
Optimization and Optimal Control in Machine Learning

Ali Hamza Abidi, Syed & Andreas Mang
Department of Mathematics, University of Houston, Houston, TX, USA

Teaser: Our goal was the design and analysis of effective numeri-
cal schemes for training deep neuronal networks based on optimal
control formulations.

In the present work we explore numerical methods inspired by opti-
mal control theory to train image classifiers [1]. In a first step, we
consider a prototypical formulation to develop a generic framework
for solving non-linear optimization problems [2,3,4]. In a second
step, we study an optimal control formulation for deep learning [1].
Here, we arrive at a large scale, non-linear optimization problem with
ordinary differential equations (ODEs) as constraints. We revisit dif-
ferent methods to solve the associated system of ODEs considered
in [1]. For our future work, we plan to derive the associated opti-
mality conditions and devise efficient algorithms for their solution.

Non-Linear Least Squares
To develop a simple framework classification of imaging data we
considered a non-linear least squares problem.

Problem Formulation and Optimality Conditions

Generally speaking, regularized non-linear least squares problems
are of the form

minimize
x∈Rn

f (x), where f (x) :=
1

2
‖σ(Ax)− y‖2

2 +
α

2
‖Lx‖2

2, (1)

where f : Rn → R is the objective function, σ : Rm → Rm is a non-
linear ‘’activation‘’ function, y ∈ Rm is a given dataset, and ‖Lx‖2

2 is
a regularization operator [5], the contribution of which is controlled
by the parameter α > 0. The first order optimality conditions
of (1) are given by ∇f (x?) = 0, i.e., the gradient ∇f (x) ∈ Rn
of f vanishes at optimality [2,3,4]. The gradient of (1) is given
by ∇f (x) = AT diag(σ′(Ax))r + αLTLx , where r := σ(Ax) − y
denotes the residual and σ′ is the first derivative of σ. To solve the
non-linear system∇f (x?) = 0 we considered second-order optimiza-
tion algorithms, which requires second-order derivative information.
The Hessian matrix ∇2f (x) ∈ Rn,n associated with (1) is given
by ∇2f (x) = AT diag(r � σ(Ax) + σ′(Ax) � σ′(Ax))A + αLTL,
where � : Rn → Rn denotes the Hadamard product. Based on
this non-linear extension of the classical least-squares problem, we
developed methodology that can be used to ‘’learn‘’ a weight matrix
X to enable the classification of imaging data. We arrive at the (un-
regularized) matrix-valued, non-linear least squares problem

minimize
X∈Rn,n

f (X), where f (X) :=
1

2
‖σ(AX)− Y ‖2

F , (2)

where f : Rn,n → R, ‖ · ‖2
F is the squared Frobenius norm,

σ : Rn,n → R is the activation function, A ∈ Rn,n, X ∈ Rn,n
and Y ∈ Rn,n. The gradient of (2) is given by ∇f (X) =
ATσ′(AX � R) ∈ Rn,n, where σ′ is the first derivative of σ and
R := σ(AX)− Y denotes the residual. The action of the Hessian
matrix ∇2f (X) on X̃ is given by [∇2f (X)](X̃) = AT(σ′(AX) �
σ′(AX)�AX̃+R�σ′′(AX)�AX̃), where σ′′ denotes the second
derivative of σ.

Numerical Optimization

We use an iterative line search scheme of the form

xk+1 = xk − µkBk∇f (xk), k = 1, 2, . . .

Here, k ∈ N is the iteration index and µk ∈ (0, 1] is deter-
mined using a backtracking line search [2]. The search direction

is given by sk := −Bk∇f (xk). We consider Newton’s method with
Bk = (∇2f (xk))−1, where ∇2f (xk) is the Hessian matrix. We
invert the Hessian matrix using a matrix-free, conjugate gradient
method with a superlinear forcing sequence. As a stopping crite-
rion, we consider the relative reduction of the norm of the gradient
‖∇f (xk)‖2

2.

Figure 1: The MNIST dataset consists of handrawn numbers 0 through

9. It contains 10,000 testing images and 60,000 training images of the

size 28× 28. We show 24 exemplary images from the training data.

Results

We considered the MNIST dataset shown in Figure 1. We selected
a tolerance of 1e−2 for the optimization. Our Newton method
converged after 5 Newton iterations (1, 2, 17, 80, and 565 PCG
iterations per Newton iteration). We reduced the norm of the gra-
dient from 1.29e5 to 6.34e2. We obtained an accuracy of ≈ 84%
for the training and testing dataset.

Optimal Control for Deep Neural Networks
The optimal control formulation for training a deep neural net-
work is given by [1]

minimize
Φ

dist(Cpred,C) + α reg(W,µ, {K i}ni=1, {bi}ni=1)

subject to Y j+1 = Y j + hσ(Y jK j + bj),
(3)

j = 0, 1, · · · , n − 1. Here, dist : Rs,m × Rs,m → R measures the
discrepancy between the predicted classification Cpred ∈ Rs,m and
the labels (data) C ∈ {0, 1}s,m. The unknowns Φ of the opti-
mization problem (3) are the weights K i ∈ Rn,n and biases bi of
the ‘’ResNET‘’ forward propagation and the weights W ∈ Rn,m
and biases µ ∈ Rm that parameterize the classifier. Consequently,
Φ := {W,µ, {K i}ni=1, {bi}ni=1}. The prediction Cpred is computed
according to Cpred = g(YnW + es ⊗ µ), where Yn is the final state
computed by solving the forward propagation, es := (1, . . . , 1)T ∈
Rs, and g : Rs,m → Rs,m is the so called hypothesis function.

Forward Propagation

The forward propagation in (3) is given by the constraint Y j+1 =
Y j + hσ(Y jK j + bj) for j = 1, . . . , n, where n denotes the number
of layers and σ : Rs,n → Rs,n represents an activation function.
One can interpret the forward propagation as an explicit Euler time
discretization of the nonlinear ODE dty(t) = σ(KT(t)y(t) +b(t))
with initial condition y(0) = y 0 [1]. Similarly, it is possible to frame
the forward propagation as a continuous differential equation that
is inspired by Hamiltonian dynamics [1]. The associated coupled
system of ODEs is given by dty(t) = σ(K(t)z(t) + b(t)) and
dtz(t) = −σ(KT(t)y(t) + b(t)), with initial conditions y(0) = y 0

and z(0) = 0, respectively.

Numerical Time Integration

We considered two approaches for modeling the forward propaga-
tion. First, the explicit Euler method used in (3). To stabilize
the forward propagation we used antisymmetric weight matrices [1],
which lead to Y j+1 = Y j + hσ((1/2)Y j(K j + KT

j − γI) + bj).

To solve the second system given above we considered a symplec-
tic Verlet method [1], which yields the numerical scheme z j+12

=

z j−12
− hσ(KT

j y j + bj) and y j+1 = y j + hσ(K jz j+12
+ bj).

Results

We report results for the different numerical time integration
schemes for the two variants of the continuous interpretation of
the forward propagation in Figures 2 and 3.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 2: Phase plane diagrams for n = 21 identical layers using an Eu-

ler time integration for the forward propagation. From top left to bottom

right, we show the initial configuration of three features y 1 (blue), y 2 (red),

and y 3 (green). Subsequently, we show results for different test matrices

matrices K at layer 21 using an unstable explicit Euler scheme (second,

third, and fourth figure) and the antisymmetric discretization (last two

figures). We see that the antisymmetric discretization remains stable.

-0.1 -0.05 0 0.05 0.1

-0.1

-0.05

0

0.05

0.1

-0.1 -0.05 0 0.05 0.1

-0.1

-0.05

0

0.05

0.1

-0.1 -0.05 0 0.05 0.1

-0.1

-0.05

0

0.05

0.1

Figure 3: Phase space diagrams for the forward propagation using

the Verlet method. We show the behavior of the network for n =

500, 1000, 5000 identical layers.

Conclusions
We have developed and studied computational methods for solv-
ing non-linear optimization problems. We have derived optimality
conditions and designed a Newton-type method for their solution.
In addition, we have considered an optimal control formulation for
training deep neuronal networks. We have studied different numeri-
cal schemes to solve the forward propagation. For future work, we
plan to derive the optimality conditions and design effective numeri-
cal methods for their solution.

References

1. E. Haber & L. Ruthotto, Stable Architectures for Deep Neural Networks,
Inverse Problems 34 014004, 2017.

2. J. Nocedal & S. Wright, Numerical Optimization, Springer Science, 1999.

3. S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University
Press 2004.

4. A. Beck, Introduction to Nonlinear Optimization: Theory, Algorithms, and
Applications with MATLAB, SIAM, 2014.

5. H. W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems,
Springer, 2000.

PURS: Research Poster — Houston, TX — Undergraduate Research Day April 2021


