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Teaser: Our goal is the design and analysis of effective nu-
merical schemes for solving linear inverse problems of the form
Ax = y obs. We extend our prior work presented in [1].

Mathematical Problem Formulation
We assume that the observed data y obs = Ax+η, where x ∈ Rn,
A ∈ Rm,n, y obs ∈ Rm, and η ∝ N (0, In) is a random perturba-
tion. In the inverse problem, we seek x given y obs and A [2]. In
general, A will not be invertible and y obs ̸∈ colA. We can formu-
late the solution of Ax = y obs as a regularized least squares
problem (RLSQ) of the form

minimize
x∈Rn

f (x), where f (x) :=
1

2
∥Ax −y obs∥22+

α

2
∥Lx∥22. (1)

The first term of f measures the discrepancy between the model
prediction y pred := Ax and y obs. The second term is a (Tikhonov-
type) regularization functional with regularization operator L ∈
Rn,n and regularization parameter α > 0. This regularization
model is introduced to alleviate mathematical issues with the
ill-posedness of the inverse problem [3, 2]. We will see that
the choices for L and α greatly affect the computed solution
x sol of (1). We consider the following regularization operators:
(i) LTL = In (identity) and (ii) L

TL = −

∇

(Laplace operator).

Numerical Methods
Optimality Conditions

For an admissible solution x sol ∈ Rn of (1) we require that the
first derivative ∇f (x sol) of f vanishes, i.e., ∇f (x sol) = 0. We
have ∇f (x) = AT(Ax − y obs)+αLTLx . The first-order optimal-
ity conditions are

AT(Ax sol − y obs) + αLTLx sol
!
= 0. (2)

This equation is referred to as the normal equation.

RLSQ & TSVD

We consider different approaches to solve Ax = y obs for x . We
can directly solve the optimality system (2); the numerical solution
is given by x sol = (A

TA + αLTL)−1ATy obs. Alternatively, we can
compute the pseudo-inverse A+ of A based on a truncated sin-
gular value decomposition (TSVD). That is, we compute the
factorization A = USV T of A, where U ∈ Rm,m and V ∈ Rn,n
are orthogonal matrices for the left- and right-singular vectors,
respectively, and S ∈ Rm,n is a diagonal matrix for the singular
values.
Now suppose that A has rank r ≪ min{n,m}. Un-
der this assumption, U = [ u1 . . . ur ur+1 . . . um ] ∈ Rm,m,
S = diag(σ1, . . . , σr , 0, . . . , 0) ∈ Rm,n, and V =
[ v 1 . . . v r v r+1 . . . v n ] ∈ Rn,n. Consequently, we can decompose
A into

A = USV T = UrSrV
T
r =

r∑
i=1

σiu iv
T
i ,

where Ur = [ u1 . . . ur ] ∈ Rn,r , V r = [ v 1 . . . v r ] ∈ Rn,r ,
Sr = diag(σ1, . . . , σr) ∈ Rr,r . The pseudo-inverse is given by

A+ = V rS
−1
r U

T
r . It follows that the solution x sol of our problem

is given by

x sol = A
+y obs = V rS

−1
r U

T
r y obs =

r∑
i=1

σ−1i (u
T
i y obs)v i. (3)

If we do not know the rank r of A or the singular values do not
decay completely to zero, we can compute a rank r approximation
to A, i.e., A = USV T ≈ UrSrV T

r . We illustrate this in Figure 1.

0 50 100 150 200 250

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

index i

si
ng
la
r
va
lu
es

σ i

original

r = 5

r = 25

r = 50

Figure 1:Visualization of the compression of a matrix using low-rank

approximations. We show the decay of the singular values for a consid-

ered matrix A of size 256 × 256 (UH logo; right: top left) on the left.
The remaining figures (left: from top right to bottom right) show the

reconstruction of the original matrix A using low rank approximations

UrSrV
T
r for different ranks r ∈ {5, 25, 50}.

We can establish a connection between the TSVD and the RLSQ
in (1) by introducing the regularized solution operator Rα,

Rαy obs =

n∑
i=1

gα(σi)(u
T
i y obs)v i.

Here, gα is a filter function. For the TSVD gα(z) = 1/z for
z ≥ α and gα(z) = 0, otherwise. For the Tikhonov regulariza-
tion operator LTL = In, we obtain gα(z) = z/(z

2 + α), and,
therefore,

x sol =

n∑
i=1

σi

σ2i + α
(uTi y obs)v i.

Randomized SVD

Computing the SVD for large-scale inverse problems can become
computationally prohibitive. One way to alleviate the computa-
tional costs of constructing the low-rank approximation to A is to
consider randomized algorithms [4, 5]. We are going to consider
a prototype implementation of a randomized SVD. The pseudo-
code for this algorithm is given below.

1: procedure rSVD(A, r)
2: draw random matrix Ω ∈ Rn,r
3: Y ← AΩ
4: Q← qr econ(Y )
5: B ← QTA
6: [Ũ,S, V ]← svd econ(B)
7: U ← QŨ

Numerical Experiments
In this section we present numerical experiments for the procedure
detailed above. We compare the TSVD to the regularized least
squares solution.

Synthetic Test Problem

We consider a synthetic test problem to study the performance of
the proposed methodology. The operators in (1) are as follows:
For A, we consider a Helmholtz-type operator of the general form
A = (−

∇

+ k2In)
−1, where −

∇

is a Laplace operator, k > 0,
and In is an n × n identity matrix. We compute y obs by applying
the forward operator A to x true. That is, y obs = Ax true + κη,
η ∝ N (0, In), κ = θ∥x true∥22, θ ∈ [0, 1]. We select
x true := (sin(z) + γz ⊙ sin(4z))⊙ exp(−∥z − π∥22/2κ),

with κ = 9/10 and γ = 7/2 and zi = hi , h = 2π/n, i = 1, . . . , n.

Numerical Results

We report numerical results for different strategies to solve the
considered inverse problem for the test problem described in the
former section in Figure 2.
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Figure 2:We report solutions for the RLSQ in (1) for different regu-

larization operators and compare them to the results obtained for the

TSVD. The numerical solution is shown in red and the true solution

x true is shown in green. Top row: For the unregularized case (α = 0)

we can observe that the noise is amplified; the computed solution has

nothing to do with the true solution. For the regularized case (with reg-

ularization parameters α = 1e-2/1e-3 for the regularization operators

LTL = In/−

∇

, we can see that we underfit the data. We show results

for the TSVD in the bottom row for different target ranks r . We con-

sider a randomized SVD for computing these results. The best result

is obtained by computing the solution through a low rank approximation

UrSrV
T
r ≈ A for a target rank r = 15.

Conclusions
We have developed and tested a computational framework for
solving and regularizing linear inverse problems [2]. We have com-
pared results for different variants of Tikhonov-type regularization
operators to those obtained by a TSVD. To construct the TSVD
we have considered efficient randomized algorithms [4, 5].
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