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ABSTRACT

Vector fields, especially flow, and their analysis are of paramount importance to a wide variety of

scientific and engineering applications. Despite significant advances in the analysis and visualization

of vector fields, the interpretation of their behavior still remains a challenge. There are different

flow features that are of interest to different applications. Among them, vortices are the main

subject for the study of turbulence flows. Vortices characterize the rotational behavior of the flow;

they are responsible for the transportation of materials and energy. Despite their importance, there

currently does not exist an effective way to identify and characterize vortices due to the lack of

a unified definition of vortices. To address that, this research proposes three different approaches

to analyze and visualize vortices based on their geometric and physical characteristics. The first

approach characterizes the circulating pattern of vortices using a topology-based analysis, while

the second approach identifies vortices based on their unique physics. The third approach uses a

deep learning method to identify the boundaries of vortices, a traditionally difficult and unsolved

problem. This dissertation provides detailed description and discussion on each of these three

approaches. The proposed methods and their visualization have been applied to a number of 2D

and 3D steady and unsteady flows to evaluate their effectiveness. Important flow characteristics

that cannot be revealed with the previous methods are captured by the proposed methods.
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1 Introduction

Vector fields are one of the omnipotent data forms for the study of a wide range of continuous

dynamical systems that describe the behaviors of gas and liquids under different circumstances.

Applications that involve vector fields and their analysis include automobile and aircraft engineer-

ing, climate study, oceanography, combustion physics and chemistry, earthquake engineering, and

medical practice, among others. Analyzing and visualizing vector fields, especially flow data, stem-

ming from these applications to reveal features of interest is essential for the knowledge advances

and technology innovation for these applications. There are different flow features that are of inter-

est to different applications. Among them, vortices are one of the main features studied by different

applications, as they are responsible for the transportation of material and energy. Despite its im-

portance, there currently does not exist an effective way to visualize and characterize vortices due

to the lack of a unified definition of vortices. My dissertation is dedicated to address this challenge.

1.1 My Contributions

To address the aforementioned challenge of vortex visualization and characterization, I introduce

three different techniques that exploit the unique geometric and physical properties of vortices.

These three techniques focus on the votices and their behaviors in steady and unsteady flows,

respectively. Here, a steady flow is a vector field where the vector values at any positions of the

domain do not change over time, while an unsteady flow is a vector field whose vector values change

over time.

1.1.1 Detect 3D Vortices via a Topology-based Analysis

My first approach focuses on the vortices in the steady flow. It is inspired by an observation that

the flow particles within a vortex area usually move around a common rotation center, namely the

vortex core. This circulating flow pattern within a vortex is related to the so-called flow recurrent

dynamics, which is used to define vector field topology (see Chapter 2 for a detailed definition).

Based on this observation, my first approach resorts to the vector field topology and its computation

1



to identify the possible regions in the flow domain that may contain vortices.

To compute the vector field topology, I resort to the Morse decomposition of vector fields as it

has been shown to be a reliable way to compute and represent vector field topology. Its computation

first converts the original vector field into a directed graph representation, so that flow recurrent

dynamics (i.e., Morse sets) can be identified as some strongly connected components of the graph.

Since its introduction, Morse decomposition has been extended to analyze piecewise constant vector

fields [83] and 3D vector fields defined on unstructured meshes [62]. However, there is still little

work on the computation of Morse decomposition of vector fields defined on 3D regular grids.

To address this issue, I introduce an effective framework that enables the efficient computation

of Morse decompositions of 3D piecewise linear vector fields that are defined on regular grids.

Similar to the previous approaches, the first step of our framework is to convert the original vector

field into a directed graph by tracking the image of each 3D cell of the regular grid based on the

vector field defined on it (i.e., flow map estimation). To accurately estimate this image, we extend

the adaptive edge sampling technique introduced in [9] and make use of the configuration of the

regular grid to develop a 3D adaptive face sampling strategy. This leads to an accurate construction

of the directed graph. After obtaining the graph, flow recurrent dynamic features can be identified

as the strongly connected components of the graph.

1.1.2 Vortex Characterization via Quantifying and Visualizing Attribute Relations

While the above topology-based analysis may capture some regions with potential vortical flow

behaviors, it also contains other non-vortex features (e.g., sinks, sources and saddles). In addition,

in the fluid mechanic community, vortices are usually located via certain local physical relevant

properties (or attributes), such as vorticity, Q-criterion, λ2, and acceleration [gunther2018state].

Inspired by this common practice, in my second approach, I focus on characterizing vortices via

their relevant local physical attributes.

Different from the existing approaches that usually concentrate on one local attribute at a time

for vortex analysis, I propose to inspect two (or potentially more) relevant attributes together for

2



Figure 1: Sampled pathlines colored based on our proposed correlation method.

the characterization of vortices. In particular, my approach quantifies the co-varying behavior of

pairs of relevant attributes over time in hope of finding vortex regions. This approach is based on

the observation that the temporal behavior of certain attributes within a vortex region share some

similarity. For instance, the vorticity value and the Q concentration remain relative high within the

vortex core area during the transportation of the vortex, while their values exhibit some fluctuation

at the boundary of the vortex as shown in Figure 1. We extend the existing spatial correlation

quantification, i.e., the Local Correlation Coefficient (LCC), to the spatio-temporal domain to study

the correlation of attribute-pairs from both the Eulerian and Lagrangian views.

1.1.3 Vortex Boundary Identification Using Convolutional Neural Network

The previous two approaches may capture the potential vortex regions. However, they cannot

detect the boundaries of the individual vortices. Knowing the boundaries of vortices will provide

additional information about vortex behaviors. For instance, if the boundary of a vortex is with a

wiggly shape (maybe captured via a frequency analysis of the boundary curve), then it could be

a sign of vortex breakdown. In addition, the extent and area of a vortex can be more accurately

computed with the vortex boundary detected. Such information can be important in the study of

3



(a)

(b)

Figure 2: Visualizing boundary of vortices using deep learning (Unet) (a) vs. physics-based (b).

eddies of the oceans – a large ocean current structure for the transportation of nutrition and heat.

Specifically, we can perform multiple simulations on ocean currents with different temperature

increases (e.g., +1.5 degree Celsius or +2.0 degree Celsius set as a temperature increase bound

in the Paris Climate Agreements). We then can quantitatively compare the impact of different

temperature increases to the shape and extent of ocean eddies. Considering its importance, in the

last part of my dissertation work, I am focused on the extraction of vortex boundaries.

The detection of vortex boundaries is challenging as there is not a unified definition of it. To

address this challenge, I propose to use Deep Neural Network to detect vortex boundaries. In

order to train a neural network, a large training set with example flows that contain vortices

with different configurations that may be seen in the real-world flow is needed. To generate such

a large training set, we employ a parametric flow model that allows us to precisely specify the

configuration of a vortex, including its center, shape, orientation, and size. With this model, we

generate thousands of synthesis flow patches with vortex boundaries labeled as the ground truth for

the neural network to learn. We have used this set of synthetic flows to train different models with

different architectures including a CNN, a Resnet, and a Unet with the velocity information as the

input to these networks. After supervised learning, we apply these trained networks to real-world

flow to demonstrate their effectiveness. Figure 2 (a) shows the detected vortex boundaries in a 2D

flow behind a square cylinder using the trained Unet. As a comparison, Figure 2 (b) shows the

4



highlighted vortex regions using our second, physics-based approach.

1.2 Structure of the Dissertation

The rest of the dissertation is structured as follows. Chapter 2 provides a general background

and reviews the work most relevant to the proposed techniques. Chapter 3 provides details of

the proposed topology-based approach. Chapter 4 describes our second approach based on the

analysis of the co-varying behaviors of pairs of physical attributes. Finally, Chapter 5 introduces

our boundary extraction method based on deep learning, followed by a summary and discussion of

future work, in Chapter 6.

5



2 Vector Fields and their Processing

In this chapter, we will briefly review some important concepts of vector fields that will be applied

in the subsequent discussions. Consider a 3-manifold M ⊂ R3, a general vector field v can be

expressed as an ordinary differential equation ẋ = v(x, t) or a map ϕ : R ×M → R3, satisfying

ϕt0t0(x) = x0 and ϕt+st0
(x) = ϕt+ss (ϕst0(x)) = ϕt+st (ϕtt0(x)). This flow map describes the spatial

correlation of points through trajectories (or flow paths) starting at time t0: ϕtt0(x). In a steady

flow, the trajectory x of a tracer particle is called a streamline. For a given seed point x, the

streamline is computed as the tangential curve one computes within a time step. While in an

unsteady flow, the trajectory x of a tracer particle is called a pathline which is the tangential curve

in the space and time domain.

2.1 Topology-based Approach

2.1.1 Background

In steady flows, a point x0 ∈M is a fixed point if ϕ(t,x0) = x0 for all t ∈ R. That is, v(x0, t) = 0.

x is a periodic point if there exists T > 0 such that ϕ(T,x) = x. The trajectory of a periodic

point is called a periodic orbit. Both fixed points and periodic orbits are examples of flow recurrent

features. The connectivity of these flow recurrent features represents the qualitative (or structural)

information of the vector fields, which we refer to as vector field topology.

2.1.2 Related Work in Topology-based Approach

Helman and Hesselink were the first to introduce vector field topology to the visualization com-

munity [35]. Specifically, they defined a topological skeleton that is comprised of first-order fixed

points and their connectivity. This topological skeleton has been extended to handle the boundary

features and higher-order fixed points [71], respectively. Wischgoll and Scheuermann [99] intro-

duced a technique for periodic orbit detection from 2D steady vector fields, which is later extended

to 3D [98].
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Figure 3: This shows various topological analysis results for an experimental vector field of: (a)
ECG and (b) MCG(geometry-based), (c) MCG (τ = 6) and (d) MCG (τ = 24). [9]

Chen et al. introduced an efficient method for detecting periodic orbits from 2D/2.5D vector

fields and defined a more complete vector field topology by including periodic orbits into the

topology [10]. Theisel et al. proposed a saddle-saddle connector for 3D vector field topology

visualization to reduce the occlusion issue [98]. Figure 3 shows their method results in comparing

to the previous techniques. Extracting higher-order critical points has been introduced by Weinkauf

et al. to assist the simplification of 3D vector field topological representation [99]. Considering the

problem of instability in previous methods, Chen et al. introduced the first stable and discrete

representation of vector field topology based on Morse decomposition [9]. This framework has

been applied to 3D vector fields defined on unstructured grids [62] and extended to construct

a hierarchical representation of the flow structure [12], respectively. Different from their work,

we handle 3D vector fields defined on regular grids, which enables us to develop some efficient

algorithms and implementations to compute a Morse decomposition for large scale data in pratice.

Recently, Szymczak and Zhang proposed a stable Morse decomposition framework for piecewise

constant vector fields on surfaces [84]. Later, Szymczak et al. presented an algorithm for computing

nearly recurrent components for 3D piecewise constant (PC) vector fields defined on regular grids

[83]. Note that piecewise constant vector fields assume a constant vector value within each cell,

which changes the nature of the original vector fields. Different from their setting, we compute a
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Morse decomposition directly based on the original piecewise linear vector fields.

Morse Decomposition A Morse decomposition is a collection of disjoint closed sets, called

Morse sets. Together, they contain all the recurrent dynamics of the flow induced by the vector

field. More precisely, sets Mi, i ∈ {1, 2, . . . , N}, form a Morse decomposition if and only if the

trajectory of any point is either (i) entirely contained in one of the Morse sets or (ii) is contained

in some Morse set Mi for large enough negative times and in some other Morse set Mj , with j > i,

for large enough positive times. Intuitively, (ii) means that the trajectory of any point outside the

Morse sets can only move from a set with lower subscript to a set with a higher subscript.

Condition (ii) excludes any recurrent dynamics outside the Morse sets, making it gradient-like.

In practice, the partial order between Morse sets can be represented as an acyclic directed graph

called Morse connection graph, or MCG.

In [9], Chen et al. described a computation pipeline for Morse decompositions of the given

2D vector fields. In this pipeline, the input vector field is firstly converted into a directed graph,

denoted by F , through a numerical computation, called flow combinatorialization. The nodes of

F are the individual triangles of the mesh where the vector field is defined. The directed edges

indicate the flow mapping relations between triangles. For instance, if there is a directed edge

T1 → T2, the particles released at triangle T1 can be advected by the flow and reach T2 over certain

time τ . In other words, F encodes the dynamics of the flow at a combinatorial level. From F ,

Morse sets can be identified as the strongly connected components of F with non-trivial Conley

index. The connectivity between the identified Morse sets can then be extracted by path searching

between their corresponding strongly connected components in F . It has been shown that this

pipeline can be extended to 3D as illustrated in Figure 4.

2.2 Physics-based Approach

Consider an unsteady vector field v(x(t)) defined in a space-time domain Ω ⊂ Rd×R. Its dynamics

are determined by the temporal evolution of densely placed particles, that is, for a particle p, it

satisfies dp(t)
dt = v(x, t) (x = p(t) is the position of the particle at time t).
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Figure 4: The Morse decomposition computation pipeline.
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There are a number of local attributes for an unsteady vector field that are of interest to domain

experts. For example, the acceleration of v is defined as a(x, t) = Dv
Dt = ∂v(x,t)

∂t +(v(x, t) ·∇)v(x, t),

where (v(x, t) · ∇) = ∇xv represents the spatial gradient of v, i.e., Jacobian, denoted by J for

simplicity.

Important deformation modes of the flow can be obtained through the decomposition of J.

Specifically, the Jacobian matrix can be decomposed as J = S + R, where S = 1
2 [J + (J)>] and

R = 1
2 [J − (J)>] are the symmetric and antisymmetric components of J, respectively. From this

decomposition, the local shear rate is measured as the Frobenius norm of S, the Q value at each

point can be computed as Q = 1
2(‖R‖2 − ‖S‖2) [30], and λ2 is the second largest eigenvalue of the

tensor S2 + R2 [40], respectively. They are typically used to characterize the vortical or rotational

behavior of the flow. The attributes we consider in this dissertation work are denoted as follows:

• A1: vorticity, 〈∇ × v, z〉 for 2D, and ||∇ × v|| for 3D.

• A2: acceleration magnitude, ||a(x, t)||.

• A3: λ2 (see above definition).

• A4: Q (see above definition).

• A5: local shear rate (i.e., the Frobenius norm of S).

• A6: determinant of J.

• A7: norm of J, defined as
√∑

ij J
2
ij .

Note that all the above attributes can be measured (or calculated) at a given position and time

in the flow domain in parallel.

2.2.1 Related Work in Physics-based Approach

There exists a large number of algorithms and techniques for the visualization and analysis of

vector-valued data. A series of survey papers [61, 48] provide a comprehensive review of this

vigorous research area. In the following, we review only the work most related to the presented

research.
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Structural analysis of unsteady flow aims to study the transport behavior of the flow and

identify the boundaries of different regions, such that the particles within each region exhibit similar

temporal transport behavior [60]. There are various methods to define and compute the structure

of unsteady flow, including topological feature tracking [89, 90, 87] based on bifurcation theory

and pathline-based segmentation [88]. Nonetheless, the most successful and popular method is the

computation of Finite Time Lyapunov Exponent (FTLE) fields [31, 51, 73, 27], whose ridges (i.e.,

Lagrangian Coherent structures (LCS)) are extracted as the boundaries of different regions with

distinct transport behavior. This method inspires a new direction of defining unsteady vector field

topology based on streak lines/surfaces [67, 21, 25].

In addition to flow separation behavior in the transport of unsteady flow, the rotational behavior

also leads to an important coherent structure, i.e., vortices [41, 24, 39]. In contrast to the transport

structure, the vortical structure can be suppressed by a strong translational flow [85]. To reveal

the vortex structure of interest, a certain reference frame needs to be extracted. Cucitore et al. [18]

used a reference frame that moves with a particle. Haller [32] proposed Mz to detect vortices, which

is both Galilean invariant and rotation invariant. Bhatia et al. [4] introduced an internal frame

that is computed as the harmonic component of a natural Helmholtz-Hodge decomposition [3].

Günther et al. [29] showed how to construct a Galilean invariant and rotation invariant technique

for vortex detection. Recently, Sauer et al. [69] introduced a novel method to explore spatio-

temporal characteristics in both particle and volume data simultaneously. The transport and

vortical behaviors in unsteady flow can also be studied via analyzing various attributes associated

with pathlines [76, 59]. These attributes can be utilized for pathline and streak line placement [86]

and glyph design [36].

Local analysis of unsteady flow focuses on small-scale behaviors, such as local volume dilation,

compression, infinitesimal rotation, stretching, shearing, acceleration and momentum. Due to its

locality, it is fast to compute and has been widely applied in the fluid mechanics community, for

instance, the well-known λ2 [40] and Q criterion [37] for the detection of vortices.
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However, local analysis may not reveal the global flow structures associated with the transport

behavior of the flow, and its visualization typically relies on the selection of a user-specified threshold

to highlight the most salient regions, whose boundaries need not be aligned with the flow. Shi et

al. [77] developed an advection filter along pathlines to study the transport behavior of various

local properties. It is compared with the LCS structures of the corresponding FTLE fields. The

set of local characteristics used in that work is adapted for our study. Fuchs et al. [26] introduced a

local unsteadiness metric based on the material derivative. A global unsteadiness is then computed

using a similar idea to the advection filter along pathlines. Critical points under the Lagrangian

view are defined as the pathlines that have minimal unsteadiness.

Different from the above work, we concentrate on the pairwise relations of attributes based on

their temporal behavior measured at both fixed locations and along particles.

Correlation analysis of multivariate data is one of the most important tasks in the study of

multi-field data. Sauber et al. [68] analyzed correlations in 3D multi-field scalar data using a vector

similarity metric derived from gradient similarity measures. Lee et al. [49] proposed an algorithm

to describe the correlation among various attributes in multivariate time-varying data sets based

on how the attribute values change over time. Wang et al. [28] studied hierarchical clustering of

volumetric samples based on the similarity of their correlation for scientific volume data. Zhang et

al. [104] introduced a correlation map, which was expressed as a 2D layout of variables encoding

their pairwise correlations. This map is then employed for visual correlation analysis. Chen et

al. [8] presented a sampling-based approach to classify correlation patterns, based on which a

static volume classification was created to summarize the correlation connection in time-varying

multivariate data sets. Recently, Zhang et al. [101] proposed a dissimilarity-preserving clustering

algorithm and measured correlation connection in multi-variable and time-varying data sets. Their

method can characterize time-varying patterns and spatial positions. The above works typically

focus on linear correlation among attributes. In contrast, we study both linear and non-linear

relation and/or dependency between attributes in unsteady flow.
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Mutual Information (MI) quantifies the dependence between two random variables [15] based

on information theory [75]. There are several papers that use information theory for various visu-

alization problems. Xu et al. presented an information-theoretic framework to guide the selection

and rendering of integral curves [100]. Biswas et al. proposed a new approach based on information

theory through the multivariate data exploration process [6]. Wang et al. proposed a block-wise

distribution based representation to preserve important features and alleviate uncertainty in large-

scale scientific data visualization [92]. Zhang et al.[102] also analyzed the variable association in

ensemble data. Analysis of dependent attributes values from a scalar-based view on multi-field data

[20] and a brief overview of relation between the flow attributes [50] have been studied previously.

Closely related to our work, Chen and Jaenicke were among the first to introduce mutual informa-

tion to the visualization community in their seminal work [14]. In particular, they integrated the

MI calculation in to their proposed framework to reduce the uncertainty in the generated visualiza-

tion. Their work has a very different goal from our work. Specifically, we apply MI to understand

the time-varying dependency of flow attributes. Dutta et al. [20] applied MI to the study of scalar

fields. Their analysis is based on pointwise MI (PMI) comparison of time-varying scalar fields to

identify salient features. Our work is a logical progression of this in a few ways. Firstly, we extend

this idea based on comparison of pairwise integral curves (as opposed to points only). Secondly,

we consider both Eulerian and Lagrangian settings and compare the two.

To our best knowledge, this work is the first that explores the spatio-temporal, linear and

non-linear relation of unsteady flow attributes using various metrics from both the Eulerian and

Lagrangian perspectives. We also compare the ability of various metrics in revealing time-varying

relationships between attributes, which can offer guidance for selecting metrics to study and com-

pare amongst the range of flow attributes.
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2.3 Deep Learning

2.3.1 Related Work in Vortex Extraction

The foundations of many formal vortex definitions were laid out between the late 70s and early

90s. As an example, Lugt [55] defined vortices as follows: “Any mass of fluid moving around a

common axis constitutes a vortex. Mathematically, such motion can be described by closed or

spiraling streamlines (or pathlines) if a reference frame exists for which the flow field becomes

steady.” Another definition was proposed by Robinson [63]: “A vortex exists when instantaneous

streamlines mapped onto a plane normal to the vortex core exhibit a roughly circular or spiral

pattern, when viewed from a reference frame moving with the center of the vortex core.” Both

definitions include two concepts that are still actively researched to this day. Both indicate the

essentiality of a vortex coreline, i.e., a line that particles rotate around, and they require to select an

appropriate reference frame [gunther2018state]. Based on these requirements, there are several

groups of methods that identify the vortex regions that we briefly explain in this section.

Region-based Methods Region-based methods identify a volume of vortex-like behavior based

on some physical attributes such as pressure [37], vorticity, Hellicity, Q-criterion, Okubo-Weiss

criterion and λ2 criterion [30]. The main limitation of this group of methods is that most of them

require the selection of certain threshold value to identify vortex regions, which may miss vortices

with smaller values (i.e., weak vortices).

Line-based Methods These methods mostly focus on the coreline of vortices. In steady flow,

they can be identified using a reduced velocity criterion, which considers the eigenvalues and eigen-

vectors of the Jacobian J [93]. In unsteady flow, there exist several methods such as in magnetic

fields or when the vector field is transformed into a reference frame, in which the flow appears steady

[gunther2018state]. However, many line-based methods are numerically instable and easily result

in fragmented corelines.
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Geometric Methods These methods mainly focus on constructing the skeleton of a vortex tube.

For 2D flows, Sadarjoen et al. [66, 65] presented two geometric approaches that are based on the

shape of streamlines. Their curvature center method computes the density of curvature centers for

a given set of streamlines. Their second method called winding angle is based on the angle between

two subsequent polyline segments. Streamlines that have winding angles larger than a threshold

are considered part of vortices.

Integration-based Measures All the above methods are local. However, it was shown that

there are classes of vortices that cannot be extracted by local methods, for instance attracting

vortices that move on non-linear paths. As a solution, integration-based measures such as particle

density estimation [96] and analyzing of Jacobian [93] were developed. They proposed to inject a

number of particles and observe their attraction behavior over time.

Objective Methods Objectivity refers to the invariance of a measure under a change of the

reference frame. There are several measurements that could be used to identify vortex objectivity

for instance, Relative Vorticity Tensor-based measures, Strain Tensor-based measures and Vorticity-

based measures[30].

Extraction of Vortex Boundaries In addition to finding vortex corelines, the size of vortices

is also of interest. With region-based methods, the size is determined by a threshold, which is

typically difficult to set. Line-based methods may serve as a starting point for region growing

approaches. There exist a few research works that aim to estimate the size based on streamlines or

corelines [30]. To the best of our knowledge, the only work that has focused on vortex boundary

extraction was proposed by Haller et al. [33]. He proposed elliptic LCS, which preserve arc length

and area in incompressible 2D flows, and considered the outermost elliptic LCS, of a family of

nested elliptic LCSs, as the boundary of a coherent vortex. This work will bring a new perspective

to solve this problem considering the power of feature extraction and deep learning.
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2.3.2 Related Work in Using Deep Learning in Visualization

In recent years, several deep learning approaches appeared for vortex extraction. Bai et al. [2]

introduced an RCNN to detect the ocean eddy which is a circular current water in the ocean.

Kim and Günther proposed a robust reference frame extraction method [45] based on the Vatistas

velocity profile. It uses neural networks to extract a steady reference frame from a given unsteady

2D vector field. Under increasing noise and resampling artifacts, this method is robust on real-world

data.

The classification approach of Bin and Li [5] categorizes flow patches into rotating (cw/ccw),

saddles and others. More specific features have been searched with the classification network by

Ströfer et al. [82], looking for recirculation, boundary layers and a horse shoe vortex. Deng et

al. [19] trained a convolutional neural network to extract the instantaneous vorticity scalar field of

Haller et al. [33]. Given the sea surface height, Lguensat et al. [52] extracted ocean eddies. Franz et

al. [23] described a CNN that receives the Okubo-Weiss criterion [57, 95] as input to detect ocean

eddies and followed their paths using optical flow and a spatio-temporal recurrent neural network

(RNN). Kim and Günther [45] developed a CNN that extracts a reference frame in which a given

unsteady flow becomes steady, enabling vortex coreline extraction. The network was trained with

noisy synthetic data to improve the robustness. Liu et al. [53] extracted shock waves using CNNs.
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3 Locate 3D Vortices via Morse Decomposition

This chapter describes our topology-based approach, called Morse decomposition, for the locating

of 3D vortices.

Conventional vector field topology, also referred to as the differential topology, is computed

based on the characterization of streamlines – solutions to the ordinary differential equation that

describes the vector field, which is numerically unstable. To address this, Chen et al. [9] introduced

the Morse decomposition as a stable representation of the vector field topology. Different from the

differential topology, Morse decomposition represents the flow recurrent dynamics by the individual

disjoint sub-regions of the flow domain, called Morse sets, that enclose these flow recurrent features.

This coarse representation offers additional room for topology to tolerate a certain amount of error

or perturbation, resulting in a more stable representation compared to the differential topology.

One challenge for Morse decomposition computation is to determine an ideal integration time

for the flow map estimation, which can accurately capture the flow behavior while achieving effi-

cient calculation. To address that, we extend the hierarchical refinement framework for 2D vector

fields [12] to 3D flows, which enables the Morse decomposition to start with a smaller integration

time. This integration time will be increased gradually at regions that may contain flow recurrent

dynamics to refine the obtained results. In addition, our refinement framework borrows ideas from

the recently introduced image-space Morse decomposition for 2D vector fields [11] and procedurally

sub-divides the 3D cells to refine the boundary of the obtained Morse sets. Figure 10 provides an

example of such a refinement to the Morse set detected from the Lorenz system.

Since the input vector fields are defined on regular grids, a Compute Unified Device Architecture,

(CUDA) implementation of our framework is possible, which largely improves the computation

performance of our framework. This is much needed in practice when handling large scale 3D

vector fields. To our best knowledge, this is the first work that addresses Morse decomposition of

piecewise linear vector fields defined on 3D regular grids. It is also the first time that a CUDA

implementation of Morse decomposition is presented. We have applied our framework to a number
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of analytic and real-world 3D data sets to demonstrate its utility.

The rest of this chapter is organized as follows. Section 3.1 provides the detail of our 3D flow

combinatorialization based on the adaptive face sampling. Section 3.2 describes our pipeline of

hierarchical Morse decomposition. Section 3.4 details the implementation of our algorithm using

CUDA. Experimental results for analytical and simulation data are provided in Section 3.5.

3.1 Flow Combinatorialization

As described earlier, the most important step in Morse decomposition computation is the flow

combinatorialization. In this work, we employ the idea of τ -maps for the computation of flow

combinatorialization. In the rest of our discussion, we assume that the underlying computation

domain is represented by a regular grid. Vector values are defined at the vertices and tri-linear

interpolation is used to obtain values on the edges and inside the grid. The purpose of flow

combinatorilization is to construct the directed edges ek = (Vi → Vj) (Vi and Vj are two voxels) in

Fτ , which accurately encodes the flow map induced by the vector field.

As shown in previous work [9], the directed edges starting from each node in Fτ , i.e., corre-

sponding to a 3D cell (or a voxel) V , can be obtained by locating all the 3D cells, {Vj}, that

intersect with the image of V , denoted by ϕt0+τ
t0

(V ) or simply ϕτ (V ). That is, ek = (V → Vj) ∈ Fτ

⇐⇒ Vj ∩ ϕτ (V ) 6= ∅.

This set of 3D cells constitutes the outer approximation of ϕτ (V ). Hence, to obtain an accurate

directed graph, Fτ , it is essential to compute an accurate outer approximation of the image of each

3D cell of the given grid. A naive approach for the outer approximation estimation is to advect the

densely placed particles within each 3D cell over time τ and locate the set of cells that enclose the

end positions of these particles. However, such a naive approach will usually result in disconnected

Morse sets due to inaccurate estimation of the flow map (see an example shown in Figure 6 top).

To address that, we extend the 2D adaptive edge sampling strategy [9] and propose an adaptive

face sampling process described as follows.
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3.2 Adaptive Sampling for Faces

Consider a voxel V and its boundary ∂V . Let ϕτ (∂V ) be the image of the ∂V under the flow ϕ

over time τ . It suffices to have an accurate outer approximation of ϕτ (∂V ) to obtain the outer

approximation of ϕτ (V ). The interior of ϕτ (V ) will be identified via a backward mapping [9]. To

obtain the outer approximation of ϕτ (∂V ), we propose an adaptive face sampling strategy for each

V . This adaptive sampling is based on the observation that the image of a connected object under

a continuous map remains connected. Consequently, the basic idea of our strategy is to preserve

the connectivity of ϕτ (∂V ) during mapping.

Specifically, we are interested in finding the set of connected voxels that contains the image of

each face of a voxel. To compute this set of connected voxels, we first release particles from the

four vertices (or corners) of each face fi. If the voxels that contain the end positions of these four

particles are not identical or neighboring to each other (i.e., they are not connecting), more seeds

will be inserted between the previous seeds recursively. We achieve that by subdividing fi into four

equal quads. We consider each new quad as a new face f
(k)
ij and apply the same process above,

i.e., placing particles at the corners of each f
(k)
ij (excluding those corners that have been considered

in the previous iteration) and validating the connectivity of the voxels that enclose their images.

This recursive process continues until we locate a set of connected voxels that completely encloses

the image of fi. In theory, this process will converge given a finite τ and a continuous flow. In

practice, we set a maximum recursive level k to prevent the stack overflow exception because of the

memory limitation of the GPU. In all our experiments, we set k up to 4. Algorithm 1 provides a

pseudo-code of our adaptive face sampling. Figure 5 provides an example to illustrate our adaptive

face sampling. For a face f1, initially four particles are placed at the four vertices vi and advected

by the flow over time τ (left image of Figure 5(a)). If the two voxels containing the images of the

two vertices v1 and v2 are neither the same nor neighbors, we then divide f1 to four faces in a

way that vcc located at the center and vc1 to vc4 are located in the middle of each edge (middle

image of Figure 5(a)). We trace streamlines from the new faces and determine whether the voxels

containing the images of faces f11 and f12 are connected or not. If they are not, it means that we
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need more samples on face (f11). Therefore, we split the face segment ( f11) to four equal faces

and recursively call the algorithm until a set of connected voxels is found.

Figure 5: Illustration of the adaptive face sampling strategy on regular grid. Top images show an
example of face subdivision based on the connectivity of the image of face f1. The bottom images
illustrate an outer approximation (e.g., the shaded region) of a face (i.e., the red quad on the left).

Figure 6 (bottom) shows the Morse decomposition result with the proposed adaptive face sam-

pling. Note that in our experiments, τ is estimated by the number of integration steps.
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Algorithm 1 Adaptive sampling on a face algorithm

procedure Adaptive Face Sampling(V,f, τ ,k)
Input: V : vector field; f : current face; τ : user specified integral time; k : the level of adaptive
face sampling.
Output: Vo:the index of edges that will be added to the graph Fτ in Algorithm 2 (after all GPU
computation is done).
Local variables:

f ′1, f
′
2, f
′
3, f
′
4: the four sub-faces of f ;

v1, v2, v3, v4: the four vertices of f ;
e1, e2, e3, e4: the four end points of f ;
L: the current level of adaptive face sampling.

Begin
L = L+ 1

if (L > k ||
check neighborhood condition(e1, e2, e3, e4))
return;

else
vc1 = add particle(v1, v2);
trace(vm1, τ);
vc2 = add particle(v2, v3);
trace(vm2, τ);
vc3 = add particle(v3, v4);
trace(vm3, τ);
vc4 = add particle(v4, v1);
trace(vm4, τ);
vcc = add particle–center(f);
trace(vcc, τ);
check edge end points();
f ′1 = build new face(v1, vc1, vcc, vc4);
call Adaptive face sampling(V,f ′1,τ ,L);
f ′2 = build new face(vc1, v2, vc2, vcc);
call Adaptive face sampling(V,f ′2,τ ,L);
f ′3 = build new face(vcc, vc2, v3, vc3);
call Adaptive face sampling(V,f ′3,τ ,L);
f ′4 = build new face(vc4, vcc, vc3, v4);
call Adaptive face sampling(V,f ′4,τ ,L);

end procedure
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Figure 6: Morse decomposition results of the Bernard data with 64 × 16 × 32 cubic cells, using
τ = 1200. Different colors indicate different Morse sets. The Morse sets computed without using
adaptive face sampling (top) are typically disconnected, while they are well connected with the
proposed adaptive sampling strategy (bottom). This result highlights eight regions that correspond
to the eight vortex bundles of the Bernard data.

The complete flow combinatorialization is computed in both forward and backward flow direc-

tions. Particularly, we first estimate Fτ in the forward flow direction using the above adaptive face

sampling process and add the obtained directed edges accordingly. Then, we estimate Fτ in the

backward flow direction using the same adaptive face sampling process and add the corresponding

edges by avoiding the repeated edges. In addition to the above boundary estimation, we also seed

particles at the centers of the individual cells and compute their images and add the corresponding
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edges while avoiding redundancy [9].

3.3 Hierarchical Refinement

Even with the above flow combinatorialization computation, it still remains a challenge to deter-

mine an ideal τ to compute the Morse decompositions with sufficiently fine Morse sets and fast

computation. Chen et al. [9] have shown that in general, the larger the τ the finer the decomposi-

tion result will be but with slower computation and larger error (e.g., disconnected Morse sets). In

practice, users have to select different τ ’s in order to get the desired result. To address that, Chen

et al. [12] proposed a hierarchical refinement framework which enables to compute a Morse decom-

position using a smaller τ at first, then gradually refines the results by using a larger τ within the

Morse set regions detected in the previous computation. We adapt their framework and combine

it with an additional cell subdivision process to refine the boundaries of the resulting Morse sets,

whose smoothness is known constrained by the resolution of the underlying grid.

Specifically, our hierarchical refinement method consists of two stages. In the first stage, we

gradually increase τ for the refinement of the detected Morse set. This is based on the work by

Chen et al., which demonstrates that computing the flow combinatorialization does not require

a constant τ value everywhere in the domain [12]. This refinement process enables us to semi-

automatically determine an ideal τ for the extraction of finer Morse sets within a local region given

its flow characteristics. In the second stage, we sub-divide the voxels that fall in the resulting

Morse sets from the first stage and re-compute the local Morse decomposition within each Morse

set region with a higher grid resolution. This enables us to partially improve the smoothness of

the Morse set boundaries for visualization, which is in a much similar spirit of the image-space

Morse decomposition framework [11]. In particular, our refinement framework can be described as

follows.

1) An initial Morse decomposition is computed using a small τ . 2) For each obtained Morse set

(we denote it as Mi), if its size (i.e., total number of voxels within it) is larger than a user-specified

threshold, we increase τi as τ ′i = 2τi and recompute the Morse decomposition within a sub-volume
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corresponding to Mi. 3) If the newly obtained Morse sets are all well-connected individually, we

put them into a queue Q, set τi = τ ′i , and repeat step 2) with a Morse set from Q. Otherwise, if

the extracted Morse sets become disconnected or we reach the threshold for adaptive face sampling

(i.e., k > 4), we go back to the previous level of this Morse set Mi and set τ ′i = (τi + τ ′i)/2, then

go to step 2). 4) After all Morse sets converge using steps 2) and 3), we refine the grid within the

obtained Morse sets by doubling their resolution. For each Morse set Mi and its corresponding τi,

we use 2τi to compute a new Morse decomposition within it. If the newly obtained Morse sets are

all well-connected individually, we put them into Q, and repeat step 4) to increase its resolution

unless the memory doesn’t permit this. Otherwise, we set τ ′i = (τi+τ
′
i)/2 and recompute the Morse

decomposition within Mi and go to step 4).
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Figure 7: The pipeline of the proposed hierarchical refinement framework of Morse decompositions
of vector fields.

Figure 7 shows the flowchart of our algorithm. To explain how the hierarchical framework

searches for an ideal τ , we use the Tornado data as an example. Figure 8 shows the result of

Tornado with different numbers of integration steps. We start from τ = 150 and increase it by

doubling it using the hierarchical refinement framework. The third image in Figure 8 shows the
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Figure 8: Results for the Tornado data set using the proposed hierarchical framework. The results
shown in the first three images are generated with k = 3 and τ = 150, 300, and 600, respectively.
We see the Morse set become disconnected with τ = 600. We then apply binary search for the ideal
τ which turns out to be 450 (the right image). The computation times are 19.715, 58.419, 86.427,
and 98.761 seconds, respectively.

result which is obtained by τ = 600. The resulting Morse set is disconnected. We then perform a

binary search for the ideal τ , as illustrated in the pipeline. The ideal τ for this data is 450. We then

subdivide the cells falling in this Morse set in an attempt to further refine the Morse set. However,

the resulting Morse set with a finer resolution does not improve much for this example.

3.4 CUDA Implementation

Even with the previously described hierarchical framework, the computation cost for the Morse

decomposition of 3D vector fields can still be very high. To further accelerate the computation,

we explore the GPU and CUDA implementation of our framework. As the estimation of the outer

approximation of each 3D cell (or voxel) is independent of the others, it is natural to process them

in parallel. In the higher-level, one can assign a thread for the outer approximation computation

for each cell. In the lower-level, the outer approximation is extracted via the tracing of particles

seeded at each cell. Ideally, if the advection of each particles is independent of the others, a thread

can be assigned to it to achieve the maximum parallelization. However, considering the proposed

adaptive face sampling strategy, not all the required particles and their initial positions are known

at the beginning. This makes their parallel computation challenging. To address that, we proceed

as follows (see Algorithm 2).

At first, streamlines are computed concurrently by executing a CUDA thread per vertex of the
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grid for the initialization of flow combinatorialization. These streamlines and their end positions will

be accessed multiple times in the subsequent face adaptive sampling and connectivity determination.

Function trace Streamlines GPU in Algorithm 2 accomplishes this initialization. An important

array for this initialization is h that contains the coordinates of the vertices. It is passed to the

GPU memory.
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Algorithm 2 An efficient GPU outer approximation computation

procedure Construct Edge Map(V,B τ ,k)

Input: V : vector field; B : boundary coordinates;

Output: fτ : completed graph;

Local variables: h: array of vertex coordinates; e: array of end points coordinate; hp: array of

seed point coordinates; ep: array of coordinates of ending positions of seed points; Q is a queue

for saving Morse sets;

Begin

Generate Vertex Coordinates(h);

for all h ∈ B

do in parallel

e← Trace Streamlines GPU(h, τ, v);

end in parallel

end for

Add Edges(h,e,fτ );

Call Morse Decomposition(fτ );

Current Morse Sets = Save Morse Set();

for all h ∈ Current Morse Sets

do in parallel

(hp, ep)← Adaptive Face Sampling GPU(h, e, τ, k);

end in parallel

end for

Add Edges(hp,ep,fτ );

Call Morse Decomposition(fτ );

Current Morse Sets = Save Morse Set();

for all x ∈ Current Morse Sets do

if(!Check Connectivity(x)); Add x to Q;

end for (!isEmpty(Q))

End

end procedure
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After computing the streamlines starting from vertices, the ending positions of the streamlines

will be saved at e. Based on these end positions, the corresponding directed edges are added to

the graph. Specifically, since one vertex is shared by six voxels, six directed edges starting from

these six voxels will be added for each streamline. In the next step, we perform the face sampling

(i.e., the Adaptive Face Sampling GPU function in Algorithm 2), in which we need the ending

positions of the vertices of the six faces of each voxel which are computed in the last step. Again,

since each vertex is shared by six faces, we access the ending position and starting position of this

voxel using four threads. One thread will cover three faces and the other three faces will be covered

by three other threads running for other vertices.

During the adaptive sampling process, the connectivity of the voxels that contain the end

positions of the streamlines starting from a given sub-face can be achieved by checking the adjacency

of the indices of these voxels. To reduce repetition in the computation, in the implementation of

the Adaptive Face Sampling GPU function, we only consider the three faces whose normals are

in the forward flow direction, and the other three faces will be covered by other threads assigned

to other adjacent voxels. Because in each level of face sampling we need to compute the previous

level completely, each face must be split sequentially. The algorithm of this adaptive face sampling

process has been described in Figure 5 and Algorithm 1.

Since it is impossible to run a particle per thread because the number of required levels of

adaptive sampling as well as the required particles are unknown, we allocate the GPU memory to

the size of maximum number of particles in all levels that the algorithm may need. As we add one

particle to the middle point of each edge of every (sub-)face and one to its center, each (sub-)face

will place totally five particles. If we set k = 4, the total number of all the (sub-)faces involved in

this adaptive sampling process will be 341 =
∑4

k=0 4k. Thus, the maximum number of particles

needed for processing a face will be 5× 341 = 1705.
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Figure 9: The Morse set of the Lorenz system with resolution of 32 × 32 × 32. The results are
obtained using τ = 100, 200, 400, 800 and 1600, respectively. The computation times are 24, 45,
84, 153 and 193 seconds, respectively.

Table 1: Performance of the Morse decomposition for all four data sets with different levels of
adaptive sampling. Both τ and resolution are fixed for the individual data set. Specifically, for
Lorenz: τ=200 and res is 32× 32× 32; for Tornado: τ=100 and res is 32× 32× 32; for Bernard:
τ=1200 and res is 64× 16× 32; for cylinder: τ=200 and res is 96× 32× 24.

Dataset
XXXXXXXXXXX
Measurements

k 0 1 2 3 4

Lorenz
Time (s) 1.453 21.768 24.42 52.330 89.366
Memory (MB) 398.0 1,156.3 1,156.2 1,159.1 1,162.5

Tornado
Time (s) 1.543 31.768 32.815 100.367 252.005
Memory (MB) 398.6 1,154.3 1,154.4 1,155.1 1,155.6

Bernard
Time (s) 2.531 241.519 242.261 976.892 2996.884
Memory (MB) 400.1 1,157.7 1,157.6 1,163.0 1,171.5

Cylinder
Time (s) 1.859 78.209 79.522 283.086 742.849
Memory (MB) 187.7 1,886.5 1,886.5 1,889.1 1,900.2

3.5 Results

We have applied our 3D Morse decomposition framework to a number of analytic and real-world

flow data. Figures 9 and 10 show the obtained Morse sets for the Lorenz system. This vector

field is defined on a 32× 32× 32 grid with σ = 10, b = 8/3 and ρ = 28 in the domain [−30; 30]×

[−30; 30] × [−10; 50], which is originally presented in [54]. From the result, we see our method

successfully locates the Morse set that encloses a saddle-like periodic orbit.
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Figure 10: Morse sets (magenta) of the Lorenz system in three different resolutions. In this case, we
started with a regular 32×32×32 cubical grid (left) on the domain [−30, 30]× [−30, 30]× [−10, 50],
and gradually doubled the resolution (middle and right). τ = 400, 800 and 1600, respectively.

Figures 6b and 11 show the result for the Bernard-Rayleigh Convection data [94] using one-level

cell subdivision. We have subsampled the data set to 64 × 16 × 32 within the domain [−16; 16] ×

[−4; 4]× [−8; 8]. Our result clearly shows the eight Morse sets that match the configuration of the

Bernard flow. Figure 12 shows the flow behind a Square-Cylinder Data [80]. The dimension of this

data is 96× 32× 24 in the domain [−20; 12]× [−4; 4]× [0; 6]. By subtracting the average (or mean)

velocity from the flow, we can observe some interesting swirling structure, which is highlighted by

the identified Morse set. Figure 8 shows the flow of Tornado Data [22]. This vector field is defined

on a 32× 32× 32 grid and in the domain [−30; 30]× [−30; 30]× [−10; 50]. Our result identifies one

connected Morse set that corresponds to the core of the tornado.

To study the performance of the proposed Morse decomposition, we conduct a number of ex-

periments with the above data sets. There are a number of factors that may affect the performance

of our pipeline including its computational time and memory consumption. In the following exper-

iments, we particularly concentrate on four factors: 1) the resolution of the grid, res 2) number

of integration steps τ , 3) number of levels of adaptive face sampling k and 4) number of levels of

refinement L. Tables 1 and 2 provide the performance report of our experiments, respectively. All

the performance information is measured on a PC with 2 Intel Xeron 2.6GHz processors, 128GB
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Table 2: Performance (in seconds) and memory usage (in MB) of the Morse decomposition of the
Lorenz data with different integration steps and different resolution (k = 2).

Res 32 64 128

τ

aaaaaaaaaaaaa
Time

Memory
aaaaaaaaaaaaa
Time

Memory
aaaaaaaaaaaaa

Time

Memory

100

aaaaaaaaaaaaa
24.611

1,162.7
aaaaaaaaaaaaa
148.981

3,463.2
aaaaaaaaaaaaa
1199.119

23,199.0

200

aaaaaaaaaaaaa
45.47

1,163.3
aaaaaaaaaaaaa
332.292

3,420.3
aaaaaaaaaaaaa
2,572.517

23,200.7

400

aaaaaaaaaaaaa
84.866

1,164.0
aaaaaaaaaaaaa
674.945

3,430.9
aaaaaaaaaaaaa
5,722.202

23,201.6

800

aaaaaaaaaaaaa
153.059

1,164.8
aaaaaaaaaaaaa
1,236.084

3,440.1
aaaaaaaaaaaaa
10,153.4

23,823.3

1600

aaaaaaaaaaaaa
193.171

1,165.0
aaaaaaaaaaaaa
1775.597

3,452.9
aaaaaaaaaaaaa
15,092.574

23,204.8

RAM, and a Quadro K4000 Graphic Card.

Different integration step τ and resolutions res To see how different resolutions affect the

performance of our framework, we compute the Morse decompositions of the Lorenz system with

three resolutions of 32, 64 and 128, respectively. We set the number of levels of adaptive sampling

k to 2 and start the τ from 100 and increase it up to the 1, 600. Figure 9 shows the result of

Lorenz with different integration steps. The computation times for τ = 200, 400, 800 and 1600

are 45.47, 84.866, 153.059 and 193.171 seconds, respectively, and the memory foot-prints are at

most 1,164.0MB for all of them. Figure 9 and Table 2 provide the results of Lorenz with different

integration steps and resolutions.
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Different numbers of levels of adaptive sampling k To see how different numbers of levels

of the proposed adaptive sampling algorithm affect the performance of our framework, we compute

the Morse decomposition of all four data sets with different levels of adaptive sampling. We use

the sub-sampled data for our computation which is mentioned at the beginning of this section. As

described earlier, due to the hardware constraint, we set the number of levels of adaptive sampling,

k, up to 4. From these results, we see that the computation time is a few seconds for all data sets

when k = 0. When k is increased, the computation times are increased accordingly. However, the

increase of the computation time need not be linear with respect to k. This is in large measure due

to the different flow configuration of different data. Among different data sets, the computation

time is varying. This is mostly because of different resolutions of the data and different parameter

settings for the computation. For example, the cylinder data has the highest resolution, therefore,

its computation time is longer than the others when using a similar τ . Another example is the

Bernard data which has a highly convoluted flow configuration. Therefore, a larger τ (i.e., 1, 200)

is needed in order to isolate the eight vortex systems. Consequently, it has the longest computation

time in general. In terms of the physical memory consumption, it is easy to understand that the

larger the data set (with larger number of cells) the more memory it will consume. For instance,

the cylinder data typically demands more memory space than the other data sets. In terms of

the level of adaptive sampling, when k = 0, the memory use is relatively small, while it becomes

much larger when k > 0 due to the enabling of the adaptive sampling. However, the memory

consumption does not change much if k is increased. This can be explained by the fact that we

initialize the memory for the storage of the graph by assuming an average 16 particles for each

voxel in our implementation.

Another interesting observation from our experiments is that for some data sets, after k is larger

than certain value, the improvement of the resulting Morse decomposition (i.e., the connectivity

and smoothness of the Morse sets) is not obvious. For example, for the Tornado data, we found a

connected Morse set consisting of 2, 701 voxels using k = 1. When we set k = 2, 3, 4, the obtained

Morse sets contain 2, 901, 3, 006 and 3, 091 voxels, respectively.
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Different levels of cell subdivision An important factor that affects the possible levels of cell

subdivision is the GPU memory constraint. Since we have no a-prior information for the number

of particles, we have to allocate the possible maximum number for the returning array of indexes.

It’s also dependent on the dimension of the data set, i.e., for the Lorenz data with the resolution

of 64 × 64 × 64, we can have adaptive sampling up to 3 levels, and for the Bernard data with the

resolution of 128× 32× 64, the maximum level of refinement is 2.

Figures 10 and 12 show the examples of the effect of cell subdivision to the decomposition.

Generally, the deeper the level of refinement is used, the smoother and more coherent would the

results become.

CPU vs. GPU There is a substantial performance gain with the GPU version as shown by

the comparison in Table 3. The GPU version is 7.30x to 12.87x faster than the single threaded

CPU implementation. The reductions in the run-time are from 843.274 to 115.436 seconds for the

Lorenz, 13,295.7 to 1,032.509 seconds for the Bernard, 1,096.402 to 98.761 seconds for the Tornado

and 2,193.303 to 881.951 seconds for the Square-Cylinder. Those correspond to 7.8, 12.8, 35.2 and

4.49 times speed-up of the GPU over the CPU, respectively. The smallest speed up is for Cylinder

and the largest one is for Bernard. The reason is because of the longer integration step and also

the complexity of the Bernard flow, which needs to go through deeper levels of adaptive sampling

in order for the extracted Morse sets to converge.

3.6 Summary and Future Work

In this chapter, we have presented a new framework for Morse decomposition of piecewise linear

vector field defined on 3D regular grids. Most vector fields of interest in science and engineering are

three-dimensional. Our approach allows one to analyze them directly, without being restricted to

slices or other two-dimensional domains. Specifically, we present a hierarchical Morse decomposition

framework that enables the automatic selection of a proper τ for the flow map estimation at different

flow regions in order to generate a Morse decomposition with the desired fineness. We also introduce
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Figure 11: Results for the Bernard-Rayleigh convection data set using the sub-sampled data set.
The result on the top left is generated using τ = 1200 and k = 1. The top right result is obtained
using τ = 2400 and k = 2. The bottom left image is generated using τ = 4800 and k = 3, which
contains a disconnected Morse set. We then apply binary search and determine the ideal τ for
those local regions that may contain flow recurrent dynamics. The bottom right image shows the
converged result with eight isolated Morse sets (in different colors). The τ used for these Morse sets
ranges from 2400 to 3600. The computation times are 143.2, 287.34, 976.53 and 1032.51 seconds,
respectively.
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Table 3: The comparison of the performance (in terms of the computation time (in seconds) and
memory consumption (in MB)) of a GPU implementation versus a CPU implementation of the
proposed pipeline with the Lorenz, Tornado, and Bernard data sets. The last column is the speed-
up gained from the GPU implementation.

GPU CPU

Dataset

aaaaaaaaaaaaa
Time

Memory
aaaaaaaaaaaaa
Time

Memory

Speed-up

Lorenz

aaaaaaaaaaaaa
115.436

1,233.8
aaaaaaaaaaaaa
843.274

1,341.9

7.30x

Bernard

aaaaaaaaaaaaa
1,032.509

1,367.8
aaaaaaaaaaaaa
13,295.7

1,481.8

12.87x

Tornado

aaaaaaaaaaaaa
98.761

1,328.7
aaaaaaaaaaaaa
1,096.402

1,419.7

11.10x

Cylinder

aaaaaaaaaaaaa
881.951

9,288.9
aaaaaaaaaaaaa
2,193.303

9,858.1

4.49x

an adaptive face sampling strategy for the accurate estimation of the outer approximation of each

cell during the flow combinatorialization computation. Finally, we integrate the cell subdivision

strategy into our computation pipeline to refine the boundaries of the obtained Morse sets. Our

pipeline has been implemented using CUDA and applied to a number of 3D data sets to demonstrate

its efficacy.

There are some limitations of the current framework. In particular, for the flow behind a square

cylinder data set, our method cannot sufficiently refine the obtained Morse set due to the limited

level of adaptive face sampling (i.e., k). In addition, the proposed CUDA implementation may

not be optimal, as it does not utilize the advantage of shared memory. Furthermore, the memory

allocation for particles is performed at the beginning of the algorithm and remains unchanged,
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Figure 12: Results of the flow behind a square cylinder data set. The images in the left column show
the Morse decompositions of the flow with increasing resolutions (from top to bottom). Specifically,
the upper-left image visualizes the Morse set (in red) obtained with resolution 96×32×24 , τ = 900
and k = 4; the middle-left image shows the Morse set with resolution 192× 64× 48, τ = 1800 and
k = 2; the bottom-left image is the Morse set with resolution 384 × 128 × 96 , τ = 3600 and
k = 1. The computation times for these three results are 1150.98, 1621.2, and 2456.24 seconds,
respectively. The images in the right column show the Morse decomposition results of the cylinder
flow at time step 2028 with τ = 200, 400, and 800, respectively. The resolution of the data for these
results is 96 × 32 × 24 and k = 1, 2 and 4, respectively. The computation times are 161.31, 326.4
and 519.574 seconds, respectively. Note that for all these results, only one Morse set is identified.

which is sub-optimal. In the future, we plan to address all these issues.
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4 Physics-based Analysis of Vortices in Unsteady Flow

The Morse decomposition computation described in Chapter 3 utilizes the geometry characteristics

of the flow within a vortex region (i.e., with strong rotational flow) to help locate candidate regions

with vortices. However, not all vortices exhibit strong rotational behavior due to the laminar

component in the flow motion. See an example shown in Figure 13. This example shows a flow

injected from the left boundary colliding with a square cylinder and forming a vortex shedding

(i.e., a series of vortices) behind the cylinder. The visualization on the left shows the original flow

where the vortex street is hidden due to the strong translational component in the flow. After

removing this translational component (i.e., minus the average of the velocity field in this case),

the vortices behind the cylinder are better revealed (on the right). That said, the topology-based

method may not be able to locate the regions with vortices in this case, as the topology definition

and computation is based on the given vector field, and thus, not Galilean invariant (i.e., not

invariant under the addition of a constant flow).

On the other hand, vortices are Galilean invariant features. Thus, instead of inspecting the

geometry patterns in the flow, fluid mechanic experts usually resort to certain physical properties

(or attributes) and thresholding technique to locate vortices (e.g., regions with certain attribute

values above a specific threshold are considered within vortices). The relevant physical attributes

that experts usually consider for vortex study include vorticity, Q concentration, and λ2. However,

with different attributes, the identified vortex regions may be different, making a deterministic

analysis challenging. To address this, we propose to study the co-varying behaviors of pairs of

attributes relevant to vortices over time. In this chapter, I will provide a detailed description of

this new analysis framework.

4.1 Correlation between Time-varying Attributes

The aforementioned attributes of unsteady flow in Chapter 2 are time-dependent. To study their

pairwise attributes and behavior over time, we first briefly describe how we obtain sequences of
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(a) Unsteady vector field u(x,t). (b) Subtraction of the right ambient flow.

Figure 13: Overview of the two approaches to vortex tracking: subtracting a suitable ambient flow.
Images are from [30].

attribute values in the Eulerian or Lagrangian sense. Given a specific local attribute A, its value at

a spatial position x ∈ at time t ∈ can be denoted as A(x, t). Computing A(x, t) at a location x over

time or along a pathline gives rise to a series of attribute values, which we denote as the attribute

value sequence (AVS). The former sequence is obtained in the Eulerian fashion (i.e., measured at

fixed location) and the latter is in the Lagrangian fashion (i.e., moving with a particle). With

these attribute value sequences, we now describe our metrics to quantify the linear correlation and

dependency among attributes over time.

4.1.1 Spatio-temporal Local Correlation Coefficient (LCC)

We extend the LCC [68] for steady scalar field to our unsteady setting, which is the Pearson

Product-Moment Correlation Coefficient (PPMCC) [81] extended to the spatio-temporal domain.

Specifically, for a local position p = (x, t) ∈ Ω and a window function G(x,t) positioned at p, the

correlation value at p is defined by:

ST LCCAi,Aj (p) = ρAi,Aj (p) =
covAi,Aj (p)

σAi(p)σAj (p)
(1)

covAi,Aj (p) =

∫
Ω
G(x,t)(q)(Ai(q)− Āi)(Aj(q)− Āj)dq (2)

σAi(p) =
√

covAi,Ai(p)

Āi =

∫
Ω
G(x,t)(q)Ai(q)dq
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ST LCCAi,Aj (p) returns a real number between -1 and 1. The closer to 0, the weaker the correlation

between Ai and Aj . Ai and Aj are positively correlated if ST LCCAi,Aj (p) > 0; otherwise, they

are negatively correlated. We use a cylinder filter for 2D unsteady flows (i.e., a disk in space and

a deformed cylinder or tube in space-time along the pathline) and a hyper-cylinder for 3D data as

the window function G(x,t). We set G(x,t)(q) = 1
n if q falls in the local region (or kernel) defined

around p and n is the number of points within the region, and G(x,t)(q) = 0 otherwise. Other

proper window functions can also be used here. The radius (r) and height (h) of the cylinder

determine the kernel size in the spatio-temporal domain Ω. Both r and h can be interactively

adjusted by the user. Note that h is defined as the total number of time steps in the kernel, which

corresponds to a time range T = hτ with τ being the time interval between two neighboring frames

for a dataset. When h = 0, ST LCC is reduced to the conventional LCC.

One characteristic of the above ST LCC metric for scalar attributes is that it is scale invariant.

That is, ST LCCAi,Aj = ST LCCkAi,lAj
where k, l ∈ R+. This may return very large ST LCC

values for cases where both attributes have small values, which can be altered by multiplying the

above result with the absolute value of the normalized attribute values. We provide it as an option

for the user to control. By default, this multiplication is disabled.

The above ST LCC can be applied to both a fixed location (Eulerian) and a particle over

time (Lagrangian). Figure 14 compares the ST LCC fields computed in the Eulerian (b) and the

Lagrangian (a) views, respectively, for the 2D flow past a cylinder. The comparison shows that the

time-varying attribute behaviors in the Eulerian view highlight the overall (or average) movement

of the vortices in the vortex street region behind the cylinder, while its behaviors in the Lagrangian

view emphasize the individual vortices. This observation is similar to what is reported in [103]

which compares the behavior of the accumulated attributes in the Eulerian and Lagrangian views,

respectively.
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(a) Lagrangian ST LCC (b) Eulerian ST LCC

(d) Lagragian ST VEC LCC Eulerian ST VEC LCC

(g) Lagrangian ST MI (h) Eulerian ST MI

Figure 14: Different correlation measurements between norm (A7) and shear rate (A5) of a flow
past a square cylinder. Kernel size r = 3 and h = 250 with τ = 0.008s. For ST LCC results, blue
indicates negatively correlated and red indicates positively correlated. For MI results blue indicates
low dependency and red indicates high dependency.

4.2 Vector-based Correlation

In this section, we propose a correlation measurement based on the gradient vector field of the at-

tribute field. Given an attribute fieldAi, we define its gradient field as gi = ∇Ai = (∂Ai
∂x ,

∂Ai
∂y ,

∂Ai
∂z ,

∂Ai
∂t ).

gi points to the direction that the value of Ai increases the fastest, and its magnitude ||gi|| rep-

resents how quickly the value changes. Therefore, studying the correlation of the gradient vector

field of two attributes may further reveal their similarity in behavior or variation in space and

time. First, we define the gradient similarity measure (GC) of two attributes Ai and Aj at position

p = (x, t) as:

GC(gi,gj) = GCd(gi,gj)GCm(gi,gj)

GCd(gi,gj) =
〈gi,gj〉
||gi|| ||gj ||

GCm(gi,gj) = 4
||gi|| ||gj ||

(||gi||+ ||gj ||)2
(3)

GCd(gi,gj) represents the direction similarity between the two gradient vectors, and GCm(gi,gj)

measures their magnitude similarity. We use multiplication to combine the two terms, as they may

have different value ranges (i.e., gi is not normalized). GC(gi,gj) is 0 when the two gradients

are orthogonal. When the two gradient vectors point in the same direction and have the same
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magnitude, GC(gi,gj) returns 1 (i.e., positively correlated). If the two gradient vectors have the

same magnitude but point in opposite directions, GC(gi,gj) returns -1 (i.e., negatively correlated).

As opposed to the previous vector similarity metrics that always return positive values [68], our

metric can now measure both the positive and negative similarity of two vectors. Compared with

the vector similarity metric introduced by Crouzil et al. [17], which relies on the magnitude of the

gradient vectors, our metric is able to capture the correlation even when the magnitude of the

gradient vectors is small.

Since GC(gi,gj) is a scalar field in the range of [−1, 1], we can now define a vector-based LCC

based on this vector similarity metric. First, the mean gradient field with a given window function

G(x,t) is computed as ḡi =
∫
q∈ΩG(x,t)(q)gi(q)dq. Then the co-variance of the two vector-valued

attributes (i.e., the gradient vector fields here) can be defined as:

covgi,gj (p) = GC(ḡi, ḡj)

∫
Ω
G(x,t)(q)GC(gi(q), ḡi)GC(gj(q), ḡj)dq (4)

Note that multiplying GC(ḡi, ḡj) is necessary in order to preserve the sign of the correlation.

Thus, the vector LCC is defined as:

vecLCC gi,gj (p) =
covgi,gj (p)

σgi(p)σgj (p)
, where σgi(p) =

√
covgi,gi(p) (5)

Compared to the above scalar LCC, our proposed vector based VEC LCC is scale-sensitive.

Figures 14c and 14d show the results for vector-based ST LCC in Lagrangian and Eulerian domains.

The results show that in the core regions of the vortices, a minimal variation of shear rate is exhibited

while the norm does not need that variation, resulting in negative correlation. In the meantime,

the boundary layers of the vortices exhibit stronger variation of shear rate, which is aligned with

the behavior of the norm. Therefore, we observe positive correlation values there. This matches

previous results [72].
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4.3 Measuring Attribute Dependency Using MI

The above correlation computation is limited to the linear co-varying behavior between two at-

tributes. Another metric is needed to capture non-linear relations between attributes. Among

many non-linear relations, the dependency between attributes is of interest to fluid experts, which

will facilitate understanding the causal relations between attributes. To study the dependency

between attributes, we adapt the mutual information metric. In this section, first we review the

definition of mutual information, then introduce the spatio-temporal mutual information metrics.

4.3.1 Spatio-temporal Mutual Information

In this section, we start with a brief introduction of mutual information based on a book by Chen et

al. [15]. Consider X to be a discrete random variable with alphabet X and probability distribution

p(x), where p(x) = Pr[X = x] and x ∈ X. The entropy H(x) of a discrete random variable X is

defined by:

H(X) = −
∑
x∈X

p(x) log2 p(x)

for a pair of discrete random variables X and Y with a joint probability distribution p(X,Y ) =

{p(x, y)}, the joint entropy H(X,Y ) is defined by:

H(X,Y ) = −
∑
y∈Y

∑
x∈X

p(x, y) log2 p(x, y)

where p(x, y) = Pr[X = x, Y = y] is the joint probability of x and y. The conditional entropy

H(Y |X) of a random variable Y given a random variable X is defined by:

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x) =
∑
x∈X

p(x)(−
∑
y∈Y

p(y|x) log2 p(y|x))

= −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(y|x)
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Figure 15: The relationship between two associated information measurements for MI computation.

where p(y|x) = Pr[Y = y|X = x] is the conditional probability of y given x. The entropy measures

the average amount of information or uncertainty in a random variable X. We want to quantify

how much uncertainty the realization of a random variable X has if the outcome of another random

variable Y is known. Figure 15 illustrates the additive and subtracting relationships for different

measurements associated with two correlated variables X and Y . The area contained by both circles

is the joint entropy H(X,Y ) and the circle on the left (blue and cyan) is the individual entropy

H(X), with the blue being the conditional entropy H(X|Y ). The circle on the right (green and

cyan) is H(Y ), with the green being H(Y |X). The cyan overlap represents the mutual information

I(X;Y ) which measures the common uncertainty between two random variables X and Y and is

defined as:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )

−H(X,Y ) = H(X,Y )−H(X|Y )−H(Y |X)

(6)

where H(X) and H(Y ) are the marginal entropies, H(X|Y ) and H(Y |X) are the conditional

entropies, and H(X,Y ) is the joint entropy of X and Y . In our case, X and Y are two attributes

and Ip(X;Y ) (i.e., ST MI) is computed within a spatio-temporal kernel located at p.

Using the MI metric to study attribute dependency Figures 14g and 14h show the ST MI

fields computed based on the Lagrangian and the Eulerian attribute sequences of the Frobenius

norm of the Jacobian and local shearing, respectively. The Lagrangian ST MI field (Figures 14g)

exhibits a similar vortex street pattern to its ST LCC counterpart (Figure 14a), while the ST MI

in the Eulerian view reveals the average movement of the vortices. However, compared to the result
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of ST LCC, ST MI has large values at the vortex regions behind the cylinder. This is because the

MI values are always non-negative, therefore, MI essentially reveals the strength of the dependency

of the attributes, ignoring whether the attributes are positively or negatively correlated. Also,

there are relations, e.g., the non-linear relations, between attributes that cannot be captured by

ST LCC, but can be captured by ST MI. See the HCCI results for an example, in which the non-

linear dependency of the two attributes within the vortex regions is revealed by ST MI (Figure 20d,

h), but ST LCC only highlights regions where the two attributes have strong co-varying behavior

(Figure 20a, e). Note that the MI and entropy computation is dependent on the number of bins

for distribution estimation.

As most other papers, we used equal-width bins for all our results to automatically choose the

optimal bin size [78].

4.4 Correlation Visualization

To visualize the scalar fields computed using either the ST LCC (Section 4.1.1) or the ST MI

(Section 4.3.1), we utilize a blue-white-red (BWR) color coding scheme. For the ST LCC correlation

fields, since the range of the correlation value is [-1, 1], the BWR color scheme is particularly useful

to highlight the different characteristics of correlation, i.e., blue for negative values, white for zero

and red for positive values. For ST MI fields, while the values are always non-negative, we still opt

for the BWR scheme to highlight places with large correlation values (i.e., in red). Both the 2D

color plots and 3D volume renderings shown in this dissertation work are the results of the S LCC,

ST LCC, ST VEC LCC or ST MI in spatio-temporal domain starting from a given time.

Pathline rendering with attribute relation information To reveal more detailed attribute

relation during particle advection, we visualize the seeded pathlines using color coding based on

the quantified relation of the pairwise attributes associated with the particles over time. Figures

16a and 16b provide a few examples of pathlines that are color-mapped based on the ST LCC and

ST VEC LCC computed along them, respectively. The two attributes used for these experiments
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are acceleration and Q.

Specifically, we seed these pathlines at the outer layers of two vortices and near a vortex core, as

indicated by the LIC patterns, respectively. Interestingly, the colors along the pathline seeded near

the vortex core exhibit little variation, while those pathlines seeded at the boundaries of vortices

or near the saddle-like regions exhibit large fluctuation, especially when gradient similarity (i.e,

vector-based ST LCC) (Eq.(3)) is employed for the color coding.

In contrast, at the boundaries of vortices and near the saddle-like regions where the flow exhibits

large shearing and stretching behavior, the co-varying behavior of the pairwise attributes may not

be similar over time. These correlations can be better understood by inspecting the accompanying

plots of attributes. The same scenario occurs with the mutual information based result (Figure

16c). As shown in the accompanying histograms in Figure 16c, we see a wide range and non-

uniform (or fluctuating) distribution of the values for attributes associated with pathlines seeded

at the outer layers of the vortices, indicating the high entropy (i.e., high uncertainty) and joint

probability of the two attributes, which result in high MI values. In contrast, the distributions of

values for attributes associated with pathlines seeded at the vortex center are very concentrated,

leading to low entropy (i.e., low uncertainty) and low MI value. Such an interpretation is not easy

to obtain without the proposed visualization.
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(a)

(b)

(c)

Figure 16: Sampled pathlines colored based on the ST LCC (a), ST VEC LCC (b) and ST MI (c)
of acceleration and Q, respectively. Each top plot in (a) and (b) shows the ST LCC/ST VEC LCC
values along the respective pathlines indicated by the arrows. The two sub-plots beneath each large
plot show the trends of the two given attributes within a kernel. For the MI result (c), the left
two histograms show the distributions of the attribute values of Q within kernels on two pathlines
(indicated by the arrows), while the right two show the distributions of the values of acceleration
within the same kernels. Each histogram shows two distributions of the values of the respective
attribute within two different kernels sampled at t=0 (blue) and t=50 (orange) on the corresponding
pathline, respectively. Since we used equal-width bins, the number of bins is different for different
attributes.
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Ranking strategy One interesting question that experts may ask in practice is which pairs of

attributes are more related in certain areas (e.g., having large absolute correlation value or having

high dependency), and how this information is related to certain flow characteristics (e.g., vortex

cores and outer layers of vortices). Knowing this will in turn help develop an effective way to

characterize regions with distinct flow behavior.

To achieve this, for each spatial position, we compute the ST LCC (or MI) of various attribute-

pairs, and sort their ST LCC values in descending order. We then color this position based on the

top-ranked pair of attributes. This gives rise to a domain segmentation, which we hope enables us

to identify the most dominant behaviors (characterized by the most correlated attributes) in the

individual flow regions. Here, let us take the 3D flow past a cylinder as an example. As we already

know the dominant characteristic of this flow is the von Kármán vortex street, we concentrate

on the three relevant attributes, i.e., acceleration, Q and local shear rate for the ranking and

perform the segmentation based on the ranking. Figure 17a and 17b show the ST LCC results

between acceleration and Q vs. acceleration and shearing, respectively, while the ranking based

segmentation is visualized in Figure 17c. Different colors correspond to different top-ranked pairs

of attributes. From this result, we see that at the boundary layers of the vortex street, the attribute

pair of acceleration and shearing is ranked top (colored by white), while in the vortex core areas the

attribute pair of Q and accelerating dominates (colored in red). The rest of the domain (in purple) is

dominated by the pair of shearing and Q. This result matches the knowledge in fluid mechanics [97].

This example demonstrates that our simple ranking-based segmentation can provide an overview of

the dominant flow dynamics (e.g., rotational versus stretching or shearing) in different flow regions

for an effective unsteady flow exploration.
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(a) S LCC of acc and Q (b) S LCC of acc and shearing

(c) segmentation

Figure 17: Spatial LCC of acceleration and Q (a) vs acceleration and shearing (b) and the seg-
mentation result for three pairs of these attributes (c). In (c), red regions correspond to places
where the correlation between acceleration and Q is the strongest. White regions visualize the
places where acceleration and shearing has the highest value of correlation, and purple segments
correspond to the regions where correlation between shearing and Q is the strongest.

4.5 Results

We have applied our correlation analysis and visualization to a number of 2D and 3D analytic and

real-world simulated flow. In the following, we provide some detailed discussion on some of the

results.

Double gyre Figure 18 shows the ST LCC correlation (6a and 6c) and ST MI (6b and 6d)

of the vorticity (A1) vs. Q ((A4)) (top row) and the vorticity vs. shearing (A5) (bottom row),

respectively, of the double gyre flow [74] starting from t = 0 and with time window T = 100× 0.01.

Lagrangian attribute value sequences are used. The spatial sample resolution is 256× 128. Figures

18a and 18c convey similar structure, but the colors are reversed. This is because in regions

where flow exhibits strong vortical (or rotational) behavior (i.e., with large Q values), its shear

characteristic is low (i.e., with low shear values). Similarly, when the shearing motion dominates
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(a) (b)

(c) (d)

Figure 18: ST LCC results of curl and Q (a) and curl and shearing (c); ST MI results of curl and Q
(b) and curl and shearing (d). All results are computed based on the Lagrangian attributes using
a spatial kernel r = 3 and temporal kernel h = 100 with τ = 0.01

.

the flow behavior, its rotational behavior is weak. This can also be derived from the definition of

Q = 1
2(‖R‖2−‖S‖2)[30], where ‖S‖2 denotes the square of the local shear rate. In this definition, Q

and shearing have relatively negative (but non-linear) correlation. From the ST MI results shown

in Figures 18b and 18d, we find that both of them exhibit a similar pattern; however, the result

between vorticity and Q highlights the LCS structure (not shown here) that is stronger due to the

high vorticity in that region. Also, the interleaving layout of the negative (blue) and positive (red)

regions are aligned with the LCS structure, indicating the partitioning of regions with different

dominant rotational behaviors.

2D flow past a cylinder This simulation covers a subset of the spatio-temporal domain, i.e.,

[−0.5, 7.5] × [−0.5, 0.5] × [15, 23]. The time range is chosen such that the von Kármán vortex

street is fully developed behind the cylinder. The resolution of the data set is 400 × 50 × 1001.
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Total time is 8 seconds for all 1001 frames. We measured the time from when a vortex is created

close to the cylinder until it leaves the boundary. The lifespan of a vortex is 925 frames. We

use the same spatial resolution, i.e., 400 × 50 to compute the attribute fields and the subsequent

correlation fields. Figure 14 provides the correlation results for the local shear rate (A5) and norm

of Jacobian (A7) . Based on their definitions, in 2D vector fields, A7 =
√
J2

11 + J2
12 + J2

21 + J2
22, and

A5 =

√
J2

11 + J2
22 + (J12+J21)2

2 . The difference of the squares of these two norms is σ2 = (J12−J21)2

2 .

That said, in regions that possess strong rotational characteristics (i.e., |(J12 − J21)| is large), the

two norms have larger difference, while in regions that are close to curl-free (i.e., |(J12−J21)| ≈ 0),

the two norms are almost identical. Using this observation, we find that the correlation results

shown in Figure 14 match our expectation. That is, the correlation of these two attributes in the

vortex regions should be small, while in other places it should be relatively large. One interesting

point is that due to the dissipation of energy, attributes are going to be depreciated at the end (far

right) of the flow. This results in lower correlation values close to the outlet on the right of the

cylinder flow.

Figures 14a, 14c and 14g show the ST LCC, ST VEC LCC, and ST MI results in the Lagrangian

view, which highlight the structure of vortex street. In contrast, the results shown in Figures 14b,

14d and 14h, using a spatio-temporal kernel in the Eulerian view, reveals that the individual vortex

structure is merged into a corridor, which corresponds to the area that the vortex street sweeps

through. Comparing the results of ST MI and ST LCC, we see that ST MI reveals the boundaries

of the vortex structure clearer than ST LCC. This is due to the fluctuating pattern of the attribute

values in the boundary of the vortex structure which indicates a higher dependency between these

attributes in the boundary. Looking closer at the ST LCC field computed in the Lagrangian view,

we see that the two attributes involved, i.e., acceleration and Q, exhibit a positive correlation along

the boundaries of the individual vortices, while having negative correlation near the center of the

vortices. This also matches the observation in previous literature [42]. That is, the acceleration

magnitude at the centers of vortices are minimal, while the Q values there are large.
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Ocean data The next data set is taken from the top layer of a 3D simulation of global oceanic

eddies for 350 days of the year 2002 [79]. Each time step corresponds to one day. The 2D vector field

has a spatial resolution of 3600×2400. We extract tiles from the central Atlantic Ocean (600×600).

Figure 19 shows the results of the acceleration and the determinant of Jacobian matrix (i.e., Q in

2D [30]). As we see, these two attributes are positively correlated in the boundary of the vortices,

while negatively correlated at the vortex center. Figure 19c shows the Lagrangian MI computed

for these two attributes. Compared to ST LCC the entire vortex regions are pronounced except at

the vortex cores due to the high dependency of these two attributes at vortex regions whether they

are positively or negatively correlated.

(a) (b) (c)

Figure 19: Different correlation measurements of a region of the ocean simulation that contains
eddies. (a) Spatial LCC, (b) Spatio-temporal (Lagrangian) LCC, and (c) mutual information (MI)
(Lagrangian) between the Acceleration and Determinant of Jacobian matrix, respectively. For
the first two results, the color shows the correlation characteristics, i.e., blue indicates negatively
correlated and red positively correlated. For the MI result (c) blue indicates lower dependency and
red indicates higher dependency.

HCCI data This data simulates a homogeneous charge compression ignition (HCCI) engine

combustion [13], which has a spatial resolution of 640 × 640 and 299 time steps. Figure 20 shows

a number of correlation fields for acceleration (A2) and λ2 (A3). Similar to the results of the

cylinder data, the ST LCC computed using the Lagrangian attribute sequences highlights a more

complete structure of vortices, while the Eulerian ST LCC emphasizes the areas the vortex cores
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 20: Different correlation measurements between λ2 and acceleration of the HCCI data set.
Kernel size r = 3 and h = 50 (with τ = 0.05)).

sweep through over time. Also, we find that acceleration and λ2 are positively correlated at vortex

regions which is expected.

Figures 20b and 20f show the ST VEC LCC results using the Lagrangian and Eulerian attribute

sequences for acceleration and λ2, respectively. The Lagrangian ST VEC LCC highlights the vortex

centers and places with strong stretching flow (i.e., places with saddle-like patterns), indicating

the gradients of the two attributes have similar time-varying behavior. Similarly to its ST LCC

counter part, the Eulerian ST VEC LCC does not show much meaningful structure. Figures 20c

and 20g show the Lagrangian and Eulerian joint entropy of these two attributes, respectively. The

joint entropy highlights regions where both attributes have strong relation, either dependency or

independency. In this comparison, Lagrangian joint entropy is more focused on vortex regions than

the Eulerian result, as the Eulerian result tends to highlight regions where those vortices sweep

through, similar to the Eulerian ST LCC we have seen earlier (Figure 14b).

Figures 21a and 21b show the conditional entropy of two attributes λ2 (A3) and the norm of

the Jacobian (A7), for the HCCI data. The conditional entropy H(A3|A7) measures the amount

53



of dependency of A3 on A7, and usually, H(A7|A3) 6= H(A3|A7). We compare the two conditional

entropies for the two attributes and visualize it in Figure 21c. We see that in most regions, Norm

is dependent on λ2, while λ2 is less dependent on Norm, since H(A7|A3) < H(A3|A7). This is

expected, as regions with strong vortical flow result in a larger norm of the Jacobian, while the

inverse is not always true.

(a) (b) (c)

Figure 21: The comparison of conditional entropy for norm of the Jacobian (A7) vs. λ2 (A3). Blue-
white-red color coding is applied to (a) and (b), while for (c), light green indicates H(A7|A3) <
H(A3|A7) and blue means H(A3|A7) < H(A7|A3).

Ocean circulation This dataset is a model of oceanic circulation, provided by the Estimating the

Circulation and Climate of the Ocean, Phase II (ECCO2): High-Resolution Global-Ocean and Sea-

Ice Data Synthesis project [56]. This data provides us the opportunity to examine the evolution of

ocean eddies and circulation through time. The data has a spatial resolution of 1440× 720 with 50

time steps (equals 150 days). Figure 22 shows the Lagrangian ST LCC and ST MI for acceleration

and Q. The spatial kernel window size is 5 and the temporal kernel size is 50 (τ = 0.004). The

outline of the African Continent is visible at the far left of that slice, with South America visible

at the far right. The result shows that around the equator, there exists a series of strong vortices

(i.e., eddies).
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(a) (b)

(c) (d)

Figure 22: The ST LCC linear correlation (c) and ST MI dependency (d) of the acceleration (a)
and Q (b) of the large ocean simulation data with a spatio-temporal kernel size 5× 50. The blue-
white-red color scheme is used to highlight the different characteristics of attribute correlation and
dependency. The ST LCC result (c) highlights a string of strong vortices (or eddies) around the
equator, while the MI result (d) emphasizes the strong offshore currents on the east coast of the
individual continents.

Axisymmetric vortex ring impact This flow is an axisymmetric simulation of a vortex ring

hitting a no-slip wall. During the interaction process, the vortex ring approaches the wall and

causes a boundary layer to appear. As the vortex slides against the wall, the boundary layer is

lifted up as a secondary vortex, which in turn lifts up the primary vortex. This dataset helps us

analyze the role of coherent structures and their interaction with walls, as well as the generation

of turbulence in wall-bounded flows [58]. Figure 23 shows the segmentation results for pairs of

attributes involving pressure (i.e., the pressure versus the other attributes) over time. From the

result, we see that at the vortex center region, the correlation between pressure and vorticity is the

highest (i.e., the dark green areas), while there is a layer around the vortex center (i.e., the pink

region) in which the correlation between pressure and kinetic energy is the strongest. Outside the
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vortex area (i.e., the blue regions), the correlation between pressure and shearing dominates.

Figure 23: The top row shows the ranking based segmentation for the spatial correlation between
pressure and other attributes over time (from left to right). The green color indicates the regions
where the correlation of pressure and vorticity is the highest, the pink color corresponds to the
pair of pressure and kinetic energy, and blue for the pair of pressure and shearing. The second
row shows the result of ST LCC for acceleration and kinetic energy. The results highlight regions
similar to the FTLE ridges. The spatial kernel size is r = 3 and the temporal kernel size is h = 40.

3D flow behind a square cylinder This flow was simulated by placing a square cylinder in a

fluid flow. By subtracting the average velocity from the flow, we see interesting swirling structures

[7]. The dimensions are 192 × 64 × 48 × 101 in the volume of [−12, 20] × [−4, 4] × [0, 6]. Figures

24a and 24b show the vorticity and acceleration of the flow, respectively, and Figure 24c shows

the S LCC of these two attributes. From this result, we see that acceleration and vorticity are

positively correlated in the outer layer of vortices, which matches our previous observation in the

2D flow past a cylinder. Figure 25 compares the results of Eulerian and Lagrangian ST MI between

acceleration and Q with different kernel sizes.

In Section 4.1 we showed that for 2D datasets, larger temporal kernel sizes reveal the flow

structure clearer. However, this need not be the case for some 3D data. This is because for

most 2D data we have experimented with (e.g., Double Gyre, 2D cylinder flow, HCCI etc.), the

56



(a) vorticity (b) acceleration

(c) spatial LCC

Figure 24: Spatial LCC of acceleration and vorticity for the 3D flow behind cylinder at time step
40. Note that the LCC result highlights the outer layer of the 3D vortices of the flow as expected.

vortex structures are relatively stable over time, while in some 3D flows the vortices undergo large

changes. For instance, the 3D cylinder flow contains the state before the vortex street is formed;

thus, the pathlines started in early time may exhibit large change in shape during the transition

from the laminar flow to turbulence flow. In that case, our proposed metrics work well for a

small temporal kernel size in order to be able to capture the behavior of pathlines in a specific

region. Larger temporal kernels will average (or smooth) the values of correlation or MI in different

regions. Hence, we see Figure 25c does not reveal the vortices better than Figure 25a using ST MI.

In contrast, the ST MI result in the Eulerian view is not affected much by the kernel size, since

particle movement is not considered there.

3D vortex tube data This dataset simulates two separate cases of parallel, counter-rotating

vortex tubes at a circulation-based flow with Re=3500 and a distance of 2.5 radii apart, which

undergo either an elliptical instability [70] that ends with a vortex disintegration, or a Crow in-

stability which ends with a vortex reconnection [38] depending on the initial conditions. The two

vortices interact mainly through strain. The datasets have dimensions of 360× 360× 360× 120. A
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(a) L ST MI, h = 5 (b) E ST MI , h = 5

(c) L ST MI, h = 20 (d) E ST MI , h = 20

Figure 25: Comparison of Lagrangian (L ) ST MI and Eulerian (E ) ST MI for the 3D cylinder
data with different time windows h. Left column shows L ST MI for acceleration and Q, and the
right shows E ST MI. We see that larger h makes both L ST MI and E ST MI smoother, but it
does not change the structure of E ST MI much.

comparison between the two instabilities is made by adding a tracer, or dye, simulated as a passive

scalar with a Schmidt number of unity. This scalar will track the fluid where it was originally

injected. For the reconnection simulation, there are two counter-rotating vortex tubes, which after

the reconnection changes topology, half of each tube reconnects with the half of the other tube, to

form two tubes. For this case, the dye follows the vorticity from each tube, while for the elliptical

case, the instability generates perpendicular filaments of vorticity that have a lower dye intensity,

so the correlation between dye and vorticity will be weaker. Figure 26 compares the spatial LCC

of vorticity and dye over time for the two simulations. From this comparison, we see that in both

flows, the two attributes have high correlation at vortex regions, indicating similar co-variance be-

havior of the two attributes over time despite the flow in the elliptical instability decorrelating dye

and vorticity more than the other one. This discrepancy from the expectation is interesting and

asks for an in-depth investigation.

Conclusive remarks: Based on the above experiments, we can summarize that for finding the

center region of vortices, computing ST LCC and/or ST VEC LCC of acceleration with another

relevant attribute (e.g., Q or λ2) in a Lagrangian view, works well (e.g., Figures 20a-b and 17c).

Computing ST LCC of the norm of the Jacobian and local shearing or the ST MI of various

58



(a) t=0 (b) t=20 (c) t=40

(d) t=60 (e) t=80 (f) t=100

(g) t=0 (h) t=20 (i) t=40

(j) t=60 (k) t=80 (l) t=100

Figure 26: The spatial correlation of dye and vorticity for the elliptical instability simulation
(a-f) and the Crow / reconnection simulation (g-l). In the top, we can see how the dye first
tracks vorticity, until the non-linear elliptical instability kicks in and destroys the vortex, and the
correlation is lost. In the bottom, we can see how the dye follows the vorticity much better even
after the change in topology, and there is less mixture between red and blue regions. The spatial
kernel size is 3.
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(a) (b)

(c) (d)

Figure 27: The effect of different temporal kernel lengths, h, for ST LCC (a-b) and ST MI (c-d).
The h values are 50 (left column) and 100 (right column), respectively, using τ = 0.05.

attribute pairs better highlights the outer layer of vortices (Figures 14g and 20d). For the general

understanding of attribute relation and the overview of the flow structure, ST LCC (and S LCC for

3D data) should be used. For highlighting the full vortex regions as well as more complicated types

of dependency, ST MI should be applied. Also, our ranking based segmentation can help identify

different layers of vortex structure (Figures 17 and 23). Furthermore, joint/conditional entropy of

attributes may provide explanation on the dependency of two attributes (Figure 21).

4.5.1 Performance Analysis

We conducted a performance analysis on a number of datasets for the three metrics (i.e., ST LCC,

ST VEC LCC, and ST MI) to demonstrate the performance of our method. We used a workstation

with an Intel R© Xeon(R) CPU E5-2640 v3 @ 2.60GHz, 128GB RAM and an Nvidia Quadro M4000

graphics card. Using the GPU accelerated implementation of our measurements, we are able to

generate the flow movement animation from large sets of particles even for Isabel and large scale

ocean in real time. Figure 28 and Table 4 provide the timing results for the correlation computation

with respect to the given resolutions, kernel sizes and datasets. The performance gain obtained
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Figure 28: Performance result for different metrics and different datasets.

Table 4: Performance result for different datasets.

Dataset/Time(s)
cylinder HCCI VortexRing Large Ocean Cylinder3D Tube Reconnection

GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU
ST LCC 0.285 117 1.784 363 0.679 91 8.327 2670 2.239 671 7.13 1902

ST VEC LCC 1.219 687 4.019 1093 2.76 310 20.341 3100 2.981 1589 12.496 3045
ST MI 0.341 132 2.01 540 1.102 129 12.41 2540 3.812 1890 8.925 2013

using a GPU accelerated version of our method is between 20-50 times, compared to a CPU

implementation. This does not include data loading time. The kernel sizes for different datasets

were selected empirically to ensure a clear representation of flow features (e.g., vortex structures).

4.5.2 Parameter Study

The spatial size, r, of the kernel and the temporal length, h, are two parameters that the user

may need to explore in order to obtain optimal results. In particular, a small spatial kernel size

may lose some large features such as large vortices or LCS structures. Figure 22c shows that we

only capture many small size vortices although some of them may be artifacts due to a relatively

small r. Increasing r may not address this limitation, as some small but important vortices could

be smoothed out. Figure 29 shows the results of different spatial kernel sizes on the hurricane

simulation. As we can see, using a larger kernel size removes some shearing effect in the upper

61



(a) (b) (c)

Figure 29: The effect of spatial kernel size, r, on Lagrangian ST LCC. From the left image to right,
the r values for the results are 3, 5, and 10, respectively.

right of the images. The temporal length may affect the completeness of the captured features.

The larger the h is, the more pronounced the structure will be. Figure 27 shows the result of a

double gyre using various temporal kernel lengths. Comparing these results we can see that after

increasing the temporal window size over a certain threshold, the results have somewhat converged.
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Figure 30: Overview of the deep learning reference problem. The input is vortex velocity patches
and the output is a signed distance to the boundary of the vortex. The isoline for the boundary is
with isovalue equal to 0.

5 Deep Learning of Vortex Boundary Extraction

Deep learning has been used recently as a valuable method to solve many unsolved and complicated

problems in computer vision, robotics and natural language processing. Part of its success is

attributed to its unmatched capability to discriminate among features. Extracting features is also

an important component in scientific data visualization, and specifically in situations in which

features are difficult to characterize accurately. Deep learning and in general machine learning

provides a potential way to aid in this kind of analysis. In this part of my dissertation work,

I develop a deep neural network that is capable of finding vortex boundaries. To the best of

our knowledge, there is no unique definition for the boundary of a vortex other than outermost

elliptic LCS introduced by Haller et al. [33], which makes the automatic and robust extraction of

vortex boundaries difficult. In addition, another main challenge in extracting vortex boundaries

using neural networks is to decide the network inputs. A combination of manifold learning and

dimension reduction is one approach to create such a training data from real data. However, due

to the limitation of the number of examples that describe the features in different configurations,

it is not easy to generalize a model. On the other hand, there exist several parametric methods to
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model a vortex synthetically [91, 43, 61]. In our research, we employ a parametric flow model that

generates thousands of vector field patches with known groundtruth which is the boundary isoline

we computed based on a velocity profile. In addition, the conventional Eulerian grid of velocities

caters to a deep convolutional architecture. After supervised learning, we apply the trained model

to numerical fluid flow simulations to demonstrate its applicability in practice. Figure 30 shows

the pipeline of our approach.

5.1 Synthetic Generation of Training Vector Fields

In order for the convolutional neural network to learn the proper features for vortex boundary

identification, a large set of sample fields with various configurations of vortices is needed. Different

from face recognition and other similar image segmentation and object recognition problems where

a large set of labelled images is available for training, it is not easy to obtain a proper training set

for our problem. To address this challenge, we adapt the vector field synthesis strategy recently

introduced by Kim and Günther [45].

Similar to Kim and Günther, we synthetically generate physically plausible vortices for training.

Since we aim to train the neural network for vortex boundary identification in a supervised manner,

the ground truth distance to the vortex boundary is required during training. In order to obtain

the exact boundary of a vortex in our synthetic model, we modify the parametric model of Kim

and Günther. In our model, the velocity at any point x = (x, y) is given by the following formula:

v(x) = Si · x ·
v0(‖x‖)
‖x‖

, with v0(r) =
r

2πr2
c

(
( rrc )2n + 1

) 1
n

(7)

where v0(r) is Vatistas’s experimentally measured velocity profile [91], rc is the radius with maxi-

mum velocity and n controls the shape of the velocity profile. I refer to Fig. 2 of the work [45] for

more information about the effect of n. The matrix Si with i ∈ {1, 2, 3} defines one of the following
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three base shapes:

S1 =

1 0

0 −1


︸ ︷︷ ︸

saddle

S2 =

 0 1

−1 0


︸ ︷︷ ︸
center (cw)

S3 =

0 −1

1 0


︸ ︷︷ ︸
center (ccw)

(8)

Among these three base shapes, only S2 and S3 contain vortices, and the signed distance to the

boundary of a vortex in each of these two cases is:

d(x) = ‖x‖ − rc (9)

A positive distance indicates locations outside of the vortex, while a negative distance means inside.

Since S1 does not contain vortices, the signed distance in this example flow is set to a large value,

e.g., 10 in our experiment.

To introduce variations to the location, orientation, and size of the vortex, we define a random

linear transformation matrix A and a random translation vector t to transform the domain from

x to x′, and the velocity from v(x) to v′(x′):

x′ = A · x + t (10)

v′(x′) = A · v(x) = A · v(A−1 · (x′ − t)) (11)

d′(x′) = d(A−1 · (x′ − t)) (12)

To control the shape of the deformed vortices, we compose the linear transformation from a rotation

θ and a non-uniform scaling (sx, sy):

A(θ, sx, sy) =

sx cos(θ) −sy sin(θ)

sx sin(θ) sy cos(θ)

 (13)

In our experiments, θ and t are chosen from a uniform distribution, and sx, sy, rc and n are chosen
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Figure 31: Histograms of the individual model parameters, showing the near-Gaussian distribution
of the individual parameter values [44].

from a Gaussian distribution. Figure 31 illustrates the ranges and distributions of the values used

by these parameters. The parameter space fitting was done by using the simulated annealing

optimization suggested by Kim and Günther [44]. They extracted the optimal reference frame first

using 200 iterations of simulated annealing followed by a further 200 iterations of gradient descent

to locate the local minimum. The distance metric used between the synthesized vector field and the

real-world vector field was the L1 distance with the gradient introduced by [46]. Figure 32 shows

different generated patches including vortex(a), saddle(b) and fixed point(c).

5.2 Pipeline

In this section, we propose a convolutional neural network that spans two stages of the visualization

pipeline: preprocessing stage (e.g., remove noise and outliers), and then feature extraction stage
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Figure 32: Examples of synthetically generated vector field patches.

(e.g., extract vortex boundary). By combining both in an end-to-end fashion, the extraction of

the boundary can be done with high accuracy. In addition to CNN, we also experimented with

Resnet [34] and Unet [64] to explore their effectiveness on extracting vortex boundaries. During

our supervised learning, we teach the network pairs of steady vector fields and their corresponding

vortex boundary. These training examples are generated by using the parametric vector field

synthesis described in Section 5.1. In addition, we measure the smoothness as part of the loss

function and penalize non-smooth results. The following sections introduce the network architecture

and the generation of the training data in more detail.

5.3 Generating Training Data

A key ingredient to a successful training is the adequate preparation of the input data. Aside

from the raw size of the (possibly augmented) training data, the shape of the data requires equally

careful consideration. Since many of the more recent network architectures, such as CNNs, ResNets

and Unets, utilize the spatial relationships of the input pixels, i.e., they operate on image data that

is layed out on regular grids, it would make sense to similarly preserve the spatial embedding of

the inputs. In its most direct way, however, this limits us to an Eulerian perspective: at each grid

point, we would only encode the given velocity vector.
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Figure 33: Overview of our pipeline for optimizing the parameters.

Velocity Input As baseline, we directly encode the velocity given at each grid point in each

synthetically generated vortex patch and choose the signed distance to the vortex boundary as

target. Figure 33 shows the pipeline for our patch optimization method.

5.4 Architectures

CNN We build our network as a form of typical CNN as seen in Figure 34. The first part of our

CNN consists of 2D convolutional kernels.

In this part, the dimension reduction is performed for the feature extraction with a kernel size

of 3× 3 and strides of 2× 2, followed by a batch normalization and a rectified linear unit (ReLU)

layer. The size of the filter is doubled starting from 64 to maximally 1024. With 2D steady fields

v, the number of convolutional layers is calculated by n = log2max(H,W ) − 2, and the output

dimension of the last convolutional layer would be 1024.

The second part of our network exploits fully connected layers instead of convolutional filters

for the final inference from identified high level vortex features. Batch normalization and a ReLU

layer are followed in the same fashion as convolutional layers, and a dropout with the probability

of 0.1 is used to avoid overfitting. Note that we infer the full patch as the target of network, and

we test either the center or the full patch as target.
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Figure 34: Our CNN Architecture. The numbers below each box represent the dimensions of the
feature maps.

Resnet Our Resnet model is based on the Resnet20 architecture by He et al. [34]. We use a

learning rate 0.001. There exists six residual blocks and each block includes three convolutional

layers. Figure 35 shows the structure of one residual block. The core idea of ResNet is introducing

an identity shortcut connection or skip connection that skips one or more layers, as shown in that

figure. The motivation behind that is the deeper model should not produce a training error higher

than its shallower counterparts. The authors in [34] hypothesize that letting the stacked layers fit

a residual mapping is easier than letting them directly fit the desired underlying mapping. And

the residual block above explicitly allows it to do precisely that.
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Figure 35: One residual block in Resnet32 Architecture.
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Figure 36: Our Unet Architecture. We used three layers of depth. The numbers above each box
represent the dimension of feature maps.

Unet Our Unet model is based on the original model proposed by Ronneberger et al. [64]. We

use a depth of three and a dropout of 0.001. The activation function is set to ReLu and we use

Max Pooling between the layers. Figure 36 shows the structure of our model. In addition to a skip

connection, it also includes a concatenation with the correspondingly cropped feature map from

the contracting path. In the end, the 1× 1 Conv layer is used to make the number of feature maps

the same as the number of segments which are desired in the output. Unet uses a loss function for

each pixel of the image. This helps in easy identification of individual cells within the segmentation

map and it could generate the results with higher accuracy in comparison to ResNet.

5.5 Dataset

We synthesize our data set based on the Vatistas velocity profile as described in Section 5.1. Once

a 2D steady field is generated, we apply linear transformation and compute the distance field.
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Training Data As described earlier, we applied a linear transformation including scaling and

rotation to generate enough training sample flows that we might see in the real-world data. The

number of sample flows is 25,000, and the data set for training and testing is split into the ratio of

9:1. Some examples of the training data are illustrated in Figures 37.

Patch Normalization Since the training data set is defined in the 2D unit domain (i.e. X ×Y =

[−2, 2]2 ), input patches of numerical data sets are also scaled into this domain. Thus, given velocity

patch slices vp : X ×Y → D, defined in the domain X ×Y = [xmin, xmax]× [ymin, ymax], we compute

v̄p in the unit domain via:

v̄p =

 1
xmax−xmin

0

0 1
ymax−ymin

 (14)

Furthermore, we globally normalize the magnitude of the training data to [−2, 2] during training.

Thus, re-scaled patches from the validation data set are finally normalized by the same factors that

have been applied to the training data before it was fed to the network.

Implementation We implemented all of our models using Keras [16] with Tensorflow [1] as

backend. The networks are trained on each data set for 100 epochs using an Adam optimizer [47]

with a learning rate of 0.001 and the mean squared error (MSE) loss function. For Resnet, the

learning rate is variable based of the epoch number. We use a learning rate equal to 0.001 until

epoch number 80 and after that it is decreased to 1e-4. We choose a batch size of 256. Finally,

the model is selected, which shows the minimum test error during training. All visualizations are

created with the visualization toolkit Paraview.

5.6 Results

In the following sections, we first apply our networks to synthetic data generated with our para-

metric model, before testing it on the extraction of the boundary from vortices in unseen numerical

data. Afterwards, the performance is discussed.
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(a) Comparison (b) CNN (c) Resnet (d) Unet

Figure 37: Results of vortex extraction on test splits. The L2 errors are 0.12, 0.06 and 0.02 for the
three architectures, respectively.

5.6.1 Testing on Synthetic Data

We have applied the generated synthetic sample flows to train a CNN, a Resnet, and a Unet, as

illustrated earlier, using the velocity vectors as the input. To evaluate their accuracy, we applied

these three trained networks to the extraction of the vortex boundaries from a number of synthetic

flows. Figure 37 compares the results obtained from these three networks on two synthetic vortices.

From these results, we see that the Unet obtains a boundary closer to the ground truth (i.e., the

white ellipses) than the other two networks.

5.6.2 Validation of Network on Numerical Data

Next, we apply our networks to unseen numerical data to evaluate how well the network is gen-

eralized, given its synthetic training data. After training, we validate our networks on a few real

world data, e.g., the CYLINDER data set. As the input window size of our models is fixed, we
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have evaluated this data set by sliding a lookup window over the entire domain. Alternatively, we

also set the whole patch as the target and average all overlapping patches. In order to evaluate

the CYLINDER flow, which has a resolution of 80× 640, we slide a lookup window of size 16× 16

with stride 1 and sequentially predict parameters for the center pixel (e.g., 159 steps for 40,625

windows with a batch size of 256). We use stride 1 in order to cover all input data of CYLINDER

by shifting one unit at a time. So, we do not miss any particles.

Error Metric and Smoothness We use mean squared error and mean absolute error. Figure

38 shows the result of our models for CYLINDER data using velocity as input.

(a) CNN

(b) ResNet

(c) Unet

Figure 38: Comparison of boundary extraction with different architectures of neural network using
the CYLINDER flow. The input to the networks is velocity patches. Our method shows Unet
outperforms the other networks.

5.7 Future Work

In our future work, we are going to test our models on other datasets and measure the performance.

In addition we plan to add inertial particles to the trajectory input data to see how this extra
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information can help the network. In addition, we plan to compare our method with the region-

based method discussed in Chapter 2 and the elliptic LCS proposed by Haller et al. [33]. Also,

we propose a custom loss function by adding the partial derivative to the loss function in order to

prevent jargon in the boundary and get smooth results. Finally we will add transfer learning and

evaluate the strength of our models with different inputs.
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6 Conclusions and Future Work

In this dissertation, I concentrate on the analysis and visualization of vortices – an important

flow feature that is responsible for many important physical events in flows (e.g., transportation

of mass and energy). However, due to the lack of a unified definition of vortices, it is challeng-

ing to identify and characterize vortex behaviors. My dissertation contributes to addressing this

problem by introducing three different approaches that characterize the geometric and physical

properties of vortices. First, I introduced the first Morse decomposition computation framework

for the topological analysis of 3D piece-wise linear vector fields defined on uniform grids. I applied

this computation framework to a number of 3D flows to reveal the recurrent dynamics, including

vortical flow behaviors. A GPU based implementation of this framework was introduced to accel-

erate its performance. However, this approach only characterizes vortices based on their geometry

behaviors (i.e. swirling or rotational flow), which may miss other vortices that are hidden by strong

translational flow motion (e.g., the flow behind a cylinder). To address this limitation of the topo-

logical analysis, in my second approach, I proposed a physics-based strategy to analyze and explore

the pairwise relations among attributes in unsteady flow. This approach provides a general and

powerful way to explore linear relation, i.e. correlations and non-linear relation, i.e. dependency

among attribute-pairs derived from unsteady flow. With this correlation computation framework,

I discovered that certain pairs of attributes (e.g., Q and acceleration) have different correlation

behaviors within and outside vortex areas, which enables us to identify vortex regions more reli-

ably. Nonetheless, this correlation computation framework cannot identify the exact boundaries

of vortices. To extract the vortex boundaries, I proposed a machine learning (especially a neural

network) framework. To address the difficulty of getting a large training set with various vortex

configurations represented, I introduced a parametric vector field synthesis framework. I applied

the generated large training set to train three different neural networks, including a CNN, a Resnet,

and a Unet. My initial experiments found that Unet outperforms the other two networks in terms

of the accuracy in vortex boundary extraction.
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Although our proposed method works across many datasets, there are some limitations. For the

topology-based approach, our method cannot sufficiently refine the obtained Morse set for the flow

behind a square cylinder due to the limited level of adaptive face sampling (i.e. k). In addition,

the proposed CUDA implementation may not be optimal, as it does not utilize the advantage of

shared memory mechanism. Furthermore, the memory allocation for particles is performed at the

beginning of the algorithm and remains unchanged, which is sub-optimal.

For the physics-based approach, we use a fixed kernel size throughout the computation for one

dataset, which may cause the loss of some important features that often have varying scales in

space and time. Second, our method is sensitive to the temporal sampling rate provided by the

simulation. If the temporal sampling rate is coarse, we see a lot of fluctuation in the pathline

computation which interpolation cannot alleviate. We plan to address these limitations in the

future and extend our framework to study the attribute relations in ensemble flow data. Finally,

we plan to migrate our current implementation onto clusters so that extremely large-scale data can

be processed more effectively.

For the deep learning approach, the first limitation is that we need to optimize the parameters

for generating training data synthetically. Second, our method is sensitive to the training data and

the patterns generated by our synthetic vortex model. There are still some challenges to evaluate

a training dataset and how to make sure it could cover all the existing vortex patterns in the real

world data. Finally, we would need to use a quantitative metric to compare different architecture

results. We plan to address these limitations in future work.
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