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Abstract 

 

The poroelastic response of fluid saturated porous rock due to stress variations is of interest in 

geophysics and geomechanics as it has practical applications in reservoir depletion, fluid 

injection, time-lapse monitoring, and carbon dioxide sequestration. The effective stress in a 

poroelastic medium relates to applied pressure and pore pressure, with the Biot parameter (α) 

as a scaling factor of the pore pressure. This work offers an independent derivation of the 

tensor characteristics of α through elastic moduli, a microscopic effective medium derivation, 

and frequency-dependent behavior of α for an anisotropic medium. We derived simplified 

equations for isotropic rock subjected to confining pressure and pore pressure, isotropic rock 

under uniaxial stress considering the nonlinear part of elastic constants, and an equation of α 

for the frequency-dependent case. In the effective medium derivation, we assumed that the 

rock contains both isolated pores and connected pores saturated with liquid. We use the GSA 

method to Barnett shale core samples to link ultrasonic velocities with mineral composition 

and porosity data. We also use the GSA method in subsequent chapters to estimate the 

effective properties of a rock.   

 

We corroborate our theoretical formulations by applying those equations to experimental data 

for different scenarios such as changes in confining pressure, pore pressure, and uniaxial 

stress. We calculated the Biot tensor for sandstone and shale. We found excellent agreement 

between theoretical prediction and experimental data. It is known that α varies significantly 

for changes in porosity and rock microstructure in isotropic rock. We also see as much as a 

21% difference between horizontal and vertical components of α for transversely isotropic 
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(TI) rock for changes in uniaxial stress. We then estimated the frequency-dependent Biot 

tensor for TI models using numerical calculations. We noticed significant differences between 

vertical (α33) and horizontal (α11) components of α, especially at the surface seismic frequency 

band. However, uniaxial stress and horizontally aligned microstructure influence the elastic 

moduli and Biot tensor contrarily. In general, anisotropy due to uniaxial stress shows lower 

α33 and higher α11. The anisotropy due to microstructure shows the opposite.  
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Chapter 01  
 
Introduction  
 
 
 
 
 
1.1 Objective 

The primary objective of this dissertation is to understand the behavior of poroelastic anisotropic 

rock for different stress scenarios and frequency-dependent cases to facilitate the analysis of elastic 

wave velocities for rock physics and reservoir geomechanical applications. The key factors that 

influence elastic wave velocities are the rock's internal microstructure, stress, and frequency of the 

measured data. The Biot coefficient (α) provides an important link between stress such as pressure, 

pore pressure, and uniaxial stress with elastic moduli, dependent on rock composition and pore 

texture. Therefore, we aimed at developing analytical equations of Biot tensor for different stress 

conditions incorporating the effective moduli in the equation for poroelastic and anisotropic rock. 

The effective moduli are obtained from the rock's microstructure data utilizing effective medium 

theory (EMT). We also aim to understand the effect of purely "stress-induced" anisotropy and 

microstructure related "inherent anisotropy" to the components of α tensor for transversely 

isotropic (TI) rock.  
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We also focus on dynamic cases as the frequency of different types of seismic data varies from 

ultrasonic frequency (~MHz) to surface seismic frequency (~Hz). We obtain an expression for 

frequency-dependent α to facilitate the evaluation of Biot α in terms of the measured data scale. 

The equations should improve rock deformation evaluation and compaction monitoring during 

reservoir depletion and fluid injection due to pore pressure change, reservoir engineering, and 

time-lapse monitoring.  

 

 

1.2 Organization of the dissertation 

Chapter 01 provides an overall organization of this dissertation and a brief description of the 

Barnett Shale data used in chapter 02 for effective medium investigation. Chapter two aimed at 

interpreting the microstructural properties from measured ultrasonic velocities of Barnett Shale 

data using the generalized singular approximation (GSA) method. It gives a brief derivation of the 

GSA method. It also explores the flexibility of the GSA method over other effective medium 

methods such as Eshelby (Eshelby, 1957), self-consistent approximations (SCA) (Willis, 1977), 

differential effective medium (DEM) (Nishizawa, 1980), and effective field method ( Sevostianov 

and Kachanov, 2013). We model the effective stiffness tensor of rock matrix for 10 Barnett Shale 

core samples from the mineralogical composition data. Then, we invert velocity data to obtain 

porosity, pore aspect ratio, and pore connectivity parameter. The GSA method is used in chapter 

four to model the effective elastic properties of the rock matrix and solid grain.    
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Chapter three gives the detailed theoretical derivation of the Biot tensor (αij).  First, we derive a 

static case general equation of Biot tensor (αij) for an anisotropic medium. We obtain analytical 

expressions for isotropic, cubic, hexagonal, and orthorhombic symmetry.  We also receive an 

equation for isotropic rock subjected to confining pressure and pore pressure. We find another 

equation of Biot tensor for deviating part of the stress tensor, especially for uniaxial stress, 

considering the nonlinear part of elastic constants. Finally, we derive a macroscopic equation (i.e., 

the seismic waves' wavelength is higher than the size of the largest inhomogeneities) of α 

incorporating frequency for an anisotropic poroelastic medium, saturated with liquid of low 

viscosity. We use the GSA method in the static case and the Dyson equation's summation in the 

dynamic case employing Feynman's diagram technique. We show the expression for Biot 

parameter α in the general non-local situation when the Fourier transform of this parameter 

depends not only on the frequency but also on the wave vector. 

 

Chapter 04 describes the application of theoretical equations to experimental data from the 

literature. We calculate the Biot tensor for changes in confining pressure, pore pressure, and 

uniaxial stress to different rock types such as sandstone and shale. We also describe why we choose 

particular types of data. We discuss the method we applied to get the results and associated issues 

and limitations. We examine our results to understand the "stress-induced" anisotropy and 

"intrinsic anisotropy" to the α tensor of transversely isotropic (TI) rock for the uniaxial stress case.  

We also estimate the frequency-dependent Biot tensor from four TI models using numerical 

calculations. In the numerical calculations, the background matrix is taken as isotropic. The 

inclusions are ellipsoidal in shape and saturated with gas and water.  We use an algorithm utilizing 

the summation of Green's function based on n-point correlation approximation (Vikhorev and 
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Chesnonov, 2009). We provide the velocity and attenuation profiles for compressional wave, fast 

shear wave, and slow shear wave. Finally, we examine the results for the components of the Biot 

tensor.   

 

Chapter 05 summarizes the overall contribution and findings of our research. It also describes the 

sources of errors, limitations,  and suggestions for future work related to stress and frequency-

dependent properties of anisotropic poroelastic rock.  

 

1.3 Data: Barnett Shale 

We use three sources of data for this dissertation. The first one is the Barnett Shale data measured 

at the University of Houston (Lu, 2016). The second source is the mineralogical composition and 

porosity data provided by Devon energy. The third type of data is collected from literature for 

poroelastic analysis purposes. A brief description of Barnett shale and related data are provided in 

the following paragraphs. We also describe additional details of data in the method and results 

section of each chapter.    

 

The Barnett Formation is one of the successfully producing and major unconventional shale plays 

in the USA. It is a Mississippian age mudrock located in North Central Texas at the Fort Worth 

Basin (FWB). A subsurface stratigraphic section of the Bend Arch-Fort Worth basin from Pollastro 

et al. (2007) is provided in Figure 1.1, showing the total petroleum system (TPS) along with the 

Barnett Formation. The Barnett shale formation is found at depths usually from 6500-8500 ft 

below the surface in the core parts around the Dallas-Ft. Worth area of Tarrant county (Jarvie et 
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al., 2007). It is thick, structurally deep, and interbedded with Forestburg Limestone Formation in 

the NE part of the FWB. The Barnett Shale occurs progressively at shallower depth towards the 

SW part of the basin. It thins out over the Chappel shelf formation in the west.       

 

Even though Barnett Shale formation has been studied extensively for many different purposes, 

we didn't find any complete dataset of poroelastic measurements suitable with our theoretical 

equations. Nonetheless, poroelastic investigations proved to be very important as induced 

seismicity (Figure 1.2) within the FWB is often reported to be connected with pore-pressure 

change and poroelastic stress change (Quinones et al., 2019).  
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Figure 1.1: A generalized subsurface stratigraphic column of the Bend Arch- Fort Worth basin 
province showing the total petroleum system (TPS) with source rocks, reservoir rocks, and seal 
rocks (Pollastro et al., 2007).    
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Figure 1.2: The map shows interpolated cumulative injection volumes into the Ellenburger 
formation underlying Barnett Shale formation. The circles and arrows represent earthquake and 
injection well locations, respectively. The figure is collected from Quinones et al. (2019).   

  

Our Barnett Shale data came from the core samples provided by Devon Energy from six different 

wells (Table 1.1) of Fort Worth Basin in North Central Texas, USA. The samples are from Barnett 

Shale formation, and the depth of the samples ranges from 5105 ft to 7830 ft depending on the 
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location of the well. The data consist of ultrasonic velocity, porosity, and mineralogical 

composition from the measurement and analysis of the core plugs.  

 

Table 1.1: Description of the wells of the core sample data 

No. Well Name Well No. County  State Depth (ft) Sample No.  

1 Adams Southwest  7 Wise TX 6,586.00 A 

2 Suger Tree 1 Parker TX 5,105.00 C 

3 Suger Tree 1H Denton TX 5,205.00 D 

4 Jerome Russell  1H Denton TX 7,391.00 E 

5 Jerome Russell  1 Johnson TX 7,717.50 F 

6 Rose Children Trust  1 Johnson TX 7,630.00 G 

7 Rose Children Trust  C-1 Tarrant TX 7,830.00 H 

8 Bonds Ranch  7 Wise TX 7,180.00 J 

9 Sol Carpenter Heirs 7 Wise TX 7,590.00 K 

10 Sol Carpenter Heirs  7 Wise TX 7,391.00 L 

 

 

The ultrasonic velocities were measured at the University of Houston (Lu 2016) with a three-plug 

technique (Figure 1.3) at atmospheric pressure and room temperature.  This method allows 

obtaining phase velocities of compressional, fast shear, and slow shear waves at 0o, 45o, and 90o 

angles from the vertical axis of a sample from three adjacent one-inch diameter plugs. The fast and 

slow shear waves propagating through the vertical plug have almost the same values for most of 

the samples (Table 1.2). Moreover, the slow shear waves of the horizontal plug have values close 
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to the shear wave values of the vertical plug. Therefore, shear velocities of those samples represent 

to a good approximation VTI (Transversely isotropic with the vertical axis of symmetry) medium 

as the vertically polarized shear waves (Vsv) at 0o and 90o are equal for such medium.  

 

 

 

 

Figure 1.3: Traditional three-plug method for measuring ultrasonic velocities in transversely 
isotropic (TI) core samples. The symmetry axis is normal to the bedding planes. Three adjacent 
core plugs (one parallel, one perpendicular, and one 45o to the symmetry axis) were cut from the 
one core. The cartoon is adapted from Wang (2002).   

 

It is very hard to control the cutting angle during the real measurement at 45o plug. However, the 

angle is very important for the accuracy of stiffness constant C13. Therefore, we provided the 

correct angle for 45o plug in Table 1.2 from Lu (2016).  

 

The P-wave anisotropy coefficient (αp) and shear wave anisotropy coefficient (αs) (Chesnokov, 

1977) of the measured data are shown in Figure 1.4. The coefficients mentioned above are more 

Horizontal (90o) 

Symmetry axis 

45o  

Vertical (0o) 
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suitable for rocks with a high magnitude of anisotropy, such as Barnett Shale. The equations for 

the coefficients and their similarities with widely used Thomsen's notation (Thomsen, 1986) for 

weak anisotropy of a VTI media is provided in Appendix A.  The ratio of the compressional wave 

velocity and fast shear wave velocity (Vp/Vs1) of the horizontal sample are plotted in Figure 1.5 

with the averaged density of the three core plugs. Porosity data are also available from the three 

plugs for each depth point. However, the porosity values among the three plugs are not the same. 

Therefore, we use an averaged value to represent a sample. The mineralogical composition and 

porosity data is given in Chapter 02 as it helps understand the methods and results there.  
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Table 1.2: Velocities and densities of the core sample data 

Sample No. Degree Vp(km/s) Vs1(km/s) Vs2(km/s) Average Density 
(gm/cc) 

 
A 

90 4.923 2.983 2.339  
0 3.130 2.324 2.334 2.535 
37.01 4.056 2.449 2.012  

 
C 

90 4.701 2.861 2.227  
0 3.015 2.144 2.126 2.403 
45.04 3.257 2.300 2.223  

 
D 

90 4.965 2.905 2.303  
0 3.630 2.230 2.230 2.504 
44.08 3.752 2.251 1.756  

 
E 

90 4.690 2.949 2.305  
0 4.477 2.815 2.793 2.663 
43.13 5.238 3.362 3.018  

 
F 

90 4.897 3.047 2.853  
0 3.565 2.368 2.368 2.746 
52.36 5.102 3.090 2.941  

 
G 

90 4.469 2.905 2.083  
0 2.944 2.313 2.313 2.511 
48.52 3.665 2.732 2.437  

 
H 

90 4.734 3.014 2.249  
0 3.160 2.176 2.176 2.564 
50.1 4.060 2.094 1.798  

 
J 

90 4.928 3.149 2.589  
0 3.810 2.313 2.313 2.529 
42.98 4.005 2.070 1.698  

 
K 

90 4.784 3.027 2.407  
0 3.053 2.320 2.308 2.431 
52.71 4.788 3.055 2.402  

 
L 

90 5.301 3.125 2.810  
0 3.787 2.533 2.520 2.700 
37.02 4.613 2.474 2.438  
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Figure 1.4: The P-wave anisotropy coefficient (αp) and shear wave anisotropy coefficient (αs) of 
the measured data are plotted.  

 

Figure 1.5: The ratio of the compressional wave velocity and fast shear wave velocity (Vp/Vs1) 
of the horizontal sample are plotted with the averaged density of the three core plugs.  
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Chapter 02  
 
Effective Medium Theory: General Singular Approximation  
 
 
 
 
 
2.1 Introduction 

A part of this chapter is published in a peer-reviewed journal (Ghosh and Morshed, 2021). This 

chapter provides a brief theory of the generalized singular approximation (GSA) method (Bayuk 

and Chesnokov, 1998; Chesnokov et al., 2009), followed by GSA application to Barnett Shale core 

data. GSA is a mathematical approach of effective medium theory (EMT), which replaces an 

original heterogeneous rock volume with an equivalent homogeneous one called the effective 

media with the identical overall elastic properties of the original inhomogeneous and anisotropic 

media. In EMT, it is assumed that the seismic wavelength is much larger than the size of the rock 

heterogeneities.    

 

The elastic properties of the rock are controlled by the microstructural properties such as 

mineralogical composition, pore and crack distribution, texture, and pore connectivity. Therefore, 

we established a connection between macroscopic properties and microstructural properties for ten 
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core samples. We also use the GSA method in the following chapters for effective elastic properties 

of a rock for several circumstances.   

 

 

2.2 Theoretical derivation of General Singular Approximation 

The GSA effective medium method is based on comparing strain fields produced by two bodies 

of equal size and shape with the same boundary conditions (Bayuk and Chesnokov, 1998; 

Shermergor, 1977). One of the bodies is the original heterogeneous body, and the other one is a 

homogeneous comparison body. The stiffness tensor of both inclusion and matrix can be taken as 

anisotropic in GSA. A general formula of the GSA of the effective stiffness of a heterogeneous 

body with ellipsoidal inclusion is given as (Chesnokov et al., 2009): 

 
( )

( )

1
1

1
1

( ; , , )[ ( )]

( ; , , )[ ( )]

c
eff i i i i i i i

i

c
i i i i i i

i

C V C F I g C C sin d d d d

V F I g C C sin d d d d

χ ϕ θ ψ θ χ θ ϕ ψ

χ ϕ θ ψ θ χ θ ϕ ψ

−
−

−
−

 
= − − 
 

 
× − − 
 

∑ ∫

∫∑
 (2.1) 

Where iχ  is the aspect ratio (AR) of the inclusion, I is the fourth rank unit tensor, iC  is the 4th 

rank stiffness tensor of the i-th component, iV  is the volume fraction of the i-th component, and 

cC  is the stiffness tensor of the comparison body. The tensor 'g' is the second derivative of the 

Green's function, and it depends on the properties of the comparison body and inclusion shape. 

( ; , , )i iF χ ϕ θ ψ  is the orientation distribution function of the i-th component defined by the Euler 
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angles. A detail description of orientation distribution function in GSA is available in Jiang (2013). 

Here, we provided a brief derivation of the GSA method is provided in Appendix B.  

 

 

 

Figure 2.1: The left figure represents the original heterogeneous body with matrix and inclusions. 
The right figure is the assumed homogeneous comparison body. 

 

The GSA method allows us to account for the degree of crack connectivity by the parameter f  in 

the comparison body equation (1 )C m IC C f C f= − +  , where mC and IC are, respectively, the 

elasticity tensors of mineral matrix and inclusions material. The f  is an empirical parameter with 

values from 0 to 1. For a two-component matrix-inclusions media, the choice f =0 produces the 

upper Hashin-Shtrikman (HS) bound (Hashin and Shtrikman, 1963; Bayuk, Ammerman and 

Chesnokov, 2007). The upper HS bound represents a medium with isolated cracks in the mineral 

matrix. The other end ( f =1) gives the lower HS bound. The lower HS bound corresponds to a 

Comparison body 

Inclusion 

Matrix 

Heterogeneous body 
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medium where the ellipsoidal pieces of the matrix materials are surrounded by a connected phase 

of inclusions. 

 

2.3 Comparison with other EMT methods 

Currently, many EMT approaches exist, such as the self-consistent approximations (SCA) (Willis, 

1977), differential effective medium (DEM) (Nishizawa, 1982), Hudson crack model (Hudson, 

1980), Mori-Tanaka approach (Mori and Tanaka, 1973), and T-matrix approximation ( Jakobsen, 

Hudson and Johansen, 2003). For the same rock model, all the EMT methods may produce similar 

results when the media is isotropic or porosity is small (i.e., total porosity less than 5% with crack 

porosity <0.06%) (Alkhimenkov and Bayuk, 2017). However, the Barnett Shale is not only 

heterogeneous in mineral composition but also contains several types of pores (Loucks et al., 

2012), including low aspect ratio cracks. Some of the EMT approaches, such as DEM and SCA, 

do not account for the microstructure of the medium. Other methods, such as (Eshelby, 1957) and 

(Hudson, 1980), are limited to a small concentration of cracks. Therefore, we choose GSA as it 

allows a large volume of ellipsoidal pores with estimates of pores connectivity (through f  

parameter). The GSA method can be reduced to SCA and T-matrix approach using similar 

theoretical assumptions. Besides, the GSA method provides the best fit to the experimental data 

with known microstructure parameters (Bayuk and Chesnokov, 1998).  

 

A comparison of effective elastic constants for different theoretical methods as a function of 

porosity is plotted in Figure 2.2 (Chesnokov E., personal communication, 2017). The considered 

model is an isotropic background medium with elliptical inclusions that are horizontally oriented. 
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Therefore, the effective medium has a TI (transversely isotropic) symmetry. The aspect ratio of 

the inclusions is 0.1. All the pores are inclusion pores (also known as crack-induced pores) in the 

models.  Figure 2.2 demonstrates the flexibility of GSA over other methods as GSA can be used 

for stiff rocks where f values are low, as well as softer rocks where f values are high.  We also 

made a comparison between the GSA and the effective field method (EF) (Sevostianov and Giraud, 

2013) based on the same previous model. Our results are plotted in Figure 2.3. We found that EF 

method produces negative C33 and C13 at higher porosities. The reason is that the EF method is 

not supposed to be used at high porosity as it is limited to the "dilute concentrations" of inclusions, 

which is 1% porosity.  
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Figure 2.2:  The components of effective elasticity matrix (a) C11, (b) C33 and (c) C44 with 
variations in porosity are plotted for different effective medium methods. The model contains 
horizontally aligned cracks in background isotropic medium (all minerals and clay are 
random and cracks are aligned). Notation: “gsa” is the GSA method, “esh1” is the Eshelby 
methods with constant strain at infinity, ‘esh2’ is the Eshelby method with constant stress at 
infinity, “nish” is the Nishizawa method, “self” is the self-consistent method. The digits after 
the “gsa” correspond to the connectivity parameter (f). The results are adopted from Bayuk 
and Chesnokov (1998).  

(a) (b) 

(c) 
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(c) 

(e) 

(d) 

(b) (a) 

Figure 2.3:  Effective elastic constants (a) C11, (b) C33, (c) C13, (d) C44 and (e) C55 
at different crack densities for the case of horizontal ellipsoidal inclusion (aspect ratio 
=0.1). Legend notation: “gsa” is the GSA method, and “EF” is the Effective Field 
method. 
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2.4 Application to Barnett Shale data 

2.4.1 Mineralogy and Lithofacies of Barnett Shale data 

The Barnett Shale formation consists of several organic lithofacies, including siliceous mudstone, 

argillaceous lime mudstone, and argillaceous lime packstone (Loucks and Ruppel, 2007). The 

lithofacies vary substantially in mineral composition and pore types, depending on the depositional 

environment from proximal to distal areas of the delta. The XRD (X-ray diffraction) analysis 

(Table 2.1) of our core samples shows quartz-dominated lithofacies with less than 22% clay 

minerals (except Sample J).  A ternary plot of the mineral composition data is also shown in Figure 

2.4. The carbonate minerals are mostly calcite, which varies from 0 to 31 percent. The clay 

minerals generally range from 12 to 21 percent, where illite is the most abundant mineral. Some 

other minerals that are present in minor amounts are pyrite, halites, sulfates, and apatite.  

 

The Barnett Shale is often described as siliceous mudstone as it lacks fissility, which is common 

in shale (Loucks and Ruppel, 2007). Some common types of pores in Barnett Shale are nanopores 

such as intraparticle pores, bedding parallel pores, and matrix pores (Loucks et al., 2009). So, 

nanopores form the gas's storage, and their main flow pathways are probably in bedding parallel 

direction. A detailed description of the mineralogy, porosity, and ultrasonic velocity is available 

on Lu (2016). 
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Table 2.1:  Mineralogical compositions of the core samples from the XRD data 

Sample No. A C D E F G H J K L 

Quartz 57 60 36 47 66 66 52 24 71 71 

Orthoclase 0 1 0 1 0 0 0 2 1 0 

Albite 4 3 4 2 2 3 4 4 2 1 

Pyrite 3 3 3 2 1 1 2 1 2 2 

Total Carbonate 12 13 31 20 7 5 13 15 4 7 

  Calcite 8 9 27 10 2 3 9 2 1 2 

  Dolomite 2 1 2 7 4 0 3 8 1 1 

  Aragonite 1 2 1 2 1 2 1 2 2 3 

  Siderite 1 0 1 1 0 0 1 3 0 1 

Sulfates & Halites 5 5 13 7 2 4 6 10 2 1 

Apatite 1 1 1 1 0 0 1 0 1 1 

Total Clay 18 15 12 21 21 20 21 44 17 16 

  Smectite 2 2 2 4 3 2 3 12 2 2 

  Illite 9 8 6 9 10 10 9 16 9 9 

  Mixed Layer 4 3 2 4 4 4 4 14 3 3 

  Kaolinite 1 1 1 1 1 1 2 0 1 1 

  Mica 2 2 1 2 2 2 2 1 2 2 

  Chlorite 0 0 0 1 1 0 1 1 0 0 

Total  100 100 100 100 100 100 100 100 100 100 

 

 



22 
 

 

 

 

Figure 2.4: A ternary diagram of the Barnett Shale core samples, where Q+F are the quartz and 
feldspars. The mineral composition data was acquired using the X-ray diffraction (XRD) 
method. Most samples of the core data represent siliceous mudstone lithofacies. 

 

2.4.2 Method and Results  

The ultrasonic velocities of the core samples were measured using a three-plug method (Lu, 2016). 

A cartoon of ultrasonic measurements of a three-plug method is shown in Figure 1.2. For all our 

samples, the fast and slow shear waves in the vertical plug and horizontal plug's slow shear waves 

have almost equal values.  Hence, we consider those samples as VTI (vertically transverse 

isotropic) medium. We applied the GSA method to establish a link between the rock 
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microstructural properties and macroscopic elastic properties. Our approach is described in the 

following paragraph.     

 

The Barnett Shale is composed of heterogeneous minerals (Table 2.1) and various types of pores 

(Loucks et al., 2012). Therefore, we apply the GSA scheme considering an anisotropic matrix 

containing both isolated and connected pores. We estimate the rock matrix's effective stiffness 

with Voigt-Reuss-Hill average, using volume fraction and elastic constants of minerals. The elastic 

constants and densities of minerals are collected from published literature  (Ahrens and Johnson, 

1995; Raymer, Tommasi and Kendall, 2000; Gebrande, 2005; Bayuk, Ammerman, and 

Chesnokov, 2007; Sanchez-Valle, Ghosh and Rosa, 2011; Jiang, 2013). Some minerals such as 

illite, kaolinite, and mica are known to cause intrinsic anisotropy of the rock. Therefore, we use an 

anisotropic stiffness tensor for those minerals. We consider illite and kaolinite as transversely 

isotropic and mica as monoclinic symmetry. We take elastic constants for smectite and mixed clay 

as isotropic. A list of the elastic constants and densities of clay minerals is provided in Table 2.2. 

We assume that the silt minerals such as quartz, albite, pyrite, calcite, dolomite, aragonite, siderite, 

halite, and apatite are isometric pieces of polycrystals having isotropic elastic moduli.  

Table 2.2: Elastic constants and densities of clay minerals 

 Isotropic Bulk Modulus (GPa) Shear Modulus (GPa) Density (Kg/m3) 
Smectite 7 3.9 2290 
Mixed Clay 21.4 6.7 2600 
Transversely 
Isotropic C11 (GPa) C13 (GPa) C33 (GPa) C44 (GPa) C66 (GPa)  
Illite 179.9 14.5 55 11.7 70 2790 
Kaolinite 171.5 27.1 5236 14.8 66.3 2520 
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We used two approaches to model the matrix stiffness. In general, we consider clay mineral as the 

matrix assuming clay minerals forms a connected domain, and silt minerals are inclusions. 

However, for some samples, the silt minerals are considered as a matrix if they constitute a 

significant percentage of the mineral composition, and the clay minerals are taken as inclusions. 

We present two thin sections of Barnett Shale lithofacies in Figure 2.5 to corroborate our 

approaches. One thin section (Figure 2.5(a), collected from Sone and Zoback, 2013) and a 

scanning electron microscope (SEM) image (Figure 2.5(b), from Metwally and Chesnokov, 2012) 

show that the silt minerals form a connected domain. However, the other thin section (Loucks and 

Ruppel, 2007) displays that the quartz and silt minerals are contained in a connected domain of 

clay matrix.  

 

The connectivity parameter (f) is taken as zero for the estimation of matrix stiffness. Thus, we 

received the stiffness tensor of the solid matrix in the first step. In the second step, we invert the 

lab measured velocities and densities utilizing a simulated annealing algorithm to estimate the 

unknown data such as pore aspect ratio, porosity, and the connectivity (f) parameter. We use 

calculated matrix stiffness during inversion.  

 

The quasi-phase velocities of Vp, Vs1, and Vs2 from the GSA inversion are plotted with the 

experimental data in Figure 2.6. The GSA results are a good fit with the measured velocities. The 

GSA velocities and measured velocities are in better agreement at 0o and 90o angle of incidences, 

which is reasonable because the data quality is better at those angles. Elastic wave velocity 

measurements of 45o degree plugs are usually challenging and prone to error (Lu, 2016). The 

inverted microstructural data is given in Table 2.3. The f (i.e., connectivity parameter) values for 
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the most samples are 0.9, which implies most of the cracks are connected. The higher values of 

the average aspect ratio (e.g., 0.45) indicates pores are subspherical to ellipsoidal. The difference 

between the elastic constants of the GSA modeled data and lab measured data of five elastic 

constants are shown in Figure 2.7. The errors (i.e. difference) are highest for C13 and lowest for 

C33.  

 

Figure 2.5: (a) A thin section image of Barnett Shale showing silt minerals formed a connected 
phase (Sone and Zoback, 2013), (b) an SEM image showing detrital quartz in Barnett Shale 
(Metwally and Chesnokov, 2012), (c) a thin section image shows fine-grained quartz and skeletal 
debris in a thin lamina of siliceous mudstone (Loucks and Ruppel, 2007). 

(c) 

(a) (b) 
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To summarize, GSA provides a good correlation between microstructure properties and elastic 

properties, including stiffness tensor, velocities, and porosities from low to high concentration of 

inclusion (e.g., cracks). The sources of error in this study can be experimental error and 

methodology error. As data were measured from three core plugs to represent one media, we also 

accept that the mineral composition, microstructure, and porosities are sometimes not exactly the 

same among the three plugs.  
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Figure 2.6: The quasi-phase velocities from the GSA method are plotted along with lab measured 
velocities as a function of angle from the vertical axis of symmetry (assuming VTI media) for all 
ten samples. The sample number is labeled on the upper left part of each plot. The legend 
represents Vp, Vsh, and Vsv as compressional, horizontally polarized shear, and vertically 
polarized shear wave velocity, respectively. 
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Figure 2.6: (continued) The quasi-phase velocities from the GSA method are plotted along with 
lab measured velocities as a function of angle from the vertical axis of symmetry (assuming VTI 
media) for all ten samples. The sample number is labeled on the upper left part of each plot. The 
legend represents Vp, Vsh, and Vsv as compressional, horizontally polarized shear, and 
vertically polarized shear wave velocity, respectively. 
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Figure 2.7: The error plot (i.e. difference between modelled data and measured data) of five 
elastic constants. The errors are highest for C13 (obtained using 45o sample) and lowest for C33. 
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Table 2.3: Inverted microstructural data with measured porosity data 

Shale Cores Connectivity (f) Porosity (GSA) Aspect ratio (GSA) Porosity (cal) 

A 0.900 5.00% 0.4510 7.35% 

C 0.900 9.00% 0.5010 10.70% 

D 0.800 11.10% 0.5010 8.2% 

E 0.800 7.01% 0.9510 7.6% 

F 0.900 5.01% 0.5010 3.80% 

G 0.900 8.00% 0.5010 6.10% 

H 0.800 12.01% 0.4510 9.10% 

J 0.500 3.00% 0.3010 0.04% 

K 0.900 6.01% 0.5010 6.88% 

L 0.900 2.01% 0.5000 0.10% 
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Chapter 03  
 
Theory: Biot effective stress parameter in poroelastic anisotropic 
media 
 
 
 
 
 
3.1 Introduction 

A part of this chapter is published in the Geophysical Prospecting journal (Morshed, Chesnokov 

and Vikhoreva, 2021). This chapter provides an independent derivation of the tensor 

characteristics of Biot effective stress parameter (α) through elastic moduli, a microscopic 

effective medium derivation, and frequency-dependent behavior of α for an anisotropic medium. 

We provide equations for the following cases - 

1. A basic equation for Biot tensor (αij) in the general case of an anisotropic medium under 

stress, and analytical expressions for the primary and commonly used types of symmetry 

in geophysics, such as isotropic, cubic, hexagonal, and orthorhombic symmetry. 

2. A general equation for the influence of stress on the Biot tensor (αij), and a simplified 

equation for isotropic rock subjected to confining pressure and pore pressure. 

3. An equation for the Biot tensor in terms of deviating part of the stress tensor, especially for 

uniaxial stress considering the nonlinear part of elastic constants.     

4. An equation of αij for the frequency-dependent case. 
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The poroelastic response of fluid saturated porous rock due to stress variations is of interest in 

geophysics and geomechanics as it has practical applications in reservoir characterization, time-

lapse monitoring, fluid-induced seismicity, and hydraulic fracturing. The effective stress, which is 

the core of poroelastic theory, is a combined effect of the externally applied stress and the internal 

pore pressure. Terzaghi (1923) first introduced the concept of effective stress in two extreme cases 

of high and low porosity. However, much of the theoretical framework of poroelasticity for rocks 

with random porosity was built in the classical Biot papers (Biot and Willis, 1957; Biot, 1962), 

which shows that the Biot-Willis effective stress coefficient (α), which ranges from 0 to 1, controls 

effective stress. Many workers have studied the effective stress behaviour and Biot coefficient (α), 

both in theory (Nur and Byerlee, 1971; Zimmerman, 1991; Berryman, 1992; Cheng, 1997; 

Gurevich, 2004) and with experimental investigations (Skempton, 1954; Todd and Simmons, 

1972; Siggins and Dewhurst, 2003; Zhou and Ghassemi, 2019; Ma and Zoback, 2017). Based on 

phenomenological considerations, Nur and Byerlee (1971) expressed α for isotropic media in 

terms of the effective elastic moduli of a medium with empty pores. A decent review of α for 

isotropic media is also presented in Gurevich (2004). The values of α are measured in core samples 

for different types of isotropic rocks, and usually, it varies from 0.49 to 0.79 (Siggins et al., 2004).  

 

Several authors such as Carrol (1979), Thompson and Willis (1991), and Cheng (1997) 

theoretically formulated α as a second rank tensor for an anisotropic rock using different 

approaches. Even though Carrol's phenomenological derivation was reasonably criticized by 

Thompson and Willis (1991), its results turned out to be absolutely correct. It has been proven by 

the authors (Chesnokov et al., 1995; Bayuk and Chesnokov, 1998) based on a microscopic 
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derivation of the Biot-Willis tensor parameter. In this work, we adopt the microscopic derivation 

of α with theoretical expression for stress and frequency dependency. In the effective medium 

derivation, we assumed that the rock contained both isolated pores and connected pores saturated 

with liquid. We also focus on the theoretical formula of the Biot tensor to easily apply it to the 

experimental data in terms of applied pressure and pore pressure. We include the nonlinear elastic 

tensor with a regular second-order elastic tensor for the case of applied uniaxial stress.  

 

Anisotropy in seismic waves is related to both rock microstructure and the stress state, which is 

other than isotropic. Anisotropy caused by nonisotropic or deviatoric stress is often termed induced 

anisotropy (Nur and Simmons, 1969; Nikitin and Chesnokov, 1981; Rasolofosaon, 1998; Sayers, 

2010). Anisotropy caused by microstructure is known as intrinsic or inherent anisotropy. 

Therefore, defining the Biot tensor in terms of elastic moduli enables us to link it to seismic wave 

velocities, rock microstructure, and subsurface stress. Variations in seismic wave velocities caused 

by the reservoir stress changes play a significant role in reservoir compaction and time-lapse 

monitoring of stress field analysis (Sayers, 2010; Herwanger and Koutsabeloulis, 2011). The Biot 

α is particularly crucial in compaction monitoring as it measures the susceptibility to deformation 

of the reservoir rock due to pore pressure. 

 

The elastic wave velocities that we use for exploration seismology often vary in terms of scale 

from ultrasonic frequency (~MHz) to surface seismic frequency (~30Hz) as they sample varied 

amounts of rock volume (from a few centimeters to a couple hundreds of meters). We obtain an 

expression of α incorporating frequency to facilitate the evaluation of Biot α in terms of the scale 

of the measured data. We write a microscopic equation of motion for a very small volume of an 



34 
 

anisotropic poroelastic medium saturated with a fluid of low viscosity. Then, we find the 

macroscopic equation (i.e., the wavelength of seismic waves is much higher than the size of the 

largest inhomogeneities). We use the singular approximation method in the static case, and the 

summation of the Dyson equation in the dynamic case utilising the Feynman's diagram technique 

(Chesnokov et al., 1995). We show the expression for Biot parameter α in the general non-local 

situation when the Fourier transform of this parameter depends not only on the frequency but also 

on the wave vector.  

 

3.2 Basic equations and derivation of the Biot tensor (αij)  

The phenomenological theory of poroelasticity was established by Biot (Biot, 1956; Biot and 

Willis, 1957; Biot, 1962) for a fluid-saturated rock with connected pores.  According to Biot and 

Terzaghi's (Terzaghi, 1923) notion, the averaged elastic deformation ( ijε ) is an additive function 

of the averaged stress ( ijσ ) and pore pressure ( P ). Therefore, total strain is related to the effective 

stress ( eff
klσ ). Let us write a constitutive equation for the effective stress of a dry medium as below  

 eff eff
ij ijkl klSε σ=  (3.1) 

Here 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the compliance of a medium containing both isolated pores and connected pores.  

In the general case of an anisotropic poroelastic medium, the effective stress is linked with the 

confining stress and pore pressure by the following formula 

 eff
ij ij ij Pσ σ α= −    (3.2) 
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where ijα  is the 2nd rank Biot tensor. 

To derive the expression for the Biot tensor through elastic modulus of the porous media in the 

general anisotropic case, we will follow the work of Nur and Byerlee (1971). For this purpose, let 

us separate the stress tensor in two parts  

 ( ) ( )1 2
ij ij ijσ σ σ= +  

where ( )1
ijσ is the differential stress and equal to )( ij ijPσ δ− , and ( )2

ijσ  is identically equal to ijPδ  . 

Due to its additivity, the deformation tensor ( ijε ) also divided into two parts, such as  

 1 2
ij

eff
ij ijεε ε= +  (3.3) 

 where 2
ijε  is the deformation caused by the pore pressure of the liquid. 

 2 o
ij ijkl klS Pε δ=  (3.4) 

Here 0
ijklS  is the compliance tensor of the skeleton material, and P  is the pore pressure. The first 

term ( 1
ijε ) describes deformation due to the stress differences between the pore pressure and the 

stress tensor. 

 { }1
ij ijkl kl klS Pε σ δ= −  (3.5)   

By using formulas (3.1) to (3.5) and substituting into (3.3), we obtain 

 { }eff o
ijkl kl ijkl kl ijkl ijkl klS S S S Pσ σ δ= − −  (3.6) 
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Multiplying (3.6) by the tensor of elasticity ijklC  for a poroelastic medium with empty pores, we 

will obtain expressions for the effective stress tensor 

 { }eff o
ij ij ijkl ijpq pqkl klI C S Pσ σ δ= − −  (3.7) 

By comparing equation (3.2) and (3.7), we obtain the expressions for the Biot tensor as  

 o
ij ij ijkl klmmC Sα δ= −  (3.8) 

where ijδ  is the Kronecker delta tensor. 

The formulae (3.8) allow us to obtain the expressions ijα  for different types of symmetry. We 

provide below explicit expressions for the most useable types of symmetries in geophysics.  

 

Isotropic symmetry 

In this case, tensors ijklC  and o
klmnS can be presented in a form (Shermergor, 1977) 

 2 
3ijpq ij pq ip jq iq jp ij pqC K δ δ µ δ δ δ δ δ δ = + + − 

 
 (3.9) 

 1 1 2
9 4 3

o
pqmn pq mn pm qn qm pn pq mno oS

K
δ δ δ δ δ δ δ δ

µ
 = + + − 
 

 (3.10) 

where K and µ are the bulk modulus and shear modulus of the porous rock. oK and oµ  are the bulk 

modulus and shear modulus of the skeleton material. When m=n, the equation (3.10) takes the 

form  
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 ( )1 1 12 2
3 4 3

o
pqmm pq pq pq pqo o oS

K K
δ δ δ δ

µ
= + − =  (3.11) 

Substituting expressions (3.9) and (3.11) in to (3.8), leads to formulae: 

 2 1
3 3ij ij ij pq ip jq iq jp ij pq pqoK

K
α δ δ δ µ δ δ δ δ δ δ δ  = − + + −    

 

       2
3 3 3ij ij pp ij ij ij ppo o

K
K K

µδ δ δ δ δ δ δ  = − + + −    
        ij ijo

K
K

δ δ= −  

Finally, for isotropic poroelastic media, we have:  

 1ij ijo
K
K

α δ = − 
 

 (3.12) 

This expression (3.12) exactly corresponds to the formulae obtained in the paper of Nur and 

Byerlee (1971). 

 

Cubic symmetry 

For the Cubic symmetry, we receive,  

 ( ){ }0
1 11 121  ij ijI C Cα δ= − +  (3.13) 

 ( ){ }0
11 22 33 1 11 121 I C Cα α α= = = − +  

where 0 0 0
1 11 122I S S= +  
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Hexagonal symmetry 

Case 1: Let’s assume that the skeleton material is an isotropic medium, and the effective medium 

has TI symmetry. The anisotropy is caused by the aligned pores. Then, utilizing equation (3.11) 

into the equation (3.8), we receive 

 

( )

( )

11 12 13
11 22

13 33
33

1
3

2
1

3

o

o

C C C
K

C C
K

α α

α

+
= = −

+
−

+

=

 (3.14) 

Case 2: If both the skeleton and effective medium are transversely isotropic with a vertical axis of 

symmetry, then,  

 
( ){ }

{ }

0 0
11 22 1 11 12 3 13

0 0
33 1 13 3 33

1  

1 2

I C C I C

I C I C

α α

α

= = − + +

= − +
 (3.15) 

where 0 0 0 0
1 11 12 13  I S S S= + + and 0 0 0

3 13 332I S S= +  

 

Orthorhombic symmetry 

In this case,  

 

{ }
{ }
{ }

0 0 0
11 1 11 2 12 3 13

0 0 0
22 1 12 2 22 3 23

0 0 0
33 1 13 2 23 3 33

1  

1

1

I C I C I C

I C I C I C

I C I C I C

α

α

α

= − + +

= − + +

= − + +

 (3.16) 
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where,  

0 0 0 0
1 11 12 13
0 0 0 0
2 12 22 23
0 0 0 0
3 13 23 33

I S S S

I S S S

I S S S

= + +

= + +

= + +

 

These expressions (3.15) and (3.16) are similar to the expressions received by Cheng (1997). 

 

3.3 Influence of stress on the Biot tensor (αij): Static case 

Let's consider an elastic potential, W (Biot, 1962), such that  

𝑊𝑊 = 𝑊𝑊(𝜀𝜀𝑖𝑖𝑖𝑖, 𝜉𝜉) 

Here, 𝜀𝜀𝑖𝑖𝑖𝑖 is the deformation of the solid skeleton, and 𝜉𝜉 is the deformation of liquid in the pores. 

Then, by definition, the applied stress is, ik
ik

Wσ
ε
∂

=
∂

  and the pore pressure, WP
ξ

∂
=
∂

   

Now, let's consider the full differential of stress and pore pressure 

 
( )

( )
,

,
ik ik ik

ik

d d

dP dP

σ σ ε ξ

ε ξ

=

=
 (3.17) 

So, the stress and pore pressure both contribute to the deformation of the solid frame as well as 

fluid displacement. We can write  

 
i

ikjl

ik k
ik jl

jl

jl ik

d

C d G

d

d

dσ σ

ξ

σ ε ξ
ε ξ

ε α

∂

−

=
∂

+

=

∂
∂  (3.18) 

And, 
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 jl
jl

PdP d Gdε ξ
ε

−
∂

=
∂

 (3.19) 

where, PG
ξ
∂

=
∂

 is the modulus of elasticity of liquid. We placed a minus in (3.18) and (3.19), as 

confining pressure and pore pressure, act oppositely.  

From the last equation, we can express that  

 1 1
ik

ik

Pd dP
G

d
G

ξ ε
ε

−
∂

=
∂

 (3.20) 

Substitution of (3.20) into (3.18) leads: 

 

( )

( )

ik jl
jl

jl
j

ikjl jl ik

ikjl ik ik

l

l

ikj ikjl

C d dP

C dP

C dP

Pd d

P d

d

σ ε
ε

ε
ε

ε α

α

αε

α

∂
= − −

= − +

+

∂

∂
∂

= 

 (3.21) 

As follows from formulae (3.21), elastic constants are not dry already and depend on the pore 

pressure and effective stress. It is called effective instead of applied because there is a liquid in our 

case. 

 

3.3.1 Isotropic medium under pressure  

Let's investigate formula (3.8) and consider an isotropic case where pressure is applied to an 

intrinsic isotropic rock. In this case (Nur and Byerlee, 1971), 
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 1 1 o
o

K KS
K

α = − = −


  (3.22) 

where, 1o
oS

K
=  

Let's suppose that 𝐾𝐾� is a function of effective pressure ( ceP PP α= − ), where the confining 

pressure ( cP ) is 1
3 iiσ . We take 1K as a constant such that 1K K=   at a certain depth and particular 

stress. Now, we write,  

 21K K K= +   (3.23) 

where 2K  is a function of ( )cP Pα−  

And, therefore 

 2 31K K K Kα+= −  (3.24) 

Where 1K is the bulk modulus of the dry rock, 2K is the bulk modulus due to the added confining 

pressure, and 3K is the elastic modulus related with the coupled solid deformation and fluid 

incompressibility due to the pore pressure. The 3K modulus can be found by solving the equation 

(3.20) . Our goal of this section was to present a simple equation due to the increase of confining 

pressure and pore pressure. Detailed studies of 3K equivalent parameters are available in the 

literature, such as parameter M in Cheng (1997).  

 

Substitution of (3.24) into (3.22) gives  
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 1 2 31 o o oS K S K S Kα α= − − +  (3.25) 

Or,    

 
( )21

3

1  
  

1  

o

o

S K K

S K
α

− +
=

−



 (3.26) 

It is easy to see that (3.26) becomes (3.22), as 2K  and 3K  equals 0 with no additional confining 

pressure or pore pressure.  

 

3.3.2 Isotropic medium under uniaxial stress 

The stress state within the Earth is described by a stress tensor that varies depending on the 

overburden of the rock layers, tectonic setting, and the pressure exerted by the pore fluid. The 

stress in a medium induce changes in elastic constants and may result in anisotropy of elastic wave 

velocities. Many theories and empirical equations have been proposed over the years to establish 

the relations between elastic constants and stress. Here we utilize a phenomenological approach 

given by Nikitin and Chesnokov (1981) for an elastic medium and extended by Chesnokov et al. 

(2002) for a poroelastic rock to link elastic constants (also seismic wave velocities) with stress.  

Let us start with a Piola-Kirchhoff stress tensor by writing it as a sum of the spherical part and 

deviating part.  

 0 0
ij ij ijP tτ δ= − +  (3.27) 

where ( )0  / 3iiP τ−= , and 0
ijt  is the deviation of the initial stress tensor. The transformation between 

the Piola-Kirchhoff tensor and Cauchy stress tensor is available in various texts (Bland, 1969; 
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Liao, 2012). The stiffness tensor for a medium with initial stresses has the following form (Nikitin 

and Chesnokov, 1981) 

 ( )   o
ijkl ijkl c k

p
ij lmn mnC PC B t= +  (3.28) 

where p
ijklC  is a function of the confining pressure ( cP ); and   ijklmnB  is the part of the elastic moduli 

characterizing the anisotropy of the medium created by the initial stress. We must note that the 

tensor   ijklmnB  (Nikitin and Chesnokov, 1981) is different from the so-called third-order elastic 

tensor   ijklmnC  (Thurston and Brugger, 1964). The connection between   ijklmnC and   ijklmnB is presented 

in the following section.  

The equation for the elastic moduli of an isotropic medium under stress is  

( ) ( ) ( ) 1 2
1( ) ( ) {( ) ( )}
2

o o o o o o o
ijkl mn c ij kl c ik jl il jk ij kl kl ij ik jl il jk jl ik jk ilC Pt t t t t t tPλ δ δ µ δ δ δ δ ν δ δ ν δ δ δ δ= + + + + + + + + +

 (3.29) 

where λ and µ  are pressure ( cP ) dependent Lamé coefficients; 1ν and 2ν are the independent and 

non-zero components of the tensor   ijklmnB . 

 

Let's assume uniaxial stress applied vertically such that 10 0 0
11 22 332
t t t=− = − , the components of 

stiffness tensor should follow connections such as  

 
11 22 13 23 55 44

11 33 12 23 66 44

11 22 33 12 23 13 44 55 66

( ) 2( ) 4( )
( ) 2( ) 4( )
( ) ( ) 2( )

C C C C C C
C C C C C C
C C C C C C C C C

− = − + −
− = + + −
+ + = + + + + +

 (3.30) 
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Therefore, isotropic media under stress results in TI media.  

Now, we apply the equation (3.28) for a poroelastic media under stress in (3.8), and rewrite (3.8) 

as    

 o
ij ij ijkl klmmC Sα δ= −   (3.31) 

 Where, ( ) p o
ijkl qp ijkl ijklqp qpC C B tσ = +  

and, o
qp qp qpt Pσ α= −  

We write equation (3.31) more explicitly as   

 o o o
ik ik ikjl jlmm ikjlqp qp qlmmC S B t Sα δ= − −  (3.32) 

 

 

3.4 The connection between the third-order approximation of nonlinear 
elastic tensor (Cijklmn) and Bijklpq  

This section shows a link between the two classes of theories (Rasolofosaon, 1998) available for the 

investigation of the effect of stress on elastic bodies. The first class of theory assumes that the pre-stress in 

the elastic body is achieved by reversible processes (Thurston and Brugger, 1964; Thurston, 1965; 

Rasolofosaon, 1998). In the second theory, the stress magnitude is considered small compared to the elastic 

moduli, and no assumptions are made about the processes that result in initial stress (Dahlen, 1972; Nikitin 

and Chesnokov, 1981; Nikitin and Chesnokov, 1984). A connection between the elastic tensors of the two 

theories is given below.  

 

 Let's consider the wave equation 
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2

2
i

ij
j

U
t x

ρ σ∂ ∂
=

∂ ∂
 (3.33) 

                                            

where, ρ  is the density of the medium, iU  is the displacement and  

 ij ijkl klCσ ε=  (3.34) 

Here ijσ is the stress tensor, ijklC is the stiffness tensor and klε is the strain tensor.                                                                                                   

In a case of paper Nikitin and Chesnokov (1981), the expression (3.34)  has the form: 

 { }0 0( )ij ijkl kl ijkl ijklpq pq klC C P B tσ ε ε= = +  (3.35)                                                       

where 0
ijklC  is a function of pressure (P), 0

pqt  is the deviation of the initial stress tensor  and   ijklpqB  

is the elastic moduli characterizing the anisotropy of the medium resulting from the initial stress.   

The nonlinear relationship between ijσ  and jlε  (Thurston and Brugger, 1964) has the form: 

 { }0
ij ijkl kl ijkl ijklmn mn klC C Cσ ε ε ε= = +  (3.36) 

  Presenting klε  as: 

 0 1
kl kl klε ε ε= +  (3.37)                                                                                                    

Substituting (3.36) into (3.33) and using (3.37), we obtain 

 { }
2

0
2

i
ijkl ijklmn mn kl

j

U C C
t x

ρ ε ε∂ ∂  = + ∂ ∂
 (3.38)                                                    

or: 

 { }
2

0 0 1 1 0
2

i
ijkl ijklmn mn kl ijklmn mn kl

j j

U C C C
t x x

ρ ε ε ε ε∂ ∂ ∂ = + + ∂ ∂ ∂
 (3.39)       
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The expression (3.39) can be written in the form 

 { } { }
2

0 1 0 1 1 0
2

i
ijkl kl ijklmn mn kl ijklmn mn kl

j j j

U C C C
t x x x

ρ ε ε ε ε ε∂ ∂ ∂ ∂   = + +   ∂ ∂ ∂ ∂
 (3.40)  

Taking into account that 

 1 1
lnmn km klε δ δ ε=  (3.41)                                                              

The formula (3.40) can be rewritten as 

 

{ } { }

{ } { }

{ }

2
0 1 0 1 1 0

ln2

0 1 0 1

0 0 1

2

[ 2 ]

i
ijkl kl ijklmn mn kl ijklmn jm kl kl

j j j

ijkl kl ijklmn mn kl
j j

ijkl ijklmn mn kl
j

U C C C
t x x x

C C
x x

C C
x

ρ ε ε ε δ δ ε ε

ε ε ε

ε ε

∂ ∂ ∂ ∂   = + +   ∂ ∂ ∂ ∂

∂ ∂
= +
∂ ∂

∂
= +
∂

 (3.42)                                                                                                            

Hooke's law for the linear part of deformation has the form 

 0 0
mn mnpq pqSε τ=  (3.43) 

                                                                                                         

Substitution (3.43) into (3.42) leads to the expression: 

 { }
2

0 0 1
2 [ 2 ]i

ijkl ijklmn mnpq pq kl
j

U C C S
t x

ρ τ ε∂ ∂
= +

∂ ∂
 (3.44)               

Comparison between (3.35) and (3.36) with taking into account (3.44) gives: 

 02ijklpq ijklmn mnpqB C S=  (3.45) 

Under conditions: 

 0 0 ( )ijkl ijklC C P=  (3.46) 

And, the deviatoric stresses 
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 0
pq pqtτ =  (3.47) 

 

 

3.5 Dynamic case: Frequency dependence 

In this section, we derive the macroscopic equation for an anisotropic poroelastic medium, 

saturated with liquid of low viscosity (Chesnokov et al., 2019). To this end, as an initial point, we 

use a microscopic motion equation for the centroid of a physically infinitely small volume of 

poroelastic media, which contains a linked system of randomly distributed pores filled with 

viscous liquid.  

 ( ) ( ){ } ( ) ( ) ( )1 , ,ijkl jk il l f
j k i

C x i x u x x P x
x x x

χ ωηχ δ δ ω χ ω∂ ∂ ∂
 − − = ∂ ∂ ∂

      (3.48) 

where Cijkl is the stiffness tensor of the material, η  is the viscosity of the pore fluid, Pf   is the 

Fourier transform of pore pressure, and δ  is the well-known Kronecker delta. The characteristic 

multitude function ( )χ x  equals one if point x⃗  belongs to the area taken by the liquid and equals 

zero if this point belongs to the area taken by the skeleton. The Fourier image of the medium 

deformation vector in the Fourier domain is  ( ),lu xω  . For simplicity, we will only consider the 

case of low frequency ( ηω
ρκ

< ), where ρ is the average density and κ is the permeability of the 

medium. 

 

The deformation response of the medium at a set pressure is 
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 ( ) ( ) ( )2, , ' ' 'i
i fu x G x x P x dxω = ∫

      (3.49) 

where 

 ( ) ( ) ( )2 1, ' , ' 'i ij

j

G x x G x x x
x
χ∂

∂ ′
=

      (3.50) 

is the differential operator over the argument 𝑥⃗𝑥′which affects not only the function 𝜒𝜒(𝑥⃗𝑥′) but also 

𝑃𝑃𝑓𝑓(𝑥⃗𝑥′). In the equation (3.50), 𝐺𝐺1
𝑖𝑖𝑖𝑖(𝑥⃗𝑥, 𝑥⃗𝑥′) is the Green function which satisfies the following 

equation 

 ( ) ( ){ } ( ) ( )11 , ' 'lm
ijkl jk il im

j k

C x i x G x x x x
x x

χ ωηχ δ δ δ δ∂ ∂
 − − = − ∂ ∂

       (3.51) 

where 𝛿𝛿(𝑥⃗𝑥 − 𝑥⃗𝑥′) is the Dirac delta function. 

The mean value of the Green function 𝐺𝐺1
𝑖𝑖𝑖𝑖(𝑥⃗𝑥, 𝑥⃗𝑥′) describes the mean value of the medium 

deformation vector. We assume the pore pressure in the low-frequency range as a set function of 

the coordinates, which is defined only by external forces. Note that the Green function depends 

not only on the elasticity moduli but also on liquid viscosity, which differs from the low viscosity 

liquid case considered in Biot theory (1962).   

 

To average equations (3.49) to (3.51), we will be using diagram technique analogous to the ones 

applied for effective parameters of a statistically random inhomogeneous elastic media (Rytov et 

al., 1989; Chesnokov et al., 1995; Bayuk and Chesnokov, 1998) and poroelastic media (Chesnokov 

et al., 2002). The result of this averaging is the Dyson equation of Green function; 
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 ( ) ( ) ( ) ( ) ( )' ' ' ' '
1 0 0 1 1 1 2 1 1 2 1 2, ' , ' , Σ , , ,ik ik ij jl lkG x x G x x G x x x x G x x dx dx= + ∫
             (3.52)   

where 𝐺̅𝐺1𝑖𝑖𝑖𝑖(𝑥⃗𝑥, 𝑥⃗𝑥′) is averaged Green function, 𝐺𝐺0𝑖𝑖𝑖𝑖(𝑥⃗𝑥, 𝑥⃗𝑥′) satisfies equation (3.50) if χ=0, 

Σ1
𝑗𝑗𝑗𝑗(𝑥⃗𝑥1′ , 𝑥⃗𝑥2′ ) -correlation operator represented by an infinite series of diagrams containing a 

"perturbation" operator.  

 { } ( )ijkl jk il
j k

C i x
x x

ωηδ δ χ∂ ∂
+

∂ ∂
  

The summation of the Dyson series for the average Green function can be performed through the 

effective operator in an analytical form by incorporating the n-point correlation functions proposed 

by Vikhorev and Chesnokov (2009). This method is particularly suitable when considering 

attenuation due to scattering.  

In the same way, we obtain the averaged response of the medium to the gradient of porous 

pressure. 

 ( ) ( ) ( )2 1 2 1 1, ' , '  Σ , 'i ik kG x x G x x x x dx= ∫
        (3.53) 

where Σ2𝑘𝑘(𝑥⃗𝑥1, 𝑥⃗𝑥′) is the second correlation operator. Its application allows the generalized non-

local Biot-Willis parameter 𝛼𝛼𝑖𝑖𝑖𝑖(𝜔𝜔, 𝑥⃗𝑥1, 𝑥⃗𝑥) to be defined by the following equation: 

 ( ) ( )2Σ , ' , , 'l ij

j

x x x x
x
α ω∂

= −
∂

     (3.54) 

The first correlation operator Σ1
𝑗𝑗𝑗𝑗(𝑥⃗𝑥1′ , 𝑥⃗𝑥2′ ) is linked with the effective tensor of elastic moduli of a 

poroelastic medium which is saturated with a viscous liquid, 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ . 
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From here we deduce the link between the full stress tensor 𝜎𝜎𝑖𝑖𝑖𝑖 and the effective stiffness tensor 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗  and the pore pressure: 

 ( ) ( ) ( ) ( ) ( )* ' ', , , , ' ' 'ij
ij ijkl l f

k

x C x x u x dx x x P x dx
x

σ ω α ω∂
= ∫ + ∫

∂
          (3.55) 

It should be noted that the case of viscous liquid 𝛼𝛼𝑖𝑖𝑖𝑖(𝜔𝜔, 𝑥⃗𝑥, 𝑥⃗𝑥′) depends on frequency and is a 

complex function. By taking into account the link between Σ1
𝑗𝑗𝑗𝑗(𝑥⃗𝑥1′ , 𝑥⃗𝑥2′ )  and  Σ2𝑘𝑘(𝑥⃗𝑥1, 𝑥⃗𝑥′) it is possible 

to express the Biot-Willis parameter through the effective stress tensor for a poroelastic medium 

saturated with viscous liquid.   

 ( ) ( ) ( )* ', , ' ' , ,ij
ij ijkl klmnx x x x C x x Sα ω δ δ ω= − −

       (3.56) 

where 𝑆𝑆𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 is the inverse tensor of ijkl jk ilC iωηδ δ+  

Therefore, based on the proposed microscopic equation for a deformation of a poroelastic medium 

saturated with viscous liquid, it is possible to generalize Biot theory and to obtain the effective 

stress tensor and Biot-Willis parameter in the case of random viscosity. However, we focus on the 

homogeneous Newtonian fluid in this study. Therefore, the liquid is a mixture of water and oil 

with only bulk moduli of the fluid. And the seismic dispersion comes from the scattering of the 

inclusions. On the basis of the diagram technique, we obtained an expression for the Biot-Willis 

parameter, which allows us to calculate it in the dynamic range. We received the expression for 

the Biot-Willis parameter in the general non-local case when the Fourier image of this parameter 

depends not only on frequency but also on the wave vector. In the threshold case, when the length 

of elastic waves is much higher than the characteristic size of random inhomogeneities, integral 

expression (3.55) turns into finite expression.  
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 ( ) ( ) ( ) ( ) ( )* , , , ,ij
ij ijkl l f

k

x C x u x x P x
x

σ ω ω α ω ω∂
= +

∂
      (3.57) 

And ,  ( ) ( ), , o
ik ik ijkl jlmmx C x Sα ω δ ω= −

 

  (3.58) 

Here, ( ),ijklC xω 

  is calculated under the condition of existing liquid in pores. 
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Chapter 04 
 
Practical Application: Biot tensor in poroelastic media 
 
 
 
 
 
4.1 Introduction 

In this chapter, we demonstrate the implementation of our theoretical equations of chapter three, 

and we compare our calculations to the available experimental data from the literature. This 

chapter's content is also a part of the publication (Morshed, Chesnokov and Vikhoreva, 2021) 

mentioned in chapter three. 

 

We calculated the Biot tensor for different scenarios to support our theoretical formulation, such 

as changes in confining pressure, pore pressure, and uniaxial stress. We choose sedimentary rocks, 

for example, sandstone and shale. To ensure maximum accuracy, we pick experimental data from 

literature where either all data related to poroelastic measurements are provided and 

microstructural data such as mineralogical composition and porosity are given. A careful selection 

of data involves information on the details of the experiment and the rock's composition. It is often 

difficult to find the exact match between the experimental setup and theoretical assumptions 

beneath the equations. There are also many different methods for measuring the Biot α, especially 
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how strain, stress, and pore pressure are varied during data acquisition. These approaches include 

quasi-static and ultrasonic measurements. There are two quasi-static methods (Al-Tahini et al. 

2005), commonly known as direct method and indirect method. In the direct method, the changes 

of pore volume and the changes of the bulk volume of a saturated sample are measured as the 

confining pressure is varied with constant pore pressure. The direct method is also called a jacketed 

test. The indirect method measures the stiffness moduli (e.g., bulk moduli for isotropic case) of 

the fluid-saturated rock and the solid matrix's stiffness moduli using an unjacketed test where 

differential pressure is kept zero (i.e., Pp= Pc). The ultrasonic measurements exploit compressional 

and shear wave velocities usually measured on dried rock samples.       

 

We also estimated the frequency-dependent Biot tensor for TI models using numerical calculations 

as such experimental data for dynamic cases is extremely rare.  

 

4.2 Isotropic rock under pressure  

In this section, we apply equation 3.26 to compute Biot’s coefficient for an isotropic medium due 

to reservoir pressure changes. We select experimental data (Ma and Zoback 2017) to estimate α 

for poroelastic stress changes associated with depletion and injection. They used the indirect 

method of Biot α measurement, and therefore they measured the bulk modulus of the saturated 

sample and solid matrix. As the solid matrix (i.e., grain bulk modulus) is measured, maintaining 

confining pressure equal to pore pressure, the grain bulk modulus (Kg or Ko) increases as pore 

pressure increases. The higher bulk modulus is partly attributed to the stiffening of microfractures 

as fluid pressure increases. Following our equations (it applies to other methods also), an increase 
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in Ko means higher α. The variation of α of a sample (B9V) is shown in Figure 4.1, Figure 4.2, and 

Figure 4.3 for three different scenarios: changes in confining pressure only (dry case), decreases 

in pore pressure at Pc=70 MPa, and changes in both Pc and Pp with constant differential pressure 

(Pe=Pc-Pp=10MPa). We see a good fit between the experimental data and our computation in all 

three cases. Our predicted data sometimes underpredicted the experimental data. However, Al-

Tahini et al. (2005) reported that the measured Biot coefficient from the indirect method usually 

has higher values than the more accurate direct method.    

 

Figure 4.1: The Biot coefficient (α ) for confining pressure changes at zero pore pressure of a 
sandstone (porosity 3.1%) sample. Biot coefficients are calculated from Ma and Zoback (2017) 
data of a simulated reservoir depletion situation. The measured data is labeled with 'e' and the 
computed data is labeled with 'c'. 
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Figure 4.2: The Biot coefficient (α ) for pore pressure changes at 70 MPa confining pressure of a 
sandstone (porosity 3.1%) sample. The α  is calculated from Ma and Zoback (2017) data of a 
reservoir depletion simulated case. The measured data is labeled with 'e' and the computed data is 
labeled with 'c'. 
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Figure 4.3: The Biot coefficient (α ) for changes in both confining pressure and pore pressure at 
10 MPa differential pressure of a sandstone (porosity 3.1%) sample. The color bar represents the 
pore pressure values. The α  is calculated from Ma and Zoback (2017) data of a reservoir 
depletion simulated case. The measured data is labeled with 'e' and the computed data is labeled 
with 'c'. 
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4.3 Uniaxial strain to an isotropic rock 

We select the ultrasonic data of uniaxial strain experiment of Scott and Abousleiman (2005) to 

understand the behavior of the Biot tensor for the uniaxial loading situation. They measured 

ultrasonic velocities on Berea Sandstone under various stress conditions such as hydrostatic, 

triaxial, and uniaxial strain experiments. The Berea Sandstone is an isotropic and porous 

monomineralic rock. Therefore, Scott and Abousleiman’s data is our choice to investigate the 

effect of stress on elastic moduli and Biot tensor to an initial isotropic rock. While hydrostatic 

stress does not generate anisotropy to the elastic and poroelastic parameters of the rock, the 

uniaxial stain and triaxial stress experiment induce anisotropy to the isotropic rock. The uniaxial 

strain experiment (i.e., the sample shortens only in one direction) is often known as a good proxy 

of the in-situ stress conditions of the subsurface (Herwanger and Koutsabeloulis 2011). The 

uniaxial stress altered the Berea Sandstone to become a transversely isotropic rock with a vertical 

axis of symmetry (VTI) and caused the most substantial variations of α among the three 

experiments. We calculated the horizontal and vertical components of α using the formula 3.32, 

and we plotted those values with uniaxial stress along with the measured data (Figure 4.4). We 

write the equations for the measured velocities following Nikitin and Chesnokov (1981) as below:  

 

 

{ }

{ }

2
11 1 2 11

2
33 1 2 33

2
11 2 33 11

2 2
13 23 2 11 33

2 2( ) 1

2 2( ) 1
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o
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o o
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o o
s s

V t P

V t P

V t t P

V V t t P

ρ λ µ ν ν

ρ λ µ ν ν

ρ µ ν

ρ ρ µ ν

= + + + + −

= + + + + −

= − + −

= = − + −

 (4.1) 
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where ρ is the density of the sample, Vp  and Vs  are the compressional and shear wave velocities, 

11 and 33 represent the horizontal and vertical directions, respectively, 13 and 23 represent the 

propagation of shear waves in the vertical direction. We solve the equations in (4.1) to calculate 

11
ot , 33

ot , 1ν , 2ν , P ,λ  and µ  using the known density and velocities. Then, we use the equation 3.29 

to estimate the stiffness tensor of the TI rock at given uniaxial stress.  

 

 

Figure 4.4: The horizontal ( 11α ) and vertical ( 33α ) components of the Biot tensor of stress-
induced Transversely Isotropic rock media are shown with uniaxial stress. The measured data is 
labeled with 'e'. The estimated data using our approach is also shown for the corresponding 
uniaxial stress.  
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Let us show an example from the measured velocities at uniaxial load 75.2 MPa with horizontal 

confining pressure 20.7 MPa. The velocity data are 1
11 3.5Vp kms−= , 1

33 3.83Vp kms−= , 

1
11 2.26Vs kms−=  and 1

23 2.4Vs kms−= . Our estimated stress parameters are 11 1.33ot MPa= − , 

33 2.66ot MPa= and 95.9P MPa= .  

Both 11α and 33α  initially decrease before reaching constant values beyond 50 MPa as vertically 

applied uniaxial load increases. In general, our theoretical prediction is in good agreement with 

the experimental data (Figure 4.4) and 33α  shows a better fit with measured data than 11α . The 

slight disagreements between experimental values and computed values may arise for several 

reasons. One of the reasons is related to the data. We do not consider the porosity loss data as such 

data is not available. However, some porosity loss is expected as the rock sample shrink due to the 

applied stress (Müller and Sahay 2016). It is also probable to have a little error in data as those are 

digitized from the graphs of Scott and Abousleiman (2005). Besides, our method works better if 

more data is available, especially the shear velocities at three perpendicular directions are critical 

as the stressed rock is expected to have orthorhombic symmetry (Nikitin and Chesnokov 1981; 

Rasolofosaon 1998).  

 

Moreover, the uniaxial strain test does not allow any strain in horizontal directions. It, therefore, 

causes greater confinement and a steeper slope of the stress-strain curve than the uniaxial stress 

case, and some of the applied vertical stress equilibrates throughout the rock (sometimes called 

quasi-hydrostatic). The ratio of the differential stress to the horizontal confining stress is nearly 3 

for the experimental data. However, the theoretical condition to cause the stress-induced TI 
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symmetry is that 11 22 330.5o o ot t t= = . In other words, uncertainty in the horizontal stresses is also a 

reason for some mismatch between the experimental data and the theoretical prediction. 

 

 

 

4.4 Uniaxial stress to a transversely isotropic rock 

In the previous section, we examined the stress-induced change of the Biot tensor. However, rock 

microstructure also plays a significant role in elastic stiffness and anisotropy. Therefore, pores and 

minerals' preferred orientation influences the Biot tensor's components, but probably differently 

than uniaxial stress. So, we estimated 11α  and 33α  from our Barnett Shale samples and two TI 

samples from literature (Sviridov et al. 2017) that have minerals and pores oriented horizontally. 

All Barnett Shale samples except one show smaller 11α   compared to  33α (Figure 4.5). Therefore, 

Barnett Shale samples show the opposite trend of what we observed for stressed-induced 

anisotropy data. However, such behavior is intuitively understandable as uniaxial stress stiffens 

the rock in the vertical direction, and horizontally aligned microstructure stiffens the rock in the 

horizontal direction for a VTI rock.   

 

Sviridov et al. (2017) measured ultrasonic velocities while varying uniaxial stress. The sample 

BaZ is a diagenetically consolidated Siltstone containing 33% Muscovite, 29% Quartz, 33% 

Chlorite, and 4% porosity. The other sample (DH06) is Clayey bituminous marl containing 33% 

Calcite, 28% Quartz, 12% Mica, 4% Pyrite, and 23% porosity. To compute the Biot tensor, we 

inverted the velocities of the ultrasonic measurements for the stress and then estimated the stiffness 
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of the dry rock at each stress point. We computed the stiffness of the skeleton using the General 

Singular Approximation (GSA) method (Shermergor 1977; Bayuk and Chesnokov 1998; 

Chesnokov et al. 2009) utilizing mineral composition data. The GSA method is a mathematical 

approach (discussed in detail in chapter 02) to estimate the effective physical properties of 

anisotropic porous media.  

 

Figure 4.5: The horizontal ( 11α ) and vertical ( 33α ) components of the Biot tensor of Barnett 
Shale samples are shown. 

 

While calculating components of Biot tensor of the above two transversely isotropic samples, we 

expect 33α lower than 11α  as we have seen in the previous section as uniaxial stress increases, and 

the samples are mainly stiffening in the vertical direction. But, the presence of aligned minerals 

and pores causes higher 33α  and lower 11α  for VTI rocks (Figure 4.6). So, the combined effects 
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of stress and oriented microstructure is an intricate issue. Indeed, the decrease of 33α for Berea 

Sandstone is 21% for changes of stress from 6.8 MPa to 30.8 MPa while it is only 4.2 % for BaZ 

sample for a similar variation of uniaxial stress (5.4 MPa to 31.4 MPa).  

 

 

Figure 4.6: The horizontal ( 11α ) and vertical ( 33α ) components of the Biot tensor are shown with 
applied uniaxial stress for two Shales samples calculated from Sviridov et al. (2017). The left 
figure represents sample BaZ, and the right figure represents sample DH06. In both cases, 11α  
are smaller than 33α . 

 

4.5 Numerical simulations of dynamic case 

We perform numerical calculations for the dispersion of seismic waves from four different models. 

We considered uniformly oriented penny-shaped inclusions (defined by aspect ratios (AR)) with 

two types of pore fluids (gas and water) in isotropic background medium. We take stress as 

constant. The diameter (i.e., the long axes of the ellipsoid) of inclusions is 8 mm in all models. 



63 
 

The volume concentration of inclusions is 3x10-3 and 9x10-2 for the low aspect ratio (AR=0.004) 

and high aspect ratio (AR=0.1) models, respectively. All the four models represent effective media 

(i.e., the wavelength of the seismic waves is much larger than the largest heterogeneities). All the 

four models represent VTI media as the inclusions are horizontal and uniformly oriented.  

We use the algorithm given by Vikhorev and Chesnonov (2009) in an analytical form of the 

summation of the Green's function for the effective dynamic properties of a randomly 

inhomogeneous medium based on n-point correlation approximation. The algorithm considers 

only scattering related attenuation caused by the inclusions. The background medium is taken as 

isotropic (bulk modulus = 20.34 GPa, shear modulus =17.7 GPa and density =2657 kg/m3). The 

bulk moduli of water and gas are taken as 1.4 GPa and 0.01 GPa, respectively.  

 

The variations of velocities of the compressional wave, the fast shear wave, and the slow shear 

wave are shown as a function of the polar angle in Figure 4.7. The attenuation of P-wave, fast 

shear wave, and slow shear wave are plotted in Figure 4.8. We also plotted compressional wave 

anisotropy with frequency in Figure 4.9. The anisotropy coefficient is calculated as Ap=2x 

(Vp(max)-Vp(min)) / (Vp(max)-Vp(min)) x100% after Vikhorev and Chesnonov (2009). The 

calculated 33α  and 11α  is shown in Figure 4.10 (a) and (b) with changes in frequency. In gas 

saturated models, both 33α  and 11α initially increase with frequency and reach their maximum at 

approximately 45 Hz (commonly known to be the band for the surface seismic data), and then 

decrease with the increase of frequency. The vertical component ( 33α ) is always the most sensitive 

component in our TI models. For gas saturated small aspect ratio (i.e., 0.004) models, we observe 
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a significant change of 33α  from 0.49 at 45 Hz to 0.045 at 500 Hz. The 33α  changes more for 

compliant inclusion models (AR= 0.004) compared to the stiff inclusion models (AR= 0.1).                                                                       

 

Figure 4.7: The velocities of (a) P-wave, (b) fast shear wave, and (c) slow shear wave are plotted 
with angles from the symmetry axis for a numerically modeled transversely isotropic medium. 
The values of frequencies are indicated with an arrow.  

0 Hz 

500 Hz 

(c) 

0 Hz 

500 Hz 
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0 Hz 
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Figure 4.8: The attenuation of (a) P-wave, (b) fast shear wave and (c) slow shear wave are 
plotted with frequency for the numerically modelled transversely isotropic medium.  

 

 

 

 

 

 

 

(b) (a) 

(c) 
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Figure 4.9: The anisotropy coefficient of four models are plotted with frequency. The aspect ratio 
of inclusions and inclusion fluid are mentioned in each plots.  
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Figure 4.10: The Biot parameters ( 11α and 33α ) are plotted as a function of frequency. Figure 
4.9(a) shows two models with different aspect ratios (0.004 and 0.1) of the inclusions, and both 
are gas saturated. Figure 4.9(b) shows two scenarios for gas saturated and water-saturated rocks 
with aspect ratio 0.004 of the inclusions.  

 

As observed in Figure 4.10 (a) and (b), the variations of Biot α are less for weak contrast inclusion 

(water-saturated) models compared to the strong contrast (gas saturated) models. The variations 

of 33α and 11α are associated with the attenuation of the seismic waves. The attenuation varies with 

the orientation of the inclusions and the elastic contrast between the matrix and the fluid. The 

attenuation is maximal in the direction normal to the inclusion planes, and the attenuation is 

minimal parallel to the inclusion planes (Vikhorev and Chesnonov 2009). Therefore, the frequency 

of data also plays a vital role in the estimation and interpretation of the Biot tensor. Consequently, 

a proper method and specific data are necessary to ensure accurate estimation and practical 

application of the Biot coefficient.   

(b) (a) 



68 
 

 
 
 
 
Chapter 5  
 
Summary and Discussion  
 
 
 
 
 
This research's objective is to understand the stress and frequency-dependent properties of 

poroelastic anisotropic rocks. We resort to Biot tensor as a linking parameter between stress and 

microstructure. Therefore, we study the Biot tensor in terms of effective media and frequency-

dependent cases for geomechanical and rock physics applications. We derived easily applicable 

equations to extract the Biot tensor and subsurface stress from elastic moduli in the static case and 

elastic wave velocities in the dynamic case. We presented an independent derivation of the Biot-

Willis tensor for an anisotropic porous medium. We obtained explicit equations for the influence 

of stress on the Biot tensor. We also provided functional equations of Biot tensor, including non-

linear part of stiffness tensor for uniaxial stress cases distinguishing the effect of pressure and 

deviating part of initial stress.  

 

The Biot parameter measures the compressibility of the rock skeleton with respect to the solid 

grain (Al-Tahini et al., 2005). Both rock skeleton and solid grain for an anisotropic poroelastic 

rock are a complex function of subjective stress, stiffness of each mineral, and pore stiffness. The 
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pore stiffness again varies depending on isolated stiff pores and compliant ellipsoidal pores. We 

used the general singular approximation method for the static case to estimate the effective elastic 

properties from the rock composition and microstructure data. Any other effective medium scheme 

or mixing laws is also appropriate if calibrated properly with the experimental data. Our 

justifications for using the GSA method are explained in chapter 02. We modeled the 

compressional and shear wave velocities from mineral composition and porosity data of the 

Barnett Shale. The GSA method provided a good fit with the lab measured velocities of the Barnett 

Shale samples. However, the f parameter in the GSA method is more like a qualitative parameter. 

It should not be treated as a real connectivity property such as permeability or hydraulic 

conductivity.  Moreover, fractures and porous inclusions are topologically isolated in the GSA 

method (Sayar and Torres-Verdin, 2016) in common derivations. We also demonstrated that the 

success of the GSA method specifically depends on the appropriate modeling scheme, which 

requires the rock physics understanding of the core samples. 

 

We applied our theoretical equations from chapter three to the experimental data. We discussed in 

detail those applications in chapter four for different cases, such as changes in confining pressure, 

pore pressure, and uniaxial stress. We collected experimental data literature. However, 

experimental methods for measuring the Biot parameter and the governing equation for calculating 

the Biot parameter among different authors are also different. For example, the grain modulus (Kg) 

for Ma and Zoback (2017) data (in 4.2 - isotropic rock under pressure) is different at different 

confining pressure and pore pressure. Moreover, Kg increases up to approximately 325 GPa as 

pore pressure increases. Nevertheless, Ko (equivalent to Kg here) in the Biot tensor equation for 

the acoustic method of Scott and Abousleiman (2005) is taken as constant and independent of 
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stress. Thus, calculated biot parameters from different types of experimental data may not give the 

exact same value. 

 

Furthermore, there are always some uncertainties with compliance moduli (So - in our equation in 

chapter three) of solid grain for multimineral rocks as zero-porosity samples of such rocks are 

uncommon and rarely measured. Additional uncertainties in grain moduli may arise from how 

isolated pores are inaccessible to pore fluid or changes of pore connectivity with stress (Ma and 

Zoback, 2017). Theoretical assumptions of an equation may also become an issue depending on 

the rock's real behavior if different than the considered cases of elastic, non-linearly elastic, or 

anisotropic rock.   

 

Our results for transversely isotropic rocks show significant differences between the vertical and 

horizontal components of the Biot tensor with stress and frequency in both experimental data and 

numerically modeled data for a TI media. We notice that applied stress and rock’s intrinsic 

microstructure affect the Biot tensor conversely. Vertically applied uniaxial stress cause anisotropy 

to increase up to a stress point where maximum grain-to-grain contact is achieved, and open pores 

and compliant microcracks are effectively closed. We observe that 11α  increases, but 33α  

decreases as uniaxial stress increases.  The rock microstructure, on the other hand, especially the 

presence of aligned minerals, cause a decrease in 11α , but an increase in 33α .  
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Our proposed approach for medium under uniaxial stress shows an excellent prediction of 33α  and 

11α  for a given stress. However, our method is only suitable when the stress magnitude is small 

compared to the elastic moduli of the media.  

 

Apart from rock microstructure and stress, frequency also plays a vital role in the Biot tensor. Our 

numerical simulations based on the summation of the Dyson equation for the scattering effects of 

the inclusions show 11α  and 33α have a peak value (at ~45 Hz) at the band of surface seismic 

frequency. Therefore, the proper method and data are necessary to ensure accurate estimation and 

practical application of the Biot coefficient. We didn't consider liquid viscosity in detail in our 

study. Future work on the evaluations of Biot tensor for time-lapse seismic applications should 

consider simultaneous variations of stress and frequency. Therefore, a robust method may also 

involve dynamic permeability and viscosity in the frequency domain while accounting for stress 

variations due to fluid injection or depletion.  
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Appendix A: Stiffness tensor of VTI media and coefficients of anisotropy 
for rocks with high magnitude of anisotropy 

A transversely isotropic media with a vertical axis of symmetry (VTI) is the simplest anisotropic system. 

Five independent elastic constants can describe a VTI medium. The Voigt stiffness matrix for a VTI media 

has the form (Mavko et al., 2009):  

 

11 12 13

12 11 13

13 13 33
66 11 12

44

44

66

0 0 0
0 0 0
0 0 0

, 0.5( )
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ij

C C C
C C C
C C C

C C C C
C

C
C

 
 
 
 

= = − 
 
 
 
 

 (A.1) 

And, the compliance tensor has the form: 

 

11 12 13

12 11 13

13 13 33
66 11 12

44

44

66

0 0 0
0 0 0
0 0 0

, 2( )
0 0 0 0 0
0 0 0 0 0
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ij

S S S
S S S
S S S

S S S S
S

S
S

 
 
 
 

= = − 
 
 
 
 

 (A.2) 

  

Under the assumption of "weak" anisotropy,  Thomsen (1986) suggested a convenient notation in terms of 

elastic constants for a VTI media.   
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Thomsen (1986) notations  are given as (Mavko et al., 2009), 

 

11 33 33

66 44 44
2 2

13 44 33 44 33 33 44

( ) / 2
( ) / 2

( ) ( ) / 2 ( )

C C C
C C C

C C C C C C C

ε
γ

δ

= −
= −

= + − − −

 (A.3) 

 

Let us write the elastic constants in the above Equation in terms of velocities and density (ρ), we receive, 

 

2 2

2

2

2

(90 ) (0 )
2 (0 )

(90 ) 1
2 (0 ) 2

o o
p p

o
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p

V V
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And, similarly 

 
2

2

(90 ) 1
2 (0 ) 2

o
sh

o
sv

V
V

γ = −  (A.5) 

Similar to the above notations, the coefficients of anisotropy which are valid for any magnitudes of 

anisotropy, are given below after Chesnokov (1977) as  

 

2 2
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(90 )
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 (A.6) 

and  
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2

2

(90 ) 1
(0 )

o
SH

s o
SV

V
V

α = −  (A.7) 

  

The above coefficients are appropriate for rocks like the Barnett Shale or any rocks with a high 

magnitude of anisotropy.   
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Appendix B: Derivation of the generalized singular approximation 
method (GSA) 

We outline here a brief derivation of the GSA method. Let us consider two elastic bodies with 

equal size and shape, and they both have the same boundary conditions. One of them is a 

heterogeneous body with unknown effective stiffness *C , and the other one is a homogeneous 

body with stiffness tensor cC . Let's assume the displacement vectors are ( )u x   and ( )cu x   in the 

inhomogeneous and homogeneous body for an applied force ( F ).  

The equilibrium equations can be written as,                                                                                                                  

  

 c cLu F L u= − =  (B.1) 

 Where, ij j ijkl kL C≡ ∇ ∇  and )C C
il j ijkl kL C≡ ∇ ∇  

We write all fields in the heterogeneous anisotropic body as a sum of the comparison body and 

fluctuations as below   

 

'

' 

'

c

c

c

u u u

C C C

L L L

= +

= +

= +

 (B.2) 

Where, 
cu , 

cC  and  cL  are the average value and 'u , 'C and 'L are the fluctuations  

Using Equation (B.1)  and Equation (B.2), we receive 

 ' 'cL u L u= −  (B.3) 
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Let's introduce the Green tensor of the operator cL  in the form 

 ( )cL G I rδ= −  (B.4)                                                                        

Where I  is the fourth-rank unit tensor and δ  is the Dirac delta. We obtain a solution to the 

Equation (B.3) as 

 ' * 'u G L u=  (B.5)                                                                 

Where sign '∗' means convolution. Then, utilizing Equation (B.5), we get a relation between the 

local and average strain similar to the Lippman–Schwinger equation of the quantum scattering 

theory        

 ( , ) 1 1 1 1( ) ( ) ( )[ ( ) ] ( )c c
ij ij k i j l klmn klmn mnx x G x x C x C x dxε ε ε= + − −∫  (B.6) 

Where ,ki jlG are the components of the second derivative of Green's function of the comparison 

body. The second derivative of Green's function is a generalized function, and it can be presented 

as a sum of the singular part and formal part. For randomly distributed inclusions, the singular part 

is much larger than the formal part. It has been verified by comparing with the experimental data 

(Bayuk and Chesnokov, 1998). Therefore, only the singular part is considered in the GSA method, 

and the formal part is omitted. Symmetrization is performed over the indices in the parentheses in 

the Equation (B.6). The second derivative of the Green's function in Equation (B.6) is also 

symmetrized over the outer pair of indices (k and l) and replaced by its only singular part 'g' as 

given below: 
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 (B.7)                                               

Where a1, a2, and a3 are the semi-axes of the ellipsoidal heterogeneities. It is assumed that all 

heterogeneities are of ellipsoidal shape in the GSA derivation. After the second derivative of 

Green's function is found, the Equation (B.6) can be written as 

 ( ) ( ) [ ( ) ] ( )c c
ij ij ijkl klmn klmn mnx x g C x C xε ε ε= + −  (B.8) 

Performing index permutation, we obtain  

 ( ) ( )ij ijmn mnx I xε ε=  (B.9) 

and then Equation (B.8) can be rewritten in the form 

1( ) { [ ( ) ]}c c
mn mnij mnkl klij klij ijx I g C x Cε ε−= − −                                                                                                    (B.10) 

Multiplying both the sides of Equation (B.10) by the stiffness tensor and averaging them over 

representative volume element (RVE) we obtain  

 1( ) ( ) ( ){ [ ( ) ]}c cC x x C x I g C x Cε ε−〈 〉 = 〈 − −  (B.11) 

The average strain for the comparison body can also be obtained from Equation (B.10)  
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11[ ( ) ]} ( )c cI g C x C xε ε
−−= 〈 − − 〉 〈 〉  (B.12) 

The effective elastic tensor relates the average stress of the media to the average strain and 

therefore    

 *( ) ( )x C xσ ε〈 〉 = 〈 〉  (B.13) 

Therefore, we obtain the formula for the effective stiffness of the inhomogeneous body utilizing 

Equation (B.11) and Equation (B.12).  

 
1 1* 1 1( )[ ( ( ) )] [ ( ( ) )]c cC C x I g C x C I g C x C
− −− −= 〈 − − 〉 〈 − − 〉  (B.14) 

Note that a similar equation is also available from Willis (1977). However, his method of 

derivation is different from Shermergor (1977).  
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