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ABSTRACT

The concepts of sheaves and sheaf cohomology are central
throughout the work. Certain natural generalizations of these
concepts are investigated in the latter part of the disserta-
tion.

The induced sheaf of a locally constant sheaf under a
homotopy of a map of base spaces is shown to behave similar
to the induced bundle of a locally constant bundle space,
with respect to a homotopy of a map of the base spaces. The

question: Are all sheaves limits of locally constant sheaves?

is answered in the negative by demonstrating that such sheaves
inherit certain homotopy properties of locally constant
sheaves. Several related sheaf cohomology mapping theorems
are proved, using sheaf cohomology with coefficients in
locally constant sheaves or restrictions on the mapping or
both, thus giving results concerning sheaf cohomology and
homotopy type. A continuity theorem for a system of locally
constant sheaves over a homotopy-inverse system of spaces

is proved. (Homotopy-systems of spaces are introduced and
investigated in the beginning of the work and numerous appli-
cations are found throughout the dissertation,)

By relaxing the algebraic structure on the stalks of a
sheaf to admit H-structures, the concept of a sheaf of H-
spaces is introduced. A cohomology theory with coefficients
in a sheaf of H-spaces is defined using the Cech technique.
This cohomology theory is shown to satisfy Cartan's axioms
for a sheaf cohomology theory. Other properties are explored
and the theory is shown to contain the sheaf cohomology
theory.

May 1971
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CHAPTER 1 HOMOTOPY-SYSTEMS

In most cases the basic definitions and properties given here
hold for both inverse and direct homotopy-systems. However, our
interests lie mainly towards the inverse situation (see the appli-
cations which follow below), Therefore, various additional proper-

ties of the homotopy-inverse system are investigated.

Definition 1.1 The collection of spaces and maps, {Xa’ ¢EB}A’

( {Xa’ maB}A), indexed by the directed set A, is called a homotopy-

inverse (direct) system, or h-inverse (direct) system, whenever:

(1.1a) if ¢,B ¢ A and o < B then there exists a map CPO[B:XB - Xd ,
o
( @ B':XOZ XB)’
(1.1b) if o,B,y e A and o < B <y , then ¢&B@BY ::@ay ,
B o o
~Q .
(o Y@ B Y)

Note that in contrast to the usual situation for inverse
.. o
systems only the condition Py (x) ~ x for some x € X& and all

o € A is necessary in order to obtain nontrivial limits.

Definition 1.2 If {Xa, @aB}A is an h-inverse system of spaces,

then define the h-inverse 1imit,cé {Xa’ maB}A s or¢é Xa when the

system is understood, as the subspace of R Xd given by the set:

. ~ o B
(1.2a) {xel Xal if « < B then pa(x) ~ P, pB(X) },
where Pyt Il Xd - Xa is the projection map. Denote the map RyI«L Xa
by @,

Dually, if {%y, de}A is an h-direct system of spaces, then

define the h-direct limit, lg{xa, QQB}A , Or bea when the system



is understood, as the quotient space % Xy/ ~ , where I Xa is the

free union of the spaces &a and ~ 1is the equivalence relation

determined by the equivalence:

(1.2b) x&fv xe iff there exists a vy > o,B such that @aY(xa)‘: @BY(XB),
where %y is the @-th coordinate of a point x = {xd} in Z X& . Let

p: = X& —*1$X& be the natural map and denote pIXa by ?,-

As an immediate result one has the following lemma.

Lemma 1.3

(1.3a) If {X&, ¢&B}A is an h-inverse system and o //”'XB
@ < B , then the diagram commutes up to homotopy. L X’/B 1@ B
~ o o
ECNX
o
o . .
(1.3b) If {%1, ) B}A is an h-direct system and %y\\\\~$
o < B , then the diagram commutes up to homotopy. ¢95 ?::1$Xa
N7
x— P
B
Proof Part a is immediate from Definition 1.2 and part b follows

. o
from the observation: X, ~ ) (%y) whenever o < 8.,

B

We list some examples and observations on h-inverse and h-
direct systems.

B

Example 1.4 Let {&a, ?, }A be an (h-) inverse system and {Ry}A

a collection of spaces such that Pa dominates &y for each o ¢ A,
For instance one might have one of the following situations:
a.) &a is an ANR with respect to metrizable spaces and Ry is a

polyhedron [2].



b.) Xa is an ANR with respect to metrizable spaces and compact
(separable) and P, is a (locally) finite polyhedron [2].

c.) Xa is a compact space with the homotopy type of a CW-complex
and P, is a finite CW-complex [15], [11].

d.) Xa is a metric space dominated by a polytope and Pa is the
nerve of a grating (a collection of mutually disjoint open sets
the union of whose closures covers the space) on X, [6].

e.) Xa and Py have the same homotopy type.

The following system is determined by each of the above

possibilities.
by v
- Py PB PY
f £ £
o| | B 8| | 8 v|| By
9] %"
& X —< XB -~ —~— -

The maps ﬁy, 8, satisfy gafa ~ 1, for all ¢ € A. The maps

X
o

B B

. . B _
Vo .PB P, are defiped by ¢, = f, @,

gg whenever o < B.

Thus {Pa’ ¢QB}A is an h-inverse system. If {Xa’ ?aB}A is

assumed to be an h-direct system in the above, then the system

{Pa’ waB}A is an h-direct system.

Example 1,5 Let Xn be a contractible space for all integers n € J,
and suppose Xn CZXm whenever m < n . Define connecting maps by the

following formula:
i:Xn - Xm’ an inclusion map whenever n and m
® = are both odd or both even,

trivial otherwise, i.e. a constant map.



Thus, one has: i, for k even, and

o T
m

trivial, for k odd.
Since all spaces are contractible this map determines an h-

inverse system. Clearly, pm(x) ::@mé pn(x) for all x ¢ II Xn , when-

ever m< n. Thus L X =1 X .
<> “n n

Example 1.6 Let {Xd’ @aB}A be an inverse system directed by
B

inverse inclusion, that is if oo < B, then XB CZXa and ¢& is an

inclusion map. Let {Pa}A be a collection of spaces of the same
homotopy type as {XG}A’ that is Xu ::Pa for all o ¢ A, (see Example
1.4 above),

Then, if o < B , PB::XB CXa'zP , and PB is homotopic to a

o
. B _,. B .
subspace of Pa through the induced map ﬁy Qy gB = %y as in

Example 1.4 above (see also Example 1.5).

If one requires that Pa dominates Xa instead of Pa ::Xa in

the above, then PB dominates Ry , whenever o < B, through the in-

duced map “15.

On the other hand, let {Xn, @mn}J be an h-direct system and

. I3 m —_ ~
let Z denote the mapping cylinder of @ n.Xm Xn' Then Z m = Xn

m
P n ?n
and Z ~ Z for all k,m < n. Let Z =£¥ Z . Then Z ~ Z
m k n n _m n m
?n ?n m1 @ n

. m - . . . -
and the induced map ¢ n‘zm Zn is an inclusion map. Also.L_Zn

n Zn ﬁfL;Xn, (see Proposition 1.13).

B

Example 1.7 Graphically, L X = R(Fa x II Xy)’ o,B # v, where

Fas = { (gy,xa)l X~ QyB(xB) }, whenever @ < B, is a collection



of path components in XaX XB' Thus L X, 1s not necessarily closed
in II X,
If each Xa is path connected, then obviouslyé& Xa =1Ix ,

(see Example 1.5 above),

On the other hand if each Xa is totally disconnected, the

h-inverse limit becomes an ordinary inverse limit.

Example 1.8 Note that if a cohomology functor (or cohomotopy
functor in the proper setting) is applied to an h-inverse system,
B ] - o * o
{Xa’ Py }A’ thenaa d1rec; system, {H (Xa)’ 3 B}A (or {m (Xa)’ ) B}A)’
results, where & _ = (¢ ")*.
B o

Similarly, if a homology (or homotopy) functor is applied to

an h-inverse system, an inverse system results.

1 . . .
If {Xa’ ¥ B}A is an h-direct system, then {H*(Xa)’ YQB}A is
a direct system, (and {n*(Xa)’ YaB}A is a direct system), where

o o
YB—WB)"‘”

In Example 1.7 it was noted that the h-inverse limit of an
h-inverse system was not necessarily closed in the product space.

This is remedied by the following lemma.

Lemma 1,9 If {Xa’ QQB}A is an h-inverse system of locally path

connected spaces, then I, X is closed in II X .
@~ o o4

Proof Local path connectedness is equivalent to path components

being closed (and open) [71.

Corollary 1.10 If {Xa’ maB}A is an h-inverse system of locally

path connected compact spaces, then;& Xa is compact.



Definition 1.11 If {Xa’ QQB}A and {Ya’ ¢aB}A are h-inverse systems

and for each o € A there exists a map fa:Xa - Ya such that the dia-

gram commutes up to homotopy, then © B

. _ ] - o
the family F = {fa} is called a &y‘ XB
map of the systems. (Similarly for lfa ¢ B lfB
h-direct systems.) Y, ~< d YB

Proposition 1,12

(1.12a) If F = {fa} is a map of the h-inverse system {Xa, maB}A to

. B : ' S
the h-inverse system {Ya’ va }A’ then F induces a map F 1L Xa &L Ya'

(1.12b) 1If £, is a homotopy equivalence for each o € A in part a,

then F' is a homotopy equivalence,

Proof Let x be a point in L Xye Then, if @ < 8, one has

0 (5g) = 0, 05 () = 9, (0) = %,

by Lemma 1.3a. By Definition 1.11,F satisfies:
b.0e () > €0 Pxg) = £ (x )
o BYBS T Tate VBT oV
Thus (I £,(x) is a point in L Y = or
@ EHL R, =F: 1%, LY, .

If ﬁy is a homotopy equivalence, let 8y be the homotopy inverse

of fa' Then, since

B

B
@a gB - gafawa

8g gaiifo,BfBgB = go,*bo,B,
whenever o < B, the map G = {ga} is a map of the systems.

Also, G'

@ ga)L£ Y,e LY, - LZX, bypart a. Thus

G'F'(x)

'K = =
G'(Cfx>) = < gyf %y > <x,>,

. Thus G'F' ~ 1

since gozfoz ~ 1 J:‘, Xa .

Xy
Similarly, F'G' ~ 1L Y and F' (and G') is a homotopy
<«

equivalence.



Note that the proposition does not hold if inverse limits are
involved, since in that case the map of the systems does not commute

up to homotopy, necessarily.

Corollary 1.13 1f {Xa} dominates {Ya} by F above, thenq& Xa domi-

nates4£ Ya by F' (and {Yd} need only be an inverse system).

Corollary 1.14 If F = {fa} and G = {ga} are maps of the system

{x

" maB}A to the system {YB, waB}A and ﬁy:: By for each @ ¢ A,

then F' = G'.
' > = > = > =G >
Proof F'< X, < ﬁﬁgf < g&xa) G'< X, .

Definition 1.15 If {Xa’ ¢QB}A is an h-inverse system, then it is

h-ordered iff for each o ¢ A, Xa has the homotopy type of some

ha 8
space Ya’ X ~ Y such that {Y }

- s is an inverse system where

Ol’ ‘4?01 A

¢aB is induced by @~ and H = {ha} is a map of the systems.

The system {Xa’ aB}A is strongly h-ordered iff it is h-ordered

and LX, ~LY, .

Proposition?11d6 If {&y, @aB}J is strongly h-ordered, then there

exists an inverse system {Ya’ waB}J ordered by inverse inclusion,

such that L X, =~ n Y, » all spaces compact.

Proof Since {Xa} is h-ordered, there exists an inverse system
] AB ~»
{Ya’ o, }J such that X ~ ¥, for eacha ¢ J.

It is well known that an inverse system may be imbedded in a

space in such a way that it is ordered by inverse inclusion and the



limit space is invariant. Denote the imbedded system by {Ya’ waB}J

and apply the definition of strongly h-ordered systems.

That an h-ordered system will not suffice in Proposition 1.16
is evident from the remark in the proof of Proposition 1.13,
An application of h-inverse systems is the following general-

ization of Eilenberg% Theorem [ 8].

Theorem 1.17 1If X is a compact space, then there exists an h-

inverse system of spaces having the homotopy type of triangulable

B ~
spaces, {Xa’ Dy }A’ such that X~ L X, .

¢

Proof Imbed X in a cube Ig and let pg:Ig — 17 denote the pro-

jection map, where [ C § .

Define an index set A = {( £, M)}, where { T E is finite,

MC I§ is closed with the homotopy type of a triangulable subset

of IC ¢

, and pg(X) ~ Y C IntM. Ig Pg >—T1

U U
X - M
h
pglx‘g
Order A by: (A,L) < (u,M) iff A €y and Py M) o M CcL.
Then A is directed, for if (A,L), Ww,M) € A, let v = A Up and let

U= Ix n pk-l(L) n qé-l(M). Then pV(X) ~ V € IntU c 1° and there

exists a space N C IntU closed, such that pv(X)zz V C IntN and N
is triangulable (see [8]). Thus, (V,N) € A and (v,N) follows (A,L)
and (u,M).

Define an h-inverse system as follows. Let Xm = M and X1 =1,

where m = @W,M) and 1 = (A,L). Let cplm:Xm — X, be the map defined

1
by h(pklM), where h:pX(M}-* My, C L is a homotopy equivalence given
in the definition of the order on A, and m = (@,M) > 1 = (A,L).



|
M Py A
If1=(Q,L) <m-= (u,M I — 1
= U P U
< n = (v,N), then V. 1 =:%
m n _ \ h

n
and ¢, = h3(pth).

Thus by '0," () = 7y () = BB, (V) = By (B, (D) = hypy (hyp (D),

m_n n m_n
but 21 P N) = hlpk(hZPu(N))’ therefore @1 ~ @1 o, -
k
| 1 . — =
Let X ZL{Xk’ @j } and define a map fk.X Xk by fk pQIX .
Then {fk} defines a map of the space X to the system {Xk, mjk}.
f

Let £ =1 £, :X - X',
<« "k

xi/ \°ka / \

€ Xk’ then x, is in the

path component of some point in pg(X) by definition of A. Thus, if

If x is a point in X' and mk(x) = X,

X € Xk’ then there exists a point x' ¢ Ig such that pg(x'):z X

k=
mk(x), or x' ¢ X,

Thus fk(x') = pg‘X x') ~ X and f(x') ~ x, or every point

X € X' is in a path component of some point in X.

If X1,%, € X such that C(xl) # C(xz), where C(x) denotes the

path component of x in X, then there exists a finite set o C § such

that C(Ry(xl)) # C(py (x,)), or C(£,(x1)) # C(f,(x,)) by definition

of ﬁy. Since @ f =~ £, C(f(xl)) # C(f(xz)) and f is one-to-one on
the path components of X to the path components of X'.
Since the corresponding path components of X and X' have the

same homotopy type, X and X' have the same homotopy type.

Corollary 1.18 If X is a compact space, then there exists an in-

. B .
verse system of triangulable spaces {Xa’ @y } such that J, {Xa} is

homeomorphic to X.



10

Proof If the system in the proof of Theorem 1.17 is constructed
using triangulable spaces, an inverse system results. By removing
the homotopies, f is an open one-to-one map of X to X' =L X ,

< o

(see the proof by Eilenberg [8]).

It should be noted that applications of Theorem 1.17 to iterat-
ed inverse systems as in [ 10] are not possible, since introducing
the variant of homotopy type removes all controls on dimension.
However, several results in this direction are given in the latter
part of Chapter 2. The main observation to bear in mind is that
Theorem 1.17 may be applied to the terms of an (h-)inverse system
which is either given or obtained from some previous application

of Theorem 1.17.



CHAPTER 2 MAPPING THEOREMS, LOCALLY CONSTANT SHEAVES AND CONTINUITY

We shall be interested in obtaining results concerning the
invariance of sheaf cohomology on homotopy type, mapping theorems
for sheaf cohomology, and continuity theorems for systems which
involve h-inverse systems of spaces as base spaces,

Let OX denote the category of sheaves of abelian groups over
X, (see [4]1, [3] and [9] for the basic definitions and properties

of sheaf theory). (One could use sheaves of R-modules,)

Definition 2.1 Tlet f:X - Y, A e Qg and Be G, . Then A is fiiso-

morphic to ® , and we denote # e , iff A ~f*x0B and B ~f, o

b

Thus #A & ® implies # ~f*f, A and B =fif*x B .

Proposition 2.2 If f:X = Y is closed and onto, B ¢ GY and f-l(y)

is connected and taut ([4]) in X for all y in Y, then there exists
a sheaf A e CIX such that # £ 1.

Proof Let y: % - fxf* B be the homomorphism induced by the f-co-
homomorphism T — f*¥ and the definition of the direct image sheaf.
Then one has the canonical homomorphism
fr: S(UB) - S(E L), BB ,

where S(f—l(U), fxfd) = S(U, £,£%B) by £ iU)—-£—+-U

f*ﬂ%<_f_*_.

1

definition.

Stalkwise, for each y in Y, ¢ is the map
B, - sETO, BB 5 (EaB)

where the isomorphism follows from the assumption that f-l(y) is
taut.

By definition, S(f-l(y), f*€)) is constant with313y; since
f-l(y) is connected one has ﬁ%y & S(f-l(y), x4y ~ (f.kf*"?:)y ,
or ¥ is an isomorphism.

Let A = f*O}, then 5@



12

Corollary 2.3 1If X is compact and Y dominates X by f:X = Y and £

is onto, then there exists a sheaf ¢f ¢ GX such that o fgﬁ » Where
a, .
Bea,

Proof If X is compact then f is a closed map and f-l(y) is taut
in x,[4].

Since Y dominates X, f-l(y) is connected for all y in Y, for
if not, let x;,x, ¢ f—l(y) such that C(x;) # C(x,) and let g be the
homotopy inverse of f. Then gf ~ 1X implies gf(xl) and gf(xz) are
in the same path component, contradicting the assumption on f-l(y).

Apply Proposition 2,2 to get the desired result,

Definition 2.4 A map £:X — Y is a relative map [12] iff for each

open set U € X there exists an open set V C Y such that U = f-l(V).

Proposition 2.5 If £:X - Y is a relative map and # ¢ CZX then
there exists a sheaf Te OY such that A £‘@

Proof If §: T~ of is an f-cohomomorphism of some sheaf T ¢ a,
t6 the sheaf A ¢ OX, ‘then § factors through 5T (or £f.,4 ) by some
homomorphism £*®W — o, (or B - fodd ). %0 fodl

This reflects the following l ><lf
R

natural isomorphisms of functors, = ¥

b
(see [4]). )l( f . ;l-,'

Hom(f*®B , A ) =~ f-cohom(®,H) ~ Hom(fd, 14 ) .

Let $:Hom(f*T,%) g Hom($3, fy A ) denote the above natural
isomorphism.
If { = f*B one obtains the isomorphism:
' :Hom(f£4 B ,£%B) > Hom(W £, £%13),
where we denote &'(l) =8 .
If B = £, 4 one obtains the isomorphism:
3" Hom(f*£4d , A4) > Hom(f,#, £,4),

where we denote @"-1(1) =qo .
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If ¥ ¢ Hom(f*® ,# ), then by the naturality of & the following
diagram commutes:

@l
Hom (£*W ,£*B ) —= Hom (B, £,£%1B)
Hom (£¥T> , X) Hom (%, £, (X))

Hom(f%* T, 4 ) —3 Hom (43, £,.5 )

Thus &(x) = £, (X) &'(1) = £x(x) B
Let o = { ¢ Hom(f*f, A, d4), where 13 = £, 4 . Then

1=3"@) = £2,@) B ¢ Hom(£, o ,EA ), and £x(@) is
sur jective,
Recall, S(U, 4,4 ) = S(£ 1(U),% ), thus
S(U, £, %6, ) = S(ET(U), £xE,l) S SCETLW),A) = S, Euod ),

. . o .
and o is onto, that is f*f, ¢ = o 1is onto.

Looking at stalks one has f*f,sd-*—-‘—-—f*f‘ff,v%
o
(f*f*gl)x A , » but by the - £, (@)
relativeness of £, l
£ fad
A =1 8W,of) =L s(E W), 4) =L SU,EA) = (£ Vg (xy™ (E¥Exd )
xeV xef’l(U) £ (x)eU

Thus o is an isomorphism (recall sheaf homomorphisms are open),

and if B = £,9 , the proposition follows.

The above ideas are now applied to obtain a mapping theorem
relating homotopy type and sheaf cohomology. The following lemma
will be needed in the proof of the main theorem. Let I* denote

the serration functor, (see [3], [4] and [9]).

Lemma 2.6 If f:X = Y is a relative map and o ¢ Gy then Tefsfl m~ £2T%A .
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Proof By the definition of T* and £.o
-1
Tfof), =L SO, TEA) =L T (FA) v =L T LS (0),4),
yev yeV y'eV yeV y'eV y'eU
for all y in Y.
Since f is relative,

-1 -1

EIA), =L M,TH) =L T 4 ~1 T  LS(E (0,4),

yeV yeV y'eV yeV y'ev y'eU
y'=f(x) y'=f(x)

for all v in Y,
That is, (T°(f,4 ), (£,T°4A ), for all y in ¥, since

-1 3
A~ f(%s)e%(f W,A) = Ehdpey -

Repeating the argument for Tl, etc, gives the desired result.

Theorem 2,7 If £:X - Y is a relative map and A e GX , then there

exists a sheaf Pe CZY such that 514 kffvs and Hi(X,QQ) ~ Hi(Y,ﬂ)).

Proof In view of (2.5), choose = f*ﬁq. Then, by definition of
the Grothendieck cohomology, (cf. [31, [4] and [9]), Hn(X,Sﬂ) =
Hn(S (X,.‘T*yq )), where T*94 is the canonical resolution of ¥ deter-

mined by the serration functor [3].

1f B = £,4, then sX,A) = SE @), A) = s, 6,4) = SEMB),
and in view of (2.6),

ST ) = S(EL(¥), T A ) = S(¥,E,T7 ) ~ S(¥,T 6, ), thus

S(X, T4 ) = S(Y,T¥E,4), and B* X, 4 ) = B (Y, f,4) = B (¢, B).

Definition 2.8 A sheaf f¢ OX is locally constant iff for each x

in X there exists a neighborhood, N, of x such that p-l(N) =4 IN

is constant (trivial), that is p—l(N) has the form N X G, where G

is an abelian group.
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Let QX denote the subcategory of GX of locally constant
sheaves on X. Note that the inverse image sheaf of a locally

constant sheaf is locally constant.

Theorem 2.9 TIf f,g:X -~ Y, fg g, X is compact, and A e _C_IY ,
then fx ol ~ gx of .

Proof TLet H = {ht}:X X I — Y be the given homotopy and let
m:X X I - X be the projection map. Then the following diagram

is determined.,

bk o —— d

THhk 4 H*

"1\ /Pz

XX1I

Y / h, \\V
X

> Y

Since H|X x T = h,T , Heof |x x t =~ (mxhk = (h )*d )X x t.

Since ¥ ¢ and ﬂ*h¥ # are locally constant sheaves, cover X X t
by neighborhoods determined by the neighborhoods which express the
local constantness of each sheaf. By compactness of X reduce the
cover to a finite subcover. Thus there exists an ¢ > 0 such that

1f XX (t-e,t+e) =M, then BeA [M = (hmxsA|n,

Thus (htn)*54 is locally constant as a function of t, and
since I is connected, (htﬂ)*54 is constant as a function of t.
Therefore h* @ is constant as a function of t, or fxo = h% { =
h¥ o = g+

The following relations are immediate from Theorem 2.9 and

the above results concerning relative maps.
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Corollary 2,10 Assuming the hypothesis of Theorem 2.9:

(2.10a) If X = Y and £ is a homotopy equivalence, then f* NA .
(2.10b) 1If X is contractible to a point x,, then every locally
constant sheaf on X is constant.
(2.10c) 1f f and g are relative maps, then f*f*g*94 ~ gkgaf* 4 .
(2.10d) If £ in part a is a relative map, then H = f*¥ = f*f*% ...
(2.10e) 1f 94 € OY and f*54 and g*‘74 are locally constant, then

A e QY and g*f, A ~ frge A ~ A

Proof 1In general o # f*f, o , A # fof*xA, A & frgx 4, and
# # f,g, 9| , where g is the homotopy inverse of f.

Part a follows immediately from Theorem 2.9 with g = ]'X'
Part b is immediate from part a, where the trivial sheaf is

determined by F4 _
o

For part ¢, by Proposition 2.5 we know f*f*f*?ﬂ ~ %% and
grg,g*d ~ gxd | thus grg f+d = grgeerd m gl ~ fxd ~ Fri fr o
~ frfegrd |

Applying parts a and c with g = ]'X one obtains f*fy A ~ f¥*sl =~
fxfsf*4 . Continuing in this manner one obtains the sheaf iso-
morphisms for part d.

For e use the fact that by the relativeness of the maps,
g*g*gq ~ A~ f*f*% on the one hand, but by Theorem 2,9,
frg, A ~ grg, A and gxfy A ~ fxfe A .

Definition 2.11 1If {94“, @OZB}A is a direct system of sheaves on X,

then L 4 is the sheaf generated by the presheaf U - I S(U, % )
LAy L@ N,

(see [3], [4] or [9]).
When referring to sheaves which are limits of locally constant

sheaves, we denote the category by QX Note that (I, s ot)x ~ L(ﬂa)x

for direct limits of sheaves, by the properties of direct limits.
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Theorem 2.12 If # ¢ QY, f,g:X—-vY, £ »E g and X is compact,

then f£* o Ng*?‘l .

Proof By Theorem 2.9, f*?qa ~ g4 g for all o. By the properties

of direct limits of sheaves (noted above),
@G AN SL EADL =L ey = G ey ™ A gy = (B9,

or £ ~ L f*9(]o[ . Similarly for g

By Theorem 2.9 and the frgf — £ A
) o k//// o
functor properties of f* and N\‘g*ﬁqa
g%, l‘) f*,qa “E g*,qa , Or

g*

frf ~ogr A £ P u*/g*ﬂe
B

Corollary 2.13 Assuming the hypothesis of Theorem 2.12:

(2.13a) If X = Y and f is a homotopy equivalence, then % = fx¢f
(2.13b) If X is contractible to a point x,, then A is trivial.

Proof Let g = 1X in Theorem 2,12 to obtain part a.
Part b follows from part a with the trivial sheaf determined

by (94)X , (recall L 13 =1).
(o]

Example 2.14 That not all sheaves are limits of locally constant

sheaves follows from the example of a nontrivial sheaf on a contract-

ible space, in view of Corollary 2.13. :

Let X = I, and A be the sheaf 94 —_—
which is trivial, that is zero, on lP
(0,1] and 740 = J2. X o 1

The important fact to observe is that sheaves which are limits
of locally constant sheaves behave similar to locally constant

sheaves under homotopies of maps of the base spaces.
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Definition 2.15 Let H:X X T —» Y be a homotopy and G an open cover

of Y. Then H is a G-homotopy iff for each x in X there exists a
UeG such that H(x,I) C U,

If £:X - Y is a homotopy equivalence with homotopy inverse g,
Ae QY with respect to some open cover G of Y, and F = f-l(G) s
then f is an (F,G)-homotopy equivalence (relative to A ) iff fg ~ 1Y

by a G~-homotopy and gf ::1X by an F-homotopy.

Theorem 2.16 If 4 € QY (with respect to a cover G of Y), £f:X - Y

is an (F,G)-homotopy equivalence, X and Y are compact, then there

exists a sheaf B e Q& such that H?(X,13) ~ Hﬁ(Y,ﬂ ).

Proof Let M= f*A and (f,f*):5(Y,4) = S(X,f*¥4 ) be the
homomorphism defined by (£,£*)(s)(x) = f;'; s £(x). 1If g is the

homotopy inverse of £, let (g,g*):S(X,f*A ) - S(Y,%) be the
homomorphism defined by (g,g*)(s")(y) = g* s' g(y).

y
% *
Recall A ~ gxfxd and A<t <8 £l
A ~ f*g*f*ﬂ by Corollary J' ”s lI !
2,10a. £
X > Y & > X

Note that (£,f*) and (g,g*) are onto, since Im £ N U # @ for
all U in G by the (F,G)-homotopy equivalence property on f., Similar-
ly for g.

Combining these homomorphisms one has:

(£,£%) (g,8%) (s') (x)

(£, £%) (8% ()5 '8) (%)

£f 8% x)s' (8E(®))
(gf,fxg*) (s') (%),
(g,g*)(fg(y)s £) (y)
g’;, fié(y)s (f8(y))
= (fg, g*f*)(s)(y).

and

(g,8%) (£,£%) (s) (v)
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Stalkwise these homomorphisms are isomorphisms, by the defini-
tion of the inverse image sheaf. The image of each of these homo-
morphisms may be extended in a natural way to the whole group, since
f is an (F,G)-homotopy equivalence (and g is a (G,F)-homotopy equi-
valence). Thus S(X,f*¥{ ) = S(Y,4 ).

Similarly, S(X,TOf*¥ ) ~ S(Y,T%4 ), thus S(X,T(TOf*xo /fxsl)) m
S(Y,T(ToA /4)), or S(X,‘J'lf*ﬂ) R S(Y,T174 ), and by iteration one
has S(X,T*f*d ) = S(Y,T*dd ), or H¥(X,f*4d ) = H¥(Y,d ).

"}

Corollary 2.17 Suppose {Yoz’ ¢a A is an inverse system of compact

spaces, {4 YO{B}A is a direct system of locally constant sheaves

a’
. By .
on {Yoz} with respect to covers {Goz} on {Ya}, {on’ Y }A is an in-
verse system of compact spaces with F = {foz:on - Yozl fa is an (Fa,Ga)-
homotopy equivalence} a map of the systems. Let Y = L Yoz’ X=1L on’
A = * * = k% W = % *
L Yot 9401 and fx4 = [ »% 01}401’ where f = L £ . Then H*(X,f A4)

~ HE (Y, ).

Proof By Theorem 2.16, H*(Xa,fg;éa) ~ H*(Ya,ﬂa), and by continuity
L H*(Ya,yda) ~ HX(Y,A ), and L B* (X, £% Aa) ~ H* (X,f*s] ), where
% = % fx *yk % % %
% A —Ii(pafa’da"l“»f“’a”o:' Thus H* (Y, ) ~ H*(X,f%d ).

In order to obtain a theorem similar to Theorem 2.16 for the
case 4 ¢ gX we prove an existence theorem in which the conditions

of the hypothesis of Corollary 2.17 are satisfied.

Theorem 2.18 Let ¥ ¢ d,, g:X = Y an (Fa,Ga)-homotopy equivalence

for all o ¢ A, where 4 = L 4 o and A = IY, X and Y are compact spaces.

Then there exists a sheaf Tbe¢ (IX such that H¥(Y,¥ ) ~ H*(X, ).
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Proof Imbed Y in a cube ongIOl’ and construct an inverse system

of finite polyhedra, {Ya, cpo[B}A, such that Y = [, Yy (see Theorem

1.17 above,[8]).

Let ch be the mapping cylinder of the projection map
o

cPo::X - Yoz’ (recall Z

B

~ By i
(pa o~ Ya)‘ Then {Zcpa, ?, }A is an inverse

B

system, where Eﬁa is induced by Py > and L z:p =YX TI~Y,.

o
Let 9401 x [0,1) be the sheaf on Y x [0,1) which satisfies

(,vda X [0,1))(x’t) = (;401)X for all (x,t) ¢ Y X [0,1). Note that

Y X [0,1) is open in Z_ and thus locally closed. Extend 940[ x [0,1)

Po
by zero to Zcp and denote this sheaf by 94~oz .
o
Clearly, of e g, implies 9401 X [0,1) is locally constant

over Y X [0,1), while L)ﬂ'a = d=(4x {o,1)) U & . Carry out a
similar construction on X and the system {g*;ﬂ oz}'

Clearly H*(Y,s ) ~ H*(Y X [0,1), A x [0,1)), and, assuming
compact supports, H¥(Y X [0,1), 4 x [0,1)) ® B¥(Y X I, A ).

Similarly for X and {g*?‘a,}.

By continuity,

BE(Y, 0 ) ™ BH(Y X T, 4) = BY(QL 2, , LAY ™ L B, , ), and
o (04
o~ ~ o~ ~ o~
Hx*(X,g*d ) ® B¥(X X I,g*A) = Bx(L 2, ,L g%y ) = L H¥(Z ,g*dA ),
q;a = o Vo o

~ : — ~
where g is the extension of g to Z\lI - Z“I , and g*;4 =L g*ﬂa.
o o

By Theorem 2.16, H¥(Z, ,y?ra) NIk (Z E*,i”a) for all @ ¢ A,
o

b4
'd’Ol
since the condition that g is an (Fa,Ga)-homotopy equivalence

implies"g is an (ﬁa,ﬁa)-homotopy equivalence, where Eoz is the

cover G, X (o,1) U Y- Thus H*(Y,d ) = H*(X,g*s| ) and B =gx4.
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The material above on homotopy systems, locally constant
sheaves and mapping theorems for locally constant sheaves and
limits of locally constant sheaves is unified in the following

material on continuity theorems.

Definition 2.19 A homotopy~inverse system of spaces, {Xa’ maB}A,

is called an (o,B)~homotopy~-inverse system of spaces iff whenever
Y

@,B,y € A and ¥ < B < v, then maswﬁ =:¢QY by an Fa-homotopy for

me cover F f X,
some coO v °f X,

Theorem 2,20 1If {Xa’ ¢&B}A is an (o,B)-homotopy-inverse system

of locally path connected compact spaces with respect to covers

{Fa} determined by some system of locally constant sheaves

{4(1, QQB}A on {Xa, @aB}A, where the @dB are @aB-cohomomorphisms,

then H"'é(X,S’q) = Hé‘(‘(ﬁ on’ L %’q«) ~L H’E(Xa”doz)‘

Proof The theorem is immediate from the observation that

cpchpBY

o~ ¢ay by an Fa-homotopy, WhereAﬂ o is locally constant
with respect to F , implies that the systems {Xa} and {94a}

behave identically to the usual situation (see [3], [4] or [9]).

Thus if X =4£ Xa and Py X - Xa is the projection map, then
¢§9¢a is a locally constant sheaf on X with respect to the cover
'1 . > . .
Py (Fa) and if A = L cpgﬂa, it is known that [ H*(X,q)§74d) ~ X (X,¥9),

(see [4]).

Corollary 2,21 1If X is a compact space and #{ is the limit of

sheaves which are members of QX’ then B* (X, ) may be expressed
as a doubly iterated limit of cohomologies of spaces of the
homotopy type of polyhedra with coefficients in locally constant

sheaves.
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Proof Consider the diagram:

| !

B+ (K, 5, ) (X1, o))
l 1
B (X, A, ) H*(Xﬁ”‘ej)

j
) ——— H*(X,MB)—-» ves =—>HXEX,d)

;
ve > H*(x,ﬂ;q o

The lower horizontal system follows from the usual continuity

theorem, where A = L 5401, and )401 € gX for all «o. The vertical
systems are obtained by applying Theorem 1.17.

An h-inverse system {Xi’ wjl} is thus obtained, and by
passing to the mapping cylinder Z‘:p , as in the proof of Theorem

1

2,18 above, one has the system {H*(Xi,ﬂ‘x )}, where L H*(Xi,ﬂ(x )
i i
~ H*(X,an) by Theorem 2,20, where L X! =L 2, =

L
% €

X.XI~X,
i

If constant (trivial) sheaves are present, the (o,B)-homotopy
condition in Theorem 2.20 may be dropped and the following Corollary

is immediate,

Corollary 2,22 1f {Xa, waB}A is an h-inverse system of locally

path connected compact spaces, then Hgﬂ& Xy R) ® I, Hg(Xa, R) ,

(Alexander-Cech cohomology).

It should be noted that an analogous result on continuity

may be obtained with h-direct systems and Cech homology.



CHAPTER 3 SHEAVES OF H-SPACES

Definition 3.1 ILet {Hx, ux}X be a collection of H-spaces with

corresponding multiplications indexed by a given space X.

Let N = % HX and p:74 -+ X be defined by p(Hx) = X. Given a

point a e‘H, a set which contains a, N, is open iff p(N) is open

in X, where N N H_ is open and path connected for all x. Such

sets form a basis for a topology onN .
If for each point in N a path connected neighborhood in the

basis above exists, and the operations b, are continuous in aJ,then

we call the structure (¥ ,p,X), (or N when X and p are understood),

a sheaf of H-spaces. Note that H itself need not be an H-space,

(see Example 3.5 below),
At this point the H-space structures are assumed to satisfy

Mx(a’ex)‘: ux(ex,a)'z a for all a e H and some point e, ¢ H ,

that is a two-sided identity up to homotopy must exist. It is not
assumed that the spaces satisfy the homotopy extension property.

Continuity of by incy is satisfied if given a path connected

neighborhood N of ux(al,az), where a a, € Hx’ there exist path

1’
. . ]
connected neighborhoods N1 of a, and N2 of a, such that if ay € N1

and aé €N, and p(ai) = p(aé) = x', then px,(ai,aé) € N.

If ai € Nl(al) and a, € C(ex), the path component in Hx of e s
and aé € N(az) such that p(ai) = p(aé) = x', then ux,(ai,a&) €N
by continuity. But ux(al,az) a:ux(al,ex) ®a thus ux,(ai,aé)cz

ay :eai for all aé € NZ' As a result, if the path component in W

of e, intersects Hx" it does so on the path component of e -

Clearly a sheaf of algebraic structures is a sheaf of H-

spaces,
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We list some examples of sheaves of H-spaces.

Example 3,2 1Let X be a given space and U =xx (C-1,-%JUl%,1)).
Define p_ on H_= {x} x ([-1,-3]U[%,1]) by w,(2,b) = 2ab . Then

if e, is any point in [%,1], H is an H- ////// %

space and ‘H is a sheaf of H-spaces

which is constant (trivial) in the //i////;//i:/
|

sense of sheaf theory.

H

X
Example 3,3 Let ﬂJ be a solid annulus in R2 and let X = I. Then
H = p-l(x) is either contractible
or has two path components. In the / LH
first case Hx is trivially an H-space
and in the second case HX has the /
homotopy type of the H-space in L P
Example 3.2 above. _ X

Example 3.4 Example 3.3 may be generalized to an "annulus" with
an infinite number of holes. Each fiber is either contractible or
a finite union of contractible

sets and is therefore an H-space

trivially.

Example 3.5 For an example of a sheaf of H-spaces which is not

an H-space, let ?/ = 82 and X = D, the projection of S2 in R2.

Then p-l(x) ~J, if x is an

interior point of X and

plx) = se sl ifxeodx. g v st
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Both possibilities of the fibers are H-spaces, however the
only spheres which are H-spaces are S°, Sl, S3 and S7,([1]), so

34 is not an H-space,

Definition 3.6 Let 8:X » U be the section (pb = 1X) which satis-

fies: 0(x) ¢ C(ex) CZHX. That 6 exists and is continuous follows

from the observation on the behavior in ‘H of the path components

of e, above, (3.1). (6 is not unique.)

Definition 3.7 Let S(X,?{) denote the collections of global

sections of ¥ , with the compact-open topology. Define a multi-
plication on S(X,?[) as follows: if s,t ¢ S(X,4 ) then
p(s,£)(x) = p_(s(x),t(x)), x ¢ X,

The multiplication y is continuous by the following argument:
Let U be an open set about Ww(f,g). Then there exists a finite

collection of sub-basic sets {M(C.,0.)}. such that
i*7i’iem
w(E,8) e 0 M(C,,0,) CU,
(we may assume that the sets Oi are path connected).
Since the multiplications b, are continuous in ¥ , choose

neighborhoods Ui of £(x) and Vi of g(x) such that if fi(x') € Ui

' "N = 1 '
and g, (x') ¢ V, then n(f;,8,)(x") = p_,(£,(x"),g;(x")) e 0, .

Thus f ¢ N M(Ci’Ui) and g ¢ N M(Ci’vi)’ and if £' e N M(Ci’Ui)

and g' ¢ N M(Ci’vi)’ then p(f',g') e N M(Ci’oi)’ since pu(f',g') (x)

! 1 .
px(f x),g'(x)) e N Oi for all x ¢ N Ci , (for sectioms, N M(Ci’oi)
M(ﬂCi,ﬂOi)).

We shall use the notation sOt for p(s,t). The identity of
S(X,%) is the section © in view of the equation:

b(5,0) () = p (s(x),0(x)) = p_(s(x),e ) = s(x), x ¢ X,
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Thus S(X,) ) is an H-space under the multiplication p. If
U C X, then S(U,?/\U) is an H-space under the multiplication
u‘S(U,?{lU), (we shall use the notation S(U,% ) for S(U,ﬁ{lU)).
Let F be a family of supports on X and U € X. Then SF‘U(U,@I)

is the collection of sections in S(U,al) which satisfies:

ls| € FIU for all s ¢ S w, %),

Flu
where FIU = {A C1U| A € F}. The collection SFIU(U,ﬁ{) is closed
under the multiplication uF'U = ulSFlU(U,af), for if s,t ¢ SFlU(UfH),

then |s| and |t| € FIU, and since
IMFIU(S,t)IN = {x ¢ x| bg|y(s,t) € Cle )} 2 |s"Ule]™,
it follows that |uF|U(s,t)| c|s| n Itl and thus |pFlU(s,t)| e Flu.

Also 0 ¢ SFIU(U,?{),since IGI = @, and it follows that S_j. (U, %)

Flu
is an H-space,

Definition 3.8 Let ¥ and A be sheaves of H-spaces on X. A map of

sheaves of H-spaces is a map a:?{-*ﬂ( such that a o ?<

3.8a o =
(3.8a) pyx =p;, R ﬁz
X

(3.8b) o is an H-homomorphism on fibers.

1f a: H-% is a map of sheaves of H-spaces as above, then

7’/ ~K iff O(X:Wx - ka is a homotopy equivalence for all x ¢ X,

The map o induces a map a':S(X,?{) - S(X,?() by the rule
@'(s) =wos, s ¢ S(X,N). The section functor S is thus a functor
on the category of sheaves of H-spaces on some fixed base space

to the category of H-spaces,

Definition 3.9 If UC X, then S(U,% ) is an H-space by Definition
3.7. Let U,V C X be open sets with V C U and define a map

S UH) - sEH)

by restriction., This map is an H-homomorphism by the following

observation: rUV(SOt) = (s®t)|V = sIVOtIV = rUV(s) 0} rUV(t).
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. U \ U U .
Also, if WC VC U, then r w=TtTwtvy Thus 2 = {S(U,ﬂ{),r V} is

a direct system. Let & = {S(U,?{),rUV} be the h-direct system

determined by 2 as follows: if W € V C U, then rUW': rVW rUV in

s, ).
Take the limit over the collection of sets U about some fixed
point x in X:

%Y, =Lisw),) = = S04/ ~

xeU p:<

The equivalence amounts to requiring that if s ¢ S(U,¥ ) and

t € S(V,) ), then s ~ t iff there exists a neighborhood WC U N V
of x such that rUW(s)‘: rVW(t), (this need not be a vertical homo-

topy).
The induced multiplication on %}{is defined by :

EX(<s>,<t>) = <s|w o t|w>,

where x e WC UN V, s ¢ S(U,?v’) and t ¢ S(V,H).

Lemma 3.10 Wx is an H-space.
Proof The multiplication is well defined, since if s' ¢ <s>,
then s' ~ s on some neighborhood U', so
E'X(<s'>,<t>) = <s'|w' o t|w'>,
where W' € U' N V, but s'lW' O] t|W"v (le o t|W)|W", for some
W' CW' N W, thus <s'|W' © t|W'> = <s|w © t|w>.
Clearly EX(<s>,<e>) ~ <S> o IJX (<8>,<s>), where <8> is the

coset of 9,

Theorem 3.11 H ™ ?{x as H-spaces.

£
Proof Define maps H - 7{x 8 H by: f(a) = <s>, where s(x) ~ a,
s € S(U,?{) and a ¢ H 3 g<t> = a,, where t'(x) ~ a for all t' ¢

<t>, Then f and g are H-homomorphisms,



28

The compositions yield gf(a) = g<s> = a, ~ a, so gf = 1H s
— - 1 —_ _
and fg<t> = f(a)) = <t"> = <t>, so fg = 1Wx' Thus ‘){xg H_.

The H-structure induced on %; by the above homotopy equiva-

lence, through f and g, is given by:
h(<s>,<t>) = fu (558>, 85t).

However,
f px(g<s>,g<t>) = f ux(ao,al) = f(aoOal) = <ug> ,
where u(x) ~ ao®a1, and
Il'x(<s>,<t>) = <s|w O t|w> = Qi (80E)> = <sOt>,

Thus the H-structures,induced by the homotopy equivalence

and given in Lemma 3,6, are identical and ?Ix ~ Hx.

Definition 3.12 A presheaf P (of H-spaces) on X is a contravariant

functor on TX and inclusions to the category of H-spaces and restric-
tion (H-)homomorphisms such that P(lU)A: 1 and if UC V C W, then

U Y .U
P(i, ) P(i, ) = P, ).

Let M =UQT(U X P(U)) and define (x,a) ~ (y,b) iff x =y and
X

there exists a neighborhood of x, W< U N V,such that,
. U .V
P(i; ") (a) = P(i; ) (b).
Form the quotient ?H M/~ , where the quotient topology is
assumed, Let ﬁ:‘y - X be the projection
map induced by p which takes (x,a) to x,

M-—-——»—?{
(m is open since p i&-=open and ;'is \\\k )///

continuous),
Consider 1 (x) }l = {[x,al}. This clearly the limit:

{P(U),rU } = { <a> | (y,b) e <a> iff Ty (a)fv T (b), xeWCUNV},
er

and has a natural H-structure. Thus Y is essentially xgiﬁx'
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Since the multiplications in M are continuous, they are so

hnﬁ? , and éI is a sheaf of H-spaces generated by P on X ,

Under certain conditions the sheaféj generated by P is a
sheaf of algebraic structures, (the main requirement being
discreteness of the stalks Wx).

If ﬂ{is a sheaf of H-spaces and P is the presheaf of sections
of ?/,there is a map w:‘w - ?T defined by ¢(ax) = <ax> = {S‘S(X)&ﬂ}

which preserves the H-structure and is a homotopy equivalence

stalkwise. Thus ?{R5¢1 as sheaves of H-spaces, (see (3.8)).

A Cech cohomology theory with values in a sheaf of H-spaces
may be defined (cf. [3],[9],[13] and [14]). In the material below
we shall assume that the fiber H-structures are associative,
commutative and admit inversion (which is continuous in the sheaf
space). Then S(U,?l) inherits an associative and commutative H-

structure and admits inversion.

Definition 3.13 Let w = {wi} and v = {vj} be open covers of X

with corresponding nerves w and v. Denote the simplex Wo ey
o q

by ij...¢_, for convenience, where the nucleus N = Nw, #0.
q m=o i

Let w(q) denote the collection of g-simplexes in w,.

Define the g-cochains of w with coefficients in Z by:
cldw,z) = { £hw(q) - = | fq(io...iq) e s, )1,
where N # @ is the nucleus of io...iq, a simplex in w(q). Topolo-

gize Cq(w,Z) with the compact-open topology.
Define a multiplication " © " on Cq(w,Z) by the rule:

s . _ q,. . q,. .
(f% ¢ YAy i) = By (E1( 1), 0 (1)),
where K is the multiplication on S(N,?{) given in (3.7), and

fq,gq € Cq(w,Z).
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The inversions {px} on the stalks {HX} induce an inversion p

on S(N,Y ) which in turn induces an inversion p on Cq(w,Z). Denote

the map io...iq - GN e S(N,Y ) by 09, By an argument similar to

that given in (3.7),Cq(w,2) is an H-space with an associative and

commutative H-structure and admits inversion.

Let C;(w,E) = { £ ¢ Cq(w,2)| Ifql € F }, where Ifql =

U ifq(io...iéjf . In view of (3.7) and the above definition of
ige..i
q

multiplication on Cq(w,Z), the space C;(W,Z) is an H-space under

the induced (inherited) multiplication from Cq(w,Z).

Definition 3,14 Define a map d:CE(w,Z) - C;+1(W,Z) by:

qs . = No <9, . Ny 9, . .
(3.143a) (df )(10"'1q+1) r Nf (11"'1q+1) O pr Nf (1012"'1q+1)

Ny <9,. .
0...0 (p)r Nf (10"'ﬁ"'1q+1) O...

N q,. ,
© (p)r q+1Nf (10...1q),

q+l
where N = g W, # 0, N =£;kwi # 6, k =0,...,q+1, p is the inver-
m m

sion on S(N,qf) and (p) denotes p on the odd terms and the identity
on the even terms. To shorten the notation we will denote the right-

hand side of equation (3.14a) by:

q+1 N
k £9/: A :
(3.14b) ggo(p)r Nf (10"'k"'1q+1)'
In view of (3.9) and (3.13),
lag?} = UT@EDE,..

lo.-.lq+1

'1q+1)|’ where

qtl
q i . Nk qg,. N .
| caf )(10"'1q+1)| - kQol(p)r E (10"'k"'1q+1)|'

Lemma 3.15 The map d:CE(W,Z) - Cg+1(w,2) is an H-homomorphism,

and d2 is trivial.
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Proof 1Let £l,g% ¢ cg(w,Z) and (ig...1 ,,) ¢ w(gHl). Then by (3.13)

and (3.14),
(@(£%0eh) (1.1 ) 38 oy (£%05% (4, feeigyy)
gkgo(p)(rNkaqGrNkNgq)(io...ﬂ...iq+1),
and

(dfq®dgq)(io...i

q+1) (dfq(io...iq+1))®(dgq(io...iq+1))

qtl
k £9,; ~ :
(E@ép)r Nf (10...k...1q+1)) ©

q+l N
k o973 ~ .
(kgo(P)l‘ Ng (10-..k...1q+1)),

Since the H-structures are assumed to be commutative, these two

expressions are homotopic and d is an H-homomorphism,

Let (io.. +2) € W(q+2), then
2.4y . _ Ny qy s N s
(d°f )(10...1q+2) = @ (p)r N(df )(10"'k"'lq+2)
= q Nk q+2 Nk. q 3 ~ ~ 1
= g@o(p)r N(jgo(p)r JNkf (10...j...k...1q+2)),
j#k
where Ny AQJ i
m#k
By (3.9),
qt2 q+2
Ny Ny, s
k. q 1 ~ ~ 4 ~
Ego(p)r N(JGO(p); JNkf (lo"'j"'k"'1q+2)) ~
j#k
q+2 qt+2 q
k ~ " 1
(p)( Q (P)r KI £7(1 ...j...k...1q+2))
J#k

— (+Nol 9, . No2 £9/: = . Nog+2 €94 -
(r Nf (12...1q+2)®pr Nf (1113...1q+2)0...0(p)r q Nf (11...1q+1))

O...

N . . N . .
O(¢p)r q+20qu(11.. 1400 - -0®) (o) q+2q+1qu(1o...1q)).
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Note that Njk =Nkj and pp ~ 1. In the latter expanded form

above, each term appears with an inversion and again without an
inversion, and by the commutativity of the H-structures these terms

may be rearranged to yield:
@9 (ig...1

where 6q+2(i0...iq+2) = GN e S(IN,Y).

Lemma 3.16 Im d% and Ker d9 are H-spaces under the H-structure

inherited from C;(W,Z), q = 0.

Proof If fq,gq € Ker dq, then

R

% o9y (4 . q,. . q . .
d(f© g )(10"'1q+1) df (10...1q+1)® dg (10...1q+1)

R

q,, . q,. .
0 (lo"'lq+1) © 0 (10"'1q+1)

I

q,. .
6 (10...1q+1),
and £f% 0 gq ¢ Ker d9.

Also, 69 ¢ Ker dq, since d%9 ::6q+1. Thus Ker d9% is an H-
space under the induced multiplication of C;(W,Z).

+1 g+l
q ,gq

Let £ ¢ Im d9. Then there exist fq, gq € C;(W,Z) such

qt+l

that £971 = 49£9 and g% = 4%9, Thus

+1_ g+l . , )
e g .. = @% a%gNy,.. .1

q+1)
= @ g, 1),

'iq+1)

or fq+IO gq+1 ¢ Im d9.

eq+1

Also, € Im dq, since dqeq:: 9q+1. Thus, Im d9 is an H-

space.

Definition 3.17 Since d2 is trivial, Im dq-1 < Ker d9. Define

H;(W,E) = Ker d1/ Im dq-l, where Ker d%/im dq-1 is the set
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{ £% 1m dq-ll £9 ¢ Ker a9 } and £f90 1m dq-1 = {fQnglgq € Im dq-l}.

Under the quotient topology an H-structure is induced on H;(W,Z)
by the rule: 6 %0 1md¥tg%0 m a% Yy = (Yoo Tm 49T,

The neutral element is 8% 0 Im dq-1 = Im dq-l. Let fq denote
10 Im dq-l.

Definition 3.18 If v and w are open covers of X and w refines v,

v < w, then let pwV denote the (nonunique) projection which maps
simplexes (io...iq) € w into simplexes (jo...jr) e v, T<s q.
The projection pwV induces a map pwv#:Cg(v,Z) - CE(W,Z),

. w #_.q,. . _ M _q, . . _
defined by: p v f (10...1q) =T Nf (plo...plq), where N = N L

m
M=0Nv, ., and £1 e cd(v,5).
Jk_ le F

Note that l v #fql Cilfql and that p v ¢ is an H-homomorphism
since er is an H-homomorphism,
Lemma 3.19 49 pw # ::pw # ad .
—_ wrv v v
Proof Consider the diagram:

= elw,ny - Cq+1(v %) - ..

lw# lw#
P

e dw,n e -

Let £ ¢ Cq(v,Z), then \
w # q.9 i _ q.9 .
(df)(1 q+1)- (df)(Pl Pq+1)
q+1
PTCROLE IR S
q+1 M .q
1, PYr £ (pig. . - p1q+1)
q, w #_q
dw( f )(1 1q+1)'
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Lemma 3.20
w #
(3.20a) p" " (Ker dj) C Ker d&,

w # q-1 q-1
(3.20b) p v (Im dV ) € Im dW .

q q w #.q _ M .q, . .
Proof TLet f* ¢ Ker dV then p £ (1 ce q) r Nf (plo...plq),

by (3.18), and o+l

q, w #_.q . _ N  w #.q,,. " .
dw( £ "'lq+1) kg_)o(p)r N(p v f )(10...k '1q+1)
q+1
N M
k k q . n .
O (p)r N T Nkf (plo...k 1q+1)
q+1 q
@ My i
@I E PRt ),

where M =d;kwpim’ N, =d;kvim’ and N =N 4

But dgfq4z 9q+1, so the right-hand side of the equation is

m

trivial in c§+1(w,2).

- q .
Let £%¢ Im al 1 then £ 01) = 2 (e g Yageiina.i),

L
and
w # q _ M q B .,
(p, £, q) =1 . f éplo...plq)
M M -1
k o4 . n .
NG, (PIr Kg (Plo...k...plq))
q
M -1
~ _ 0O k o9 ; n .
= k=0(p)r Ng (plo...k...plq)
q
N M _q-1, . ) .
EEO(P)I NE . 8 (plo...k ..pi)
q
W # 4" 1 .
® T k P §
2 ()t (p Y CORPRF PR
_ .q-1, w # q-1,,. .
= dw (p v 8 )(10"'lq)’
thus p # € Im ds-l.

Definition 3.21 By Lemma 3,20, pwv# induces an H~homomorphism

w #

w *
v :Hg(v,Z) - H;(W,Z) by the rule: p (fq) fq), where

£le H;(V,Z).
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Lemma 3.22 1If pwV and ﬁwv are projection maps of w to v, then

w * AW %
~
pV pV

Proof Défine a map D: Cq(w z) = Cq 1(w %) by:
1

q = My £q
Df (1 . ) = O (p)r f (pig. ..Plkplk...pl 1) s
%k q-l
where Mk Qo p1 Qk , N =N v,
Then
q

q gy /s . Mk q, . . N A,
(pdf* © dpf )(10...1q) (EQ ®)r df (pi ...plkplk...plq))

Pk ned ;
© ( (p)r Df (i ...ﬁ...lq))

q
2, <p)erN<h<go<p)erhM £1(ptoe oo e P1)))

h#k
O é ( )rPk ( g ( yekh, £3¢pi pi pi pi
k20 PIT Py ln2o tPT Khp * AP s oy PAPL -k
h#k
Expanding and simplifying
(mdfd o deq)(i i) (”W *o pwv#)(io...iq).

Let fq € H;(V,Z), then £9 ¢ Ker dq, thus

~ * * ~ # #
@ epp )E =@ Topp NElx (pd o anyed .

But DAf? = 69 and dpfd ¢ Tm a9, thus (Dd © dp)£? = 6 and
"W*NW*
P, ¥p -

Definition 3.23 By the definition of pwv# and (3.9), the collec-

*#
tion {H;(W,Z), pwvc} forms an h-direct system., Define the cohomology

of X with values in 7[and supports in F as the limit of this system:

&) = L {wz), o' ).
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Theorem 3,24 H;(X,ﬂ{) is an H-space.

Proof If y<v<w<y , then

(3.248) 2% G, (00 " 00" T )0 o X )0 )

and

Vv * Vv % ' N\)* '
(3.24b) (e () =, (LED

b

since the connecting maps are H-homomorphisms (see the diagrams

below),
p p pxﬁ o P P
Hp (B,2) X Hp(v,Z) = Hp (X,2) X H(X,Z)
Pwu* X Pwv*
\
B @,2) x B @,2) by
p"w P
- 4 i pr pw( ]
 (@,%) H (X,Z)
p\) % X p\) *
HE (4,8) X HD(u,E) - > HZ(V,D) X HL(V,Z)
o pv %* l By,
HE (4,Z) - > Hy (v,Z)

The limit space HE(X,?{), with the limit topology, has a
continuous multiplication defined as follows:

w(x,x,) = uw(pwu (§u),p v &)

where LN HE(X,?{) and p,v < W .

The definition is independent of the choice of w, for if
w' > p,v then there exists a cover w" > w',w such that
W *x w * w * wn % w' *
o Go®y &ep G = 0 Wy (e ),

by (3.24a) and (3.24b) above.

1
V&
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Thus (0, (500", &) = @ TG00 )

i

Also, the definition of i is independent of the choice of
representative of the elements of H%(X,?l) by an argument similar

to that above, Denote {I( §M’ zv) by 59 © Xy -

Denote 9u by 8, then 8 © X, = gﬂ O] X, = uv( SV, Xv) =X,
Similarly, X, © 0 = X,

The choice of representative of 6 is independent of the choice
of representative of Xy since the connecting maps are H-homo-

morphisms. Thus I’ determines an H-structure on H;(X;ﬂf).
If the spaces Hg(W,Z) have inversions P? then an inversion

p on HE(X,?{) is defined by p(x) = p(x,) . Denote p(x,) by (Ev)-l’

then (£,)005,)"" = 1, (x50, (x,)) = 8, = &

If the H-structures on the spaces p(W,Z are associative
p

and/or commutative, then the H-structure on H;(X,?I) is associa-
tive and/or commutative in view of the definition of the H-struc-

ture on H;(X,?{).

The above cohomology theory may be shown to satisfy the axioms

of a sheaf cohomology theory (for sheaves of H-spaces).

Definition 3.25 By a cohomology theory with coefficients in a

sheaf of H-spaces, we mean a covariant 8-functor ([14]) from the
category of sheaves of H-spaces on a given space to the category
of H-spaces which satisfies the following axioms (cf. [5], [ 9]
and [13]);

. HREH) ® s &),

11, If 00— H' g Y Q‘H" - 0 1is an exact sequence of sheaves
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of H-spaces on X, then the sequence
8 +1
c o EEY S &Y
is exact,

III. Hg(x,ﬁ{) = 0 if Y is fine and p > 0.

Ol*
hal

H,E+1(X,‘H) - ...

Additional properties of the above cohomology will be explor-
ed below, We begin by demonstrating the above axioms. The follow-

ing definition is listed for later reference.

Definition 3.26 A sheaf of H-spaces ¥ is fine iff for every fine

covering of a locally compact space X ([3]) or locally finite cover

{vi} of X ([14]) there exist sheaf maps ai:cy '*'W such that:
(3.26a) lai| Civi ,

(3.265) O oy = 1y .

It is clear that if 1:?’-*7{ is the identity map, then
"l x, %) 5 ulx,%). Also, if Y E Y Bain, then Brax =
(Bay*:HI (X, ) ") = Hg (X, Y ™).

Theorem 3,27 I-L;(X,‘}() ~ 8. (X, %)

Proof We are assuming HE(X,?V) is trivial for q < 0, therefore
o - 0 0.0y . . _ No 0, Ny £9/: v
HF(V,Z) Ker d°, and (d £ )(1011) r Nf (11) Or Nf (10) ~

1, . =
6 (1011), where N = A N A 3 '
o 1 j

However,
Ny 0. N, -0, N1 co,.
(r Nf (11) O pr le (10)) ©r Nf (10)
- No 0, Ny o, Ny c0,.
~ T Nf (11) ®© (pr Nf (10)Or Nf (10))
~ NO 0, Nl o,,
~ T Nf (11) Or Ne (10)

N .
~r °Nf°(11),
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1., . N.: o/ NIO. NO.N
and © (1011) Or le (10) ~ T Nf (i,), thus r ONf (11) ~
Nlo’
T Nf (10).
Let {ht} be the latter homotopy of fo(il) and f°(io) on

A n v, Then {ht} may be extended to the path components of
0 1

Im fo(il)|v. N v, and Im £O(i )lv. Nv, over v, Uv, e v to
i i o/l 7i i i,7 i

obtain a section which is a homotopy of f°(io) on v, and fo(i

P
[o]

on v, . Thus | fo(ij) determines a section of X,
1 ]

Let s € SF(X,a{), then s determines a cocycle in HS(V,Z]).

The correspondence above determines a homomorphism Ker d° —

SF(X,w ) with trivial kernel, thus H;(V,Z) ~ SF(X,?{), as an
H-isomorphism, and Hg(X,ﬂ{) ~ SF(X,7/).
1 & E,n
Let 0 ~»9' >S9 ﬂ — 0 be an exact sequence of sheaves of
H-spaces on X, that is Im & ~ Ker B, where Ker B = {ae?{lﬁ(a)zﬁ},

o and B as defined in (3.8).

Theorem 3.28 Let 0 —H' g 8 4" - 0 be an exact sequence of

sheaves of H-spaces on X, then there exists a map

iz, 9,

6q:H.g(X,‘H "y - H.;
such that the sequence

%
oo HIGLH Q*Hl‘}”(x,v}{') g H{}H(X,‘H) - ...

is exact.

q
Proof Let v = {Vi} be an open cover of X and N =onVi 0.
It is clear from (3.13) and (3.14) that o* and B* commute with

the connecting maps required for the cohomologies involved here.
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#
& od Q" g BF ~d,, smy
0 CF(V,Z') CF(V,Z) CF(V,Z ) 0
,dd a4 Lad
+1 TS| 8" g+l

0 »cTw,2y) S i (v,2) B T w,2m) » 0

F F F

1 £l ¢ H;(V,Z”), then define 63,H§(V,2") - H§+1(v,2') by

5(EQ) = (5qu) = (a#'lqu#'lfq) )

The map 69 is well defined and commutes with the connecting

maps.

otd9n? for some he ¢ C;(V,Z'), since g%Gpgg € Ker B#. Thus

@%dopa%ed) 0 ot ahm?) = a%d 0 p(a%gfont,atn) ~ 6T,
-1 -
or @ la% = @ la%d) ¢ w5,

The map 69 is natural by the following argument, Let the

diagram below have exact sequences and commuting squares,

o -4 Y Ban - o

,Lk lp,s lv
0 K EHEKn - o

The following diagram results:

R

q
B, S e, %

54

ml,Km S B,

Let £l ¢ Hg(v,z"), then

A8 9(£9) = axt la%B# EY = oo La%a 1Yy,

and Sxvk(£9) = ox(upEdy = @ 1A% ey,

But B# Lu#fd ~ et Le? and Mot ! ~ 84 1u# on Ker B#.
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Also, aﬁm#:z u#dq, by definition of d. Thus,
ot ta%# 1eYy ~ @ Nura%e leY o @ la%ereYy o

G 1a%e Loredy

A long exact sequence results:

67'\‘ *
o e S ey % e -

Exactness at Hg(v,Z"): Let £q ¢ Im 8%, thus Eq = B*(&q) = Efgq.

Then 6% (£9) = 697 = o 1a%B4 1e9 = o 1q% % = 7ML

, and Im B* C

Ker &%,

Let fq ¢ Ker &%, thus 6*(§q) = gij = §q+1‘ But 699

a#-ldqﬁ#-lfq, so gq € B#-lfq has the property that B*(gq) = Eq.

Exactness at H§+1(v,2'): Let £q+1 € Im 8%, then £q+1 = a#_lqu#-lgq,

where gq € H;(V,Z"), and a*(£q+1) = dqﬂ#-lgq = 9q+1’ or Im 0% C

Ker o*, 1
Let £q+1 € Ker a*, then a#fq+1 ¢ Im d¥ and if gq e B#d a#fq+}
then 6%(gd) = £91,

Exactness at H§+1(V,Z): Let £q+l € Im a*, then EQ+1 = a*(§q+1) =

g+l g+l

attg L(y,5') and Bx £y = phog®! = o97L,

for some g €

Let £q+1 € Ker B*, then B*(£q+1) = 9q+1 and there exists an
g+l

Hy

e+l ¢ (v,Z') such that atg®l o T or ax(g®y =

element g
gL
Passing to the 1limit of the sequence above, one obtains the

desired exact sequence,

Theorem 3,29 H;(X,?{) is trivial for q > 0, if ﬁ{is fine,

Proof Let v = {vi} be a fine cover or locally finite cover,

{ai} a set of sheaf maps with supports in {Vi}, and f&i} the
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induced maps on S(U,H ).
Define a map D:C;(V,Z) - C;-l(V,z), by

q . . =0% q,.. .
(Df )(10...1q_1) jeﬂaj(f (Jlo...lq_l)).
q-1 q
Then if x engovin>vj’ (Df )(10...1q_1)(x)1z Gx.
Note that rﬁjsl C-Is| for all s ¢ S(X,ﬂf), thus lqul c |fq|.

Combining d and D,

q
q-1..q9,. . _ Ny q,. .
d* "pf (10...1q) Ego(p)r NDf (lo"'ﬁ"'lq)

q

N ~
= k q'- .
Ego(p)r N(jgﬁyjf (Jlo"'ﬁ"'lq))’

qeq.. . - ~ Q-9 . .
and Dd’f (10...1q) Hgnqhd f (hlo...lq)
~ q-|_1 Mk q ] P |
B hgn?h(kgo(p)r Mf (lo"'ﬁ"’lq+1))’
P ] <1 - . .
where 10"'1q+1 hlo...lq.

~ Q,.. . ~ B0 i = .
Note that ajf (]10...ﬁ...1q) ~ 0 if vy N L @, thus j

must take on the values io...iq in order to obtain nontrivial
results,.

Expanding and regrouping, one obtains

q
q-1 o padyed s c N ~  q,. L PP .
(d* "D © Dd)f (10...1q) ~ ngoainf (10...1q) ~ f (10...1q),

-1 q
or d¥" Do pdl~1 .
cg(v,Z)
q q-1 q L .
Thus Ker d* = Im d and H_F(V,Z) = 0, The result is immedi-

ate.

It is of interest to determine other properties which this
cohomology theory enjoys. Mapping theorems present problems, for
even though the inverse(and direct)image sheaf of a sheaf of H-

spaces is well defined, the induced maps on the cochain spaces
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are not well defined in general. The excision property is satisfied,
however. We begin the discussion with a definition of the relative

cohomology spaces.

Definition 3.30 Let A C X, and i:A — X the inclusion map. We

shall assume that A is locally closed in X if F is a paracompacti-
fying family of supports.
The inclusion map induces an onto map

F..q 5 4
17 :Ch(v,5) CF\A(le,E),

where le = {vi € v| v, NA#613, (every map in CJy, (v|4,D)

q
Fla
may be extended trivially to Cg(v,Z)), by the scheme

ey ok : S« P . . - 9/ .

i (€ )é;o;--Jq) g1 = £ (Jo---Jq),
where (J_...0) ¢ v|a, £%e clf,l(v,Z), and F][A = {BeF| BcA}.

Define C;(V,VIA,Z) = Ker it . Then, since dq(Ker it) =
Ker iﬁ 5 H;(v,le,Z) is well defined and inherits a multiplica-
tion from C;(V,Z).

In turn i# induces a ma i*o v z) - d (VIA %), since

» Ly P V-H-F ’ H-FIA ’ s
Je

ifa% ~ a%¥ | defined by i (£dy = ifed |
v v v = v=

AW * W * ¥ . L% . A
Note p =p ‘Ker i ¢ Ker i* — Ker i, since i p ~
v \ v v W whov
wlA * % W * A
P |VIA i, thus {H;(V,VlA,Z), P, } forms an h-direct system.

Define the relative cohomology space as the limit

i) = L ade,van), 377 .

Theorem 3.31 If UC X is open, U is contained in the interior

of ACX, and j:X \ U,A\ U - X,A is the inclusion map, then
* % N~ &

for any family of supports F,
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Proof Consider the absolute spaces, that is j:X \ U - X, and
let v be an open cover of X and w = j-l(v) an open cover of X \ U.

Then, by (3.30), the following short exact sequence is deter-
mined by j: "
-~ 4 - o4 1 a4 -

0 CF(V,W,Z) CF(V,E) CFIA(W,Z) 0 .

Let £ ¢ c;(v,w,Z), then fq(io...iq) € S(N,H ), where

q #
= HFed o g4 9 3
N Hlovi # @, and Jvf 01 ¢ CFIA(W’ ).

But (j#fq)(io...iq) = fq(jio...jiq), and j(io...iq) =

(io...iq), so j#fq«: 09, or C;(V,W,Z) is trivial and jﬁ is

an isomorphism,

* *
Thus jV is an isomorphism and j is an isomorphism on the

cohomology spaces as desired.
The relative case is obtained by the following argument,

Restrict the covers of X to satisfy:v, NU# @ implies v, C A,

k
Such a collection of covers is cofinal in the collection of all open
covers of the pair X,A (see p. 243 [8]).

The following diagram is determined:

T]# i#

- q __)V q __’V q -
0 CF(v,le,Z) Cp (v,Z) CFlA(le,Z) 0
ot K K
JV I Iy i JVIA
# 7
0 - ciew,wlan) - clwr ¥

C;IA(WIA,Z) -0

The rows are exact and the maps jﬁ and jﬁlA are isomor-

phisms by the above argument. Also, square I. commutes and
square IT, commutes up to homotopy.
Thus ﬁﬁ satisfies

ot

Cp(v,v|a,z) ~ 10

ok o
Crv,v|A,E) = WiTcd(v,v[a,2) = 3 cl(v,v[a,5),
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and since ﬂﬁﬁﬁ = j#n#

A, . .
ol the map i, is onto and induces an iso-

morphism 33: Hg(v,v\A,Z) - Hg(w,wlA,Z).

Take limits to obtain the desired isomorphism on the co-

homology spaces,

If ﬂ{ is a sheaf of H-spaces such that ﬁT = U?{x is a sheaf

of algebraic structures (cf. (3.12)), then the following theorem
demonstrates that the sheaf cohomology theory is contained in the

cohomology theory defined above.

* * o~
Theorem 3,32 HF(X,W ) ~ HF(X,7{) as H-spaces.

* % o
Proof Consider the cochain spaces involved,,CF(v,Z) and CF(V,Z).

By (3.12), there is a map ¢:?('* ?T‘which is a homotopy equivalence
* % * o~
on stalks. Thus, the map ¥ :CF(V,Z) - CF(V,Z) is a homotopy equiva2

lence and the cochain spaces are isomorphic as H-spaces. The desir-

ed isomrphism follows immediately.,
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