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Highlights 

 Quantitative characterization of dynamic T cell behavior can facilitate identification of 
biomarkers of responses to immunotherapeutic treatment 

 Snapshot single-cell omics has made significant advances but lacks temporal resolution 
 Multi-dimensional techniques that integrate dynamic T-cell function with omics at the 

single-cell level are starting to emerge  
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Abstract 

Immunotherapy relies on the reinvigoration of immune system to combat diseases and has 

transformed the landscape of cancer treatments. Clinical trials using immune checkpoint inhibitors 

(ICI), and adoptive transfer of genetically modified T cells have demonstrated durable remissions 

in subsets of cancer patients. A comprehensive understanding of the polyfunctionality of T 

lymphocytes in ICI or adoptive cell transfer (ACT), at single-cell resolution, will quantify T-cell 

properties that are essential for therapeutic benefit. We briefly highlight several emerging 

integrated single-cell technologies focusing on the profiling of multiple properties/functionalities 

of T cells. We envision that these tools have the potential to provide valuable experimental and 

clinical insights on T-cell biology, and eventually pave the road for the discovery of surrogate 

biomarkers for immunotherapy.  
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Introduction 
Immunotherapy has revolutionized the treatment of cancer and relies on utilizing the patients’ 
immune system and its anti-cancer properties for therapeutic benefit[1,2]. This approach is 
fundamentally different from chemotherapy and even targeted therapy, both of which depend on 
the ability of the drug to kill the tumor cell directly[3]. Immunotherapeutic treatment is based on 
the recognition that there is a failure of the host immune system to control the tumor adequately, 
and that the goal of treatment is to facilitate resetting the dysregulated balance to enable eradication 
of the tumors via the host immune system[4-6]. In other words, the treatment does not work to 
directly kill the tumor cells but instead tries to reinvigorate the immune system to get rid of the 
tumors. One of the primary objectives of this approach, akin to vaccination, is the ability to 
establish immunological memory of the tumor and thereby enabling the immune system to seek 
and destroy metastases anywhere in the body[7].  

Although utilizing the immune system for therapeutic benefit has been around for quite some time, 
and proteins such as cytokines (e.g. interleukin-2)[8,9] and a suite of monoclonal antibodies (anti-
CD20, anti-EGFR, etc.)[10-12] have been used clinically over the last two decades, two newer 
approaches to treatment— the inhibitors of checkpoint molecules[13], and the adoptive transfer of 
genetically modified T cells[14], have made substantial advances in the clinic. After decades of 
frustration with the 5-year survival rates of chemotherapy, these newer forms of 
immunotherapeutic treatment have altered the treatment landscape and have facilitated durable 
and lasting remissions in subsets of patients[15]. Both classes of treatment, immune checkpoint 
inhibitors (ICI) and adoptive cell transfer (ACT), critically rely on the functionality of a particular 
subset of lymphocytes within the immune system — the T cells. ICI aims to reinvigorate T cells 
and activate them to attack tumor cells and has shown clinical efficacy in various tumors, albeit in 
only ~20% of patients[16,17]. ACT, on the other hand, delivers ex vivo expanded (and/or 
genetically modified) T cells as the therapeutic and has shown complete responses in leukemias 
(response rate 70-90%)[18-22].  

The introduction of immunotherapeutic molecules as drugs has facilitated new challenges and 
opportunities for engineers. While the potency of small-molecule-based therapies can be mapped 
to their mechanism of action (binding/inhibiting appropriate proteins) facilitating tumor cell 
killing[23,24], understanding the efficacy of ICI or ACT is a significant challenge since the 
mechanism of action is neither simple nor wholly defined[13,25,26]. The origin of this challenge 
can be mapped to the complexity of T-cell functionality. T cells are essential players in the adaptive 
immune systems and can recognize cognate antigen through their T cell receptor (TCR)[27]. T 
cells bearing TCR specific for foreign or non-native peptides displayed in the context of human 
leukocyte antigens (HLA) get activated and can undergo a process of programmed differentiation 
depending on the availability of other accessory molecules including cytokines within the 
activating environment. Unlike antibodies, the TCR itself does not undergo somatic hypermutation 
subsequently, and hence can be considered a barcode to identify populations of clonally related T 
cells[28-30]. T cells are capable of many different functions including cytotoxicity, cytokine 
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secretion, proliferation, and migration (Figure 1). The relative importance of these functions in 
defining clinical benefit is only partially understood and confounded by the differentiation status 
of the T cell (naïve, stem-cell-like central memory, central memory, effector memory and 
effector)[31,32], or by their functional status (polyfunctional, anergic, tolerized or exhausted). It 
is thus apparent that the availability of methods that can map all of these properties onto the same 
T cell will advance our understanding of the efficacy of immunotherapeutic treatments. From the 
perspective of the ACT, the availability of precise definitions on the properties that need to be 
engineered into the T-cell infusion product will facilitate consistent biomanufacturing of 
therapeutic products[33]. It is thus clear that immunotherapeutic treatments stand to benefit from 
single-cell technologies that can map the complexity of T cells. While the vast majority of 
advances in immunotherapeutic treatment have focused on oncology, the principles of modulating 
the immune system are likely to find broad applicability in other infectious diseases and 
autoimmunity, as well. 

Single-cell technologies have attracted researchers’ attention for several decades, and there is an 
increasing trend for scientists to develop more accurate and sensitive, higher-throughput and 
automated single-cell characterization tools. These approaches allow the detection of details that 
cannot be revealed using traditional population-level assays[35]. Generally, these single-cell 
technologies are designed to capture cellular information from either the genome, transcriptome 
or more recently the proteome level[36]. While some assays like flow cytometry (FC) have been 
standardized and used even in clinical settings[37], some of the more recent single-cell 
technologies like mass cytometry (MC)[38], and single-cell RNA sequencing (scRNA-seq)[39] 
have been recently commercialized. Despite this, however, the vast majority of tools are designed 
in the research setting, and recent advances have enabled the integration of approaches from 
different omic dimensions to be able to quantify cell features simultaneously[40].  

In this review, we briefly highlight several types of emerging single-cell technologies, mainly 
focusing on technologies that monitor multiple features (function, transcripts, phenotype, etc.) in 
the context of T-cell characterization. We believe that analyzing T cells at single-cell resolution 
will provide valuable insights on both experimental and clinical investigations, and has the 
potential to improve the clinical outcomes of T-cell based therapy. Furthermore, the development 
of multiplexed single-cell interrogations tools to explore the phenotypical and functional 
correlations within heterogeneous T cells populations can reveal the underlying biological 
networks, eventually paving the way for both a better understanding of T cells and delivering 
surrogate biomarkers for immunotherapy.   

Protein detection from single-cell 
Single cell western blotting (scWB) 
Similar to the standard western blotting methodology, this approach includes protein separation 
based on both the affinity between the antibody and the target protein, and the relative size of 
protein thus minimizing concerns about antibody-cross reactivity (Figure 2A). By the application 
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of open microwells on a polyacrylamide gel coated glass slide, single cells were deposited into 
individual wells and then lysed, followed by gel electrophoresis, immobilized by UV-light, and 
the protein detected by immune-probing. By repetition of antibody-stripping and re-probing, it 
could detect up to eleven different proteins across thousands of single cells in the same 
experiment[41-43]. By utilizing a combination of lab-on-a-disc cell device and the scWB analysis, 
it was possible to quantify protein from less than one hundred cells[44]. The same group further 
developed an approach termed single cell isoelectric focusing (scIEF) using isoelectric point (pI) 
difference to separate protein isoforms[45]. In this work, they reported ten cells were analyzed in 
the same chip as a proof-of-concept; however, the throughput theoretically can be scaled up. ScWB 
can be combined with flow sorting[46] or on-chip cell phenotyping[42]. This approach can be 
beneficial for direct measurement of proteins in a single cell, especially when the number of cells 
available is limited. 

Integration of protein detection and transcriptional profiling of single cell 
Flow cytometry  
FC has been widely adopted for several decades to characterize the phenotype of cells and the 
intracellular molecules across millions of cells. It can detect up to around 17 parameters 
simultaneously, which is determined by the availability of fluorescent dyes[47]. Recently, Nicolet 
et al were able to simultaneously profile the expression of primary human T-cell cytokines (IFN-
γ, IL-2 and TNF-α) at both the protein and mRNA transcript level via integration of fluorescence 
in situ hybridization (FISH) and a flow cytometry-based platform. This work paved a road for 
finding the correlation between cytokine secretion and mRNA transcripts within the same single 
cell[48].  

Mass cytometry  
To improve the multiplexing capacity of cytometry, heavy-metal tagged antibodies are used in 
mass cytometry (MC). This strategy enables the quantification of more targets on single cell 
simultaneously, including surface phenotypic characterization, intracellular protein detection, 
cytokine secretion, transcription factor expression, and mRNA transcripts expression[26,49-55]. 
Frei et al developed a method called PLAYR (proximity ligation assay for RNA), and demonstrate 
this approach was able to quantify multiplexed mRNA transcripts and protein via flow cytometry 
or mass cytometry simultaneously. The oligonucleotide labeled-fluorescence or metal tags were 
used to detect target transcripts. The authors validated this method by detection of 8 different 
mRNA transcripts and 18 proteins (cytokine + surface molecules) in LPS-stimulated PBMC for 
various stimulation times, and the results suggested the most LPS-responding cells were likely to 
be a CD14+ phenotype. Frei and colleagues expected the theoretical upper limit in the number of 
detected targets could be as high as 40 if combined with MC[51]. The disadvantage of MC is that 
unlike FC, it is sample destructive, and thus, it is not possible to sort single cells for downstream 
analyses like RNA-seq.  
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Both FC and MC are well-developed technologies and can directly detect proteins from millions 
of single cells but are restricted to providing snapshots since it is not possible to track the same 
cell longitudinally using these methods. Despite these disadvantages, however, FC and MC are 
robust methods to identify subsets of T cells directly from tumors and hence will play an essential 
role in tracking the efficacy of immunotherapies.  

Single-cell PCR 
Unlike the PLAYR method that utilized the mass tag or fluorescent tag to capture transcript or 
protein abundances, other studies relied on the usage of DNA as a label to detect proteins.  
Although initially the profiling of mRNA and protein was achieved by splitting the cell lysate to 
two parts and characterizing each of them separately[56,57], Genshaft et al. presented an approach 
that combined the detection of protein and mRNA from same mammalian cells in a single reaction 
chamber in a parallel manner. Modified proximity extension assays (PEA) method was used in 
this technology for protein detection. For each protein of interest, there were two different single-
stranded oligonucleotides-labeled antibodies to detect the target protein. The 3’ end of DNA labels 
of this antibody pair were complementary to each other, as a result, DNA labels would hybridize 
once both antibodies co-localized on the target protein. The extension of DNA label complex and 
reverse transcription of RNA from the same cell happened simultaneously by utilizing reverse 
transcriptase also as DNA polymerase, followed by qPCR (FluidigmTM C1 system) to quantify 
protein expression and RNA abundance. By applying this approach to study protein and mRNA 
abundances in the PMA-stimulated MCF7 cells, they found that the correlation of mRNA and 
protein was variable among genes or time points: highly-expressed genes were more correlated 
with the corresponding protein expression in untreated cells but after simulation the lowly-
expressed genes with high cell-cell variance showed largest correlation[58].  

ScRNA-seq 

ScRNA-seq, a rapidly-growing technology can provide unbiased, high-dimensional genome-wide 
transcriptomic profiling of individual cells, and has emerged as a robust method to facilitate the 
discovery of novel cellular status[59], and provide biological insights[30,60,61]. ScRNA-seq has 
been extensively reviewed elsewhere[39,62-64], and we will only highlight combinations of 
scRNA-seq with other kinds of single-cell assays[39,62-64]. 

Researchers have developed several algorithms to utilize scRNA-seq data to reconstitute T cell 
receptor information from scRNA-seq data. One advantage of obtaining TCR information at 
single-cell level is that the possibility to acquire the pairing detail of TCR chains (αβ, γδ). 
Computation approaches, such as TraCeR[65], scTCRseq[66], VDJPuzzle[67], work quite well 
with transcriptomic profiling results obtained from full-length mRNA transcripts. More recently, 
the TRAPeS pipeline was reported to enable TCR information extraction from short-read (25-30 
bp) sequencing data [68]. Combining transcriptomic profiling and TCR profiling at single-cell 
resolution, the clonal expansion of exhausted or dysfunctional T cells was found in tumor sites, 
indicating the reinvigoration of T cell function may recover its anti-cancer functionality[30,61]. 
Owing to these emerging computational pipelines, developmental trajectories of diverse T cell 
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population can be deciphered, holding the promise of investigating the antigen-specific T cells 
functions in response to diseases, and also to identify the diversity of T-cell responses within the 
tumor microenvironment. 

Stoeckius et al and Peterson et al recently reported two closely related methods (CITE-seq and 
REAP-seq) for simultaneous detection of mRNA and protein[69,70] (Figure 2B). Both methods 
utilized a combination of unique oligonucleotide barcodes and poly (dA) sequence for indexing 
antibody (but using different linkers) thus enabling the detection of multiple proteins along with 
transcripts. Extension of DNA labels of antibodies and reverse transcription of mRNA transcripts 
could be achieved in the same reaction by taking advantage of the DNA polymerase function of 
reverse transcriptase. These two methods can be readily adapted to different high-throughput 
scRNA-seq platforms. Another similar technique that can be expanded to demonstrate the same 
capability is called Abseq (Figure 2D), which utilizes a combination of DNA-labeled antibody 
and droplet microfluidics[71]. One disadvantage of all three of these approaches is that the 
information about the spatial distribution of proteins is lost. An orthogonal method, Seq-Well 
(Figure 2C), takes advantage of arrays of microwells instead of droplets. The cell lysis and reverse 
transcriptions of mRNA are accomplished on-chip by sealing single cells and individual barcoded 
capture beads[72]. This assay is compatible with on-array imaging cytometry for resolving the 
phenotype of cells from complex samples and has the potential to obtain more information from a 
limited amount of samples using a single platform. 

Unquestionably, the integration of transcriptomic and proteomic profiling mentioned above on the 
same single cell can characterize cellular response to a perturbation in a more accurate, unbiased 
way. However, these approaches require cell fixation or cell lysates, which exclude the possibility 
for tracking the dynamic transcriptomic and proteomic changes in the same cell. Although it has 
the advantage of being able to profile the complete transcriptome, the abundance of lowly 
expressed transcripts like transcription factors remains a challenge and requires pooling of data 
when the magnitude of change is also small. Recent reports have aimed to improve the analysis 
algorithms and to extract more information out of the data[73-76]. Since the cells are lysed to 
retrieve the mRNA, scRNA-seq ideally provides a snapshot of the cell state, inferred by the 
transcript profile. There are disadvantages of this approach including the lack of correlation 
between mRNA and protein for some genes[58], the inability to directly detect post-translational 
modification of proteins, and a complete lack of protein localization information. Thus, an ideal 
implementation of scRNA-seq would be in combination with another method that directly profiles 
biological function.  

Integrated platforms to monitor dynamic T-cell behavior and polyfunctionality 
Immune cells, specifically T cells, demonstrate a variety of dynamic behaviors. From the 
standpoint of studying the therapeutic potential of T cells for adoptive transfer, or for identifying 
biomarkers of ICI, quantifying the functional status of the T cells will be essential. 
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Time-lapse imaging microscopy in nanowell grids (TIMING) 

The characterization of the interaction between pairs of cells would benefit the understanding of 
how cells interact or cooperate with other cells, and help the discovery of underlying mechanisms 
of dynamic cell behavior. Microfluidic devices have the potential to dynamically monitor cell-cell 
interaction in a high-throughput manner in combination with live cell microscopy. TIMING 
(Figure 2E), a microwell-based platform, was reported to able to dynamically monitor cell-cell 
interaction, cytotoxicity, cell motility and cell survival simultaneously[77,78]. Additionally, it can 
integrate real-time cytokine profiling[79] by bead-based cytokine sensors or gene expression 
profiling by single cell retrieval via micromanipulator due to the non-destructive feature of this 
assay[80]. Similarly, it has also been reported that droplets can be used to co-encapsulate the two 
types of cells before docking to the microwells[81]. This microwell-based device was compatible 
with live cell imaging analysis, allowing the dynamic monitoring of cell morphology, behavior, 
and fate. One of the major advantages of these approaches compared to the all of the other methods 
like FC or MC is the ability to monitor dynamically the same cell as a function of time.  

Single cell barcoding chip (SCBC) 
Single cell barcoding chip, developed by Heath group, is able to quantify multiple proteins from 
the same cell, based on the fluorescence readout and on-chip calibration (Figure 2F). SCBC 
consists of a collection of microchambers on the microfluidic chip (from several hundred to several 
thousand) to confine single cell or two cells, and one of the surfaces of the microchamber contains 
barcode-like patterned antibody arrays for protein capture and further detection[82-84]. Apart from 
protein detection, this approach entitled the monitoring cell movement of single-cell pair along 
with the protein secretion[82]. Built on a similar concept, beads-on-barcode antibody microarray 
(BOBarray) was developed to quantify released proteins from a single cell confined in the 
individual well, but with modification of protein detection strategy: color-coded and sized-coded 
functionalized microbeads were coated on the glass slide instead of patterned antibody arrays to 
minimize the size of the microfluidic device[85].  SCBC technology is amenable of up to around 
40-plex protein detection from single cell and only need a small sample amount as an input; 
however, due to its intrinsic design, it was not designed to study dynamic or real-time protein 
secretion.  

The advantage of these function-based single-cell assays like TIMING and SCBC is that they have 
the potential to reveal heterogeneity of complex biologies like motility, cytotoxicity or cytokine 
secretion. One of the disadvantages of these approaches is that unlike FC/MC that are available as 
part of core facilities, microfluidics often requires unique expertise and infrastructure to be able to 
execute these assays. As mentioned above, since the ability to retrieve cells of interest has been 
demonstrated for at least the TIMING assay, the ability to integrate functional and transcriptional 
profiling at single-cell resolution might provide the in-depth insight required for defining the 
efficacy of immunotherapies.   
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Challenges 

Spatial information. All the techniques we have described work with homogenized single cells 
or single cells in suspension. These methods are ideal and relevant in tumor immunotherapy when 
profiling single T cells in peripheral blood. Thus, while the comprehensive documentation of the 
molecular profiles revealed by scRNA-seq is useful for identifying compositional frequencies of 
immune cell subsets, they cannot, however, reveal the link between the molecular profile and 
functional capacity, and how this is impacted by space and time. The tumor microenvironment is 
a three-dimensional structure composed of different kinds of cells, and it is important to document 
the spatial localization of immune cells within the TME. A few in situ sequencing, proof-of-
concept technologies have been demonstrated that can directly map spatial information and 
transcript profiles[86-88], but it remains to be seen if they can match the depth of transcript 
profiling afforded by even scRNA-seq. Similarly, fluorescence in situ hybridization (FISH) based 
methods that can preserve the spatial information and directly count RNA molecules down to the 
single-molecule level, have been reported[89,90]. The drawbacks, however are that even with 
repetitive cycles of probing different mRNA molecules, the total number of unique mRNA 
molecules that can be detected is smaller than scRNA-seq and that experimentally one has to pre-
determine the transcripts that are being studied. 

Bioinformatics. One of the major and central challenges for realizing the potential and benefit of 
the next generation of single-cell technologies is matching advances in bioinformatics. As outlined 
above, the low number of reads per single cell, the ability to differentiate technical and biological 
variation, amplification biases, batch-effect, all present significant challenges to systematic data 
analyses. In addition, the ability to integrate single-cell data acquired across different platforms 
analyzing different kinds of biomolecules and functions is a complex problem, which requires 
adequate normalization methods and the capability to investigate the correlation among different 
dimensions of single-cell data[73,91-93]. The identification of conserved signatures of genes, and 
dimension-reduction-based visualization are the most common methods to extract information 
from single-cell datasets with high-dimensionality[93,94]. However, the algorithms for prediction 
of single-cell responses, within heterogeneous cell populations, to perturbation is not well-
defined[95]. In other words, while the currently available analytic approaches are mainly focusing 
on descriptive analyses at single-cell resolution in vitro, it remains unclear how to utilize and 
integrate these single-cell data to accurately predict the behavior and fate of diverse cell 
populations in vivo, especially within TME, eventually serving as biomarkers to predict the clinical 
outcomes of cell-based therapeutics. 
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Figure 1. Integrated and dynamic profiling of T cells 

T cells are capable of many different functions and integrate cues from both the cells and soluble factors from the microenvironment to 
facilitate decision-making. A complete understanding of T cells can be only accomplished by tracking dynamically cell-cell interactions 
(e.g. synapse formation, cytotoxicity), intrinsic and chemokine guided motility, cytokine secretion, bioenergetics, transcriptome, 
morphology, differentiation status and proliferation or survival. Assays that are able to provide insights into one or more of these features 
on the same cells, at single-cell resolution, can provide a deeper understanding of the underlying biology. 
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Figure 2. Single-cell technologies for multi-dimensional characterization 
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(A) Workflow of scWB adapted from ref [41].  
Pore-gradient gel arrays allow thousands of protein electrophoresis separations at single-cell resolution within 1 mm separation distance on a 
microscope glass slide. Single cells are loaded to individual microwell by gravity and are chemically lysed in situ on the chip. Once scWB is 
performed, the gel gets brief UV exposure for protein immobilization. Acid is used for pore size expansion, which facilitates the enhancement 
of local antibody concentration for immunoprobing. Fluorescence images of scWB for proteins spanning from 25-289 kDa. Closed-up false 
color fluorescent images represent part of arrays (over 400 lanes). 
(B) Workflow of REAP-seq adapted from ref [69]. 
A droplet containing Ab-Barcodes (AbBCs) coated cells fuse to another discreet droplet which contains cell-barcode beads with primers. The 
cell is lysed once two droplets fuse, and polyadenylated mRNA and AbBC hybridize with poly(dT) primer and the extension of AbBC and 
complementary synthesis of transcripts can be achieved by reverse transcriptase in the same reaction.  AbBC sequences (~ 155 bp) and cDNA 
from mRNA (~> 500 bp) are separated based on the size difference, and protein and transcript libraries are constructed and sequenced. 
(C) Workflow of Seq-Well adapted from ref [72]. 
The complex tissue is dissociated to single-cell suspension first, and then barcoded mRNA capture beads and cells are loaded onto microwell 
array by gravity. The device is sealed by a semipermeable membrane to allow lysis buffer change but confine mRNA within the well. Once the 
beads (contained poly(dT) primers, which including cell-specific barcodes and unique molecular identifiers for each transcript) capture liberated 
transcripts from an individual cell, the beads are recovered from the array. Reverse transcription of bead-bound transcripts is performed in bulk, 
followed by library preparation, sequencing and in silico analysis.  
(D) Abseq workflow adapted from ref [71]. 
Cells stained with DNA-conjugated antibodies are isolated in a droplet with unique cell barcoding information, and the linkage of antibody 
barcode and cell barcode is achieved via overextension PCR. The chimeric DNA products from over 10,000 single cells can be pooled and 
sequenced in parallel. The single cell protein information will be sorted by the cell barcoding. Unique molecular identifiers are utilized for PCR-
bias correction.  
 (E) Workflow of TIMING (Time-lapse imaging in nanowell grids) adapted from ref[77]. 
Raji tumor cells and NK cells stained with PKH26 and PKH67 fluorescent membrane dyes respectively are loaded onto a nanowell array, which 
is immersed in cell culture media containing fluorescent Annexin V as cell apoptosis indicator and imaged for 6 hours by high-throughput time-
lapse imaging. Imaging analysis is performed as previously described[96].  
(F) Schematic of a single cell barcode chip (SCBC) and representative time-lapse images of an SCBC microchamber containing two cells. 
Adapted from ref[82]. 
Top left: schematic of a SCBC microchamber with valve and DEAL (DNA-encoded antibody library) barcodes; bottom left: immune sandwich 
formation indicates protein detection; top right: representative time-lapse images of an SCBC microchamber containing two cells over 8 hours; 
bottom right: fluorescent images of patterned barcodes of 5 detected proteins, scale bar = 100 μm. 
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Table 1 Selected examples of single-cell technologies that enable characterization of multiple features 

 Technology Throughput Highlight Reference 
FC/microscopy& 
protein 

scWB Up to 
thousands 
of single 
cells 

 Combination of microwells and PAGE gel for 
protein detection based on mass or/and pI 

 Can detect up to 11 proteins on the same cells by 
antibody stripping/re-probing 

 Compatible with FACS sorting or cell imaging 
as pre-characterization 

 Re-probing archival sample is possible    

[41-46] 
 
 
 

Protein&mRNA FC Millions  Fusion of Flow-FISH & ICS 
 Quantification of mRNA + protein of three 

cytokines simultaneously (IFN-γ, IL-2, and TNF-
α) 

[48] 

 MC Millions  PLAYR 
 Relies on MC (mass tag) or FC (fluorophore) for 

protein (antibody) and transcript 
(oligonucleotides) read-out 

 The multiplexing capacity is determined by the 
available tags (~40 MC) 

[51] 

 Single-cell  
PCR 

96 (using 
FluidigmTM 
C1) 

 Leverages the DNA polymerase activity of 
reverse transcriptase to simultaneously perform 
proximity extension assays and complementary 
DNA synthesis in the same reaction 

 Compatible with scRNA-seq platform 
 Demonstrated detection of  96 RNA + 38 

proteins  

[58]  

scRNA-seq & TCR-seq TraCeR, 
scTCRseq, 
VDJPuzzle, 
TRAPeS 

Depends on 
throughput 
of scRNA-
seq 

 Extract TCR information from scRNA-seq 
results 

 Provide both transcriptional profiling and 
clonality of single T-cell 

[65-68] 
 

 scRNA-seq Thousands 
of single 
cells 

 CITE-seq (10 surface proteins), REAP-seq (82 
proteins) 

 Oligonucleotide with poly A tail as unique 
antibody barcode  

[69,70] 
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 Use reverse transcriptase as DNA polymerase to 
extend antibody barcode and reverse 
transcription of mRNA simultaneously 

 Compatible with current scRNA-seq platform 
 Abseq >10,000 

cells 
 Detection protein via DNA-labeled antibody to 

increase multiplexing capacity 
 Each antibody also has UMI sequence for PCR-

bias correction 
 Compatible with current scRNA-seq platform 
 Theoretical limit of detected protein is 

determined by sequencing depth and availability 
of antibody  

[71] 

 Seq-Well ~15,000 
cells 

 Co-capture cells and transcripts-capture beads 
within individual microwells 

 On-chip lysis, reverse transcription in bulk 
 Compatible with on-chip imaging cytometry 
 Transcriptomic profiling is done by scRNA-seq 

[72] 

Integration:  cell-cell 
interaction, protein, etc 

TIMING 20,000 cells  Co-culture lymphocyte and target cell on the 
same individual microwell 

 Time-lapse microscopy live cell imaging   
 Integrated with real-time cytokine secretion and 

cell retrieval for gene expression profiling 

[77-80]  

 Droplet 
 

~1,000 
events 

 Similar to TIMING 
 Co-encapsulate two types of cells within a 

droplet 
 Droplet docking into individual microwell 

[81] 

 SCBC Up to 
several 
thousands 
of cells 

 Single cells or cell pairs are isolated in individual 
microchambers 

 Cell-cell interaction can be investigated 
 Detection antibody coated surface is detachable 

for analysis  
 Up to 45-plex protein detection including 

secreted proteins 

[82-84] 
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 BOBarray 
 

Several 
thousands 
of cells 

 Similar to SCBC, but use antibody-coated beads 
as protein sensor 

 Miniaturized device achieved by combination of 
bead size and fluorophore combination: 4 bead 
size x 3 color =12-plex  

[85] 
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