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ABSTRACT

Let S be a compact commutative topological semigroup
and H a closed subsemigroup of S, If x is a continuous
unit-character of H, it is possible to obtain the following
necessary and sufficient conditions for X to be extendable
to S. First, (x,y,a)eHxHxS and xa = ya then x(x) = x(y).
Also, (x,y)eHxH and xe = ye then x(x) = X(y) where e is the
least idempotent of S. Using these results, if x is a con-
tinuous character of S, not necessarily a unit-character,
further necessary and sufficient conditions for the extenda-
bility of X are found. It is shown that X can be extended
to 5 if and only if there exists an open and closed prime
ideal P such that H) (S\ P) is the support of x, and if x
and y are elements of the support and a an element of the
complement of P with xa = ya then x(x) = x(y). From these
conditions, other criteria for extendability can be derived
with the additional hypothesis that S is a pseudo~invertible
semicroup. Finally, results are obtained which show that,
to scme extent, it suffices to consider continuous characters
defined on closed subsemigroups of S which are unions of com-
ponents of S.

The results in this paper parallel those of R. O.

Fulp in his recent paper bearing the same title.
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CHAPTER I

INTRODUCTION, DEFINITIONS OF TERMS USED,

AND PROPERTIES OF CHARACTERS
INTRODUCTION

There are two general areas of research on characters
of semigroups. For characters of groups, the Pontryagin-van
Kampen duality theorem asserts that a locally compact Abelian
group is, in a natural way, iseomorphic to its second char-
acter group. The first area of research is concerned with
whether an analogue of this theorem exists for commutative
semigroups and with determining the structure of the charac-
ter semigroup. The second area is concerned with determin-
ing necessary and sufficient conditions for a character
defined on a subsemigroup of a commutative semigroup S to
be extendable to a character on S.

The majority of papers published on characters have
dealt with semigroups endowed with the discrete topology.
The study of characters was initiated by Schwarz [17]* and
Hewitt and Zuckerman [8,9]. Contributors to the further

development and expansion of the theory include Clifford

*Throughout this paper a bracketed number refers to
the corresponding reference in the bibliography.
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and Preston [2], Comfort [3,4], Ross [15,16}, Hill [4,6,10,
11], and Fulp [6]. The pioneer in the study of characters
of compact commutative Hausdorff topological semigroups was,
again, Schwarz [18]. His contribution has been followed
recently by Austin [1] and Fulp [5].

In his paper [5], Fulp determines certain necessary
and sufficient conditions for a character defined on a sub-
semigroup of a compact commutative Hausdorff topological
semigroup to admit an extension to the semigroup. He con-
siders the particular case in which the range of the charac-
ter is a subset of the boundary of the complex disc plus zero.
It is the purpose of this paper to show many of Fulp's re-
sults hold for the entire complex disc and that if, in addi-
tion, the domain of the character is a pseudo-invertible semi-
group, that the remainder of his results also apply. In
[14], Y.~-F. Lin defines a generalized character and describes
the generalized character demigroup. The topic of general-
ized characters suggests an area of further research, that
of determining necessary and sufficient conditions for a
generalized character to admit an extension. 1In conclusion,

some of the problems arising in this area are defined.
DEFINITIONS OF TERMS USED

Definition 1.1. A commutative semigroup is a non-

empty set S together with a mapping (x,y) + Xy on S x S



to S such that x(yz) = (xy)z and xy = yx whenever x, y,
zeS. If S has an identity element, it is denoted by 1.

An element z of S which has the property that for each s in
S, zs = sz = z, is called a zero of S and is denoted by 0.
S is said to be cancellable if for any non-zero elements x,
y, z of S, xy = xz implies y = z.

Definition 1.2, If S is a commutative semigroup and

is also a compact Hausdorff topological space such that the

mapping (x,y) + xy is continuous on S x S, then S is a com-

pact commutative topological semigroup. Since the term com-

pact implies a topology exists on the space S, to say S is

a compact commutative semigroup implies S is a compact com-

mutative topological semigroup.

Definition 1.3. A character of a compact commutative

semigroup S is a bounded, continuous, complex-valued func-
tion x on S such that x(x) # 0 for some x in S and x(xy) =
x(x)x(y) for all x, y in S. The set of all characters of S
is denoted by S”. The subset of S* of characters of S which
do not assume the value zero anywhere on S is denoted by S*,

and members of S* are called unit-characters.

Definition 1.4. The set of all complex numbers z

such that |z| £ 1 is denoted by C. A basis element for the

topology on C is of the form {zeC: |z-a|<e} for each a in C

and each positive real number ¢.



Definition 1.5. For each compact subset K of S and

each open subset U of C, let X(K,U) denote the collection
of all characters x of S such that x(K) is contained in U,
The family of all such collections is a subbasis for the

compact-open topology of S®”. Thus a basis element in the

n
compact-open topology of S” is of the form _nlx(Ki,Ui),
— 1=

where each Kj is compact in S and each Uj is open in C.

Definition 1,6, If x is a character of a compact

commutative semigroup S, the support of x, denoted by SX'
is defined to be Sy = {xeS: x(x) # 0}.

Definition 1.7. If an element e in a semigroup S

has the property that e? = e, then e is said to be an idem-
potent of S. The collection of all idempotents of S is

denoted by E(S). There is a natural partial ordering of

the set E(S) defined by e £ f if and only if ef = fe = e

for e, f in E(S).

Definition 1.8. An ideal of a commutative semigroup

S is a subset I of S such that ISCI. A prime ideal is an

ideal P such that S\ P is a semigroup.

Definition 1.9. A semigroup S is said to be pseudo-

invertible if for each x in S there is a positive integer n

such that xP is in some subgroup of S.

Definition 1,10, If S is a semigroup, H a sub-

semigroup of S, and y a character of H, then a character

X of S is an extension of x if X{x) = y(x) for all points
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X in H., If a character X with this property exists, then ¥

is said to be extendable or to admit an extension to all of

S.

Definition 1.11. If S and T are topological semigroups,

and f a function from S into T such that f is algebraically
an isomorphism and topologically a homeomorphism, then f is

said to be an iseomorphism,

PROPERTIES OF CHARACTERS

The following properties of a character of a compact
commutative semigroup are immediate consequences of the
definition of a character. These properties are used in the
remainder of this study without specific reference being made
to them, .
| Property 1. Let S be a compact commutative semigroup
and x a character of S, Then for each s in S, |[x(s)|S1.

Proof: Assume there exists an s in S such that
|x(s)|>1. Then for each real number r, there is a positive
integer n such that |x(s®)]| = |x(s)|®>r. But this implies
that x is unbounded which contradicts the definition of a
character. Hence the original assumption was incorrect, and

<

for every s in s, |x(s)| £ 1.

Property 2. Let S be a compact commutative semigroup

and x a character of S, If e is an idempotent of S, then

either x(e) = 0 or x(e) =1,
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Proof: Suppose X(e) # 0., Since e = e, x(e)x(e) =

x(e?) = x(e) = x(e)*l. Then C cancellable implies x(e) = 1.
Hence x(e) = 0 or x(e) = 1.

Property 3. Let S be a compact commutative semigroup
with a zero element and y a character of S that is not iden-
tically 1. Then x(0) = 0.

Proof: Let seS such that x(s) # 1. Since 0 is an
idempotent, Property 2 implies that either x(0) = 0 or
x(0) = 1. Assume ¥x(0) = 1., Then 1 = x(0) = x(0+s) =
x(0)x(s) = x(s), a contradiction since X (s) # 1. Hence
x(0) = 0 if ¥ is not identically 1 on S.

Propertv 4., Let G be a compact commutative group,

e the identity of G, and x a character of G. Then x(e) = 1.

Proof: Since e is an idempotent of G, either x(e) = 0

or 1. Assume Yx(e) = 0, Then for each g in G,
x(g) = x(eg) = x(e)x(g) = 0°x(g) = 0. But this contradicts
the definition of a character since there does not exist a
g in G for which yx(g) # 0. Hence x(e) = 1,

Property 5. If G is a compact commutative group and

X a character of G, then for each g in G, x(g) # 0.

Proof: Assume for some g in G, x(g) = 0. Then
x(e) = x(gq'l) = x(g)x(g'l) = 0, a contradiction. Hence for

each g in G, x(g) # 0.



CHAPTER II
BACKGROUND PRELIMINARIES

The results in this chapter are included as prelim-
inaries to be used as substantiation for the statements made
in obtaining the primary results in Chapter III. If only
the statement of a theorem is given, a complete proof ap-
pears in the reference cited. 1In all that follows, unless
a specific designation is given, S denotes a compact commu-
tative semigroup.

Lemma 2.1, Let S be a compact semigroup with a par-
tial order X such that for each s in S, {xeS: x £ s} is
closed. Then S contains a minimal element.

Proof: Assume that S does not have a minimal element.
Let C' be a chain in S, By the Maximal Principle [12], there
is a chain C in S which contains C' and is not contained in
any other chain in S. For each t in C, let C¢ = {xeS: x < t}.
By hypothesis, Cy is closed for each t. Consider the inter-
section of a finite number of the sets Cg, ialcti' Let t' be
the least element of {tj, ...t} with respect to the simple
ordering in C. Then iélcti = C¢+ is nonempty. Since S is
compact, S has the finite intersection property, and hence
tgcct is nonempty. Let yetQCCt. Since S does not have a

minimal element, there exists a z in S such that z < y. Then



zeC and y¢C,. But this implies that yttQCCt, which is a
contradiction. Therefore, S contains a minimal element,

Theorem 2,1. Every compact semigroup contains at

least one idempotent. [7]

Lemma 2.2. Let S be a compact commutative semi-
group. Then

1. E(S) is a closed subsemigroup of S,

2. for each e in E(S), the set {feE(S): £ £ e} is
closed in E(S), and

3. E(8) contains a least element with respect to
the natural partial order.

Proof: From Theorem 2.1, E(S) is nonempty. If E(S)
contains only one element, the result is obvious. Suppose
then that E(S) has more than one element. For the proof of
l,, let e, feE(S). Then el = e, £2 = £, and since S is com-
mutative, it follows that (ef)2 = e2f2 = ef, Thus efeE(S),
and E(S) is a subsemigroup of S. Assume that E(S) is not
closed. Then there exists an element p in S\ E(S) such that
p is a limit point of E(S). Since pf£ E(S), p2 # p. Let U
and V be disjoint open sets containing p and pz, respectively.
Since multiplication is continuous, there exists an open set
U containing p such that BDCU and for every uea, ust. Now U
is an open set containing the limit point p of E(S), and

hence U contains an element e of E(S). Now e2

2 2

= e implies

e%cU and e®eV. But this is clearly impossible since U and Vv



are disjoint. Thus the assumption that E(S) is not closed
is incorrect, and the proof of 1. is complete.

For the proof of 2. let ecE(S) and K = {feE(S): £ £ el.
Assume that K is not closed in E(S). Then there exists a p
in E(S)\ K such that p is a limit point of K, and p? = p,
pe # p. Let U and V be disjoint open sets containing p and
pe, respectively. Since multiplication is continuous, there
exist open sets Up containing p and Ug containing e such
that for all feUp, geUgy, fgeV. Let U= UpNU. Then U is
open, contains the limit point p, and thus contains a point
f of K., Now feK implies fe = f. Thus feU and fe = feV, a
contradiction, and statement 2. follows.

From Lemma 2.1, E(S) contains a minimal element e.
For the proof of 3., it suffices to show that e is unique
and is related to all other elements of E(S). Suppose, then,
that e is not unique and that f is another minimal element.
Then e £ ef, f < ef and e = e(ef) = ef = (ef)f = f implies

e = f. Now let geE(S). Then e(eqg) = eg implies eg < e.

But since e is minimal, e S eg and hence e = eg. Now (eg)g = eg
implies eg £ g and, therefore, e £ g. Thus e and g are
related, and the proof of the Lemma is complete.

Lemma 2.3. If G is a compact commutative group, then
G” is a group.

Proof: The product in G" defined by (X1¥%2) (g) =
X1(g)X2(g) is clearly associative., Let Xj denote the

character identically one on G. For each x in G” and g in G,
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(xxi) (@) = x(g)x;(g) = x(g), and hence xXj = X which implies
Xi is the identity for G". For each x in G", define x‘l by
x~1(g) = xtg™1). Then
(xx~D (g) =x(a)x"1a) =x(g)x(g™1) = x(gg™d) =x(e) =1=x;(q).
Thus x'l is the inverse of ¥. It must he shown that x'l is
continuous. Since G is a topological group, the mapping I
defined by I(g) = g’l is continuous. Thus the composition
¥xI is continuous and is clearly x~1.

Theorem 2,2. The continuous characters of a compact

commutative group separate elements in the group. [7]

Theorem 2,3, Let G be a compact Abelian group and H

a subgroup of G that is either open or closed. If x is a
continuous character of H, then X can be extended to a con-
tinuous character of G. [7]

Theorem 2.4, (Pontryagin-van Kampen duality theorem)

Let G be a compact commutative group, G" the character group
of G, and G"" the character group of G*. For each xeG, let
¥4€G"" be the character on G" defined by ¥x(x) = Xx(x) for
all xeG”. Let 1 be the mapping from G into G*" given by
T(x) = ¥4. Then 1 is an iseomorphism. [7]

Theorem 2,5, If S is a compact commutative semigroup,

then the idempotent characters of S form a discrete subspace
of §°. [1]

Theorem 2.6, Let T'(x) denote the closure of the set

{x, xz, +es}. Then T'(x) contains a unique idempotent called

the idempotent belonging to x and denoted by ey. [18]
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Let p be the relation on S defined by (x,y)ep if

x = ©y- Then p is an equivalence relation, and the equiva-

lence classes modulo p are of the form Pe = {xeS: e, = e}.

e

Then S = U P

and P,NPg = ¢ if e # f.
e€E (S)

e

Lemma 2.4, Let P be an open prime ideal in the compact
semigroup S. Then if PgNP # ¢, PoCP.

Proof: Let xePgMP. Since P is an ideal xSCP and,
in particular, xeeP. Also (xe)SCP. Since S =esé&S)Pe and
ePe CPe, (xe) (ePg) CP. But since xePe, xe€eP and (xe) (ePg) = eP,.
Thus ePg CP and ecP. Assume there exists a yeP, such that
yg£P, that is, yeS\ P, Then P open implies S\ P closed and
yeS\ P implies T(y) CS\P. Then eyeS\P which is a contra-
diction since yePo implies ey = etP. Hence yePe implies
yeP, and Po CP,

Lemma.2.5. Let S be a compact commutative
semigroup, P an open prime ideal of S, and e the least element
of E(S\ P). Then P =U{Pg: ef # e} and S\ P = U{Pg: ef = e}.

Proof: Since e is the least element of E(S\P), for
every element £ in S\ P, e £ f and hence ef = e. Suppose now
that feP. Then since P is an ideal, efeP. If ef = e, then
efeS \ P which is impossible. Thus feP implies ef # e. From
Lemma 2.4, feP implies Pg CP. Hence P = U{Ps: ef # el and
S\P =U{Pf: ef = e}.

Theorem 2.7. A compact cancellative semigroup is a

topological group. [7])
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Theorem 2.8. Let S be a compact commutative semigroup.

Then Se is the maximal subgroup of S containing the idempotent
e. [13]

Lemma 2.6. Let S be a compact commutative semigroup.
Then Se CP, and Se = eP, for each e in E(S).

Proof: Let xeecSe. Then T'(xe)eSe since Se is closed,
and eyoel(xe) implies eyeteSe. But since Se has a unique
idempotent e, eye = e which implies xeeP,. Thus Se CP,, and
it follows that eSe = Se CePg. Obviously ePe CSe, and hence
Se = ePg.

Lemma 2.7. Let S be a compact commutative semigroup
and y a character of S, Then Sx is an open subsemigroup of
S, and S\Sx is a closed prime ideal.

Proof: Let s, teS Then x(s) # 0, x(t) # 0, and

X.
x({st) = x(s)x(t) # 0 which implies steSX. Thus Sx is a sub-
semigroup of S. Now let psS\.Sx and seS. Then x(p) = 0 and
x(ps) = x(p)x(s) = 0 which implies S\ Sx is an ideal of S,

and it is prime since S, is a semigroup. The continuity of

X

x implies S\ S,, the inverse image under y of the closed set

X
{0}, is closed. Thus SX is open.

Lemma 2.8, Let S be a compact commutative semigroup,
H a closed subsemigroup of S, and e and f the least elements
of E(S) and E(H), respectively. Then if H and He have a non-
empty intersection, e = £,

Proof: Let heHHe, Then there exists an hy in H

such that hje = h, By definition of e and f, e £ f and
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ef = e. Then hjef = hje = hf which is an element of the
subgroup Hf with identity f£. Let fif denote the inverse of
hie in HEf., Then (hje) (Af) = f which implies hjeh = £. But
also (hleﬁ)e = fe implies hjeh = e. Thus e = hjeh = £.

Lemma 2.9. Let S be a compact commutative pseudo-
invertible semigroup. Then Py is a pseudo-invertible semi-
group for each e in E(S).

Proof: Let y, 2ePg. Then ey = e, ez = e and
eyz = eyez = e = e implies y2ePs. Thus P, is a semigroup.
Now suppose xePo. Since S is a pseudo-invertible semigroup,
there exists a positive integer n such that xI is in some
subgroup G of S. From Theorem 2.8, the maximal subgroups
of S are of the form Sf for £ in E(S). Thus for some feE(S),
xNeG CSf CPg, But xPePe since x is an element of the semi-
group Pe. Hence xMePoNP¢ and since PoNPe = ¢ if e # f,
it follows that e = £, and xeSe CP,. It is now evident that
for xeP, there is a positive integer n such that x is in
some subgroup of P,, namely Se. Thus P, is pseudo-invertible
for each eeE(S).

Lemma 2,10, Let S be a compact commutative pseudo-

invertible semigroup and x a character of S. Then for each

s in 8, |x(s)| =1 or |x(s)]| = 0.
Proof: S = U Po. Let xeS, Then xePy for some
- ecE(S)

ecE(S). Suppose first that x(e) = 0. Then for each

yeSe CPg, x(y) = 0. If xeP\ Se, since Lemma 2.9 implies Pg
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is pseudo-invertible, there exists a positive integer n
such that xM is in some subgroup of P, and that this sub-
group must be Se. This implies x(xP) = 0, Then if |x(x)]|> 0,

|x(x) |» > 0 which is a contradiction. Therefore,

Ix (x|

if x(e) = 0, x(x) = 0 for each x in Pg,. Now suppose that

Ix(e)| = 1. Then since x is a homomorphism and Se a group,

x (Se) must be a group containing 1. {zeC: |z| = 1} is the
maximal subgroup of C containing 1 which implies for each

veSe, |x(y)| = 1. 1If xePQ Se, as above, there is a positive
integer n such that xNeSe, and for each positive integer j,
(xM)Jese. If |x(x)| <1, then as j + », |xxPI)| = [x(xn) |3+ 0.

But this is a contradiction since (xP)eSe implies |x(xP) |3 =1

for every j. Thus |x(x)| = 1. Therefore, if |[x(e)| = 1,
Ix(x)| = 1 for each x in Pg. Since x is an arbitrary element
of S, |x(x)| = 0 or 1 for each x in S,

Lemma 2.11., Let S be a compact commutative pseudo-

invertible semigroup and x a character of S. Then the open

subsemigroup S, is also closed, and the closed prime ideal

X
S‘\SX is also open.

Proof: Since S is pseudo-invertible, Lemma 2.10
implies if xeSy, Ix(x)|] = 1, and if xeS\ Sy, x(x) = 0.
U= {zeC: |z| < %} is an open set in C, and the continuity
of x implies x‘l(U) is open. Clearly x'l(U) = S\ SX' Thus
S\SX is open, and SX is closed.

Lemma 2.12, Let S be a compact commutative semigroup.

Then the following statements are equivalent:
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(1) p is the maximal cancellative congruence of S,
(2) p is the maximal group congruence of S,

(3) (x,y)ep if and only if xa = ya for some at$S, and

(4) (x,y)ep if and only if xe = ye where e is the
least element of E(S). [5]

Theorem 2,9. Let S be a compact commutative semi-

group, e the least element of E(S), and G fhe maximal can-
cellative homomorphic image of S. Then

1. G is a topological group and is the maximal group
homomorphic image of S,

2., G is iseomorphic to the maximal subgroup of S
which contains e, and

3. the function ¥ defined by x + xe is a continuous
homomorphism from S onto the maximal subgroup of S which
éontains e. [5]

Lemma 2.13, Let S be a compact commutative semigroup,

exel(x), eyer(y), exyer(xy). Then exy = exey.

Proof: exyel(xy) implies there exists a net {(xy)n(!}-bexy
and since S is commutative {(xa“yn“)} * eyy. Now {x"a} contains
a subnet {x"B} such that {x"8} + e, and {y"®} contains a sub-

net {y"Y} such that {y%Y} + e Then {x"™By®Y} contains a

y.
subnet {xP8y"8}such that {x"Sy"6} *eyey. But {xM6yMS}is a
subnet of {x"ay"e} and hence {x"Sy"8} - exye Thus ey, = eyey.

Theorem 2,10, Suppose that L is a connected subset of

a space S and that {La} is a collection of connected subsets
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of S, each of which intersect L. Then LU(UL,) is con-

nected. [12]

Lemma 2.14. Let S be a topological semigroup and Lj

and Ly components of S, Then LjLy is contained in a com-
ponent of S,

Proof: Let seLy. Then sLp, the image under con-
tinuous multiplication of the connected sét L, is connected.
Similarly, if tpeL;, Litg is connected. Now LjLp =
U{sLy: seLj} = Litg U(U{sLy: seLy}). For each set sLj,
stoesLy, and stpeLjtg. Hence Theorem 2.10 implies
Litg U(U{sLy: seLy}) is connected. Thus LjLy is contained
in a component of S,

Theorem 2,11, If {Xn} is a sequence of connected

sets in a compact Hausdorff space S, and if lim inf X,
is not empty, then lim sup X, is connected. [12]

It can be shown that this theorem also applies to a
net {Xa} of connected sets in a compact Hausdorff space in

which lim inf X, is not empty.



CHAPTER III

CONDITIONS FOR EXTENDABILITY

Theorem 3.1. Let e be the least element of E(S) and

H a closed subsemigroup of S. If xeH*, then the following
statements are equivalent:

1., there is an extension of X to a continuous unit-
character of S,

2. (x,y,a)eHxHxS and xa = ya imply x(x) = x(y), and

3. (x,y)eHxH and xe = ye imply x(x) = x(y).

Proof: Suppose 1. is true. Let ¥XeS* such that for
each xeH, X(x) = x(x). Then since X is a unit-character and
C iz cancellable, it is evident that each of 2. and 3. follow.
Now let ¥: S + Se be defined by ¥(x) = xe and consider the

diagram: y
S ———> Se

ul u
H———!lg——>He
./
where X*: He *+ C is defined by X*(he) = x(h). Then X* is well-
defined, and since x*(¥(h)) = x*(he) = x(h), x* is a homo-
morphism which makes the above diagram commutative. To see

that x* is continuous, let F be a closed subset of C. Then
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since X is continuous, x'l(F) is closed in the compact
space H and, therefore, is compact. The continuity of ¥
implies W(x‘l(F)) is compact and, hence, closed in He.,
Since x*~1(F) = Y(x‘l(F)), xt'l(F) is closed. Thus the
inverse image under x* of a closed set is closed, and x*
is continuous. Now since S and H are compact and Y is
continuous, Se and He are compact. From Theorem 2.8, Se
and He are the maximal subgroups containing e of S and H
respectively. Hence Se and He are compact commutative
cancellative semigroups, and from Theorem 2.7, they are
topological groups. By Theorem 2,9, x* can be extended to
a continuous unit-character y' of Se. Clearly, then, x'¥Y
is a continuous unit-character of S which extends y.

The equivalence of 2, and 3. follows from Lemma 2,12,

Corollary 3.1l.1l. Let S be a compact commutative

semigroup and H a closed subsemigroup of S. The following
statements are equivalent:

| 1. each continuous unit-character of H can be ex-
tended to a continuous unit-character of S, and

2, if (x,y,a)eHxHxS and xa = ya, then xe = ye where
e is the least idempotent of H,

Proof: Suppose 2. is true, Let X be a continuous
unit-character of H and let (x,y,a)eHxHxS such that xa = ya.
Then by hypothesis xe = ye whére e is the least idempotent
of H, and x(xe) = x(ye). Since xeH*, yx(e) # 0 which implies

that x(e) = 1, and
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x(x) = x(x)x(e) = x(xe) = x(ye) = x(y)x(e) = x(y).
Then by Theorem 3.1, X can be extended to a continuous unit-
character of S.

Suppose now that 1. is true. Assume there exists an
element (x,y) in HXH such that xe # ye, but for some a in
S, xa = ya. Now xe and ye are both elements of He, the
maximal subgroup of H containing e. Let X be any continuous
unit-character of He such that yx(xe) # x(ye). The existence
of x is guaranteed by Theorem 2,2, If y:H + C is defined
by x(h) = x(he), clearly x' is a continuous unit-character of
H. By hypothesis, let x* be the extension of x' to S. Then
since C is cancellable, and xa = ya, x*(x) = x*(y). But
this implies y(xe) = x'(x) = x*(x) = x*(y) = x'(y) = x(ye)
which is a contradiction to the choice of x. Hence the original
assumption was false, and xa = ya implies xe = ye which is
the desired conclusion,

Cotollary 3.1,2. If S is a compact commutative semi=-

group, then the following statements are equivalent:

1. each continuous unit-character of each closed
subsemigroup of S has an extension which is a continuous
unit-character of S, and

2, if (x,y,a)eSxSxS and xa = ya, then xexey= yexey.

Proof: Let H be the closure of {xiyl: i =1,2,...;
j=1,2,0ee}s Then from Lemma 2.13 H is a closed subsemi-

group of S containing e as the least idempotent. The proof

Xey
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then follows from Corollary 3.1l.1l.

It is desirable to know not only when a continuous
unit-character of a closed subsemigroup admits an extension,
but under what conditions such an extension is unique. For
compact commutative semigroups, the following theorem shows
the question can be reduced to the corresponding question of
the existence of a unique extension of a continuous charac-
ter of a topological subgroup.

Theorem 3.2. Let S be a compact commutative semigroup,

e the least idempotent of S, and x a continuous unit-~character
of a closed subsemigroup H of S. Then any two extensions of
X to a continuous unit-character of S agree on He. For each
x which has an extension to S, let X, denote the restriction
of any such extension to He. Then ¥ has a unique extension
to S if and only if the continuous group character xo of the
subgroup He of the topological group Se has a unique exten-
sion to Se.

Proof: Suppose X; and X, are continuous unit-characters
of S which extend X. Then Xj(e) = Xy(e) =1, and if heeHe,
X (he) = X;(h)X;(e) = X3(h)*1 = X,(h)X;(e) = X,(he). Hence
X1 and X, agree on He. Since X is a continuous unit-character,
X(e) =1, and for each s in S, X(s) = X(s)*1l = X(s)X(e) = X(se).
Hence any continuous unit-character of S is determined by its

values on Se, and the remainder of the theorem follows.



21

If S and H are as is Theorem 3.2, let ¢:S* » H* be
defined by ¢(x) = x|H. By the first Corollary to Theorem
3.1, ¢ is an onto mapping. Thus for each ier there is a
X in S* such that ¢(x) =x|H = X, if and only if
(x,y,a)eHxHxS and xa = ya imply Xe = ve where e is the
least element of E(H).

Lemma 3.1. Let S be a compact commutative semigroup

and H a closed subsemigroup of S. Let ¢ denote the function

from S* into H* defined by ¢ (X) x[H. Then ¢ is an iseo-
morphism if and only if

1. (x,y,a)eHxHxS and xa = ya imply xe = ye, where

e is the least element of E(H) and

2, each two continuous group characters of the topo-
logical group Se which agree on the subgroup He of Se are
identical.

Proof: Suppose l. and 2. are true. From l., the
first Corollary to Theorem 3.1 implies ¢ is an onto mapping.
Let X3, X2eS*. Then
0 (X1X2) = (XyXp) [H = (xq|H) (¢ [H) = ¢(x)é(xy). Now if
xeﬁ*, from 1. and Corollary 3.1.1 again, X has an extension
to a continuous unit-character of S, and from 2. and Theorem
3.2, the extension is unique. Hence ¢ is a monomorphism.
For the proof of the continuity of ¢, let xeS* and
\ =i51x(CHi,Ui) be a basis element in H* containing ¢(X).
Then since Cy; is compact in H and H is closed in S, Cy; is

n
compact in § for i = 1,2,...,n. Then if U = .an(CHirUi)r
1=
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obviously ¢(U)CV and hence ¢ is continuous. For the proof
of the continuity of ¢~1, let xeH* and Vv = filx(csi'ui) be
a basis element in S* containing ¢'l(x). Since H is compact,
CSiF\H is compact in § for i =1, ..., n, and U = ial(csin H,Uj)
is a basis element in H*, It is clear that ¢'1(U)CZV, and
hence ¢‘1 is continuous. Consequently, ¢ is an iseomorphism,

Suppose now that ¢ is an iseomorphiém. Then the first
Corollary to Theorem 3.1 immediately implies 1, Since ¢ is
a monomorphism, each character x of H has a unique extension
to S. Hence from Theorem 3.2, 2. is satisfied.

Theorem 3.,3. Let S be a compact commutative semigroup

and H a closed subsemigroup of S. Let e and f be the least
elements of E(S) and E(H) respectively, and let T:He* + H¥
bg defined by I'(x) (h) = x(he) for each xeH* and heH. Then

l, T is always a bicontinuous monomorphism and is an
iseororphism if and only if (hj,h;)€eHxH and hje = hjye imply
hif = hyof,

2, S* and Se* are iseomorphic, and

3. S* and H* are iseomorphic if and only if the
topological groups Se and Hf are iseomorphic.

Proof: Let xl,xzeHe*. Then for each h in H,
I'(x1x2) (h) = (x3Xx2) (he) = x, (he)x,(he) = (T(x;) (h)) (T(x;) (h)).
Now suppose F(xl) # T(X3). Then there is an h in H such that
x1 (he) = xz(he) and hence X1 # Xge Thus I' is a monomorphism.
For the proof of the continuity of I', let xeH* and

n
vV = -01X(CH1'U1) be a basis element in H* containing T (¥).
1=
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Since He is closed, Cyje is a compact subset of He for
i=1,...,n, and if U = i§1X(cHie’Ui)' for each XeU and
each hje in Cy;e, T(x) (hje) = x(hjece) = x(hje) = x(hj)x(e)
x(h;) for 1 =1,...,n. Hence r(ug)Cv, and I is continuous.
Now let U = iélX(Ki,Ui) be a basis element in He*. Then
fori=1,...,n, Kj = ﬁie for some ﬁi, and since K; is a
compact subset in the compact space He, Kj is closed in He.
Let p be a point of the closure of ﬁi- Then p is the limit

of a net {p,} of points of Ri. sSince {py} Ciﬁi, {pyel is a

net from Kj, and by continuity of multiplication {pye}l » pe.

Ki closed in He implies pe€Kj = ﬁie, and hence peﬁi. Con-~
sequently, since ﬁi contains each of its closure points,

ﬁi is closed and hence compact in H. Thus iélx(ﬁi,ui) is a
basis element in H*, and if R(T) denotes the range of T,

V = iﬁlx(ﬁi,Ui)r\R(F) is a basis element in the range of T,
For y in U, since y(Kj) CUj, x(Rje) CUj. This implies

F(x) (k) = x(kje)eU for each keﬁi, and hence T (U)CV. Now
if xev, for each keﬁi, x (k) eU and P'l(x)(ke) or x(k)eU.
Thus VCTr(U). Clearly, then, I'(U) = Vv, and I' is an open
mapping. Suppose now that I' is an onto mapping. Then if
feH*, there is a xeHe® such that for each h in H,

x(he) = ¥X(h)., Let hy and hy be elements of H such that
hje = hye. Then by definition of e and £, e £ £ and hence

ef = e. Now

X(h1f) = x(hyfe) = x(hje) = x(hye) = x(haofe) = X(hyf).

Hence for every YeH*, X(h;f) = X(hyf). But ¥ is a
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unit-character of the topological group Hf which contains
hyf and hyf, and since unit-characters of a topological
group separate elements of the group, hlf = h,f. Conversely,
suppose (hj,h,)eHxH and hje = hze imply hyf = h,f. For
the special case where e = f, e is an element of H, and
He is a subgroup of H. Clearly ¥|H is such that T'(%|H) = ¥.
If e # £, from Lemma 2.8, HeNH is void. Thus if ¥ is the
mapping from He into C defined by x(he) = R(hf), x is we&l-
defined, and x is a continuous homomorphism. The first
assertion is immediate from the condition hje = hje implies
hjf = hof. Since Hf is a subgroup of H, and ¥ |Hf is a
continuous homomorphism, the second claim follows. Thus
xeHe* and for each h in H, T(x) (h) = x(he)=%X(hf) = §(h)X(£f) = ¥ (h).
Consequently, I' is an onto mapping, and the proof of 1l. is
complete.,

Statement 2, follows immediately from 1. since S
is a compact subsemigroup of itself, and in this case e = f.

For the proof of 3., let = denote the relation of
iseomorphism, and suppose Se & Hf. Then Se* & Hf*, and
from 2,, S* = Se* = Hf* = H* or S* = H*, Conversely, sup-
pose S* and H* are iseomorphic. Then |
Se* = g* Z H* = Hf* implies Se* = Hf*, Thus Se** = Hf*%*,
and since Se and Hf are compact topological groups, an appli-

cation of the Pontryagin-Van-Kampen duality theorem gives

Se = Hf, the desired conclusion.
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Lemma 3,2. Let S be a compact commutative pseudo-
invertible semigroup, H a closed subsemigroup of S, and
a continuous character of H. Then X can be extended to a
continuous character of S if and only if there exists an
open and closed prime ideal P of S satisfying

(1) (S\P)NH = Sy» and

(2) (x,y,a)eSXXSXX(S\\P) and xa = ya imply
x(x) = x(y).

Proof: Suppose there exists an open and closed prime
ideal P of S satisfying (1) and (2). Then S\ P is closed,
and since H is closed, Sy = (S\P)NH is closed. Since P
is a prime ideal, S\ P is a compact commutative semigroup.
Now xlsx is a unit-character of the closed subsemigroup
Sy of S\ P for which condition (2) holds. Thus Theorem 3.1
implies xlsx can be extended to a continuous unit-character
X of S\ P, If X(x) = 0 for all x in P, clearly, Y is a
homomorphism which extends x. For the proof of the continuity
of ¥, let U be an open set in C and s an element of x'l(U).
If seP, let Vg = P. Then Vg is an open set containing s such
that X¥(Vg) CU, If seS\P, then ¥(s) # 0. SinceCis a
Hausdorff topological space, there exist disjoint open sets
07 and 0, such that 0€0j and X(s)e0. Then 02N U is an
open set in C that contains ¥(s) but does not contain 0.
Since X|(S\ P) is a continuous unit-character of S\ P, there

exists an open set Vg in S\ P such that X(Vg) C02NU CU,
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Ifv= U Vg, Vis an open set in S and V = X~1(v).

sex=1(U)
Thus the inverse image under X of an open set in C is open
in S, and ¥ is continuous. It is of interest to note here
that pseudo-invertibility was not necessary for this part
of the proof.

Suppose now that X has an extension ¥ to S. Then

from Lemma 2.11 SX is an open and closed subsemigroup of
S, and S\ S= is an open and closed prime ideal. Let

X
P = S\S)-(. Then, obviously, (S\P)NH = S=. Also if

(x,y,a)esxxsxx(s\.P) and xa = ya, then x(x? # 0, x(y) # 0,
R(a) # 0 and since C is cancellable,

x(x)X(a) = Y(xa) = Y(va) = x(y)X(a) implies x(x) = x(y).
Thus P = S\.SX satisfies conditions (1) and (2).

Definition 3.1. An element e in E(S) is said to be

a generating idempotent of a compact semigroup S if the open

prime ideal {Pf:ef # e} is also closed. If F is a subset
of some subsemigroup H of S, and if F=lu1[¥{Pf:e £ f£f}] for
some e in E(S), then e induces F.

Theorem 3.4. Let S be a compact commutative pseudo-

invertible semigroup and X a character of a closed sub-
semigroup H of S, Let e be the least element of E(SX). In
order that x admit an extension which is a character of S,
it is necessary and sufficient that

1. there exists a generating idempotent f of S which

lies under e and which has the property that if x is a member
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of the maximal subgroup of H containing e such that xf = f,
then x(x) = 1, and

2. there exists a generating idempotent f£' of S
which induces Sy

Proof: Suppose that X can be extended to a character
of S, Then from Lemma 3.2 there exists an open and closed
prime ideal P which satisfies conditions (1) and (2) of
the Lemma. Let f be the least element of E(S\P). Since
SXCZS‘\P and e is the least element of E(SX), f £ e. From
Lemma 2.5, P open and f the least element of E(S \ P) imply
P = U{Pg: fg # £} and S\ P = U{Py: fg = g}. Since P is
closed, f is a generating idempotent. Let ste>such that
xf = £. Then eeE(SX) implies x(e) = 1, and since He is a

subgroup containing x, yx(x) # 0 and, therefore, xecS Then

X
(x,e,f)eSyxSyx(S\ P) and xf = £ = ef implies x(x) = x(e) =1
from condition (2) of Lemma 3.2. Thus 1. is satisfied.
Statement 2, follows from the previous remark that -
S\ P = U{Pg: fg = f} and the fact that HN(S\P) = Sy«
Suppose now that, respectively, £ and f' satisfy 1.
and 2. of the theorem. Let P} =U{Pg: £ # g} and
P2 =lJ{Pg: f£f' £ £}, Since f and f' are generating idem-
potents, P; and P, are open and closed subsemigroups of S.
Thus S \ (P] UP3) is an open and closed subsemigroup and

hence contains a least idempotent ¥. Since (P UPy) is an

open and closed prime ideal, f is a generating idempotent.
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Let P =U{Pg: f £ gl. Then S\P = Ulpg: f < g}, and if k
is an idempotent in s\ P, f £ k which implies £ < ¥ £ k and
keS\ Pj. Similarly keS\ P implies keS \Pp. Thus
ke(S\P3)N (S \ P3) = S\ (P;UP,) and S\ PCS\ (P1UP)).
Suppose now that k 2 £ and k 2 f'. Then keS \ P; and keS\ P,
which implies that keS \ (PJUP,). Since f is the least
idempotent of S \(PjUP,), k 2 £, For the proof that (1)
of Lemma 3.2 holds, note that Sy = (S \P2)\ H. Then if
xeSy, xeH and ey 2 e 2 f since 1. is true. Also xeS\P)
implies ey 2 f' and hence ey 2 f. Thus xe(S\ P)NH and
SXC(S\ P)NH. Suppose now that xe(S\ P)N\ H. Then
ex 2 £ 2 £' and xe(S\ P2)NH = Sy. Thus (S\P)N HCS,
and hence Sy = (S\P)N H. Therefore (1) of Lemma 3.2 is
satisfied..- Suppose now that (x,y,a)esxxsxx(s‘\P) and
Xxa = ya. Then for each positive integer n, xaP® = ya®'. By
definition of e,, there exists a subsequence {ami} of {al}
such that {a"i} + e,. Therefore, by continuity of multipli-
cation, xa® = ya" implies xey = ye,. Now, ejeS \P implies
ea 2 T and ey 2 £. Then xe,f = ye,f, xf = yf and xef = yef,
Now xe and ye are in He, the maximal subgroup of H containing
e. Thus (ye)~l exists, (ye) (ye)~! = e, and (ye)~l(xe) is
also an element of He. Let X = (ye)'i(xe). Then
Xf = (ye)'l(xe)f = ef = £, and from 1., X(®) = 1. This
implies x((ye)'l(xe)) = 1 or x(ye) = x(xe). Since eeSy,

x(e) = 1 and x(x) = x(xe) = x(ye) = x(y), and (2) of lemma
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3.2 is satisfied. Thus x can be extended to a continuous

character of S.

Definition 3.2, Let A be a set that is partially

ordered by £, A is said to be directed if given «,8 in 2,
there exists y in A such that « £ y and B £ v,

Definition 3.,3. Let A be a directed set and

{Gy: aeA}l a family of groups indexed by A. For each pair
of indices a,R satisfying o < B, assume there is a homo-
morphism ¢4 Gy Gg, and assume further that these homo-
morphisms satisfy the condition: if a £ g X y, then

$qy = 9gy¢ag. Then the family [{Gy}, {64p}] is called a

direct system of groups over A, with groups G, and connecting

homomorphisms ¢gg.

Definition 3.4. The image of g,tG, under any con-

necting homomorphism is called a successor of gy. From

the direct system of groups [{Gq}, {d,g}],. a limit group

is constructed in the following manner. Let D = I{Gy: aeA}
be the infinite direct product of the groups, and call two
elements g,eG,, gBeGB in D equivalent whenever they have a
common successor in the direct system, This relation,.p, is
an equivalence relation. That p is reflexive and symmetric
is obvious. For the verification of transitivity, suppose
that g4, gg have a common successor in G§ and that gg, dy
have one in G;. Then since A is directed, there is an index
T such that p £ T, 0 £ 7 and the successor of gg in Gy is

evidently a successor of both g, and Iy
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Definition 3.5. Let [{Ga}, {¢GB}] be a direct system

of groups. The quotient group NIG,/p is' called the direct
limit of the system, and is denoted by-G®. It can be shown
that direct limits exist in the category of Abelian groups.

In the following, unless otherwise specified, let S
denote a compact commutative pseudo-invertible semigroup,

H a closed subsemigroup of S, and F a subéet of H whose com-
plement in H is a proper open and closed prime ideal of H,
Let e denote the least element of E(F) and Eo the set of all
generating idempotents lying below e.

Lemma 3.3, If f, f'eEg and f £ £', let ¢g¢+ denote
the function from the group (fHe)* into the group (f'He)*
defined by
¢££ (X) (x£') = x(x££') = x(xf). Then
[{(fHe)*}feEe' {¢ff'}f5f'] is a direct system of groups.

Proof: To see the ¢gf1 is well-defined, let
X€(fHe) * and suppose ¢ggr(X) = X1 and ¢ger(x) = x5. Then
for each xf' in f'He, X (X£f') = ¢gee(x) (x£) = xz(xf‘).

Thus X; = X,. Now let ¢ff'€{¢ff'}f$f' and x, Ye(fHe)*, Then
beer (XY) (XE') = (x¥) (X£) =x (XE) ¥(XE) = (dgger (X) (XE')) (dgge (¥) (X£') =
(6f£r (X) dggr (¥)) (x£') which implies ¢g¢+ is a homomorphism,

Now for f X £' X f£", if xe(fHe)*, denote ¢gg¢r(x) by X'. Then

x (x£) . Then since ¢ffN(x)(xf;T ;‘if;f), bprendegr = dggm.

Also ¢ge(x) (x£f) = x(x£f) implies ¢g¢ is the identity homomor-

phism on (fHe)*., Thus [{(fHe)*}feE v {bgerideger] is a direct
e
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system of groups. Let Hg” denote the direct limit of this

system,

Lemma 3.4. Let Y denote the function from HX® into
He* defined by Y(t) (x) = x(xf) where xecHe, feE,, Xt (fHe)*
and tng” is the equivalence class which contains the "string"
<¢fg(X»T$g€Ee’ Then ¥ is a monomorphism embedding H;” into
He*, and if eeE,, Y is an isomorphism. ¥ is called the

natural embedding.

Proof: For the proof that ¥ is well-defined, suppose
t = [eg(X>lecqer, and t = [<¢fug(x')>]f|sgeEe. Then
there exists a geEg such that ¢fg(x) = ¢f.g(x'), and
X(x£) = ¢g (x) (gx) = dg1g(x") (gx) = X'(x£'). Hence ¥ is
well-defined, Multiplication of two elements t and t' of
h;” is defined in the following manner. Let
t = [<¢fg(xx>fggeEe], t' = [<¢f.g(x'k>f.sg€Ee] and let f£"
be any element of E, lying above both f and f'. Then
tt' = [<¢£“g(¢ff"(X).¢ffn(X'))>fu5gsEe]- Now
Y(et') (x) = (dgen(X) *dprgen(x')) (x£%) = been (X) (XE") dgy en (X) (XEY)

= (¥Y(t)¥(t")) (x£f"). Thus ¥ is a homomorphism.

Suppose now that ¥Y(t) = ¥(t'). Then for some xecH*,
x (xf) = ¥(t) (x) = ¥Y(t') (x£') = x'(xf'). Assume that
t # t'. Then x(xf) = ¢fg(x)(xf) # ¢f-g(x')(Xf') = x'(x£f'"),
a contradiction. Thus Y(t) = ¥(t') implies t = t', and ¥
is a monomorphism. Suppose that eeE,. Let xeH* and let t be

the eguivalence class containing the "string" <¢eg(X)>eSgeEe'
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Now xe(eHe)* = (He)*, and x(xe) = x(x). Thus
¥(t) (x) = x(xe) = x(x) implies that ¥ is an onto mapping
and, hence, an isomorphism,

Theorem 3.5. Using all notation as previously

established, each continuous character of H having support
F can be extended to a continuous character of S if and
only if H;m is isomorphic to HX.under the natural embedding
and F is induced by some generating idempotent of S.

A complete proof of this theorem is omitted, but it
can be shown that the theorem is a consequence of Lemma 3.4
and Theorem 3.4. The results obtained in the corollaries
to this theorem are more readily applied than the theorem
itself.

Corollary 3.5.1. If S is a compact commutative

pseudo-invertible semigroup, H a closed subsemigroup of S,
and Y a continuous character of H such that the least element
of E(Sx) is a generating idempotent of S, then y has an
extension which is a continuous character of S.

Proof: Let F = SX' Then eeSX and e a generating
idempotent implies F is induced by a éenerating idempotent.
Also since ecE,, from Lemma 3.4, H;“ is isomorphic to H*,
Thus the hypothesis of Theorem 3.5 is satisfied, and X can
be extended to a continuous character of S.

For the next two corollaries, let SX/S denote the set

{xeS: xseSX for some seS}.
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Corollary 3.5.2. If S is a compact commutative

pseudo-invertible semigroup, H a closed subsemigroup of
S, and X a continuous character of H, then x can be extended
to a continuous character of S if SX/S is open.

Proof: Let ey be the least element of E(Sx), and let
xe U{Pg: eq £ £}, Then ey < ey and egey = ey which implies
exesx/s. Thus if SX/S were closed, it woﬁld follow that
xeSy/S and that U{Pg: eq < £} CS,/S. For the proof that
SX/S is closed, assume that this is not the case. Then
there exists a limit point x of SX/S and x¢Sy/S. Then there
is a net {x4} in §,/8 such that {x4} + x. For each x in
SX/S, by definition, there exists a b, such that baxaesx-
The net {byx,} contains a subnet {byxy} such that {byxy} » p
which is a point of S, since S, is closed. Now {beY}-+6x
which is not in Sy since xtSX/S. Then {beY} +p = Bx
since {xY} + x and {be} + bx. But this implies that
p = Sxesx, a céntradiction. Thus SX/S is closed and the
desired inclusion U {Pg: e £ £} Csy/S follows. Now let
szX/S. Then there exists an s in S such that xseSx and
eo S exg. From Lemma 2.13, e, = eyes. Also (exegley = eyeg
implies exeg < ex. Thus eg < eyg = egey, £ ey implies
eo £ ey and hence xe U{Pg: eg < f}. Then
SX/S<: U{Pg: eo < f}. Thus SX/S = U{Pg: eo < £} and
since SX/S is open by hypothesis, e, is a generating idem-

potent of S. From Corollary 3.5.1, x can be extended to a

continuous character of S.
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Corollary 3.5.3. Let S be a compact commutative

semigroup and H a subsemigroup of S which is both open and
closed. Then each continuous character of H can be extended
to a continuous character of S.

Proof: Since H is open, SX is open in S, Let
xeSX/S. Then there exists an seS such that xseSX. Since
Sy is open, there are open sets U and V such that
xseUs CUV CSX. Thus erCSx/S and SX/S is open. Hence,
from Corollary 3.5.2, xy can be extended to a continuous
character of S.

Theorem 3.6. Let S be a compact commutative pseudo-

invertible semigroup, H a closed subsemigroup of S and ¥
a continuous character of H, If K is the union of all com-
ponents of S which intersect H, then K is a closed subsemi-
group of S, If KX denotes the union of all those components
whicl intersect Syr then in order that y be extendable to
K, it is necessary and suffiéient that
l. for each component L of S either (LNH)N SX = ¢, or
(LNH)N (S\sy) = ¢, and
2. (x,y,a)eSXXSXxKX and xa = ya imply x(x) = x(y).
Proof: For the proof that K is a semigroup, let
X, y €K. Then there exist components L, and Ly of S which.
intersect H and contain x and y respectively. Now let
ReLyNH and §eLyr\H. From Lemma 2.14, the product LyL, of
two components is contained in some component L of S. Since

H is a semigroup and X and § are in H, §§eH and also
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29eLyLy CL. Thus %9eLNH and hence L CK. Then xyeLCK and
K is a semigroup. For the proof that K is closed, let x be
a limit point of K and {x4} a net in K such that {x4} + x.
Let L, denote the component in K containing x, for each x,
in the net. Since LyCK, each L, intersects H. For each
o, let tyeLyMNH. Then {t,} contains a convergent subnet
{ty'} » t. sSince each ty' is in H, H closed implies teH.

Let L denote the component containing t., Then teLNH implies
LCK. Now since {Xy} + x, for every open set 0 containing x,
there is a y such that for a' > vy, Ly'N0 # §. Thus x € lim inf
Ly'. From Theorem 2.11l, lim sup Lg' is connected, and hence
lim sup Lo' CLCK. Thus x €lim inf Lyt Clim sup L' CL CK
implies x€K and K is closed.

Suppose X has an extension ¥ to K. Let L be a com-
ponent of S such that LNKH # ¢. Assume there exist y, z
such that ye (LNH)N Sy and ze(LNH)N (S\ Sy). Then
|X(y)| = 1 and X(2) = 0. But L connected and X continuous
imply X (L) is connected. Hence |X(y)| = 1 and X(z) = 0
is an obvious contradiction, and 1. follows. For each com-
ponent LCKX, it also follows that for each aeL, x(a) # 0
by a similar argument. Thus if (x,y,a)sSXxSXXKX, then
x{x)X(a) = X(xa) = X(ya) = x(y)X(a) which implies x(x) = x(y)
since C is cancellable and none of these terms are zero.

Thus 2. is true.

Suppose now that 1. and 2., are true. Since

Sy CKy CK, Sy closed in S, and K closed in §, Sy is closed in
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K, and leX is a unit-character of Ky Then condition 2,

X
together with Theorem 3.1 imply that x can be extended to a
unit-character x' on Ky . Define %(x) = 0 if xeK\Kx and
R(K) = xY{X). Clearly, then, Y is an extension of x, and

the proof of the theorem is complete.

Definition 3.6, Let S denote a compact commutative

semigroup. Then there exists a totally disconnected compact
commutative semigroup D and a continuous homomorphism ¢ from
S onto D such that {¢‘l(d): deD} is precisely the set of
components of S, [13] The semigroup D will be called the

canonical totally disconnected image of S.

Theorem 3.7. Let S be a compact commutative pseudo-

invertible semigroup and H a closed subsemigroup of S.

Usina the notation of the previous paragraph, let K = ¢“l(¢(H)).

Then K is a closed subsemigroup of S which is a union of com-

ponerts of S, and E(K") is iseomorphic to E((¢(H))") = E((¢(K))").
Proof: Since H is closed in the compact space S,

H is compact, and since ¢ is continuous, ¢(H) is compact and

hence closed in D. Then K, the inverse image under the con-

tinuous mapping ¢ of the closed set ¢(H), is closed. Now

K = ¢"1(¢(H)) CH implies ¢(H) C(K). Also

$(K) = ¢(6~L(¢(H))) Co(H). Therefore, ¢(H) = ¢(K). But this

implies (¢(H))" = (¢(K))" and E(¢(H))" = E(¢(K))". To see

that ¢(K) is the canonical totally disconnected image of K,

assume that this is not the case. Then some component L of

S prorerly contains a subset of K and ¢(K) = d;, ¢(L\ K) = d3
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for d;, d2 in D. But then ¢(L) is the set {dl, dy}, and
the continuous image of the connected set L is not connected,
a contradiction. Therefore, ¢(K) is the canonical totally
disconnected image of K. Now if x is an idempotent character
of K, x(k) = 0 or x(k) = 1 for each keK, and in particular,
x(L) = 0 or x(L) = 1 for otherwise, a contradiction similar
to the one just given is reached. Let V¥ dénote the mapping
from E(K®) into E((¢(K))") defined by ¥(x) (d) = x(k) where
X€E (K*) and keK such that ¢(k) = d. Now ¢~} (¢(K)) = ¢~1(d) = L,
a component of K, and since x(L) = 0 or Xx(L) = 1 for all
keL, the definition of ¥(x) is independent of the choice of
keK such that ¢(k) = 4, that is, ¥ is well-defined. For the

proof that ¥ is a homomorphism, let x,, X2€E(K®)., Then for

each 4 in ¢(K) and k such that ¢(k) d,

(Y (X1) (@) (Y(X2) (4))

P(X1X2) (d) = (X31X2) (k) = x1(k)X2(k)
= (¥(X1)¥(X2))(d). Thus ¥ is a homomorphism.
Suppose Y¥(X3) = ¥(X2) for Xj, X2¢E(K"). Then for all de¢(K)
¥(X1) (d8) = ¥(X2) (d) and X3(k) = ¥(X1)(d) = ¥(X2)(d) = Xy(K)
for each keK such that ¢(k) = d implies X; = X3. Thus ¥
is a monomorphism. From Theorem 2.5, E(K”) and E((¢(K))*)
are discrete, Thus ¥ is bicontinuous, and hence an iseo-~
morphism,

Corollary 3.7.1l. Let S be a compact commutative

pseudo-invertible semigroup and ¢ the natural homomorphism
from § onto its canonical totally disconnected image D, If

H is a closed subsemigroup of S and LNH is connected for
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each component L of S, then E(H") is iseomorphic to
E((¢(H))").

Proof: Let K = =1 (¢(H)). Then from Theorem 3.6,
E(K”) is iseomorphic to E((¢(H))"). For the proof that
E(K") is iseomorphic to E(H"), let Y denote the mapping
from E(H") into E(K") defined by
1 if keo~l(o(x~1(1)))

¥(x) (k) = _ -1 -1
0 if ked ~(o(x ~(0))).
Since LNH is connected for each component C of S, and ¥
is continuous for each xeE(H"), for each component LNH of
H, x(LNH) = 0 or x(LNH) = 1. Thus ¢(x~1(0))N ¢(x~1(1))
is empty, and ¥ is well-defined. It can be shown, in a
manner exactly analogous to the argument given in Theorem
3.7, that ¥ is an iseomorphism. Thus, letting = denote
the relation of iseomorphism, E((¢(H))") = E(K*) = E(H"),
and the Corollary follows.

Corollary 3.7.2. Let S be a compact commutative

pseudo-invertible semigroup and ¢ the natural homomorphism
from S onto its canonical totally disconnected image D.
Then E(S”) is iseomorphic to E(D").

Proof: Obviously S is a closed subsemigroup of
itself such that LNS is connected for each component L of
S. An application of Corollary 3.7.1 gives

E(S%) = E((¢(8))") = E(D).



CHAPTER IV
PROBLEMS FOR FURTHER RESEARCH

In [14], Lin defines a generalized character. He
considers an arbitrary but fixed compact commutative cancel- -
lable semigroup T with zero z and unit u such that the com-
plement of the maximal subgroup containing u, T\ H(u), is
a subsemigroup of T. A generalized character is, then, a
continuous homomorphism from a compact commutative semi-
group S into T. With the additional hypothesis that S is
pseudo-invertible, Lin shows that the generalized character
semigroup can be decomposed into the union of a disjoint
family of groups.

One guestion to be considered is whether analogues
of the theorems presented in the previous chapter exist
for generaliééd characters. Basic to the development of
the results of CHAPTER III is the fact that the characters
of a compact commutative group separate elements of the
group. It is not immediately obvious that this is also
the case for’generalized characters. For a character ¥
defined on a subgroup of a compact commutative group,
Theorem 2.3 implies that x can be extended to the group.
The proof of this theorem depends strongly on the fact that

the nonzero complex numbers under multiplication form a
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divisible group. It is well known that every homomorphism
from a subgroup of a group into a divisible group can be
extended to the group. [7] If the range T of a generalized
character is required to be divisible, the problem of proving
the continuity of the extension of a homomorphism remains.

In the proofs of Theorems 3.6 and 3.7, a property relied upon
is the fact that the range of a character of a compact com- .
mutative pseudo-invertible semigroup is a subset of the
boundary of the complex disc plus zero. This seems to
indicate that more restrictions must be placed on the range
T in order to obtain analogous results for generalized
characters, One possible soluiion is that T be required
to be a topological group with an isolated zero.

The problem of determining conditions under which
the second generalized character semigroup is isomorphic
to the semigroup appears to be no less formidable than the
extension problem. In attempting to determine such condi-
tions for second character semigroups, the powerful
Pontryagin-van Kampen duality theorem is available, at least
for groups. But for generalized characters, even this

tool is absent.
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