \\ d_{m}e_{j} + e_{j}B \end{cases}$$
(3.4-4)

Equation (3.4-4) with geometry of Fig.3.4-3 shows that no matter from which point d<sub>1</sub> one comes to e<sub>j</sub>, the optimum path e<sub>j</sub>B found in the previous stage constitutes a part of the optimal path from d<sub>1</sub> to B. This basic principle of dynamic programming has been called by Bellman "the principle of optimality" [4, 12, 14], that is,

"An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision."

On the other hand, for a fixed point  $d_1$ , Eq.(3.4-3) may be written as

$$\operatorname{cost} d_{i}e_{j}B = \min \begin{cases} d_{i}e_{1} + e_{1}B \\ d_{i}e_{2} + e_{2}B \\ \cdots \\ d_{i}e_{j} + e_{j}B \\ \cdots \\ d_{i}e_{m} + e_{m}B \end{cases}$$
(3.4-5)

It is important to note that Eq.(3.4-5) does not mean

cost 
$$d_i B = \min(\text{cost } d_i e_j) + \min(\text{cost:} e_j B)$$
(3.4-6)

For arbitrary given cost on each chord shown in Fig.3.4-5, if we apply Eq.(3.4-5) we obtain

cost 
$$d_1B = min \begin{cases} d_1e_1B = 1+8 = 9 \\ d_1e_2B = 2+5 = 7 \\ d_1e_3B = 4+4 = 8 \end{cases} = 7 \quad (3.4-7)$$

However, applying Eq.(3.4-6) in two ways we have

$$\min d_{j}e_{j} + \min e_{j}B = 1+8 = 9, (j=1,2,3)$$

$$\min Be_{j} + \min e_{j}d_{j} = 4+4 = 8, (j=1,2,3)$$
(3.4-8)

For a three-stage process shown in Fig. 3.4-6

cost 
$$d_{i}B = min \begin{cases} 1+6+10 = 17\\ 1+8+5 = 14\\ 2+3+10 = 15\\ 2+4+5 = 11 \end{cases} = 11$$
 (3.4-9)

27

.









Possible Paths from d<sub>1</sub> to B

Figure of an Example







while for j, k = 1, 2

min 
$$d_i e_j + min e_j f_k + min f_k B = 1+6+10 = 17$$
  
(3.4-10)

Obviously a multistage decision process problem cannot be solved by making optimal single decisions sequentially. It is not the cost value of each section but the composite effect that is calculated.

### 3.5 INVARIANT IMBEDDING AND DYNAMIC PROGRAMMING

In computing the optimum costs from  $f_1$  to B or from  $e_j$  to B, in effect, we imbedded a particular problem in a family of similar problems. Each member of the family has the same terminal point B, with different initial values. This leads to a recursive solution working backward from the terminal point and eventually including point A. It is called a backward solution.



Figure 3.5-1 Backward Scheme

By Eq.(3.4-1) above we cannot actually make a proper decision at stage k=n-2 unless the costs  $f_iB$ , for i=0, 1, 2, ... m, are known. On the other hand, we do not know which member of the family of optimum paths  $f_iB$  will finally constitute the optimum path AB we are seeking. This is to say, the results of the process stream at all intermediate stages are unknown before the problem is completely solved. The cost equations cannot become immediately useful in solving multistage problems. This difficulty is overcome by employing invariant imbedding techniques in two steps [22].

In the first step, we start from the last stage proceeding backward to the initial stage, construct a table for each stage, relating the optimal decisions to the corresponding values of the objective function for each value of the state variable entering any particular stage. The stage for which the table is to be constructed is considered as the initial stage. At the k-th stage in the n-stage decision process, all downstream stages are considered as an (n-k)-stage process for which the optimum decision and the optimum objective function are already obtained and listed in the table constructed in the previous stage.

The second step is to determine the optimum policyoptimal sequence of decisions, for the entire process by means of table-entry techniques utilizing all the tables constructed. For example, if at the initial stage we found that  $Ac_5B$  is optimum among ac, B, the optimum decision at A is  $Ac_5$ , from

the table made at the stage k=1 we pick up the optimum decision at state  $c_5$ , say  $c_5d_3$ . The decision at state  $d_3$  is found from the list made at k=2. In this way, we finally get a series of decisions as  $A-c_5-d_3-e_2\cdots f_4-B$ .

# 3.6 REVERSE PRINCIPLE OF OPTIMALITY

If we imbed the specific problem in a family of problems with fixed initial point A and various terminal points which include the objective point B, the solution is called a forward solution.

As shown in Fig. 3.6-1,

 $cost Ac_{j} = cost Ac_{j} (diagonal path) (3.6-1)$  $cost Ad_{i} = min (Ac_{j}+c_{j}d_{j}) (3.6-2)$ 

In Fig.3.6-3. if the optimum path from A to  $d_3$  is found to be Ac<sub>3</sub>d<sub>3</sub>, then instead of investigating

cost  $Ac_{j} + cost c_{j}d_{3} + cost d_{3}e_{1}$  (3.6-3) for j = 1, 2, 3, ... m.

cost Ad<sub>3</sub>e<sub>i</sub> is given by

$$\operatorname{cost} \operatorname{Ad}_{3}^{e_{1}} = \min \left( \operatorname{cost} \operatorname{Ac}_{j}^{+} \operatorname{cost} \operatorname{c}_{j}^{d_{3}^{+}} \operatorname{cost} d_{3}^{e_{1}^{-}} \right)$$
$$= \min \left( \operatorname{cost} \operatorname{Ad}_{3}^{+} \operatorname{cost} d_{3}^{e_{1}^{-}} \right)$$
$$(3.6-4)$$

If we continue to proceed in this way, we have used the principle of optimality in reverse order. Dreyfus calls this "reversed principle of optimality"  $\begin{bmatrix} 21 \end{bmatrix}$  stating:





Figure 3.6-1



Possible Paths from A to di

Forward Scheme





Geometry of the Reverse Principle

Of Optimality

"An optimal sequence of decisions in a multistage decision process problem has the property that whatever the final decision and state preceding the terminal one, the prior decisions must constitute an optimal sequence of decisions leading from the initial state to that state preceding the terminal one."

3.7 EULER EQUATION DERIVED FROM DYNAMIC PROGRAMMING



Figure 3.7-1 Figure for Equation (3.7-1)

Let f(x,y) = the minimum time required to travel from R(x,y) on the optimal path to the final point  $B(x_T,y_T)$ . (3.7-1)

Divide  $(x_{p-0})$  into n equal segments with grid size

$$x = (x_{\rm T}-0)/n$$
 (3.7-2)

Suppose r(x,y) is at the last stage with k=n-1, then

$$f_{n-1}(x,y) = \min \left[ \sqrt{\frac{1+y^{*2}}{2gy}} \cdot \Delta x \right]$$
 (3.7-2)

Consider the left-neighboring stage with k=n-2

$$f_{n-2}(x,y) = \text{minimum time for travelling from } R_2 \text{ to } B$$
$$= \min_{y'} \left[ \sqrt{\frac{1+y'^2}{2gy}} \cdot \Delta x + f_{n-1}(x,y) \right] (3.7-2)$$

Generally

$$f_{k}(x,y) = \min_{y^{*}} \left[ \sqrt{\frac{1+y^{*2}}{2gy}} \Delta x + f_{k-1}(x,y) \right]$$
 (3.7-5)

Since

$$x_{k+1} = x_k + \Delta x \qquad (3.7-6)$$

and

$$y_{k+1} = y_k + \Delta y_{,}$$
 (3.7-7)

Eq.(3.7-5) may be written as

$$f(x,y) = \min_{y'} \left[ \sqrt{\frac{1+y'^2}{2gy}} \cdot \Delta x + f(x+\Delta x, y+\Delta y) \right] \quad (3.7-8)$$

This recurrence relation is equivalent to those developed in Section 3.4, and is the key to the solution.

Let

$$F = \sqrt{\frac{1+y^{2}}{2gy}}$$
 (3.7-9)

and expand Eq.(3.7-9) in Taylor's series

$$f(x,y) = \min_{y'} \left[ F \cdot \Delta x + f(x,y) + f_x \cdot \Delta x + f_y \cdot \Delta y + 0 (\Delta x)^2 \right]$$
  
= min\_y' [ F \cdot \Delta x + f(x,y) + f\_x \cdot \Delta x + f\_y (y' \cdot \Delta x) + 0 (\Delta x)^2]  
= f(x,y) + min\_y [ F \cdot \Delta x + f\_x \cdot \Delta x + f\_y \cdot y' \cdot \Delta x + 0 (\Delta x)^2]  
(3.7-10)

Here the term f(x,y) in the right-hand side is taken from the bracket because it is defined as the minimum time of path obtained from the optimally chosen y'. In addition, minimum over y' is equivalent to minimum over y since the grid sizes are chosen constant for all stages throughout the process. Neglecting high-order terms, Eq.(3.7-10) becomes

$$0 = \min_{y} (F + f_{x} + y' f_{y})$$
 (3.7-11)

This non-linear partial differential equation governing the optimum path is equivalent to two equations. For optimally chosen y',

$$0 = F + f_{x} + y' f_{y}$$
 (3.7-12)

To extremize the right-hand side of Eq.(3.7-11), its differentiation with respect to y' must vanish, that is,

$$0 = F_{y} + f_{y}$$
(3.7-13)

If we differentiate Eq.(3.7-12) with respect to y, we have

$$F_y + f_{xy} + y' f_{yy} = 0$$
 (3.7-14)

Similarly, if we differentiate Eq.(3.7-12) with respect to x, we have

$$\frac{d}{dx}F_{y} + f_{xy} + y + f_{yy} = 0 \qquad (3.7-15)$$

By subtracting Eq.(3.7-14) from Eq.(3.7-15), we finally obtain Euler's equation

$$\frac{d}{dx}F_{y}, -F_{y} = 0$$
 (3.7-16)

For our particular case, F is defined in Eq.(3.7-9), and we substitute

$$F_{y}' = \frac{y'}{\sqrt{2gy (1+y'^2)}}$$
(3.7-17)

$$F_{y} = -\frac{1}{2} \frac{\sqrt{1+y^{2}}}{\sqrt{2g}} (y)^{1.5}$$
(3.7-18)

in Eq.(3.7-16). With some manipulation, this yields

$$1 + y'^2 = c/y$$
 (3.7-19)

which is identical to the results derived by the classical method 5.

### 3.8 BRACHISTOCHRONE PROELEM SOLVED BY DYNAMIC PROGRAMMING

A family of brachistochrone problems starting at x = 0, y = 0 and terminating at different point on x=100  $\chi$  are solved by using the forward method of dynamic programming. Taking 100

5 Appendix Eq.(A-5) grid points in the y direction, we first construct a matrix whose elements represent the costs of diagonal paths of a channel with two nearest neighboring columns as the edges of the channel. For a 20-stage process with 10 sets of solutions printed out, the execution takes 35.1 sec using IEM 7094 computer. In this 20-stage 100-decision process, we actually solved 20 x 100 = 2000 similar problems. In Table 3-1, the minimum travelling times obtained by this method are compared with those obtained by classical solution methods.



Figure 3.8-1 Elements of Cost Matrix

As can be seen in Table 3-2, the accuracy of the solution depends greatly upon the number of grid points chosen. A large number of grid points not only increases the computing time but also introduces memory problems. For instance, a 40stage, 150-decision process requires 22500 memory locations for the cost matrix and 6000 for the policy matrix. Memory overlapping was experienced when 28800 memory locations were assigned for arrays in a program run by IEM 7094 computer which has 32768 such locations available. This implies a sufficient number of memory locations were not reserved for execution.

In Fig. 3.8-2 the optimal paths for a 20-stage, 80decision process are shown.

Let us suppose the problem is to find the path of leasttravelling time from the origin to the terminal line  $x = x_T$ , where  $y_T$  is unspecified, as mentioned in Section 2.3, this free-end condition only changes one boundary condition from position constraint to slope constraint. If forward method is used, we choose the curve which gives the minimum-time of travelling among all 100 cases with different terminal points on the same terminal line. If backward scheme is employed, the optimal slopes are zero at the stage nearest to the terminal line. This approach is demonstrated in Program 3-2.





Optimal curves Obtained by Dynamic Programming  $(x=0\sim100\pi, y=0\sim400 \text{ feet})$ 

# Table 3-1

Minimum Travelling Time Obtained by Dynamic Programming

 $x=0\sim100\pi$ ,  $y=0\sim400$  feet Taking 20 grid points in x-direction, 100 in y-direction

|           | D. P.                                                                                   | Classical                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                  |
|-----------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -<br>y(I) | T(I)                                                                                    | Y(I)                                                                                                                                                                                                | Error                                                                                                                                                                                                                                                                                                            |
| (feet)    | (sec)                                                                                   | (sec)                                                                                                                                                                                               | (%)                                                                                                                                                                                                                                                                                                              |
| 0         | 7.90703                                                                                 | 7.82955                                                                                                                                                                                             | 0•98                                                                                                                                                                                                                                                                                                             |
| 40        | 6•40467                                                                                 | 6.36233                                                                                                                                                                                             | 0.67                                                                                                                                                                                                                                                                                                             |
| 80        | 5•95519                                                                                 | 5.91442                                                                                                                                                                                             | 0•69                                                                                                                                                                                                                                                                                                             |
| 120       | 5.71579                                                                                 | 5.67980                                                                                                                                                                                             | 0•ó3                                                                                                                                                                                                                                                                                                             |
| 160       | 5.60058                                                                                 | 5•56763                                                                                                                                                                                             | 0•59                                                                                                                                                                                                                                                                                                             |
| 200       | 5•56509                                                                                 | 5.53633                                                                                                                                                                                             | 0.52                                                                                                                                                                                                                                                                                                             |
| 240       | 5.58637                                                                                 | 5.56104                                                                                                                                                                                             | 0•46                                                                                                                                                                                                                                                                                                             |
| 280       | 5.64761                                                                                 | 5.62525                                                                                                                                                                                             | 0•40                                                                                                                                                                                                                                                                                                             |
| 320       | 5•73690                                                                                 | 5.71746                                                                                                                                                                                             | 0.34                                                                                                                                                                                                                                                                                                             |
| 360       | 5.84633                                                                                 | 5.82950                                                                                                                                                                                             | 0.29                                                                                                                                                                                                                                                                                                             |
| 400       | 5•97084                                                                                 | 5.95554                                                                                                                                                                                             | 0.27                                                                                                                                                                                                                                                                                                             |
|           | y(I)<br>(feet)<br>0<br>40<br>80<br>120<br>160<br>200<br>240<br>280<br>320<br>360<br>400 | D. P.<br>y(I) T(I)<br>(feet) (sec)<br>0 7.90703<br>40 6.40467<br>80 5.95519<br>120 5.71579<br>160 5.60058<br>200 5.56509<br>240 5.58637<br>280 5.64761<br>320 5.73690<br>360 5.84633<br>400 5.97084 | D. P. Classical<br>y(I) T(I) Y(I)<br>(feet) (sec) (sec)<br>0 7.90703 7.82955<br>40 6.40467 6.36233<br>80 5.95519 5.91442<br>120 5.71579 5.67980<br>160 5.60058 5.56763<br>200 5.56509 5.53633<br>240 5.58637 5.56104<br>280 5.64761 5.62525<br>320 5.73690 5.71746<br>360 5.84633 5.82950<br>400 5.97084 5.95554 |

Table 3-2

Grid Number and Accuracy in Dynamic Programming

From (0,0) t0 (100 $\pi$ ,400) feet Classical Solution T=5.95554 sec

•

| Grid | Number | Computing Time | Minimum Time<br>of Trav. | Error |
|------|--------|----------------|--------------------------|-------|
| X    | У      | (sec)          | (sec)                    | (%)   |
| 20   | 20     | 8 • 4          | 6.06087                  | 1.76  |
| 20   | 40     | 11.8           | 5.98005                  | 0•41  |
| 20   | 60     | 17.5           | 5.97555                  | 0.34  |
| 20   | 80     | 25•4           | 5.97141                  | 0.27  |
| 20   | 100    | 35•1           | 5.97084                  | 0.27  |
| 40   | 20     | 9•5            | 6.29473                  | 5.70  |
| 40   | 40     | 15.1           | 6.05224                  | 1.61  |
| 40   | 60     | 26.1           | 5•97666                  | 0.35  |
| 40   | 80     | 40.3           | 5.97303                  | 0.29  |
| 40   | 100    | 58.5           | 5.97186                  | 0.27  |





٠.

Flow Chart: Forward Method of Dynamic Programming

|            | -                                |                 |                                                |                  |          | <u> </u>    |                                        | 42                                    |
|------------|----------------------------------|-----------------|------------------------------------------------|------------------|----------|-------------|----------------------------------------|---------------------------------------|
|            |                                  |                 |                                                |                  |          | ·           | ······································ |                                       |
| <b>-</b> . | <sup>-</sup> R <sup>-</sup>      |                 | P R O G                                        | RAM              | 3 - 1    |             |                                        |                                       |
| -          | R BRA                            | CHISTO          | CHRONE P<br>FORWARD                            | ROBLEM<br>METHOD | WITH TW  |             | CONSTRA                                | AINT SOLVED B                         |
|            |                                  | YECHTE          |                                                | OBJECT           |          |             |                                        |                                       |
| -          | -                                | .ALCOTE         | -                                              |                  |          |             |                                        |                                       |
|            | DIMENS                           | ION Y(          | 101), T(                                       | 101), N          | T(101),  | P( 620      | 0, DIM),                               |                                       |
|            |                                  |                 | IME)<br>S DIM -                                | 2.0.0            | <u> </u> | <del></del> | ·                                      |                                       |
|            |                                  | VALUE           |                                                | 2.0.0            |          |             |                                        |                                       |
|            |                                  | I ENCE          |                                                | KP1). (          |          |             | (TIME())                               | • IP21 •                              |
|            |                                  | 21. IP          | 1)                                             |                  | 01111279 | NIGAT       |                                        | · · · · · · · · · · · · · · · · · · · |
|            |                                  | RIJ             | • K • TMA                                      | X . KMAX         | P. BF    | TA. IPI     | • TP2 • K                              |                                       |
| •          | 1 FREQ                           | KP              | <u>,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  </u> |                  |          |             | 7 1 4 7 1                              |                                       |
|            |                                  |                 |                                                |                  |          |             |                                        |                                       |
| TART       | READ A                           | ND PRI          | NT DATA                                        | х <b>т, </b> γт, | IMAX,    | KMAX, F     | REQ, KP                                |                                       |
|            | IP1 =                            | IMAX +          | 1                                              |                  |          |             |                                        |                                       |
|            | IP2 =                            | IMAX_+          | 2                                              |                  |          | · · · ·     |                                        |                                       |
|            | KP1 =                            | KMAX +          | 1                                              |                  |          |             | ······································ |                                       |
|            | DX = X                           | T/KMAX          |                                                |                  |          |             |                                        |                                       |
|            | DY = Y                           | T/IMAX          |                                                |                  |          |             |                                        |                                       |
|            | THROUG                           | H LO            | FOR $J =$                                      | 0,1, J.          | G.IMAX   |             |                                        |                                       |
| <b></b>    | THROUG                           | H LO,           | FOR I =                                        | J, 1, I          | •G• IMA  | X           |                                        |                                       |
|            | WHENEV                           | ER I •          | E• O •AN                                       | De Jee           | • 0      |             |                                        |                                       |
|            | DT(J•1                           | ) = 1E          | 5                                              |                  |          |             | <u> </u>                               | · · · · · · · · · · · · · · · · · · · |
|            | OTHERW                           | ISE             |                                                |                  |          | ······      |                                        |                                       |
|            | $\underline{DS} = \underline{S}$ |                 | (1-J)*DY                                       | ) • P • 2 +      |          | * 0 / 1 1   | · · · · ·                              |                                       |
|            |                                  | VI3 *           | ISURI-IJ                                       | *UT              | SURIALI  | *0111       |                                        |                                       |
|            |                                  | ) = DS          | / V.                                           |                  |          |             |                                        |                                       |
| <u></u>    |                                  |                 |                                                | ·                |          |             |                                        |                                       |
| 0          | END OF                           | CONDI           | TIONAL                                         |                  |          |             |                                        | · · · · · · · · · · · · · · · · · · · |
| 0          |                                  | · = 0           |                                                |                  |          |             |                                        | ······                                |
| · · ·      |                                  |                 |                                                | 1. 1. K          | Ge KM    | ΔΥ          |                                        |                                       |
|            |                                  | H 1 2 .         | FOR I =                                        |                  | G. IMAX  |             | ·                                      |                                       |
|            | WHENEV                           |                 | F. 1                                           | 0,2, 10          | 001.00   |             | · ·                                    |                                       |
|            | NT(T)                            | = DT(0)         | • 1 )                                          |                  |          |             |                                        |                                       |
|            | P(I•K)                           | = I             |                                                |                  |          |             |                                        |                                       |
|            | OTHERW                           |                 |                                                |                  | ····     |             |                                        |                                       |
|            | ALPHA                            | = 1E37          |                                                |                  |          |             |                                        |                                       |
|            | THROUG                           | H L3,           | FOR $J =$                                      | 0, 1, J          | •G• IM   | AX          |                                        |                                       |
|            |                                  | (J) + I         | DT(J,I)                                        |                  |          |             |                                        |                                       |
|            | WHENEV                           | ER TT           | .L. ALPH                                       | A                |          |             |                                        |                                       |
|            | ALPHA                            | = TT            |                                                |                  |          |             |                                        |                                       |
|            | BETA =                           | _I-J            |                                                |                  |          |             |                                        |                                       |
|            | END OF                           | CONDI           | TIONAL                                         |                  |          | , .         |                                        |                                       |
| 3          |                                  |                 |                                                |                  |          |             |                                        |                                       |
|            | NT(I)                            | = ALPH          | A                                              |                  |          |             |                                        |                                       |
|            | P(I,K)                           | _ <u>≕</u> BET∂ | Α                                              |                  |          |             |                                        |                                       |
|            | END_OF                           | CONDI           | TIONAL                                         |                  |          |             |                                        |                                       |
| 2          | •                                |                 |                                                |                  |          |             |                                        |                                       |
| _ <u></u>  |                                  |                 | •                                              |                  |          |             | • • • • • • • • • • • • • • • • • • •  |                                       |
|            |                                  |                 | •                                              |                  |          |             |                                        |                                       |
|            | .,                               |                 |                                                |                  |          |             |                                        |                                       |
| ···        |                                  |                 |                                                |                  | ···      |             |                                        |                                       |
|            |                                  |                 |                                                |                  |          |             |                                        |                                       |

43\_ WHENEVER (K/KP)\*KP .E. K PRINT COMMENT \$0\$ PRINT RESULTS K \$0 Y(I) PRINT COMMENT P(I,K) T(I) \$ 1 END OF CONDITIONAL THROUGH L4, FOR I = 0,1, I.G.IMAX WHENEVER (I/FREQ)\*FREQ .E. I .AND. (K/KP)\*KP .E. K Y(I) = I \* DYPRINT FORMAT BRACHI, I, Y(I), P(I,K),NT(I) END OF CONDITIONAL T(I) = NT(I)14 L1 TAN = DY/DXPRINT COMMENT \$1 .... THE BEST POLICY .... \*\$ THROUGH L5, FOR II = IMAX, -FREQ, II .L. O YT = II \* DYPRINT COMMENT \$0\$ PRINT COMMENT \$0 THE TERMINAL COMDITION IS \$ PRINT RESULTS II, XT, YT PRINT COMMENT \$0 ĸ Y X SLOPE P(I,K) \$ 1 I = IITHROUGH L6, FOR  $K = KMAX, -1, K \cdot L \cdot 0$ WHENEVER (K/KP)\*KP .E. K RE = P(I,K) \* TANX = K \* DXY = I \* DYPRINT FORMAT POLICY, K, X, Y, RE, P(I,K) END OF CONDITIONAL I = I - P(I,K)L6 L5 VECTOR VALUES BRACHI = \$ I10, E30.6, I10, E30.6 **\***\$ VECTOR VALUES POLICY = \$ 1110, 3E20.8, 1110 ¥\$ TRANSFER TO START END OF PROGRAM \$ DATA XT = 314.15926, YT= '400., IMAX=100, KMAX= 20, FREQ =10, KP=2\*

44 PROGRAM 3-2 R R BRACHISTOCHRONE PROBLEM WITH FREE END CONDITIONS SOLVED BY BACKWARD METHOD OF DYNAMIC PROGRAMMING R \$ COMPILE MAD, EXECUTE, PRINT OBJECT, DUMP DIMENSION Y(100), T(100), NT(100), P(2200, DIM), DT(10300, TIME) VECTOR VALUES DIM = 2, 0, 0VECTOR VALUES TIME = 2, 0, 0 EQUIVALENCE (DIM(1), KP1), (DIM(2), KMAX), (TIME(1), IP2), 1(TIME(2), IP1) INTEGER I, II, IP1, IP2, IMAX, IS, J, 1K, KP1, KMAX, P, BETA, FREQ READ AND PRINT DATA XT, YT, IMAX, KAMX, FREQ START IP1 = IMAX + 1IP2 = IMAX + 2KPI = KMAX + 1DX = XT/KMAXDY = YT/IMAXTHROUGH LO, FOR J = 0, 1,  $J \cdot G \cdot IMAX$ THROUGH LO, FOR I = J, 1, I .G. IMAX WHENEVER I .E. O .AND. J .E. O DT(J, I) = 1E5OTHERWISE  $DS = SQRT_{\bullet}(((I-J)*DY)_{\bullet}P_{\bullet}2 + DX*DX)$  $V = 4.013 \times (SQRT \cdot (J \times DY) + SQRT \cdot (I \times DY))$ DT(J,I) = DS/VDT(I,J) = DT(J,I)END OF CONDITIONAL L0 THROUGH L1, FOR I = 0, 1,  $I \cdot G \cdot IMAX$ P(I,KMAX) = 0T(I) = 0Y(I) = I \* DYL1 THROUGH L2, FOR K = KMAX-1, -1, K .L. O THROUGH L3, FOR I = 0, 1, I .G. IMAX ALPHA = 1E37T(0) = 1E5THROUGH L4, FOR J = 0, 1,  $J \bullet G \bullet IMAX$ TT = T(J) + DT(I,J)WHENEVER TT .L. ALPHA ALPHA = TTBETA = J-IEND OF CONDITIONAL L4 NT(I) = ALPHAP(I,K) = BETAL3

45 PRINT COMMENT \$0\$ PRINT RESULTS K Ī PRINT COMMENT Y(I) \$ NT(I) P(I,K) \$ 1 THROUGH L5, FOR I = 1,1, I .G. IMAX WHENEVER (I/FREQ)\*FREQ .E. I PRINT FORMAT BRACHI, I, Y(I), P(I,K), NT(I) END OF CONDITIONAL T(I) = NT(I)L5 L2 PRINT COMMENT \$ THE\_BEST POLICY\$ THROUGH L6, FOR II = FREQ, FREQ, II .G. 80 YO = II\*DYPRINT COMMENT \$0\$ PRINT COMMENT \$ THE STARTING POINT IS \$ PRINT RESULTS II, YO PRINT COMMENT \$0 K NT(I) Y SLOPE \$ 1 I = IITHROUGH L7, FOR  $K = 0, 1, K \cdot G \cdot KMAX$ PRINT FORMAT POLICY, K, NT(I), Y(I), P(I,K) I = I + P(I,K)L7 L6 VECTOR VALUES BRACHI = \$ 1110, 1E30.8, 1110, 1E30.8 ¥\$ VECTOR VALUES POLICY = \$ 1110, 2E20.8, 1110 \*\$ TRANSFER TO START END OF PROGRAM S DATA XT = 314.15926, YT=400., IMAX=100, FREQ=10, KMAX=20\*

### CHAPTER IV

## QUASILINEARIZATION

### 4.1 NEWTON-RAPHSON-KANTOROVICH METHOD



Figure 4.1-1 Newton-Raphson Method

Consider a monotone decreasing, convex function f(x), we approximate f(x) by a linear function of x determined by the value and slope of the function f(x) at  $x = x_0$ .

$$f(x) = f(x_0) + (x - x_0) \cdot f'(x_0) \qquad (4.1-1)$$

Putting f(x) = 0, we obtain for the first approximation

$$- x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$
(4.1-2)

(46)

The process is repeated at  $x_1$  leading to a new value  $x_2$ , and so on. The general recurrence relation is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 (4.1-3)

This sequence of approximation yields the root of

$$f(x) = 0$$
 (4.1-4)

It has been shown that the convergence is monotonic and quadratic [19].

Replacing y by u, and y' by w, Eq.(1.2-3) may be rewritten as

$$u'' = - \frac{1 + w^2}{2 u} = G(u, w) \qquad (4.1-5)$$

Let  $u_0(x)$  be some initial approximation and consider the sequence  $u_n(x)$ . Applying Newton-Raphson technique we construct the recurrence relationships

$$u_{n+1}^{"} = G(u,w) + (u_{n+1}^{-}-u_n)\frac{\partial G}{\partial u_n} + (w_{n+1}^{-}-w_n)\frac{\partial G}{\partial w_n}$$

$$(4.1-6)$$

$$u_{n+1}(0) = y_0, \quad u_{n+1}(x_T) = y_T \quad (4.1-7)$$

Our aim is to produce a sequence of functions  $u_1(x)$ ,  $u_2(x)$ , ...  $u_n(x)$  which converges to the solution of the original function u(x).

The concept characterized by Eq.(4.1-6) is an extension

of the Newton-Raphson method to functional space which has been introduced by Kantorovich and is called Newton-Raphson-Kantorovich (NEK) technique [19]. It is essentially the first-order terms in power-series expansion of function G(u,w) about the point  $u_p$ .

4.2 QUASILINEARIZATION

Consider a differential equation of the form

$$A(x) u'' + B(x) u' + C(x) = 0$$
 (4.2-1)

Because of its linearity, the principle of superposition holds. If p is the particular solution of the non-homogeneous equation

$$A(x) u'' + B(x) u' + C(x) = G(u,w)$$
 (4.2-2)

It can be shown that the linear combination  $p + c_1h_1 + c_2h_2$ , where  $c_1$  and  $c_2$  are constants and  $h_1$  and  $h_2$  are solutions of the homogeneous equation, also satisfies Eq.(4.2-2), that is

$$u = p + c_1 h_1 + c_2 h_2$$
 (4.2-3)

For an m-order differential equation, the general solution may be written in the form

$$u = \sum_{k=1}^{m} c_k h_k + p$$
 (4.2-4)

The m conditions imposed on the m unknown functions may be expressed as

$$\sum_{k=1}^{m} c_k h_k^{(l)} = u^{(l)} - p^{(l)}$$
(4.2-5)  
(l = 0, 1, 2, ... m -1.)

If we substitute Eq. (4.2-5) in Eq.(4.1-6), we obtain

$$p'' + c_1 h_1'' + c_2 h_2''$$
  
= G + (p+c\_1 h\_1 + c\_2 h\_2)  $\frac{\partial G}{\partial u}$  + (p'+c\_1 h\_1 '+c\_2 h\_2')  $\frac{\partial G}{\partial w}$   
(4.2-6)

By equating the coefficients of Eq.(4.2-6), we obtain

$$p'' = G + (p - u_n)\frac{\partial G}{\partial u} + (p' - w)\frac{\partial G}{\partial w} \qquad (4.2-7)$$

$$h_1'' = h_1 \frac{\partial G}{\partial u} + h_1' \frac{\partial G}{\partial w} \qquad (4.2-8)$$

$$h_2^{"} = h_2 \frac{\partial G}{\partial u} + h_2^{*} \frac{\partial G}{\partial w} \qquad (4.2-9)$$

Let us choose the initial conditions

$$p(0) = 0, \quad p'(0) = 0 \quad (4.2-10)$$

and the conditions on the homogeneous solutions of

. •

$$h_1(0) = 1, \quad h_1'(0) = 0$$
 (4.2-11)

$$h_2(0) = 0, \quad h_2'(0) = 1$$
 (4.2-12)

which insures that the Wronskian

$$W(x) = \begin{vmatrix} h_{1}(x) & h_{2}(x) \\ h_{1}^{*}(x) & h_{2}^{*}(x) \end{vmatrix} \Rightarrow 0 \qquad (4.2-13)$$

Thus we have a set of initial value problems whose solutions and their derivatives are readily produced numerically on the interval of  $x = 0 \sim x_T$ . The solution of Eq.(4.1-6) subject to boundary conditions Eq.(4.1-7) and their derivatives is expressed by

$$u(x) = p(x) + c_1 h_1(x) + c_2 h_2(x)$$
(4.2-14)  
$$w(x) = p(x) + c_1 h_1'(x) + c_2 h_2'(x)$$
(4.2-15)

where  $c_1$  and  $c_2$  are constants to be determined from the linear algebraic equations obtained by substituting x = 0, and  $x = x_T$  respectively into Eq.(4.1-7)

$$p(0) + c_1 h_1(0) + c_2 h_2(0) = y_0 \qquad (4.2-16)$$

$$p(x_T) + c_1 h_1(x_T) + c_2 h_2(x_T) = y_T \qquad (4.2-17)$$

In other words, we produce a particular solution and two independent homogeneous solutions on the interval  $x = 0 \sim x_T$ and determine the constants  $c_1$  and  $c_2$  to satisfy the boundary conditions of Eq.(4.1-7). The process of Eqs.(4.2-7) to (4.2-17) is repeated to compute a new approximation of u(x).

In the derivation of Eq.(4.2-7) to Eq.(4.2-8), equation

(4.2-6), the NRK technique is applied in the abstract plane perpendicular to the x-axis at each point of x.

The computational scheme is shown in Fig.4.2-1 and the computer program follows.

The computational results of two brachistochrone curves using straight-line initial approximations are compared with analytical solutions in Table 4-1 and Table 4-2. In Table 4-1 an error can be seen near the singularity point x = 0, y = 0. Elsewhere, accuracy to five digits or more was obtained by 3-iteration of quasilinearization in the problem of Table 4-2.

Straight-line approximations failed to converge for the cycloidal paths of range greater than half of a complete cycle. Since the constant multipliers  $c_1$  and  $c_2$  are determined solely at the two end points, a complete cycle of the cycloidal path with singularities at both ends cannot be solved by this method.

Table 4-1

٠

# Convergency of $u_n(x)$ to u(x) by Quasilinearization

Take 800 discrete points

| k   | k u <sub>0</sub> (x) |    | u <sub>0</sub> (x) u <sub>1</sub> |    | u <sub>1</sub> (x | :) | u <sub>2</sub> (x) |    | u <sub>3</sub> (x) |    | u(x) |  |
|-----|----------------------|----|-----------------------------------|----|-------------------|----|--------------------|----|--------------------|----|------|--|
| 0   | •000000E             | 01 | •000000E                          | 00 | •000000E          | 00 | • 000000E          | 00 | • 00 0000E         | 00 |      |  |
| 40  | •100000E             | 02 | •147406E                          | 02 | •415132E          | 01 | 454858E            | 02 | •457040E           | 02 |      |  |
| 80  | •200000E             | 02 | •446946E                          | 02 | •656419E          | 02 | •700734E           | 70 | •702014E           | 02 |      |  |
| 40  | •100000E             | 02 | •247406E                          | 02 | •415132E          | 02 | •454858E           | 02 | •457040E           | 02 |      |  |
| 80  | •200000E             | 02 | •446946E                          | 02 | •656419E          | 02 | •700734E           | 02 | •702714E           | 02 |      |  |
| 120 | •300000E             | 02 | •622185E                          | 02 | •848638E          | 02 | •893294E           | 02 | •895121E           | 02 |      |  |
| 160 | •400000E             | 02 | •779257E                          | 02 | •101082E          | 03 | •105424E           | 03 | •105593E           | 03 |      |  |
| 200 | •500000E             | 02 | •921473E                          | 02 | •115130E          | 03 | •119275E           | 03 | •119430E           | 03 |      |  |
| 240 | •600000E             | 02 | •105095E                          | 03 | •127470E          | 03 | •131380E           | 03 | •131523E           | 03 |      |  |
| 280 | •700000E             | 02 | •116920E                          | 03 | •138396E          | 03 | •142051E           | 03 | •142181E           | 03 |      |  |
| 320 | •800000E             | 02 | •127734E                          | 03 | •148105E          | 03 | ♦151495E           | 03 | •151614E           | 03 |      |  |
| 360 | •900000E             | 02 | •137624E                          | 03 | •156744E          | 03 | •159863E           | 03 | •159971E           | 03 |      |  |
| 400 | •100000E             | 03 | •146668E                          | 03 | •164420E          | 03 | •167264E           | 03 | •167361E           | 03 |      |  |
| 440 | •110000E             | 03 | •154919E                          | 03 | •171212E          | 03 | •173782E           | 03 | •173870E           | 03 |      |  |
| 480 | •120000E             | 03 | •162429E                          | 03 | •177189E          | 03 | •179483E           | 03 | •179560E           | 03 |      |  |
| 520 | •130000E             | 03 | •169240E                          | 03 | •182400E          | 03 | •184417E           | 03 | •184484E           | 03 |      |  |
| 560 | •140000E             | 03 | •175390E                          | 03 | •186886E          | 03 | •188625E           | 03 | •188682E           | 03 |      |  |
| 600 | •150000E             | 03 | •180911E                          | 03 | •190680E          | 03 | •192140E           | 03 | •192187E           | 03 |      |  |
| 640 | •160000E             | 03 | •185830E                          | 03 | •193807E          | 03 | •194986E           | 03 | •195024E           | 03 |      |  |
| 680 | .17000UE             | 03 | •190176E                          | 03 | •196289E          | 03 | •197182E           | 03 | •197211E           | 03 |      |  |
| 720 | •180000E             | 03 | •193974E                          | 03 | •198142E          | 03 | •198744E           | 03 | •198764E           | 03 |      |  |
| 760 | •190000E             | 03 | •197242E                          | 03 | •199376E          | 03 | •199682E           | 03 | •199691E           | 03 |      |  |
| 800 | •200000E             | 03 | •200000E                          | 03 | •200000E          | 03 | •200000E           | 03 | •200000E           | 03 |      |  |

. •

.

Convergency of  $u_n(x)$  to u(x) by Quasilinearization

# Take 400 discrete points

| k   | u <sub>0</sub> (x) |    | u <sub>1</sub> (x | )  | u <sub>2</sub> (x) |    | u <sub>3</sub> (x) |    | u(x)     |    |
|-----|--------------------|----|-------------------|----|--------------------|----|--------------------|----|----------|----|
| 0   | •200000E           | 03 | •200000E          | 03 | •200000E           | 03 | •200000E           | 03 | •200000E | 03 |
| 20  | •204709E           | 03 | •210149E          | 03 | •210341E           | 03 | •210341E           | 03 | •210341E | 03 |
| 40  | •209417E           | 03 | •219541E          | 03 | •219860E           | 03 | •219860E           | 03 | •219859E | 03 |
| 60  | •214126E           | 03 | •228225E          | 03 | •228626E           | 03 | •228627E           | 03 | •228626E | 03 |
| 80  | •218835E           | 03 | •236242E          | 03 | •236698E           | 03 | •236698E           | 03 | •236698E | 03 |
| 100 | •223544E           | 03 | •243629E          | 03 | •244122E           | 03 | •244122E           | 03 | •244121E | 03 |
| 120 | •228254E           | 03 | •250417E          | 03 | •250936E           | 03 | •250936E           | 03 | •250935E | 03 |
| 140 | •232961E           | 03 | •256637E          | 03 | •257173E           | 03 | •257173E           | 03 | •257172E | 03 |
| 160 | •237670E           | 03 | •262313E          | 03 | •262861E           | 03 | •262861E           | 03 | •262860E | 03 |
| 180 | •242379E           | 03 | •267468E          | 03 | •268023E           | 03 | •268023E           | 03 | •268023E | 03 |
| 200 | •247087E           | 03 | •272121E          | 03 | •272680E           | 03 | •272680E           | 03 | •272680E | 03 |
| 220 | •251796E           | 03 | •276291E          | 03 | •276849E           | 03 | •276849E           | 03 | •276849E | 03 |
| 240 | ₀265505E           | 03 | •279993E          | 03 | •280544E           | 03 | •280544E           | 03 | •280544E | 03 |
| 260 | •261214E           | 03 | •283241E          | 03 | •283777E           | 03 | •283778E           | 03 | •283777E | 03 |
| 280 | •265922E           | 03 | •286049E          | 03 | •286560E           | 03 | •286560E           | 03 | •286560E | 03 |
| 300 | •270631E           | 03 | •288426E          | 03 | •288901E           | 03 | •288901E           | 03 | •288901E | 03 |
| 320 | •275340E           | 03 | •290383E          | 03 | •290807E           | 03 | •290807E           | 03 | •290807E | 03 |
| 340 | •280049E           | 03 | •291929E          | 03 | •292284E           | 03 | •292284E           | 03 | •292284E | 03 |
| 360 | •284757E           | 03 | •293072E          | 03 | •293335E           | 03 | •293335E           | 03 | •293335E | 03 |
| 380 | •289464E           | 03 | •293818E          | 03 | •293965E           | 03 | •293965E           | 03 | •293965E | 03 |
| 400 | ▲294175F           | 03 | 294175F           | 03 | -294175F           | 03 | -294175F           | 03 | -294175F | 03 |

.

Table 4-3

••

Minimum Travelling Time Obtained by Quasilinearization

 $(u_0 = 0)$ 

| Terminal<br>Points | Trav. Time<br>(Q.L) | Trav. Time<br>(Classical) | Error |
|--------------------|---------------------|---------------------------|-------|
| r N                | iter=5              |                           |       |
| $u(x_T)$           | Τ(Ι)                | Τ(Ι)                      | (%)   |
| 200                | 5•53719             | 5•53633                   | 0.016 |
| 240                | 5.56174             | 5.56104                   | 0.013 |
| 280                | 5.62580             | 5.62525                   | 0.010 |
| 320                | 5.71787             | 5.71746                   | 0.007 |
| 360                | 5.82979             | 5.82950                   | 0.005 |
| 400                | 5,95571             | 5.95554                   | 0.003 |

### ABSTRACT PROCEDURE OF QUASILINEARIZATION



Fig. 4.2-1

56 R PROGRAM 4 - 1BRACHISTOCHRONE PROBLEM SOLVED BY QUASILINEARIZATION R COMPILE MAD, EXECUTE, PRINT OBJECT, DUMP DIMENSION Y(10), F(10), Q(10), PA(800), H1(800), H2(800), 1U(800), W(800), DPA(800), DH1(800), DH2(800), QT(800) INTEGER ITER, ITMAX, K, KP, KMAX, COUNT START PRINT COMMENT S DATAS READ AND PRINT DATA UO, UT, ITMAX, KMAX, XT, EPS,KP DX = XT/KMAXDY = (UT - UO) / KMAXTAN = (UT - UO) / XTTHROUGH LO, FOR K = 1,1, K.G.KMAX X = K \* D XU(K) = UO+DY\*KW(K) = TANL0 THROUGH L1, FOR ITER = 1,1, ITER .G. ITMAX  $PA(0) = 0_{\bullet}$ H1(0) = 1.  $H_{2}(0) = 0.$ DPA(0) = 0DH1(0) = 0.DH2(0) = 1. Y(1) = PA(0)Y(2) = DPA(0)Y(3) = H1(0) Y(4) = DH1(0)Y(5) = H2(0)Y(6) = DH2(0)X = 0EXECUTE SETRKD. (6,Y(1),F(1),Q,X,DX) THROUGH LRK, FOR  $K = 1,1, K \cdot G \cdot K \cdot MAX$ CALLRK  $S = RKDEQ_{\bullet}(0)$ WHENEVER S .E. 1.  $F(1) = Y(2)^{-1}$ WHENEVER F(1) .G. EPS F(1) = EPSEND OF CONDITIONAL F(3) = Y(4)WHENEVER F(3)\_G. EPS\_ F(3) = EPS END OF CONDITIONAL F(5) = Y(6) WHENEVER F(5) .G. EPS F(5) = EPSEND OF CONDITIONAL .

| •                                      |                                                                 |
|----------------------------------------|-----------------------------------------------------------------|
|                                        |                                                                 |
|                                        |                                                                 |
|                                        |                                                                 |
|                                        | $GU = (1_{\bullet} + W(K) * W(K)) / (2 * U(K) * U(K))$          |
|                                        | WHENEVER GU .G. 1E6                                             |
|                                        | GU = 1E6                                                        |
|                                        | END OF CONDITIONAL                                              |
|                                        | GW = -W(K)/U(K)                                                 |
|                                        | WHENEVER •ABS•(GW) •G• 1E6                                      |
|                                        | $GW = IE6*(GW/(\circ ABS \circ (GW)))$                          |
| -                                      | END OF CONDITIONAL $E(X) = CUt(X)$                              |
|                                        | F(2) = GU*(f(1)=2*U(N)) + GW*(f(2)=W(N))                        |
|                                        | $WHENEVER \circ ADS \circ (F(2)) \circ G \circ EPS$             |
|                                        | $= F(Z) = EPS^{(F(Z)/(ADS^{(F(Z)/)})}$                          |
|                                        | E(A) = CU*V(3) + CU*V(A)                                        |
|                                        | $WHENEVER ABS_(E(4)) = G_ERS$                                   |
|                                        | $F(A) = FPS*(F(A)/(ABS_(F(A))))$                                |
|                                        |                                                                 |
|                                        | F(6) = GU*Y(5) + GW*Y(6)                                        |
|                                        | WHENEVER ABS (F(4)) G FPS                                       |
|                                        | F(6) = EPS*(F(6)/(ABS*(F(6))))                                  |
|                                        | END OF CONDITIONAL                                              |
|                                        | TRANSFER TO CALLRK                                              |
|                                        |                                                                 |
|                                        | OTHERWISE                                                       |
|                                        | PA(K) = Y(1)                                                    |
|                                        | H1(K) = Y(3)                                                    |
|                                        | $H_2(K) = Y(5)$                                                 |
|                                        | DPA(K) = Y(2)                                                   |
|                                        | DH1(K) = Y(4)                                                   |
|                                        | $DH_2(K) = Y(6)$                                                |
|                                        | _ END OF CONDITIONAL                                            |
|                                        |                                                                 |
| · · · · · · · · · · · · · · · · · · ·  | DIN = H1(0) * H2(KMAX) - H1(KMAX) * H2(0)                       |
|                                        | AP = UO - PA(O)                                                 |
| · · · · · · · · · · · · · · · · · · ·  | BP = UT - PA(KMAX)                                              |
|                                        | C1 = (AP*HZ(KMAX) - BP*HZ(U))/DIN                               |
|                                        | C2 = (-AP*HI(KMAX)+DP*HI(U))/UIN                                |
|                                        | PRINT COMMENT 505                                               |
|                                        | DRINT DESHITS TTED. CI. C2                                      |
|                                        | PRINT COMMENT & K Y DA                                          |
|                                        |                                                                 |
|                                        |                                                                 |
| ······································ | THROUGH L2, FOR $K = 0$ , 1. K. G. KMAX                         |
|                                        | U(K) = PA(K) + C1 + H1(K) + C2 + H2(K)                          |
|                                        | W(K) = DPA(K) + C1*DH1(K) + C2*DH2(K)                           |
|                                        | x = K*Dx                                                        |
|                                        | WHENEVER K .E. O                                                |
|                                        | QT = 0.                                                         |
|                                        | OTHERWISE                                                       |
|                                        | $DS = SQRT \cdot ( (U(K) - U(K-1)) \cdot P \cdot 2 + DX * DX )$ |
|                                        | $V = 4.013 * (SQRT_{(U(K))} + SQRT_{(U(K-1))})$                 |
|                                        | QT = QT + DS/V                                                  |
|                                        | END OF CONDITIONAL                                              |
| <u> </u>                               |                                                                 |
|                                        |                                                                 |

----

•

-----

| L2                                     | WHENEVER (K/KP)*KP .E. K<br>PRINT FORMAT LINEAR, K, X,PA(K),H1(K),H2(K),U(K),W(K),QT<br>END GF CONDITIONAL<br>U(0) = 0.01 |   |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---|
| L1                                     | VECTOR VALUES LINEAR = \$ 115, 1E12.4, 6E17.8 *\$                                                                         |   |
| U0=200., U                             | T=294.17495, ITMAX=3, KMAX=400, XT=314.15926, EPS=100, KP=20*                                                             |   |
|                                        |                                                                                                                           |   |
| -                                      |                                                                                                                           |   |
|                                        |                                                                                                                           |   |
| · ·                                    |                                                                                                                           |   |
|                                        |                                                                                                                           |   |
| · · · · · · · · · · · · · · · · · · ·  |                                                                                                                           |   |
|                                        |                                                                                                                           |   |
|                                        |                                                                                                                           |   |
| ······································ |                                                                                                                           |   |
|                                        | · · · · · · · · · · · · · · · · · · ·                                                                                     |   |
|                                        |                                                                                                                           |   |
|                                        |                                                                                                                           |   |
|                                        |                                                                                                                           |   |
|                                        |                                                                                                                           |   |
|                                        |                                                                                                                           |   |
|                                        |                                                                                                                           |   |
|                                        |                                                                                                                           | - |
|                                        |                                                                                                                           | - |
|                                        |                                                                                                                           |   |
|                                        |                                                                                                                           | - |
|                                        |                                                                                                                           |   |
|                                        |                                                                                                                           | - |
|                                        |                                                                                                                           |   |
|                                        |                                                                                                                           |   |

\_\_\_\_

--- -----

-----

\_\_\_\_

----

-----

\_\_\_\_

----

----

#### CHAPTER V

## COMPARISONS AND COMBINATIONS

### 5.1 COMPARISONS

As we have seen in the previous chapters invariant imbedding, dynamic programming and quasilinearization, each has some powerful characteristics. Quasilinearization is the most accurate technique at the expense of relatively long computing time. Invariant imbedding requires very short computing time but gives only initial slopes and the results may be only approximately correct. Dynamic programming ranks between invariant imbedding and quasilinearization in accuracy and computing costs.

The size of problems which can be handled by dynamic programming is limited by the memory available in a computer. Invariant imbedding and quasilinearization have no memory problem, but the former should be combined with another method to produce state and cost functions; the latter converges only when a proper initial guess to the solution has been made.

Invariant imbedding and quasilinearization make use of the differential equation obtained from Euler's equation of the calculus of variations. Dynamic programming completely bypasses this derivation, although we showed that Euler's equation may be obtained from recurrence relations based on the principle of optimality. However, no differential equation which characterizes the optimum path was used in the

(59)

minimization process. This powerful feature of dynamic programming is especially useful in the case where Euler's equation does not exist or is difficult to solve.

Another significant aspect is that invariant imbedding and quasilinearization are not suited to handle computations which include such features as the cusps of a cycloid where the slopes are infinity. Dynamic programming which treats continuous systems as discrete multi-stage processes is free of this trouble because the slopes are found between adjoining stages instead of at values of the state variable.

# 5.2 DYNAMIC PROGRAMMING WITH SEARCHING OVER A RESTRICTED REGION

As mentioned above, dynamic programming bypasses Euler's equation. In the brachistochrone problem, Euler's equation which characterizes the optimum path is known. We seek to find a way to utilize the differential equation obtained from Euler's equation to minimize the searching required in dynamic programming. We note that Eq.(1.2-3)

$$y'' = -\frac{1+y'^2}{2y} < 0$$
, for  $y > 0$  (5.2-1)

implies the slope is monotone decreasing. It can be seen that Eq.(5.2-1) with boundary conditions

 $y(0) = c_1, \qquad y(x_T) = c_2 \qquad (5.2-2)$ 

or

$$y(0) = c_1, \qquad y(x_T) = c_3 \qquad (5.2-3)$$

describes cycloids which are single-valued functions. Let us

. •

consider a forward-scheme of dynamic programming. If the slope at state  $q_i$  in the k-th stage is greater than (or equal to) zero (as is shown in Fig.5.2-1 (A) ), then point  $p_j$  (where the optimum curve crosses (k-1)-th stage) must lie below or at a level with  $q_i$ . It follows that in minimizing the time of travel from the initial point 0 to point  $q_i$  in the k-th stage, we have only to search over the region  $y \leq q_i$ , that is

cost 
$$Oq_{i} = min (Op_{j}+p_{j}q_{i})$$
  $j=1,2,3,...m$   
= min  $(Op_{j}+p_{j}q_{i})$   $j=1,2,3,...i$   
= min  $(Op_{j}+p_{j}q_{i})$   $j=1,1,...2,1.$   
(5.2-4)

Furthermore, since the function is single-valued, the search may be terminated where the minimized cost function begins to increase. Then, Eq.(5.2-4) becomes

cost 
$$Oq_i = \min(Op_j + p_jq_i), j=i, i-1, ... il.$$
  
(5.2-5)

where il is the lower limit of the grid counter in the region to be searched. Similarly, for the slope at  $q_i < 0$ , the region to be searched is restricted to

$$j = i, i+1, i+2, \dots ih$$
 (5.2-6)

where ih is the upper limit.

A forward-solution using the partial-search technique described above is shown in Program 5-1. It reduced the

٠,




Figure 5.2-1

.

Slope Characteristics and Searching Region

computing time from 35.1 sec to 15 sec in solving a 20-stage, 100-decision process with 10 sets of the solutions printed out.

## 5.3 COMBINATION OF INVARIANT IMBEDDING AND DYNAMIC

### PROGRAMMING

The technique of searching over a restricted region is effective especially where the absolute values of slopes are small. For the steep curves shown in Fig.5.3-1 (B) and (C), the usefulness of the feature is not as significant. Since dynamic programming is a marching process, the optimum slopes at  $p_2(for l=1,2,...m)$  are known a priori. We may take advantage of this information. Locate  $p_j$  from  $q_i$  using the slope at  $p_i$ , then search several grids in the neighborhood of this predicted position to obtain the optimum value  $p_j$ (Fig. 5.3-1 (D) ). This can be accomplished successfully by joint use of invariant imbedding and dynamic programming[18], that is, predicting the slopes by invariant imbedding and then searching in the neighborhood by dynamic programming.

For a 20-stage, 100-decision process with 10 sets of solutions printed out, the computing time using this combination was 14.1 sec in comparison with 35.1 sec by dynamic programming only, and 15 sec using the partial-searching method. Searching was restricted to  $\pm 2$  grids in the vicinity of the predicted point.





•

Regions to be Searched in Various Cases

•

.

#### 5.4 DYNAMIC PROGRAMMING AND QUASILINEARIZATION

As mentioned previously, the coarse grids used in dynamic programming result in polygonal curves which may deviate significantly from what we know to be exact solution. Finer grids may improve the accuracy of the solution but a too-fine grid introduces a memory problem with the computer. On the other hand, quasilinearization yields very accurate results but is expensive and its convergence depends greatly upon near-correctness of the initial estimate of the solution. In general, a straight line is the simplest initial estimation; however, in the brachistochrone problem the solution converges only where the boundary point does not exceed a half-cycle of a cycloid.

Combined use of dynamic programming and quasilinearization compensates for the weaknesses of each. By this predictor-corrector method, we solve the problem approximately by first using the dynamic programming procedure with very coarse grids, and then take this solution as the initial guess to the solution whose accuracy is improved by a few applications of quasilinearization.

Program 5-3 uses dynamic programming in the main program and quasilinearization as a corrector in external function. In Table 5-1 the results of taking 20x40 grids in dynamic programming, and 2 applications of quasilinearizations for each solution are shown. Computing time was 50.5 sec which would be less than that for quasilinearization.

## 5.5 INVARIANT IMBEDDING AND QUASILINEARIZATION

Another predictor-corrector scheme combines invariant imbedding (used to predict the slopes) and quasilinearization (used to correct the solution resulting from the first and to produce the cost and state functions simultaneously) [18].

Consider a problem beginning at point (c,a). If the starting point at x=a is close to the terminal line x=xo, the slopes at all initial points c, may be estimated as zero and after a few iterations of quasilinearization it converges to the correct value r(c,a). The same procedure is repeated at  $x=a-\Delta x$ ,  $x=a-2\Delta x$ , and so on. In effect, we solve 2000 problems for a 20-stage, 100-decision process. If the range of the independent variable is sufficiently small, we may use invariant imbedding in a straight-forward manner to produce the initial slopes at all initial values in x=0. Using these initial slopes and the other given initial conditions, the differential equation is integrated numerically by the Runge-Kutta method to produce the first estimate, which may be corrected by quasilinearization. This eliminates the timeconsuming quasilinearization steps at the intermediate stages. Of course, by using this procedure no knowledge of the solutions at the intermediate stage can be extracted.

This combination was used in Program 5-4 with one application of quasilinearization. Solutions of a problem with initial value c=200 and free-end conditions were compared with those obtained by quasilinearization with a straightline initial estimate in Table 5-2.

66

# Table 5-1

Minimum Travelling Time Obtained by Joint Use of

Dynamic Programming and Quasilinearization

 $x_T=0, y_T=0, x_T=100\pi, y_T=0\sim400$  feet

•

| У <sub>Т</sub> | D.P.            | D.P. and Q.L.<br>iter=2 | Classical |
|----------------|-----------------|-------------------------|-----------|
| 40             | 6.40467         | 6.36369                 | 6.36233   |
| 30             | 5.95519         | 5•91569                 | 5.91442   |
| 120            | 5.71579         | 5•68095                 | 5.67980   |
| 160            | <b>5</b> °60058 | 5•56864                 | 5.56763   |
| 200            | 5.56509         | 5.53718                 | 5.53633   |
| 240            | 5•58637         | 5•56173                 | 5.56104   |
| 280            | 5.64761         | 5•62579                 | 5.62525   |
| 320            | 5.73690         | 5•71786                 | 5.71746   |
| 360            | 5.84633         | 5•82978                 | 5.82950   |
| 400            | 5.97084         | 5•95570                 | 5.95554   |

## Table 5-2

••

# u(x) Obtained by Joint Use of Invariant Imbedding and Quasilinearization

# Take 100x100 grid points in invariant imbedding 400 discrete points in Q.L.

.

| k   | Q.L.iter=  | =1 | Q.L.iter   | :=2 | I.I.and Q.<br>1ter=1 | L. | Classica   | l  |
|-----|------------|----|------------|-----|----------------------|----|------------|----|
| 40  | •21954105E | 03 | •21985933E | 03  | •21985918E           | 03 | •21985937E | 03 |
| 80  | •23624176E | 03 | •23669814E | 03  | .23669769E           | 03 | •23669809E | 03 |
| 120 | •25041730E | 03 | •25093545E | 03  | •25093470E           | 03 | •25093532E | 03 |
| 160 | •26231297E | 03 | •26286060E | 03  | •26285956E           | 03 | •26286044E | 03 |
| 200 | •27212100E | 03 | •27268004E | 03  | .27267870E           | 03 | •27267995E | 03 |
| 240 | •27999292E | 03 | •28054369E | 03  | •28054209E           | 03 | •28054369E | 03 |
| 180 | •28604860E | 03 | •28656031E | 03  | •28655839E           | 03 | •28656035E | 03 |
| 320 | •29038306E | 03 | •29080698E | 03  | •29080476E           | 03 | •29080707E | 03 |
| 360 | •29307187E | 03 | •29333534E | 03  | •29333279E           | 03 | •29333540E | 03 |
| 400 | •29417494E | 03 | •29417494E | 03  | •29417201E           | 03 | •29417495E | 03 |
|     |            |    |            |     |                      |    |            |    |

. •

69 PROGRAM 5-1 R FORWARD METHOD OF DYNAMIC PROGRAMMING R SEARCHING WITHIN RESTRICTED REGIONS R \$ COMPILE MAD, EXECUTE INTEGER JSTART, JSTEP, SW R ..... SAME AS PROGRAM 3 - 1 R R .... THROUGH L2, FOR I = 0, 1, I .G. IMAX WHENEVER K .E. 1 NT(I) = DT(0,I)P(I,K) = IOTHERWISE ALPHA = 1E36WHENEVER P(I,K-1) .GE. 0 JSTEP = -1JSTART = I WHENEVER JSTART •G• IMAX JSTART = IMAXEND OF CONDITIONAL OTHERWISE JSTEP = 1JSTART = IWHENEVER JSTART .L. O JSTART = 0END OF CONDITIONAL END OF CONDITIONAL SW = 1THROUGH L3, FOR J = JSTART, JSTEP, SW .E. 2 .OR. J.L.O 1.OR. J.G. IMAX TT = T(J) + DT(J,I)WHENEVER TT .L. ALPHA ALPHA = TTBETA = I - JOTHERWISE SW = 2END OF CONDITIONAL L3 NT(I) = ALPHAP(I,K) = BETAEND OF CONDITIONAL L2\_ R ... R SAME AS PROGRAM 3 - 1 R ..... END OF PROGRAM

| RP R O G R A M $5-2$ RBRACHISTOCHRONE PROBLEM WITH FREE END CONDITIONS<br>SOLVED BY JOINT USE OFRDYNAMIC PROGRAMMING AND INVARIANT IMBEDDINGDIMENSION Y(100), T(100), NT(100), JPRED(100), ROLD(100),<br>IP(2200,DIM), DT(1000,01IME)VECTOR VALUES TIME = $2,0,0$ COMPILE MAD, EXECUTE, PRINT OBJECT, DUMPVECTOR VALUES TIME = $2,0,0$ COULVALECE (DIMME)VECTOR VALUES TIME = $2,0,0$ COULVALECE (DIML), (DIM(2),KMAX), (TIME(1), IP2),INTEGER 1, 11, IP1, IP2, IMAX, J, JL, JH, JPRED, IS,IX, KP1, KMAX, P, BETA, FREOSTARTREAD AND PRINT DATA XT, YT, IMAX, KMAX, FREOIP1 = IMAX + 1DX = XT/KMAXDY = YT/IMAXTAN = DY/DXTHROUGH L0, FOR J = 0, 1, J.G. IMAXTHROUGH L0, FOR I = J, 1, I G. IMAXTHROUGH L0, FOR I = J, 1, I G. IMAXTHROUGH L0, FOR I = J, 1, I G. IMAXTHROUGH L0, FOR I = 0, 1, J.G. IMAXTHROUGH L0, FOR I = 0, 1, J.G. IMAXTHROUGH L1, FOR I = 0, 1, I.G. IMAXPI(J, I) = DS/VDT(J, I) = DT(J, I)END OF CONDITIONALOTHROUGH L2, FOR K = KMAX=1, -1, K. «L. OEXECUTE IMBED. (Y:ROLD.OX, DY:MAX, JRED)THROUGH L2, FOR K = CMAX=1, -1, K. «L. OEXECUTE IMBED. (Y:ROLD.OX, DY:MAX, JRED)THROUGH L2, FOR K = CMAX=1, -1, K. «L. OEXECUTE IMBED. (Y:ROLD.OX, DY:MAX, JRED)THROUGH L2, FOR K = CMAX=1, -1, K. «L. OEXECUTE IM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 70                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R       D R O G R A M 5-2         R       BRACHISTOCHRONE PROBLEM WITH FREE END CONDITIONS         R       SOLUED BY JOINT USE OF         R       DYNAMIC PROGRAMMING AND INVARIANT IMBEDDING         COMPILE MAD, EXECUTE, PRINT OBJECT, DUMP         DIMENSION Y(100), T(100), NT(100), JPRED(100], ROLD(100),         1012200,DIM1, DT(1020,0,IIME)         VECTOR VALUES TIME = 2:0;0         COMPLE (DIM(1),KP1), (DIM(2),KMAX), (TIME(1), 1P2),         1(TIME(2), IP1)         INTEGER I, II: PI, IP2, IMAX, J, JL, JH, JPRED, IS,         IX, KP1, KMAX, P, BETA, FREO         IART         READ AND PRINT DATA XT, YT, IMAX, KMAX, FREO         IP1 = IMAX + 1         DX = XT/KMAX         DY = YT/IMAX         TAN = DY/DX         THROUGH L0, FOR J = 0, 1, J •G. IMAX         THROUGH L0, FOR J = 0, 1, J •G. IMAX         THROUGH L0, FOR J = 0, 1, J •G. IMAX         THROUGH L0, FOR J = 0, 1, J •G. IMAX         THROUGH L0, FOR J = 0, 1, J •G. IMAX         THROUGH L0, FOR J = 0, 1, J •G. IMAX         THROUGH L0, FOR I = J, 1, 1 •G. IMAX         WHENEVER I •E. 0 •AND. •E. 0         DT(J,1) = 1E5         OTHROUGH L1, FOR I = 0, 1, I •G. IMAX         P(1,KMAX) = 0         RCLD(I) = 0         THROUGH L2, FO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                                                                                                                             |
| R BRACHISTOCHRONE PROBLEM WITH FREE END CONDITIONS<br>R SOLVED BY JOINT USE OF<br>R DYNAMIC PROGRAMMING AND INVARIANT IMBEDDING<br>COMPILE MAD, EXECUTE, PRINT OBJECT, DUMP<br>DIMENSION Y(100), T(100), NT(100), JPRED(100), ROLD(100),<br>1P(2200,DIMI, DT(10300,TIME)<br>VECTOR VALUES DIM = 2:0;0<br>EQUIVALENCE (DIM(1);KP1), (DIM(2);KMAX), (TIME(1), 1P2),<br>1(TIME(2), IP1)<br>INTEGER I, II, IP1, IP2, IMAX, J, JL, JH, JPRED, IS.<br>1K, KP1, KMAX, P, BETA, FREO<br>IP1 = IMAX + 1<br>IP2 = IMAX + 1<br>DX = XT/KMAX<br>DY = YT/IMAX<br>TAN = DY/OX<br>THROUGH L0, FOR J = 0, 1, J .G. IMAX<br>WHENEVER I :E. 0 .AND. J .E. 0<br>DT(J,1) = 1E5<br>OTHERWISE<br>DS = SORT.(((I-J)*DY) .P2 + DX*DX)<br>V = 4:013 * (SQRT.(J*DY) + SQRT.(I*DY))<br>DT(J,1) = DT/J,1)<br>END OF CONDITIONAL<br>0<br>THROUGH L1, FOR I = 0, 1, I .G. IMAX<br>P(1;KMAX)= 0<br>ROLD(1) = 0<br>T(1) = 1E5<br>NOT CONDITIONAL<br>0<br>THROUGH L2, FOR K = KMAX=1; -1;K .L. 0<br>EXECUTE IMBED, (YROLD;DX;DY,IMAX,JPRED)<br>I HROUGH L3, FOR I = 0, 1, I .G. IMAX<br>P(1;KMAX)= 0<br>ROLD(1) = 0<br>THROUGH L1, FOR K = KMAX=1; -1;K .L. 0<br>EXECUTE IMBED, (YROLD;DX;DY,IMAX,JPRED)<br>I HROUGH L3, FOR K = CMAX=1; -1;K .L. 0<br>EXECUTE IMBED, (YROLD;DX;DY,IMAX,JPRED)<br>I HROUGH L3, FOR K = CMAX=1; -1;K .L. 0<br>EXECUTE IMBED, (YROLD;DX;DY,IMAX,JPRED)<br>THROUGH L3, FOR K = CMAX=1; -1;K .L. 0<br>EXECUTE IMBED, (YROLD;DX;DY,IMAX,JPRED)<br>I HROUGH L3, FOR K = CMAX=1; -1;K .L. 0<br>EXECUTE IMBED, (J ROLD;DX;DY,IMAX,JPRED)<br>THROUGH L3, FOR K = CMAX=1; -1;K .L. 0<br>EXECUTE IMBED, (J ROLD;DX;DY,IMAX,JPRED)<br>THROUGH L3, FOR K = CMAX=1; -1;K .L. 0<br>EXECUTE IMBED, (J ROLD;DX;DY,IMAX,JPRED)<br>THROUGH L3, FOR K = CMAX=1; -1;K .L. 0<br>EXECUTE IMBED, (J ROLD;DX;DY,IMAX,JPRED)<br>THROUGH L3, FOR K = CMAX=1; -1;K .L. 0<br>EXECUTE IMBED, (J ROLD;DX;DY,IMAX,JPRED)<br>THROUGH L3, FOR K = CMAX=1; -1;K .L. 0<br>EXECUTE IMBED, (J ROLD;DX;DY,IMAX,JPRED)<br>THROUGH L3, FOR K = CMAX=1; -1;K .L. 0<br>EXECUTE IMBED, (J ROLD;DX;DY,IMAX,JPRED)<br>THROUGH L3, FOR K = CMAX=1; -1;K .L. 0<br>EXECUTE IMBED, (J ROLD;DX;DY,IMAX,JPRED)<br>THROUGH L3, FOR K = CMAX=1; -1;K .L. 0<br>EXECUTE IMBED, (J ROLD;DX;DY,IMAX,JPRED)<br>TH |                                       | R PROGRAM 5-2                                                                                                                                               |
| <pre>COMPILE MAD, EXECUTE, PRINT_OBJECT, DUMP<br/>DIMENSION Y(100), T(100), NT(100), JPRED(100), ROLD(100),<br/>1P(2200,DIM), DT(10300,TIME)<br/>VECTOR VALUES DIM = 2,0.0<br/>EQUIVALENCE (DIM(1),KP1), (DIM(2),KMAX), (TIME(1), 1P2),<br/>1(TIME(2), IP1)<br/>INTEGER 1, II, IP1, TP2, IMAX, J, JL, JH, JPRED, IS,<br/>1K, KP1, KMAX, P, BETA, FREO<br/>START READ AND PRINT_DATA_XT, YT, IMAX, KMAX, FREQ<br/>IP1 = IMAX + 1<br/>D2 = IMAX + 2<br/>KP1 = KMAX + 1<br/>DX = XT/KMAX<br/>D4 = XT/KMAX<br/>TAN = DY/DX<br/>THROUGH L0, FOR J = 0, 1, J .G. IMAX<br/>MHENEVER I .E. 0 .AND. J .E. 0<br/>DT(J,1) = 1E5<br/>OTHERWISE<br/>D5 = SGRT.(((I-J)*DY) .P.2 + DX*DX)<br/>V = 4.013 * (SGRT.(J*DY) + SGRT.(I*DY))<br/>DT(J,1) = D5/V<br/>DT(J,1) = D5/V<br/>DT(J,1) = D5/V<br/>DT(J,1) = 0.<br/>T(1) = 0.<br/>T(1) = 0.<br/>T(1) = 0.<br/>T(1) = 0.<br/>T(1) = 1.5<br/>DC HROUGH L2, FOR K = KMAX=1, -1, K .L. 0<br/>EXECUTE IMBED. (Y,ROLD,DX,DY,IMAX,JPRED)<br/>THROUGH L3, FOR I = 0, 1, I.G. IMAX<br/>JL = I + JPRED(I) =.2<br/>WHENEVER JL.L.0<br/>JL = 0<br/>END OF CONDITIONAL<br/>JL = I = J + 4.<br/>WHENEVER JL.L.0<br/>JL = 0<br/>END OF CONDITIONAL<br/>JL = I = MAX<br/>JL = I MAX<br/>END OF CONDITIONAL<br/>JL = I = MAX<br/>END OF CONDITIONAL<br/>JL = I = MAX<br/>END OF CONDITIONAL<br/>JL = I = MAX<br/>END OF CONDITIONAL</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | R       BRACHISTOCHRONE PROBLEM WITH FREE END CONDITIONS         R       SOLVED BY JOINT USE OF         R       DYNAMIC PROGRAMMING AND INVARIANT IMBEDDING |
| DIMENSION Y(100), T(100), NT(100), JPRED(100), ROLD(100),<br>1P(2200,DIM), DT(10300,TIME)<br>VECTOR VALUES DIM = 2:0:0<br>EQUIVALENCE (DIM(1),KP1), (DIM(2),KMAX), (TIME(1), IP2),<br>1(TIME(2), IP1)<br>1(TIME(2), IP1)<br>INTEGER I, II, IP1, IP2, IMAX, J, JL, JH, JPRED, IS,<br>IK, KP1, KMAX, P, BETA, FREQ<br>TART READ AND PRINT DATA XT, YT, IMAX, KMAX, FREQ<br>IP2 = IMAX + 1<br>DX = XT/KMAX<br>DY = YT/IMAX<br>TAN = DY/DX<br>THROUGH L0, FOR J = 0, 1, J .G. IMAX<br>WHENEVER I .E. 0 .AND. J .E. 0<br>DT(J,I) = 1E5<br>OTHERWISE<br>DS = SQRT.(((I-J)*DY) .P.2 + DX*DX)<br>V = 4.013 * (SQRT.(J*DY) + SQRT.(I*DY))<br>DT(1,1) = DS/V<br>DT(1,1) = DS/V<br>DT(1,1) = 0.<br>THROUGH L1, FOR I = 0, 1, I .G. IMAX<br>P(I,KMAX) = 0<br>ROLD(I) = 0<br>T(I) = 1*DY<br>1<br>THROUGH L2, FOR K = KMAX-1, -1, K .L. 0<br>EXECUTE IMBED. (Y:ROLD,X),YIMAX,JPRED)<br>THROUGH L2, FOR K = CMAX-1, -1, K .L. 0<br>EXECUTE IMBED. (Y:ROLD,X),YIMAX,JPRED)<br>THROUGH L3, FOR I = 0, 1, I .G. IMAX<br>JL = I + JPRED(1) - 2<br>WHENEVER J .E. 0<br>JL = 0<br>END OF CONDITIONAL<br>JH = IMAX<br>JH = IMAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COMPILE                               | MAD, EXECUTE, PRINT OBJECT, DUMP                                                                                                                            |
| VECTOR VALUES TIME = 2,0,0<br>EQUIVALENCE (DIM(1),KP1), (DIM(2),KMAX), (TIME(1), IP2),<br>I(TIME(2), IP1)<br>INTEGER I, II, IP1, IP2, IMAX, J, JL, JH, JPRED, IS,<br>IK, KP1, KMAX, P, BETA, FREO<br>START<br>READ AND PRINT DATA XT, YT, IMAX, KMAX, FREO<br>IP1 = IMAX + 1<br>D2 = IMAX + 2<br>KP1 = KMAX + 1<br>DX = XT/KMAX<br>DY = YT/IMAX<br>TAN = DY/DX<br>THROUGH L0, FOR J = 0, 1, J.G. IMAX<br>THROUGH L0, FOR I = J, 1, I G. IMAX<br>WHENEVER I .E. 0 AND. J.E. 0<br>D1(J,I) = 1E5<br>OTHERWISE<br>D5 = SORT.(((I-J)*DY) .P.2 + DX*DX)<br>V = 4.013 * (SORT.(J*DY) + SORT.(I*DY))<br>D1(J,I) = D5/V<br>D1(I,J) = D1(J,I)<br>END OF CONDITIONAL<br>0<br>THROUGH L1, FOR I = 0, 1, I .G. IMAX<br>P(I,KMAX)= 0<br>ROLD(1) = 0<br>T(I) = I*DY<br>1<br>THROUGH L2, FOR K = KMAX-1, -1, K .L. 0<br>EXECUTE IMBED. (Y.ROLD,DX,DY,IMAX,JPRED)<br>THROUGH L3, FOR I = 0, 1. I .G. IMAX<br>JL = I + JPRE(I) - 2<br>WHENEVER JL .e. 0<br>JL = 0<br>END OF CONDITIONAL<br>JH = JL + 4<br>WHENEVER JL .e. 0<br>END OF CONDITIONAL<br>JH = JL + 4<br>WHENEVER JH .G. IMAX<br>JH = IMAX<br>END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | DIMENSION Y(100), T(100), NT(100), JPRED(100), ROLD(100),<br>1P(2200, DIM), DT(10300, TIME)<br>VECTOR VALUES DIM = 2.000                                    |
| INTEGER I, II, IP1, IP2, IMAX, J, JL, JH, JPRED, IS,         IK, KP1, KMAX, P, BETA, FREQ         START         READ AND PRINT DATA XT, YT, IMAX, KMAX, FREQ         IP1 = IMAX + 1         IP2 = IMAX + 2         KP1 = KMAX + 1         DX = XT/KMAX         DY = YT/IMAX         TAN = DY/DX         THROUGH LO, FOR J = 0, 1, J •G• IMAX         WHENEVER I •E • 0 •AND• J •E• 0         DT (J,I) = 1E5         OTHERWISE         DS = SQRT•(((I-J)*DY) •P•2 + DX*DX)         V = 4.013 * (SQRT•(J*DY) + SQRT•(I*DY))         DT (J,I) = DS/V         DT (J,I) = DS/V         DT (J,I) = DS/V         DT (J,J) = DT (J,I)         END OF CONDITIONAL         .0         THROUGH L1, FOR I = 0, 1, I •G• IMAX         P(1 KMAX)= 0         ROLD(I) = 0         T(I) = 0.         Y(I) = I*DY         1         THROUGH L2, FOR K = KMAX=1, -1, K •L• 0         EXECUTE IMBED• (Y,ROLD,DX,DY,IMAX,JPRED)         THROUGH L3, FOR I = 0, 1, I •G• IMAX         JL = I + JPRED(I) - 2         WHENEVER JL •L• 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | VECTOR VALUES TIME = 2,0,0<br>EQUIVALENCE (DIM(1),KP1), (DIM(2),KMAX), (TIME(1), IP2),                                                                      |
| STARTREAD AND PRINT DATA XT, YT, IMAX, KMAX, FREQIP1 = IMAX + 1IP2 = IMAX + 2KP1 = KMAX + 1IP2 = IMAX + 2DX = XT/KMAXDYDY = YT/IMAXTAN = DY/DXTHROUGH LO, FOR J = 0, 1, J •G• IMAXWHENEVER I •E• 0 •AND• J •E• 0DT(J;1) = IE5OTHERWISEDS = SGRT.(((I-J)*DY) •P•2 + DX*DX)V = 4•013 * (SQRT.(J*DY) + SQRT.(I*DY))DT(I;1) = DT(J;1)END OF CONDITIONAL0T(I) = 0T(I) = 0.Y(I) = I*DY1THROUGH L2* FOR K = KMAX-1* -1* K *L• 0EXECUTE IMBED• (Y*ROLD*DX*DY*IMAX*JPRED)THROUGH L3* FOR I = 0.Y(I) = I*DY1THROUGH L3* FOR I = 0.YI) = JE*DY1THROUGH L4* FOR I = 0.YI) = I*DYITHROUGH L4* FOR I = 0.THROUGH L4* FOR I = 0.JL = I + JPRED(I) - 2WHENEVER JL_•L•OJL = 0CONDITIONALJH = JL + 4WHENEVER JH •G• IMAXJH = IMAXEND OF CONDITIONALJH = IMAXEND OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | INTEGER I, II, IPI, IP2, IMAX, J, JL, JH, JPRED, IS,<br>IK, KP1, KMAX, P, BETA, FREQ                                                                        |
| <pre>IP1 = IMAX + 1<br/>IP2 = IMAX + 2<br/>KP1 = KMAX + 1<br/>DX = XT/KMAX<br/>DY = YT/IMAX<br/>TAN = DY/DX<br/>THROUGH L0, FOR J = 0, 1, J •G• IMAX<br/>THROUGH L0, FOR I = J, 1, I •G• IMAX<br/>WHENEVER I •E• 0 •AND• J •E• 0<br/>DT(J,1) = IE5<br/>OTHERWISE<br/>DS = SORT•(((I-J)*DY) •P•2 + DX*DX)<br/>V = 4•013 * (SQRT•(J*DY) + SQRT•(I*DY))<br/>DT(J,1) = DS/V<br/>DT(J,1) = DS/V<br/>DT(I,J) = DT(J,1)<br/>END OF CONDITIONAL<br/>0<br/>THROUGH L1, FOR I = 0, 1, I •G• IMAX<br/>P(I,KMAX)= 0<br/>ROLD(I) = 0<br/>T(I) = 0<br/>Y(I) = I*DY<br/>1<br/>THROUGH L2, FOR K = KMAX=1, -1, K •L• 0<br/>EXECUTE IMBED• (Y*ROLD•DX*DY*IMAX*JPRED)<br/>THROUGH L3, FOR I = 0, 1, I •G• IMAX<br/>JL = 1 + JRED(I) - 2<br/>WHENEVER JL_•L• 0<br/>JL = 0<br/>END OF CONDITIONAL<br/>JH = JL + 4<br/>WHENEVER JH •G• IMAX<br/>JH = IMAX<br/>END OF CONDITIONAL<br/>JH = IMAX<br/>END OF CONDITIONAL<br/>JH = IMAX<br/>END OF CONDITIONAL<br/>JH = IMAX<br/>END OF CONDITIONAL<br/>H = JMAX<br/>END OF CONDITIONAL<br/>H = IMAX<br/>END OF CONDITIONAL<br/>H = IMAX<br/>END OF CONDITIONAL<br/>H = IMAX<br/>END OF CONDITIONAL<br/>H = IMAX<br/>END OF CONDITIONAL</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | START                                 | READ AND PRINT DATA XT, YT, IMAX, KMAX, FREQ                                                                                                                |
| Intervent       Intervent         KP1 = KMAX + 1         DX = XT/KMAX         DY = YT/IMAX         TAN = DY/DX         THROUGH LO, FOR J = 0, 1, J •G• IMAX         WHENEVER I •E• 0 •AND• J •E• 0         DT(J,I) = 1E5         OTHERWISE         DS = SQRT•(((I-J)*DY) •P•2 + DX*DX)         V = 4•013 * (SQRT•(J*DY) + SQRT•(I*DY))         DT(J,I) = DS/V         DT(J,I) = DT(J,I)         END OF CONDITIONAL         O         THROUGH L1, FOR I = 0, 1, I •G• IMAX         P(1,KMAX)= 0         ROLD(I) = 0.         T(I) = 0.         Y(I) = I*DY         1         THROUGH L2, FOR K = KMAX=1, -1, K •L• 0         EXECUTE IMBED• (Y,ROLD,DX,DY,IMAX,JPRED)         THROUGH L3, FOR I = 0, 1, I •G• IMAX         JL = I + JPRED(I) - 2         WHENEVER_JL_•L•0         JL = I + JPRED(I) - 2         WHENEVER_JL_•L•0         JL = 0         END OF CONDITIONAL         JH = JL + 4         WHENEVER JH •G• IMAX         JH = IMAX         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | IP1 = IMAX + 1                                                                                                                                              |
| DX = XT/KMAX<br>DY = YT/IMAX<br>TAN = DY/DX<br>THROUGH LO, FOR J = 0, 1, J •G• IMAX<br>THROUGH LO, FOR I = J, 1, I •G• IMAX<br>WHENEVER I •E• 0 •AND• J •E• 0<br>DT(J,I) = 1E5<br>OTHERWISE<br>DS = SQRT•(((I-J)*DY) •P•2 + DX*DX)<br>V = 4•013 * (SQRT•(J*DY) + SQRT•(I*DY))<br>DT(J,I) = DS/V<br>DT(I+J) = DT(J+I)<br>END OF CONDITIONAL<br>0<br>THROUGH L1, FOR I = 0, 1• I •G• IMAX<br>P(I*MAX)= 0<br>ROLD(I) = 0<br>T(I) = 0•<br>Y(I) = I*DY<br>1<br>THROUGH L2, FOR K = KMAX-1, -1, K •L• 0<br>EXECUTE IMBED• (Y*ROLD•DX,DY*IMAX,JPRED)<br>THROUGH L3, FOR I = 0, 1• I •G• IMAX<br>JL = I + JPRED(I) - 2<br>WHENEVER JL •L• 0<br>JL = 0<br>END OF CONDITIONAL<br>JH = JL + 4<br>WHENEVER JH •G• IMAX<br>JH = IMAX<br>END OF CONDITIONAL<br>JH = IMAX<br>END OF CONDITIONAL<br>JH = IMAX<br>END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | KP1 = KMAX + 1                                                                                                                                              |
| DY = YT/IMAX<br>TAN = DY/DX<br>THROUGH L0, FOR J = 0, 1, J .G. IMAX<br>THROUGH L0, FOR I = J, 1, I .G. IMAX<br>WHENEVER I .E. 0 .AND. J .E. 0<br>DT(J,1) = 1E5<br>OTHERWISE<br>DS = SORT.(((I-J)*DY) .P.2 + DX*DX)<br>V = 4.013 * (SORT.(J*DY) + SORT.(I*DY))<br>DT(J,1) = DS/V<br>DT(J,1) = DS/V<br>DT(I,J) = DT(J,1)<br>END_OF_CONDITIONAL<br>0<br>THROUGH L1, FOR I = 0, 1, I .G. IMAX<br>P(I,*KMAX) = 0<br>ROLD(I) = 0<br>T(I) = 0.<br>Y(I) = I*DY<br>1<br>THROUGH L2, FOR K = KMAX=1, -1, K .L. 0<br>EXECUTE IMBED. (Y.ROLD.DX.DY.IMAX,JPRED)<br>THROUGH L3, FOR I = 0, 1, I .G. IMAX<br>JL = I + JPRED(I) - 2<br>WHENEVER JL .L. 0<br>JL = 0<br>END_OF_CONDITIONAL<br>JH = JL + 4<br>WHENEVER JH .G. IMAX<br>JH = IMAX<br>END_OF_CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | DX = XT/KMAX                                                                                                                                                |
| TAN = DY/DX         THROUGH L0, FOR J = 0, 1, J.G. IMAX         THROUGH L0, FOR I = J, 1, I.G. IMAX         WHENEVER I.E. 0         DT(J,I) = 1E5         OTHERWISE         DS = SQRT.(((I-J)*DY) *P.2 + DX*DX)         V = 4.013 * (SQRT.(J*DY) + SQRT.(I*DY))         DT(J,I) = DS/V         DT(I,J) = DT(J,I)         END OF CONDITIONAL         0         THROUGH L1, FOR I = 0, 1, I.G. IMAX         P(I;KMAX) = 0         ROLD(I) = 0         T(I) = 0.         Y(I) = I*DY         1         THROUGH L2, FOR K = KMAX-1, -1, K.et.0         EXECUTE IMBED. (Y,ROLD,DX,DY,IMAX,JPRED)         THROUGH L3, FOR I = 0, 1, I.G. IMAX         JL = I + JPRED(I) - 2         WHENEVER JL_et.0         JL = 0         END OF CONDITIONAL         JH = JL + 4         WHENEVER JH .G. IMAX         JH = JMX         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | DY = YT/IMAX                                                                                                                                                |
| THROUGH L0, FOR J = 0, 1, J .G. IMAX<br>THROUGH L0, FOR I = J, 1, I .G. IMAX<br>WHENEVER I .E. 0 .AND. J .E. 0<br>DT(J,I) = 1E5<br>OTHERWISE<br>DS = SQRT.(((I-J)*DY) .P.2 + DX*DX)<br>V = 4.013 * (SQRT.(J*DY) + SQRT.(I*DY))<br>DT(J,I) = D5/V<br>DT(J,I) = DT(J,I)<br>END OF CONDITIONAL<br>0<br>THROUGH L1. FOR I = 0, 1, I .G. IMAX<br>P(I,KMAX)= 0<br>ROLD(I) = 0<br>T(I) = 0.<br>Y(I) = I*DY<br>1<br>THROUGH L2. FOR K = KMAX-1, -1, K .L. 0<br>EXECUTE IMBED. (Y.ROLD.DX.DY.IMAX.JPRED)<br>THROUGH L3. FOR I = 0, 1, I .G. IMAX<br>JL = I + JPRED(I) - 2<br>WHENEVER JL.L. 0<br>JL = 0<br>END OF CONDITIONAL<br>JH = JL + 4<br>WHENEVER JH .G. IMAX<br>JH = IMAX<br>END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | TAN = DY/DX                                                                                                                                                 |
| THROUGH L0, FOR I = J, I, I •G• IMAX         WHENEVER I •E• 0 •AND• J •E• 0         DT(J,I) = 1E5         OTHERWISE         DS = SQRT•(((I-J)*DY) •P•2 + DX*DX)         V = 4•013 * (SQRT•(J*DY) + SQRT•(I*DY))         DT(J,I) = DS/V         DT(I,J) = DT(J,I)         END OF CONDITIONAL         .0         THROUGH L1, FOR I = 0, 1, I •G• IMAX         P(I,KMAX)= 0         ROLD(I) = 0         T(I) = 0.         Y(I) = I*DY         1         THROUGH L2, FOR K = KMAX=1, -1, K •L• 0         Y(I) = I*DY         1         THROUGH L3, FOR I = 0, 1, I •G• IMAX         JL = I + JPRED.         Y(I) = I*DP         YI         UHENEVER JL_•L•O         JL = I + JPRED(I) = 2         WHENEVER JL_•L•O         JL = 0         END OF CONDITIONAL         JH = JL + 4         WHENEVER JH •G• IMAX         JH = IMAX         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | THROUGH LO, FOR $J = 0$ , 1, $J \cdot G \cdot IMAX$                                                                                                         |
| WHENEVER I •E• 0 •AND• J •E• 0         DT(J,I) = 1E5         OTHERWISE         DS = SQRT•(((I-J)*DY) •P•2 + DX*DX)         V = 4•013 * (SQRT•(J*DY) + SQRT•(I*DY))         DT(J,I) = DS/V         DT(J,I) = DT(J,I)         END OF CONDITIONAL         0         THROUGH L1• FOR I = 0• 1• I •G• IMAX         P(I•KMAX)= 0         ROLD(I) = 0         T(I) = 0.         Y(I) = I*DY         1         THROUGH L2• FOR K = KMAX=1• -1• K •L• 0         EXECUTE IMBED• (Y•ROLD•DX•DY•IMAX•JPRED)         THROUGH L3• FOR I = 0• 1• I •G• IMAX         JL = I + JPRED(I) - 2         WHENEVER JL•L•         JL = 0         END OF CONDITIONAL         JH = JL + 4         WHENEVER JH •G• IMAX         JH = IMAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | THROUGH LO, FOR $I = J$ , $I$ , $I \cdot G \cdot IMAX$                                                                                                      |
| OTHERWISE         DS = SQRT.(((I-J)*DY) •P•2 + DX*DX)         V = 4.013 * (SQRT.(J*DY) + SQRT.(I*DY))         DT(J,I) = DS/V         DT(J,J) = DT(J,I)         END OF CONDITIONAL         0         THROUGH L1, FOR I = 0, 1, I •G• IMAX         P(I,KMAX)= 0         ROLD(I) = 0         T(I) = I*DY         1         THROUGH L2, FOR K = KMAX-1, -1, K •L• 0         EXECUTE IMBED• (Y,ROLD,DX,DY,IMAX,JPRED)         THROUGH L3, FOR I = 0, 1, I •G• IMAX         JL = I + JPRED(I) - 2         WHENEVER JL •L• 0         JL = 0         END OF CONDITIONAL         JH = JL + 4         WHENEVER JH •G• IMAX         JH = IMAX         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | WHENEVER I .E. O .AND. J .E. O                                                                                                                              |
| DIHERWISE<br>DS = SQRT.(((I-J)*DY) *P.2 + DX*DX)<br>V = 4.013 * (SQRT.(J*DY) + SQRT.(I*DY))<br>DT(J+I) = DS/V<br>DT(I+J) = DT(J+I)<br>END OF CONDITIONAL<br>0<br>THROUGH L1. FOR I = 0, 1. I .G. IMAX<br>P(I+KMAX)==0<br>ROLD(I) = 0<br>T(I) = 0.<br>Y(I) = I*DY<br>1<br>THROUGH L2. FOR K = KMAX-11. K .L. 0<br>EXECUTE IMBED. (Y+ROLD.D.X.DY.IMAX.JPRED)<br>THROUGH L3. FOR I = 0. 1. G. IMAX<br>JL = I + JPRED(I) - 2<br>WHENEVER JLL. 0<br>JL = 0<br>END OF CONDITIONAL<br>JH = JL + 4<br>WHENEVER JH .G. IMAX<br>JH = IMAX<br>END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | $DI(J_{j}I) = IED$                                                                                                                                          |
| US = SURT (((1=5)+0+2+0A+0A)         V = 4.013 * (SQRT.(J*DY) + SQRT.(I*DY))         DT(J,I) = DS/V         DT(I,J) = DT(J,I)         END OF CONDITIONAL         0         THROUGH L1, FOR I = 0, 1, I .G. IMAX         P(I,KMAX)= 0         ROLD(I) = 0         T(I) = 0.         Y(I) = I*DY         1         THROUGH L2, FOR K = KMAX-1, -1, K .L. 0         EXECUTE IMBED.         (Y,ROLD.DX,DY,IMAX,JPRED)         THROUGH L3, FOR I = 0, 1, I .G. IMAX         JL = I + JPRED(I) = 2         WHENEVER JL .L. 0         JL = 0         END OF CONDITIONAL         JH = JL + 4         WHENEVER JH .G. IMAX         JH = IMAX         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · · | O(HERWISE                                                                                                                                                   |
| V       = 4.013 × (SKT.(J*DT) + SKT.(I*DT)         DT(J,I) = DS/V         DT(I,J) = DT(J,I)         END OF CONDITIONAL         0         THROUGH L1, FOR I = 0, 1, I •G• IMAX         P(I,KMAX)= 0         ROLD(I) = 0         T(I) = 0.         Y(I) = I*DY         1         THROUGH L2, FOR K = KMAX-1, -1, K •L• 0         EXECUTE IMBED• (Y,ROLD,DX,DY,IMAX,JPRED)         THROUGH L3, FOR I = 0, 1, I •G• IMAX         JL = I + JPRED(I) - 2         WHENEVER JL.•L• 0         JL = 0         END OF CONDITIONAL         JH = JL + 4         WHENEVER JH •G• IMAX         JH = IMAX         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | $DS = SQRI_{\bullet}(((I - J) + DY) + P_{\bullet}Z + DX + DX)$                                                                                              |
| DI(I,J) = DJ(J,I)<br>END OF CONDITIONAL<br>O<br>THROUGH L1, FOR I = 0, 1, I •G• IMAX<br>P(I,KMAX)= 0<br>ROLD(I) = 0<br>T(I) = 0.<br>Y(I) = I*DY<br>1<br>THROUGH L2, FOR K = KMAX=1, -1, K •L• 0<br>EXECUTE IMBED• (Y,ROLD,DX,DY,IMAX,JPRED)<br>THROUGH L3, FOR I = 0, 1, I •G• IMAX<br>JL = I + JPRED(I) - 2<br>WHENEVER JL.•L• 0<br>JL = 0<br>END OF CONDITIONAL<br>JH = JL + 4<br>WHENEVER JH •G• IMAX<br>JH = IMAX<br>END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | $V = 4_0 UI3 \times (SQRI_0(J \times DY) + SQRI_0(I \times DY))$                                                                                            |
| END_OF_CONDITIONAL<br>END_OF_CONDITIONAL<br>O<br>THROUGH_L1, FOR I = 0, 1, I .G. IMAX<br>P(I,KMAX)=_0<br>ROLD(I) = 0<br>T(I) = 0.<br>Y(I) = I*DY<br>1<br>THROUGH_L2, FOR K = KMAX-1, -1, K .L. 0<br>EXECUTE IMBED. (Y,ROLD,DX,DY,IMAX,JPRED)<br>THROUGH_L3, FOR I = 0, 1, I .G. IMAX<br>JL = I + JPRED(I) - 2<br>WHENEVER_JLL. 0<br>JL = 0<br>END_OF_CONDITIONAL<br>JH = JL + 4<br>WHENEVER_JH .G. IMAX<br>JH = IMAX<br>END_OF_CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | $DT(T_0 I) = DT(I_0 I)$                                                                                                                                     |
| O       THROUGH L1, FOR I = 0, 1, I •G• IMAX         P(I,KMAX)= 0         ROLD(I) = 0         T(I) = 0.         Y(I) = I*DY         1         THROUGH L2, FOR K = KMAX-1, -1, K •L• 0         EXECUTE IMBED• (Y,ROLD,DX,DY,IMAX,JPRED)         THROUGH L3, FOR I = 0, 1, I •G• IMAX         JL = I + JPRED(I) - 2         WHENEVER JL •L• 0         JL = 0         END OF CONDITIONAL         JH = JL + 4         WHENEVER JH •G• IMAX         JH = IMAX         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | END OF CONDITIONAL                                                                                                                                          |
| THROUGH L1, FOR I = 0, 1, I •G• IMAX         P(I,KMAX) = 0         ROLD(I) = 0         T(I) = 0.         Y(I) = I*DY         1         THROUGH L2, FOR K = KMAX-1, -1, K •L• 0         EXECUTE IMBED• (Y,ROLD,DX,DY,IMAX,JPRED)         THROUGH L3, FOR I = 0, 1, I •G• IMAX         JL = I + JPRED(I) - 2         WHENEVER JL_•L•_0         JL = 0         END OF CONDITIONAL         JH = JL + 4         WHENEVER JH •G• IMAX         JH = IMAX         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0                                    |                                                                                                                                                             |
| P(I,KMAX) = 0         ROLD(I) = 0         T(I) = 0.         Y(I) = I*DY         1         THROUGH L2, FOR K = KMAX-1, -1, K .L. 0         EXECUTE IMBED. (Y,ROLD,DX,DY,IMAX,JPRED)         THROUGH L3, FOR I = 0, 1, I .G. IMAX         JL = I + JPRED(I) - 2         WHENEVER JL .L. 0         JL = 0         END OF CONDITIONAL         JH = JL + 4         WHENEVER JH .G. IMAX         JH = IMAX         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | THROUGH L1. FOR I = 0. 1. I .G. IMAX                                                                                                                        |
| ROLD(I) = 0         T(I) = 0.         Y(I) = I*DY         1         THROUGH L2, FOR K = KMAX-1, -1, K .L. 0         EXECUTE IMBED. (Y,ROLD,DX,DY,IMAX,JPRED)         THROUGH L3, FOR I = 0, 1, I .G. IMAX         JL = I + JPRED(I) - 2         WHENEVER JLL. 0         JL = 0         END OF CONDITIONAL         JH = JL + 4         WHENEVER JH .G. IMAX         JH = IMAX         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | $P(t \cdot KM\Delta X) = 0$                                                                                                                                 |
| T(I) = 0. $Y(I) = I*DY$ $THROUGH L2, FOR K = KMAX-1, -1, K .L. 0$ $EXECUTE IMBED. (Y,ROLD,DX,DY,IMAX,JPRED)$ $THROUGH L3, FOR I = 0, 1, I .G. IMAX$ $JL = I + JPRED(I) - 2$ $WHENEVER JL .L. 0$ $JL = 0$ $END OF CONDITIONAL$ $JH = JL + 4$ $WHENEVER JH .G. IMAX$ $JH = IMAX$ $END OF CONDITIONAL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · · | ROLD(I) = 0                                                                                                                                                 |
| Y(I) = I*DY<br>THROUGH L2, FOR K = KMAX-1, -1, K .L. 0<br>EXECUTE IMBED. (Y,ROLD,DX,DY,IMAX,JPRED)<br>THROUGH L3, FOR I = 0, 1, I .G. IMAX<br>JL = I + JPRED(I) - 2<br>WHENEVER JLL. 0<br>JL = 0<br>END OF CONDITIONAL<br>JH = JL + 4<br>WHENEVER JH .G. IMAX<br>JH = IMAX<br>END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | T(I) = 0.                                                                                                                                                   |
| 1         THROUGH_L2, FOR K = KMAX-1, -1, K .L. 0         EXECUTE IMBED. (Y,ROLD,DX,DY,IMAX,JPRED)         THROUGH_L3, FOR I = 0, 1, I .G. IMAX         JL = I + JPRED(I) - 2         WHENEVER_JLL. 0         JL = 0         END OF CONDITIONAL         JH = JL + 4         WHENEVER JH .G. IMAX         JH = IMAX         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | Y(I) = I * DY                                                                                                                                               |
| THROUGH L2, FOR K = KMAX-1, -1, K .L. 0         EXECUTE IMBED. (Y,ROLD,DX,DY,IMAX,JPRED)         THROUGH L3, FOR I = 0, 1, I .G. IMAX         JL = I + JPRED(I) - 2         WHENEVER JLL. 0         JL = 0         END OF CONDITIONAL         JH = JL + 4         WHENEVER JH .G. IMAX         JH = IMAX         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .1                                    |                                                                                                                                                             |
| EXECUTE IMBED. (Y,ROLD,DX,JY,IMAX,JPRED)<br>THROUGH L3, FOR I = 0, 1, I .G. IMAX<br>JL = I + JPRED(I) - 2<br>WHENEVER JLL.O<br>JL = 0<br>END OF CONDITIONAL<br>JH = JL + 4<br>WHENEVER JH .G. IMAX<br>JH = IMAX<br>END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ······                                | THROUGH L2, FOR $K = KMAX-1$ , -1, $K \cdot L \cdot O$                                                                                                      |
| THROUGH L3, FOR I = 0, 1, I •G• IMAX         JL = I + JPRED(I) - 2         WHENEVER JL_•L•         JL = 0         END OF CONDITIONAL         JH = JL + 4         WHENEVER JH •G• IMAX         JH = IMAX         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | EXECUTE IMBED. (Y, ROLD, DX, DY, IMAX, JPRED)                                                                                                               |
| JL = I +_JPRED(I) - 2         WHENEVER_JL_•L•O         JL = 0         END OF CONDITIONAL         JH = JL + 4         WHENEVER_JH •G• IMAX         JH = IMAX         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | THROUGH L3, FOR $I = 0$ , 1, $I \cdot G \cdot IMAX$                                                                                                         |
| WHENEVER_JLL.O         JL = 0         END OF CONDITIONAL         JH = JL + 4         WHENEVER JH .G. IMAX         JH = IMAX         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | JL = I + JPRED(I) - 2                                                                                                                                       |
| JL = 0<br>END OF CONDITIONAL<br>JH = JL + 4<br>WHENEVER JH •G• IMAX<br>JH = IMAX<br>END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | WHENEVER_JLL.O                                                                                                                                              |
| END OF CONDITIONAL<br>JH = JL + 4<br>WHENEVER JH •G• IMAX<br>JH = IMAX<br>END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | JL = 0                                                                                                                                                      |
| JH = JL + 4         WHENEVER JH •G• IMAX         JH = IMAX         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | END OF CONDITIONAL                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                                                             |
| JH = IMAX<br>END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                              | WHENEVER JH .G. IMAX                                                                                                                                        |
| END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | JH = IMAX                                                                                                                                                   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                              | END OF CONDITIONAL                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                              |                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                                                             |

|                                        | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | /1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | $\frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | 1(0) = 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | $\frac{1}{1000} = \frac{1}{1000} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                        | $ I  =  (J) + D (I_{9}J)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                        | WHENEVER TT .L. ALPHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | BETA = J-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| _                                      | END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| L4                                     | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | NT(I) = ALPHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | P(I,K) = BETA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | ROLD(I) = P(I,K) * TAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | PRINT COMMENT \$0\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                        | PRINT COMMENT \$0\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                        | DRINT RESULTS K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ·                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | $\frac{1}{1} + \frac{1}{1} + \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | PRINT FORMAT BRACHIS IS Y(I)S P(ISK)S NI(I)S JPRED(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                        | END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        | T(I) = NT(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| L5                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| L2                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | PRINT COMMENT \$0 THE BEST POLICY \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | THROUGH L6, FOR II = FREQ, FREQ, II .G. 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | YO = II*DY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | PRINT COMMENT \$0\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                        | PRINT COMMENT \$ THE STARTING CONDITIONAL IS\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        | PRINT RESULTS II, YO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | PRINT COMMENT \$0 K NT(I) Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | 1 SLOPE SLOPE(INTEGER)\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u> </u>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | THROUGH 17. FOR $K = 0.1$ . K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | $RF = P(I \cdot K) * TAN$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                        | PRINT FORMAT POLICY, K. NT(I), Y(I), RF. P(I,K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | T = T = D(T_K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - <u>L</u> /                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LO                                     | VECTOR VALUES ROACHT - 5 1110 1520 0 1110 1520 0 111540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ······································ | $\frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | VELIUK VALUES PULICI = $\overline{D}$ IIIU $\overline{D}$ \overline |
|                                        | IKANSEEK IU STAKT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        | END OF PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

\_

| 5 COMPIL | E MAD, PRINT OBJECT, DUMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | EXTERNAL FUNCTION (Y)ROLD DX DY JIMAX DPRED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | INTEGER TA IMAYA LA IPREDA P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | ENTRY TO IMBED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | Y(0) = 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | TAN = DY/DX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | THROUGH L1, FOR $I = 0, 1, I \cdot G \cdot IMAX$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | S = Y(I) + ROLD(I)*DX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | WHENEVER • ABS • (ROLD(I)) • L • 1E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | R = ROLD(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | OR WHENEVER ROLD(I) •L• 0•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| o        | $\frac{1}{1} + \frac{1}{1} + \frac{1}$ |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | R = (ROLD(J) - ROLD(J-1)) * (S-Y(J-1))/DY + ROLD(J-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | OTHERWISE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | THROUGHL3, FOR J=I,1,J.E.IMAX .OR.(S.G.Y(J).AND.S.LE.Y(J+1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | WHENEVER J .E. IMAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | R = ROLD(IMAX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | $\frac{1}{2} = \frac{1}{2} = \frac{1}$ |
|          | $\frac{1}{1000} = \frac{1}{1000} = 1$                                                                                                                                                                                                   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | WHENEVER ABS (ROLD(I)) G 1E6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | ROLD(I) = 1E6*(ROLD(I)/(ABS(ROLD(I))))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | $RNEW(I) = R+(1_{\bullet}+ROLD(I)*ROLD(I))*DX/(2_{\bullet}*Y(I))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | JPRED(I) = RNEW(I)/TAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _1       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | $\frac{1 + ROUGH L4}{2} + \frac{1}{2} + 1$           |
|          | ROLD(I) = RNEW(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - 4      | FUNCTION RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | END OF FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DATA     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| XT=314.  | 15926, YT=400., IMAX=100, FREQ=10, KMAX=20*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|                                       | 73                                                                |
|---------------------------------------|-------------------------------------------------------------------|
|                                       |                                                                   |
|                                       |                                                                   |
|                                       |                                                                   |
|                                       |                                                                   |
|                                       | R BRACHISTOCHRONE PROBLEM SOLVED BY JOINT USE OF                  |
|                                       | R DYNAMIC_PROGRAMMING_AND_QUASILINEARIZATION                      |
| ·····                                 |                                                                   |
| 5 COMPI                               | LE MAD, EXECUTE, PRINT OBJECT, DUMP                               |
|                                       | - DIMENSION Y(80), T(80), NT(80), P(1800, DIM), DT(6600, TIME), - |
|                                       | 1YR(6), FR(6), QR(6), PA(800), H1(800), H2(800), DPA(800),        |
|                                       | 2DH1(800), DH2(800), U(800), W(800)                               |
|                                       | VECTOR VALUES DIM = 2,0,0                                         |
|                                       | VECTOR VALUES TIME = 2,0,0                                        |
|                                       | EQUIVALENCE (DIM(1), KP1), (DIM(2), KMAX), (TIME(1), IP2),        |
|                                       | I(TIME(2), IP1)                                                   |
|                                       | INTEGER I. IMAX. IFREQ. IP1. IP2. II. ITER. ITMAX.                |
|                                       | 1J,                                                               |
|                                       | 2 K, KK, KMAX, QK, QKMAX, KP1, KP,                                |
|                                       | 3P, BETA, R                                                       |
| START                                 |                                                                   |
|                                       | READ AND PRINT DATA XT, YT, YO, IMAX, KMAX, KK, ITMAX, IFREQ      |
|                                       | $\frac{QKMAX}{QKMAX} = KK * KMAX$                                 |
|                                       | $\frac{NP}{IP1} = IMAX + 1$                                       |
|                                       | IP2 = IMAX + 2                                                    |
|                                       | KP1 = KMAX + 1                                                    |
|                                       | DX = XT/KMAX                                                      |
| · · · · · · · · · · · · · · · · · · · | DY = (YT - YO) / IMAX                                             |
|                                       | H = DX/KK                                                         |
|                                       | IAN = DY/DX                                                       |
|                                       | EPS - 100.                                                        |
|                                       | R CONSTRUCTING MATRIX FOR DELTA T                                 |
|                                       | THROUGH LO, FOR J = 0,1, J.G.IMAX                                 |
| <u>.</u>                              | THROUGH LO, FOR $I = J$ , 1, $I \cdot G \cdot IMAX$               |
|                                       | WHENEVER I .E. O .AND. J .E. O                                    |
|                                       | DT(J) = 1E5                                                       |
|                                       | $DS = SORT_{(((I-I)*DY)_P_2 + DY*DY)}$                            |
|                                       | $V = 4.013 \times (SORT_{0}(J*DY) + SORT_{0}(J*DY))$              |
|                                       | DT(J,I) = DS/V                                                    |
|                                       | $DT(I \downarrow J) = DT(J \downarrow I)$                         |
|                                       | END OF CONDITIONAL                                                |
| .0                                    |                                                                   |
|                                       | P DYNAMIC PROCRAMMING - FORMARD SOLUTION                          |
|                                       | P(0.0) = 0                                                        |
|                                       | PRINT COMMENT \$0 I Y                                             |
|                                       | 1 P(I,KMAX) NY \$                                                 |
|                                       |                                                                   |
| ·                                     |                                                                   |
|                                       |                                                                   |
|                                       |                                                                   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THROUGH L1, FOR K = 1, 1, K .G. KMAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THROUGH L2, FOR I = 0, 1, I .G. IMAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WHENEVER K .E. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NT(I) = DT(0,I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P(I,K) = I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OTHERWISE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALPHA = 1E37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THROUGH L3, FOR $J = 0$ , 1, $J \cdot G \cdot IMAX$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TT = F(J) + DT(J,I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WHENEVER TT .L. ALPHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALPHA = TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BETA = I-J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NT(I) = ALPHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P(I,K) = BETA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · <del>· · · · · · · · · ·</del>     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THROUGH L4, FOR I = 0,1, I.G.IMAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WHENEVER K •E• KMAX •AND• (I/IFREQ)*IFREQ •E•I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Y(I) = I * DY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PRINT FORMAT BRACHI, I, Y(I), P(I,K), NT(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | END_OF_CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T(T) = NT(T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 4<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······································ |
| 4<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TION                                   |
| +<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TION                                   |
| 4<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC<br>THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TION                                   |
| +<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC<br>THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ<br>UT = II*DY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TION                                   |
| 4<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC<br>THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ<br>UT = II*DY<br>UO = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TION                                   |
| +<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC<br>THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ<br>UT = II*DY<br>UO = 0.<br>PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TION                                   |
| ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC<br>THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ<br>UT = II*DY<br>UO = 0.<br>PRINT COMMENT_\$1 SOLUTION WITH END POINT AT \$<br>PRINT_RESULTS_II, UT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TION                                   |
| ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R       IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC         THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ         UT = II*DY         U0 = 0.         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT_RESULTS_II,         UT         PRINT_COMMENT \$0         K         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TION                                   |
| ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R       IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC         THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ         UT = II*DY         UO = 0.         PRINT COMMENT_\$1 SOLUTION WITH END POINT AT \$         PRINT RESULTS II, UT         PRINT COMMENT \$0         K         1         SLOPE       P(I,K) \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T I ON<br>Y                            |
| +<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R       IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC         THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ         UT = II*DY         UO = 0.         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$1, UT         PRINT COMMENT \$0         K         1         SLOPE       P(I,K) \$         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TION                                   |
| ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R       IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORRECTINROUGH L5, FOR II=IMAX, -IFREQ, II.L. IFREQ         UT = II*DY       U0 = 0.         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT_RESULTS_II,       UT         PRINT_COMMENT \$0       K         X       X         I       SLOPE         P(I,K)       \$         I       I         V(QKMAX)       P(I,KMAX)*TAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T I ON<br>Y                            |
| -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R       IDENTIFY_THE_BEST_POLICY_AND_PREPARE_FOR Q.L. CORREC         THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ         UT = II*DY         U0 = 0.         PRINT_COMMENT_\$1_SOLUTION WITH END_POINT_AT_\$         PRINT_RESULTS_II,         UT         PRINT_COMMENT_\$0         K         1       SLOPE         V(QKMAX) = P(I,KMAX)*TAN         THROUGH L6, FOR QK = QKMAX, -1, QK_L.O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T I ON<br>Y                            |
| <u>ا</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R       IDENTIFY_THE_BEST POLICY AND PREPARE FOR Q.L. CORREC         THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ         UT = II*DY         U0 = 0.         PRINT COMMENT_\$1 SOLUTION WITH END POINT AT \$         PRINT RESULTS II, UT         PRINT COMMENT \$0         K         1         SLOPE         P(I,K) \$         I = II         W(QKMAX) = P(I,KMAX)*TAN         THROUGH L6, FOR QK = QKMAX, -1, QK .L. 0         WHENEVER (QK/KK)*KK .E. QK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T I ON<br>Y                            |
| H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H | R       IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC         THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ         UT = II*DY         U0 = 0.         PRINT COMMENT_\$1 SOLUTION WITH END POINT AT \$         PRINT_RESULTS_II,         UT         PRINT_COMMENT_\$0         K         X         1         SLOPE         P(I,K)         I = II         W(QKMAX) = P(I,KMAX)*TAN         THROUGH L6, FOR_QK = QKMAX, -1, QK .L. 0         WHENEVER (QK/KK)*KK .E. QK         K = QK/KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T I ON<br>Y                            |
| ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R       IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC         THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ         UT = II*DY         UO = 0.         PRINT COMMENT_\$1_SOLUTION WITH END POINT AT \$         PRINT_RESULTS_II,         UT         PRINT_COMMENT_\$0         K         X         1         SLOPE         P(I,K) \$         I = II         W(QKMAX) = P(I,KMAX)*TAN         THROUGH L6, FOR QK = QKMAX, -1, QK .L. 0         WHENEVER (QK/KK)*KK .E. QK         K = QK/KK         SF = P(I,K)*TAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T I ON<br>Y                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R       IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC         THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ         UT = II*DY         UO = 0.         PRINT COMMENT_\$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$0       K         X         1       SLOPE         P(I,K)       S         I = II         W(QKMAX) = P(I,KMAX)*TAN         THROUGH L6, FOR QK = QKMAX, -1, QK .L. O         WHENEVER (QK/KK)*KK .E. QK         K = QK/KK         SF = P(I,K)*TAN         U(QK) = I*DY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T I ON<br>Y                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R       IDENTIFY_THE_BEST_POLICY_AND_PREPARE_FOR Q.L. CORREC         THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ         UT = _II*DY         U0 = 0.         PRINT_COMMENT_\$1_SOLUTION WITH END_POINT_AT_\$         PRINT_RESULTS_II,         UT         PRINT_COMMENT_\$0         K         X         I       SLOPE         P(I,K)         I = II         W(QKMAX) = P(I,KMAX)*TAN         THROUGH L6, FOR QK = QKMAX, -1, QK .L. 0         WHENEVER (QK/KK)*KK .E. QK         K = QK/KK         SF = P(I,K)*TAN         U(QK) = I*DY         WHENEVER QK .NE. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T I ON<br>Y                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R       IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC         THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ         UT = II*DY         UO = 0.         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$1, UT         PRINT COMMENT \$0         K         X         1         SLOPE         P(I,K) \$         I = II         W(QKMAX) = P(I,KMAX)*TAN         THROUGH L6, FOR QK = QKMAX, -1, QK .L. 0         WHENEVER (QK/KK)*KK .E. QK         K = QK/KK         SF = P(I,K)*TAN         U(QK) = I*DY         WHENEVER QK .NE. 0         W(QK-1) = SF         CONDUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T I ON<br>Y                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R       IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC         THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ         UT = II*DY         UO = 0.         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT_RESULTS II,         UT         PRINT_COMMENT \$0         K         X         1         SLOPE         P(I,K) \$         I = II         W(QKMAX) = P(I,KMAX)*TAN         THROUGH L6, FOR QK = QKMAX, -1, QK .L. 0         WHENEVER (QK/KK)*KK .E. QK         K = QK/KK         SF = P(I,K)*TAN         U(QK) = I*DY         WHENEVER QK .NE. 0         W(QK-1) = SF         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T I ON<br>Y                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R       IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC         THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ         UT = II*DY         U0 = 0.         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT RESULTS II, UT         PRINT COMMENT \$0 K         X         1         SLOPE         P(I,K) \$         I = II         W(QKMAX) = P(I,KMAX)*TAN         THROUGH L6, FOR QK = QKMAX, -1, QK .L. 0         WHENEVER (QK/KK)*KK .E. QK         K = QK/KK         SF = P(I,K)*TAN         U(QK) = I*DY         WHENEVER QK .NE. 0         W(QK-1) = SF         END OF CONDITIONAL         I = I-P(I,K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T I ON<br>Y                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R       IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC         THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ         UT = II*DY         U0 = 0.         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT RESULTS II, UT         PRINT COMMENT \$0         K         X         1       SLOPE         W(QKMAX) = P(I,KMAX)*TAN         THROUGH L6, FOR QK = QKMAX, -1, QK .L. 0         WHENEVER (QK/KK)*KK .E. QK         K = QK/KK         SF = P(I,K)*TAN         U(QK) = I*DY         WHENEVER QK .NE. 0         W(QK-1) = SF         END OF CONDITIONAL         I = I -P(I,K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T I ON<br>Y                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R       IDENTIFY_THE_BEST_POLICY_AND_PREPARE_FOR Q.L. CORREC         THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ         UT = II*DY         UO = 0.         PRINT COMMENT_\$1_SOLUTION WITH END POINT AT \$         PRINT_RESULTS II,         UT         PRINT_COMMENT_\$0         K         X         1         SLOPE         V(I,K)         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y </td <td>Y</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R       IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC         THROUGH L5, FOR II=IMAX, -IFREQ, II .L. IFREQ         UT = II*DY         UO = 0.         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         W(QKMAX) = P(I,KMAX)*TAN         THROUGH L6, FOR QK = QKMAX, -1, QK *L O         WHENEVER (QK/KK)*KK *E* QK         K = QK/KK       SF = P(I,K)*TAN         U(QK) = I*DY       WHENEVER QK *NE* O         W(QK-1) = SF       END OF CONDITIONAL         I = I -P(I,K)       OTHERWISE         W(QK-1) = SF       W(QK)*H | T I ON<br>Y                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R       IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORRECT         THROUGH L5, FOR II=IMAX, -IFREQ, II.L. IFREQ         UT = II*DY         U0 = 0.         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT RESULTS II, UT         PRINT COMMENT \$0         K         X         1         SLOPE         P(I,K) \$         I = II         W(QKMAX) = P(I,KMAX)*TAN         THROUGH L6, FOR QK = QKMAX, -1, QK .L. 0         WHENEVER (QK/KK)*KK .E. QK         K = QK/KK         SF = P(I,K)*TAN         U(QK) = I*DY         WHENEVER QK .NE. 0         W(QK-1) = SF         END OF CONDITIONAL         I = I-P(I,K)         OTHERWISE         W(QK-1) = SF         U(QK) = U(QK+1)-W(QK)*H         END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T I ON<br>Y                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R       IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC         THROUGH L5, FOR II=IMAX, -IFREQ, II.L. IFREQ         UT = II*DY         UO = 0.         PRINT COMMENT_\$1 SOLUTION WITH END POINT AT \$         PRINT_RESULTS_II,         UT = II         WGKMAX) = P(I,KMAX)*TAN         THROUGH L6, FOR_GK = QKMAX, -1, QK .L. 0         WHENEVER (QK/KK)*KK .E. QK         K = QK/KK         SF = P(I,K)*TAN         U(QK) = I*DY         WHENEVER QK .NE. 0         W(QK-1) = SF         END OF CONDITIONAL         I = I -P(I,K)         WG(X-1) = SF         U(QK) = U(QK+1)-W(QK)*H         END OF CONDITIONAL         WHENEVER (QK/KP)*KP .E. QK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T I ON<br>Y                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R       IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORREC         THROUGH L5. FOR II=IMAXIFREQ. II .L. IFREQ         UT = II*DY         U0 = 0.         PRINT COMMENT \$1 SOLUTION WITH END POINT AT \$         PRINT COMMENT \$0       K         X         I       SLOPE         P(I)K)       S         I = II         W(QKMAX) = P(I,KMAX)*TAN         THROUGH L6. FOR QK = QKMAX1. QK .L. 0         WHENEVER (QK/KK)*KK .E. QK         K = QK/KK         SF = P(I,K)*TAN         U(QK) = I*DY         WHENEVER QK .NE. 0         W(QK-1) = SF         END OF CONDITIONAL         I = I -P(I,K)         OTHERWISE         W(QK-1) = SF         U(QK) = U(QK+1)-W(QK)*H         END OF CONDITIONAL         WHENEVER (QK/KP)*KP .E. QK         XA = QK*H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T I ON<br>Y                            |

\_\_\_\_

---

----

-

-----

- 75 PRINT FORMAT POLICY, QK, XA, U(QK), W(QK), P(I,K) END OF CONDITIONAL L6 R QUASILINEARIZATION CORRECTOR (U,W,QT,PA,H1,H2,QKMAX,EPS,ITMAX,H,UO,UT)EXECUTE QUASI. PRINT COMMENT \$0\$ X PRINT COMMENT QK \$ PA \_\_\_\_ V \$ H1 ~ H2 1 THROUGH L9, FOR QK = 0, KP,  $QK \cdot G \cdot QKMAX$ X = H \* Q KPRINT FORMAT LINEAR, QK, X, PA(QK), H1(QK), H2(QK), U(QK), W(QK) L9 PRINT RESULTS QT L5 TRANSFER TO START VECTOR\_VALUES\_BRACHI = \$ 1110, E30.8, 1110, E30.8 ¥\$ VECTOR VALUES POLICY = \$ 1110, 3E20.8, 1110, 1E20.8 ÷\$ VECTOR VALUES LINEAR = \$ 115, 1E14.4, 5E17.8 \*\$ END OF PROGRAM . .

|          |                                                                                                       | 76                                     |
|----------|-------------------------------------------------------------------------------------------------------|----------------------------------------|
|          |                                                                                                       |                                        |
| COMPILE  | MAD, EXECUTE, PRINT OBJECT, DUMP                                                                      | ···· ··· ···· ·····                    |
|          | EXTERNAL FUNCTION (U,W,QT,PA,H1,H2,QKMAX,EPS,                                                         | ITMAX, H, UO, UT)                      |
|          | DIMENSION DPA(800), DH1(800), DH2(800), FR(10                                                         | ), YR(10),QR(10                        |
|          | INTEGER I, IMAX, IFREQ, ITER, ITMAX, K, KK, KMAX, QK                                                  | , QKMAX                                |
|          | R TER-TH APPROXIMATION                                                                                |                                        |
|          | THROUGH L7. FOR ITER = 1.1. ITER .G. ITMAX                                                            |                                        |
|          | U(0) = 0.01                                                                                           | ······                                 |
|          | PA(0) -= 0.                                                                                           |                                        |
|          | H1(0) = 1.                                                                                            |                                        |
|          | $H_2(0) = 0.$                                                                                         | ·····                                  |
|          | $DPA(O) = O_{\bullet}$                                                                                |                                        |
|          | DH1(0) = 0                                                                                            |                                        |
|          | $DH_2(U) = I_0$                                                                                       |                                        |
|          | YR(2) = DPA(0)                                                                                        |                                        |
|          | YR(3) = H1(0)                                                                                         |                                        |
|          | YR(4) = DH1(0)                                                                                        |                                        |
|          | YR(5) = H2(0)                                                                                         |                                        |
|          | YR(6) = DH2(0)                                                                                        |                                        |
|          | X = 0.                                                                                                |                                        |
|          | EXECUTE SETRKD.(6,YR(1),FR(1),QR,X,H)                                                                 |                                        |
|          | $\frac{1}{1000} \text{ HROUGH L8, FOR QK = 1,1, QK • G• QKMAX}{1000000000000000000000000000000000000$ |                                        |
| ALLKK    | $S = RKDEQ_{\bullet}(U)$                                                                              |                                        |
| <u> </u> | WHENEVER S .F. 1.0                                                                                    | ······································ |
|          | FR(1) = YR(2)                                                                                         |                                        |
|          | WHENEVER FR(1) .G. EPS                                                                                |                                        |
|          | FR(1) = EPS                                                                                           |                                        |
|          | END OF CONDITIONAL                                                                                    |                                        |
|          | FR(3) = YR(4)                                                                                         | · · · · · · · · · · · · · · · · · · ·  |
|          | WHENEVER FR(3) •G• EPS                                                                                |                                        |
|          | FR(3) = EPS                                                                                           | <u> </u>                               |
|          | EDIGY - VDIGY                                                                                         |                                        |
|          | WHENEVER FR(5) AGA FPS                                                                                |                                        |
|          | FR(5) = EPS                                                                                           | · · · · · · · · · · · · · · · · · · ·  |
|          | END OF CONDITIONAL                                                                                    |                                        |
|          | $GU = (1_{\bullet} + W(QK) * W(QK)) / (2_{\bullet} * U(QK) * U(QK))$                                  |                                        |
|          | WHENEVER GU .G. 1E6                                                                                   |                                        |
| <u></u>  | GU = 1E6                                                                                              |                                        |
|          | END OF CONDITIONAL                                                                                    |                                        |
|          | GW = -W(QK)/U(QK)                                                                                     | ······································ |
|          | WHENEVER •ADS•(GW)_•G•_IEO                                                                            |                                        |
|          | $= 120 \times (007(0ADS(007)))$                                                                       |                                        |
|          | FR(2) = GU*(YR(1)-2*U(QK)) + GW*(YR(2) - W(QK))                                                       | K))                                    |
| ·····    | WHENEVER .ABS.(FR(2)) .G. EPS                                                                         |                                        |
|          | FR(2) = EPS*(FR(2)/(.ABS.(FR(2)))                                                                     |                                        |
|          | END OF CONDITIONAL                                                                                    |                                        |
|          | FR(4) = GU*YR(3) + GW*YR(4)                                                                           |                                        |
|          |                                                                                                       |                                        |
|          |                                                                                                       |                                        |
|          |                                                                                                       |                                        |

| WHENEVER .ABS.(FR(4)) .G. EPS         FR(4) = EPS*(FR(4)/(.ABS.(FR(4))))         END OF CONDITIONAL         FR(6) = GU*YR(5) + GW*YR(6)         WHENEVER .ABS.(FR(6)) .G. EPS         FR(6) = EPS*(FR(6)/(.ABS.(FR(6))))         END OF CONDITIONAL         TRANSFER TO CALLRK         OTHERWISE         PA(OK) = YR(1)         H1(0K) = YR(3)         H2(0K) = YR(5)         DPA(OK) = YR(4)         OH1(OK) = YR(6)'         END OF CONDITIONAL         B         DIN = H1(0)*H2(OKMAX) - H1(QKMÁX)*H2(0)         AA = UO - PA(0)         BB = UT - PA(0KMAX)         BB = UT - PA(0KMAX)         BB = UT - PA(0KMAX)         C1 = (AA*H10(MAXA) + BB*H1(0))/DIN         C2 = (-AA*H10(MAXA) + BB*H1(0))/DIN         C2 = (-AA*H10(MAXA) + BB*H1(0))/DIN         PRINT RESULTS C1. C2         THROUGH L10, FOR QK = 0.1, QK = G. QKMAX         W(CK) = DPA(0K) + C1*H1(0K) + C2*H2(0K)         U(0K) = PA(0K) + C1*H1(0K) + C2*H2(0K)         U(0K) = PA(0K) + C1*H1(0K) + C2*H2(0K)         W(CK) = DA(0K) + C1*H1(0K) + C2*H2(0K)         OT = 0. <th></th> <th> 77</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | 77                                                                   |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|----------|
| WHENEVER .ABS.(FR(4)).G. EPS         FR(4) = EPS*(FR(4)/(.ABS.(FR(4))))         END OF CONDITIONAL         FR(6) = GU#YR(5) + GW#YR(6)         WHENEVER .ABS.(FR(6)).G. EPS         FR(6) = EPS*(FR(6)/(.ABS.(FR(6))))         END OF CONDITIONAL         TRANSFER TO CALLRK         OTHERWISE         PA(0K) = YR(1)         H1(0K) = YR(2)         DPA(0K) = YR(2)         DPA(0K) = YR(2)         DPA(0K) = YR(2)         DH1(0K) = YR(6)'         END OF CONDITIONAL         3         DIN = H1(0)*H2(0KMAX) - H1(0KMÁX)*H2(0)         AA = UO - PA(0)         BB = UT - PA(0KMAX) - BB*H2(0))/DIN         C1 = (AA#+210KMAX) - BB*H2(0))/DIN         C2 = (-AA#+110KMAX) - BB*H2(0))/DIN         C2 = (-AA#+110KMAX) - BB*H1(0)/DIN         PRINT RESULTS C1, C2         THR0UGH L10, FOR QK = 0,1, QK =G. QKMAX         W(0K) = DPA(0K) + C1*DH1(0K) + C2*DH2(0K)         W(0K) = DA(0K) + C1*DH1(0K) + C2*DH2(0K)         WHENEVER QK =E. 0         OTHERWISE         D5 = SQRT.(U(0K) + U(QK-1)).P-2 + H*H)         V = 4.013*(SQRT.(U(QK) + SQRT.(U(QK-1)))         QT = OI + DS/V         END OF FUNCTION         END OF FUNCTION         DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                                      |          |
| <pre>FR(4) = EPS*(FR(4)/(.ABS.(FR(4)))) END OF CONDITIONAL FR(6) = GU*YR(5) + GW*YR(6) WHENEVER .ABS.(FR(6)) .G. EPS FR(6) = DPS*(FR(6)/(.ABS.(FR(6)))) END OF CONDITIONAL TRANSFER TO CALLRK  OTHERWISE PA(0K) = YR(1) H1(0K) = YR(2) DH1(0K) = YR(2) DH1(0K) = YR(4) DH1(0K) = YR(4) DH2(0K) = YR(6) END OF CONDITIONAL 3 DIN = H1(0)*H2(0KMAX) - H1(QKMAX)*H2(0) AA = UO - PA(0K) BB = UT - PA(0KMAX) - BB*H2(0))/DIN C2 = (.AA*H2(0KMAX) - BB*H2(0))/DIN C2 = (.AA*H2(0KMAX) - BB*H2(0))/DIN C2 = (.AA*H1(0KMAX) + BB*H1(0))/DIN C2 = (.AA*H2(0KMAX) - BB*H2(0))/DIN C3 = (.AA*H2(0KMAX) - BB*H2(0))/DIN C4 = .00 C1 = 0. C1 = 0. C1 = (.AA*H2(0KMAX) - BB*H2(0))/DIN C5 = .00 C1 = 0. C1 = (.AA*H2(0KMAL) - 10. OK .G. QKMAX W(0K) = DPA(0K) + C1*H1(0K) + C2*H2(0K) WHENEVER 0K .F. 0 C1 = 0. C1 = 0. C1 = 0. C1 = (.AA*H2(0K) + C1*H1(0K) + C2*H2(0K) WHENEVER 0K .F. 0 C1 = 0. C1</pre>                                                                                                                                                                                                                                                                                                                                                                                                       | W                                      | HENEVER • ABS• (FR(4)) • G• EPS                                      |          |
| END OF CONDITIONAL<br>FR(6) = GU*YR(5) + GW*YR(6)<br>WHENEVER .ABS.(FR(6)) + G. EPS<br>FR(6) = EPS*(FR(6))(.ABS.(FR(6))))<br>END OF CONDITIONAL<br>TRANSFER TO CALLRK<br>OTHERWISE<br>PA(GK) = YR(1)<br>H1(GK) = YR(3)<br>H2(GK) = YR(2)<br>DH1(GK) = YR(4)<br>DH2(GK) = YR(6)<br>END OF CONDITIONAL<br>3<br>OIN = H1(0)*H2(GKMAX) - H1(GKMAX)*H2(0)<br>AA = UO - PA(0)<br>BB = UT - PA(GKMAX) - H1(GKMAX)*H2(0)<br>AA = UO - PA(0)<br>BB = UT - PA(GKMAX) - BB*H2(0)//DIN<br>C2 = (-AA*H2(GKMAX) - BB*H2(0)//DIN<br>C3 = (-AA*H2(GKMAX) - BB*H2(0)//DIN<br>C4 = (-AA*H2(GKMAX) - BB*H2(0)//DIN<br>C5 = SORT.(U(GK) + C1*DH1(GK) + C2*DH2(GK))<br>U(GK) = PA(GK) + C1*DH1(GK) + C2*DH2(GK)<br>U(GK) = PA(GK) + C1*H1(GK) + C2* H2(GK)<br>U(GK) = PA(GK) + C1*H1(GK) + C2* H2(GK)<br>U(GK) = DA(GK) + C1*H1(GK) + SORT.(U(GK-1)))<br>OT = O.<br>OTHERWISE<br>D5 = SORT.(U(GK)-U(GK-1)).P-2 + H*H)<br>V = 4+013*(SGRT.(U(GK)) + SORT.(U(GK-1)))<br>OT = O.<br>THNOTION RETURN<br>END OF CONDITIONAL<br>4<br>FUNCTION RETURN<br>END OF CONDITIONAL<br>4<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                      | R(4) = EPS*(FR(4)/(ABS(FR(4))))                                      |          |
| FR(6) = GU*YR(5) + GW*YR(6)<br>WHENEVER ABS.(FR(6)) (ABS.(FR(6))))<br>END OF CONDITIONAL<br>TRANSFER TO CALLRK<br>OTHERWISE<br>PA(GK) = YR(1)<br>H1(GK) = YR(3)<br>H2(GK) = YR(5)<br>DPA(GK) = YR(4)<br>DH1(GK) = YR(4)<br>DH1(GK) = YR(4)<br>DH2(GK) = YR(6)<br>END OF CONDITIONAL<br>3<br>DIN = H1(0)*H2(GKMAX) - H1(GKMAX)*H2(0)<br>AA = UO - PA(0)<br>BB = UT - PA(GKMAX) - BB*H2(0))/DIN<br>C1 = (AA*H1(GKMAX) - BB*H1(0))/DIN<br>C2 = (-AA*H1(GKMAX) - BB*H1(0))/DIN<br>C2 = (-AA*H1(GKMAX) - BB*H1(0))/DIN<br>C2 = (-AA*H1(GKMAX) + BB*H1(0))/DIN<br>C2 = (-AA*H1(GKMAX) + C2*DH2(GK)<br>U1GK) = DPA(GK) + C1*DH1(GK) + C2*DH2(GK)<br>U1GK) = DPA(GK) + C1*H1(GK) + C2*DH2(GK)<br>U1GK) = DPA(GK) + C1*H1(GK) + C2*H2(GK)<br>U1GK) = DPA(GK) + C1*H1(GK) + C2*H2(GK)<br>U1GK) = DPA(GK) + C1*H1(GK) + C2*H2(GK)<br>0 T = 0.<br>OT HERWISE<br>OS = SGRT.(UU(GK)-U(GK-1)).P.2 + H*H)<br>V = 4.013*(SGRT.(UU(GK)) + SGRT.(UU(GK-1)))<br>GT = 0 + DS/V<br>END OF CONDITIONAL<br>7<br>FUNCTION RETURN<br>END OF FUNCTION<br>DATA<br>D = 0., XT = 314.15926, YT = 400 IMAX = 40 KMAX = 20. IFREQ = 4.4<br>( = 20. ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _ E                                    | ND OF CONDITIONAL                                                    |          |
| <pre>WHENEVER .ABS.(FR(6)) .G. EPS<br/>FR(6) EPS*(FR(6))(.ABS.(FR(6))))<br/>END OF CONDITIONAL<br/>TRANSFER TO CALLRK<br/>OTHERWISE<br/>PA(GK) = YR(1)<br/>H1(GK) = YR(3)<br/>H2(GK) = YR(2)<br/>OPA(GK) = YR(4)<br/>DPA(GK) = YR(4)<br/>DH2(GK) = YR(6)<br/>END OF CONDITIONAL<br/>DIN = H1(0)*H2(GKMAX) - H1(QKMÁX)*H2(0)<br/>AA = UO - PA(0)<br/>BB = UT - PA(GKMAX) - BB*H2(0))/DIN<br/>C2 = (.AA*H2(QKMAX) - BB*H2(0))/DIN<br/>C2 = (.AA*H2(QKMAX) - BB*H2(0))/DIN<br/>C2 = (.AA*H1(QKMAX) - BB*H2(0))/DIN<br/>C2 = (.AA*H1(QKMAX) - BB*H2(0))/DIN<br/>C2 = (.AA*H1(QKMAX) + C1*H1(0K) + C2*DH2(QK)<br/>U(GK) = DPA(GK) + C1*H1(0K) + C2*DH2(QK)<br/>U(GK) = DPA(GK) + C1*H1(0K) + C2*H2(QK)<br/>U(GK) = DPA(GK) + C1*H1(0K) + C2*H2(GK)<br/>U(GK) = DPA(GK) + C1*H1(GK) + C2*H2(GK) +</pre>                                                                                                                                                                                                                             | F                                      | R(6) = GU*YR(5) + GW*YR(6)                                           |          |
| FR(6) = EPS*(FR(6)/(.ABS.(FR(6)))<br>END OF CONDITIONAL<br>TRANSFER TO CALLRK<br>OTHERWISE<br>PA(OK) = YR(1)<br>H1(OK) = YR(3)<br>H2(OK) = YR(3)<br>DPA(QK) = YR(2)<br>DP1(QK) = YR(4)<br>DH1(QK) = YR(4)<br>DH2(QK) = YR(6)<br>END OF CONDITIONAL<br>3<br>DIN = H1(0)*H2(QKMAX) - H1(QKMAX)*H2(0)<br>AA = u0 - PA(0)<br>BB = UT - PA(QKMAX) - BB*H2(0))/DIN<br>C1 = ( AA*H2(QKMAX) - BB*H2(0))/DIN<br>C2 = (-AA*H1(QKMAX) - BB*H1(0))/DIN<br>PRINT RESULTS C1, C2<br>THROUGH L10, FOR OK = 0,1, QK .G. GKMAX<br>W(OK) = DPA(GK) + C1*DH1(OK) + C2*DH2(OK)<br>U(OK) = DPA(GK) + C1*H1(OK) + C2* H2(QK)<br>WHENEVER OK .E. 0<br>OT HERWISE<br>DS = SORT.((U(OK)-U(OK-1)).P.2 + H*H)<br>V = 4.013*(SORT.(U(OK)) + SORT.(U(OK-1)))<br>QT = 0T + DS/V<br>END OF CONDITIONAL<br>10<br>7<br>FUNCTION RETURN<br>END OF FUNCTION<br>DATA<br>0 = 0., XT = 314.15926, YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4,<br>( =20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W                                      | HENEVER .ABS.(FR(6)) .G. EPS                                         |          |
| END OF CONDITIONAL<br>TRANSFER TO CALLRK<br>OTHERWISE<br>PA(GK) = YR(1)<br>H1(GK) = YR(2)<br>DA(GK) = YR(2)<br>DH2(GK) = YR(6)<br>END OF CONDITIONAL<br>3<br>DIN = H1(0)*H2(GKMAX) - H1(GKMAX)*H2(0)<br>AA = UO - PA(0)<br>BB = UT - PA(GKMAX)<br>C1 = ( AA*H2(GKMAX) - BB*H2(0))/DIN<br>C2 = (-AA*H1(GKMAX) + BB*H1(0))/DIN<br>PRINT RESULTS C1, C2<br>THROUGH L10, FOR GK = 0,1, OK .4G. GKMAX<br>W(GK) = DPA(GK) + C1*DH1(GK) + C2*DH2(GK)<br>U(GK) = PA(GK) + C1*DH1(GK) + C2*H2(GK)<br>WHENEVER GK .4E. 0<br>O T = 0.<br>OTHERWISE<br>DS = SGRT.(U(GK)-U(GK-1)).P.2 + H*H)<br>V = 4.013*(SGRT.(U(GK)) + SGRT.(U(GK-1)))<br>OT = 0.<br>THROUGH C10, RETURN<br>END OF CONDITIONAL<br>10<br>A<br>FUNCTION RETURN<br>END OF FUNCTION<br>DATA<br>DATA<br>DATA<br>DATA<br>DATA<br>C2<br>C1<br>C1<br>C1<br>C2<br>C1<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F                                      | R(6) = EPS*(FR(6)/(ABS(FR(6))))                                      |          |
| OTHERWISE         PA(OK) = YR(1)         H1(OK) = YR(3)         H2(OK) = YR(2)         DH1(OK) = YR(4)         DH2(QK) = YR(2)         DH1(OK) = YR(4)         DH2(QK) = YR(2)         DH2(QK) = YR(2)         DH2(QK) = YR(4)         DH2(QK) = YR(6)         END OF CONDITIONAL         3         DIN = H1(0)*H2(OKMAX) - H1(QKMAX)*H2(0)         AA = UO - PA(0)         BB = UT - PA(OKMAX)         C1 = ( Aa*H2(OKMAX) - BB*H2(0))/DIN         C2 = (-AA*H1(QKMAX) + BB*H1(0)/DIN         PRINT RESULTS C1, C2         THROUGH L10, FOR OK = 0,1, OK .6.0 GKMAX         W(0X) = DPA(QK) + C1*DH1(0X) + C2*DH2(0K)         U(0X) = DPA(QK) + C1*DH1(0X) + C2*H2(0K)         W(0X) = DPA(QK) + C1*H1(QK) + C2*H2(QK)         W(0X) = DPA(GK) + C1*H1(QK) + C2*H2(QK)         W(0X) = DPA(GK) + C1*H1(QK) + C2*H2(QK)         W(0X) = DA(GK) + C1*H1(QK) + C2*H2(QK)         W(0X) = DA(GK) + C1*H1(QK) + C2*H2(QK)         W(0X) = CONDITIONAL         0 AT = 0.         OTHERWISE         DS = SORT.(U(OK)-U(QK=1)).PP.2 + H*H)         V = 4.013*(SQRT.(U(QK)) + SQRT.(U(QK=1)))         QT = OT + DS/V         END OF CONDITIONAL         0 = 0., XT = 314.15926, YT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ E                                    |                                                                      |          |
| OTHERWISE<br>PA(GK) = YR(1)<br>H1(GK) = YR(3)<br>DPA(GK) = YR(4)<br>DP1(GK) = YR(4)<br>DH1(GK) = YR(4)<br>DH2(GK) = YR(6)'<br>END OF CONDITIONAL<br>3<br>DIN = H1(0)*H2(GKMAX) - H1(GKMAX)*H2(0)<br>AA = UO - PA(0)<br>BB = UT - PA(0KMAX) - BB*H2(0))/DIN<br>C1 = ( AA*H2(GKMAX) - BB*H2(0))/DIN<br>C2 = (-AA*H1(GKMAX) + BB*H1(0))/DIN<br>PRINT RESULTS C1, C2<br>THROUGH L10, FOR GK = 0,1, GKG. GKMAX<br>W(GX) = DPA(GK) + C1*H1(GK) + C2*DH2(GK)<br>U(GK) = DPA(GK) + C1*H1(GK) + C2*H2(GK)<br>W(GK) = PA(GK) + C1*H1(GK) + C2*H2(GK)<br>W(GK) = PA(GK) + C1*H1(GK) + C2*H2(GK)<br>WHENEVER GK .E. 0<br>OT = 0.<br>OTHERWISE<br>DS = SQRT.((U(GK)-U(GK-1)).P.2 + H*H)<br>V = 4.013*(SGRT.(U(GK)) + SGRT.(U(GK-1)))<br>QT = QT + DS/V<br>END_OF CONDITIONAL<br>10<br>7<br>FUNCTION RETURN<br>END_OF FUNCTION<br>DATA<br>DATA<br>DATA<br>DATA<br>DATA<br>DATA<br>DATA<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                      | RANSFER TO CALLRK                                                    |          |
| PA(0K) = YR(1)<br>H1(0K) = YR(3)<br>DPA(0K) = YR(2)<br>DPA(0K) = YR(4)<br>DPA(0K) = YR(4)<br>DH2(0K) = YR(6)<br>END OF CONDITIONAL<br>3<br>DIN = H1(0)*H2(QKMAX) - H1(QKMAX)*H2(0)<br>AA = UO - PA(0)<br>BB = UT - PA(0KMAX)<br>C1 = ( AA*H2(0KMAX) - BB*H2(0))/DIN<br>C2 = (-AA*H1(0KMAX) + BB*H1(0))/DIN<br>PRINT RESULTS C1, C2<br>THROUGH L10, FOR QK = 0,1, QK .G. QKMAX<br>W(QK) = DPA(0K) + C1*H1(QK) + C2*DH2(QK)<br>U(QK) = DPA(0K) + C1*H1(QK) + C2*H2(QK)<br>WHENEVER QK .E. 0<br>OT = 0.<br>OTHERWISE<br>DS = SQRT.((U(QK)-U(QK-1)).P.2 + H*H)<br>V = 4.013*(SQRT.(U(QK)) + SQRT.(U(QK-1)))<br>QT = QT + DS/V<br>END OF CONDITIONAL<br>10<br>7<br>FUNCTION RETURN<br>END OF FUNCTION<br>DATA<br>D = 0 XT = 314.15926. YT = 400 IMAX = 40. KMAX = 20, IFREQ = 4.<br>C = 20. ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                      |                                                                      | -        |
| H1(QK) = YR(3)<br>H2(QK) = YR(2)<br>DPA(QK) = YR(2)<br>DH1(QK) = YR(4)<br>DH2(QK) = YR(6)<br>END OF CONDITIONAL<br>3<br>DIN = H1(0)*H2(QKMAX) - H1(QKMAX)*H2(0)<br>AA = UO - PA(0)<br>BB = UT - PA(QKMAX) - BB*H2(0))/DIN<br>C1 = ( AA*H2(QKMAX) - BB*H2(0))/DIN<br>C2 = (-AA*H1(QKMAX) - BB*H1(0))/DIN<br>PRINT RESULTS C1, C2<br>THROUGH L10, FOR QK = 0,1, OK .G. QKMAX<br>W(QK) = DPA(QK) + C1*DH1(QK) + C2*DH2(QK)<br>U(QK) = DPA(QK) + C1*H1(QK) + C2*H2(QK)<br>WHENEVER QK .EE. 0<br>OT = 0.<br>OT = 0.<br>OT = 0.<br>OTHERWISE<br>DS = SQRT.((U(QK)-U(QK-1)).P.2 + H*H)<br>V = 4.013*(SQRT.(U(QK)) + SQRT.(U(QK-1)))<br>QT = QT + DS/V<br>END OF CONDITIONAL<br>10<br>7<br>FUNCTION RETURN<br>END OF FUNCTION<br>DATA<br>D = 0., XT = 314.15926, YT = 400., IMAX = 40. KMAX = 20. IFREQ = 4.1<br>C = 20. ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P                                      | A(QK) = YR(1)                                                        | <u> </u> |
| H2(QK) = YR(5)<br>DPA(QK) = YR(2)<br>DH1(QK) = YR(4)<br>H2(QK) = YR(6)<br>END OF CONDITIONAL<br>3<br>OIN = H1(0)*H2(QKMAX) - H1(QKMAX)*H2(0)<br>AA = UO - PA(0)<br>BB = UT - PA(QKMAX) - BB+H2(0))/DIN<br>C1 = ( AA*H2(QKMAX) - BB+H2(0))/DIN<br>C2 = (-AA*H1(QKMAX) + BB*H1(0))/DIN<br>PRINT RESULTS C1, C2<br>THROUGH L10, FOR QK = 0,1, QK .6. QKMAX<br>W(QK) = DPA(QK) + C1*DH1(QK) + C2*DH2(QK)<br>U(QK) = DA(QK) + C1*H1(QK) + C2*H2(QK)<br>WHENEVER QK .E. 0<br>OT = 0.<br>OT = 0.<br>OT = 0.<br>OT = 0.<br>OT = 0.<br>THRWISE<br>DS = SQRT.(U(QK) - U(QK-1)).P.2 + H*H)<br>V = 4.013*(SQRT.(U(QK)) + SQRT.(U(QK-1)))<br>QT = QT + DS/V<br>END OF CONDITIONAL<br>10<br>7<br>FUNCTION RETURN<br>END OF FUNCTION<br>DATA<br>0 = 0., XT = 314.15926.YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4,<br>X = 20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | н                                      | 1(OK) = YR(3)                                                        |          |
| DPA(QK) = YR(2)<br>DH1(QK) = YR(4)<br>DH2(QK) = YR(6)<br>END OF CONDITIONAL<br>DIN = H1(0)*H2(QKMAX) - H1(QKMAX)*H2(0)<br>AA = UO - PA(0)<br>BB = UT - PA(QKMAX)<br>C1 = ( AA*H2(QKMAX) - BB*H2(0))/DIN<br>C2 = (-AA*H1(QKMAX) - BB*H2(0))/DIN<br>PRINT RESULTS C1. C2<br>THROUGH L10, FOR QK = 0.1, QK .6. QKMAX<br>W(QK) = DPA(QK) + C1*DH1(QK) + C2*DH2(QK)<br>U(QK) = DPA(QK) + C1*H1(QK) + C2*H2(QK)<br>WHENEVER QK .E. 0<br>GT = 0.<br>OTHERWISE<br>DS = SQRT.(U(QK)-U(QK-1)).P.2 + H*H)<br>V = 4.013*(SQRT.U(QK)) + SQRT.(U(QK-1)))<br>GT = QI + DS/V<br>END OF CONDITIONAL<br>10<br>7<br>FUNCTION RETURN<br>END OF FUNCTION<br>DATA<br>D = 0., XT = 314.15926, YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4,<br>C2 = 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н                                      | 12(QK) = YR(5)                                                       |          |
| DH1(QK) = YR(4)<br>DH2(QK) = YR(6)<br>END OF CONDITIONAL<br>3<br>DIN = H1(0)*H2(QKMAX) - H1(QKMAX)*H2(0)<br>AA = UO - PA(0)<br>BB = UT - PA(QKMAX)<br>C1 = ( AA*H2(QKMAX) - BB*H2(0))/DIN<br>C2 = (-AA*H1(QKMAX) + BB*H1(0))/DIN<br>PRINT RESULTS C1, C2<br>THROUGH_L10, FOR QK = 0,1, OK .G. QKMAX<br>W(OK) = DPA(GK) + C1*DH1(QK) + C2*DH2(QK)<br>U(OK) = DPA(GK) + C1*DH1(QK) + C2*H2(QK)<br>U(OK) = PA(GK) + C1*H1(QK) + C2*H2(QK)<br>WHENEVER QK .E. 0<br>OT = 0.<br>OT = 0.<br>OTHERWISE<br>DS = SQRT.(U(QK)-U(QK-1)).P.2 + H*H)<br>V = 4.013*(SQRT.(U(QK)) + SQRT.(U(QK-1)))<br>QT = QT + DS/V<br>END OF CONDITIONAL<br>10<br>7<br>FUNCTION RETURN<br>END OF FUNCTION<br>DATA<br>D = 0., XT = 314.15926. YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4,<br>( =20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D                                      | PA(QK) = YR(2)                                                       |          |
| DH2(GK) = YR(6)<br>END OF CONDITIONAL<br>B<br>DIN = H1(0)*H2(QKMAX) - H1(QKMAX)*H2(0)<br>AA = UO - PA(0)<br>BB = UT - PA(QKMAX) - BB*H2(0))/DIN<br>C1 = ( AA*H2(QKMAX) - BB*H2(0))/DIN<br>C2 = (-AA*H1(QKMAX) + BB*H1(0))/DIN<br>PRINT RESULTS C1, C2<br>THROUGH L10, FOR QK = 0,1, QK .G. QKMAX<br>W(CK) = DPA(QK) + C1*DH1(QK) + C2*DH2(QK)<br>U(QK) = DPA(QK) + C1*DH1(QK) + C2*H2(QK)<br>WHENEVER QK .E. 0<br>OT = 0.<br>OT = | D                                      | H1(QK) = YR(4)                                                       |          |
| B       DIN = H1(0)*H2(0KMAX) - H1(0KMAX)*H2(0)         AA = UO - PA(0)         BB = UT - PA(0KMAX)         C1 = ( AA*H2(0KMAX) - BB*H2(0))/DIN         C2 = (-AA*H1(0KMAX) + BB*H1(0))/DIN         PRINT RESULTS C1, C2         THROUGH L10, FOR QK = 0,1, OK .G. QKMAX         W(0X) = DPA(0K) + C1*DH1(0K) + C2*DH2(0K)         U(0X) = PA(0K) + C1*H1(0K) + C2*DH2(0K)         WHENEVER QK .E. 0         OT = 0.         OTHERWISE         DS = SQRT.(UU(0K)-U(0K-1)).P.2 + H*H)         V = 4.013*(SQRT.(U(QK)) + SQRT.(U(QK-1)))         QT = QT + DS/V         END OF CONDITIONAL         10         7         FUNCTION RETURN         END OF FUNCTION         DATA         0 = 0, XT = 314.15926. YT = 400, IMAX = 40, KMAX = 20, IFREQ = 4, (< = 20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                      | HZ(QK) = YR(6)                                                       |          |
| DIN = H1(0)*H2(QKMAX) - H1(QKMAX)*H2(0)<br>AA = UO - PA(0)<br>BB = UT - PA(QKMAX)<br>C1 = ( AA*H2(QKMAX) - BB*H2(0))/DIN<br>PRINT RESULTS C1, C2<br>THROUGH L10, FOR QK = 0,1, OK .G. QKMAX<br>W(QK) = DPA(QK) + C1*DH1(QK) + C2*DH2(QK)<br>U(QK) = PA(QK) + C1*H1(QK) + C2*H2(QK)<br>WHENEVER QK .E. 0<br>OT = 0.<br>OTHERWISE<br>DS = SQRT.((U(QK)-U(QK-1)).P.2 + H*H)<br>V = 4.013*(SQRT.(U(QK)) + SQRT.(U(QK-1)))<br>QT = OT + DS/V<br>END OF CONDITIONAL<br>10<br>7<br>FUNCTION RETURN<br>DATA<br>D0 = 0., XT = 314.15926, YT = 400., IMAX = 40. KMAX = 20, IFREQ = 4,<br>C = 20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E                                      |                                                                      |          |
| AA = UO - PA(0)<br>BB = UT - PA(0KMAX)<br>C1 = ( AA*H2(0KMAX) - BB*H2(0))/DIN<br>C2 = (-AA*H1(0KMAX) + BB*H1(0))/DIN<br>PRINT RESULTS C1, C2<br>THROUGH L10, FOR GK = 0,1, OK .G. 0KMAX<br>W(0K) = DPA(0K) + C1*DH1(0K) + C2*DH2(0K)<br>U(0K) = PA(0K) + C1*H1(0K) + C2*H2(0K)<br>WHENEVER OK .E. 0<br>OT = 0.<br>OT = 0.<br>OT HERWISE<br>DS = SORT.(U(0K)-U(0K-1)).P.2 + H*H)<br>V = 4.013*(SQRT.(U(0K)) + SQRT.(U(0K-1)))<br>OT = QT + DS/V<br>END OF CONDITIONAL<br>10<br>7<br>FUNCTION RETURN<br>END OF FUNCTION<br>DATA<br>D = 0., XT = 314.15926, YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4,<br>C = 20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                                      | IN = H1(0) * H2(QKMAX) - H1(QKMAX) * H2(0)                           |          |
| BB = UT - PA(QKMAX)         C1 = ( AA*H2(QKMAX) - BB*H2(0))/DIN         C2 = (-AA*H1(QKMAX) + BB*H1(0))/DIN         PRINT RESULTS C1, C2         THROUGH L10, FOR QK = 0,1, QK .G. QKMAX         W(OK) = DPA(GK) + C1*DH1(QK) + C2*DH2(OK)         U(OK) = DPA(GK) + C1*DH1(QK) + C2*H2(OK)         W(OK) = DPA(GK) + C1*H1(QK) + C2*H2(OK)         WHENEVER QK .E. 0         QT = 0.         OTHERWISE         DS = SQRT.((U(QK)-U(QK-1)).P.2 + H*H)         V = 4.013*(SQRT.(U(QK)) + SQRT.(U(QK-1)))         QT = QT + DS/V         END OF CONDITIONAL         10         7         FUNCTION RETURN         END OF FUNCTION         DATA         0 = 0., XT = 314.15926, YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4, K         X = 20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Α                                      | A = UO - PA(0)                                                       |          |
| C1 = ( AA*H2(QKMAX) - BB*H2(0))/DIN<br>C2 = (-AA*H1(QKMAX) + BB*H1(0))/DIN<br>PRINT RESULTS C1, C2<br>THROUGH L10, FOR QK = 0,1, QK .6. QKMAX<br>W(QK) = DPA(QK) + C1*DH1(QK) + C2*DH2(QK)<br>U(QK) = PA(QK) + C1*H1(QK) + C2*H2(QK)<br>WHENEVER QK .E. 0<br>QT = 0.<br>OTHERWISE<br>D5 = SQRT.((U(QK)-U(QK-1)).P.2 + H*H)<br>V = 4.013*(SQRT.(U(QK)) + SQRT.(U(QK-1)))<br>QT = QT + DS/V<br>END OF CONDITIONAL<br>10<br>7<br>FUNCTION RETURN<br>END OF FUNCTION<br>DATA<br>D = 0., XT = 314.15926, YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4,<br>K = 20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B                                      | B = UT - PA(QKMAX)                                                   |          |
| C2 = (-AA*H1(QKMAX) + BB*H1(0))/DIN<br>PRINT RESULTS C1, C2<br>THROUGH L10, FOR QK = 0,1, QK •G• QKMAX<br>W(QK) = DPA(QK) + C1*DH1(QK) + C2*DH2(QK)<br>U(QK) = PA(QK) + C1*H1(QK) + C2*H2(QK)<br>WHENEVER QK •E• 0<br>QT = 0.<br>QT = 0.<br>OTHERWISE<br>DS = SQRT.(U(QK)-U(QK-1)).P•2 + H*H)<br>V = 4.013*(SQRT.(U(QK)) + SQRT.(U(QK-1)))<br>QT = QT + DS/V<br>END_OF_CONDITIONAL<br>10<br>7<br>FUNCTION RETURN<br>END_OF_FUNCTION<br>DATA<br>D = 0., XT = 314.15926, YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4,<br>K = 20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C                                      | 1 = (AA*H2(QKMAX) - BB*H2(0))/DIN                                    |          |
| PRINT RESULTS C1, C2<br>THROUGH L10, FOR QK = 0,1, QK •G• QKMAX<br>W(QK) = DPA(QK) + C1*DH1(QK) + C2*DH2(QK)<br>U(QK) = PA(QK) + C1* H1(QK) + C2* H2(QK)<br>WHENEVER QK •E• 0<br>OT = 0.<br>OT = 0.<br>T = QT + DS/V<br>END OF CONDITIONAL<br>10<br>T = QT + DS/V<br>END OF CONDITIONAL<br>10<br>T = QT + 314.15926, YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4,<br>K = 20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C                                      | 2 = (-AA*H1(QKMAX) + BB*H1(O))/DIN                                   |          |
| THROUGH LID, FOR QK = 0,1, QK .6. QKMAX         W(QK) = DA(QK) + C1*DH1(QK) + C2*DH2(QK)         U(QK) = PA(QK) + C1*H1(QK) + C2*H2(QK)         WHENEVER QK .E. 0         QT = 0.         OT = 0.         OTHERWISE         DS = SQRT.((U(QK)) - U(QK-1)).P.2 + H*H)         V = 4.013*(SQRT.(U(QK)) + SQRT.(U(QK-1)))         QT = QT + DS/V         END OF CONDITIONAL         10         7         FUNCTION RETURN         END OF FUNCTION         DATA         0 = 0., XT = 314.15926, YT = 400., IMAX = 40. KMAX = 20. IFREQ = 4.1         X = 20. ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P                                      | RINT RESULTS C1, C2                                                  |          |
| W(0K) = DA(0K) + C1*DH1(0K) + C2*DH2(0K)<br>U(0K) = PA(0K) + C1* H1(0K) + C2* H2(0K)<br>WHENEVER OK •E• 0<br>OT = 0•<br>OT = 0•<br>OT = C•<br>OTHERWISE<br>DS = SQRT•(U(0K)-U(QK-1))•P•2 + H*H)<br>V = 4•013*(SQRT•(U(QK)) + SQRT•(U(QK-1)))<br>QT = QT + DS/V<br>END OF CONDITIONAL<br>10<br>7<br>FUNCTION RETURN<br>END OF FUNCTION<br>DATA<br>D = 0•, XT = 314•15926, YT = 400•, IMAX = 40•, KMAX = 20•, IFREQ = 4•,<br>K = 20•, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                      | HROUGH LIU, FOR $QK = 0,1, QK \cdot G \cdot QKMAX$                   | <u>.</u> |
| WHENEVER QK •E• 0         QT = 0•         OTHERWISE         DS = SQRT•((U(QK)-U(QK-1))•P•2 + H*H)         V = 4•013*(SQRT•(U(QK)) + SQRT•(U(QK-1)))         QT = QT + DS/V         END OF CONDITIONAL         10         7         FUNCTION RETURN         END OF FUNCTION         DATA         0 = 0•, XT = 314•15926, YT = 400•, IMAX = 40, KMAX = 20, IFREQ = 4, K = 20, IFREQ = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W                                      | (QK) = DPA(QK) + CI*DHI(QK) + C2*DH2(QK)                             |          |
| QT = 0.         QT = 0.         OTHERWISE         DS = SQRT.((U(QK)-U(QK-1)).P.2 + H*H)         V = 4.013*(SQRT.(U(QK)) + SQRT.(U(QK-1)))         QT = QT + DS/V         END OF CONDITIONAL         10         7         FUNCTION RETURN         END OF FUNCTION         DATA         0 = 0., XT = 314.15926, YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4, K = 20, IFREQ = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U                                      | HENEVER OK = E O                                                     |          |
| OTHERWISE         DS = SQRT.((U(QK)-U(QK-1)).P.2 + H*H)         V = 4.013*(SQRT.(U(QK)) + SQRT.(U(QK-1)))         QT = QT + DS/V         END OF CONDITIONAL         10         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | T = 0.                                                               |          |
| DS = SQRT.((U(QK)-U(QK-1)).P.2 + H*H)<br>V = 4.013*(SQRT.(U(QK)) + SQRT.(U(QK-1)))<br>QT = QT + DS/V<br>END_OF_CONDITIONAL<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ō                                      | THERWISE                                                             | <u> </u> |
| V = 4.013*(SQRT.(U(QK)) + SQRT.(U(QK-1)))<br>QT = QT + DS/V<br>END OF CONDITIONAL<br>10<br>7<br>FUNCTION RETURN<br>END OF FUNCTION<br>DATA<br>0 = 0., XT = 314.15926, YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4,<br>K = 20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D                                      | $S = SQRT \bullet ((U(QK) - U(QK - 1)) \bullet P \bullet 2 + H * H)$ |          |
| QT = QT + DS/V<br>END_OF_CONDITIONAL<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                      | = $4 \cdot 013 \times (SQRT \cdot (U(QK)) + SQRT \cdot (U(QK-1)))$   |          |
| END_OF_CONDITIONAL<br>10_7<br>FUNCTION RETURN<br>END_OF_FUNCTION<br>DATA<br>D = 0., XT = 314.15926, YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4,<br>K = 20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q                                      | T = QT + DS/V                                                        |          |
| TU<br>TUNCTION RETURN<br>END OF FUNCTION<br>DATA<br>D = 0., XT = 314.15926, YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4,<br>K = 20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ε                                      | ND_OF_CONDITIONAL                                                    |          |
| FUNCTION RETURN         END OF FUNCTION         DATA         D = 0., XT = 314.15926, YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4, K         X = 20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                      |          |
| END OF FUNCTION<br>DATA<br>D = 0., XT = 314.15926, YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4,<br>X = 20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F                                      | UNCTION RETURN                                                       |          |
| DATA<br>D = 0., XT = 314.15926, YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4<br>K = 20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E                                      | ND OF FUNCTION                                                       |          |
| D = 0., XT = 314.15926, YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4<br>< =20, ITMAX = 2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATA                                    |                                                                      |          |
| <pre>&lt; =20, ITMAX = 2*</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 0 <b>.,</b> XT                       | = 314.15926, YT = 400., IMAX = 40, KMAX = 20, IFREQ = 4,             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =20, IIM                               | AX = 2*                                                              | <u> </u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | · · · · · · · · · · · · · · · · · · ·                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | ·                                                                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | •                                                                    | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                      |          |

| -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78                                    |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
|                                       | R PROGRAM 5-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
|                                       | R BRACHISTOCHRONE PROBLEM WITH FREE END CONDIT<br>R JOINT USE OF INVARIANT IMBEDDING AND QUASI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IONS SOLVED BY                        |
|                                       | LE_MAD, EXECUTE, PRINT OBJECT, DUMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······                                |
|                                       | INTEGER I, IMAX, ITER, ITMAX, IFREQ, J, JMAX, K<br>1 M, KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , КК, КР,КМАХ,                        |
|                                       | DIMENSION Y(100), ROLD(800), RNEW(800), YR(6),<br>1PA(800), H1(800), H2(800), DPA(800), DH1(800),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FR(6), QR(6),<br>DH2(800),            |
|                                       | 2U(800), W(800)<br>EQUIVALENCE (IMAX, JMAX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
| START                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
|                                       | READ AND PRINT DATA_XI, YO,OYI, IMAX, IIMAX, IF<br>IKK, EPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | REQ, KMAX, KP,                        |
|                                       | DX = XT/KMAX $DY = (YT-YO)/IMAX$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|                                       | THROUGH L1, FOR I=0,1,I.G.IMAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
|                                       | Y(I) = I * DY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
| L1                                    | ROLD(1) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| · · · · · · · · · · · · · · · · · · · | $\frac{R}{R} = \frac{R}{R} = \frac{R}$ |                                       |
|                                       | X = K * DX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                                       | WHENEVER K •E• 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|                                       | PRINT COMMENT SOINITIAL CONDITIONS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                       | PRINT COMMENT & T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
|                                       | END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
|                                       | THROUGH L3, FOR I=0, 1, I.G. IMAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · · · · · · · · · · · · · · · · · · |
|                                       | S = Y(I) + ROLD(I)*DX*KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
|                                       | WHENEVER .ABS.(ROLD(I)).L. 1E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
|                                       | R = ROLD(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
|                                       | M = I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
|                                       | OR WHENEVER ROLD(I) .L.O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|                                       | THROUGH L4, FOR $J=I$ , $-1$ , $J$ , $E$ , $0$ , $OR$ , $(S,G,Y(J-1))$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AND • S • LE • Y ( J ) )              |
| _ 4                                   | WHENEVER L .F. O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
|                                       | END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                     |
|                                       | R = (ROLD(J) - ROLD(J-1)) * (S - Y(J-1)) / DY + ROLD(J-1)) / DY + ROLD(J-1) / ROLD(J-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1)                                    |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| L5 <sup></sup>                        | THROUGH LSOFOR J=1010JOE IMAX OR (S.G.Y(J) AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $D \circ S \circ L E \circ Y (J+1) $  |
|                                       | WHENEVER J.E. JMAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
|                                       | J = JMAX - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |
|                                       | END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
|                                       | $\mathbf{R} = (\mathrm{ROLD}(J+1) - \mathrm{ROLD}(J)) * (S-Y(J))/DY + \mathrm{ROLD}(J)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                     |
|                                       | END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |

79 WHENEVER .ABS.(ROLD(I)) .G. 1E6 ROLD(I) = 1E6\*(ROLD(I)/(ABS(ROLD(I))))END OF CONDITIOANL Y(0) = 0.1RNEW(I) = R+(1+ROLD(I)\*ROLD(I))\*DX\*KK/(2\*Y(I))WHENEVER K.E.O .AND. (I/IFREQ)\*IFREQ .E. I PRINT FORMAT IMBED, I, Y(I), ROLD(I), M END OF CONDITIONAL L3 THROUGH L6, FOR I = 0, 1, I .G. IMAX ROLD(I) = RNEW(I)L6 L2 INITIAL INTEGRATION R THROUGH L7, FOR I = IFREQ, IFREQ, I .G. IMAX UO = Y(I)YR(1) = Y(I) YR(2) = ROLD(I)X = 0. EXECUTE SETRKD. (2, YR(1), FR(1), QR, X, DX) THROUGH LRK1, FOR  $K = 1, 1, K \cdot G \cdot KMAX$ RK1 S = RKDEQ.(0)WHENEVER S .E. 1. FR(1) = YR(2)FR(2) = -(1 + FR(1) + FR(1))/(2 + YR(1))TRANSFER TO RK1 OTHERWISE U(K) = YR(1)W(K) = YR(2)END OF CONDITIONAL LRK1 R USE Q: L. AS A CORRECTOR THROUGH L8, FOR ITER = 1,1, ITER .G. ITMAX PA(0) = 0.H1(0) = 1.H2(0) = 0DPA(0) = 0DH1(0) = 0.DH2(0) = 1. YR(1) = PA(0)YR(2) = DPA(0)YR(3) = H1(0)YR(4) = DH1(0)YR(5) = H2(0) YR(6) = DH2(0)X = 0.EXECUTE SETRKD. (6, YR(1), FR(1), QR, X, DX) THROUGH LRK, FOR K = 1,1, K.G.KMAX CALLRK  $S = RKDEQ_{\bullet}(0)$ 

|          | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | WHENEVER S .E. 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| _        | FR(1) = YR(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | . WHENEVER FR(1) •G• EPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b></b>  | FR(1) = EPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | FR(3) = YR(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | $= \text{WHENEVER FR(3) } \bullet \bullet \bullet \text{EPS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | ER(5) = YR(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | WHENEVER ER(5) _G_ EPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | FR(5) = FPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | $GU = (1_{\bullet} + W(K) * W(K)) / (2_{\bullet} * U(K) * U(K))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | WHENEVER GU .G. 1E6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | GU = 1E6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | GW = -W(K)/U(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | WHENEVER •ABS•(GW) •G• 1E6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u> </u> | GW = 1E6*(GW/(ABS(GW)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | _ END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | FR(2) = GU*(YR(1)-2.*U(K)) + GW*(YR(2) - W(K))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | WHENEVER •ABS•(FR(2)) •G• EPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | $FR(2) = EPS*(FR(2)/(\bullet ADS \bullet (FR(2))))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | $\frac{1}{1} = \frac{1}{1} = \frac{1}$ |
|          | FP(A) = FPS*(FP(A)/(ABS)(FP(A)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | FR(6) = GU*YR(5) + GW*YR(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | WHENEVER .ABS.(FR(6)) .G. EPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | FR(6) = EPS*(FR(6)/(ABS(FR(6))))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <u> </u> | TRANSFER TO CALLRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | OTHERWISE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | PA(K) = YR(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | $ = \frac{\pi (x)}{\pi (y)} = \frac{\pi (y)}{\pi (y)} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | DH1(K) = YR(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | DH2(K) = YR(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | END OF CONDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ·        | DIN = H1(0)*DH2(KMAX) - DH1(KMAX)*H2(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| .,       | AA = UO - PA(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | C1 = (AA*DH2(KMAX) + DPA(KMAX)*H2(0))/DIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | C2 = (-AA*DH1(KMAX) - DPA(KMAX)*H1(0))/DIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | PRINT COMMENT \$0\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | PRINT RESULTS I, UO, ITER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | PRINT RESULTS C1, C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | PRINT COMMENT \$ K X PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | <u>1 H1 H2 V V</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | 2 QT \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

81 THROUGH L9, FOR K = 0, 1,  $K \cdot G \cdot KMAX$ U(K) = PA(K) + C1 + H1(K) + C2 + H2(K)W(K) = DPA(K) + C1\*DH1(K) + C2\*DH2(K)X = K \* D XWHENEVER K .E. O QT = 0. OTHERWISE  $DS = SQRT_{\bullet}((U(K)-U(K-1)) \cdot P_{\bullet}2 + DX * DX^{-})$  $V = 4.013 \times (SQRT_{\bullet}(U(K)) + SQRT_{\bullet}(U(K-1)))$ QT = QT + DS/VEND OF CONDITIONAL WHENEVER (K/KP)\*KP .E. K PRINT FORMAT LINEAR, K, X,PA(K),H1(K),H2(K),U(K),W(K),QT END OF CONDITIONAL L9 U(0) = 0.001L8 PRINT COMMENT \$0\$ Ē7 TRANSFER TO START VECTOR VALUES IMBED = \$ 1110, 2E20.8, 1110 \*\$ VECTOR VALUES LINEAR = \$ 115, 1E12.4, 6E17.8 \*\$ END OF PROGRAM \$ DATA XT = 314.15926, YO=0., YT=400., IMAX=100,ITMAX=1, KMAX=400,IFREQ =10, KP=20, KK=4, EPS=100\*

### CONCLUSIONS

Modern digital computers can solve a great number of initial-value problems with accuracy and speed. The conventional method of solving two-point boundary-value problems by estimating initial slopes does not make efficient use of their capabilities. In addition, the accuracy achieved at the boundary points does not guarantee equal accuracy throughout at intermediate points. The first difficulty may be mitigated by using the technique of invariant imbedding or dynamic programming, while the accuracy in the interval may be improved significantly by quasilinearization.

The convergence of solution obtained by quasilinearization depends solely upon the suitability and closeness of the initial estimate to the solution. This original estimate may be obtained by invariant imbedding or dynamic programming. A major difficulty in applying quasilinearization arises in obtaining the multipliers from high-dimensional systems of linear algebraic equations. Serious errors may result when inaccurately determined multipliers are used in combinations of solutions. Invariant imbedding eliminates this difficulty by producing functions which yield the unknown initial values directly [18].

Dynamic programming reduces, in large scale, the labor of searching for optimal paths. Since it bypasses the requirement for knowing the differential equation governing the

(82)

٠,

optimal curve, it is particularly suited for solving multistage multi-decision problems where the differential equation does not exist. If the differential equation governing the optimal path can be derived or a continuous problem giving differential equation is solved as a discrete multistage multidecision process, the computing time may further be reduced by using the technique of searching over a restricted region either by utilizing the slope characteristics of the differential equation or by joint use with invariant imbedding. Accuracy of dynamic programming depends upon the fineness of the selected grid, but the size of the problem is limited by the available memory of a computer. Combining dynamic programming and quasilinearization avoids this difficulty while producing accurate results.

### APPENDIX

### CLASSICAL SOLUTION OF BRACHISTOCHRONE PROBLEM

The brachistochrone problem requires that we find the path of least-time between two points in a gravitational field. Since gravitational force is the only force acting on the mass, the travelling time may be expressed as

$$T = \int_{0}^{t_{B}} dt = \int_{0}^{s_{B}} \frac{ds}{v} = \int_{0}^{b} \sqrt{\frac{1+y'^{2}}{2gy}} dx$$
$$= \int_{0}^{b} F(y,y') dx \qquad (A-1)$$

where ds stands for the infinitesimal chord length, V is the velocity, and g is the constant of gravitational acceleration. In order to minimize T, we apply Euler's equation to the integrand F, that is,

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \left[ \frac{\partial F}{\partial y} \right] = 0 \qquad (A-2)$$

where

$$F = \sqrt{\frac{1+y^2}{2gy}}$$
 (A-3)

By performing the operation required by Eq.(A-2) we are led to the equation

$$y'' = -\frac{1+y^{*2}}{2y}$$
 (A-4)

. \*

which may be integrated to yield

$$1 + y'^2 = \frac{c_1}{y}$$
 (A-5)

where  $c_1$  is a constant of integration.

In turn, by manipulation of the terms and performing a second integration, we obtain

$$x = \frac{c_1}{2} (u - \sin u) + c_2$$
 (A-6)

where  $u = \cos^{-1}(1-2y/c_1)$  and  $c_2$  is the second constant of integration. Since the path starts at the origin, at x = y = 0, u = 0, which implies that  $c_2 = 0$ . Thus, we are led to the solution

$$x = \frac{c_1}{2} (u - \sin u)$$
 (a)  

$$y = \frac{c_1}{2} (1 - \cos u)$$
 (b)

which we recognize as the parametric form of the equation for a cycloid, that is

$$x = r(\theta - \sin \theta)$$
(a)  
$$y = r(1 - \cos \theta)$$
(b)

where  $r (=c_1/2)$  is the radius of the base circle, and  $\theta$  (=u) is the angular displacement of the base circle.

It can be shown that the travelling time along a cycloidal path is given by

$$t = \sqrt{r/g} \theta = \frac{\theta}{\omega} \qquad (A-9)$$

where  $\omega = \sqrt{g/r}$  is a constant for particular cycloidal path. In summary:

The path of least-time in a gravitational field is a part of a cycloid. The travelling time along any section of the cycloid is proportional to the angular displacement of the base circle by which that section of the curve is generated. The angular velocity of the base circle  $\omega$  is constant ( $=\sqrt{g/r}$ ), where r is the radius of the base circle and g is the constant of gravitational acceleration.

#### BIELICGRAPHY

- [1] .mbarzumiam, V. A. "On the Scattering of Light by a Diffuse Medium," <u>Crupt. rend. Doklady Acad. Sci.</u> <u>U.R.S.S.</u> V.38, p. 257, 1943.
- [2] Chandrasekhar, S., <u>Rediative Transfer</u>, Oxford University Press, London, 1950.
- [3] Bellman, R. E. and R. E. Kalaba, "On the Principle of Invariant Imbedding and Propagation Through Inhomogeneous Media," <u>Proc. Nat. Acad. Sci. USA</u> V. 42 (1956), pp. 629-632.
- [4] Bellman, R. E., <u>Dynamic Programming</u>, Princeton University Press, Princeton, New Jersey, 1957.
- [5] Bellman, R. E. and R. E. Kalaba, "On the Principle of Invariant Imbedding and Diffuse Reflection from Cylindrical Regions," <u>Proc. Nat. Acad. Sci. USA</u>, V. 43 (1957), pp. 514-517.
- [6] Bellman, R. E., R. E. Kalaba, and G. M. Wing, "On the Principle of Invariant Imbedding and One-dimensional Neutron Multiplication," <u>Proc. Nat. Acad. Sci. USA</u>, V. 43 (1957), pp. 517-520.
- [7] Bellman, R. E. and R. E. Kalaba, "Random Walk, Scattering, and Invariant Imbedding 1. One-dimensional Discrete Case," <u>Proc. Nat. Acad. Sci. USA</u>, V. 43 (1957), pp. 930-933.
- [8] Bellman, R. E., R. E. Kalaba, and G. M. Wing, "Invariant Imbedding and Mathematical Physics-I: Particle Processes," J. of Mathematical Physics, V. 1 (1960), pp. 280-308.
- [9] Bellman, R., R. E. Kalaba, and G. M. Wing, "Dissipation Function and Invariant Imbedding, 1", <u>Proc. Nat.</u> <u>Acad. Sci. USA</u>, V. 46 (1960), pp. 1145-1147.
- [10] Bellman, R. E., R. E. Kalaba, and G. M. Wing, "Invariant Imbedding, Conservation Relations, and Non-linear Equations with Two-point Boundary Values," <u>Proc.</u> <u>Nat. Acad. Sci. USA</u>, V. 46 (1960), pp. 1258-1260.
- [11] Bellman, R. E., R. E. Kalaba, and G. M. Wing, "Invariant Imbedding and Reduction of Two-point Boundary Values Problems to Initial Value Problems," <u>Proc. Nat. Acad.</u> <u>Sci. USA</u>, V. 46 (1960) pp. 1646-1649.

(87)

- [12] Bellman, R. E., <u>Adaptive Control Process, A guided tour</u>, Princeton University Press, Princeton, New Jersey, 1960.
- [13] Bellman, R. E. and R. E. Kalaba, "On the Fundamental Equations of Invariant Imbedding-I," <u>Proc. Nat. Acad.</u> <u>Sci. USA</u>, V. 47 (1961), pp. 336-338.
- [14] Bellman, R. E. and S. Dreyfus, <u>Applied Dynamic Programming</u>, Princeton University Press, Princeton, New Jersey, 1962.
- [15] Bellman, R. E., H. Kagiwada, and R. E. Kalaba, "A Computational Procedure for Optimal System Design and Utilization," <u>Proc. Nat. Acad. Sci. USA</u>, V. 48 (1962), pp. 1524-1528.
- [16] Bellman, R. E. and R. E. Kalaba, <u>Dynamic Programming</u>, <u>Invariant Imbedding and Quasilinearization</u>, <u>Compa-</u> <u>risons and Interconnections</u>, the Rand Corporation, <u>Santa Monica</u>, California, 1964.
- [17] Bellman, R. E., H. Kagiwada, R. E. Kalaba, and R. Spidhar, <u>Invariant Imbedding and Nonlinear Filtering Theory</u>, the Rand Corporation, Santa Monica, California, 1964.
- [18] Bellman, R. E., H. Kagiwada, and R. E. Kalaba, <u>Numerical</u> <u>Studies of A Two-point Nonlinear Boundary Value</u> <u>Problem Using Dynamic Programming, Invariant Imbed-</u> <u>ding, and Quasilinearization</u>, the Rand Corporation, Santa Monica, California, 1964.
- [19] Bellman, R. E. and R. E. Kalaba, <u>Quasilinearization and</u> <u>Boundary Value Problems</u>. American Elsevier Publishing Co., New York, 1965.
- [20] Bellman, R. E., H. Kagiwada, and R. E. Kalaba, <u>Invariant</u> <u>Imbedding and the Numerical Integration of Boundary</u> <u>Value Problem for Unstable Systems of Ordinaty Dif-</u> <u>ferential Equations</u>, the Rand Corporation, Santa <u>Monica</u>, California, 1965.
- [21] Dreyfus, Stuart E., <u>Dynamic Programming and the Calculus</u> of Variations, the Rand Corporation, Santa Aonica, California, 1965.
- [22] Fan, Lian-Tsen, and Chiu-Sen Wan, <u>The Discrete Minimum</u> <u>Principle-A Study of Multistage System Optimization</u>, John Wiley and Sons, New York, 1964.
- [23] Hildebrand, Francis B., <u>Advanced Calculus for Applications</u>, Prentice-Hall, Inc., New Jersey, 1962.

<u>.</u> ۴

[24] Kalaba, R. E., "Computational Considerations for Some Deterministic and Adaptive Control Processes," <u>Optimization Techniques</u>, Edited by George Leitman, Academic Press, 1962.

.

[25] Tou, Jurious, Modern Control Theory, McGraw-Hill, New York, 1965.

.

.