BRACHISTOCHRONE PROBLEM SOLVED BY INVARIANT IMBEDDING, DYNAMIC PROGRAMMING, AND QUASIIINEARIZATION METHODS

A Thesis

Presented to
the Faculty of the Department of Mechanical Engineering University of Houston

In Partial Fulfillment
of the Requirements for the Degree Master of Science in Mechanical Engineering
\qquad

> by
> Moo-Zung Lee
> June, 1966

The author wishes to express his sincere gratitude to his adviser Dr. D. Muster, Professor and Chairman of the Department of Mechanical Engineering, University of Houston, for his encouragement, guidance and careful arrangements of discussions with several people during the study and writing of this thesis. Among these, the author is particularly in debt to Dr. R. E. Kalaba of the Rand Corporation who suggested this problem with keys to the solution and contributed many valuable references. Assistance received from Drs. I. Organick, S. R. Parker, and S. B. Childs, (all of. the University of Houston), is greatly appreoiated.

BRACHISTOCHRONE PROBLEM SOLVED BY INVARIANT IMBEDDING, DYNANIC PROGRAMMING, AND QUASIIINEARIZATION METHODS

An Abstract of a Thesis
Presented to the Faculty of the Department of Mechanioal Engineering University of Houston
In Partial Fulfillment of the Requirements for the Degree Master of Science in Mechanical Engineering

$$
\begin{gathered}
\text { by } \\
\text { Moo-Zung Lee } \\
\text { June, } 1966
\end{gathered}
$$

ABSTRACT

In such fields of current interest as optimal control and orbit determination, non-linear two-point boundaryvalue problems arise, the numerical solutions for which are difficult to obtain. In this thesis, some of the useful tools for treating problems of this nature - invariant imbedding, dynamic programming, and quasilinearization are studied by means of the brachistochrone problem. The three approaches are used separately and in combination. Computer programs using MAD language are presented. The results are compared with the classical solutions.

TABLE OF CONTENTS

PageACKNOWLEDGEMENTS 111
LIST OF FIGURES V11
LIST OF TABLES ix
LIST OF PROGRANS X
LIST OF SYMBOLS Xí
CHAPTER
I. INTRODUCTION 1
II. INVARIANT IMBEDDING 6
III. DYNAMIC PROGRAMMING 20
IV. QUASILINEARIZATION 46
V. COMPARISONS AND COMBINATIONS 59
CONCLUSIONS 82
APPENDIX 84
BIBLIOGRAPHY 87

LIST OF FIGURES

Figure Page
1.2-1 Possible Paths for the Least Time 2
2.4-1 Initial Slopes and the Range of Independent Variable 9
2.4-2 (A) w as a function of a
(B) w as a function of c 11
2.4-3 Slopes Along the Optimum Path in x-u Plane 11
2.4-4 Slopes Along the Optimum Path as a Function of x 11
2.4-5 Geometry of Equation (2.4-11) 13
2.4-6 Initial Slopes Obtained from Invariant Imbedding 15
2.4-7 Flow Chart of Invariant Imbedding 17
3.1-1 Two-Decision Two-Stage Process 20
3.1-2 Two-Decision Multistage Process 21
3.3-1 Multi-Decision Process 23
3.3-2 Grid Points in $x-y$ Plane 23
3.3-3 Optimal Path $O_{1}-d_{0}$ 23
3.4-1 Stage $k=n-1$ 25
3.4-2 Stage $k=n-2$ 25
3.4-3 Geometry of the Principle of Optimality 25
3.4-4 Possible Paths from d_{i} to B 28
3.4-5 Figure of an Example 28
3.4-6 Figure of an Example 28
3.5-1 Backward Scheme 29
3.6-1 Possible Paths from A to d_{1} 32

LIST OF FIGURES (con't)

Figure Page
3.6-2 Forward Scheme 32
3.6-3 Geometry of the Reverse Principle of Optimality 32
3.7-1 Figure of Equation (3.7-1) 33
3.8-1 Elements of Cost Matrix 37
3.8-2 Optimal Curves Obtained by Dynamic Programming 39
3.8-3 Flow Chart, Forward Nethod of Dynamic Programming 41
4.1-1 Newton-Raphson Method 46
4.2-1 Abstract Procedure of Quasilineariza- tion 55
5.2-1 Slope Characteristios and Searching Region 62
5.3-1 Regions to be Searched in Various Cases 64
Table Page
2-1 Initial Slopes Obtained by Invariant Imbedding 16
3-1 Minimum Travelling Time Obtained by Dynamic Programming 40
3-2 Grid Number and Accuracy in Dynamic Programming 40
4-1 Convergence of $u_{n}(x)$ to $u(x)$ by Quasi- linearization, $:(800$. discrete points) 52
4-2 Convergence of $u_{n}(x)$ to $u(x)$ by Quasi- inearization ${ }^{n}$ (400 discrete points) 53
4-3 Minimum Travelling Time Obtained by Quasilinearization 54
5-1 U(x) Obtained by Joint Use of Dynamio Programming and Quasilinearization 67
5-2 U(x) Obtained by Joint Use of Invariant Imbedding and Quasilinearization 68

LIST OF PROGRAMS

Program Page
2-1 Brachistochrone Problem with Free End Conditions Solved by Invariant Imbedding 18
3-1 Brachistochrone Problem with Two-Point Constraint Solved by Forward Method of Dynamic Programming 42
3-2 Brachistochrone Problem with Free-End Conditions Solved by Backward Method of Dynamic Programming 44
4-1 Brachistochrone Problem Solved by Quasilinearization 56
5-1 Forward Method of Dynamic Programming, Searching Within Restricted Region 69
5-2 Brachistochrone Problem with Free End Conditions Solved by Joint Use of Invariant Imbedding and Dynamic Programming 70
5-3 Brachistochrone Problem Solved by Joint Uso of Dynamic Programming and Quasilinearization 73
5-4 Brachistochrone Problem with Free-End Conditions Solved by Joint Use of Invariant Imbedding and Quasilinea- rization 78

Symbol.

.a	Initial position along x-axis
A	Starting point
b_{1}, b_{2}	Constants
B	Terminal point
c	Initial state
d	Interpolated value of state variable
delx, $d x, \Delta x$	Small increment of x
dely, dy, dy	Small increment of y
ds	Infinitesimal chord length
dt	Infinitesimal time
f	Optimal function
F	Functional
8	Constant of gravitational acceleration
G	Functional
$\mathrm{n}_{1}, \mathrm{~h}_{2}$	Homogeneous solution
1	State counter
j	State counter
k	Stage counter
1,m,n	Integer constants
0	The origin
p	Particular solution
q	State counter
Q6	Stage counter in quasilinearization

Definition.
Initial position along x-axis
Starting point
Constants
Terminal point
Initial state
Interpolated value of state variable
Small increment of x
Small increment of y
Infinitesimal chord length
Infinitesimal time
Optimal function
Functional
Constant of gravitational acceleration
Functional
Homogeneous solution
State counter
State counter
Stage counter
Integer constants
The origin
Particular solution
State counter
Stage counter in quasilinearization

IIST OF SYMBOLS (con't)

Symbol
r
r
t
u
ω

Slope function (text)
Radius of base circle (appendix)
Time
State variable
Starting value of u
Terminal value of u
Velocity
Slope
Independent variable
Starting value of x
Terminal value of x
Dependent variable
Starting value of y
Terminal value of J
Angular displacement of base circle
Angular velocity of base circle

CHAPTER I

INTRODUCTION

1.1 INITTAL-VALUE PROBLEM AND BOUNDARY-VALUE PROBLEM Consider a second order ordinary differential equation

$$
\begin{equation*}
y . "=G\left(y, y^{\prime}\right) \tag{1.1-1}
\end{equation*}
$$

with initial conditions

$$
\begin{align*}
& y(0)=c_{1} \tag{1.1-2}\\
& y^{\prime}(0)=c_{2} \tag{b}
\end{align*}
$$

(a)

The determination of a solution to Eq.(1.1-1) subject to conditicns Eq.(1.i-2) is known as an initial-value problem. By putting $u=y$, $w=y$ ', Eqs.(1.1-1) and (1.1-2) become

$$
\begin{array}{ll}
u^{\prime}=w, & u(0)=c_{1} \\
w^{\prime}=G(u, w), & w(0)=c_{2}
\end{array}
$$

which are integrable directly.
Hodern electronic computers provide the means for obtaining numerical solutions of systems of simultaneous non-linear (or linear) ordinary differential equations subject to a set of initial conditions, with accuracy and speed. However, in some fundamental problems the constraints are not initial values but are in the form

$$
\begin{array}{ll}
u^{\prime}=w, & u(0)=c_{1} \\
w^{\prime}=G(u, w), & w\left(x_{T}\right)=c_{3} \tag{b}
\end{array}
$$

where x_{T} is the terminal value of the independent variable x.

The problem is called a two-point boundary-value problem, since values are prescribed at two distinct points, $x=0$ and $\mathrm{x}=\mathrm{x}_{\mathrm{T}}$.
1.2 THE ERACHISTOCHRONE PROBLEM

As an example of a two-point boundary-value problem, the differential equation of brachistochrone problem is derived as follows:

Given two points in a space containing a constant gravitational force field, we wish to find a frictionless path from a higher point to a lower point along which a particle will slide in minimum time.

Figure 1.2-1
Possible Paths for the Least Time

In Fig. 1.2-1, It is obvious that the particle will

From Greek, fouriojos, shortest and xpóros, time, a term invented by Jean Bernoulli (1667-1748) in 1694 to denote a curve along which a body passes from one fixed point to another in the shortest time. When the directive force is constant, the curve is a cycloid.
traverse minimum distance along the straight-ine path ACB. Along the curved path $A D B$ the particle picks up speed sooner, but travels a longer route. The optimal path of least time may be found by balancing these considerations properly.

Let us denote the initial point as the origin, set up a coordinate system as shown in Fig. 1.2-1 and call the terminal point $\left(x_{T}, y_{T}\right)$. We know that the particle velocity, $\because V$, in the plane of the field, is equal to $\sqrt{2 g y}$ at any position in the field, independent of its horizontal position. Since an infinitesimal arc length, ds is given by

$$
d s=\left[(d x)^{2}+(d y)^{2}\right]^{1 / 2}=\sqrt{1+\left(y^{\prime}\right)^{2}} \cdot d x
$$

the time of descent is expressed by

$$
\begin{equation*}
T=\int_{0}^{x_{T}} \frac{d s}{V}=\int_{0}^{x_{T}}\left[\frac{1+y^{\prime 2}}{2 g y}\right]^{1 / 2} d x \tag{1.2-1}
\end{equation*}
$$

Where g is the gravitational constant. We seek a function * $y=y(x)$ which satisfies the constraint conditions $y(0)=0$, $y\left(x_{T}\right)=y_{T}$, and which minimizes the integral T.

The Euler equation for Eq. (1.2-1) is

$$
2 y y^{\prime \prime}+y^{\prime 2}+1=0
$$

or in the form of Eq. (1.1-1)

$$
\begin{equation*}
y^{\prime \prime}=-\frac{1+y^{\prime 2}}{2 y} \tag{1.2-3}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{align*}
& y(0)=0 \tag{1.2-4}\\
& y\left(x_{T}\right)=x_{T} \tag{b}
\end{align*}
$$

(a)
1.3 A RUMERICAL SOIUTION OF RYO-DOINT BOUNDARY-VILUE PROBLEM

In order to solve an n-th-order ordinary differential equation numerically, ordinary computing techniques call for a knowledge of $y, y^{\prime}, y^{\prime \prime}, \ldots y^{(n-1)}$ at either the starting point $x=0$ or the terminal point $x=x_{T}$. In the brachistochrone problem, we have one value at one end and another at the other.

In order to solve a problem of this nature, we may choose a value of $y^{\prime}(0)$, say c_{4}, and integrate the equation using $y(0)=c_{1}, y^{\prime}(0)=c_{4}$ as initial values. If the value at the terminal point, $y=y\left(x_{T}\right)$ obtained in this way agrees sufficiently closely with the desired value y_{T}, we accept this as the solution. Otherwise, we vary the value of c_{4} and recompute the terminal value until agreement at the boundary is satisfactory.

This is not an ideal procedure for a number of reasons. First, it is difficult to estimate in advance the required amount of computing time which will be needed. Second, stipulating a certain accuracy at the end point does not guarantee equal accuracy throughout whole range of x, from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{x} \mathrm{q}$. Third, the results obtained from the 1-th iteration

$$
\begin{equation*}
y(k)_{i}=y[x(k)]_{i} \quad \text { for } 0 \leq x(k)=k \cdot \Delta x \leq x_{T} \tag{1.3-1}
\end{equation*}
$$

are not utilized to improve the solution in the (i+1)-th try. In addition, a proper first estimate of the solution may be difficult to establish.
1.4 RECENT APPROACHES

As we shall see in the following chapters, theories of invariant imbedding and dynamic programming transform boundary-value problems to initial-value problems by introducing new state variables, and imbedding a specific problem in a family of similar problems. Invariant imbedding provides information of initial slopes from given terminal slopes in a very short computing time. The Euler equations obtained in the course of applying calculus of variations are, in most cases, difficult to solve; dynamic programming provides a means of by-passing this hurdle. On the other hand, quasilinearization attacks these problems by linear approximation techniques combined with a concept analogous to making approximations in policy space [14]. ${ }^{2}$ The approximations are constructed to yield rapid and monotone convergence.

The theory and techniques mentioned above were developed mainly by Bellman, Kalaba and their colleagues $[3-21,24]$.

[^0]
CHAPTER II

INVARIANT IMBEDDING

2.1 PRINCIPLE OF INVARIANT IMBEDDING

In 1943, Ambarzumian introduced a new approach to the study of atmospheric scattering problems [1]. This approach was extended by Chandrasekhar who gave it the name "principle. of invariance"[2]. In recent years, Bellman and Kalaba generalized this methodology and called it "the principle of invariant imbedding"[3]. It can be stated as follows:
"Given a physical system, S, whose state at any time t is specified by a state vector, x, we consider a process which consists of a family of transformations applied to this state vector.

Suitably enlarging the dimension of the original vector by means of additional components, the state vectors are made elements of a space which is mapped into itself by the family of transformations. In this way . we obtain an invariant process, by imbedding the original process within the new family of processes. The functional equations goverming the new process are the analytic expression of this invariance."

In other words, we derive equations for the values of the dependent variables at a fixed value of the independent variable as a function of interval on which the boundary value problems are speoified.

Many applioations of this theory in such diverse areas
as radiative transfer, neutron transport, diffusion and heat conduction, scattering and random walk, and wave propagation can be found in recentiliterature $[3,5,6,7,8]$. In this report, the fundamental technique is applied to a problem well-known in classical calculus of variations.
2.2 IMBEDDING PARTICULAR PROBLEM IN A FAMILY OF PROBLEMS

In the study of a spring-mass system, customarily we write $y=y(t)$, indicating the dependence of the solution upon t. More generally, the solution is also a function of c, the initial value of y; hence, we write $y=y(c, t)$. This implies : that the study of a particular solution of a differential equation may be carried out by studying a family of solutions. It also constitutes the keystone of the theory of invariant imbedding and forms the base for the theory of dynamic programming.

Although imbedaing a particular problem in a family of problems appears to complicate rather than simplify the problem, its justification lies in the fact that we can construct a bridge spanning the particular problem and other members of the family, which is utilized to determine the characteristics of the particular member of the family. 2.3 BRACHISTOCHRONE PROBLEM WITH FREE-END CONDITIONS

A brachistochrone path connecting the initial point $A(0,0)$ and any point on the terminal line $x=B$ is characterized by minimizing the functional

$$
\begin{equation*}
T=\int_{0}^{B} \sqrt{\frac{1+\left(y^{\prime}\right)^{2}}{2 g y}} \cdot d x \tag{2.3-1}
\end{equation*}
$$

where the dependent variable is subject to the initial condition

$$
y(0)=c
$$

and y is free at the terminal line $x=B$. Such a problem is said to have one variable end point.

From Eq. (1.2-3), the optimal path is the solution of the Euler equation

$$
y^{\prime \prime}=-\frac{1+y^{2}}{2 y}
$$

subject to initial condition $y(0)=c$. The other boundary value is not given explicitly; however, from the statement of the problem and the fact that the minimum-time path from any point on the terminal line to the terminal line itself is equal to zero, we have the so-called natural boundary condition[14]

$$
\begin{equation*}
y^{\prime}(B)=0 \tag{2,3-4}
\end{equation*}
$$

We seek to find the missing initial value $y^{\prime}(0)$. so that we can integrate Eq.(2.3-3) directly to obtain a solution. In the following section we show how to compute, by invariant imbediing, the missing initial slopes from the given terminal slopes.
2.4 DERIVATION OF EQUATIONS [18]

We rewrite Eq.(1.1-3) with $c_{1}=0, c_{2}=0$. that is,

$$
\begin{array}{lll}
u^{\prime}=w, & u(0)=c & (a) \tag{2.4-1}\\
w^{\prime}=G(u, w), & w\left(x_{p}\right)=0 & (b)
\end{array}
$$

Figure 2.4-1
Initial Slope and the Range of
Independent Variable

From Fig. 2.4-1 we can see that, for similar problems, the initial slopes depend upon the range of the independent variable x. Initial slope $u^{\prime}(0)=w_{1}$ is optimum for $x_{\mathrm{r}}=3_{1}$, while $u^{\prime}(0)=w_{2}$ is proper for $x_{T}=B_{2}{ }^{3}$. If we $f 1 x x_{T}$ at B, and consider various starting points at $x=a$ along x-axis, then the initial slope at $x=a$ is a function of (Fig.2.4-2). We write

$$
\begin{equation*}
u^{\prime}(a)=r(a) \quad \text { for } 0 \leq a \leq x_{T} \tag{2.4-2}
\end{equation*}
$$

By permitting the parameter a to vary from X_{T} to 0 , we construct a family of similar problems with different range of x for each member of the family. Furthermore, for a particular value of a, say $a=a_{1}$, the initial slopes differ

3 At the cusps of a cycloid the slope is infinitely large, but here we must choose finite values for use in the computation. On this base we assume $w(0)$ to be finite but large at the cusps.
according to the starting position $c=u(0)$. Therefore we write

$$
\begin{equation*}
u^{\prime}(a)=w(a)=r(c, a) \tag{2.4-3}
\end{equation*}
$$

realizing that the correct slope depends upon the starting value of x as well as the initial position $u(x)$. By permitting c or a"to vary, or c and a simultaneously, we actually investigate a family of problems of similar nature.

Let us assume the process begins at $x=a$, with slope b_{1}. After moving along the optimal path to $x=a+\Delta x$ the slope becomes b_{2} (as is shown in Figs.2.4-3 and 2.4-4), and

$$
w(a+\Delta x)=w(a)+w^{\prime}(a) \cdot \Delta x+0\left[(\Delta x)^{2}\right] \quad(2.4-4)
$$

Recall Eq. (2.4-3) and replace $w(a)$ by $r(c, a)$; we obtain

$$
\begin{equation*}
w(a+\Delta x)=r(c, a)+w^{\prime}(a) \cdot \Delta x+0\left[(\Delta x)^{2}\right] \tag{2.4-5}
\end{equation*}
$$

On the other hand, the general functional relationship Eq. (2.4-3) holds equally well for $x=a+\Delta x$, that is

$$
\begin{equation*}
w(a+\Delta x)=r(d, a+\Delta x) \tag{2.4-6}
\end{equation*}
$$

where d is the value of dependent variable u at $x=a+\Delta x$, which may be expressed by

$$
\begin{align*}
d & =u(a+\Delta x) \\
& =u(a)+u^{\prime}(a) \cdot \Delta x+0\left[(\Delta x)^{2}\right] \\
& =c+w(a) \cdot \Delta x+0\left[(\Delta x)^{2}\right] \\
& =c+r(c, a) \cdot \Delta x+0\left[(\Delta x)^{2}\right] \tag{2.4-7}
\end{align*}
$$

We substitute Eq. (2.4-7) into Eq. (2.4-6) introduce the second

(A)

(B)

Figure 2.4-2
(A) w as a function of a
(B) w as a function of c

Figure 2.4-3
Slopes Along the Optimal Path in $\mathrm{x}-\mathrm{u}$ Plane

Figure $2.4-4$
Slopes Along the Optimal path as a function of x
expression of the slope at $x=a+\Delta x$ and obtain

$$
\begin{equation*}
w(a+\Delta x)=r[c+r(c, a), a+\Delta x] \tag{2.4-8}
\end{equation*}
$$

By equating the right-hand sides of Eq. (2.4-5) and Eq. (2.4-8) we obtain

$$
\begin{equation*}
r(c, a)+w^{\prime}(a) \cdot \Delta x=r[c+r(c, a) \cdot \Delta x, a+\Delta x] \tag{2.4-9}
\end{equation*}
$$

In order to express $r(c, a)$ as a function of $r(c, a+\Delta x)$, let us take Δx sufficiently small and for the first approximation

$$
\begin{array}{r}
r[c+r(c, a) \cdot \Delta x, a+\Delta x] \cong r[c+r(c, a+\Delta x) \cdot \Delta x, a+\Delta x] \\
(2.4-10)
\end{array}
$$

to rewrite Eq. (2.4-9) as

$$
\begin{equation*}
r(c, a)=r[c+r(c, a+\Delta x) \cdot \Delta x, a+\Delta x]-w^{\prime}(a+\Delta x) \cdot \Delta x \tag{2.4-11}
\end{equation*}
$$

From the geometry of Fig. 2.4-5, if the slopes of curves passing through all grid points at $x=a+\Delta x$ are known, the slopes of different curves passing through grids at $x=a$ are computed as follows.

1. Take the slope at $p, w=r\left(c_{1}, a+\Delta x\right)$ as the first approximation of the slope at q.
2. Locate d by equation $d=c_{i}+r\left(c_{1}, a+\Delta x\right) \cdot \Delta x$.
3. Compute the slope of curve at d by inear interpolation of $r\left(c_{i}, a+\Delta x\right)$ and $r\left(c_{i+1}, a+\Delta x\right)$.
4. Compute $r\left(c_{i}, a\right)$ using Eq. (2.4-11).
5. Repeat steps i~4 for all other points at $x=a$.

Figure 2.4-5

Geometry of Eq.(2.4-11)
6. Repeat steps $1 \sim 5$ to regenerate the slopes for all grid points at the neighboring stage in the left-hand side. Using Eq. (2.4-11) with the free-end conditions $r\left(c_{i}, x_{T}\right)=0$, we can determine the slope function r at all grid points at $a=X_{T}-\Delta x, a=X_{T}-2 \Delta x$ and so on. Consider the computing procedures outlined above. In
step 2, we assigned $r\left(c_{i}, a+\Delta x\right)$ in predicting d; in step 3 , both $r\left(c_{1}, a+\Delta x\right)$ and $r\left(c_{1}, 1, a+\Delta x\right)$ contribute to the estimation of the slope of optimum curve passing through d. The position of C and its slope combined with Eq. (2.4-11) make estimation of $r\left(c_{1}, a\right)$ possible. The roles of the neighboring members of the family of the problems are obvious.

It is not wasteful to expand the dimension of the problem by invariant imbedding, because we imbed a difficult or unsolvable problem in a family of similar problems which become easier to handie after the mutual relations existing between the members of the group are used. As a byproduct, a series of problems are solved in one stroke instead of just obtaining a particular solution for a single problem. This series of results also supplies a more complete picture of the effect of each parameter on the resulting function.

As an example, a group of brachistochrone problems with $\mathrm{z}=0 \sim 314.15926, \mathrm{u}_{\mathrm{T}}=0 \sim 400$ and with natural boundary conditions at terminal line were solved by taking 100 grids in both x and u axes. Computation of the initial slopes at various starting points of u at $x=0$ takes 6.1 sec execution time ${ }^{4}$ using IBM 7094 computer. The results of 20 cases of initial slopes are compared with the analytical solution in Table 2-1. The computer program in MAD language used to obtain these results is shown in Program 2-1. In Fig.2.4-6 the initial slopes $r(c, a)$ obtained from invariant imbedding are shown.

In this thesis all computing times were obtained with programs using the same approach and philosophy. Change in either of these could produce significant changes in absolute computing times. On this basis, we have considered computing times as a criterion of comparison.

Initial Instants $a=100 \pi(k / 100)$

Table 2-1

Initial Slopes Obtained by Invariant Imbedding

$$
\text { Taking } 100 \times 100 \text { grid points between }
$$

$x=0 \sim 100 \pi, y=0 \sim 400$ feet

Grid
Number

I

5
10
15
20
25
30
35
40
45 . 18000000 E 03
$50 \quad .20000000$ E 03
55 .22000000E 03
60 . 24000000 E 03
65 . 26000000 E 03
70 .28000000E 03
75 •30000000E 03
80 •32000000E 03
85 •34000000E 03
90 •36000000E 03
95 •38000000E 03
100 .40000000E 03

Initial Slopes
(Invariant Imbedding)
$W(I)$
-3581870OE OI
. 21314888 E 01
-16331606E OI
-13481355E O1

- 11561425E 01
$.10146379 E 01$
-90489530E OO
.81680938 E 00
.74431062 E 00
$.68348686 E 00$
$.63167808 E 00$
-58699879E 00
. 54806749 E 00
.51384442 E 00
$.48352921 E 00$
.45648604 E 00
$.43213662 E 00$
$.40979266 E 00$
-38868529E 00
-36815135E 00

Initial Slopes (Classical)
$W(I)$
. $30228241 E 01$
. $20489414 E 01$
-16062053E O1
$.13373163 E 01$
-11514445E O1
.10131552 E 01
-90529212E 00
.81835540500
.74657554 E 00
$.68620315 E 00$
. 63467290 E 00
.59015734 E 00
.55131213E 00
$.51712201 E 00$
-48680358E 00
-45974129E 00
. $43544406 E 00$
.41351479E 00
-39362881E 00
-37551792E 00

R
PROGRAM 2-1

R BRACHISTOCHRONE PROBLEM WITH FREE END. CONDITIONS_SOLVED_BY_ R INVARIANT IMBEDDING
\$ COMPILE MAD, EXECUTE, PRINT OBJECT, DUMP
INTEGER I, J, K, IMAX, JMAX, KMAX, KP, M, IFREQ
DIMENSION Y(1000), ROLD(1000), RNEW(1000)
EQUIVALENCE (IMAX, JMAX)
START
READ AND PRINT DATA IMAX, KMAX, YT, XT,-IFREQ
DELX $=X T / K M A X$
DELY $=Y T / I M A X$
THROUGH LI, FOR I=0,I,I.G.IMAX
$Y(I)=I * D E L Y$
ROLD(I) $=0$.
LI
THROUGH L2, FOR $K=(K M A X-1),-1,-K \cdot L \cdot 0$
$X=K * D E L X$
WHENEVER K •E. O
PRINT RESULTS K_{-}, X
PRINT COMMENT_S_Y_ $\$$
1 SLOPE -M_. $\$$
END OF- CONDITIONAL
THROUGH L3, FOR I $=0,1,-I \cdot G$.-IMAX
$S=Y(I)+\operatorname{ROLD}(I) * D E L X$
WHENEVER •ABS.(ROLD(I)).L. 1E-6

- $R=$ ROLD(I)
$M=I$
OR WHENEVER ROLD(I)-.L.O.
THROUGH L4,FOR J=I,-I:J.E.O.OR.-(S.G.Y(J-I)_.AND.S.LE.Y(J))
L4
WHENEVER J •E•- O
$J=1$
END OF CONDITIONAL
$R=(R O L D(J)=R O L D(J-1)) *(S-Y(J=1)) / D E L Y \ldots+_R O L D(J-1)$
$M=J$
OTHERWISE
THROUGH L5,FOR J=I,I,J.E.IMAX.-OR.(S.G.Y(J) -.•AND.S.LE.Y(J+1))
WHENEVER.J.E. JMAX
$J=J M A X-1$
END OF CONDITIONAL
$R=(R O L D(J+1)-R O L D(J)) *(S-Y(J)) / D E L Y+R O L D(J)$
$M=J$
- END OF CONDITIONAL

WAENEVER •ABS•(ROLD(I)) ©G• $1 E 6$
ROLD(I) $=1 E 6 *(R O L D(I) /(. A B S 。(R O L D(I))))$
END OF CONDITIOANL
$Y(0)=1$.
RNEW(I) $=R+(1+R O L D(I) * R O L D(I)) * D E L X /(2 * Y(I))$
UHENEVER K E. O .AND. (I/IFREQ)*IFREQ •E.I
PR:NT-FORMAT IMBED, I, Y(I), ROLD(I), M
END OF CONDITIONAL
L3
THROUGH L6, FOR I $=0,1, I, G \cdot I M A X$
ROLD(I) $=\operatorname{RNEW}(I)$
16
L2
TRANSFER TO START
VECTOR VALUES IMBED $=$ W IIIO, 2E20.8,IIIO *\$
END OF PROGRAM
$\$$ DATA
$I M A X=100, ~ K M A X=100, \quad Y T=400 . \quad X T=314.15926, I F R E Q=5 *$

CHAPTER III

DYNAMIC PROGRAMMING

3.1 DISCRETE MULTISTAGE TWO-DECISION PROCESS

A problem with the property that, at each of a finite set of times t_{1}, t_{2}, ... t_{n}, a decision is to be chosen from a finite set of possible decisions, is called a discrete multistage decision process. If one of m possible decisions must be chosen at each time and the process consists of n such stages, there are $(m)^{n}$ possible different sequences of n decisions. Our aim is to find the optimal sequence of decisions among these $(m)^{n}$ possible cases.

Figure 3.1-1
Two-decision, Two-stage Process.

Let us look at a two-deoision two-stage minimum-cost problem. We define the term minimum "cost" as the minimum expenditure (in dallars), or minimum travelling time (in sec). At starting point A we must choose between the paths $A c_{1} B$ and $\mathrm{Ac}_{2} \mathrm{~B}$, depending upon which one yields the lesser cost. If the cost of each section of the paths in Fig.3.1-1 are known, the decision to be made at A is a simple matter.

$$
\operatorname{Cost} A B=\min \left\{\begin{array}{l}
\cos t A c_{1}+\operatorname{cost} c_{1} B \\
\cos t A c_{2}+\cos t c_{2} B
\end{array} \quad(3.1-1)\right.
$$

In the multistage two-decision process shown in Fig.3.1-2, suppose the optimal decision is found to be $A c_{q}$ in the first stage; we ask for another decision at c_{1}. One path should be chosen out of two possible paths $c_{1} d_{1} B$ and $c_{1} d_{2} B$. The cost of $c_{1} B$ is given by

$$
\text { Cost } c_{1} B=\min \left[\begin{array}{l}
\operatorname{cost} c_{1} d_{1}+\operatorname{cost} d_{1} B \\
\operatorname{cost} c_{1} d_{2}+\cos t d_{2} B
\end{array} \quad(3.1-2)\right.
$$

Figure 3.1-2
Two-decision, Multistage Process.

If cost $c_{1} d_{2} B$ is found to be less than that of $c_{1} d_{1} B$, next decision must be made at d_{2}. The same procedure is repeated at each stage in all subsequent stages.

3.2 MARKOVIAN-TYPE FROCESSES

We introduce an assumption concerning the cost property of a network in order to make valid the statements of the previous section. In effect, we assume that the cost of any established path of a network does not change after it has been combined with the later stages of the network. A formal statement of this assumed property is due to Markov and given in [12]:
"After any number of decisions, say k, we wish the effect of the remaining $n-k$ stages of the decision process upon the total return to depend only upon the state of the system at the end of the $k-t h$ decision and the subsequent decisions."

3.3 MULTISTAGE MULTI-DECISION PROCESSES

In a multistage multi-decision process, if one of m possible paths must be chosen at each decision time, the problem is still intrinsically the same as for a two-decision process (Fig.3.3-1). That 1s,

$$
\begin{equation*}
\operatorname{cost} A B=\min \left(\cos t A c_{1}+\cos t c_{1} B\right) \tag{3.3-1}
\end{equation*}
$$

For a more general illustration, letus construct a grid of points in $x-y$ plane as shown in Fig. 3.3-2. As shown in Fig. 3.3-3 the optimum path $c_{i} d_{0}$ is found by considering costs determined as follows:

$$
\begin{align*}
& \operatorname{cost} c_{i} d_{0}=\min \left\{\begin{array}{l}
c_{1} d_{j}+d_{j} d_{0} \\
c_{i} c_{j}+c_{j} d_{k}+d_{k} d_{0} \\
c_{1} c_{j}+c_{j} d_{0}
\end{array}\right. \tag{3.3-2}\\
& \ddots(j, k=0,1,2, \ldots i)
\end{align*}
$$

Figure 3.3-1
Multi-decision Process

Figure 3.3-2

Grid points in $x-y$ Plane

Figure 3.3-3

Optimum Path $c_{i}-d_{0}$

In the brachistochrone problem, by taking grid sizes sufficiently small, we may approximate the optimum path from c_{1} to d_{j} on the nearest neighboring stage as the diagonal ${\overline{c_{1}}{ }_{j} .}$.

3.4 THE FRINCIPLE OF OPTIMALITY

Recall Eq. (3.3-2) and Fig.3.3-1, if there exists at least one stage between c_{1} and B, then the costs of $c_{1} B$ for $i=0,1,2, \ldots m$, should be completely known before making decision at A. For a multistage process, we start the decision making at the stage nearest to B. After the costs $f_{1} B$ at the stage $k=n-1$ have been found (as shown in F1g.3.4-1), the cost from any grid e_{i} at stage $k=n-2$ is expressed by

$$
\begin{align*}
\operatorname{cost} e_{i} B & =\min \left(\operatorname{cost} e_{i} f_{j}+\operatorname{cost} f_{j} B\right) \tag{3.4-1}\\
j & =0,1,2, \ldots m .
\end{align*}
$$

Similar but more lengthy procedures are repeated for the points d_{i} at stage $k=n-3$, with the cost $d_{i} B$ expressed as

$$
\begin{aligned}
\operatorname{cost} d_{i} B & =\min \left(\operatorname{cost} d_{i} e_{j}+\operatorname{cost} e_{j} f_{q}+\operatorname{cost} f_{q} B\right) \quad(3.4-2) \\
j, q & =0,1,2, \ldots m_{.}
\end{aligned}
$$

Consider the right hand side of Eq. (3.4-2). It contains m^{2} number of cases. The (cost $e_{j} f_{q}+\operatorname{cost} f_{q} B$) has been computed at the previous stage $k=n-2$; therefore, Eq. (3.4-2) may be simplified as

$$
\text { cost } \begin{align*}
a_{i} B & =\min \left[\operatorname{cost} a_{i} e_{j}+\left(\operatorname{cost} e_{j} f_{q}+\operatorname{cost} f_{q} B\right)\right] \\
& =\min \left(\cos t d_{i} e_{j}+\operatorname{cost} e_{j} B\right) \\
j & =0,1,2, \ldots m_{l} \tag{3.4-3}
\end{align*}
$$

Figure 3.4-3
Geometry of the Principle of Optimality

Which reduces the number of cases to be studied from m^{2} to m for one grid point d_{1}. This simplification is legitimate only when cost $e_{j} B$ is not changed after being combined with the other section $d_{i} e_{j}$; however, our original assumption that the process is to be Markovian satisfies this condition. For particular point e_{j}, Eq.(3.4-3) may be written in detail as

$$
\operatorname{cost} d_{i} e_{j} B=\min \left\{\begin{array}{l}
\alpha_{1} e_{j}+e_{j} B \tag{3.4-4}\\
d_{2} e_{j}+e_{j} B \\
\ldots \ldots \ldots \ldots \\
\left.e_{j} \text { fixed }\right) \\
d_{i} e_{j}+e_{j} B \\
\ldots \ldots \ldots \ldots \\
\alpha_{m} e_{j}+e_{j} B
\end{array}\right.
$$

Equation (3.4-4) with geometry of Fig.3.4-3 shows that no matter from which point d_{i} one comes to e_{j}, the optimum path $e_{j} B$ found in the previous stage constitutes a part of the optimal path from d_{1} to B. This basic principle of dynamic programming has been called by Bellman "the principle of optimality" $[4,12,14]$, that is,
"An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision."

On the other hand, for a fixed point d_{1}, Eq. (3.4-3) may be written as

$$
\operatorname{cost} d_{i} e_{j} B=\min \left\{\begin{array}{l}
d_{1} e_{1}+e_{1} B \tag{3.4-5}\\
d_{i} e_{2}+e_{2} B \\
\cdots \ldots \ldots . \\
d_{i} e_{j}+e_{j} B \\
\cdots \ldots \ldots \ldots \\
d_{1} e_{m}+e_{m} B
\end{array}\right.
$$

It is important to note that Eq.(3.4-5) does not mean

$$
\operatorname{cost} d_{i} B=\min \left(\operatorname{cost} d_{i} e_{j}\right)+\min \left(\cos t: e_{j} B\right)
$$

(3.4-6)

For arbitrary given cost on each chord shown in Fig.3.4-5, if we apply Eq.(3.4-5) we obtain

$$
\operatorname{cost} d_{1} B=\min \left\{\begin{array}{l}
d_{1} e_{1} B=1+8=9 \\
d_{1} e_{2} B=2+5=7 \\
d_{i} e_{3} B=4+4=8
\end{array}\right\}=7 \quad(3.4-7)
$$

However, applying Eq.(3.4-6) in two ways we have

$$
\begin{align*}
& \min d_{i} e_{j}+\min e_{j} B=1+8=9, \quad(j=1,2,3) \tag{3.4-8}\\
& \min B e_{j}+\min e_{j} d_{i}=4+4=8, \quad(j=1,2,3)
\end{align*}
$$

For a three-stage process show in Fig.3.4-6

$$
\operatorname{cost} \alpha_{i} B=\min \left\{\begin{array}{l}
1+6+10=17 \tag{3.4-9}\\
1+8+5=14 \\
2+3+10=15 \\
2+4+5=11
\end{array}\right\}=11
$$

Figure $3.4-4$
Possible Paths from d_{1} to B

Figure 3.4-5
Figure of an Example

Figure 3.4-6
Figure of an Example

```
while for \(j, k=1,2\)
    \(\min d_{i} \theta_{j}+\min e_{j} f_{k}+\min f_{k} B=1+6+10=17\)
```

 (3.4-10)
 Obviously a multistage decision process problem cannot be solved by making optimal single decisions sequentially. It is not the cost value of each section but the composite effect that is calculated.
3.5 INVARIANT IMBEDDING AND DYNAMIC PRCGRAMMING

In computing the optimum costs from f_{i} to B or from e_{j} to B, in effect, we imbedded a particular problem in a family of similar problems. Each member of the family has the same terminal point B, with different initial values. This leads to a recursive solution working backward from the terminal point and eventually including point A. It is called a backward solution.

Figure 3.5-1
Backward Scheme

By Eq.(3.4-1) above we cannot actually make a proper decision at stage $k=n-2$ unless the costs $f_{i} B$, for $1=0,1$, 2, ... m, are know. On the other hand, we do not know which member of the family of optimum paths $f_{i} B$ will finally constitute the optimum path $A B$ we are seexing. This is to say, the results of the process stream at all intermediate stages are unknown before the problem is completely solved. The cost equations cannot become immediately useful in solving multistage problems. This difficulty is overcome by employing invariant imbedding techniques in two steps [22].

In the first step, we start from the last stage proceeding backward to the initial stage, construct a table for each stage, relating the optimal decisions to the corresponding values of the objective function for each value of the state variable entering any particular stage. The stage for which the table is to be constructed is considered as the initial stage. At the k-th stage in the n-stage decision process, all downstream stages are considered as an ($n-k$)-stage process for which the optimum decision and the optimum objective function are already obtained and listed in the table constructed in the previous stage.

The second step is to determine the optimum policyoptimel sequence of decisions, for the entire process by means of table-entry techniques utilizing all the tables constructed. For example, if at the initial stage we found that $A c_{5} B$ is optimum among $a c_{1} B$, the optimum decision at A is $A c_{5}$, from
the table made at the stage $k=1$ we pick up the optimum decision at state c_{5}, say $c_{5} d_{3}$. The decision at state d_{3} is found from the list made at $k=2$. In this way, we finally get a series of decisions as $A-C_{5}-d_{3}-e_{2} \ldots f_{4}-B$. 3.6 PEVERSE PRINCIPLE OF OPTIMALITY

If we imbed the specific problem in a family of problems With fixed initial point A and various terminal points which include the objective point B, the solution is called a forward solution.

As shown in Fig.3.6-1,

$$
\begin{align*}
& \operatorname{cost} A c_{j}=\operatorname{cost} A c_{j} \quad \text { (diagonal path) } \tag{3.6-1}\\
& \text { cost } A d_{1}=\min \left(A c_{j}+c_{j} d_{j}\right) \tag{3.6-2}
\end{align*}
$$

In Fis. 3.6-3. if the optimum path from A to d_{3} is found to be $A c_{3} d_{3}$, then instead of investigating

$$
\begin{aligned}
& \operatorname{cost} A c_{j}+\operatorname{cost} c_{j} d_{3}+\operatorname{cost} d_{3} e_{1} \\
& \text { for } j=1,2,3, \ldots m .
\end{aligned}
$$

cost $A_{3} e_{i}$ is given by

$$
\begin{aligned}
\operatorname{cost}{A d_{3} e_{i}} & =\min \left(\cos t A c_{j}+\operatorname{cost} c_{1} d_{3} t \operatorname{cost} d_{3} e_{1}\right) \\
& =\min \left(\cos t A d_{3}+\operatorname{cost} d_{3} e_{i}\right)
\end{aligned}
$$

(3.6-4)

If we continue to proceed in this way, we have used the painciple of optimality in reverse order. Dreyfus calls this "reversed principle of optimality" [21] stating:

Figure 3.6-1
Possible Paths from A to d_{i}

Figure 3.6-2
Forward Scheme

Figure 3.6-3
Geometry of the Reverse Principle Of Optimality
"An optimal sequence of decisions in a multistage decision process problem has the property that whatever the rinal decision and state preceding the terminal one, the prior decisions must constitute an optimal sequence of decisions leading from the initial state to that state preceding the terminal one."

3.7 EUTER EQUATION DERIVED FROM DYNANIC PROGRANMING

Figure 3.7-1
Figure for Equation (3.7-1)

Let $f(x, y)=$ the minimum time required to travel from $R(x, y)$ on the optimal path to the final point $B\left(x_{T}, y_{T}\right)$.

Divide ($x_{T}-0$) into n equal segments with grid size

$$
\begin{equation*}
x=\left(x_{T}-0\right) / n \tag{3.7-2}
\end{equation*}
$$

Suppose $r(x, y)$ is at the last stage with $k=n-1$, then

$$
\begin{equation*}
f_{n-1}(x, y)=\min \left[\sqrt{\frac{1+y^{2}}{2 g y}} \cdot \Delta x\right] \tag{3.7-2}
\end{equation*}
$$

Consider the left-neighboring stage with $k=n-2$

$$
\begin{align*}
f_{n-2}(x, y) & =\text { minimum time for travelling from } R_{2} \text { to } B \\
& =\min _{y^{\prime}}\left[\sqrt{\frac{1+y^{2}}{2 g y}} \cdot \Delta x+f_{n-1}(x, y)\right] \quad(3.7-2) \tag{3.7-2}
\end{align*}
$$

Gererally

$$
\begin{equation*}
f_{k^{\prime}}(x, y)=\min _{y^{\prime}}\left[\sqrt{\frac{1+y^{\prime}}{2 g y}} \cdot \Delta x+f_{k-1}(x, y)\right] \tag{3.7-5}
\end{equation*}
$$

Since

$$
\begin{equation*}
x_{K+1}=x_{K}+\Delta x \tag{3.7-6}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{k+1}=y_{k}+\Delta y \tag{3.7-7}
\end{equation*}
$$

Eq.(3.7-5) may be written as

$$
\begin{equation*}
f(x, y)=\min _{y^{\prime}}\left[\sqrt{\frac{1+y^{\prime}}{2 g y}} \cdot \Delta x+f(x+\Delta x, y+\Delta y)\right] \tag{3.7-8}
\end{equation*}
$$

This recurrence relation is equivalent to those developed in Section 3.4, and is the key to the solution.

Le亡

$$
\begin{equation*}
F=\sqrt{\frac{1+y^{0}}{2 g y}} \tag{3.7-9}
\end{equation*}
$$

and expand Eq. (3.7-9) in Taylor's series

$$
\begin{aligned}
f(x, y) & =\min _{y^{\prime}}\left[F \cdot \Delta x+f(x, y)+f_{x^{\prime}} \cdot \Delta x+f_{y} \cdot \Delta y+0(\Delta x)^{2}\right] \\
& =\min _{y^{\prime}}\left[F \cdot \Delta x+f(x, y)+f_{x} \cdot \Delta x+f_{y}\left(y^{\prime} \cdot \Delta x\right)+0(\Delta x)^{2}\right] \\
& =f(x, y)+\min _{y^{\prime}}\left[F \cdot \Delta x+f_{x^{\prime}} \cdot \Delta x+f_{y^{\prime}} y^{\prime} \cdot \Delta x+0(\Delta x)^{2}\right]
\end{aligned}
$$

Fere the term $f(x, y)$ in the right-hand side is taken from the bracket because it is deifined as the minimum time of path obtained from the optimally chosen $y^{\prime \prime}$. In adition, minimum over y^{\prime} is equivalent to minimum over y since the gria sizes are chosen constant for all stages throughout the process.

Neglecting high-order terms, Eq.(3.7-10) becomes

$$
\begin{equation*}
0=\min _{y}\left(F+f_{x}+y^{\prime} f_{y}\right) \tag{3.7-11}
\end{equation*}
$$

This non-linear partial differential equation governing the optimum path is equivalent to two equations. For optimally chosen $\mathrm{Y}^{\boldsymbol{\prime}}$,

$$
\begin{equation*}
0=F+f_{x}+y^{\prime} f_{y} \tag{3.7-12}
\end{equation*}
$$

To extremize the right-hand side of Eq. (3.7-11), its differentiation with respect to y^{\prime} must vanish, that is,

$$
0=F_{y^{\prime}}+f_{y}
$$

If we differentiate Eq. (3.7-12) with respect to y, we have

$$
\begin{equation*}
F_{y}+f_{x y}+y^{\prime} f_{y y}=0 \tag{3.7-14}
\end{equation*}
$$

Similarly, if we differentiate Eq. (3.7-12) with respect to x, we have

$$
\begin{equation*}
\frac{d}{d x} F_{y},+f_{x y}+y^{\prime} f_{y y}=0 \tag{3.7-15}
\end{equation*}
$$

Ey subtracting Eq.(3.7-14) from Eq.(3.7-15), we finally obtain Euler's equation

$$
\begin{equation*}
\frac{d}{d x} F_{y^{\prime}}-F_{y}=0 \tag{3.7-16}
\end{equation*}
$$

For our particular case, F is defined in Eq.(3.7-9), and we substitute

$$
\begin{align*}
& F_{y}^{\prime}=\frac{y^{\prime}}{\sqrt{2 \S y\left(1+y^{2}\right)}} \tag{3.7-17}\\
& F_{y}=-\frac{1}{2} \frac{\sqrt{1+y^{\prime 2}}}{\sqrt{28}(y)^{1.5}} \tag{3.7-18}
\end{align*}
$$

in Eq.(3.7-16). With some manipulation, this yields

$$
\begin{equation*}
1+y^{2}=c / y \tag{3.7-19}
\end{equation*}
$$

which is identical to the results derived by the classical method ${ }^{5}$.
3.8 BRACHISTOCHRONE PROELEM SOLVED BY DYNAMIC PROGRAMMING

A family oi brachistochrone problems starting at $x=0$, $y=0$ anc terminating at different point on $x=100 \pi$ are solved by using the forward method of dynamic programming. Taking 100

Appendix Eq. (A-5)
grid points in the y direction, we first construct a matrix whose elements represent the costs of diagonal paths of a channel with two nearest neighboring columns as the edges of the chamel. For a 20-stase process with 10 sets of solutions printed out, the execution takes 35.1 see using IEM 7094 computer. In this 20-stage 100-decision process, we actually solved $20 \times 100=2000$ similar problems. In Table $3-1$, the minimum travelling times obtained by this method are compared with those obtained by classical solution methods.

Figure 3.8-1
Elements of Cost Matrix

As can be seen in Table 3-2, the accuracy of the solution depends creatly upon the number of grid points chosen. A large
number of grid points not only increases the computing time but also introduces memory problems. For instance, a 40stage, 150 -decision process requires 22500 memory locations for the cost matrix and 6000 for the policy matrix. Memory overlapping was experienced when 28800 memory locations were assigned for arrays in a program run by IBN 7094 computer which has 32768 such locations available. This implies a sufficient number of memory locations were not reserved for execution.

In Fis.3.8-2 the optimal paths for a 20-stage, 80decision process are shown.

Let us suppose the problem is to find the path of leasttravelling time from the origin to the terminal line $x=x_{p}$, where X_{T} is unspecified, as mentioned in Section 2.3, this free-end condition only changes one boundary condition from position constraint to slope constraint. If forward method is used, we choose the curve which gives the minimum-time of travelling among all 100 cases with different terminal points on the same terminal line. If backward scheme is employed, the optimal slopes are zero at the stage nearest to the terminal line. This approach is demonstrated in Program 3-2.

Fisure 3.8-2
Optimal curves Obtained by Dynamic Programming
$(x=0 \sim 100 \pi, \quad y=0 \sim 400$ feet $)$

Table 3-1
Ninimum Travelling Time Obtained by Dynamic Programming
$\mathrm{x}=0 \sim 100 \pi, \mathrm{y}=0 \sim 400$ feet
Taking 20 grid points in x-direction, 100 in y-direction

I	(I)	D. P. Classical		
		$T(I)$	$\mathrm{Y}(\mathrm{I})$	Error
	(feet)	(sec)	(sec)	$(\%)$
0	0	7.90703	7.82955	0.98
10	40	6.40467	6.36233	0.67
20	80	5.95519	5.91442	0.69
30	120	5.71579	5.67980	0.63
40	160	5.60058	5.56763	0.59
50	200	5.56509	5.53633	0.52
60	240	5.58637	5.56104	0.46
70	280	5.64761	5.62525	0.40
80	320	5.73690	5.71746	0.34
90	360	5.84633	5.82950	0.29
100	400	5.97084	5.95554	0.27

Table 3-2
Grid Number and Accuracy in Dynamic Programming
From $(0,0)$ to $(100 \pi, 400)$ feet Classical Solution $T=5.95554 \mathrm{sec}$

Figure 3.8-3
Flow Chart: Forward Method of Dynamic Programming
PROGRAM -3-1

R BRACHISTOCHRONE PROBLEM WITH TWO-POINT CONSTRAINT SOLVED BY R FORWARD METHOD OF DYNAMIC PROGRAMMING

S COMPILE MAD, EXECUTE, PRINT OBJECT, DUMP
DIMENSION Y(101), T(101), NT (101), PI 6200, DIM),
1 DT(10300, TIME)
VECTOR VALUES DIM $=2,0,0$
vector values time $=2,0,0$
EQUIVALENCE (DI M(1),KP1), (DI MI), MAX), (TIM E(1),IP2),
1(TIME(2), IP I)
INTEGER I, J, K, IMAX, KMAX, P, BETA, IP 1, IP 2,KP1, RI, II,
1 FREQ, KP
START READ AND PRINT DATA XT, YT, IMAX, MAX, FREQ, KP
IP = MAX $+{ }^{-1}$
$I P 2=$ MAX +2
$K P_{1}=K M A X+1$
$D X=X T / K M A X$
$D Y=Y T / I M A X$
THROUGH LO, FOR J $=0,1$, J.G.IMAX
THROUGH LO, FOR I =, 1, I.G. MAX
WHENEVER I -E. O AND .J.E. 0
VT $(\mathrm{J}, \mathrm{I})=1 E 5$
OTHERWISE
$D S=S O R T \cdot(((I-J) * D Y) \cdot P \cdot 2+D X * D X)$
$V=4.013 *$ (SQRT.(J*DY) + SQRT•(I*DY))
DT(J,I) $=$ BS IV.
$D T(1, J)=D T(J, I)$
END OF CONDITIONAL
$\mathrm{P}(0,0)=0$
THROUGH LI, FOR K $=1$, $1, K$. G. MAX
THROUGH LT, FOR $I=0,1$, I.G.IMAX
WHENEVER K.E. 1
$N T(I)=D T(0, I)$
$P(I, K)=I$
OTHERWISE
ALPHA $=1 E 37$
THROUGH Lu, FOR J $=0,1, \mathrm{~J} \cdot$ G. MAX
$T T=T(J)+D T(J, I)$
WHENEVER IT .L. ALPHA
ALPHA $=T T$
BETA $=I-J$
END OF CONDITIONAL
LS
NT (I) =ALPHA
$P(I, K)=B E T A$
END OF CONDITIONAL
L 2
\qquad
\qquad
\qquad
\qquad

- R

$$
P R O G R A M-3=2
$$ BACKWARD METHOD OF DYNAMIC PROGRAMMING

S COMPILE MAD, EXECUTE, PRINT OBJECT, DUMP
\qquad
\qquad

$$
\text { DIMENSION Y }(100), T(100), \text { NT } 1100), P(2200,0 I M), D T(10300, T \text { MME })
$$

$$
\text { VECTOR VALUES DIM }=2,0,0
$$

VECTOR VALUES TIME $=2,0,0$
EQUIVALENCE (DI M(1),KP11, (DI M(2) وKMAX), (TIM E(1),IP2),
1(TIME(2),IP1)
INTEGER I, II, IP 1, IP 2, IMAX, IS, J,
START
1K, KP, KMAX, P, BETA, FREQ
READ AND PRINT DATA XT, YT, IMAX, KAMX, FREQ

$$
I P I=I M A X+1
$$

IP $=$ MAX +2
$K P I=K M A X+1$

$$
D X=X T / K M A X
$$

DY $=Y T / I M A X$
THROUGH LO, FOR J $=0$, $1, J \cdot G \cdot$ MAX

$$
\text { THROUGH LO, FOR I }=\text { J, I, I G. I MAX }
$$

WHENEVER I EQ O AND .J.E. O

$$
\operatorname{DT}(J, I) \equiv 1 E 5
$$

OTHERWISE

$$
\begin{aligned}
& D S=S Q R T \cdot((1-J) * D Y) \cdot P \cdot 2+D X * D X) \\
& V=4 * 013 *(S Q R T \cdot(J * D Y)+S Q R T \cdot(I * D Y)) \\
& D T(J, I)=D S / V \\
& D T(I, J)=D T(J, I) \\
& \text { END OF CONDITIONAL }
\end{aligned}
$$

$L 0$

$$
\begin{aligned}
& \text { THROUGH LI, FOR I }=0, I, I \cdot G \cdot I M A X \\
& P(I, K M A X)=0 \\
& \text { TI) }=0 . \\
& Y(I)=I * D Y
\end{aligned}
$$

LI

$$
\begin{aligned}
& \text { THROUGH L2, FOR K }=K M A X-1,-1, K \cdot L \cdot 0 \\
& \text { THROUGH LB, FOR I }=0,1, I \cdot G \cdot I M A X \\
& \text { ALPHA }=1 E 37 \\
& \text { T }(O)=1 E 5 \\
& \text { THROUGH LA, FOR J }=0,1, J, G \cdot I M A X \\
& \text { TY }=T(J)+D T I, J) \\
& \text { WHENEVER TY L. ALPHA } \\
& \text { ALPHA }=\text { IT } \\
& \text { BETA }=J-I \\
& \text { END OF CONDITIONAL }
\end{aligned}
$$

Lu

$$
\begin{aligned}
& N T(I)=A L P H A \\
& P(I, K)=B E T A
\end{aligned}
$$

LB

```
    PRINT COMMENT $O$
    PRINT RESULTS K
    PRINT COMMENT_$_Y(I)
1 P(I,K) NT(I) $
    THROUGH L5, FOR I = I,I, I GG.IMAX
    WHENEVER (I/FREQ)*FREQ.E.II
    PRINT FORMAT BRACHI, I, Y(I), P(I,K), NT(I)
    END OF CONDITIONAL
    T(I)='NT(I)
```

$L 5$
L2
PRINT COMMENT S THE BEST POLICYS
THROUGH LG, FOR II =FREQ, FREQ, II .G. 80
$Y O=I I * D Y$
PRINT COMMENT SOS
PRINT_COMMENT S THE STARTING POINT IS \$
PRINT RESULTS II, YO
PRINT COMMENT_SO K
1
$I=I I$
THROUGH L7, FOR K \equiv, 0 , 1, K \cdot G. KMAX
PRINT FORMAI POLICY, $K, N T(I), Y(I), P(I, K)$
$I=I+P(I, K)$
$L 7$
16
VECTOR VALUES BRACHI $=\$ 1 I 10,1 E 30.8,1110,1 E 30.8$ * $\$$
VECTOR VALUES POLICY $=\$ 1110,2 E 20.8,1110 * \$$
TRANSFER TO_START
END_OF PROGRAM
\$ DAIA
$X T=314.15926, Y T=400 ., \mathrm{IMAX}=100, \mathrm{FREQ}=10, \mathrm{KMAX}=20 *$

CHAPTER IV

QUASILINEARIZATION

4.1 NEWTON-RAPHSON-KANTOROVICH METHOD

Figure 4.1-1
Newton-Raphson Method

Consider a monotone decreasing, convex function $f(x)$, we approximate $f(x)$ by a Iinear function of x determined by the value and slope of the function $f(x)$ at $x=x_{0}$.

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) \cdot f^{\prime}\left(x_{0}\right) \tag{4.1-1}
\end{equation*}
$$

Putting $f(x)=0$, we obtain for the first approximation

$$
\begin{equation*}
-x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \tag{4.1-2}
\end{equation*}
$$

The process is repeated at x_{1} leading to a new value x_{2}, and so on. The general recurrence relation is

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{4.1-3}
\end{equation*}
$$

This sequence of approximation yields the root of

$$
\begin{equation*}
f(x)=0 \tag{4.1-4}
\end{equation*}
$$

It has been show that the convergence is monotonic and quadratic [19].

Replacing y by u, and y^{\prime} by w, Eq. (1.2-3) may be rewritten as

$$
\begin{equation*}
u^{\prime \prime}=-\frac{1+w^{2}}{2 u}=G(u, w) \tag{4.1-5}
\end{equation*}
$$

Let $u_{0}(x)$ be some initial approximation and consider the sequence $u_{n}(x)$. Applying Newton-Raphson technique we construct the recurrence relationships

$$
\begin{align*}
& u_{n+1}^{\prime \prime}=G(u, w)+\left(u_{n+1}-u_{n}\right) \frac{\partial G}{\partial u_{n}}+\left(w_{n+1}-w_{n}\right) \frac{\partial G}{\partial w_{n}} \\
&(4.1-6) \\
& u_{n+1}(0)=y_{0}, \quad u_{n+1}\left(x_{T}\right)=y_{T} \quad(4.1-7) \tag{4.1-7}
\end{align*}
$$

Our aim is to produce a sequence of functions $u_{1}(x), u_{2}(x)$, ... $u_{n}(x)$ which converges to the solution of the original function $u(x)$.

The concept characterized by Eq.(4.1-6) is an extension
of the Newton-Raphson method to functional space which has been introduced by Kantorovich and is called Newton-RaphsonKantorovich (NDK) technique [19]. It is essentially the first-order terms in power-series expansion of function $G(u, w)$ about the point u_{n}. 4.2 GUSSILINEARIZATION Consider a differential equation of the form

$$
\begin{equation*}
A(x) u^{\prime \prime}+B(x) u^{\prime}+C(x)=0 \tag{4.2-1}
\end{equation*}
$$

Because of its linearity, the principle of superposition holds. If p is the particular solution of the non-homogeneous equation

$$
\begin{equation*}
A(x) u^{\prime \prime}+B(x) u^{\prime}+C(x)=G(u, w) \tag{4.2-2}
\end{equation*}
$$

It can be shown that the linear combination $p+c_{1} h_{1}+c_{2} h_{2}$, where c_{1} and c_{2} are constants and h_{1} and h_{2} are solutions of the homozeneous equation, also satisfies Eq.(4.2-2), that is

$$
\begin{equation*}
u=p+c_{1} h_{1}+c_{2} h_{2} \tag{4.2-3}
\end{equation*}
$$

For an m-order differential equation, the general solution may be written in the form

$$
\begin{equation*}
u=\sum_{k=1}^{m} c_{k} h_{k}+p \tag{4.2-4}
\end{equation*}
$$

The m conditions imposed on the m unknown functions may be expressed as

$$
\begin{align*}
& \sum_{k=1}^{m} c_{k} n_{k}^{(l)}=u^{(l)}-p^{(l)} \tag{4.2-5}\\
& (l=0,1,2, \ldots m-1 .)
\end{align*}
$$

If we substitute Eq. (4.2-5) in Eq. (4.1-6), we obtain

$$
\begin{aligned}
p^{\prime \prime} & +c_{1} h_{1}^{\prime \prime}+c_{2} h_{2}^{\prime \prime} \\
& =G+\left(p+c_{1} h_{1}+c_{2} h_{2}\right) \frac{\partial G}{\partial u}+\left(p^{\prime}+c_{1} h_{1}^{\prime}+c_{2} h_{2} \prime\right) \frac{\partial G}{\partial w}
\end{aligned}
$$

By equating the coefficients of Eq.(4.2-6), we obtain

$$
\begin{align*}
& p^{\prime \prime}=G+\left(p-u_{n}\right) \frac{\partial G}{\partial u}+\left(p^{\prime}-w\right) \frac{\partial G}{\partial w} \tag{4.2-7}\\
& h_{1}^{\prime \prime}=h_{1} \frac{\partial G}{\partial u}+h_{1} \frac{\partial G}{\partial w} \tag{4.2-8}\\
& h_{2}^{\prime \prime}=h_{2} \frac{\partial G}{\partial u}+h_{2}^{\prime} \frac{\partial G}{\partial w} \tag{4.2-9}
\end{align*}
$$

Let us choose the initial conditions

$$
\begin{equation*}
p(0)=0, \quad p^{\prime}(0)=0 \tag{4.2-10}
\end{equation*}
$$

and the conditions on the homogeneous solutions of

$$
\begin{array}{ll}
h_{1}(0)=1, & h_{1}^{\prime}(0)=0 \\
h_{2}(0)=0, & h_{2}^{\prime}(0)=1 \tag{4.2-12}
\end{array}
$$

Winch insures that the Wronskian

$$
W(x)=\left|\begin{array}{ll}
h_{1}(x) & h_{2}(x) \\
h_{1}^{\prime}(x) & h_{2}^{\prime}(x)
\end{array}\right| \neq 0
$$

Thus we have a set of initial value problems whose solutions and their derivatives are readily produced numerically on the interval of $\mathrm{x}=0 \sim \mathrm{X}_{\mathrm{T}}$. The solution of Eq. (4.1-6) subject to boundary conditions Eq. (4.1-7) and their derivatives is expressed by

$$
\begin{align*}
& u(x)=p(x)+c_{1} h_{1}(x)+c_{2} h_{2}(x) \tag{4.2-14}\\
& w(x)=p(x)+c_{1} h_{1}^{\prime}(x)+c_{2} h_{2}^{\prime}(x) \tag{4.2-15}
\end{align*}
$$

where c_{1} and c_{2} are constants to be determined from the linear alčebraic equations obtained by substituting $x=0$, and $x=x_{T}$ respectively into Eq.(4.1-7)

$$
\begin{align*}
& p(0)+c_{1} h_{1}(0)+c_{2} h_{2}(0)=y_{0} \tag{4.2-16}\\
& p\left(x_{T}\right)+c_{1} h_{1}\left(x_{T}\right)+c_{2} h_{2}\left(x_{T}\right)=y_{T} \tag{4.2-17}
\end{align*}
$$

In other words, we produce a particular solution and two independent homogeneous solutions on the interval $x=0 \sim X_{T}$ and determine the constants c_{1} and a_{2} to satisfy the boundary condizions of Eq. (4.1-7). The process of Eqs.(4.2-7) to (4.2-17) is repeated to compute a new approximation of $u(x)$.

In the derivation of Eq. (4.2-7) to Eq.(4.2-8), equation
(4.2-6), the NRK technique is applied in the abstract plane perpendicular to the x-axis at each point of x.

The computational scheme is show in Fig.4.2-1 and the computer program follows.

The computational results of two brachistochrone curves using straight-line initial approximations are compared with analytical solutions in Table 4-1 and Table 4-2. In Table 4-1 an error can be seen near the singularity point $x=0, y=0$. Elsewhere, accuracy to five digits or more was obtained by 3-iteration of quasilinearization in the problem of Table 4-2.

Straight-line approximations falled to converge for the cycloidal paths of range greater than half of a complete cycle. since the constant multipliers c_{1} and c_{2} are determined solely at the two end points, a complete cycle of the cycloidal path with singularities at both ends cannot be solved by this method.

Table 4-1

Convergency of $u_{n}(x)$ to $u(x)$ by Quasilinearization
Take 800 discrete points

$u_{1}(x)$
$u_{2}(x)$
$u_{3}(x)$
$u(x)$

	. 00
	100000 E
80	
40	10
80	20
120	,
160	
200	5000
	600
80	70
20	800000
	90000
	1000
40	1100
0	120000
	. 130000 E
	1400
0	150000
	-160000E
	170000
	0000E
	.190000E 03

OOOOE	00	. 000000 E	00
$147406 E$	0	. $415132 E$	1
446946 E	02	. 656419 E	02
. $247406 E$	02	- 415132 E	02
446946E	02	.656419E	02
22185 E	02	-848638E	02
9257E	02	-101082E	3
921413t	02	-115130t	03
05095E	03	-127470E	03
$116920 E$	03	-138396t	03
$27734 E$	03	-148105E	03
37624 E	03	-156744E	03
146668 E	03	-164420E	03
134919上	03	-171212E	03
162429E	03	.177189E	03
69240 E	03	. 182400 E	03
75390E	03	-186886E	03
$180911 E$	03	. 190680 E	03
185830 E	03	. 193807 E	03
$90176 t$	03	-196289E	03
93974E	03	.198142E	03
197242E	03	-199376t	03
O0000E	03	. 200000E	03

$.000000 E 00$
.454858 E 02
.700734 E 70
.454858 E 02
.700734 E 02
$.893294 E 02$
.105424 E 03
.119275 E 03
$.131380 E 03$
$.142051 E 03$
.151495 E 03
.159863 E 03
$.167264 E 03$
.173782 E 03
$.179483 E 03$
. 184417E 03
$.188625 E 03$
.192140 E 03
$.194986 E 03$
.197182 E 03
.198744 E 03
.199682 E 03
.200000 E 03
.000000 E 00
-457040E 02
-702014E 02
. 457040 E 02
-702714E 02
-895121E 02
. 105593E 03
-119430E O3
-131523E O3
-142181E 03
-151614E 03
. 159971E 03
-167361E 03
-173870E 03
-179560E 03
-184484E 03
-188682E 03
.192187E 03
-195024E 03
.197211E 03
$.198764 E 03$
.199691E 03
.200000 E 0

Table 4-2

Convergency of $u_{n}(x)$ to $u(x)$ by Quasilinearization

Take 400 discrete points
k

$u_{0}(x)$	$u_{1}(x)$	$u_{2}(x)$	$u_{3}(x)$	$u(x)$
. 200000 E 03	. 200000E 03	. 200000E 03	. 200000E 03	- 200000E 03
-204709E 03	. 210149E 03	. 210341 E 03	.210341E 03	. 210341E 03
.209417E 03	.219541E 03	. 219860 E 03	.219860E 03	. 219859 E 03
-214126E 03	-228225E 03	-228626E 03	. 228627E 03	. 228626E 03
-218835E 03	. 236242E 03	. 236698 E 03	.236698E 03	. 236698 E 03
. 223544 E 03	-243629E 03	. $244122 E 03$. $244122 E 03$. 244121E 03
. 228254E 03	. 250417E 03	. 250936E 03	. 250936E 03	. 250935E 03
. 232961E 03	.256637E 03	-257173E 03	. 257173E 03	. 257172E 03
.237670E 03	. 262313E 03	. 262861E 03	.262861E 03	- 262860E 03
. 242379 E 03	. 267468 E 03	. 268023E 03	. 268023E 03	. 268023E 03
. 247087 E 03	. 272121E 03	- 272680E 03	. 272680E 03	. 272680E 03
. 251796E 03	- 276291E 03	- 276849E 03	. 276849 E 03	. 276849 E 03
.265505E 03	. 279993E 03	. 280544E 03	.280544E 03	. 280544E 03
.261214E 03	. 283241 E 03	. 283777E 03	. 283778 E 03	. 283777E 03
. 265922E 03	. 286049E 03	. 286560 E 03	.286560E 03	. 286560E 03
. $270631 E 03$.288426E 03	.288901E 03	.288901E 03	.288901E 03
. $275340 E 03$	- 290383E 03	- 290807E 03	-290807E 03	-290807E 03
. 280049E 03	. 291929E 03	. 292284 E 03	. 292284E 03	. 292284E 03
.284757E 03	. 293072E 03	-293335E 03	. 293335E 03	.293335E 03
.289464E 03	.293818E 03	. 293965E 03	.293965E 03	.293965E 03
. 294175E 03	. 294175 E 03	. 294175E 03	. 294175E 03	.294175E 03

Table 4-3

Minimum Travelling Time Obtained by Quasilinearization

$$
\left(u_{0}=0\right)
$$

Terminal Points	$\underset{(Q . L)}{\text { Trav. Time }}$	Trav. Time (Classical)	Error
$u\left(x_{\sim}\right)$	$\begin{gathered} \text { iter }=5 \\ T(I) \end{gathered}$	$T(I)$	(\%)
200	5.53719	5.53633	0.016
240	5.56174	5.56104	0.013
280	5.62580	5.62525	0.010
320	5.71787	5.71746	0.007
360	5.82979	5.82950	0.005
400	5.95571	5.95554	0.003

PROGRAM 4-1
$\$^{-}$COMPILE MAD, EXECUTE,-PRINT OBJECT, -DUMP

START

$$
\begin{aligned}
& \text { DIMENSION Y(10), F(10), } Q(10), P A(800), H 1(800),-H 2(800), \\
& \text { IU(800), W(800),DPA(800), DH1(800), DH2(800), QT(800) } \\
& \text { INTEGER ITER, ITMAX,K, KP, KMAX, COUNT }
\end{aligned}
$$

```
THROUGH LI, FOR ITER = 1,1, ITER GO.ITMAX
PA(0)=0.
HI(0)=1.
H2(0)=0.
DPA(0)=0.
DHI(0)=0.
DH2(0)=1.
Y(1)=PA(0)
Y(2)= =DPA
Y(3)=H1(0)
Y(4)=DHI(0)
Y(5) = H2(0)
Y(6)=DH2(0)
X = 0.
EXECUTE SETRXD.(6,Y(1),F(1),Q,X,DX)
THROUGH LRK, FOR K = 1,I,K.G.KMAX
S = RKDEQ.(0)
WHENEVER S*E.1.
F(1) = Y(2)
WHENEVER F(I) G. EPS
F(1) = EPS
END OF CONDITIONAL
F(3)=Y(4)
WHENEVER F(3)_.G*-EPS
F(3) = EPS
END OF EONDITIONAL
F(5)=Y(6)
K!にこNEVER F(5) G-EPS
F(5) = EPS
END OF CONDITIONAL
```

```
    GU = (1.+W(K)*W(K))/(2*U(K)*U(K))
    W'HENEVER GU •G. 1E6
    GU = lEG
    END OF CONDITIONAL
    GW = -W(K)/U(K)
    WHENEVER &ABS.(GW) &G& lEG
    GW = 1E\delta*(GW/(.ABS.(GW)))
    END OF CONDITIONAL
    F(2) = GU*(Y(1)-20*U(K)) +GW*(Y(2)-W(K))
    WHENEVER &ABS.(F(2)) &G. EPS
    F(2)=EPS*(F(2)/(.ABS•(F(2))))
    END OF CONDITIONAL
    F(4)=GU*Y(3) +GW*Y(4)
    WHENEVER •ABS.(F(4)) -G. EPS
    F(4) = EPS*{F(4:/(.ABS.(F(4))))
    END OF CONDITIONAL
    F(6) = GU*Y(5) + GW*Y(6)
    WHENEVER •ABS.(F(4)) •G. EPS
    F(6) = EPS*(F(6)/(.ABS.(F(6))))
    END OF CONDITIONAL
    TRANSFER TO CALLRK
    OTHERWISE
    PA(K)=Y(l)
    HI(K)=Y(3)
    H2(K)=Y(5)
    DPA(K)=-Y(2)
    DH1(K)=Y(4)
    DH2(K)=Y(6)
    END OF CONDITIONAL
    DIN = HI(O)*H2(KMAX)-HI(KMAX)*H2(O)
    AP = UO - PA(O)
    BP = UT - PA(KMAX)
    Cl = - (AP*H2(KMAX)-BP*H2(0))/DIN
    C2 = (-AP*HI(KMAX) +BP*HI(0))/DIN
    PRINT COMMENT $O$
    PRINT- COMMENT SO$
    PRINT RESULTS ITER, C1, C2
    PRINT COMMENT S P K N
    l Hl
    2 QT S
    THROUGH L2, FOR K = 0, 1, K_G. KMAX
    U(K)=PA(K)+C1*H1(K) +C2* H2(K)
    W(K) = DPA(K) + C1*DHI(K) +C2*DH2(K)
    X = K*DX
    WHENEVER K .E. O
    QT = O.
    OTHERWISE
    DS = SQRT.l (U(K)-U(K-1)).P.2+ DX*DX )
    V = 4.013*(SQRT.(U(K))+SQRT.(U(K-1)))
    QT = QT + DS/V
    END OF CONDITIONAL
```

WHENEVER $(K / K P) * K P$ 。E. K
PRINT FORMAT LINEAR, $K, X, P A(K), H 1(K), H 2(K), U(K), W(K), Q T$

$$
U(0)=0.01
$$

$$
U O=200 ., U T=294 \cdot 17495,
$$

$$
\text { ITMAX }=3, \quad \text { KMAX }=400, \quad X T=314.15926,
$$

CHAPTER V

COMPARISONS AND COMBINATIONS

5.1 COIPARISONS

As :re have seen in the previous chapters invariant imbedding, dynamic programming and quasilinearization, each has some powerful characteristics. Quasilinearization is the most accurate technique at the expense of relatively long computing time. Invariant imbedding requires very short computing time but gives only initial slopes and the results may be only approximately correct. Dynamic programming ranks between invariant imbedding and quasilinearization in accuracy and computing costs.

The size of problems winch can be handled by dynamic programing is limited by the memory available in a computer. Invariant imbedding and quasilinearization have no menory problem, but the former should be combined with another method to produce state and cost functions; the latter converces only when a proper initial guess to the solution ras been made.

Invariant imbedding and quasilinearization make use of the differential equation obtained from Euler's equation of the calculus of variations. Dynamic programming completely bypasses this derivation, although we showed that Euler's equation may be obtained from recurrence relations based on the principle of optimality. However, no differential equation which characterizes the optimum path was used in the
minimization process. This powerful feature of dynamic prozramming is especially useful in the case where Euler's equation does not exist or is difficult to solve.

Another significant aspect is that invariant imbedding and quasilinearization are not suited to handie computations which include such features as the cusps of a cycloid where the slopes are infinity. Dynamic programming which treats continuous systems as discrete multi-stage processes is free of this trouble because the slopes are found between adjoining stages instead of at values of the state variable.
5.2 DYNAMIC PROGRAMMING WITH SEARCHING OVER A RESTRICTED REGION

As mencioned above, ¿ynamic programming bypasses Euler's equation. In the brachistochrone problem, Euler's equation which characterizes the optimum path is known. We seek to rind a way to utilize the differential equation obtained from Euler's equation to minimize the searching required in dynamic programming. We note that Eq.(1.2-3)

$$
\begin{equation*}
y^{\prime \prime}=-\frac{1+\mathrm{y}^{2}}{2 \mathrm{y}}<0, \quad \text { for } \mathrm{y}>0 \tag{5.2-1}
\end{equation*}
$$

implies the slope is monotone decreasing. It can be seen that Eq.(5.2-1) with boundery conditions

$$
\begin{array}{lll}
y(0)=c_{1}, & y\left(x_{T}\right)=c_{2} \\
\text { or } & y(0)=c_{1}, & y\left(x_{T}\right)=c_{3}
\end{array}
$$

cescribes cycloids which are single-valued functions. Let us
consider a forward-scheme of dynamic programming. If the slope at state q_{i} in the $k-t h$ stage is greater than (or equal to) zero (as is shown in Fig.5.2-1 (A)), then point p_{j} (where the optimum curve crosses ($k-1$)-th stage) must lie below or at a level with q_{1}. It follows that in minimizing the time of travel from the initial point 0 to point q_{i} in the k-th stage, we have only to search over the region $y \leq q_{i}$, that is

$$
\text { cost } \begin{align*}
O q_{i} & =\min \left(O p_{j}+p_{j} q_{i}\right) & & j=1,2,3, \ldots m \\
& =\min \left(0 p_{j}+p_{j} q_{i}\right) & & j=1,2,3, \ldots i \\
& =\min \left(0 p_{j}+p_{j} q_{i}\right) & & j=1, i-1, \ldots 2,1
\end{align*}
$$

Furthermore, since the function is single-valued, the search may be terminated where the minimized cost function begins to increase. Then, Eq. (5.2-4) becomes

$$
\begin{equation*}
\operatorname{cost} O q_{i}=\min \left(O p_{j}+p_{j} q_{i}\right), \quad j=1, i-1, \ldots \text { il. } \tag{5.2-5}
\end{equation*}
$$

Where il is the lower limit of the grid counter in the region to be searched. Similarily, for the slope at $q_{i}<0$, the region to be searched is restricted to

$$
\begin{equation*}
j=i, i+1, i+2, \ldots i h \tag{5.2-6}
\end{equation*}
$$

where in is the upper limit.
A forward-solution using the partial-search technique described above is shown in Program 5-1. It reduced the

Figure 5.2-1
Slope Characteristics and
Searching Region
computing time from 35.1 sec to 15 sec in solving a 20-stage, 100-decision process with 10 sets of the solutions printed out.
5.3 COMBINATION OF INVARIANT IVBEDDING AND DYNAMIC

PROGRANYING

The technique of searching over a restricted region is effective especially where the absolute values of slopes are small. For the steep curves shown in $F 18 \cdot 5 \cdot 3-1(B)$ and (C), the usefulness of the feature is not as significant. Since dynamic programming is a marching process, the optimum slopes at $p_{\ell}(f \circ r l=1,2, \ldots m)$ are known a priori. We may take advantage of this information. Locate p_{j} from q_{i} using the slope at p_{i}, then search several grids in the neighborhood ci this predicted position to obtain the optimum value p_{j} (Fig. 5.3-1 (D)). This can be accomplished successfully by joint use of invariant imbedding and dynamic programing [18], that is, predicting the slopes by invariant imbedding and then searching in the neighborhood by dynamic programming. For a 20-stage, 100-decision process with 10 sets of solutions printed out, the computing time using this combination was 14.1 sec in comparison with 35.1 sec by dynamic programming only, and 15 sec using the partial-searching method. Searching was restricted to ± 2 grids in the vicinity of the predicted point.

Pigure 5.3-1
Regions to be Searched in Various Cases

5.4 DYNAMIC PRCGRAMUING AND QUASILINEARIZATION

As mentioned previously, the coarse grids used in dynamic programming result in polygonal curves which may deviate significantly from what we know to be exact solution. Finer grids may improve the accuracy of the solution but a too-fine grid introduces a memory problem with the computer. On the other hand, quasilinearization yields very accurate results but is expensive and its convergence depends greatly upon near-correctness of the initial estimate of the solution. In general, a straight line is the simplest initial estimation; however, in the brachistochrone problem the solution converges only where the boundary point does not exceed a half-cycle of a cycloid.

Combined use of dynamic programing and quasilinearization compensates for the weaknesses of each. By this predictor-corrector method, we solve the problem approzimately by first using the dynamic programming procedure with very coarse grids, and then take this solution as the initial guess to the solution whose accuracy is improved by a few applications oin quasilinearization.

Program 5-3 uses dynamic programming in the main program and quasilinearization as a corrector in external function. In Table 5-1 the results of taking 20×40 grids in dynamic p=ogrammiñ, and 2 applications of quasilinearizations for each solution are shown. Computiñ time was 50.5 sec which rould be less than that for quasilinearization.

5.5 INVIRIANF IMBEDDING AVD QUSSTTINGATYATTON

Another predictor-corrector scheme combines invariant imbedijng (used to predict the slopes) and quasilinearization (used to correct the solution resultino from the first and to produce the cost and state functions simultancousiy) [18]. Consicea a problem besinning at point (c, a). If the startins point at $x=a$ is close to the terminal line $x=x$, the slopes at ail initial points c_{i} may be estimated as zero and after a Eew iterations of quasilinearization it converges to the correct value $r(c, a)$. The same procedure is repeated at $x=a-\Delta z_{i}, x=a-2 \Delta x$, and so on. In effect, we solve 2000 problems for a 20 -stage, 100 -decision process. If the range of the adependent variable is sufficiently small, we may use invariaint imbedding in a straight-forward manner to produce tre initial slopes at all initial values in $x=0$. Usins these initial slopes and the other given initial conditions, the differential equation is integrated numerically by the RungeKutta metnod to produce the first estimate, which may be correctẽ by quasilinearization. This eliminates the timeconsuming quasilinearization steps at the intermediate stages. Of course, by using this procedure no knowledge of the solutions at the intermediate stage can be extracted.

This combination was used in Program 5-4 with one application of quasilinearization. Solutions of a problem with initias value $c=200$ and free-end conditions were compared with those obtained by quasilinearization with a straightline initial estimate in Table 5-2.

Table 5-1

Minimum Travelling Time Obtained by Joint Use of
Dynamic Programming and Quasilinearization

$$
\mathrm{x}_{\mathrm{T}}=0, \mathrm{y}_{\mathrm{T}}=0, \quad \mathrm{x}_{\mathrm{T}}=100 \pi, \mathrm{y}_{\mathrm{T}}=0 \sim 400 \text { feet }
$$

y_{T}	D. P.	D.P. ${ }_{\text {iter }=2}^{\text {and }}$ Q.L.	Classical
40	6.40467	6.36369	6.56233
50	5.95519	5.91569	5051442
$: 20$	5.71579	5.68095	5.67980
260	5.00053	5.56864	5.56763
200	5.56509	5.53718	5.53633
240	5.58637	5.56173	5.56104
280	5.64761	5.62579	5.62525
320	5.73690	5.71786	5.71746
360	5.84633	5.82978	5.82950
400	5.97084	5.95570	5.95554

Table 5-2
$u(x)$ Obtained by Joint Use of Invariant Imbedding and Quasilinearization

Take 100×100 grid points in invariant imbedding 400 discrete points in Q.L.

k	Q.I. iter=1	Q.L.iter=2	I.I.and Q.L.	Classical
			1ter=1	
40	.21954105E 03	. 21985933E 03	.21985918E 03	.21985937E 03
80	. $23624176 E 03$. $23669814 E 03$. 23669769E 03	. 23669809 E 03
120	. 25041730 E 03	- 25093545E 03	. 25093470E 03	. 25093532 E 03
160	.26231297E 03	. 26286060E 03	. 26285956E 03	. 26286044E 03
200	.27212100E 03	-27268004E 03	. 27267870E 03	. 27267995 E 03
240	.27999292E 03	. $28054369 E 03$. 28054209 E 03	. 28054369 E 03
180	.28604860E 03	. 28656031E 03	. 28655839E 03	. 28656035E 03
320	.29038306E 03	. 29080698E 03	.29080476E 03	-29080707E 03
360	.29307187E 03	. 29333534E 03	. 29333279E 03	.29333540E 03
400	.29417494E 03	-29417494E 03	.29417201E 03	.29417495E 03

R PR_O GRAM 5-1

FORWARD METHOD OF DYNAMIC PROGRAMMING SEARCHING WITHIN RESTRICTED REGIONS
\$ COMPILE MAD, EXECUTE
INTEGER JSTART, JSTEP, SW

R THROUGH L2, FOR $I=0,1, I$ G. IMAX
WHENEVER K •E. 1
$N T(I)=\operatorname{DT}(0, I)$
$P(I, K)=I$
OTHERWISE
ALPHA $=1 E 36$
WHENEVER P(I,K-I) GE. 0 .
JSTEP $=-1$
JSTART = I
WHENEVER JSTART •G•IMAX JSTART = IMAX
END OF CONDITIONAL
OTHERWISE
JSTEP $=1$
JSTART $=1$
WHENEVER_JSTART •L. 0
JSTART $=0$
END OF CONDITIONAL
END OF CONDITIONAL
$S W=1$
THROUGH L3, FOR J = JSTART, JSTEP, SW.E. $2 . O R \cdot J . L . O$
1.OR.J.G. IMAX
$T T=T(J)+D T(J, I)$
WHENEVER TT -L. ALPHA
ALPHA $=T T$
BETA $=I-J$
OTHERWISE
$S W=2$
END OF CONDITIONAL
L3
NTII = ALPHA
$P(I, K)=B E T A$
END OF CONDITIONAL
L2

```
R -.MMMAOMPROGRAM 3-1
R END OF PROGRAM
```

R PROGRAM,5-2
R
R
BRACHISTOCHRONE PROBLEM WITH FREE END CONDITIONS SOLVED BY JOINT USE OF
R
DYNAMIC-PROGRAMMING AND INVARIANT-IMBEDDING
\$ COMPILE MAD, EXECUTE, PRINT OBJECT, DUMP
DIMENSION Y(100), T(100), NT(100), JPRED(100). ROLD(100).
IP(2200,DIM), DT(10300,TIME)
VECTOR VALUES DIM $=2,0,0$
VECTOR VALUES TIME $=2,0,0$
EQUIVALENCE (DIM(1),KP1), (DIM(2),KMAX), (TIME(1), IP2),
1(TIME(2), IP1)
INTEGER I, II, IP1, IP2,-IMAX, J, JL, JH, JPRED, IS,
$1 K, K P 1, K M A X, P, B E T A, F R E Q$
START- READ AND PRINT DATA $X T, Y T$, IMAX, KMAX, FREQ
$I P I=I M A X+1$
$I P 2=I M A X+2$
$K P 1=K M A X+1$
$D X=X T / K M A X$
DY $=$ YT/IMAX
TAN $=D Y / D X$
THROUGH LO, FOR J $=0$, 1 , J.G. IMAX THROUGH LO, FOR I $=\sqrt{3} 1,1$ G. IMAX
WHENEVER I E• $0 \cdot A N D \cdot J \bullet E \cdot O$
DT $(J, I)=1 E 5$
OTHERWISE
$D S=S Q R T \cdot((I-J) * D Y) \cdot P \cdot 2+D X * D X)$
$V=4.013 *$ (SQRT.(J*DY) + SQRT.(I*DY))
$\operatorname{DT}(J, I)=D S / V$
$D T(I, J)=D T(J, I)$
END OF CONDITIONAL
Lo
THROUGH LI, FOR I $=0,1, I$ G. IMAX
$P(I, K M A X)=0$
ROLD(I) $=0$
$T(I)=0$.
$Y(I) \quad=I * D Y$
L1
THROUGH L2, FOR K = KMAX-1, $-1, K \cdot L \cdot 0$
EXECUTE IMBED. (Y,ROLD,DX,DY,IMAX,JPRED)
THROUGH L3, FOR I $=0,1$, I G. IMAX
$\mathrm{JL}=\mathrm{I}+\mathrm{JPRED}(1)-2$
WHENEVER JL_.L._O
$J=0$
END OF CONDITIONAL
$J H=J L+4$
WHENEVER JH.G. IMAX
$J H=I M A X$
END OF CONDITIONAL

```
    ALPHA = 1E37
```

 \(T(0)=1 E 5\)
 THROUGH L4, FOR J = JL, -1, - J.G.-JH
 \(T T=T(J)+D T(I, J)\)
 WHENEVER \({ }^{-}\)TT - L. ALPAA
 ALPHA \(=T T\)
 BETA \(=J-I\)
 END OF CONDITIONAL
 L4
 NT(I) =ALPHA
 \(P(I, K)^{-}=\)BETA
 ROLD(I) \(=P(I, K) * T A N\)
 L3
 PRINT COMMENT SOS
 PRINT COMMENT \$OS
 PRINT RESULTS K
 PRINT COMMENT \(\$ 0\) Y(I)
 \(1 P(I, K)\) NTII JPRED \(\Phi\)
 THROUGH L5, FOR I \(=1\), I, I -G• IMAX
 WHENEVER (I/FREQ)*FREQ E. I
 PRINT FORMAT BRACHI, I, Y(I), P(I,K), NT(I), JPRED(I)
 END OF CONDITIONAL
 \(T(I)=N T(I)\)
 \(L 5\)
 L2
 PRINT COMMENT SO THE BEST POLICY \$
 THROUGH L6, \({ }^{-1}\) FOR II = FREQ, FREQ, II -G. 80
 \(Y O=I I * D Y\)
 PRINT COMMENT \(\$ 0 \$\)
 PRINT COMMENT \$ THE STARTING CONDITIONAL IS\$
 PRINT RESULTS II, YO
 PRINT COMMENT \(\$ 0\) K \(K\)
 1
 \(I=I I\)
 THROUGH L7, FOR K \(=0,1, K \cdot G \cdot K M A X\)
 \(R E=P(I, K) * T A N\)
 PRINT FORMAT POLICY, K, NT(I), Y(I), RE, P(I,K)
 \(I=I+P(I, K)\)
 \(L 7\)
 L6
 VECTOR VALUES BRACHI \(=\$ 1110,1 E 30.8\), 1110 , IE30.8, III5*\$
 VECTOR VALUES POLICY \(=\$ 1110,3 E 20.8\), II \(10^{\circ} * \$\)
 TRANSFER TO START
 END OF PROGRAM
 \$ COMPILE MAD, PRINT OBJECT, DUMP
EXTERNAL FUNCTION (Y,ROLD,DX,DY,IMAX, JPRRED)
DIMENSION RNEW(100)
INTEGER I, IMAX, J, JPRED,--P
ENTRY TO IMBED.
$Y(O)=0.1$
TAN $=D Y / D X$
THROUGH LI, FOR I $\equiv 0$, 1, I G. IMAX
$S=Y(I)+R O L D(I) * D X$
WHENEVER•ABS. (ROLD(I)).L. IE-6
$R=$ ROLD(I)
OR WHENEVER ROLD(I) L. 0 .
THROUGH L2,FOR J=I, =1,J.E•O •OR•(S.G•Y(J-I).AND.S.LE•Y(J))
L2.
WHENEVER J •E• 0
$J=1$
END OF CONDITIONAL
$R=(R O L O(J)-R O L D(J-1)) *(S-Y(J-1)) / D Y+\operatorname{ROLD}(J-1)$
OTHERWISE
THROUGHL $3, F O R J=I, I, J . E \cdot I M A X \cdot O R \cdot(S \cdot G \cdot Y(J) \cdot A N D \cdot S \cdot L E \cdot Y(J+1))$
L3
WHENEVER J •E-IMAX
$R=$ ROLD (IMAX)
OTHERWISE
$R=\{R O L D(J+1)-R O L D(J)) *(S-Y(J) \mid / D Y+\operatorname{ROLD}(J)$
END OF CONDITIONAL
END OF CONDITIONAL
WHENEVER •ABS•(ROLD(I) •G•IE6
ROLD(I) $=1 E 6 *(R O L D(I) /(. A B S \cdot(R O L D(I)))$
END OF CONDITIONAL
RNEW(I) $=R+(1 .+R O L D(1) * R O L D(I)) * D X /(2 * * Y(1))$
JPRED(I) $=$ RNEW(I)/TAN
L1
THROUGH L4, FOR I $=0$, 1 , I •G. IMAX
ROLO(I) $=\operatorname{RNEW}(I)$
$L 4$
FUNCTION RETURN
END OF FUNCTION

```
\(\$\) DATA
    \(X T=314.15926, Y T=400, I M A X=100, F \operatorname{FREQ}=10, K M A X=20 *\)
```

\qquad

$$
P R O G R A M \quad 5-3
$$

\qquad
R
PPROGRAM \qquad
\qquad
\qquad
BRACHISTOCHRONE PROBLEM SOLVED BY JOINT USE OF DYNAMIC PROGRAMMING_AND QUASILINEARIZATION
\$ COMPILE MAD, EXECUTE, PRINT OBJECT, DUMP \qquad
DIMENSION $Y(80), T(80), \operatorname{NT}(80) ; P(1800, D I M), \operatorname{DI}(6600, T I M E)$,
l $\operatorname{YR}(6), F R(6), Q R(6), \operatorname{PA}(800), H 1(800), H 2(800), D P A(800)$,
2DH1(800), DH2(800), U(800), W(800)
VECTOR VALUES DIM $=2,0,0$
VECTOR VALUES TIME $=2,0,0$
EQUIVALENCE (DIM(1),KPI), (DIM(2),KMAX), (TME(I),IP2),
I(IME(2),IP1) \qquad
INTEGER I, IMAX, IFREQ, IP1, IP2, II, ITER, ITMAX,
1J,
$2 K, K K, K M A X$, QK, QKMAX, KPI, KP,
3P, BETA, R
START
READ AND PRINT DATA XT, YT, YO, IMAX, KMAX, KK, ITMAX, IFREQ

$$
\begin{aligned}
& \text { QKMAX }=\text { KK*KMAX } \\
& \text { KP }=\text { QKMAX/20 } \\
& \text { IPI }=I M A X+1 \\
& \text { IP2 }=\text { IMAX }+2 \\
& \text { KPI }=\text { KMAX }+1 \\
& D X=X T / K M A X \\
& D Y=(Y T-Y O I / I M A X \\
& H=D X / K K \\
& T A N=D Y / D X \\
& \text { EPS }=100 .
\end{aligned}
$$

R CONSTRUCIING MAIRIX FOR DELTA T
THROUGH LO, FOR J $=0,1$, J.G.IMAX
THROUGH LO, FOR I $=\mathrm{J}, \mathrm{I}$, I. G. IMAX
WHENEVER I EE O AND. J.E. 0
DT(J,I) =1E5.
OTHERWISE

$$
\begin{aligned}
& D S=S Q R T \cdot((I-J) * D Y) \cdot P \cdot 2+D X * D X) \\
& V=4.013 *(S Q R I \cdot(J * D Y)+S Q R T \cdot(I * D Y)) \\
& D T(J, I)=D S / V \\
& D T(I, J)=D T(J, I) \\
& E N D O F \text { CONDITIONAL }
\end{aligned}
$$

Lo

$$
\begin{aligned}
& R \\
& P(O, O)=0 \\
& \text { PRINT COMMENT } \$ 0 \\
& I P(I, K M A X)
\end{aligned}
$$

```
THROUGH LI, \({ }^{-}\)FOR K \(=1\), I, KO. MAX
```

THROUGH L2, FOR I = 0, I, I G. I MAX
WHENEVER K •E. I
NT (I) $=\operatorname{DT}(0, I)$
$P(I, K)=I$
OTHERWISE
ALPHA $=1 E 37$
THROUGH L3, FOR J = 0, 1, J.G. I MAX
$T T=F(J)+D T(J, I)$
WHENEVER TY. L. ALPHA
ALPHA $=T T$
BETA $=I-J$
END OF CONDITIONAL
NT (I) = ALPHA
$P(I, K)=B E T A$
END OF CONDITIONAL
THROUGH LU, FOR I $=0,1$, I.G.IMAX
WHENEVER K iE. MAX -AND. (I/IFREQI*IFREQ-E.I
$Y(I)=I * D Y$
PRINT FORMAT BRACH, I, Y(I), P(I,K), NT (I)
END OF CONDITIONAL
$T(I)=N T(I)$
$L 4$
LI
R IDENTIFY THE BEST POLICY AND PREPARE FOR Q.L. CORRECTION THROUGH LS, FOR II =IMAX, -IFREQ, II .L. IFREQ
$U T=I I * D Y$
$U O=0$.
PRINT COMMENT _\$1 SOLUTION WITH END POINT AT $\$$
PRINT RESULTS II, UT
PRINT COMMENT $\$ 0$ K
1
$I=I I$
$W($ QKMAX $)=P(I, K M A X) * T A N$
THROUGH L6, FOR QK = QKMAX, -1, QK .L. 0
WHENEVER (QK/KK)*KK•E• OK
$K=Q K / K K$
$S F=P(I, K) * T_{A N}$
$U(Q K)=I * D Y$
WHENEVER OK NE. O
$W(Q K-1)=S F$
END OF CONDITIONAL
$I=I-P(I, K)$
OTHERWISE
$W(Q K-1)=S F$
$U(Q K)=U(Q K+1)-W(Q K) * H$
END OF CONDITIONAL
WHENEVER (QK/KP)*KP-E. OK
$X A=Q K * H$

PRINT FORMAT POLICY, $Q K, X A, \quad U(Q K), W(Q K), P(I, K)$ END OF CONDITIONAL

L6

R QUASILINEARIZATION CORRECTOR
EXECUTE QUASI. (U,W,QT,PA,H1,H2,QKMAX,EPS,ITMAX,H,UO,UT)
PRINT COMMENT SO\$
PRINT COMMENT $\$ Q K$ PA

THROUGH L9, FOR QK $\equiv=0$, KP, QK-G.-QKMAX $X=H * Q K$
PRINT FORMAT LINEAR, QK, X,PA(QK),H1(QK),H2(QK),U(QK),W(QK)
$L 9$
L5
PRINT RESULTS QT
TRANSFER TO START
VECTOR VALUES BRACHI $=\$ 1110$, E30.8, IIIO, E30.8*\$ VECTOR VALUES POLICY = \$ $1110,3 E 20.8$, $1110,1 E 20.8 * \$$ VECTOR VALUES LINEAR $=\$ 115,1 E 14.495 E 17.8 * \$$ END OF PROGRAM
\$ COMPILE MAD, EXECUTE, PRINT OBJECT, DUMP
EXTERNAL FUNCTION (U,W,QT,PA,H1,H2,QKMAX,EPS,ITMAX,H,UO,UT)
DIMENSION DPA(800), DH1(800), DH2(800), FR(10), YR(10), QR(10)
INTEGER I, IMAX, IFREQ,ITER, ITMAX,K,KK,KMAX,QK,QKMAX
ENTRY TO QUASI.
R ITER-TH APPROXIMATION
THROUGH L7, FOR ITER $=1,1$, ITER-G. - ITMAX
$U(0)=0.01$
PA(0) = 0 .
$H 1(0)=1$.
$H 2(0)=0$.
$\operatorname{DPA}(0)=0$.
$\mathrm{DHI}(0)=0$.
$\operatorname{DH} 2(0)=1$.
$Y R(1)=-P A(0)$
$Y R(2)=D P A(0)$
$Y R(3)=-H 1(0)$
$\operatorname{YR}(4)=\operatorname{DHI}(0)$
$Y R(5)=H 2(0)$
$\mathrm{YR}(6)=\mathrm{DH} 2(0)$
$X=0$.
EXECUTE SETRKD. $(6, Y R(1)$ OFR (1),QR, X,H)
CALLRK S $=$ RKDEQ. (0)

```
WHENEVER S ©E. 1.0
\(F R(1)=Y R(2)\)
WHENEVER FR(1) -G. EPS
FR(1) \(=E P S\)
END OF CONDITIONAL
\(F R(3)=Y R(4)\)
WHENEVER FR(3).G.EPS
\(F R(3)=E P S\)
END OF CONDITIONAL
\(F R(5)=Y R(6)\)
WHENEVER FR(5) -G.EPS
\(F R(5)=E P S\)
END OF CONDITIONAL
\(G U=(1 .+W(Q K) * W(Q K)) /(2 . * U(Q K) * U(Q K))\)
WHENEVER GU:G-1EG
\(G U=1 E 6\)
END OF CONDITIONAL
\(G W=-W(Q K) / U(Q K)\)
WHENEVER •ABS.(GW) G. IE6
\(G W=1 E 6 *(G W /(\cdot A B S \cdot(G W)))\)
END OF CONDITIONAL
\(F R(2)=G U *(Y R(1)-2 \cdot * U(Q K))+G W^{*}(Y R(2)-W(Q K))\)
WHENEVER •ABS•(FR (2)) •G EPS
\(F R(2)=E P S *(F R(2) 11 \cdot A B S \cdot(F R(2)) 1)\)
END OF CONDITIONAL
\(F R(4)=G U * Y R(3)+G W * Y R(4)\)
```

WHENEVER •ABS•(FR(4)) •G•EPS
$\operatorname{FR}(4)=\operatorname{EPS*}(F R(4) /(\cdot A B S \cdot(F R(4))))$
END OF CONDITIONAL
$F R(6)=G U * Y R(5)+G W * Y R(6)$
WHENEVER • ABS. (F R(6)) •G. EPS
$F R(6)=\operatorname{EPS}(F R(6) /(\cdot A B S \cdot(F R(6))))$
END OF CONDITIONAL
TRANSFER TO CALLRK
OTHERWISE
$P A(Q K)=Y R(1)$
$H 1(Q K)=Y R(3)$
$H 2(Q K)=Y R(5)$
$D P A(Q K)=Y R(2)$
$\operatorname{DHI}(Q K)=Y R(4)$
$D H 2(Q K)=Y R(6)^{\circ}$
END OF CONDITIONAL
LB

$$
\begin{aligned}
& \text { DIN }=H 1(0) * H 2(Q K M A X)-H 1(Q K M A X) * H 2(0) \\
& A A=U O-P A(O) \\
& B B=U T-P A(Q K M A X)- \\
& C I=(A A * H 2(Q K M A X)-B B * H 2(0)) / D I N \\
& C 2=(-A A * H 1(Q K M A X)+B B * H 1(0)) / D I N \\
& \text { PRINT RESULTS } C 1: C 2
\end{aligned}
$$

THROUGH LI, FOR OK $=0,1, Q K \cdot G \bullet Q K M A X$
$W(Q K)=D P A(Q K)+C 1 * D H 1(Q K)+C 2 * D H 2(Q K)$
$U(Q K)=-P A(Q K)+C 1 * H 1(Q K)+C 2 * H 2(Q K)$
WHENEVER QK.E. O
$Q T=0$.
OTHERWISE
$D S=S Q R T \cdot\left((U(Q K)-U(Q K-1)) \cdot P \cdot 2+H^{* H}\right)$
$V=4.013 *(S Q R T \cdot(U(Q K))+S Q R T \cdot(U(Q K-1)))$
$Q T=Q T+D S / V$
END OF CONDITIONAL

FUNCTION RETURN
END OF FUNCTION
$\$$ DATA

$$
\begin{aligned}
& Y O=0 ., X T=314.15926, Y T=400 ., \text { IMAX }=40, \mathrm{KMAX}=20, \quad \text { IFREQ }=4, \\
& K K=20, I T M A X=2 *
\end{aligned}
$$

PROGRAM_5-4

R BRACHISTOCHRONE PROBLEM WITH FREE END CONDITIONS SOLVED BY R.... JOINT USE OF INVARIANT IMBEDDING AND QUASILINEARIZATION
\$-COMPILE MAD, EXECUTE, PRINT OBJECT, DUMP
INTEGER I, IMAX, ITER, ITMAX, IFREQ, J, JMAX, K, KK, KP,KMAX, $1 \mathrm{M}, \mathrm{KK}$
DIMENSION Y(100), $\operatorname{ROLD}(800), \operatorname{RNEW}(800), Y R(6),-\operatorname{FR}(6), Q R(6)$, 1PA(800), H1(800), H2(800), DPA(800), DHI(800), DH2(800). 2U(800), W(800)
EQUIVALENCE (IMAX, JMĀX)
START
READ AND PRINT DATA XT, YO,OYT, IMAX, ITMAX, IFREQ, KMAX, KP, 1KK, EPS
$D X=X T / K M A X$
$D Y=(Y T-Y O) / I^{-} M A X$
THROUGH LI, FOR I $=0,1, I \cdot G \cdot I M A X$
$Y(I)=I * D Y$
ROLD(I) $=0$.
11
R FIND INITIAL SLOPE BY INVARIANT IMBEDDING
THROUGH L2, FOR K = $(K M A X-K K),-K K, K . L .0$
$X=K * D X$
WHENEVER K •E. 0
PRINT COMMENT \$OINITIAL CONDITIONS $\$$
PRINT RESULTS K, X
PRINT COMMENT $\$$ Y Y II
1 SLOPE M \$
END OF CONDITIONAL
THROUGH L3, FOR I $=0$, 1, I.G. IMAX
$S=Y(I)+R O L D(I) * D X * K K$
WHENEVER •ABS.(ROLD(I)).L. IE-6
$R=R O L D(I)$
$M=I$
OR WHENEVER ROLD(I) -L.O.
THROUGH L4,FOR J=I,-1, J.E.O.OR. (S.G.Y(J-1) AND.S.LE•Y(J)
$L 4$
WHENEVER J•E• 0
$J=1$
END OF CONDITIONAL
$R=(R O L D(J)-R O L D(J-1)) *(S-Y(J-1)) / D Y+\operatorname{ROLD}(J-1)$
$M=J$
OTHERWISE
THROUGH L5,FOR J=I,I,J.E.IMAX ORO(S•G•Y(J) •AND.S.LE-Y(J+1)
$L 5$
WHENEVER J.E.- JMAX
$J=J M A X-1$
END OF CONDITIONAL
$R=(R O L D(J+1)-R O L D(J)) *(S-Y(J)) / D Y+R O L D(J)$
$M=-J$
END OF CONDITIONAL

```
WHENEVER •ABS.(ROLD(I)) .G. lE6
ROLD(I) = 1E6*(ROLD(I)/(.ABS.(ROLD(I))))
END OF CONDITIOANL
Y(0) = 0.1 
RNEW(I) = R+(1+ROLD(I)*ROLD(I)
WHENEVER K.E.O •AND. (I/IFREQ)*IFREQ.•E. I
PRINT FORMAT IMBED, I, Y(I), ROLD(I),M
END OF CONDITIONAL
```

L3
THROUGH L6, FOR I $=0$, I, I.G. IMAX ROLD(I) $=$ RNEW(I)
L6
R INITIAL INTEGRATION
THROUGH LT, FOR I = IFREQ, IFREQ, I.G. IMAX $U O=Y(I)$
$Y R(1)=Y(I)$
$\mathrm{YR}(2)=\mathrm{ROLD}(1)$
$x=0$.
EXECUTE SETRKD. (2,YR(1),FR(1),QR,X,DX)
THROUGH LRK1, FOR K $=1,1, K \cdot G \cdot K M A X$
$S=R K D E Q \cdot(\underline{0})$
WHENEVER S •E. 1 .
$F R(1)=Y R(2)$
$F R(2)=-(10+F R(1) * F R(1)) /(2 . * Y R(1))$ TRANSFER TO RKI

OTHERWISE
$U(K)=Y R(1)$
$W(K)=Y R(2)$
END OF CONDITIONAL
LRKI
R USE Q. L. AS A CORRECTOR
THROUGH_L8, FOR ITER $=1,1$, ITER . G. ITMAX
$P A(0)=0$.
$\mathrm{HI}(0)=1$.
$\mathrm{H} 2(0)=0$.
$\operatorname{DPA}(0)=0$.
$D H 1(0)=0$.
DH2 $(0)=1$.
$Y R(1)=-P A(0)$
$Y R(2)=D P A(0)$
$Y R(3)=H I(0)$
$Y R(4)=\operatorname{OHI}(0)$
$Y R(5)=H 2(0)$
$Y R(6)=O H 2(0)$
$x=0$.
EXECUTE SETRKD. $(6, Y R(1), F R(1), Q R, X, D X)$
THROUGH LRK, FOR K = 1,I, K.G.KMAX
CALLRK $S=R K D E Q \cdot(0)$

```
WHENEVER S .E. 1.0
```

$F R(1)=Y R(2)$
WHENEVER FR(1) •G•EPS
$F R(1)=E P S$
END OF CONDITIONAL
$F R(3)=Y R(4)$
WHENEVER FR(3).G. EPS
$F R(3)=E P S$
END OF CONDITIONAL
$F R(5)=Y R(6)$
WHENEVER FR(5) - G. EPS
$F R(5)=E P S$
END OF CONDITIONAL
$G U=(1 .+W(K) * W(K)) /(2 . * U(K) * U(K))$
WHENEVER GU •G• IE6
$G U=1 E 6$
END OF CONDITIONAL
$G W=-W(K) / U(K)$
WHENEVER •ABS•(GW).G• IE6
$G W=1 E 6 *(G W /(. A B S \cdot(G W)))$
END OF CONDITIONAL
$F R(2)=G U *(Y R(1)-2 . * U(K))+G W *(Y R(2)-W(K))$
WHENEVER •ABS•(FR(2)) •G•EPS
$F R(2)=E P S *(F R(2) /(\cdot A B S \cdot(F R(2))))$
END OF CONDITIONAL
FR(4) = GU*YR(3) +GW*YR(4)
WHENEVER •ABS•(FR(4)) -G.EPS
$F R(4)=E P S *(F R(4) /(. A B S .(E R(4))))$
END OF CONDITIONAL
$F R(6)=G U * Y R(5)+G W * Y R(6)$
WHENEVER •ABS•(FR (6)) •G•EPS
$F R(6)=E P S *(F R(6) /(\cdot A B S \cdot(F R(6))))$
END OF CONDITIONAL
TRANSFER TO CALLRK
OTHERWISE
$P A(K)=Y R(I)$
$H 1(K)=Y R(3)$
$H 2(K)=Y R(5)$
$D P A(K)=Y R(2)$
$\operatorname{DHI}(K)=Y R(4)$
$D H 2(K)=Y R(6)$
END OF CONDITIONAL
LRK

$$
D I N=H 1(0) * D H 2(K M A X)-D H 1(K M A X) * H 2(O)
$$

$$
A A=U O-P A(0)
$$

$$
C 1=(A A * D H 2(K M A X)+D P A(K M A X) * H 2(0) / D I N
$$

$$
C 2=(-A A * D H I(K M A X)-D P A(K M A X) * H I(0)) / D I N
$$

$$
\text { PRI: }: \text { COMMENT } \$ O \$
$$

PRINT RESULTS I, UO, ITER
PRINT RESULTS C1, C2

$$
\text { PRINT COMMENT S } K
$$

1 HI H —— V

```
THROUGH L9, FOR K = 0, l',K .G. KMAX
U(K) = PA(K) +C1* HI(K) + C2* H2(K)
W(K)=DPA(K) + CI*DHI(K)+C2*DH2(K)
x = K*DX
WHENEVER K .E.O
QT = 0.
OTHERWISE
DS = SQRT.( (U(K)-U(K-1))\cdotP.2+DX*DX)
V = 4.013*(SQRT.(U(K))+SQRT.(U(K-1)))
QT = QT + DS/V
END OF CONDITIONAL
WHENEVER (K/KP)*KP .E. K
PRINT FORMAT LINEAR, K, X,PA(K),HI(K),H2(K),U(K),W(K),OT
END OF CONDITIONAL
U(0)=0.001
PRINT COMMENT $O$
TRANSFER TO START
VECTOR VALUES IMBED =`"$ 1110, 2E20.8, 1I10- *$
VECTOR VALUES LINEAR = $115, 1E12.4,6E17.8- *$
END OF- PROGRAM
\(X T=314.15926, Y O=0, Y T=400 ., \quad I M A X=100, I T M A X=1, \quad K M A X=400, I F R E Q=10\),
```

$\$$ DATA $K P=20, K K=4, E P S=100^{*}$

CONCLUSIONS

Moderm digital computers can solve a great number of initial-value problems with accuracy and speed. The conventional method of solving two-point boundary-value problems by estimating initial slopes does not make efficient use of their capabilities. In addition, the accuracy achieved at the boundary points does not guarantee equal accuracy throughout at intermediate points. The first difficulty may be mitigated by using the technique of invariant imbedding or dynamic programming, while the accuracy in the interval may be improved significantly by quasilinearization.

The convergence of solution obtained by quasilinearization depends solely upon the suitability and closeness of the initial estimate to the solution. This original estimate may be obtained by invariant imbedding or dynamic programing. A major difficulty in applying quasilinearization arises in obtaining the multipliers from high-dimensional systems of Inear algebraic equations. Serious errors may result when inaccurately determined multipliers are used in combinations of solutions. Invariant imbedding eliminates this difficulty by producing functions which yield the unknown initial values directly [18].

Dynamic programming reduces, in large scale, the labor of searching for optimal paths. Since it bypasses the requirement for knowing the differential equation governing the
optimal curve, it is particularly suited for solving multistage multi-decision problems where the differential equation does not exist. If the differential equation governing the optimal path can be derived or a continuous problem giving differential equation is solved as a discrete multistage multicecision process, the computing time may further be reduced by using the technique of searching over a restricted region either by utilizing the slope characteristics of the differential equation or by joint use with invariant imbedding. Accuracy of dynamic progranming depends upon the fineness of the selected grid, but the size of the problem is limited by the available memory of a computer. Combining dynamic programming and quasilinearization avoids this difficulty while producing accurate results.

CLASSICAL SOLUTION OF BRACHISTOCHRONE PROBLEM

The brachistochrone problem requires that we find the path of least-time between two points in a gravitational field. Since gravitational force is the only force acting on the mass, the travelling tine may be expressed as

$$
\begin{align*}
T & =\int_{0}^{t_{B}} d t=\int_{0}^{s_{B}} \frac{d s}{V}=\int_{0}^{b} \sqrt{\frac{1+y^{\prime}{ }^{2}}{2 g y}} d x \\
& =\int_{0}^{b} F\left(y, y^{\prime}\right) d x \tag{A-1}
\end{align*}
$$

where ds stands for the infinitesimal chord length, V is the velocity, and 8 is the constant of gravitational acceleration. In order to minimize T, we apply Euler's equation to the integrand F, that is,

$$
\begin{equation*}
\frac{\partial F}{\partial y}-\frac{d}{d x}\left[\frac{\partial F}{\partial y^{\prime}}\right]=0 \tag{A-2}
\end{equation*}
$$

where

$$
\begin{equation*}
F=\sqrt{\frac{1+y^{\prime 2}}{2 g y}} \tag{A-3}
\end{equation*}
$$

Ey performing the operation required by Eq.(A-2) we are led to the equation

$$
\begin{equation*}
y^{\prime \prime}=-\frac{1+y^{2}}{2 y} \tag{A-4}
\end{equation*}
$$

which may be integrated to yield

$$
\begin{equation*}
1+y^{2}=\frac{c_{1}}{y} \tag{A-5}
\end{equation*}
$$

Where c_{1} is a constant of integration.
In turn, by manipulation of the terms and performing a second integration, we obtain

$$
\begin{equation*}
x=\frac{c_{1}}{2}(u-\sin u)+c_{2} \tag{A-6}
\end{equation*}
$$

where $u=\cos ^{-1}\left(1-2 y / c_{1}\right)$ and c_{2} is the second constant of integration. Since the path starts at the origin, at $x=y=0$, $u=0$, which implies that $c_{2}=0$. Thus, we are led to the solution

$$
\begin{align*}
& x=\frac{c_{1}}{2}(u-\sin u) \tag{a}\\
& y=\frac{c_{1}}{2}(1-\cos u)
\end{align*}
$$

which we recognize as the parametric form of the equation for a cycloid, that is

$$
\begin{align*}
& x=r(\theta-\sin \theta) \tag{a}\\
& y=r(1-\cos \theta) \tag{b}
\end{align*}
$$

where $r\left(=c_{1} / 2\right)$ is the radius of the base circle, and $\theta(=u)$ is the angular displacement of the base circle. It can be show that the travelling time along a cycloidal path is given by

$$
\begin{equation*}
t=\sqrt{r / g} \theta=\frac{\theta}{\omega} \tag{A-9}
\end{equation*}
$$

where $\omega=\sqrt{8 / r}$ is a constant for particular cycloidal path. In summary:

The path of least-time in a gravitational field is a part of a cycloid. The travelling time along any section of the cycloid is proportional to the angular displacement of the base circle by which that section oi the curve is generated. The angular velocity of the base circle ω is constant $(=\sqrt{8 / r})$, where r is the radius of the base circle and g is the constant of gravitational acceleration.
$[1]$ mbarzumiam, V.A. "On the Scattering of Iight by a
Dirfuse Miedium, " $\frac{\text { crrnt, rend. Doklady Acad. Sci. }}{257,1943 .}$
U.R.S.S. V.38, 1.20
[2] Chandrasekhar, S., Podiative Transier, Oxford University Press, London, i950.
[3] Bellman, R. E. and R. E. Kalaba, "On the Principle of Invariant Imbedding and Propagation Throuch Inhomogeneous Nedia," Proc. Nat. Acad. Sci. USA V. 42 (1956), pp. 629-632.
[4] Bellman, R. E., Dynamic Programming, Princeton University Press, Princeton, New Jersey, 1957.
[5] Bellman, R. E. and R. E. Kalaba, "On the Principle of Invariant Imbedding and Diffuse Reflection from Cylindrical Regions," Froc, Nat, Aced, Scie USA, V. 43 (1957), pp. 514-517.
[6] Dellman, R. E., R. B. Kalaba, and G. M. Wing, "On the Frinciple of Invariant Imbedding and One-dirensional Neutron Nultiplication, "Proc. Nat. Acad. Sci. USA, V. 43 (1957), pp. 517-520.
[7] Beilman, R. E. and R. E. Kalaba, "Random Walk, Scattering, and Invariant Imbedding 1. One-dimensional Discrete Case," Froc. Nat. Acad. Sci. USA. V. 43 (1957), pp. 930-933.
[8] Bellman, R.E., R. E. Kalaba, and G. M. Wing, "Invariant Imbedding and Mathematical Physics-I: Particle Processes," J. of Miathematical Physics, V. 1 (1960), pp. 280-308.
[9] Bellman, R., R. E. Kalaba, and G. M. Wing, "Dissipation Function and Invariant Imbedding, 11 Proc. Nat. Acad. Sci. USA, V. 46 (1960), pp. 1145-1147.
[10] Bellman, R.E., R. E. Kalaba, and G. M. Wing, "Invariant Imbedding, Conservation Relations, and Non-linear Equations with Two-point Boundary Values, " Froc. Nat. Aced. Sci. USA, V. 46 (1960), pp. 1258-1260.
[11] Bellman, R. E., R. E. Kalaba, and G. M. Wing, "Invariant Imbedding and Reduction of Two-point Boundary Values Problems to Initial Value Problems," Proc. Nat. Acad. sci. USA, V. 46 (1960) pp. 1646-1649.
[12] Bellman, B. E., Adaptive Control Process, A puided tour, Princeton University Press, Princeton, New Jersey, 1960.
[13] Bellman, R. E. and R. E. Kalaba, "On the Fundamental Equations of Invariant Imbedding-I," Proc. Nat. Acad. Sci. USA, V. 47 (1961), pp. 336-338.

Bellman, R. E. and S. Dreyfus, Apolied Dynamic Programming, Princeton University Fress, Princeton, New Jersey, 1962.
[15] Bellman, R. E., H. Kagiwada, and R. E. Kalaba, "A Computational Frocedure for Optimal System Design and Utilization," Froc. Nat.Acad. Sci. USA, V. 48 (1962), pp. 1524-1528.

Bellman, R. E. and R. E. Kalaba, Dynamic Proxramming, Invariant Imbedding and Quasilinearization, Comparisons and Interconnections, the Rand Corporation, Santa Monica, California, 1964.
[17] Bellman, R. E., H. Kaşiwada, R. E. Kalaba, and R. Spidhar, Invarient Imbedding and Nonlinear Filtering Theory, the Rand Corporation, Santa Monica, California, 1964.
[18] Bellman, F. E., H. Kagiwada, and R. E. Kalaba, Numerical Studies of A Two-Doint Nonlinear Boundary Value Froblem Using Dynemic Erogramming, Invariant Imbeddins, and Guasilinearizetion, the Rand Corporation, Santa Monica, Califomia, 1904.
[19] Bellman, R. E. and R. E. Kalaba, Quasilinearization and Boundary Value Problems. American Elsevier Publisining Co., New Yorx, 1965.
[20] Bellman, R. E., H. Kagiwada, and R. E. Kalaba, Invariant Imbedding and the Numerical Integration of Eoundary Value problem ror Unstable systems of orainaty Differential Equations, the Rand Corporation, Santa Fionica, California, 1965.
[21] Dreyfus, Stuart E., Dynamic Programming and the Calculus of Variations, the Rand Corporation, Santa ionica, California, 1965.
[22] Fan, Lian-Tsen, and Chiu-Sen Wan, The Discrete Minimum Frinciple-A Study of Multistase System optimization, John Wiley aind Sons, New York, 1904.
[23] Hildetiand, Francis B., Advanced Calculus for Apolications, rrentさce-Hall, Inc., New Jersey, 1962.
[24] Kalaba, R. E., "Computational Considerations for Some Deterministic andAdaptive Control Processes," Ontimization Techniaues, Edited by George Leitman, Academic Press, 1962.
[25] Tou, Jurious, Modern Control Theomy, McGraw-Eill, New York, 1965.

[^0]: 2 Number in bracket refers to identically numbered references in the bibliography.

