
BRACHISTOCHRONE PROBLEM SOLVED BY INVARIANT IMBEDDING,

DYNAMIC PROGRAMMING, AND QUASILINEARIZATION METHODS

A Thesis

Presented to

the Faculty of the Department of Mechanical Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Mechanical Engineering

by

Moo-Zung Lee

June, 1966

363713

ACKNOWLEDGEMENT

The author wishes to express his sincere gratitude

to his adviser Dr. D. Muster, Professor and Chairman of

the Department of Mechanical Engineering, University of

Houston, for his encouragement, guidance and careful
arrangements of discussions with several people during

the study and writing of this thesis. Among these, the

author is particularly in debt to Dr. R, E. Kalaba of

the Rand Corporation who suggested this problem with

keys to the solution and contributed many valuable

references. Assistance received from Drs. I. Organlok,
S. R. Parker, and S. B. Childs, (all of. the University
of Houston), is greatly appreciated.

ill

BRACHISTOCHRONE PROBLEM SOLVED BI INVARIANT IMBEDDING,

DYNAMIC PROGRAMMING, AND QUASILINEARIZATION METHODS

An Abstract of a Thesis

Presented to

the Faculty of the Department of Mechanical Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Mechanical Engineering

by

Moo-Zung Lee

June, 1966

ABSTRACT

In such fields of current interest as optimal control

and orbit determination, non-linear two-point boundary-

value problems arise, the numerical solutions for which

are difficult to obtain. In this thesis, some of the useful

tools for treating problems of this nature - invariant

imbedding, dynamic programming, and quasilinearization are

studied by means of the brachistochrone problem. The three

approaches are used separately and in combination. Computer

programs using MAD language are presented. The results are

compared with the classical solutions.

TABLE OF CONTENTS
Page

ACKNOWLEDGEMENTS ill

LIST OF FIGURES vii

LIST OF .TABLES i'X

LIST OF PROGRAMS X

LIST OF SYMBOLS xi

CHAPTER

I. INTRODUCTION 1
II. INVARIANT IMBEDDING 6

III. DYNAMIC PROGRAMMING 20
IV. QUASILINEARIZATION.................... ^6

V. COMPARISONS AND COMBINATIONS......... 59

CONCLUSIONS............................... 82
APPENDIX... 84

BIBLIOGRAPHY..................................... 8?

LIST OF FIGURES

Figure Page

1.2- 1 Possible Paths for the Least Time 2

2.4- 1 Initial Slopes and. the Range of
Independent Variable..... 9

2.4- 2 (A) w as a function of a
(B) w as a function of c.............. 11

2.4- 3 Slopes Along the Optimum Path in
x-u Plane 11

2.4- 4 Slopes Along the Optimum Path as
a Function of x...................... 11

2.4- 5 Geometry of Equation (2.4-11) 13

2.4- 6 Initial Slopes Obtained from Invariant
Imbedding 15

2.4- 7 Flow Chart of Invariant Imbedding 1?

3.1- 1 Two-Decision Two-Stage Process 20

3.1- 2 Two-Decision Multistage Process 21

3.3- 1 Multi-Decision Process 23

3.3- 2 Grid Points in x-y Plane 23

3.3- 3 Optimal Path c^dQ 23
3.4- 1 Stage k = n - 1 25

3.4- 2 Stage k = n - 2 25

3*4-3 Geometry of the Principle of Optimality 25

3.4- 4 Possible Paths from d^ to B............ 28

3.4- 5 Figure of an Example 28

3.4- 6 Figure of an Example 28

3.5- 1 Backward Scheme 29
3.6- 1 Possible Paths from A to d^........... 32

vll

LIST OF FIGURES (oon't)

Figure Page

3.6- 2 Forward. Scheme 32

3.6- 3 Geometry of the Reverse Principle of
Optimality........................... 32

3-7-1 Figure of Equation (3*7-1) 33

3.8- 1 Elements of Cost Matrix............... 37

3.8- 2 Optimal Curves Obtained, by Dynamic
Programming 39

3.8- 3 Flow Chart, Forward. Method, of Dynamic
Programming 41

4.1- 1 Newton-Raphson Method.................. 46

4.2- 1 Abstract Procedure of Quas11ineariza-
tion 55

5.2- 1 Slope Characteristics and Searching
Region 62

5.3- 1 Regions to be Searched in Various Cases 64

vl 11

LIST OF TABLES

Table Page
2- 1 Initial Slopes Obtained, by Invariant

Imbedding.............................. 1 6

3- 1 Minimum Travelling Time Obtained by
Dynamic Programming 40

3- 2 Grid Number and Accuracy In Dynamic
Programming 40

4- 1 Convergence of u (x) to u(x) by Quasl-
llnearlzatlon,.(800.discrete points) .. 52

4-2 Convergence of u (x) to u(x) by Quasl-
llnearlzatlon , (4oo discrete points) . 53

4- 3 Minimum Travelling Time Obtained by
Quasilinearization 54

5- 1 U(x) Obtained by Joint Use of Dynamic
Programming and Quasilinearization 6?

5-2 U(x) Obtained by Joint Use of Invariant
Imbedding and Quas11InearIzatIon . 68

lx

LIST OF PROGRAMS
Program Page

2- 1 Brachistochrone Problem with Free End.
Conditions Solved by Invariant
Imbedding 18

3- 1 Brachistochrone Problem with Two-Point
Constraint Solved by Forward Method of
Dynamic Programming 42

3- 2 Brachistochrone Problem with Free-End
Conditions Solved by Backward Method

. of Dynamic Programming........... 44

4- 1 Brachistochrone Problem Solved by
Quasilinearization 56

5- 1 Forward Method of Dynamic Programming,
j Searching Within Restricted Region 69

5-2 Brachistochrone Problem with Free End
Conditions Solved by Joint Use of
Invariant Imbedding and Dynamic
Programming 70

5-3 Brachistochrone Problem Solved by Joint
Uso of Dynamic Programming and
Quasilinearization 73

5-4 Brachistochrone Problem with Free-End
Conditions Solved by Joint Use of
Invariant Imbedding and Quasilinea­
rization 78

x

•LIST OF SYMBOLS-

Symbol- ■ Definition ,

.a Initial position along x-axis

A Starting point

b1 ,b2 Constants

B Terminal point

c Initial state
d. Interpolated value of state variable

d.elx, dx,Ax Small Increment of x

dely, dy,Ay Small increment of y

d.s Infinitesimal chord length

dt Infinitesimal time

f Optimal function

F Functional

g Constant of gravitational acceleration

G Functional

h1 *h2 Homogeneous solution

1 State counter

J State counter

k Stage counter
l,m,n Integer constants
0 The origin

P Particular solution

q State counter

Ok Stage counter in quasilinearization

xi

LIST OF SYMBOLS (con't)

Symbol Definition
r Slope function (text)

r Radius of base circle (appendix)

t Time

u State variable

uQ Starting value of u

Uj Terminal value of u

V Velocity

w Slope

x Independent variable

xQ Starting value of x

x^ Terminal value of x

y Dependent variable

yQ Starting value of y

y^ Terminal value of y

0 Angular displacement of base circle

60 Angular velocity of base circle

xii

CHAPTER I

INTRODUCTION

1.1 INITIAL-VALUE PROBLEM AND BOUNDARY-VALUE PROBLEM

Consider a second order ordinary differential equation

y” = G(y,y*)

with Initial conditions

y(0) = c1 (a)

y’(0) = c2 (b)

(1.1-D

(1 .1-2)

The determination of a solution to Eq.(1.1-1) subject to

conditions Eq.(1.1-2) is known as an initial-value problem.

By putting u=y, w=y’, Eqs. (1.1-1) and (1.1-2) become

u* = w u(0) = c. (a)
(1.1-3)

w* = G(u,w)1 w(0) = Cg (b)

which are integrable directly.

Modern electronic computers provide the means for

obtaining numerical solutions of systems of simultaneous

non-linear (or linear) ordinary differential equations

subject to a set of initial conditions, with accuracy and

speed. However, in some fundamental problems the constraints

are not initial values but are in the form

u’ = w , u(0) = c, (a)1 (1.1-4)
w* = G(u,w), w(xT)= c3 (b)

where x™ is the terminal value of the Independent variable x.

(1)

2

The problem Is called, a two-point boundary-value problem,

since values are prescribed, at two distinct points, x=0 and

X=Xp.
1 .2 THE BRACHISTOCHRONE PROBLEM 1

From Greek, shortest and ^pd^os-, time, a term
invented by Jean Bernoulli (1667-17^8) in 169^ to denote a
curve along which a body passes from one fixed point to
another in the shortest time. When the directive force is
constant, the curve is a cycloid.

As an example of a two-point boundary-value problem,

the differential equation of brachistochrone problem is

derived as follows:

Given two points in a space containing a constant

gravitational force field, we wish to find a frictionless

path from a higher point to a lower point along which a

particle will slide in minimum time.

A(0,0)

B(x-r,yI,)

Figure 1 .2-1

Possible Paths for the Least Time

In Fig. 1.2-1, It is obvious that the particle will

3

traverse minimum distance along the straight-line path ACB.

Along the curved, path ADB the particle picks up speed, sooner,

but travels a longer route. The optimal path of least time

may be found, by balancing these considerations properly.

Let us denote the Initial point as the origin, set up a

coordinate system as shown In Fig. 1.2-1 and call the terminal

point (x^jy^,). We know that the particle velocity, vy
In the plane of the field, Is equal to J 2gy at any

position In the field, Independent of Its horizontal position.

Since an infinitesimal arc length, ds is given by

ds = [(dx)2 + (dy)2] 1/2 = Jl+(y*)2 *dx,

the time of descent is expressed by

(1.2-1)

where g Is the gravitational constant. We seek a function *
y=y(x) which satisfies the constraint conditions y(0)=0,

y(x^,)=y , and which minimizes the integral T.

The Euler equation for Eq.(1.2-1) is

p2yy” + y’^ + 1 =0 (1.2-2)

or In the form of Eq. (1.1-1)

y" = - -J+y'?. (1.2-3)
2y

subject to the boundary conditions

u-

y(0) = 0 (a)
(1.2-4)

yC^) = (b)

1*3 A ^MERICAL solution of TWO-POINT BOUMDARY-V/LUS problem

In order to solve an n-th-order ordinary differential

equation numerically, ordinary computing techniques call for
a knowledge of y, y’, y”, ... y^n-1^ at either the starting

point x=0 or the terminal point x=xT. In the brachisto­

chrone problem, we have one value at one end and another at

the other.
In order to solve a problem of this nature, we may

choose a value of y*(0), say c^, and Integrate the equation

using yCO)^^ y*(0)=c^ as Initial values. If the value at

the terminal point, obtained In this way agrees

sufficiently closely with the desired value yT, we accept

this as the solution. Otherwise, we vary the value of c^

and recompute the terminal value until agreement at the

boundary is satisfactory.

This Is not an Ideal procedure for a number of reasons.

First, It Is difficult to estimate in advance the required
amount of computing time which will be needed. Second,

stipulating a certain accuracy at the end point does not
guarantee equal accuracy throughout whole range of x, from

x=0 to x=xrp. Third, the results obtained from the i-th

iteration

yCk)^, = y[x(k)]^ for 0^x(k)=k»Ax^xT (1.3-1)

5

are not utilized to improve the solution in the (1+1)-th try.

In addition, a proper first estimate of the solution may be

difficult to establish.
1.4 RECENT APPROACHES

As we shall see In the following chapters, theories of

invariant imbedding and dynamic programming transform

boundary-value problems to initial-value problems by introduc­
ing new state variables, and imbedding a specific problem in

a family of similar problems. Invariant Imbedding provides

information of initial slopes from given terminal slopes in

a very short computing time. The Euler equations obtained

In the course of applying calculus of variations are, In

most cases, difficult to solve; dynamic programming provides

a means of by-passing this hurdle. On the other hand,

quasilinearization attacks these problems by linear approxi­

mation techniques combined with a concept analogous to making

approximations in policy space The approximations are

constructed to yield rapid and monotone convergence.

The theory and techniques mentioned above were developed
mainly by Bellman, Kalaba and their colleagues [3-21,24] .'

Number in bracket refers to identically numbered
references in the bibliography.

CHAPTER II

INVARIANT IMBEDDING

2.1 PRINCIPLE OP INVARIANT IMBEDDING
In 19^3> Ambarzumian introduced, a new approach to the

study of atmospheric scattering problems [l] . This approach

was extended by Chandrasekhar who gave it the name "principle •
of invariance" [2] . In recent years, Bellman and Kalaba

generalized this methodology and called it "the principle of
invariant imbedding"Q. It can be stated as follows:

"Given a physical system, S, whose state at any time t

is specified by a state vector, x, we consider a

process which consists of a family of transformations

applied to this state vector.

Suitably enlarging the dimension of the original vector

by means of additional components, the state vectors

are made elements of a space which is mapped into

Itself by the family of transformations. In this way *

we obtain an invariant process, by-imbedding the

original process within the new family of processes.

The functional equations governing the new process are

the analytic expression of this invariance. "

In other words, we derive equations for the values of

the dependent variables at a fixed value of the independent

variable as a function of Interval on which the boundary

value problems are specified.

Many applications of this theory in such diverse areas

(6)

1

as radiative transfer, neutron transport, diffusion and heat

conduction, scattering and random walk, and wave propagation
can be found in recent literature 8j . In this report,

the fundamental technique is applied to a problem well-known

in classical calculus of variations.

2.2 IMBEDDING PARTICULAR PROBLEM IN A FAMILY OF PROBLEMS

In the study of a spring-mass system, customarily we
write y=y(t), indicating the dependence of the solution upon

t. More generally, the solution is also a function of c, the •
initial value of y; hence, we write y=y(c,t). This implies i

that the study of a particular solution of a differential

equation may be carried out by studying a family of solutions.

It also constitutes the keystone of the theory of invariant

imbedding and forms the base for the theory of dynamic pro­

gramming.

Although imbedding a particular problem in a family of

problems appears to complicate rather than simplify the.

problem, its Justification lies in the fact that we can

construct a bridge spanning the particular problem and other

members of the family, which is utilized to determine the

characteristics of the particular member of the family.
2.3 BRACHISTOCHRONE PROBLEM WITH FREE-END CONDITIONS

A brachistochrone path connecting the initial point A(o,c)
and any point on the terminal line x=B is characterized by

minimizing the functional
--------- r

T = ■+ dx (2.3-1)
J0N 2sy

8

where the dependent variable is subject to the Initial condition

y(0) = c (2.3-2)

and y is free at the terminal line x=B. Such a problem is said

to have one variable end point.
From Eq.(1.2-3), the optimal path is the solution of the

Euler equation

y*' ------ HZlL (2.3-3)

2y

subject to initial condition y(0)=c. The other boundary value

is not given explicitly; however, from the statement of the

problem and the fact that the minimum-time path from any point

on the terminal line to the terminal line itself is equal to
zero, we have the so-called natural boundary condltion[l 4]

y*(B) = 0 (2.3-4)

We seek to find the missing initial value y’(0). so that

we can Integrate Eq.(2.3-3) directly to obtain a solution. In

the following section we show how to compute, by invariant

Imbedding, the missing initial slopes from the given terminal
slopes.
2.4 DERIVATION OF EQUATIONS [l 8]

We rewrite Eq.(1.1-3) with c^O, C2=0e is,

u’ = w, u(0) = c (a)
(2.4-1)

w’ = G(u,w), w(xp)= 0 (b)

9

Initial Slope and. the Range of

Independent Variable

From Fig. 2.4-1 we can see that, for similar problems, the

Initial slopes depend upon the range of the Independent
variable x. Initial slope u,(0)=w1 Is optimum for Xp=B1 ,

while u'(0)=w2 Is proper for xp=B2 If we fix Xp at B, and

consider various starting points at x=a along x-axls, then the
Initial slope at x=a is a function of a (Fig.2^4-2). We write

u*(a) = r(a) for 0 a Xp (2.4-2)

By permitting the parameter a to vary from X/p to 0, we

construct a family of similar problems with different range

of x for each member of the family. Furthermore, for a

particular value of a, say a=a1, the initial slopes differ

At the cusps of a cycloid the slope Is infinitely
large, but here we must choose finite values for use
in the computation. On this base we assume w(0) to be
finite but large at the cusps.

10

according to the starting position c=u(0). Therefore we write

u’(a) = w(a) = r(c,a) (2.4-3)

realizing that the correct slope depends upon the starting
value of x as well as the initial position u(x). By permit­

ting c or a'to vary, or c and a simultaneously, we actually

investigate a family of problems of similar nature.
Let us assume the process begins at x=a, with slope b^.

After moving along the optimal path to x=a+Ax the slope
becomes bg (as is shown in Figs.2.4-3 and 2.4-4), and

w(a+4x) = w(a) + w,(a)*^x + 0 [(ax)2] (2.4-4)

Recall Eq.(2.4-3) and replace w(a) by r(o,a); we obtain

w(a+Ax) = r(c,a) + w’(a)’Zix + oQax)2] (2.4-5)

On the other hand, the general functional relationship
Eq. (2.4-3) holds equally well for x=a+2Xx, that is

w(a+Ax) = r(d,a+Ax) (2.4-6)

where d is the value of dependent variable u at x=a+Ax,

which may be expressed by

d = u(a+hx)
= u(a) + u’(a)«Ax + 0[(Ax)2]

o= c + w (a)*Ax + 0 [(ax)]
= c + r(c,a)*Ax + 0[(ax)2] (2.4-7)

Vie substitute Eq.(2,4-7) into Eq.(2.4-6) Introduce the second

11

Figure 2.4-2

(A) w as a function of a
(B) w as a. function of c

Figure 2.4-3 Figure 2.4-4

Slopes Along the Optimal Path Slopes Along the Optimal path
in x-u Plane as a function of x

12

expression of the slope at x=a+zxx and obtain

w(a+Ax) = r [c+r(o,a), a+Axj (2.4-8)

By equating the right-hand sides of Eq.(2.4-5) and Eq.(2.4-8)

we obtain

r(o,a) + w,(a)*Ax = r£c+r(o,a)*AX, a+^x]

(2.4-9)

In order to express r(o,a) as a function of r(o,a+hx), let us

take ax sufficiently small and for the first approximation

r[c+r(c,a)'AX, a+^x'j = r[o+r(c,a+Ax)«Ax, a+4x]

(2.4-10)

to rewrite Eq.(2.4-9)

r(o,a) = r |c+r(c,a+Ax)»ax, a+AxJ - w* (a+Ax)»Ax

(2.4-11)

From the geometry of Fig. 2.4-5, if the slopes of curves

passing through all grid points at x=a+hx are known, the

slopes of different curves passing through grids at x=a are
computed as follows.
1. Take the slope at p, w=r(c1,a+^x) as the first approxi­

mation of the slope at q.
2. Locate d by equation d-ci+r(c1,a+Ax)*Ax ,

3. Compute the slope of curve at d by linear interpolation
of r(ci,a+Ax) and r(oi+1,a+Ax).

4. Compute r(cjL,a) using Eq. (2.4-11).

5. Repeat steps 1~4 for all other points at x=a.

13

I

Figure 2.4-5

Geometry of Eq.(2.4-11)

6. Repeat steps 1^5 to regenerate the slopes for all grid

points at the neighboring stage In the left-hand side.
Using Eq.(2.4-11) with the free-end conditions r(ci,xT)=0,

we can determine the slope function r at all grid points

at a = Xj> - ax, a = x^ -2 ax and so on.

Consider the computing procedures outlined above. In

14

step 2, we assigned. r(c^,a4-Ax) in predicting d; In step 3»

both rCc^^ja+Ax) and r(c,+1 ,a+z>.x) contribute to the estimation

of the slope of optimum curve passing through d. The position
of d and Its slope combined with Eq.(2.4-11) make estimation

of r(c1$a) possible. The roles of the neighboring members of

the family of the problems are obvious.

It Is not wasteful to expand the dimension of the

problem by invariant Imbedding, because we Imbed a difficult

or unsolvable problem In a family of similar problems which
become easier to handle after the mutual relations existing

between the members of the group are used. As a byproduct,

a series of problems are solved In one stroke Instead of just

obtaining a particular solution for a single problem. This

series of results also supplies a more complete picture of

the effect of each parameter on the resulting function.

As an example, a group of brachistochrone problems with
x=0'v31 4.15926, u^=0a>400 and with natural boundary conditions

at terminal line were solved by taking 100 grids In both x

and u axes. Computation of the Initial slopes at various
/ 4starting points of u at x=0 takes 6.1 sec execution time

using IBM 709^ computer. The results of 20 cases of Initial

slopes are compared with the analytical solution In Table 2-1.

The computer program In MAD language used to obtain these
results is shown In Program 2-1. In Fig.2.4-6 the Initial

slopes r(c,a) obtained from invariant Imbedding are shown.

In this thesis all computing times were obtained with
programs using the same approach and philosophy. Change In
either of these could produce significant changes In absolute
computing times. On this basis, we have considered computing
times as a criterion of comparison.

15

In
it
ia
l

Sl
op
es
 r(

c,
 a

)

20 U0 60 80 100
Stage Number k

Initial Instants a = 100ic(k/100)

Fig. 2.I4.-6 Initial Slopes Obtained from Invariant Imbedding

16

Table 2-1

Initial Slopes Obtained, by Invariant Imbedding

Taking 100x100 grid points between
x=0~1 00k, y=0~400 feet

Grid
Number

Starting
Points

Initial Slopes
(Invariant Imbedding)

Initial Slopes
(Classical)

I u(I) w(I) w(I)

5 .20000000E 02 .35818700E 01 .30228241E 01
10 •40000000E 02 •21314888E 01 •20489414E 01
15 .59999999E 02 •16331606E 01 •16062053E 01
20 .80000000E 02 •13481355E 01 •13373163E 01
25 •10000000E 03 .11561425E 01 •11514445E 01
30 .12000000E 03 •10146379E 01 •10131552E 01
35 e14000000E 03 •90489530E 00 •90529212E 00
40 •16000000E 03 .81680938E 00 •81835540E 00
45 .18000000E 03 •74431062E 00 .74657554E 00
50 •20000000E 03 •68348686E 00 •68620315E 00
55 •22000000E 03 .63167808E 00 •63467290E 00
60 •24000000E 03 •58699879E 00 .59015734E 00
65 .26000000E 03 •54806749E 00 •55131213E 00
70 .28000000E 03 .51384442E 00 •51712201E 00
75 .30000000E 03 •48352921E 00 •48680358E 00
80 .32000000E 03 •45648604E 00 •45974129E 00
85 •34000000E 03 •43213662E 00 .43544406E 00
90 .36000000E 03 .40979266E 00 •41351479E 00
95 .38000000E 03 •38868529E 00 .39362881E 00

100 .40000000E 03 •36815135E 00 •37551792E 00

17

Figure 2.^-7

Flow Chart of

Invariant Imbedding

18_

R

PROGRAM 2-1

R BRACHISTOCHRONE PROBLEM WITH FREE END.CONDITIONS—SOLVED-BY—
R INVARIANT IMBEDDING

$ COMPILE MAD, EXECUTE, PRINT OBJECT, DUMP
INTEGER I, J, K, IMAX, UMAX, KMAX, KP, M, IFREQ

 DIMENSION Y(IOOO), ROLD(IOOO), RNEW(IOOO)
EQUIVALENCE (IMAX, UMAX) _

START _
READ AND PRINT DATA IMAX, KMAX, YT, XT,_IFREQ
DE LX = XT/ KM AX ________
DELY = YT/IMAX — -
THROUGH LI, FOR J=0,1♦I.G.IMAX
Y(I) = I*DELY
ROLD(I) = 0.

LI _ ____ _____ ________ ______ _________________ ______ __ __________

THROUGH L2, FOR K = (KMAX-1) 1 ,-K. L 0—
--------------------- X = K*DELX - ---

_____ WHENEVER K .E. 0------------------------------------—------------------- ----- ------ —--------------____
 PRINT RESULTS K- ,-X----------------------------------- -________-________—___ __ 7___________

 PRINT COMMENT—$ 1 Y-(I-)-
1 SLOPE - M— $--

—----------- END OF- CONDITIONAL------------------------------------- ——-— ---------------- ---------------------- —---------

---- --------- ------- THROUGH L3, FOR I =0 1 ,-I .G.-IMAX---—-------- ---------------
------------------ — S = Yd) + ROLD(I)*DELX--

------------------ WHENEVER • ABS. (ROLD (I)) . L. IE-6-- -----------
- - - R = ROLD(I)------------------------- -- ------------------------------- M = I ------- --------- ------------------------------- :------------------------------------- -------------

 . OR WHENEVER ROLD (I)-«L .0. —-
 THROUGH LA,FOR J=I,^1,-J.E.O_.OR.-(S.G.Y(J-l)_.AND.S.LE.Y(J))

- L4
 - WHENEVER J .E.-O ---------------------------

._____ J = 1 —
 END OF CONDITIONAl -

R = (ROLD (J-)-ROLD-(-J--L.)-)*(S-Y-LJ-L))/DELY—+-ROLD (J-J-)
M = J ■------------ - ------- -----

OTHERWISE ■ - ------------- - -------------------—------- --------------
- -------------------THROUGH L5,FOR J=I,1,J•E.I MAX .OR.(S.G.Y(J)-.AND.S.LE.Y(J+l))

L5 -------- -------------- ------- ■---
---------- ----- ------ WHENEVER - J.E. UMAX--
— — - J = JMAX-1 ------------------- ------------------ ---

 END OF CONDITIONAL —- — ----------------- -
------------------ R = (ROLD(J+1)-ROLD(J))*(S-Y(J) l/DELY +-ROLD(J)-------------- --------------------

- -------- _ M = J - ------------- ------------------------------------ --
— END OF CONDITIONAl------------------- ------------- ------ -------------------------- ------- ---------

19

WHENEVER . ABS» (ROLD (I)) <,G«> 1E6
_ ROLD(I) = 1E6*(ROLD(I)/(.ABSo (ROLD(I)) L)

END OF CONDITIOANL
Y(0) = 1.

R.\EW(I) = R+(1+ROLD(I)*ROLD(I))*DELX/(2*Y(D)
WHENEVER K .E. 0 .AND. (I/1 FREQ)*I FREQ •£•_!
pr:nt-format iy.bed, ' i ♦ yc i)» rold(d> m_

 E,',D OF CONDITIONAL
lb y _ _ _
 THROUGH L6» FOR I = 0 ♦ 1» I G .IMAX I______ ;

" ’ ROLD(I) = RNEW(I) J __________
L6
L2 __ _

 _ TRANSFER TO START ‘ J
VECTOR VALUES' IMBED = $ ll'10> 2E20.8, 1110 *$
END OF PROGRAM ’'

$ DATA
IMAX =_100, KMAX= 100,YT=400., XT=314.15926, IFrEO=5*

CHAPTER III

DYNAMIC PROGRAMMING
3.1 DISCRETE MULTISTAGE TWO-DECISION PROCESS

A problem with the property that, at each of a finite

set of times t1 , to, ...t„, a decision is to be chosen from

a finite set of possible decisions, is called a discrete

multistage decision process. If one of m possible decisions

must be chosen at each time and the process consists of n
such stages, there are (m)n possible different sequences of

n decisions. Our aim is to find the optimal sequence of
decisions among these (m)n possible cases.

Figure 3»1-1

Two-decision, Two-stage Process. .

Let us look at a two-decision two «. stage minimum-cost
problem. We define the term minimum#cost”as the minimum ex­

penditure (in dallars), or minimum travelling time (in sec).

At starting point A we must choose between the paths Ac^B

and ACgB, depending upon which one yields the lesser cost.

If the cost of each section of the paths in Fig.3.1-1 are
known, the decision to be made at A is a simple matter.

(20)

21

, cost Ac1 + cost o^B

Cost AB = min « (3.1-D

kcost AC2 + cost C2B

In the multistage two-decision process shown in Fig.3.1-2,

suppose the" optimal decision is found to be Ac1 in the first

stage; we ask for another decision at o1 . One path should be

chosen out of two possible paths c1d1 B and c^ d2B. The cost •

of o.|B is given by

Cost CjB = min
cost c1d1 + cost

Lcost o1 d2 + cost

d^

d2B
(3.1-2)

Figure 3.1-2

Two-decision, Multistage Process.

If cost c1d^B is found to be less than that of c^d^B, next

decision must be made at dg. The same procedure is repeated

at each stage in all subsequent stages.

22

3.2 MARKOVIAN-TYPE PROCESSES

We Introduce an assumption concerning the cost property

of a network In order to make valid the statements of the

previous section. In effect, we assume that the cost of any

established path of a network does not change after It has

been combined with the later stages of the network. A formal

statement of this assumed property Is due to Markov and given
In [l 2] :

”After any number of decisions, say k, we wish the effect

of the remaining »-k stages of the decision process upon

the total return to depend only upon the state of the

system at the end of the k~th decision and the subse­
quent decisions."

3.3 MULTISTAGE MULTI-DECISION PROCESSES

In a multistage multl-declslon process, If one of m

possible paths must be chosen at each decision time, the
problem Is still intrinsically the same as for a two-decision

process (Fig.3.3-1). That Is,

cost AB = mln (cost Ac^ + cost c^B) (3.3-1)

For a more general Illustration, let us construct a grid

of points In x-y plane as shown In Fig. 3.3-2. As shown In

Flg*3»3-3 the optimum path oidQ Is found by considering costs

determined as follows:

c.d. + d.d1 j Jo
cost c.d^ = mln c.c 1 o 1

^l°j + °jdo

‘ (j, k = 0, 1, 2, ... I)

+ Cjdk + Mo (3*3-2)

23

Figure 3.3-3Figure 3.3-2

Grid, points In x-y Plane Optimum path c^-d-0

21*

In the brachistochrone problem, by taking grid, sizes

sufficiently small, we may approximate the optimum path from

c^ to dj on the nearest neighboring stage as the diagonal

THE PRINCIPLE OF OPTIMALITY

Recall Eq.(3.3-2) and Fig.3.3-1* If there exists at

least one stage between c^ and B, then the costs of c^B for
1=0,1,2,...m, should be completely known before making deci­

sion at A. For a multistage process, we start the decision

making at the stage nearest to B. After the costs f^B at the
stage k=n-1 have been found (as shown in Fig.3.^-1), the cost

from any grid e^ at stage k=n-2 is expressed by

cost e.B = mln (cost e.f. + cost f.B) (3.^-1)
* X J J

j = 0,1,2, ...m.

Similar but more lengthy procedures are repeated for the

points d^ at stage k=n-3, with the cost d^B expressed as

= 0,1,2

simplified as

p Consider the right hand side of Eq.(3.^-2). It contains m
number of cases. The (cost e^f^+cost f^B) has been computed

at the previous stage k=n-2; therefore, Eq.(3.^-2) may be

cost djB = mln (cost d^e^+cost e^f^+cost fqB) (3.^-2)

m.

cost d^B = min £cost d^ej+icost e^f^+cost f^B)]

= min (cost <1^6^+ cost e^B)

... m.j = 0,1,2, (3.^-3)

25

Figure 3*^-1 '

Stage k = n - 1

Geometry of the Principle of Optimality

26

2 which reduces the number of cases to be studied from m to

m for one grid point d^.. This simplification is legitimate

only when cost e.B is not changed after being combined with

the other section d^e; however our original assumption that

the process is to be Markovian satisfies this condition.
For particular point e., Eq.(3.4-3) may be written in

detail as

'd^j + e^B

d2ej + e B

cost = mln

(6j fixed)
4lej + eJB

+ ejB

(3.4-iH

Equation (3«^-^) with geometry of Fig.3.4-3 shows that no

matter from which point d^ one comes to e^, the optimum path

e^B found in the previous stage constitutes a part of the

optimal path from di to B. This basic principle of dynamic

programming has been called by Bellman "the principle of
optimality" [4 , 12 , 14], that is,

"An optimal policy has the property that whatever the

initial state and initial decision are, the remaining

decisions must constitute an optimal policy with regard

to the state resulting from the first decision."

On the other hand, for a fixed point d^, Eq.(3.4-3) may

be written as

27

cost d. e.B = mln

that Eq.(3.4-5) does not meanIt is important to note

(3.4-6)

For arbitrary given cost on each chord shown in Fig.3-4-5

we apply

(3-4-7)

applying Eq.(3.4-6) in two we haveHowever ways

mln 2,3) (3.^-8)
min 2,3)

in Fig.3.4-6For a three-stage process shown

1+6+10 =

14
(3-4-9)

15
2+4+ 5 = 11

-(d^ fixed)

cost d^B = mln

cost d^B = min (cost d-^Sj) + mln (cost ■ e.B)

Eq.(3*4-5) we obtain

d.e^ + e B 1 m m

? = 11

dlej + ejB

dle1 + CfB

4le2 + e2B

B6j + min ©jd^ = 4+4 = 8
d. e, + mln e.B =1+8 = 9

d^^ = 1+8 = 9

d1e2B =2+5=7

d^^B = 4+4 = 8-

1+8+ 5 =
cost d^B = min <

if

28

I

Figure

Possible Paths from to B

Figure 3.4-5

Figure of an Example

Figure 3*4-6

Figure of an Example

while for j, k = 1 , 2
min d.e. + min e.f. + min f.B = 1+6+10 = 1? 1 J J K K

(3.^-10)

Obviously a multistage decision process problem cannot be

solved by making optimal single decisions sequentially. It

is not the cost value of each section but the composite effect

that is calculated.

3.5 INVARIANT IMBEDDING AND DYNAMIC PROGRAMMING

In computing the optimum costs from f^ to B or from e J
to B, in effect, we imbedded a particular problem in a family

of similar problems. Each member of the family has the same

terminal point B, with different initial values. This leads

to a recursive solution working backward from the terminal

point and eventually Including point A. It is called a

backward solution.

Figure 3«5-1

Backward Scheme

30

By Eq.(3.4-1) above we cannot actually make a proper

decision at stage k=n-2 unless the costs for 1=0, 1,

2, ... m, are known. On the other hand, we do not know which

member of the family of optimum paths f^B will finally consti­

tute the optimum path AB we are seeking. This Is to say, the

results of the process stream at all Intermediate stages are

unknown before the problem Is completely solved. The cost

equations cannot become Immediately useful In solving multi­

stage problems. This difficulty Is overcome by employing
Invariant imbedding techniques In two steps [22].

In the first step, we start from the last stage proceed­

ing backward to the Initial stage, construct a table for each

stage, relating the optimal decisions to the corresponding

values of the objective function for each value of the state

variable entering any particular stage. The stage for which

the table Is to be constructed Is considered as the Initial

stage. At the k-th stage in the n-stage decision process,
all downstream stages are considered as an (n-k)-stage

process for which the optimum decision and the optimum

objective function are already obtained and listed in the

table constructed In the previous stage.
The second step Is to determine the optimum policy-

optimal sequence of decisions, for the entire process by means

of table-entry techniques utilizing all the tables constructed.

For example, If at the Initial stage we found that Ac^B Is

optimum among ac^B, the optimum decision at A is Ac^, from

31

the table made at the stage k=1 we pick up the optimum

decision at state c say ccdQ. The decision at state 43 Is

found from the list made at k=2. In this way, we finally get

a series of decisions as A-c^-d^-e^
3.6 P.EVERS3 PRINCIPLE OF OPTIMALITY

If we Imbed the specific

with fixed Initial point A and

Include the objective point B,

forward solution.
As shown in Fig.3.6-1,

problem in a family of problems

various terminal points which

the solution is called a

cost cost Ac J (diagonal path)

cost Adj, = mln (Ac.+c.d.)

(3.6-1)

(3.6-2)

In Fig.3.6-3. If the optimum path from A to d^ Is found to be

Ac^d^, then Instead of Investigating

cost ACj + cost Cjdj + cost d^e^
for j = 1, 2, 3, ... m.

cost Ad^Cj, Is given by

cost Adoe. = min (cost Ac.+ cost c4do+ cost doe.)
D i J J 3 3 1

= mln (cost Ad^ + cost d^e^)

(3.6-4)

If we continue to proceed in this way, we have used the

principle of optimality In reverse order. Dreyfus calls
this "reversed principle of optimality" [21.1 stating:

32

Figure 3.6-1

Possible Paths from A to

Figure 3.6-2

Forward Scheme

Figure 3.6-3

Geometry of the Reverse Principle
Of Optimality

33
11 An optimal sequence of decisions In a multistage

decision process problem has the property that whatever

the final decision and state preceding the terminal one,

the prior decisions must constitute an optimal sequence

of decisions leading from the Initial state to that state

preceding the terminal one."

3.7 EULER EQUATION DERIVED FROM DYNAMIC PROGRAI-IMING

Figure 3*7-1
Figure for Equation (3*7-1)

Let f(x,y) = the minimum time required to travel from

R(x,y) on the optimal path to the final

point B(xp,yT). (3*7-1)

Divide (xjp-O) Into n equal segments with grid size

x = (xT-0)/n (3*7-2)

3^

(3.7-2)

Consider the left-neighboring stage with k=n-2

travelling from

(3.7-2)

Generally

(3.7-5)N 2gy

Since

(3.7-6)

(3.7-7)yk+i

Eq.(3.7-5) may be written as

(3.7-8)

This recurrence relation Is equivalent to those developed. In

Let

(3.7-9)F

=min
y*

fk(x,y)

Section 3.^, and Is the key to the solution

f(x,y) = mln
y*

Suppose r(x,y) Is at the last stage with k=n-1, then

R2 6° B

fn_1(x,y) = mln

1+y'2

,2’ i+y1

n-1(x’y)

= mln
y

n = minimum time for

1+y*2
2gy

i+y12
2gy

' I i-t-y’2
---- .Ax + f(x+4x,y+Ay)

/I 2gy

35

and. expand. Eq.(3.?-9) in Taylor’s series

f(x,y) = mln [F-z-x+f(x,y)+f -Ax+f •zxy+0 (ax)2]
y* L x y

0 = mln (F + f + y’ f) (3.7-11)JL J
y

This non-linear partial differential equation governing the

optimum path Is equivalent to two equations. For optimally

chosen yr,

° = f + fx + y* fy (3.7-12)

To extremlze the right-hand side of Eq.(3.7-11), its dif­

ferentiation with respect to y* must vanish, that is,

0 = Fyl + fy (3.7-13)

If we differentiate Eq.(3.7-12) with respect to y, we have

F + f + y f = 0 (3.7-14)
V V V

= mln [F-Ax+f(x,y)+f «AX+f (y’-zsx)+0 (ax)2]
y, l x y

=f(x,y) + mln F F-Ax+f ’Ax-i-f • y’. ax+0 (ax)2]
y, l x y J

(3.7-10)

Here the term f(x,y) In the right-hand, side Is taken from the

bracket because It Is defined as the minimum time of path

obtained from the optimally chosen y*'. In addition, minimum

over y’ Is equivalent to minimum over y since the grid sizes

are chosen constant for all stages throughout the process.
Neglecting hlgh-order terms, Eq.(3.7-10) becomes 0 * * * * * * V

36

Similarly, If we differentiate Eq.(3*7-12) with respect to x,

we have

p , + f + y* f = 0 (3*7-15)y' xy 3 yy

By subtracting Eq.(3*7-1^) from Eq.(3*7-15), we finally

obtain Euler1s equation

— F , - F = 0 (3*7-16)
dx 3 3

Por our particular case, F Is defined In Eq.(3*7-9), and

we substitute

(3*7-17)

(3*7-18)

In Eq.(3.7-16). With some manipulation, this yields

1 + y*2 = c/y (3*7-19)

which is Identical to the results derived by the classical

method .

3*8 BRACHISTOCHRONE PROBLEM SOLVED BY DYNAMIC PROGRAMMING

A family of brachistochrone problems starting at x = 0,

y = 0 and terminating at different point on x=1OOft are solved by

using the forward method of dynamic programming. Taking 100

Appendix Eq.(A-5)

37

grid, points in the y direction, we first construct a matrix

whose elements represent the costs of diagonal paths of a

channel with twTo nearest neighboring columns as the edges of

the channel. For a 20-stage process with 10 sets of solutions

printed out, the execution takes 35-1 sec using IE4 709^

computer. In this 20-stage 100-decision process, we actually

solved 20 x 100 = 2000 similar problems. In Table 3-1i the

minimum travelling times obtained by this method are compared

with those obtained by classical solution methods.

Figure 3*8-1
Elements of Cost Matrix

As can be seen in Table 3-2, the accuracy of the solution

depends greatly upon the number of grid points chosen. A large

38

number of grid, points not only increases the computing time

but also introduces memory problems. For instance, a Po­

stage, 150~d.ecision process requires 22500 memory locations
for the cost matrix and. 6000 for the policy matrix. Memory

overlapping was experienced, when 28800 memory locations were
assigned, for arrays in a program run by IBM 709^ computer

which has 32768 such locations available. This Implies a

sufficient number of memory locations were not reserved, for

execution.
In Fig.3.8-2 the optimal paths for a 20-stage, 80-

decision process are shown.

Let us suppose the problem is to find the path of least­

travelling time from the origin to the terminal line x = x-p,

where y^ is unspecified, as mentioned in Section 2.3, this

free-end condition only changes one boundary condition from

position constraint to slope constraint. If forward method

is used, we choose the curve which gives the minimum-time of

travelling among all 100 cases with different terminal points

on the same terminal line. If backward scheme is employed,

the optimal slopes are zero at the stage nearest to the termi­
nal line. This approach is demonstrated in Program 3-2,

St
at

e
Co

un
te

r

Figure 3.8-2

Optimal curves Obtained, by Dynamic Programming
(x=0~100%, y=0^400 feet)

Table 3-1

Minimum Travelling Time Obtained, by Dynamic Programming

40

x=0~1 00K, y=0'v400 feet
Taking 20 grid, points in x-d.irectlon, 100 in y-d.irection

D. P. Classical

I y(D T(I) Y(D krror

(feet) (sec) (sec)

0 0 7e90703 7.82955 0.98
10 40 6.40467 6.36233 0.67
20 80 5.95519 5.91442 0.69
30 120 5.71579 5.67980 0.63
40 160 5.60058 5.56763 0.59
50 200 5.56509 5.53633 0.52
60 240 5.58637 5.56104 0.46
70 280 5.64761 5.62525 0.40
80 320 5.73690 5.71746 0.34
90 360 5.84633 5.82950 0.29

100 400 5.97084 5.95554 0.27

Table 3-2

Grid. Number and. Accuracy in Dynamic Programming
From (0,0) to (1003t,^00) feet
Classical Solution T=5.9555^ sec

Grid. Number Computing Time Minimum Time
of Trav.

Error

T y (sec) (sec)
20 20 8.4 6.06087 1.76
20 40 11.8 5.98005 ' 0.41
20 60 17.5 5.97555 0.34
20 80 25.4 5.97141 0.27
20 100 35.1 5.97084 0.27

40 20 9.5 6.29473 5.70
40 40 15.1 6.05224 1.61
40 60 26.1 5.97666 0.35
40 80 40.3 5.97303 0.29
40 100 58.5 5.97186 0.27

41

Figure 3•8-3
Flow Chart: Forward Method of Dynamic Programming

 —42 -

1 R "P ROG R A M 3 - 1 ‘ *

R BRACHISTOCHRONE PROBLEM WITH TWO-POINT CONSTRAINT SOLVED~BY^~
R FORWARD METHOD OF DYNAMIC"PROGRAMMING

$ COMPILE MAD, EXECUTE, PR I NT^OB JECT", ^DUMP ~

DIMENSION Y(101), T(101) , NT(101) , P(6200,DIM),
1 DT(10300, TIME)

VECTOR VALUES DIM = 2♦0,0
VECTOR VALUES"TIME = 2♦0,0
EQUIVALENCE (DIM(1),KP1)♦ (DIM(2),KMAX)♦ (TIME(1)♦IP2)♦

1(TIME(2), IP1)
INTEGER I, J, K, IMAX, KMAX, P, BETA, IP1, IP2, KPI, RI♦ II,

1 FREQ, KP

START READ AND PRINT DATA XT, XT, IMAX, KMAX, FREQ, KP
~ IPl = IMAX + 1

IP2 = IMAX *" 2
 KPI = KMAX+ 1

 DX = XT/KMAX
 DY = YT/IMAX

 THROUGH LO, FOR J = 0,1, J.6.IMAX
 THROUGH LO, FOR I = J, 1, I.G. IMAX

WHENEVER I .E. 0 .AND, J ,E. 0
DT(J,I) = 1E5

_OTHER WISE
DS = SORT.(((I-J)*DY).P.2 + DX*DX)
V = 4.013 * (SORT.(J*DY) + SORT.(I*DY))
DT (J, I) '= DS/V "

_____________ DT (I ♦ JI = DT’(J, I)__
_________________ END OF CONDlf fONAL__
_'_L0 "

P (0,0)- = o
THROUGH LI, FOR K = 1, 1, K .G. KMAX
THROUGH L2, FOR I = 0,1, I.G.IMAX
WHENEVER K .E. 1
 NT(I) = DT(O,r)
P(I,K)= I

_____________ otherwise
ALPHA =’1E37
THROUGH L3, FOR J = 0, 1, J .G. IMAX
TT = T (J)_ 4-"DT (J, 1)

_ WHENEVER TT .L. ALPHA
ALPHA = TT ________
BETA =_I-J

 END OF CONDITIONAL
' L3 " ' " __ ______

 NT(I) = ALPHA -
PC I,K) = BETA _
END OF CONDITIONAL

L2

WHENEVER (K/KP)*KP ,E. K
print COMMENT 0
PRINT RESULTS K
PRINT COMMENT $0 I Y(I)

1 P(I,K) T(I) $
END OF CONDITIONAL

____THROUGH L4» FOR I = O»l, I.GUMAX
WHENEVER (I/FREQ)*FREQ •E. I .AND. (K/KP)*KP .E. K
YCI) = I*DY
PRINT FORMAT BRACHI, I ♦ Y(I), P(I,K),NT(I)
END OF CONDITIONAL
T(I) = NT(I)

L4
LI

TAN = DY/DX
print COMMENT $1 THE BEST POLICY........... *$

THROUGH L5> FOR II = IMAX»-FREQ> II .L. 0
YT = II*DY

"PRINT COMMENT 0
PRINT_COMMENT_$0 THE TERMINAL COMDITION IS $
PRINT RESULTS II» X’T» YT

PRINT "COMMENT $0 K X_____________________ Y
 1 SLOPE P(I »K) $_

 I = II
THROUGH L6, FOR K = KMAX, -1, K.L. 0
WHENEVER (K/KP)*KP
RE = P(I,K)*TAN

• E. K

 X = K*DX
Y = I*DY
PRINT FORMAX POLICY* Kt X> Y> RE» P(I»K)
END OF CONDITIONAL :,

_________________ I = I-P(I»K)___________________________________
 L 6
L5

VECTOR VALUES BRACHI = $ 110, E30.6, 110, E30.6 *$
VECTOR VALUES POLICY = $ 1110, 3E20.8, 1116 *$
TRANSFER TO START _ ____________________
END OF PROGRAM

$ DATA ____
XT = 314.15926, YT= '400., IMAX = 100, KMAX= 20, FREQ =10, KP=2*

R P R O G R A M 3 - 2

3 "r brachistochrone problem with free end conditions solved-byZT
R BACKWARD METHOD OF DYNAMIC PROGRAMMING

$ "compile mad> execute, print object ♦"dump""' ~ ~

J ~ ' DIMENSION Y(IOO) OJfo'oTrTNT ("100) ♦ P (22 QOTdTm'h PT" ("10300717ME~)

____VECTOR VALUES DIM = 2 ♦ J) ♦ 0 ~________
VECTOR VALUES TIME = 2, Ot 0
EQUIVALENCE (DIM_(1) ♦KPl)^ (DI M(2)_♦ KMAX) , (T I ME (1) ♦ IP2) ♦

1 (TI ME (2) » IP1) _ ________________________________
 INTEGER I, IIw IPlf IP‘2f IMAX, IS> Jf
IK, KPI, KMAX, P, BETA, FREQ

START READ AND PRINTDATA XT, YT, IMAX, KAMX, FREQ
I P1 = I MAX + 1

 IP2 _= IMAX A 2
KPI = KMAX + 1______________________________
DX = XT/KMAX
DY = YT/IMAX __
THROUGH LO, FOR J = 0, 1, J .G. IMAX
THR0UGH L0, FOR I = J, 1, I .G. IMAX ____________________________

 WHENEVER I .E. 0 .AND. J •£• 0
 DT(J, I) = 1E5___

OTHERWIS E __
 DS = SORT.(((I-J)*DY).P.2 + DX*DX)

 V = 4.013 * (SQ RT.(J*DY) + SQRT.(I*DY))
DT (J ,J) = DS/V
 DT (I , J) =_ DTJ J_, L)
END OF CONDITIONAL

___ LO_____________
THROUGH L1, FOR I = 0, 1, I .G. IMAX

 _ ______ P(I ,KMAX) = 0___
_____________ t (i) = o.__ ;_______________

Y (I)= I*DY
LI

______ THROUGH L2, FOR K = KMAX-1, -!♦ K .L. 0
 THROUGH_L3, FOR I = 0, 1, I .G. IMAX

_________ ALPHA = 1E37__ _
TCO) = 1E5 *
THROUGH L4, FOR J = 0, 1, J .6. IMAX

 TT = T(J)_ +_DT(J,J)
 WHENEVER. TJL_.L. ALPHA

 ALPHAl_=._TT ___ _____________________ ___ ______________
BETA = J-1 __
END OF CONDITIONAL _

L4 ____
NT(I) = ALPHA
P(I,K) = BETA 7

L3

PRINT COMMENT 0
PRINT RESULTSJ<_ ________'

’ PRINT COMMENT $ I________________ Y(I)
1 P (I ♦ K)_ NT (I) $___________ _

THROUGH L5> FOR I_= 1»1, L..G.JMAX
_ WHENEVER (I /FREQ) *FREQ_. E._I ___ _______________________________ '

PRINT FORMAT BRACHI, I» Y(I)» P(I»K)» NT(I)
END OF CONDITIONAL _
T (I) =" NT (I)

L5
L2

 PRINT COMMENT S THE_BEST POLICY$_
THROUGH L6 > FOR _ I I = FREQ >_FREQ G ._80___________________________

YO = II*DY _
 PRINT COMMENT 0

PR INT_COMMENT_$ THE STARTING POINT IS $
PRINT RESULTS II* YO
 PRINT COMMENT_SO K ‘NT (I)Y
1 SLOPE $

 I = II
 THROUGH L7, FOR K_ = _0»_l» K .G.„KMAX

 PR INT FORMAT POLICY* K, NT(I)> Y(I)» P(I*K)
I = I + P (I»KJ

L7
L6 ________________________________

VECTOR VALUES BRACHI = $ II10* 1E30.8* 1IIP* 1E30.8 *$
VECTOR VALUES POLICY = $ 1110* 2E20.8* 1110 *$
TRANSFER TO START ;___________________________________
E N D__0 EL_P R 0 G R AM

$ D ATA ______________ __
XT = 314.15926* YT=400.» IMAX = 100» FREQ=10» KMAX = 20*~

CHAPTER IV

QUASILINEARIZATION

4.1 NEVJTON-RAPHSON-KANTOROVICH METHOD

Figure 4.1-1

Newton-Raphson Method.

Consider a monotone decreasing, convex function f(x), we

approximate f(x) by a linear function of x determined by the

value and slope of the function f(x) at x = xQ.

f(x) = f(x0) + (x-x0)»f *(x0) (4.1-1)

Putting f(x) = 0, we obtain for the first approximation

X1 = x0 "
f*(xo)

(46)

(4.1-2)

^7

The process is repeated, at x1 leading to a new value and.

so on. The general recurrence relation is

^+1
f<xn)
f'(xn)

(**.1-3)

This sequence of approximation yields the root of

f(x) = 0 (4.1-4)

It has been" shown that the convergence is monotonic and.
quadratic {19] .

Replacing y by u, and y’ by w, Eq.(1.2-3) may be rewrit­

ten as

1 + w2
u" = - --------- - G(u,w)

2 u
(4.1-5)

Let Uq(x) be some initial approximation and. consider the

sequence un(x). Applying Newton-Raphson technique we

construct the recurrence relationships

u"n+i = G(u,w) + + (wn+1-»n)|^

(4.1-6)

un+1(0) = y0’ "n+l^f) = ^T (4.1-7)

Our aim is to produce a sequence of functions u^x), u2(x),

... u^(x) which converges to the solution of the original

function u(x).
The concept characterized by Eq.(4.1-6) is an extension

48

of the Newton-Haphson method to functional space which has

been introduced by Kantorovich and is called Newton-Raphson-
Kantorovich (NEK) technique (19] . It is essentially the

first-order terms in power-series expansion of function G(u,w)

about the point un.
4.2 QUASILINEARIZATION

Consider a differential equation of the form

A(x) u" + B(x) u* + C(x) = 0 (4.2-1)

Because of its linearity, the principle of superposition

holds. If p is the particular solution of the non-homogeneous

equation

A(x) u" + B(x) u* + C(x) = G(u,w) (4.2-2)

It can be shown that the linear combination p + c^ +

where c1 and c^ are constants and h1 and are solutions of
the homogeneous equation, also satisfies Eq.(4.2-2), that is

u = p + c1h1 + o2h2 (4.2-3)

For an m-order differential equation, the general solution may

be varitten in the form
m

u = °khk + p (4.2-4)
k=1

The m conditions imposed on the m unknown functions may be

expressed as

49

m
5 ckhk(/) = ” p(/> (^.2-5)

k=1

(£= 0, 1 , 2, ... m-1 .)

If we substitute Eq.(4.2-5) in Eq.(4.1-6), we obtain

(4.2-6)

By equating the coefficients of Eq.(4.2-6), we obtain

"d G G
= G + (!*«,»>,+02»2)-^r + (P'+Olhl'+O2h2,)^

p" + c^" + c2h2

p" =G + (P-un)f^+ (p'-w)^ (*.2-7)

h1 =h1^+ hl'^ <^2-8>

h2 =h2^+ h2^ (4-2-?>.

Let us choose the initial conditions

p(0) = 0, p*(o) = 0 (4.2-10)

and the conditions on the homogeneous solutions of

h1(0) = 1, h1’(0) = 0 (4.2-11)

h2(0) = 0, h2’(0) = 1 (4.2-12)

50

vjhlch insures that the Wronskian

h1 (x) h2(x)

W(x) = . =^: 0

- h* (x) h^(x)

(4.2-13)

Thus we have a set of initial value problems whose solutions

and. their derivatives are readily produced numerically on the
interval of x = O^x.^. The solution of Eq.(4.1-6) subject to

boundary conditions Eq.(4.1-7) and their derivatives is expres­

sed by

u(x) = p(x) + c^^x) + c2h2(x) (4.2-14)

w(x) = p(x) + c^'tx) + c2h2(x) (4.2-15)

where c1 and c2 are constants to be determined from the linear

algebraic equations obtained by substituting x = 0, and x = x^
respectively into Eq.(4.1-7)

p(0) + c^^O) + c2h2(0) = y0 (4.2-16)

p(xT) + c^^xrp) + c2h2(xT) = yT (4.2-17)

In other words, we produce a particular solution and two

independent homogeneous solutions on the interval x = O^x^-

and determine the constants c^ a^d e2 to satisfy the boundary

conditions of Eq.(4.1-7). The process of Eqs.(4.2-7) bo (4.2-17)

is repeated to compute a new approximation of u(x).'

In the derivation of .Eq.(4.2-7) to Eq.(4.2-8), equation

51
(^.2- 6), the NEK technique is applied in the abstract plane

perpendicular to the x-axls at each point of x.
The computational scheme Is shown In Fig.4.2-1 and the

computer program follows.

The computational results of two brachistochrone curves

using straight-line initial approximations are compared with
analytical solutions In Table 4-1 and Table 4-2. In Table 4-1

an error can be seen near the singularity point x = 0, y = 0.

Elsewhere, accuracy to five digits or more was obtained by
3-iteratlon of quasilinearization In the problem of Table 4-2.

Straight-line approximations failed to converge for the

cycloidal paths of range greater than half of a complete cycle.

Since the constant multipliers c1 and c2 are determined solely

at the two end points, a complete cycle of the cycloidal path

with singularities at both ends cannot be solved by this

method.

52

Table 4-1

Convergency of ^(x) to u(x) by Quasilinearization

Take 800 discrete points

k u0(x) u^x) u2^x) u5(x) u(x)

0 eOOOOOCE 01 •000000E 00 •OOOOOOE 00 •OOOOOOE 00 •OOOOOOE 00
40 elOOOOOE 02 •147406E 02 •415132E 01 •454858E 02 •457040E 02
80 »200000E 02 •446946E 02 •656419E 02 •700734E 70 •702014E 02
40 olOOOOOE 02 •247406E 02 •415132E 02 •454858E 02 •457040E 02
80 o200000E 02 •446946E 02 •656419E 02 •700734E 02 •702714E 02

120 o300000E 02 •622185E 02 •848638E 02 •893294E 02 •895121E 02
160 •400000E 02 •779257E 02 •101082E 03 •105424E 03 •105593E 03
200 •5000006 02 •9214736 02 .1151306 03 .119275E 03 .119430E 03
240 •600000E 02 .105095E 03 •127470E 03 .131380E 03 •131523E 03
280 •700000E 02 •116920E 03 .1383966 03 •142051E 03 •142181E 03
320 •800000E 02 •127734E 03 •148105E 03 •151495E 03 •151614E 03
360 •900000E 02 •137624E 03 •156744E 03 •159863E 03 •159971E 03
400 •lOOOOOE 03 •146668E 03 •164420E 03 •167264E 03 •167361E 03
440 • HOOOUt 0 3 •1549196 03 •171212E 03 •173782E 03 •173870E 03
480 •120000E 03 •162429E 03 •177189E 03 •179483E 03 •179560E 03
520 •130000E 03 •169240E 03 •182400E 03 •184417E 03 •184484E 03
560 •140000E 03 •175390E 03 •186886E 03 •188625E 03 •188682E 03
600 •150000E 03 •180911E 03 •190680E 03 •192140E 03 •192187E 03
640 •160000E 03 •185830E 03 •193807E 03 •194986E 03 •195024E 03
680 •170000b 03 •1901766 03 .1962896 03 •197182E 03 •197211E 03
720 •180000E 03 •193974E 03 •198142E 03 •198744E 03 •198764E 03
760 •190000E 03 •197242E 03 .1993766 03 •199682E 03 •199691E 03
800 •200000E 03 •200000E 03 •200000E 03 •200000E 03 •200000E 03

53

Table 4-2

Convergency of u^tx) to u(x) by Quasilinearization

Take 400 discrete points

k u0(x) u1 (x) u2(x) u^Cx) u(x)

0 .200000E 03 •200000E 03 •200000E 03 .200000E 03 .200000E 03
20 .204709E 03 .210149E 03 .210341E 03 •210341E 03 •210341E 03
40 -209417E 03 ♦219541E 03 •219860E 03 •219860E 03 •219859E 03
60 v214126E 03 .228225E 03 .228626E 03 ♦228627E 03 .228626E 03
80 c218835E 03 •236242E 03 .236698E 03 .236698E 03 •236698E 03

100 .223544E 03 ♦243629E 03 .244122E 03 .244122E 03 •244121E 03
120 .228254E 03 .250417E 03 •250936E 03 ♦250936E 03 .250935E' 03
140 •232961E 03 .256637E 03 .257173E 03 .257173E 03 •257172E 03
160 .237670E 03 .262313E 03 .262861E 03 •262861E 03 .262860E 03
180 •242379E 03 •267468E 03 •268023E 03 .268023E 03 .268023E 03
200 .247087E 03 .272121E 03 •272680E 03 •272680E 03 .272680E 03
220 .251796E 03 ♦276291E 03 •276849E 03 •276849E 03 .276849E 03
240 »265505E 03 .279993E 03 •280544E 03 •280544E 03 .280544E 03
260 .261214E 03 •283241E 03 •283777E 03 .283778E 03 .283777E 03
280 •265922E 03 .286049E 03 •286560E 03 .286560E 03 •286560E 03
300 .270631E 03 •288426E 03 •288901E 03 .288901E 03 •288901E 03
320 .275340E 03 .290383E 03 •290807E 03 .290807E 03 •290807E 03
340 .280049E 03 •291929E 03 .292284E 03 .292284E 03 •292284E 03
360 .284757E 03 •293072E 03 •293335E 03 •293335E 03 •293335E 03
380 .289464E 03 •293818E 03 •293965E 03 .293965E 03 .293965E 03
400 •294175E 03 •294175E 03 .294175E 03 •294175E 03 •294175E 03

54

Table 4-3

Minimtun Travelling Time Obtained, by Quasilinearization

(u0 = 0)

Terminal Trav. Time Trav. Time Error
Points (Q.L) (Classical)

it er =5
(3-rp) T(I) T(I) w

200 5.53719 5.53633 0.016
240 5.56174 5.56104 0.013
280 5.62580 5.62525 0.010
320 5.71787 5.71746 0.007
360 5.82979 5.82950 0.005
400 5,95571 5.95554 0.003

ABSTRACT PROCEDURE OF QUASILINEARIZATION 55

tar

Fig.

R

PROGRAM 4-1

R brachistochrone PROBLEM SOLVED BY QUASILINEARIZATION

$ COMPILE MAD* EXECUTE, PRINT OBJECT, DUMP'

2 DIMENSION Y(10), F(10), Q (10) ,PA (8 00) ♦ HK800), H2(800^,
1U(8OO), W (800) ,DPA (800) , DHK800) , DH2(800), QT(800)

INTEGER ITER, ITMAX, K, KP, KMAX♦ COUNT
START

PRINT COMMENT'S ‘DATA!
 READ AND PRINT DATA UO, UT, ITMAX, KMAX* XT, EPS,KP
 DX = XT/KMAX
 "DY = (UT-UOl/KMAX

TAN = (UT-UO)ZXT
 THROUGH LO, FOR K = 1*1, K.G.KMAX

 X = K*DX
 U(K) = UO+DY*K

W(K) = TAN
LO

’ THROUGH LI, FOR ITER = 1,1, ITER .G. ITMAX
PA(0) = 0.
HKO) =1.
H2(0) = 0. J
 DPA(0)_= 0.

D H1 (0) = 0 .
________ D H 2 (0) = 1.

Y (1)_=_PA (0)
Y(2) _=_DPA(0)
Y (3) =_H 1 (0) ~
Y(4) = DHl(O) _______________
Y(5) = H2(0)
Y(6) = DH2(0J ._____________________ _________
X = 0. _______________.

 _ EXECUTE SETRKD. (6 ,Ym ,Fm ,Q,X,DX_)
THROUGH LRK, FOR K = 1*1* K.G.KMAX ____ ____________

CALLRK S = RKDEQ.(O)
WHENEVER S .E. 1.
F(l) = Y(2f

2 WHENEVER" F (1).G. EPS
 Fd) = EPS _______________________ _

----------- - - END OF CONDITIONAI— -
 F(3) = Y(4) :________________________

WHENEVER F(3)_.G._ EPS ___
 F(3) = EPS

END OF_ C 0 N D IT I ONA L _ __

FCS) = Y(6)

 WHENEVER F (5_)_.G._EPS
 FCS) = EPS

 END OF CONDITIONAL

GU = (l.+W(K)*W(K))/(2*U(K)*U(K))
WHENEVER GU .G. 1E6
GU = 1E6
’END OF CONDITIONAL

GW = -W(K)/U(K)
WHENEVER =ABS.(GW) .G. 1E6 '
GW = lE6*(GW/(OABS.(GW)))
END OF CONDITIONAL
F(2) = GU*(Y(l)-2e*U(K)) + GW*(Y(2)-W(K))
WHENEVER oABSe(F(2)) .G." EPS

 F(2) = EPS*(F(2)/(.ABS.(F(2)) f)
END OF CONDITIONAL

 F(4) = GU*Y(3) + GW*Y('4)
WHENEVER .ABS.(F(4)) ,G. BPS’
F(4) = EPS*(F(4’/(•ABS•(F(4))))
END OF CONDITIONAL
F(6) = GU*Y(5)'+ GW*Y(6)

 WHENEVER .ABS.(F(4)) .G, EPS
 F(6) = EPS*(F(6)/(.ABS.(F(6))))

END OF CONDITIONAL
 TRANSFER TO CALLRK

 OTHERWISE
 PA(K) _= Y(l)

HKK) = Y(3)
H2(K) = Y(5)
DPA(K) = Y(2) ___
DH1 (K) __=2Y (4)

 DH2(K) = Y(6') ________ ______ ______________________
" END OF CONDITIONAL ______________

LRK " " ' ________ ’

D IN = H1(0)*H2(KMAX) - H1(KMAX)*H2(Q)

"____ AP =_UO ->A(O) ~ ■" .,
BP =JJT - PA(KMAX)_
Cl = (AP*H2(KMAX)-BP*H2(0))/DIN
C2 =”(-AP*Hl(KMAX)+BP*Hl(O))"/DIN
PRINT^COMMENT 0

___________print comment_ o_ _____ ____ ___
 PRINT RESULTS ITER, C1»_C2_ "

PR I NT_ COMMENT $ K X_________________ PA
1 H1_Z___H2 U W
2 QT $ __ _

; THROUGH L2, FOR_K = 0» 1, K .G« KMAX L

U(K) = PA(K) + Cl* H1(K)_+_C2* H2(K)
W(K) = DPA(K) + C1*DH1(K) + C2*DH2(K)
 X = K*DX
WHENEVER K .E._0_____________________________ _
QT = 0.
 OTHERWISE ;
DS =_SQRT.((U(K)-U(K-l)).P»2+ DX*DX -1

 V = 4.013* (SORT . (U (_K)) +SQRT . (U (K^.1))) ___________________
QT _= QT + DS/V _ :__
END OF CONDITIONAL

WHENEVER (K/KP)*KP .E. K
PRINT FORMAT LINEAR, K, X»PA(K),H1(K),H2(K),U(K),W(K),QT

L2 END Or" CONDITIONAL
U(O) = O.O1

LI
VECTOR VALUES LINEAR = $ 115, 1E12.4, 6E17.8 _*S __
TRANSFER TO START * ~
END Or PROGRAM

$ DATA
U0=200., UT=294.17495, ITMAX=3, KMAX=400, XT=314.15926, EPS=100,KP=20*

CHAPTER V

COMPARISONS AND COMBINATIONS

5.1 COMPARISONS

As '.ie have seen in the previous chapters invariant

imbedding, dynamic programming and quasilinearization, each

has some powerful characteristics. Quasilinearization is the

most accurate technique at the expense of relatively long

computing time. Invariant imbedding requires very short

computing time but gives only initial slopes and the results

may be only approximately correct. Dynamic programming ranks

between invariant imbedding and quasilinearization in accuracy

and computing costs.

The size of problems which can be handled by dynamic

programming is limited by the memory available in a computer.

Invariant imbedding and quasilinearization have no memory

problem, but the former should be combined with another

method to produce state and cost functions; the latter

converges only when a proper Initial guess to- the solution

has been made.

Invariant imbedding and quas11Inearizatlon make use of

the differential equation obtained from Euler’s equation of
the calculus of variations. Dynamic programming completely

bypasses this derivation, although we showed that Euler’s

equation may be obtained from recurrence relations based on

the principle of optimality. However, no differential equa­

tion which characterizes the optimum path was used In the

(59)

60

minimization process. This powerful feature of dynamic

programming is especially useful in the case where Euler’s

equation does not exist or is difficult to solve.

Another significant aspect is that invariant Imbedding

and quasilinearization are not suited to handle computations
which include such features as the cusps of a cycloid where

the slopes are infinity. Dynamic programming which treats

continuous systems as discrete multi-stage processes is free

of this trouble because the slopes are found between adjoin­

ing stages instead of at values of the state variable.

5.2 DYNAMIC PROGEAMMING WITH SEARCHING OVER A RESTRICTED REGION

As mentioned above, dynamic programming bypasses Euler’s

equation. In the brachistochrone problem, Euler’s equation

x/hich characterizes the optimum path is known. We seek to

find a way to utilize the differential equation obtained from

Euler’s equation to minimize the searching required in dynamic
programming. We note that Eq.(1.2-3)

i+y’2
y" = - <0, for y>0 (5.2-1)

implies the slope is monotone decreasing. It can be seen that
Eq.(5.2-1) with boundary conditions

y(o) = c1, y(xT) = c2 (5-2-2)

or y(0) = c1, y(xT) = c^ (5.2-3)

describes cycloids which are single-valued functions. Let us

61

consider a forward-scheme of dynamic programming. If the

slope at state In the k-th stage is greater than (or equal

to) zero (as is shovm in Fig.5.2-1 (A)), then point p^ (where

the optimum curve crosses (k-1)-th stage) must lie below or

at a level with q^. It follows that in minimizing the time

of travel from the initial point 0 to point q^ in the k-th

stage, we have only to search over the region y q^, that is

cost Oq^ = min (Op^+p^q^) j=1,2,3,...m

= min J=1,2,3,...i

= min (Opj+p.^) j=l,i-1, ...2,1.

(5.2-4)

Furthermore, since the function is single-valued, the

search may be terminated where the minimized cost function

begins to increase. Then, Eq.(5.2-4) becomes

cost 0q1 = mln (Op^+p^q^ J=i, 1-1, ... 12.

(5.2-5)
t.’here 12 is the lower limit of the grid counter in the region

to be searched. Similarlly, for the slope at q^^^O, the

region to be searched is restricted to

j = 1, 1+1, 1+2, ...ih (5.2-6)

where ih is the upper limit.

A forward-solution using the partial-search technique

described above is shown in Program 5-1 • It reduced the

Figure 5.2-1

Slope Characteristics and
Searching Region

computing time from 35.1 sec to 15 sec in solving a 20-stage,

lOO-decision process with 10 sets of the solutions printed,

out.

5.3 COMBINATION OF INVARIANT IMBEDDING AND DYNAMIC

PROGRAMMING

The technique of searching over a restricted, region is

effective especially where the absolute values of slopes are
small. For the steep curves shown in Fig.5.3-1 (B) and. (C),

the usefulness of the feature is not as significant. Since
dynamic programming is a marching process,' the optimum slopes

at p^(for j2.=1 ,2,.. .m) are known a priori. We may take

advantage of this information. Locate p, from using the

slope at p^, then search several grids in the neighborhood

of this predicted position to obtain the optimum value pd
(Fig. 5.3-1 (D)). This can be accomplished successfully by
joint use of invariant Imbedding and dynamic programming^ 8]

that Is, predicting the slopes by invariant Imbedding and

then searching In the neighborhood by dynamic programming.

For a 20-stage, 100-declslon process with 10 sets of

solutions printed out, the computing time using this combi­
nation was 1^.1 sec In comparison with 35«1 sec By dynamic

programming only, and 15 sec using the partlai-searching
method. Searching was restricted to ±2 grids In the vicinity

of the predicted point

64

(B)

(C) (D)

Figure 5-3-1

Regions to be Searched, in Various Cases

65

5.4- DYNAMIC PROGRAMMING AND QUASILINEARIZATION

As mentioned, previously, the coarse grids used in

dynamic programming result in polygonal curves which may

deviate significantly from what we know to be ezact solution.

Finer grids., may improve the accuracy of the solution but a

too-fine grid introduces a memory problem with the computer.

On the other hand, quasilinearization yields very accurate

results but is expensive and its convergence depends greatly

upon near-correctness of the initial estimate of the solution.

In general, a straight line is the simplest initial estimation

however, in the brachistochrone problem the solution converges

only where the boundary point does not exceed a half-cycle

of a cycloid.
Combined use of dynamic programming and quasilineari--

zatlon compensates for the weaknesses of each. By this

predictor-corrector method, we solve the problem approximately

by first using the dynamic programming procedure with very

coarse grids, and then take this solution as the initial guess

to the solution whose accuracy is improved by a few applica­
tions of quasilinearization.

Program 5-3 uses dynamic programming in the main program

and quasilinearization as a corrector in external function.
In Table 5-1 the results of taking 20x40 grids in dynamic

programming, and 2 applications of quasilinearizations for

each solution are shown. Computing time was 50•5 sec which
would be less than that for quasilinearization.

66

5.5 I^ARIANT IMBEDDING »ATD QUASILIX?-"^.TZATTON

Another predictor-corrector scheme combines invariant .>

imbedding (used to predict the slopes) and quasilinearization

(used to correct the solution resulting from the first and to
produce the cost and state functions simultaneously) [i gj .

Consider a problem beginning at point (c,a). If the

starting point at x=a is close to the terminal line x=x,2, the

slopes at all initial points c^ may be estimated as zero and

after a few iterations of quasilinearization it converges to

the correct value r(c,a). The same procedure is repeated at

x=a-AX, x=a-2Ax, and so on. In effect, we solve 2000 problems

for a 20-stage, 100-declsion process. If the range of the

independent variable is sufficiently small, we may use
invariant imbedding in a straight-forward manner to produce

the initial slopes at all initial values in x=0. Using these

initial slopes and the other given initial conditions, the

differential equation is Integrated numerically by the Runge-

Kutta method to produce the first estimate, which may be

corrected by quasilinearization. This eliminates the time­

consuming quasilinearization steps at the intermediate stages.
Of course, by using this procedure no knowledge of the

solutions at the Intermediate stage can be extracted.

This combination was used in Program 5-^ with one appli­

cation of quasilinearization. Solutions of a problem with

initial value c=200 and free-end conditions were compared

with those obtained by quasilinearization with a straight-

line initial estimate in Table 5-2.

6?

Table 5-1

Minimum Travelling Time Obtained, by Joint Use of

Dynamic Programming and. Quasilinearization

x,-p=O, yT=0, x.-p=100 7t, yq-^0~400 feet

yT D.P. D.P. and Q.L.
lter=2 Classical

*Y U 6o40467 6=36369 6=36233
£.0 5=95519 5.91569 5=31442

120 5=71579 5=68095 5=67980
160 5=60058 5.56864 5=56763
200 5=56509 5.53718 5.53633
240 5.58637 5.56173 5.56104
280 5=64761 5.62579 5=62525
320 5.73690 5.71786 5.71746
360 5.84633 5.82978 5.82950
400 5.97084 5.95570 5.95554

k

40
80

120
160
200
240
180
320
360
400

68

Table 5-2

u(x) Obtained by Joint Use of Invariant Imbedding
and Quas11Inearlzation

Take 100x100 grid points in invariant Imbedding
400 discrete points in Q.L.

Q.L.iter=1

21954105E 03
23624176E 03
25041730E 03
26231297E 03
27212100E 03
27999292E 03
28604860E 03
29038306E 03
29307187E 03
29417494E 03

Q.L.lter=2

.21985933E 03
•23669814E 03
•25093545E 03
.26286060E 03
•27268004E 03
.28054369E 03
•28656031E 03
•29080698E 03
•29333534E 03
•29417494E 03

I.I.and Q.L.
lter=1

•21985918E 03
•23669769E 03
•25093470E 03
.26285956E 03
.27267870E 03
.28054209E 03
.28655839E 03
•29080476E 03
•29333279E 03
•29417201E 03

Classical

.21985937E 03
•23669809E 03
•25093532E 03
•26286044E 03
•27267995E 03
•28054369E 03
•28656035E 03
•29080707E 03
•29333540E 03
•29417495E 03

 69

R P R_0 G R A M_ 5 - .1" 1

ZTk FORWARD method~of~dynamic"PROGRAMMING
 R SEARCHING WITHIN RESTRICTED REGIONS

 $_COMPILE_MAD, EXECUTE
 INTEGER JSTARTt JSTEP# SW

R
. R SAME AS PROGRAM 3-1

R
THROUGH L2» FOR I = O» 1, I .G. IMAX
WHENEVER K .E,
NT(I) = DT(0,I)
P (I ♦ K) = I

_________ otherwise
ALPHA = _1 E 3 6
 WHENEVER P (I , K-l) .GE. O' _

__ JSTEP = -1
JSTART = I

__________________WHENEVER JSTART .G. IMAX___ _
 JSTART = IMAX
 ""END OF CONDITIONAL

0 T H E R WIS E
__________ JSTEP = 1________________________
_____________JSTART =_I

WHENEVER JSTART .L. 0
 JSTART_= 0

_________________ EN D 0 F_CO N DITI ON A L________
 ENDO F_C 0N DITIONAL_____________________________________
SW = 1 .
 THROUGH L3> FOR J = JSTART» JSTEP> SW •E« 2 .OR. J.L.0
1.OR. J.G ._I MAX___

TT = T(J) + DT(J>I) _______________________________
WHENEVER. TT .L, ALPHA
alpha = TT_________________ :_________________ :___________________________________
BETA = I-J
0 T H E R WIS E;.

____________ _SW = 2_
END OF CONDITIONAL

___ L3________________
NT(I) = ALPHA

 P(I,K)_= BETA '
END OF CONDITIONAL

L2
 R_

R_ SAME_AS PROGRAM 3-1 ___

.........................
END OF PROGRAM ___

70

R PROGRAM 5-2
—

R BRACHISTOCHRONE PROBLEM WITH FREE END CONDITIONS
R SOLVED BY JOINT USE OF
R DYNAMIC PROGRAMMING AND INVARIANT IMBEDDING

$ COMPILE: MAD, EXECUTE, PRINT OBJECT, DUMP

DIMENSION Y(100), T(100), NT(XOO), JPRED(XOO), ROLD(XOO),
1P(22OO.DIM), DT(10300,TIME)

VECTOR VALUES DIM = 2,0,0
VECTOR VALUES TIME = 2»0,0
EQUIVALENCE (DIM(1)»KP1)» (DIM(2)»KMAX)» (TIME(1)» IP2)»

1(TIME(2)» IP1)
INTEGER !♦ II. IP1, IP2, IMAX. J. JL. JH. JPRED. IS,

IK, KPI. KMAX, P, BETA, FREQ

. START READ AND PRINT DATA XT, YT, IMAX, KMAX, FREQ
IPX = IMAX + 1
IP2 = IMAX + 2
KPI = KMAX + 1
DX = XT/KMAX
DY = YT/IMAX
TAN = DY/DX
THROUGH LO, FOR J = 0, 1, J .G. IMAX
THROUGH LO, FOR I = J, 1, I .G. IMAX
WHENEVER I .E. 0 .AND. J .E. 0
DT(J,I) = 1E5
otherwise
DS = SORT.(((I-J)*DY) .P.2 + DX*DX)
V = 4.013 * (SQRT.(J*DY) + SQRT.(I*DY))
DT(J,I) = DS/V
DT(I,J) = DT(J,I)
END OF CONDITIONAL___

LO
THROUGH LX, FOR I = O» 1, I .G. IMAX

------------------------- --_P (I , KMAX.) =_0___
_ ROLD.(I.)_=__0___
T(I) = 0.

------------- -

Yd) = I*DY
LX

THROUGH L2, FOR K = KMAX-1, -1, K .L. 0
EXECUTE IMBED. (Y,ROLD,DX,DY,IMAX,JPRED)
THROUGH L3, FOR I = 0, 1, I .G. IMAX
JL = I + JPRED(I) - 2
WHENEVER. JL_.L._0
JL = 0
END OF CONDITIONAL
JH = JL + 4
WHENEVER JH .G. IMAX
JH = IMAX

__________________END OF CONDITIONAL_______________________________

 71

ALPHA = 1E37
T(0) = 1E5 '
THROUGH L4, FOR J = JL» 1» J .G. JH
TT = T(J) + DT(I,J) " “ ~

 WHENEVER TT .L. ALPHA ”
ALPHA = TT
BETA = J-I
END OF CONDITIONAL

L4
NT(I) = ALPHA
P(I*K) = BETA
ROLD(I)= P(I*K)*TAN

L3
PRINT COMMENT 0
PRINT COMMENT 0
PRINT RESULTS K
PRINT COMMENT $0 I Yd)

1 P(I*K) NT(I) JPRED $
THROUGH L5* FOR I = 1* 1* I .G. IMAX
WHENEVER (I/FREQ)*FREQ .E. I
PRINT FORMAT BRACHI* I* Yd)* P(I*K), NTd)* JPRED(I)
END OF CONDITIONAL
T(I) = NT(I)

L5
L2

PRINT COMMENT $0 THE BEST POLICY $
THROUGH L6» FOR II = FREQ* FREQ* II .G. 80
YO = IT*DY
PRINT COMMENT $0"$
PRINT COMMENT $ THE STARTING CONDITIONAL ISS
PRINT’ RESULTS II* YO
PRINT COMMENT $0 K NT(I) Y

_______ 1 ' SLOPE SLOPE(I NT EGER f$
I = 11

 THROUGH L7* FOR K = 0* 1* K .G. KMAX
 RE = P(I*K)*TAN

 PRINT’FORMAT POLICY* K* NT(I)♦ Y(I) * RE* P(I*K)
I = I + P(I ,K)

L7 J________
L6 ;

VECTOR VALUES BRACHI = $ 1110* 1E30.8* 1110* 1E30.8, 1115*$
_______ VECTOR VALUES POLICY = $ 1110* 3E20,8* 1110 *$ "

TRANSFER"TO START
 END OF PROGRAM

$ COMPILE MAD, PRINT OBJECT, DUMP
EXTERNAL FUNCTION (Y,ROLD,DX,DY, IMAX,"JPRED)
DIMENSION RNEW(100)
INTEGER I, IMAX, J, JPRED," P
ENTRY TO ""IMBED.

 Y(0) = 0.1
 TAN = DY/DX
 THROUGH LI, FOR I =0, 1, I .G. IMAX

S = Yd) + ROLDd)*DX
WHENEVER.ABS. (ROLD(D).L. IE-6
R = ROLDCI)“

2 OR WHENEVER ROLDd) .L. 0. _ __
THROUGH L2,F0R J=I,-1,J.E.O .OR . (S.G.Y (J-l") . AND.S • LE. Y (J))

__ L2 ; ;""
WHENEVER J .E. 0

"J = 1 " "
 END OF CONDITIONAL

R = (ROLD(J)-ROLD(J-l))*CS-Y(J-Y))/DY + ROLD(J-l)
OTHERWISE
THROUGHL3,FOR J=I,1 ,J.E.IMAX .OR.(S.G.Y(J).AND.S.LE.YCJ-H))

L3 "" ___
^WHENEVER J . E._ IMAX
R = ROLDdMAX)
OTHERWISE
R = (ROLD(J+1)-ROLD(J))*(S-Y(J))/DY + ROLD(J)
END OF CONDITIONAL
END OF CONDITIONAL
WHENEVER .ABS. (ROLD (I)) ,G. _1E6

_________________ ROLD d) = 1E6*(ROLD(I)/(. ABS.(ROLD(I))))________________________________
END OF JEOND ITI ONAL ‘
RNEW (I) = R+ (1 ,+ROLD (I)*ROLD(I))*DX/(2,*Yd))
J PRE Dd) = RNEW ff)/TAN

LI ________________ __________________________________
THR0UGH L4, F0R I = 0, 1, I .G. IMAX

_____________ ROLDTi") = RNEW"(I)__
L4 /

FUNCTION RETURN
 "END OF FUNCTION

 $ DATA" ____
XT = 314. 15926, YT=400. , IMAX = 100", FREQ = 10, KMAX=20*

73

R PRO G R A M 5_- 3

R^ BRACHISTOCHRONE PROBLEM SOLVED BY JOINT USE OF

 r _"dynamic“programming_and' quasilinearizationL

$ COMPILE. MAD, EXECUTE, PRINT OBJECT, DUMP^

 DIMENSION Y(80), T (80) , NT(80), P(18OO,DIM), DU 6600 ,T I MEH
1YR(6), FR(6), QR(6) , >A(800) ,"''Hl(800) , H2(800) ,jDPAL(8002j»
'2DH 1(800), DH2 (800) , U(800) , W (800)^ _______________

VECTOR VALUES DIM = 2,0,0
VECTOR VALUES TIME = 2,0_,0 _

L EQUIVALENCE (DIM(l),KP1), (DIM(2),KMAX), (TIME(1),IP2) ,
1< JI ME (2)_♦! P.1)

INTEGER I, IMAX, IFREQ, IP1, IP2, II, ITER, ITMAX,
U,
2 K, KK, KMAX_, QK , QKMAX , KPI, KP ♦
3P, BETA, R_ ______________

START _________________________________
READ AND P RI NT DATA XT, YT, YO, IMAX, KMAX, KK, ITMAX, IFR~EQ
QKMAX = KK*KMAX
K P = Q K M A X / 2 0 _________________

_______ I P1 = I MA X + 1
IP 2^ IMAX + 2___
K Pl = KMAX + 1__
DX =_ XT/KMAX

_________ D Y_ = (Y T-YO)/IMA"X
H =_DX/KK ____________________________________

_________________ JAN_ =_DY/DX___
_________________ E P S _t_1 00 .___

r" constr~uctTng ~^atr~ix~f'or delta t

. THROUGH L0♦ FOR J = 0,1, J.G.IMAX
THROUGH L0, FOR I = J, I, I.G. IMAX
WHENEVER I .E. _0,AND. J .E. 0___
'D T (J, I) =_1 E 5 ___

0 T H E R WIS E

DS = SORT. (((I-J)*DY) .P.2 + DX*DX)

_________________ V = 4.013 * (SQRT.(J*DY) + SQRT.(I*DY))
DT (J, I)_= DS/V

 D T (I ♦ J) = D T (J , I)
END OF_CONDITIONAI

LO

 R DYNAMIC7 PROGRAMM I NG FORW ARD*-SOLUT I ON
 P(0,O) = 0 ____________

PRINT COMMENT $0 I Y________
1 PCI,KMAX) NY" $

 THROUGH Ll» FOR K .G._KMAX_
 THROUGH L2» FOR I = 0» iVl .G. IMAX "
 WHENEVER K .E. 1 ' '

NT (I) = DT(0>I) __
 P(I,K) = f

 OTHERWISE _____________ _ ____________________ _
 ALPHA = 1E3 7 ’

 THROUGH L3» FOR J = 0» 1» J .G. IMAX __________________________________'
TT = T(J) + DT(j,I) __ ______________
WHENEVER. TT_ .L. ALPHA

 ALPHA = TT ' ___________
 BETA = I-J ________________

 END OF CONDITIONAL __________

 NT(I) = ALPHA ~
P(I♦K)_ = BETA ___

 END OF CONDITIONAL ’_______________________________________

 THROUGH L4» FOR I =rO»"172Y.GTlMAx”3Z
 WHENEVER K .E. KMAX .AND. (I/IFREQ)*I FREQ .E.I

 Y(I) = I*DY ___________
PRINT FORMAT BRACHI, I» Y(I)> P(I»K), NTH)
END OF COND ff I ONA L

 T(I) = NT(I)

R IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORRECTION
THROUGH L5 ♦ FOR II = IMAX» -IFREQ> II .L~. IFREQ

 UT = I I *DY _______ __________________
 UO = 0.

 PRINT C0MMENT_$ 1 SOLUTION WITH END POINT AT $
PRINT_RESULTS_II, UT
PR INT COMMENT $0 K X _______ Y
1 SLOPE P(I»K) $__________________________
_I = II
 W (OKMAX)_=_P(I ♦ KMAX)*TAN __
THROUGH L6> FOR QK = QKMAX, -1» QK ,L. 0
WHENEVER (QK/K.K)*KK .E. QK _______

= QK/KK ’ ~~
 SF = P(I,K)*TAN , _

 U(QK) = I*DY2 __________________
WHENEVER, QK .NE._0
W(QK-l) = SF

 END OF CONDITIONAL ____
I = I—P(I»KJ

 OTHERWISE
W(QK-l) = SF
U(QK) = U(QK+1)-W(QK)*H

"END OF CONDITIONAL
"WHENEVER (QK/KP)*KP .E. QK ____

XA = QK*H

75

PRINT FORMAT POLICY, OK, XA,_U(QK), W (OK) ,_PJ I , K) _

END OF CONDITIONAL-

L6

 R QUASILINEARIZATION CORRECTOR '
 EXECUTE QUASI. (U,W ,QT ♦ PA ,H1, H2 ,QKMAX_, EPS, I TMAX ,H ,UO ,UT)

 X = H*QK _

PRINT COMMENT 0
 PRINT COMMENT $ QK X PA

1 Hl • H2 U VS
THROUGH L9, FOR QK = 0, KP, QK .6. QKMAX

 PRINT FORMAT LINEAR, QK ♦ X , PA (QK) ,H 1 (QK) ,H2 (QK) ,U (QK) , w’(QK)
___ L9___________

PRINT RESULTS QT______________________________ _____________________________
____L5

END OF PROGRAM

__________________TRANSFER TO START_______________ __________ ________________ " ____________
VECTOR VALUES BRACHI = $ 1110, E30.8, 1110, E30.8 *$
VECTOR VALUES POLICY = $ 1110, 3E20.8, 1110, 1E20.8 *$
VECTOR VALUES LINEAR = $ 115, 1E14.4, 5E17.8 *$

76

$ COMPILE MAD» EXECUTE, PRINT OBJECT, DUMP
EXTERNAL FUNCTION (U,W,QT»PA,H1,H2,QKMAX»EPS,ITMAX♦H,UO,UT)
 DIMENSION DPA(8OO), DHK800), DH2(800), FR(10)» YR(10)♦OR(10)

INTEGER I,IMAX,IFREQ,ITER, ITMAX♦K,KK♦KMAX,OK,QKMAX
 ENTRY TO QUASI.'

R ITER-TH APPROXIMATION"
THROUGH L7, FOR""ITER"= 1,1, ITER .G. ITMAX
U(0) = 0.01

 PA(0) -= 0.
HKO) = 1.

 H2(0) ="0.
 DPA(O)= 0."

DH1(O)= 0.
DH2(0)= 1.
YR(1) =' PA(O)

____________ Y R (2) =_D P A (0) ___
 YR(3) = HKO)

____ YR(4) = DHK0)
____ ' YR (5) = H2 (0) ' ' "
 YR(6) = DH2J0)'" ______________________ __________

 X = 0.
EXECUTE SETRKD.(6♦YR(1),FR(1),QR,X,H)
THROUGH L8, FOR QK = 1,1, QK .G. QKMAX

CALLRK S = RKDEQ.JOJ

WHENEVER S .E. 1.0
FR(1) = YR(2)
WHENEVER FR(1) .G. EPS
FR(1) = EPS
END OF CONDITIONAL
FRO) = YR(4)
WHENEVER FRO) .G. EPS
FRO) = EPS
END OF CONDITIONAL
FR(5) = YR(6)
WHENEVER FR(5) .G. EPS
FR(5) = EPS
END OF CONDITIONAL
GU = (l.+W(QK)*W(QK))/(2.*U(QK)*U(QK))
WHENEVER GU .G. 1E6
GU = 1E6
END OF CONDITIONAL
GW = -W(QK)/U(QK)
WHENEVER .ABS.(GW) .G. 1E6
GW = lE6*(GW/(.ABS.(GW)))
END OF CONDITIONAL
FR(2) = GU*(YR(1)-2.*U(QK)) + GW*(YR(2) - W(QK))
WHENEVER .ABS.(FR(2)) .G. EPS
FRO) = EPS*(FR(2)/(.ABS.(FR(2))))
END OF CONDITIONAL
FRO) = GU*YRO) + GW*YR(4)

7?

WHENEVER .ABS.(FR(4)) .G. EPS
FR(4) = EPS*(FR(4)/(.ABS.(FR(4)) })
END OF CONDITIONAL

__FR(6) = GU*YR(5) + GW*YR_(6)
WHENEVER .ABS.(FR(6)) .G. EPS “
FR(6) = EPS*(FR(6)/(.ABS.(FR(6))))

END OF CONDITIONAL

 TRANSFER TO CALLRK '

OTHERWISE_ __
PA (OK) "= YR(1) __ _____________________________________

 H1 (OK) = Y R (3)
- H2(QK) = YR(5)

DPA(OK) = YR(2)
DHKQK) = YR (4) "

_DH2(QK) = YR(6)‘ ___Z
END OF C0NDITIOJNAL" ______________________ _________

L8__________
J________ _______DIN = Hl(0)*H2(QKMAX) - Hl(QKMAX)*H2(0)

AA = UO - PA(O)
BB = UT - PA(QKMAX)/ _
Cl = (AA*H2(QKMAX) - BB*H2(0))/DIN
C2 = (-AA*H1(QKMAX) + BB*H1(0))/DIN
PRINT RESULT_S C1>_ C2 "
THR0UGH_L10, FOR OK = 0»1,_OK__.G« QKMAX

"W(QK) = DPA~(QK) + C1*DH1(QK) + C2*DH2(QK)
 U(OK) = PA(QK) + Cl* HKQK) + C2* H2(QK)

 WHENEVER OK .E. 0__
 OT = 0. ' _______________________
 otherwise _____________________ _
DS _= SORT. ((U(QK)-U(QK-l)) .P.2 + H*H)
V = 4.013*(SQRT.(U(QK)) + SORT.(U(QK-1)))
 QT = QT + DS/V .
E N D_O F_CON DITIONAL;

__ lio_ _ __ :
___ LT __ _ _ __

FUNCTION RETURN:

 END OF_FUNCTION __________

$ DATA
__ YO_= O.,_XT = 314.15926. YT = 400.> IMAX = 40» KMAX = 2Qt IFREQ = 4»

KK =20. ITMAX = 2*

78

R PR0GRAM_5-4

R BRACHISTOCHRONE PROBLEM WITH FREE end conditions SOLVED BY
R_... JOINT USE OF INVARIANT IMBEDDING AND QUASILI NEARIZATI ON

$COMPILE_MAD» EXECUTE, PRINT OBJECT, DUMP

INTEGER I, IMAX, ITER/'ITMAX, IFREO^J, JMAX,_K, KK, KP,KMAX,
 1 M, KK-

DIMENSION Y(100), ROLD(8OO), RNEW(8OO), YR(6), FR(6), OR(6) ,
1PA(8OO), HK800) ,"'H2(800)"/ DPA(800) , DHl(800) , DH2(800)”,
 "2U(8OO), W(800)

EQUIVALENCE (IMAX, UMAX)
START

 READ AND PRINT DATA XT,' YO,OYT, IMAX, ITMAX, IFREQ”, KMAX, K P,
IKK, EPS ~

DX = XT/KMAX "
DY = (YT-YO)/fMAX

_THROUGH L1 ♦ FOR 1=0,1, L, G . I MAX
Y(I) = I* DY " ~__

 ROLD(I L 5__0.
LI

R FIND INITIAL SLOPE_BY_ I NVAR'lANT I MlBED'DING_____________________________
_________ _______ THROUGH L2', FOR'K = (KMAX-KK), -KK, K.L. 0 _ _________________ _

X = K*DX
WHENEVER K .E. 0
PRINT COMMENT SOINITIAL CONDITIONS $
PRINT RESULTS K , X
PRINT COMMENT $ I Y(I)

1 SLOPE M $
END OF CONDITIONAL
THROUGH L3> FOR 1=0, 1, I.G. IMAX
S = Y(I) + ROLD(I)*DX*KK
WHENEVER .ABS.(ROLD(I)).L. IE-6
R = ROLD(I)
M = I
OR WHENEVER ROLD (I)_. L . 0 .
 THROUGH L4>F0R J=I,-1, J.E.O .OR. (S.G.Y(J-l) .AND.S.LE.Y(J))

___L4 -
WHENEVER J .E. 0
J =1
END OF CONDITIONAL
 R = (ROLD(J)-ROLDCJ-l))*(S-Y(J-l))/DY + ROLD(J-1)
M = J
OTHERWISE
THROUGH L5,FOR J=1,1,J.E.I MAX .OR.(S.G.Y(J) ^AND.S^LE.nJ + l>>

__ L5 " _________________________ "____2____ '_____ 1"
 WHENEVER J.E. JMAX

 J = JMAX-1
 END OF CONDITIONAL

 R = J ROLD (J+_l)_-RO_LD (J)')*(S-Y (J))/DY + ROLD (J)
M = J

 'END OF CONDITIONAL

79

 WHENEVER .ABS. (ROLDd)) .G. 1E6 _
ROLDd) = 1E6*(ROLD(I)/(.ABS. (ROLD(I)))) I____ 1
END OF CONDITIOANL
Y(0) =0.1 "
 RNEW(I) = R+(1+ROLD(I)*ROLD(I))*DX*KK/(2.*Yd))

WHENEVER K.E.O .AND. J I/I FREQ)* I FREQ .E. I
PRINT FORMAT IMBED, I» Y(I), ROLDd)\ M

 END OF CONDITIONAL
__ L3 _ ____ - ’ ■ _ ___________________ '____________________ _

THR0UGH_L6, FOR_ I = 0, 1, I .G. IMAX
ROLD(I) = RNEW(f) _______________ _________

L6 - - -

L2
R INITIAL INTEGRATION'
 THROUGH L7, FOR 1 = I FREQ, IFREQ, I .G. I~MAX

UO = Y(I)
 YR(1) = Yd) ' __________________________

 YR(2) = ROLDd)_ _____________
X = 0. „ \ ——
EXECUTE SETRKD. (2 ,YR(1) ,FR(1) ,QR,X,DX) ' __

J THROUGH LRK1, FOR K = 1,1, K .G. KMAX _________________
RKd__________S = RKDEQdO) '__ '______________________

WH E N E V E R_ S . E . 1.
FR(1) =JYR(2_)
FR(2) = Jid . + FR(1)*FR(1))/<2.*YR(1))
TRANSFER TO RK1__

OT HER WIS E
U(K) = YR(1) ___
W(K) = YR(2) ___
END OF CONDITIONAL

LRK1

R USE Qi_L._AS A CORRECTOR
THROUGH L8, FOR ITER = 1,1, ITER .G. ITMAX
PA (0) =0 •
Hl(0)_=_! .
H2(0) = 0.
D P A (0) = 0 .
DH1 (0) = '_0 . ' ___
DH2(0)= 1.
YR(1) =_ PA"(O)
 YR(2) >_DPA(O)
YR(3) =J Hl(0) ______

YR (4) =_ DH 1 (0)

_________________ YR (5)_ =_ H2 (0)

 _____ YR(6) = DH2(0)
_______ X = 0. "

EXECUTE SETRKD.(6,YR(1),FR(1),QR,X,DX)
"THROUGH LRK, FOR K'= 1,1, K.G.KMAX

CALLRK S = RKDEQ.(O)

 80

whenever s •E._l.o_ __ ____

 FR(1) = YR(2) __
 . WHENEVER FR (1) .G. EPS_

__FR(1) = EPS
END OF CONDITIONAL
FRO) = YR(4)
WHENEVER FRO) .G._EPS

"" FRO) = EPS
END OF CONDITIONAL

I FRO) = YR(6)
WHENEVER FR(5) .G. EPS" _
FR(5) = EPS ________________

 END OF CONDITIONAL
 GU = (l.+W(K)*W(K)) / (2 «*U (K)*U(J<))
 WHENEVER GU .6. 1E6

GU = 1E6
 END OF CONDITIONAL

GW = -W(K)/U(K)
 WHENEVER .ABS.(GW) .G. 1E6

GW = 1E6*(GW/(.ABS.(GW MJ
 END OF CONDITIONAL

FR (2) = GU* (YRJ 1) -2 .*_U (K)J + GW*(YR(2) - W(K))
WHENEVER . ABS.(FR(2))_ .G. EPS
FR(2) = EPS*(FR(2)/(.ABS.(FR(2))))
END OF_CONDITIONAL
 FR(4) = GU*YR(3) +_GW*YR_(4)

_________WHENEVER . ABS . (FR (4JJ_ .G EPS
FR (4) _5__E PS* (FR (4)7(.ABS. (FR(4))))
END OF CONDITIONAL
FR(6)_ = GU*YR(5) + GW*YR (6)
W H E N E V E R . A B S . (F R („6)) . G ._ E P S __________________
FR(6) = EPS*(FR(6)/(.ABS.(FR(6))))

__________________E ND 0 F_ C 0 N DO I ONA L___________________________________ ________________________
TRANSFER TO CALLRK___________________________ '________________________________

_________________ OTHERWISE___
PA(K) = YR(1)
Hl (K) __=_YR (3)
H2(K) = YR(5).
DPA(K)_=_YR(2)

'_________ DH1 (K)=_YR (4)______________________ ________ ________________________ ___
JDH2(K) = YR (6)

END OF CONDITLONAL
LRK_________

 DIN = H1 (0) *DH 2 (_KM AXJ_-_PH 1 (KMAX) *H2_(0)
AA =_UO - PA(0)
 Cl = (AA*DH2(KMAX)_+ DPA(KMAX)*H2(0))/DIN

 C2 = (-AA*DH1(KMAX) - DPA(KMAX)*H1(0))/DIN_
~1 PRL’.'T COMMENT 0 'J~

PRINT RESULTS I> UO♦ ITER
" PRINT RESULTS Cl> C2 ' ~

PRINT COMMENT $ "K X PA
 1 Hl___ ’ H2 U ’ V

 2 QT S’

81_

THROUGH L9> FOR K = 0» 1\ K .G. KMAX
U(K) = PA(K) + Cl* HKK) + C2* H2(K)
W(K) = DPA(K) + C1*DH1(K) + C2*DH2(K)
X = K*DX
whenever k »e. b
QT = 0.
otherwise
DS = SQRT.((U(K)-U(K-l)).P.2+ DX*DX)
 V = 4eO13*(SQRT. (U(K))+SQRT.

QT = QT + DS/V
END OF "CONDITIONAL
WHENEVER (K/KP)*KP .E« K '
PRINT FORMAT LINEAR, K, X, PACK), HKK) ,H2 (K) ,U (K) , W (K) ,QT
END OF CONDITIONAL 2

L9 ____________________________________ ______
____ U (0) = 0.001_________'_________________________________ ’___________________________
L8 " ' " ""__

PRINT COMMENT_O ________________ _
L7 _ "

TRANSFER TO START
VECTOR VALUES IMBED~= 1110, 2E20.8, 1110 *$
VECTOR VALUES LINEAR = $ 115, 1E12.4, 6E17.8 *_$_
END OF PROGRAM'

$ DATA. _
XT = 314.15926, Y0=0., YT=400., IMAX = 100,ITMAX = 1, KMAX = 400,fFREQ =10,
KP=20, KK=4, EPS=100*

CONCLUSIONS

Modern digital computers can solve a great number of

initial-value problems with accuracy and speed. The

conventional method of solving two-point boundary-value
problems by estimating initial slopes does, not make effi­

cient use of their capabilities. In addition, the accuracy

achieved at the boundary points does not guarantee equal
accuracy throughout at intermediate points. The first

difficulty may be mitigated by using the technique of invari­

ant imbedding or dynamic programming, while the accuracy

in the interval may be improved significantly by quasilinea­

rization.

The convergence of solution obtained by quasilineari­

zation depends solely upon the suitability and closeness of

the initial estimate to the solution. This original estimate

may be obtained by invariant imbedding or dynamic programming.

A major difficulty in applying quasilinearization arises in

obtaining the multipliers from high-dimensional systems of

linear algebraic equations. Serious errors may result when

inaccurately determined multipliers are used in combinations

of solutions. Invariant imbedding eliminates this difficulty

by producing functions which yield the unknown initial values
directly [18],

Dynamic programming reduces, in large scale, the labor

of searching for optimal paths. Since it bypasses the require­

ment for knowing the differential equation governing the

(82)

83

optimal curve, it is particularly suited, for solving multi­

stage multi-decision problems where the differential equation

does not exist. If the differential equation governing the

optimal path can be derived or a continuous problem giving

differential equation is solved as a discrete multistage

multidecision process, the computing time may further be

reduced by using the technique of searching over a restricted

region either by utilizing the slope characteristics of the

differential equation or by joint use with Invariant imbed­

ding. Accuracy of dynamic programming depends upon the

fineness of the selected grid, but the size of the problem

is limited by the available memory of a computer. Combin­

ing dynamic programming and quasilinearization avoids this

difficulty while producing accurate results.

APPENDIX

CLASSICAL SOLUTION OF BRACHISTOCHRONE PROBLEM

The brachistochrone problem requires that we find, the

path of least-time between two points In a gravitational

field.. Since gravitational force Is the only force acting

on the mass, the travelling time may be expressed, as

t . p « = fSB
Jo Jo V V 0 12gy

b
F(y,y*) dx

o
(A-1)

where d.s stands for the infinitesimal chord length, V is the

velocity, and g is the constant of gravitational acceleration.

In order to minimize T, we apply Euler’s equation to the

Integrand F, that is,

0F d FdF "
'dy dx L 0 y • . (A-2)

where ----- ;
1+y*^
F = -----

2gy
(A-3)

By performing the operation required by Eq.(A-2) we are led

to the equation

y" i+y‘
2y

(A-4)

(8^)

85

which may be integrated, to yield.

(A-5)

where c1 is a constant of Integration

In turn, by manipulation of the terms and. performing a

second, integration, we obtain

x = --- (u - slnu) + c
2

(A-6)

where u = cos“^ (1 -2y/c1) and. C£ is the second, constant of

integration. Since the path starts at the origin, at x = y = 0,

u = 0, which implies that c^ = 0. Thus, we are led. to the

solution

(a)(u - slnu)x =

(A-?)

(b)(1 - cosu)y =

which we recognize as the parametric form of the equation

for a cycloid, that is

x = r(9 - sin 6) (a)
(A-8)

y = r(1 - cos 9) (b)

86

where r (=0^/2) is the radius of the base circle, and

G (=u) Is the angular displacement of the base circle.

It can be shown that the travelling time along a cycloidal

path Is given by

t = J r/g’ 6 = (A-9)

where CD = g/r1 is a constant for particular cycloidal path.

In summary:
The path of least-time in a gravitational field is

a part of a cycloid. The travelling time along any

section of the cycloid is proportional to the angular

displacement of the base circle by which that section

of the curve is generated. The angular velocity of
the base circle go is constant (=g/r'), where r is

the radius of the base circle and g is the constant of

gravitational acceleration.

BIELIOGRAPEY
f l] .xabarzumlam, V. A. "On the Scattering of Light by a
L J Diffuse Medium," C'-nnt, rend., Doklady Acad, Sci,

U. R.S.S, V.38, p. 257, 19^3.
[2] Chandrasekhar, S., Radiative Transfer, Oxford University

Press, London, 1950.
F 3] Bellman, R. E. and R. E. Kalaba, "On the Principle of

Invariant Imbedding and Propagation Through Inhomo­
geneous Media," Proc, Nat. Acad. Sci. USA V. ^2
(1956), pp. 629-^327

[Bellman, R. E., Dynamic Programming. Princeton University
Press, Princeton, New Jersey, 1957»

[5} Bellman, R. E. and R. E. Kalaba, "On the Principle of
L J Invariant Imbedding and Diffuse Reflection from

Cylindrical Regions," Proc, Nat, Acad. Sci. USA,
V. ^3 (1957), PP. 51^-517.

[6] Bellman, R. E., R. E. Kalaba, and G. M. Wing, "On the
Principle of Invariant Imbedding and One-dimensional
Neutron Multiplication," Proc. Nat, Acad. Sci, USA.
V. ^3 (1957), PP. 517-520.

[7] Bellman, R. E. and R. E. Kalaba, "Random Walk, Scattering,
and Invariant Imbedding 1. One-dimensional Discrete
Case," Proc, Nat. Acad, Sci, USA. V. ^3 (1957), ^P.
930-933.

[8] Bellman, R. E., R. E. Kalaba, and G. M. Wing, "Invariant
Imbedding and Mathematical Physlcs-I: Particle
Processes," J, of Mathematical Physics. V. 1 (i960),
pp. 280-308.

[9] Bellman, R., R. E. Kalaba, and G. M. Wing, "Dissipation
Function and Invariant Imbedding, 1 ", Proc. Nat.
Acad, Sci, USA, V. ^6 (i960), pp. 1145-11^7.

[10] Bellman, R. E., R. E. Kalaba, and G. M. Wing, "Invariant
Imbedding, Conservation Relations, and Non-linear
Equations with Two-point Boundary Values," Proc.
Nat. Acad, Sci. USA, V. 46 (i960), pp. 1258-1260.

[11] Bellman, R. E., R. E. Kalaba, and G. M. Wing, "Invariant
Imbedding and Reduction of Two-point Boundary Values
Problems to Initial Value Problems," Proc. Nat, icad.
Sci. USA, V. 46 (i960) pp. 1646-1649.

(87)

88

£12] Bellman, R. E., Adaptive Control Process, A guided, tour,
Princeton University Press, Princeton, New Jersey,
I960.

[13] Bellman, R. E. and R. E. Kalaba, "On the Fundamental
L J Equations of Invariant Imbedding-I," Proc, Nat. Acad.

Sol. USA. V. ^-7 (1961), pp. 336-338.
[l^-] Bellman, R. E. and S. Dreyfus, Applied Dynamic Programming,

Princeton University Press, Princeton, New Jersey,
1962.

[15] Bellman, R. E., H. Kagiwada, and R. E. Kalaba, "A Compu-
L tational Procedure for Optimal System Design and

Utilization," Proc. Nat. Acad. Sci. USA. V. 48
(1962), pp. 1524-1528.

[16] Bellman, R. E. and R. E. Kalaba, Dynamic Programming:,
Invariant Imbedding and Quasilinearization, Compa­
risons and Interconnections, the Rand Corporation,
Santa Monica, California, 1964.

[l?] Bellman, R. E., H. Kagiwada, R. E. Kalaba, and R, Spldhar,
Invariant Imbedding and Nonlinear Filtering Theory,
the Rand Corporation, Santa Monica, California, 1964.

[18] Bellman, R. E., H. Kagiwada, and R. E. Kalaba, Numerical
Studies of A Two-noint Nonlinear Boundary Value
Problem Using Dynamic Programming, Invariant Imbed­
ding. and Quasilinearization, the Rand Corporation,
Santa Monica, Californla,1964.

[19] Bellman, R. E. and R. E. Kalaba, Quasilinearization and
Boundary Value Problems. American Elsevier Publishing
Co., New York, 1965.

[20] Bellman, R. E., H. Kagiwada, and R. E. Kalaba, Invariant
Imbedding and the Numerical Integration of Boundary
Value Problem "for Unstable Systems of Ordinaty Dif­
ferential Equations, the Rand Corporation, Santa
Monica, California, 1965.

[21] Dreyfus, Stuart E., Dynamic Programming and the Calculus
of Variations,the Rand Corporation, Santa Monica,
California, 1965.

[22] Fan, Llan-Tsen, and Chiu-Sen Wan, The Discrete Minimum
Prlnclple-A Study of Multistage System Optimization,
John Wiley and Sons, New York, 19o4^

[23] Hildebrand, Francis B., Advanced Calculus for Applications,
Prentice-Hall, Inc., New Jersey, 1962.

89

12^1 Kalaba, R. E., "Computational Considerations for Some
Deterministic and Adaptive Control Processes,"
Optimization Techniques, Edited by George Leitman,
Academic Press, 1 962.

[25] Tou, Jurious, Modern Control Theory, McGraw-Rill, New
York, 1965.

