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Teaser: Our goal was the design and analysis of effective numeri-

cal schemes for training deep neuronal networks based on optimal
control formulations.

In the present work we explore numerical methods inspired by opti-
mal control theory to train image classifiers [1]. In a first step, we
consider a prototypical formulation to develop a generic framework
for solving non-linear optimization problems [2,3,4]. In a second
step, we study an optimal control formulation for deep learning [1].
Here, we arrive at a large scale, non-linear optimization problem with
ordinary differential equations (ODEs) as constraints. We revisit dif-
ferent methods to solve the associated system of ODEs considered
in [1]. For our future work, we plan to derive the associated opti-
mality conditions and devise efficient algorithms for their solution.

Non-Linear Least Squares
To develop a simple framework classification of imaging data we
considered a non-linear least squares problem.

Problem Formulation and Optimality Conditions
Generally speaking, reqularized non-linear least squares problems

are of the form

1
minimize f(x), where f(x) = iHa(Ax) —y|5+ %HLXH% (1)

xXcR”"

where f : R” — R Is the objective function, o : R” — R Is a non-
linear “'activation'’ function, y € R™ is a given dataset, and ||Lx||5 is
a regularization operator [5], the contribution of which is controlled
by the parameter o > 0. The first order optimality conditions
of (1) are given by Vf(x*) = 0, i.e., the gradient Vf(x) € R”
of f vanishes at optimality [2,3,4]. The gradient of (1) is given
by VF(x) = A" diag(c’(Ax))r + aL'Lx, where r .= o(Ax) — y
denotes the residual and ¢’ is the first derivative of o. To solve the
non-linear system V£ (x*) = 0 we considered second-order optimiza-
tion algorithms, which requires second-order derivative information.
The Hessian matrix V2f(x) € R™" associated with (1) is given
by V2f(x) = A’ diag(r ® o(Ax) + 0'(Ax) ® o'(Ax))A + aL'L,
where ® : R"” — R" denotes the Hadamard product. Based on
this non-linear extension of the classical least-squares problem, we
developed methodology that can be used to “'learn’” a weight matrix
X to enable the classification of imaging data. We arrive at the (un-
regularized) matrix-valued, non-linear least squares problem

1
minimize f(X), where f(X) = =||c(AX) =Yz  (2)
XERn" 2

where f : R™ — R, || - ||# is the squared Frobenius norm,
o . R™ — R s the activation function, A € R"" X & R"”"
and Y € R"". The gradient of (2) is given by Vf(X) =
A'0'(AX ® R) € R™", where ¢’ is the first derivative of o and
R = 0(AX) —Y denotes the residual. The action of the Hessian
matrix V2f(X) on X is given by [V2f(X)](X) = A" (¢'(AX) ®
o'(AX)®AX+R®c"(AX)® AX), where 0" denotes the second
derivative of o.

Numerical Optimization
\We use an iterative line search scheme of the form

xk+1:xk—ukBka(xk), /(:1,2,...

Here, k € N is the iteration index and u, € (0,1] is deter-
mined using a backtracking line search [2]. The search direction
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is given by s, .= —B,Vf(xx). We consider Newton's method with
B, = (V?f(xx)) !, where V2f(xy) is the Hessian matrix. We
iInvert the Hessian matrix using a matrix-free, conjugate gradient
method with a superlinear forcing sequence. As a stopping crite-
rion, we consider the relative reduction of the norm of the gradient
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Figure 1: The MNIST dataset consists of handrawn numbers O through
9. [t contains 10,000 testing images and 60,000 training images of the
size 28 x 28. We show 24 exemplary images from the training data.

Results

We considered the MNIST dataset shown in Figure 1. We selected
a tolerance of 1le—2 for the optimization. Our Newton method
converged after 5 Newton iterations (1, 2, 17, 80, and 565 PCG
iterations per Newton iteration). We reduced the norm of the gra-
dient from 1.29e5 to 6.34e2. We obtained an accuracy of =~ 84%
for the training and testing dataset.

Optimal Control for Deep Neural Networks
The optimal control formulation for training a deep neural net-
work is given by [1]

miniqr)nize dist(Cpred, C) + axreg(W, w, { K} 1, {bi}74 .

subjectto Y11 =Y, + ho(Y ;K + b)), ()
J=0,1,---,n—1. Here, dist : R>" x R>™ — R measures the
discrepancy between the predicted classification Cpeq € R>™ and
the labels (data) C € {0,1}*™. The unknowns @ of the opti-
mization problem (3) are the weights K; € R"" and biases b, of
the "ResNET" forward propagation and the weights W < R"™
and biases p € R that parameterize the classifier. Consequently,
& = {W, pu {K}_,, {b}_}. The prediction Cpeq Is computed
according to Cpreq = g(YoW + es ® w), where Y, is the final state
computed by solving the forward propagation, es = (1, ..., D' e
R®, and g : R>"" — R>" s the so called hypothesis function.

Forward Propagation

The forward propagation in (3) is given by the constraint Y1 =
Y, +ho(Y;,K;+bj) forj=1,..., n, where n denotes the number
of layers and o : R>" — R>" represents an activation function.
One can Iinterpret the forward propagation as an explicit Euler time
discretization of the nonlinear ODE d,y(t) = o(K'(t)y(t)+ b(t))
with initial condition y(0) = yg [1]. Similarly, it is possible to frame
the forward propagation as a continuous differential equation that
is inspired by Hamiltonian dynamics [1]. The associated coupled
system of ODEs is given by d:y(t) = o(K(t)z(t) + b(t)) and
diz(t) = —o(K ' (t)y(t) + b(t)), with initial conditions y(0) = y,
and z(0) = 0, respectively.

Numerical Time Integration

We considered two approaches for modeling the forward propaga-
tion. First, the explicit Euler method used in (3). To stabilize

the forward propagation we used antisymmetric weight matrices [1],
which lead to Y11 = Y, + ho((1/2)Y(K; + K| — ~I) + b)).

To solve the second system given above we considered a symplec-
tic Verlet method [1], which yields the numerical scheme z; 1 =

Zj_1— ha(KJTyJ- +bj)and y;j . = y; + ha(KJ-zH% + b)).

Results

We report results for the different numerical time integration
schemes for the two variants of the continuous interpretation of
the forward propagation in Figures 2 and 3.
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Figure 2: Phase plane diagrams for n = 21 identical layers using an Eu-
ler time integration for the forward propagation. From top left to bottom
right, we show the initial configuration of three features y, (blue), y, (red),
and y5 (green). Subsequently, we show results for different test matrices
matrices K at layer 21 using an unstable explicit Euler scheme (second,
third, and fourth figure) and the antisymmetric discretization (last two
figures). We see that the antisymmetric discretization remains stable.
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Figure 3: Phase space diagrams for the forward propagation using
the Verlet method. We show the behavior of the network for n =
500, 1000, 5000 identical layers.

Conclusions

We have developed and studied computational methods for solv-
Ing non-linear optimization problems. We have derived optimality
conditions and designed a Newton-type method for their solution.
In addition, we have considered an optimal control formulation for
training deep neuronal networks. We have studied different numeri-
cal schemes to solve the forward propagation. For future work, we
plan to derive the optimality conditions and design effective numeri-
cal methods for their solution.
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