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Teaser: Our goal I1s the design and analysis of effective nu-
merical schemes for solving linear inverse problems of the form
Ax = y. ... We extend our prior work presented in [1].

Mathematical Problem Formulation
We assume that the observed data y ... = Ax+m, where x € R”,
AcR™ y..e€R” and n <« N(0,1,) is a random perturba-
tion. In the inverse problem, we seek x given y. .. and A [2]. In
general, A will not be invertible and y .. ¢ col A. We can formu-
late the solution of Ax = y... as a regularized least squares

problem (RLSQ) of the form

minimize f(x),
x€R"

1 o
where f(X) = §||Ax_yobsH§+§HLX”§' (1)

The first term of f measures the discrepancy between the model
prediction ¥ ,..q = Ax and y.ps. The second termis a (Tikhonov-
type) regularization functional with regularization operator L €
R™" and regularization parameter a« > 0. This regularization
model I1s Iintroduced to alleviate mathematical i1ssues with the
ill-posedness of the inverse problem [3, 2]. We will see that
the choices for L and o greatly affect the computed solution

Xso) Of (1). We consider the following regularization operators:
(i) L'L = 1, (identity) and (ii) L'L = —A (Laplace operator).

Numerical Methods
Optimality Conditions
—or an admissible solution x5 € R” of (1) we require that the

first derivative Vf(xs,) of f vanishes, i.e., Vf(xs) = 0. We
have V£ (x) = A'(Ax — yop) + aL' Lx. The first-order optimal-
ity conditions are

AT(AXSO| _ yobs) T O‘I-Tl-xsol ; 0. (2)

This equation Is referred to as the normal equation.

RLSQ & TSVD

We consider different approaches to solve Ax = y... for x. We
can directly solve the optimality system (2); the numerical solution
s given by xeo = (A'A+ aL'L)'A"y,,.. Alternatively, we can
compute the pseudo-inverse A" of A based on a truncated sin-
gular value decomposition (TSVD). That is, we compute the
factorization A = USV' of A, where U € R™™ and V € R™"
are orthogonal matrices for the left- and right-singular vectors,
respectively, and § € R™" is a diagonal matrix for the singular
values.

Now suppose that A has rank r < min{n,m}.  Un-
der this assumption, U = |u;...u, Uu,y1...u,] € R™"
S = dag(oy,...,0,0,...,0) € R™ and V =
(vi...v, v, 1...v,] € R" Consequently, we can decompose
A Into

A=USVT=USV]=> ouv],
i=1
where U, = [uy...u,] € R, V, = [vy...v,] € R,
S, = diag(oy, ..., o,) € R"". The pseudo-inverse is given by

AT =V,S 'U!. It follows that the solution x, of our problem
IS given by

Xsol = A+yobs — VrSr_luIyobS — Z O-i_l(u;ryObS) Vi. (3)

If we do not know the rank r of A or the singular values do not
decay completely to zero, we can compute a rank r approximation

to A, i.e., A=USV' ~ U,S,V]. We illustrate this in Figure 1.
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Figure 1:Visualization of the compression of a matrix using low-rank
approximations. We show the decay of the singular values for a consid-
ered matrix A of size 256 x 256 (UH logo; right: top left) on the left.
The remaining figures (left: from top right to bottom right) show the
reconstruction of the original matrix A using low rank approximations
U.S.V! for different ranks r € {5, 25,50}.

We can establish a connection between the TSVD and the RLSQ
in (1) by introducing the regularized solution operator R,

n
Rayobs — Z ga(o-/)(uiTyobs) Vi.
=1

Here, g, is a filter function. For the TSVD g,(z) = 1/z for
z > o and go(z) = 0, otherwise. For the Tikhonov regulariza-
tion operator L'L = I,, we obtain g,(z) = z/(z%> + &), and,
therefore,

N
o
Xsol = /z_; O.I_Q _Il_ O('(u;'ryobs)vi-

Randomized SVD

Computing the SVD for large-scale inverse problems can become
computationally prohibitive. One way to alleviate the computa-
tional costs of constructing the low-rank approximation to A Is to
consider randomized algorithms [4, 5]. We are going to consider
a prototype implementation of a randomized SVD. The pseudo-
code for this algorithm is given below.

- procedure rSVD(A, r)
: draw random matrix €2 € R™"

1

2

3: Y < AQ

4; R < qr econ(Y)
5

6

!

B+ Q'A
[U, S, V] < svd econ(B)
U<+ QU

Numerical Experiments
In this section we present numerical experiments for the procedure
detailed above. We compare the TSVD to the regularized least
squares solution.

Synthetic Test Problem

We consider a synthetic test problem to study the performance of
the proposed methodology. The operators in (1) are as follows:
For A, we consider a Helmholtz-type operator of the general form
A= (—=A+ k?l,)"1, where —A is a Laplace operator, kK > 0,
and I, 1s an n X n identity matrix. We compute y.. by applying
the forward operator A to Xie. That is, Yoo = AXirue + K7,
N o< N(0, 1), & = 0| xwuell3 0 € [0, 1]. We select

Xtue = (sin(z) + vz ®sin(4z)) ® exp(—||z — 7||5/2kK),
withk =9/10andy=7/2andz,=hi, h=2w/n,i=1,...,n

Numerical Results

We report numerical results for different strategies to solve the
considered Inverse problem for the test problem described in the
former section in Figure 2.
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Figure 2:We report solutions for the RLSQ in (1) for different regu-
larization operators and compare them to the results obtained for the
TSVD. The numerical solution i1s shown in red and the true solution
Xtre IS Shown in green. Top row: For the unregularized case (o« = 0)
we can observe that the noise is amplified; the computed solution has
nothing to do with the true solution. For the regularized case (with reg-
ularization parameters a = 1e-2/1e-3 for the regularization operators
L'L=1, / — A, we can see that we underfit the data. We show results
for the TSVD in the bottom row for different target ranks r. We con-
sider a randomized SVD for computing these results. The best result
IS obtained by computing the solution through a low rank approximation
UrSrVI ~ A for a target rank r = 15.

Conclusions
We have developed and tested a computational framework for
solving and regularizing linear inverse problems [2]. We have com-
pared results for different variants of Tikhonov-type regularization
operators to those obtained by a TSVD. To construct the TSVD
we have considered efficient randomized algorithms [4, 5].
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