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Abstract 

Land-cover classification is a crucial step in interpreting remote sensing data, and 

the accuracy determines the reliability of the product for further downstream applications. 

Hyperspectral sensors have been widely utilized for classification because of the 

discrimination afforded by its rich spectral information and high resolution in both the 

spatial and spectral domains. On the other hand, LiDAR (Light Detection And Ranging) 

data has gained increasing interest for use in classification because it provides precise 

three-dimensional (3-D) data for large areas with precise 3-D location information, and 

therefore greatly expands the domain of available spatial information. Reflected laser 

energy from targets is also collected by LiDAR systems, and contains information 

regarding target backscattering properties. With the introduction of full waveform 

LiDAR (FWL), the possibility of using LiDAR for target discrimination has been 

enhanced due to the additional structural information acquired. The geometrical 

information and backscattering properties measured by FWL is complementary to the 

reflectance characteristics recorded within in Hyperspectral imagery (HI). Thus, the 

fusion of FWL and HI is highly desirable. 

There has been a fair amount of research investigating the fusion of LiDAR and 

HI for target characterization and land-cover classification. However discrete-return 

LiDAR point clouds were more thoroughly investigated in this area than FWL because of 

their wider availability and easier interpretation. In those studies that utilized FWL, the 

application of waveform data was mainly limited as a reference data source to provide 

height information pertaining to observed targets. Furthermore, application of fused FWL 
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and HI data for target identification has been mostly limited to selected objects, such as 

trees or buildings, while the subject of land cover classification has been investigated in 

only a few works.  

This dissertation aims to build a framework for fusing FWL and HI and to 

demonstrate the application of the combined data set for land-cover classification without 

being limited to a small sample of objects. Feature extraction methods and classifier 

designs are proposed considering characteristics of both data sets, and performance of the 

proposed methods are evaluated using two data sets collected in complex scenes by the 

National Center for Airborne Laser Mapping (NCALM). Experimental results show that 

the proposed methods are successful in extracting features from reconstructed FWL data, 

and the proposed classification scheme effectively utilizes the combined FWL and HI 

features for separating ground cover features in both data sets with over 95% accuracy.  
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Chapter 1 Introduction 

1.1 Background 

1.1.1 LiDAR and Hyperspectral Imagery Fusion 

LiDAR (Light Detection and Ranging) is an active remote sensing technique that 

measures the time of flight of short laser radiation pulses traveling to the target and back, 

so that the range between the sensor and target can be calculated, converted to discrete 3-

D points with location and amplitude (Glennie et al., 2013). An important enhancement 

of LiDAR technology is the introduction of full waveform recording. Full waveform 

LiDAR (FWL) records the backscattered return echo as a function of time, enabling the 

scattering properties and geometric target characteristics to be derived from the 

waveform shape using appropriate signal processing methods (Mallet & Bretar, 2009). 

Compared to discrete return LiDAR, FWL provides denser sampling of the vertical (with 

airborne LiDAR) structure of the illuminated area, as well as the capability to estimate 

object geometric properties through waveform shape analysis. Airborne LiDAR with 

waveform digitizing can be particularly useful for discovering obscured targets, 

especially in cluttered or complex environments due to its unique ability to resolve 

echoes from multiple closely spaced reflectors (Tolt & Larsson, 2007).  

Because LiDARs capability of obtaining 3D geometrical information of targets is 

not offered by other remote sensing techniques, the fusion of discrete-return LiDAR or 

FWL data with other sensors (especially optical and hyperspectral cameras) has become a 
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research topic generating significant interest in the literature. Much of the early work 

focused on using discrete-return LiDAR or DEM/DTM products generated from discrete 

return LiDAR data only. Miller conducted a study using a LiDAR derived DEM and 

hyperspectral imagery (HI) for canopy parameter analysis where the trees in the DEM 

were separated from ground by computing local slope (Miller, 2001). A similar empirical 

ground-tree separation method was applied to LiDAR data for merging with InSAR data 

and providing the measurements of “true surface topography” to estimate surface 

topography and vegetation heights (Slatton et al. 2001). Discrete-return LiDAR has also 

been broadly used in forest characterization in combination with hyperspectral imagery 

or visible photograph with local filtering algorithms (McCombs et al., 2003; Popescu et 

al., 2004) or DTM/DSM generation (Suárez et al. 2005; Geerling et al. 2007; Dalponte et 

al. 2008; Asner et al. 2008; Kempeneers et al. 2009; Breidenbach et al. 2010). An 

improvement in the fusion of LiDAR and hyperspectral imagery was also made by 

introducing both height and intensity metrics from the LiDAR point cloud data based on 

existing vegetation models (Erdody & Moskal, 2010; Forzieri et al., 2010; Swatantran et 

al., 2011; Dalponte et al., 2012). Other applications that have fused discrete-return 

LiDAR and visible photography or HI include building detection (Rottensteiner et al., 

2005; Sohn & Dowman, 2007) and natural hazard monitoring (Mason et al., 2007).  

The fusion of FWL with passive remote sensing data has been addressed in the 

literature; however, the work has predominantly been limited to applications where the 

FWL data is first converted to discrete return point clouds prior to analysis (Asner et al., 

2007; Anderson et al., 2008; Kulawardhana et al., 2014; Paris & Bruzzone, 2015). In 

these instances, the FWL return energy distribution is discarded before the analysis of the 
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fused FWL and HI dataset is undertaken. Alternatively, several researchers have first 

decomposed the FWL data based on waveform modeling before undertaking feature level 

fusion with HI (Sarrazin et al., 2011; Jung, 2011). Each waveform is decomposed into 

separate return echoes reflected from different targets, and the characteristics of the 

echoes (e.g., amplitude and width) are used as features for classification. This is an 

improvement over simply using target locations, but still involves simplification of the 

waveform based on the assumptions of the decomposition model, e.g., a Gaussian model. 

While this may be suitable for land targets in simple environment, it is often not the case 

in complex environments where pulse shape may be distorted by cluttered targets. In 

these cases, a model based decomposition of the waveform may remove significant 

information from the full waveform backscatter signature.  

1.1.2 Fused Data Classification 

Based on the techniques developed for fusion of LiDAR and HI or other passive 

remotely sensed data, it is possible to utilize the fused data set for land cover 

classification. This topic was first analyzed theoretically in 1998 (Perry et al., 1998), 

where basic problems such as geometric and radiometric correction and HI band selection 

were briefly presented. In most early applications that fused LiDAR with HI for 

improved classification, only elevation data from LiDAR was used. For example, (Mundt 

et al., 2006) examined the segmentation of sagebrush using fused LiDAR and HI data, 

where the LiDAR data was used to generate a ground surface model, as well as for 

computation of some physical properties for targets; the interpolated LiDAR data was 

registered to HI by aligning the LiDAR intensity map with the HI pixels. Another study 

of fused FWL/HI classification was performed in 2007 for a coastal area with eight 
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segmented classes, based on data from The Compact Hydrographic Airborne Rapid Total 

Survey (CHARTS) system, which collects LiDAR data, HI, and RGB images 

simultaneously (Wozencraft et al., 2007). Discrete return LiDAR elevation data was used 

to generate a DEM that was mainly used as ancillary information, and the evaluation of 

classification accuracy was not presented. Another study of supervised classification with 

a relatively complete accuracy evaluation is presented in (Sugumaran & Voss, 2007) for 

separating tree classes in an urban environment (only trees were considered for 

classification; all other targets were discarded before classification). Therein, LiDAR 

elevation data was used to pre-segment the data, and enhance the classification by using 

some elevation based rules. In addition to the use of absolute elevation, the penetration 

depth (elevation different between top and bottom layer returns) of LiDAR is very useful 

for applications that characterize plant distributions in combination with LiDAR derived 

DEMs (Sadro et al., 2007).  

With the continued evolution of studies attempting LiDAR data fusion and 

classification, the variety of LiDAR features extracted and utilized has been significantly 

expanded. Intensity information from LiDAR data, which is correlated with the 

backscattering properties of the illuminated surface, have been gradually introduced into 

the fusion process to assist in classification. The intensity data can be transformed into 

raster images in the same manner as DEM generation (Voss & Sugumaran, 2008; 

Dalponte et al., 2008). Then the registered LiDAR elevation and intensity images, 

together with the selected HI bands are fed into the chosen classifiers together to be 

employed in a supervised classification scheme for a multi-class separation problem 

(Dalponte et al., 2008). In addition to elevation and intensity, other kinds of information 
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that can be extracted from LiDAR point clouds have also been used as features for 

classification including: point density and height distribution (Koetz et al., 2008; 

Puttonen et al., 2010), morphological attribute features (Pedergnana et al., 2011; Debes et 

al., 2014), and metrics representing vegetation structure (Alonzo et al., 2014). These 

features are mostly generated from rasterized LiDAR point cloud data, and are used as a 

layer of features both independently and in association with other layers.  

Limitations on the use of LiDAR point clouds exist because of their sparse and 

irregular spatial sampling and the limited metrics that can be extracted from intensity and 

elevation information. Waveform LiDAR, however, is expected to enhance classification 

tasks because it records the properties of all targets illuminated within the laser pulse 

diffraction cone. For example, assuming a portion of a laser pulse is able to hit the ground 

after interacting with top layer of an object, then the elevation of the top surface can be 

determined as the full width half maximum (FWHM) difference between the first peak 

and last peak of the waveform; this is a commonly used waveform metric (Sarrazin et al., 

2010). Furthermore, height metrics derived from discrete LiDAR point cloud features can 

also be derived from LiDAR waveforms; and applied more precisely given the finer 

resolution offered by waveform processing (Swatantran et al., 2011). Waveforms can also 

be used as a multi-dimensional array collected at a specific location; dimension reduction 

and feature analysis approaches can then be applied to the raw waveform data, or even 

derivatives of different orders (Sarrazin et al., 2012). A waveform usually has more than 

one peak if acquired over complex environments, and thus the width and amplitude of 

each individual echo decomposed from the original waveform are often useful 

information for target discrimination (Heinzel & Koch, 2012).  
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However, to take full advantage of the FWL data, it would be optimal to collect 

all the raw waveforms corresponding to one HI pixel and utilize the collocated HI 

spectral and LiDAR waveform characteristics for efficient classification. In order to 

register raw waveforms to one HI pixel, voxels need to be built on the basis of the HI 

sample frame to essentially rasterize the FWL data (Buddenbaum et al., 2013; Wang et 

al., 2013). Then the return intensity profile of each voxel can then be used as a 

normalized feature derived from multiple laser pulses. Similar methodology has also been 

proposed for generating “pseudo-waveform” from voxelized LiDAR point clouds (Jung 

et al., 2014; Y. Zhang et al., 2015; Muss et al., 2011), which are then used in combination 

with HI for object-based feature extraction and classification. In most of these works, 

however, the waveform of each column of voxels is reconstructed at a much coarser 

spatial resolution compared to the original waveform.  

From the perspective of classification algorithms, many of the popular HI 

classification algorithms have been applied to fused FWL/HI data sets. These methods 

include principal component analysis (PCA) associated with discrimination analysis for 

class separation (Sarrazin et al., 2010; Sarrazin et al., 2012), random forests (Guo et al., 

2011), support vector machines (SVM) (Heinzel & Koch, 2012; Buddenbaum et al., 

2013), spectral angle mapper (SAM) (Buddenbaum et al., 2013), and maximum 

likelihood (ML) (Buddenbaum et al., 2013). A comparison of SVM, SAM and ML can be 

found in (Buddenbaum et al., 2013), where waveform data was used in the form of multi-

band images in a similar manner as HI and the results suggested that SVM outperforms 

SAM and ML for the combined data set. This dissertation will use and evaluate SVM and 
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ML classifiers within a proposed classification framework, because of their proven 

efficiency in similar applications.  

Multiple classes classification problems are often solved by training the classifier 

using data samples from all classes, and all validation samples are labeled using a 

common classifier (Lu & Weng, 2007). However, with a large number of classes it may 

be difficult to train a single classifier, especially when input data is from multiple sources. 

The most important reason is because a single classifier use a common feature subset and 

optimization parameters for separating all classes, whereas each class may have its own 

unique optimal feature signature, thus the performance of the whole system may be 

sacrificed. On the other hand, pairwise classification solves the multiple classification 

problem as a series of two class separation problems (Hastie & Tibshirani, 1998), an 

individual classifier with specific feature subset is available for each two class pair. 

Because of this characteristic, pairwise classification can be used for both single data 

source classification (Kumar et al., 2001) and fused multiple data sets (Crawford, 1999). 

Pairwise classification framework is adapter for use on fused FWL and HI features in this 

dissertation.  

1.2 Research Opportunities 

1.2.1 LiDAR Waveform and Raster Data Registration 

A raw data fusion strategy for merging of FWL and HI data at the same spatial 

level, e.g., by interpolating the FWL measurements to the same sampling interval as the 

HI imagery (i.e., same raster resolution) is required. However, the fusion of HI and FWL 

at the raw data level is difficult due to the different data acquisition modalities of each 
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sensor and the disparate data architecture; hyperspectral imagery records spectral 

response in a pixel-based raster format, whereas FWL data is acquired with an uneven 

structure and irregular distribution over the imaged scene. A few references have 

discussed methods of deriving vertical waveforms over a raster grid from the original 

waveforms (e.g., Wu et al. 2012; Hermosilla et al. 2014), but the fusion of vertical 

waveforms with other remote sensing observations is not discussed, or limited to chosen 

tree types utilizing height information from the FWL in combination with HI 

(Buddenbaum et al., 2013).  

To address the issues involved in proper registration, a method for locating the 

FWL data and HI in a common geographical frame is required utilizing the high precision 

navigation systems integrated with the laser scanner. Since a single target can receive 

multiple laser return pulses from various scan angles, especially when located in an area 

of multiple overlapping scan strips, it is desirable that a single waveform is generated for 

each column of voxels in order to preserve the features from all waveforms intersecting 

the column. This requires the development and evaluation of appropriate waveform 

synthesizing methods.  

1.2.2 Feature extraction  

Appropriate information retrieval methods are necessary for extracting features 

from FWL data after they have been reconstructed in a common raster framework with 

HI. Information contained in FWL can be considered as four-dimensional arrays, i.e., 

three-dimensional coordinates plus an intensity value for each sample. However, FWL 

sample intensity values are not only dependent on target characteristics, but also on the 

laser scanner pulse parameters and the incidence angle between the laser pulse and 
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targets. The process of converting intensity into a radar cross-section of the target is 

normally referred to as calibration (Wagner et al., 2006). Direct calibration of FWL, 

however, is hard to achieve because the power received by each target and the incidence 

angle is difficult to model (Abed et al., 2014), especially when laser pulses travel through 

complex, multiple target environments. Therefore, structural information needs to be 

included in feature extraction for FWL, i.e., the trend of intensity changes in the vertical 

direction, instead of directly using the individual intensity values in classification. To 

extract such information from FWL data, features need to be designed such that 

geometric information and reflected laser energy distribution are both included, and the 

use of feature is not affected by the absolute intensity value of the waveforms. With the 

synthesized waveforms reconstructed for correspondence with HI pixels, such features 

extracted from synthesized waveform properly represent the properties of the targets 

within the voxel column.  

1.2.3 Classification and Feature Selection 

A stacked feature set comprised of both FWL and HI features offers information 

on spectral reflectance, backscattering properties and target geometry. Such a feature set 

should be able to enhance classification over consideration of each set independently. 

The individual performance of HI and FWL features for distinguishing different classes 

can vary significantly; e.g., it is difficult to distinguish surfaces made of different material 

with similar structure using FWL alone, whereas HI has a diminished classification 

accuracy of targets shaded by nearby taller objects. Given these differences, an optimal 

classification technique for fused features from HI and FWL must be able to choose 

subsets of features or even different classifiers, for different target classes. A practical 
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solution is to utilize the pairwise classification framework, which discriminates target 

classes in pairs. Since the scope of each individual classification is reduced, the optimal 

feature subset become easier to determine for each class pair, with the assistance of 

appropriate feature selection tools.  

1.3 Objective and Research Contributions 

The intent of this dissertation is to build and evaluate methods to integrate FWL 

data and HI, and to improve performance of land-cover classification using the merged 

data set. The combination of FWL and passive remote sensing techniques leverages 

detailed target geometric and spectral target properties for enhanced classification 

accuracies, with potential benefit to land use evaluation, natural resources management, 

target detection and urban planning applications. The proposed methods for FWL 

reconstruction and information retrieval will broaden the application of FWL data and 

can be extended to the fusion of FWL data with other raster format remote sensing data, 

e.g., orthophotos.  

Since a broad variety of classification algorithms can be applied to the fused FWL 

and HI data, the performance of different classification algorithms are evaluated in 

supervised land use classification. The evaluation criteria takes both overall accuracy and 

consistency among different classes into consideration, along with an analysis of how the 

classifiers interact with different input data sets, i.e., different kinds of single data sets 

and fused data sets, in order to reveal the contribution of adding FWL features to the 

classification.  

Specifically, the novel contributions of this research are: 
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(1) Voxelization of FWL data by adapting multiple waveforms into one common 

column of voxels and the subsequent reconstruction of the voxelized waveforms into 

single vertical waveforms at the same resolution level as original waveform.  

(3) Development of a vertical energy distribution coefficient (VEDC) as a novel 

FWL feature. 

(4) Use of a pairwise classification technique to improve classification 

performance of the fused data set. 

(5) Comparison and quantitative analysis of different classification methods 

operating under the pairwise classifier framework.  

1.4 Thesis Organization 

In Chapter 2, the background of LiDAR and FWL systems is presented, together 

with a summary of waveform processing techniques for feature extraction. Chapter 3 

introduces hyperspectral sensors and imaging geometrics, analyzes the characteristics of 

HI, and then covers the development of feature extraction and classification techniques 

for HI. Review of land cover classification is introduced in Chapter 4, unsupervised 

classification, supervised classification algorithms and classification accuracy assessment 

are covered in detail. The proposed methodology is presented in Chapter 5, including 

voxelization and synthesizing of FWL, feature extraction of FWL and HI, and 

classification based on the framework of a pairwise classifier. The choice of individual 

classifier to implement the pairwise classification is also discussed. Chapter 6 presents 

detailed introduction to the two data sets used in the dissertation. The first data set 

contains different kinds of both artificial and natural objects, while the second data set 
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features a well labeled vegetation training set which is based on multiple remote and field 

observation with professional interpretation. Sensor system characteristics, acquisition 

parameters, analysis of the land cover classes of the selected areas, and the methods of 

obtaining ground reference data are discussed for both data sets. Experimental results and 

analysis are presented in Chapter 7, proposed methods are first evaluated using the first 

data set with different possible combinations of algorithms, and the performance of the 

best combination is applied to the second data set to show the capability of separating 

different classes with considerable similarities. Finally, a summary of the dissertation and 

discussion of future work in the topic can be found in Chapter 8.  
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Chapter 2 Full Waveform LiDAR 

2.1 Airborne Laser Scanning 

Airborne laser scanning (ALS) systems are based on light detection and ranging 

(LiDAR) techniques, where the source of light is a laser (Shan and Toth, 2009). Since its 

inception in the early 1990s, ALS has been widely deployed with both academic and 

commercially available sensors. The most common way of utilizing laser ranging is to 

measure the time-of-flight of a brief laser pulse traveling from the sensor to an object and 

returning to the detector. With the speed of light represented by c and the measured 

elapsed time by t, the range R between the laser and object can be determined as 

𝑅 = 𝑐 ∙ 𝑡/2.                                                                  (2-1) 

The accuracy of the range measurement is dependent upon the timing accuracy and 

resolution, as well as the speed of light in the transmitting medium. The speed of light is 

effected by the laser wavelength and the mean atmospheric temperature and pressure; the 

latter two are measured each time for speed of light adjustment. In order to measure the 

travelling time of outgoing pulse accurately. A very stable oscillator is used to control a 

high-speed counter used as the timer. A small part of the outgoing pulse is redirected to a 

photodiode in order to trigger the timer, which occurs when a certain power threshold is 

detected. Similarly, after the reflected pulse is collected by the receiving optics, a 

photodiode is again used to convert the received energy to an output voltage. When the 

output voltage climbs over a pre-defined threshold, the time counter stops and the time-

of-flight is obtained, upon which the range between the laser source and object can be 

computed. The simplified process is illustrated in Figure 2-1.  
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Figure 2-1 Laser ranging time counting 

In order to derive 3D positions from LiDAR ranges, two degrees of controlled 

motion are needed. By mounting the laser ranger on a moving airborne platform, 

continuous range measurements are obtained along a ground profile coinciding with the 

movement of the platform (Shan and Toth, 2009). If the pulses are not always fired 

vertically down to the ground, but in a systematically varying across-track direction, 

enabled by a scanning mechanism, then a swath of coverage is obtained with the 

movement of the platform. Typical ALS scanning mechanisms include oscillating and 

nutating mirrors, rotating polygons, and fiber scanners (Wehr & Lohr, 1999). A typical 

ALS system consists of the following important components: scanner unit, position and 

orientation system (POS), and hardware and software systems serving as control, 

processing and storage agents for the entire system.  

The scanning unit is comprised of the laser generator, transmitting and receiving 

optics, and scanning mechanism. The POS system is a key component of an ALS (Wehr 
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& Lohr, 1999), and consists of an integrated GNSS (Global Navigation Satellite System) 

and INS (Inertial Navigation System). The GNSS provides location and velocity 

information whereas the INS provides the attitude of the platform body. Because of its 

high data rate, an INS is able to provide accurate position and velocity information 

between the GNSS measurement update intervals; each GNSS update, in turn, is used to 

rectify the residual error of the INS accelerometer and gyro sensors (Schwarz et al., 1993). 

Such integration enables the kinematic positioning of ALS measurements. With the help 

of a POS, the ALS data can be referenced to a global geographical coordinate frame 

(Zhang & Shen, 2013), allowing the analysis of ALS data as an independent data source. 

The hardware system also contains a data processer, encoder, and a storage device for the 

collected data (laser scanning data and POS data).  

The most common approach for extracting object information from reflected laser 

pulses is analog detection, which operates directly on the electrical voltage output from 

the photodiode. Traditional ALS systems detect distinct peaks from the voltage time 

series using a constant fraction discriminator (Wagner et al., 2004), and extract them as 

discrete returns reflected from objects. In such systems, the waveform is inverted and 

delayed by a fixed time and added to the outgoing pulse. The stacked signal yields a 

constant fraction waveform and the peaks can be detected at the zero-crossing points of 

the waveform (Shan and Toth, 2009). Also the maximum voltage value of the detected 

peak is recorded as a descriptor for return energy. A single record containing the location 

and amplitude of a distinct peak is defined as a discrete return. The discrete returns 

collected by an ALS system over a period of time are combined into a single point cloud 

data product (Korhonen et al., 2011).  
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2.2 Full Waveform LiDAR 

The backscattering properties of illuminated objects are correlated with recorded 

LiDAR return intensities (Wagner et al., 2006). The energy reflected to the receiver is 

converted by an analog detector into a voltage, yielding a time series of signal strength. 

Digitization of the entire backscattered pulse time series using analog-to-digital 

converters generates a full waveform recording of the reflected energy within the laser 

pulse footprint (Mallet & Bretar, 2009). The time series are samples with a fixed interval, 

typically 1-2 ns, leading to approximately 15-30cm distance between adjacent waveform 

samples. Waveform amplitudes are typically quantized at 8-12 bits. Compared with 

discrete return systems, which can record up to 4 returns per emitted laser pulse, full 

waveform data has a much higher density, since a waveform typically contains hundreds 

of samples (Anderson et al., 2016). Although not all samples in waveform correspond to 

a detected return echo as with discrete data, users still can expect consistent spatial 

sampling of the observed space with constant range resolution.  

The majority of FWL systems sample and record both the transmitted and return 

pulse. By comparing the pulse shape before and after being reflected by the object, it is 

possible to characterize the vertical structure and surface roughness of the reflecting 

object (Reitberger et al., 2008). For example, for a flat and solid surface like bare ground, 

the reflected waveform should have a shape similar to the outgoing pulse with only a 

scale difference (Pirotti, 2011). However, when the pulse is reflected from a very rough 

or slanted surface, the waveform can be significantly broadened from the original shape. 

For distributed targets like vegetation canopies, a single laser pulse could travel through 

the top layer of leaves, branches, and stems as well as intercept the underlying ground 
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shadowed by the canopy (Sun & Ranson, 2000). For such targets multiple peaks in the 

return waveform are possible, an example is shown in Figure 2-2. Since the energy 

contained in outgoing pulse is almost constant, the pattern of amplitude changes of the 

return waveform can reveal how the laser energy was reflected at different level of the 

targets, which is useful for understanding the vertical structure under the top layer. 

Therefore, in comparison to discrete point clouds, post processed waveform analysis is 

expected to reveal target structure in complex environments where waveform energy 

profiles lack separable peaks due to the distributed nature of reflecting targets (Hofton et 

al., 2000).  

 

(a)                                                                                  (b) 

Figure 2-2 Waveform example: (a) Outgoing pulse; (b) Return waveform from tall vegetation 

2.3 Waveform Data Processing Techniques 

2.3.1 Waveform Decomposition 

Appropriate post-processing is needed to extract information from waveform data. 

A common approach is to detect distinct peaks from each waveform and then analyze the 

echoes at the peak locations. Because waveforms are digitized from converted return 

energy that is a result of the interaction between the transmitted pulse and the target 
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backscattering characteristics, a basic assumption regarding the response function of a 

target, or cluster of scattering targets, is essential. A scatter cluster can be modeled by a 

Gaussian response function (Wagner et al., 2006) 

𝜎𝑖
′(𝑡) = 𝜎𝑖̂𝑒

−
(𝑡−𝑡𝑖)

2

2𝑆𝑖
2

,                                                         (2-2) 

where 𝜎𝑖̂ and Si are the amplitude and standard deviation of cluster i, and ti represents the 

location of the cluster. The waveform received by the detector can then be modeled as a 

combination of individual functions of scattered energy in the laser pulse footprint 

(Wagner et al., 2006),  

𝑃𝑟(𝑡) = ∑
𝐷𝑟

2

4𝜋𝑅𝑖
4𝛽𝑡

2 𝑃𝑡(𝑡) ∗ 𝜎𝑖
′(𝑡)𝑁

𝑖=1 .                                         (2-3) 

In this equation, Pr is the received waveform, Pt is the transmitted waveform, Dr is the 

aperture diameter of the receiver, Ri is the range to the scatterer, βt is the transmitted 

beam width, and 𝜎𝑖
′  is the target scatter response function. In most FWL systems the 

transmitted waveform is either analytically known or recorded during transmission, and 

the received waveform can therefore be modeled based on the shape of the outgoing 

pulse. If the outgoing pulse of the LiDAR system can also be approximated as a Gaussian 

function, then the waveform received by the detector can be modeled as a combination of 

Gaussian functions (Hofton et al., 2000; Wagner et al., 2006). This assumption is 

normally valid because existing ALS systems typically have Gaussian –like outgoing 

pulse shapes (Kirchhof et al., 2008).  

To separate individual return echoes from a complex waveform containing a 

mixture of Gaussian returns and study the properties of each return echo, a peak detection 
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algorithm is required (Pan et al., 2015). A basic approach is to use numerical derivatives 

to find the local maxima of the waveform. First order derivatives can be used to directly 

find the stationary points at the waveform maxima. An alternative is to use second order 

derivative to search for inflection points, and then determine the peak location using the 

symmetry property of the function. Derivatives based methods are affected by noise in 

the waveform data, therefore, threshold based filtering of detected peaks are usually 

applied based on knowledge of waveform shape (e.g., approximate noise distribution). 

After peaks are identified using these approaches, curve fitting algorithms can be 

employed to find the parameters of individual echo functions that approximate the return 

waveform (Tolt & Larsson, 2007; Qin et al., 2012; Adams et al., 2012).  

Another class of waveform peak detection and decomposition algorithms is direct 

deconvolution. Notable algorithms include the Wiener filter method (Jutzi & Stilla, 2006), 

expectation maximization (Parrish & Nowak, 2009), and B-spline convolution (Roncat et 

al., 2011). These algorithms directly solve for the surface response function, which is 

independent of the FWL system, thus the analytical form of outgoing pulse function is 

not required. Comparison between waveform modeling based decomposition and direct 

deconvolution is not sufficiently addressed in the literature, except in (Neuenschwander 

2008) where the direct deconvolution is reported to improve range determination and 

extract more structural information for canopy over modeling decomposition when both 

were applied on Geoscience Laser Altimeter System (GLAS) data. In general, waveform 

modeling based decomposition is more extensively used than direct deconvolution, 

because it divides the waveform into echo functions with analytical form, and the 

parameters of echo functions can be associated with physical properties - thus there are 



   

20 

normally more convenient for further analysis and classification. In addition, the 

waveform modeling based methods do not require estimate of noise spectrum of 

waveform.  

2.3.2 Waveform Spatial Characteristics and Reconstruction 

Similar to discrete return point cloud data, once the waveform peaks are identified, 

the 3-D peak locations can be determined with the help of the onboard POS system. 

However, to better utilize the waveform data, the entire return waveform can be 

considered instead of just the peak locations. An important spatial characteristics of ALS 

return waveform profiles is the off nadir angles. This is due to the scanning mechanisms, 

which steer the laser beam via a mirror through a field of view of up to 60 degrees (±30 

degree from nadir). As a result, a majority of the FWL return energy profiles are at off 

nadir angles. The scan angle histogram of raw waveforms from a FWL survey acquired 

with an oscillating mirror with a scan angle range of ±20 degrees is shown in Figure 2-3, 

with an illustration of the can pattern on the ground shown in Figure 2-4.  

 

Figure 2-3 Scan angle histogram for raw waveforms 
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Figure 2-4 Scan pattern on ground with an oscillating scanning mirror 

For the purpose of utilizing FWL data in classification applications as well as in 

combination with other remote sensing imagery, FWL data needs to be converted to 2D 

raster data or reconstructed into a vertical structure in a uniformly sampled 3D raster 

space. Several previous studies have attempted to address this problem and can be broken 

into two categories: generation of a raster format model directly from the FWL data 

(Lefsky et al., 2007), or decomposition of the FWL data followed by georeferencing of 

individual decomposed echoes. Raster models are normally built by assigning waveform 

peaks according to their ground coordinates, and usually only location information of the 

peaks is reserved and further utilized (Hollaus & Höfle, 2010). Decomposition based 

methods first determine the 3-D coordinates of each waveform peak location, followed 

by reconstruction of new waveforms by stacking of all the individual echoes located in a 

common voxel (Jung 2011).  
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2.3.3 Waveform Feature Extraction 

Feature extraction for FWL data or “pseudo-waveforms” generated from discrete 

return LiDAR point clouds have been discussed in some previous studies, for example 

(Mallet et al., 2011; Parrish et al., 2014). These waveform features include height and 

intensity based metrics computed from the original waveforms, and parameters of the 

Gaussian components obtained from waveform decomposition. An evaluation of some 

waveform feature metrics can be found in (Parrish et al., 2014). Height and intensity 

based FWL metrics, which can only be retrieved once the waveforms are georeferenced, 

are widely used in canopy characterization applications. The most commonly used 

metrics include: height of last return (HLR), LiDAR canopy height (LHT) or penetration 

depth (PD), height of median energy (HOME), maximum amplitude of waveform (MA), 

height/median ration (HTRT), and simple ground return ratio (GRND) (Drake et al., 

2002). LHT is computed as the distance between the locations of the first sample in a 

waveform above a certain threshold and the center of the last return (HLR). This first 

sample is considered as canopy top if the illuminated area is forested. For other types of 

targets, the LHT can be determined the same way and used as the target top layer height 

above ground. HOME is determined by finding the median intensity value of the whole 

waveform, and HTRT is the ratio of HOME to LHT. GRND works as an indicator of the 

penetration of the laser pulse; it is determined as the total intensity of samples around the 

ground level divided by the total of other samples’ intensities. GRND can be extended to 

compute the total energy of the waveform (usually approximated by area under curve), 

canopy energy (or target energy, area under curve corresponding to LHT), and the ratio 

of these two values (ER). Rise time (RT) and fall time (FT) are sometimes used in 
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association with the above features: RT represents the duration for energy to climb from 

10% to 90% of the amplitude of the first return, FT represents the duration for energy to 

drop from 90% to 10% of the last return amplitude for the trailing edge. Skewness (SW) 

is also used as a measure of symmetry of the waveform shape, which provide rough 

intensity distribution information. The HLR, MA, PD and SW features are also used in 

this dissertation as part of waveform data features.  

Waveform decomposition based features are obtained in a similar manner as 

discussed in section 2.3.2. The peak locations of the echoes retrieved are used for 

georeferencing and then the other properties, e.g., amplitude, width and rising time can be 

used as features for classification attributes (Jung 2011; Guo et al. 2011). Peak locations 

of echoes can be used to generate height based metrics similar to the discussion in the 

previous paragraph; the amplitude of echoes can be used as indicators of target 

backscattering properties; width and rising time of echoes reflect geometric shape of the 

object. Decomposition based features have been successfully used in urban (Guo et al. 

2011) and forested areas (Hovi et al., 2016). 
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Chapter 3 Hyperspectral Imagery 

3.1 Hyperspectral Remote Sensing 

The term “hyperspectral imaging” was first introduced in the field of imaging 

spectrometry in 1985 (Goetz et al., 1985). This passive remote sensing technique was 

first defined as “the acquisition of images in hundreds of contiguous, registered, spectral 

bands such that for each pixel a radiance spectrum can be derived.” Hyperspectral spectra 

may be measured for all spectral regions, i.e., VIS (visible, wavelength 400-700 nm), 

NIR (near infrared, 700-1400 nm), SWIR (shortwave infrared, 1.4-3 μm), MWIR 

(midwave infrared, 3-8 μm), and LWIR (longwave infrared, 8-15 μm). However most 

hyperspectral imagers operate within the spectrum from 0.35 to 2.5 μm, with usually 100 

to 288 bands. Hyperspectral imagers have been extensively utilized on satellite, airborne, 

and terrestrial platforms (Shippert, 2003).  

Four essential components comprise hyperspectral remote sensing system: the 

radiation source, atmospheric conditions, the hyperspectral sensor and the observed 

surface (Manolakis et al., 2003). In most remote sensing applications, sunlight is the 

source of radiation. The solar energy passes through atmosphere before interacting with 

the imaged surface, is reflected by the imaged surface, and finally received by the sensor. 

The received spectrum is actually the solar spectrum modulated by atmospheric effects 

and the imaged surface reflectance. The reflectance spectrum, defined as a wavelength (λ) 

dependent quantity, can be expressed as (Manolakis et al., 2003)  
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𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚(𝜆) =
𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 (𝜆)

𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 (𝜆)
 .                   (3-1) 

Atmospheric effects (e.g., absorption, scattering) need to be compensated before the 

study of the reflectance spectrum. This is normally corrected by using a radiative transfer 

model, the first algorithm proposed was Atmosphere Removal Algorithm (ATREM), 

where atmospheric gas transmission spectrum is estimated for modeling absorption, and 

the scattering is modeled due to the atmospheric molecules and aerosols (Gao et al., 

1993). While the ATREM keeps evolving (Thompson et al., 2015), other models such as 

FLAASH (Matthew et al., 2002) and HATCH (Qu et al., 2003) have also been developed 

with enhancements to certain aspects of ATREM. After the radiometric compensation is 

applied, the reflectance spectrum of surface is obtained.  

Given the broad range of wavelengths, the recorded spectrum is an excellent 

source for discriminating surface material, an example is shown in Figure 3-1. The set of 

all unique spectras in a given scene represent spectra endmembers. Since the spatial 

resolution of hyperspectral sensors is limited, the spectrum of each pixel can be regarded 

as a mixture of the endmembers (Keshava & Mustard, 2002). The contiguous sampling 

properties of a hyperspectral sensor make it possible to examine the correlation of 

collected pixel spectra with spectral data bases to improve the apparent SNR of the 

collected data. Also with knowledge of spectrum range and interval, it is possible to use 

statistics-based unmixing techniques on pixel spectra to extract parameters regarding 

surface material components (Bioucas-Dias et al., 2012). Spectral resolution also limits 

the efficacy of acquired imagery, with different applications imposing varying spectral 

resolution (i.e., bandwidth) requirements. For geological applications, 10nm spectral 
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resolution is satisfactory; whereas new applications of HI such as the study of vegetation 

fluorescence requires a bandwidth of less than 1 nm (Guanter et al., 2007).  

 

Figure 3-1 Spectral content of HI 

Hyperspectral imaging systems acquire imagery using a number of detector 

elements, and each detector element is usually dedicated to one pixel. The ground area 

coverage by each pixel (i.e., spatial resolution) is determined by the instantaneous field of 

view (IFOV) of the system. The IFOV is determined by the altitude of the platform, the 

size of the detector array and sensor optics. Sensor spatial resolution limits the minimum 

size of the object that can distinctly detected from its surroundings in the imagery.  

In order to collect 2D spatial information utilizing a 1D spatial detector array, 

scanning methods are required. Three kind of scanning approaches are used for 2D HI 

collection. The first approach is whiskbroom scanning, which was initially used by 

NASA on its Airborne Visible/Infrared Imaging Spectrometer (AVRIS) system 

(Mouroulis & Green, 2003). Whiskbroom sensors measure the spectrum of one pixel at a 

time, by moving the mirror, which reflects the light to a single detector, two 
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dimensionally in the observed area to build up a 2D image. Since the spectrum of all 

pixels in the 2D grid are collected one-by-one, this scanning method requires a longer 

imaging time. Its advantage is that the light traveling path to the sensor optics is the same 

for all pixels. The second approach is pushbroom scanning (Lawrence et al., 2003), 

which records an entire line of an image at the same time instead of just one pixel. This 

method requires the array of detector elements to be moving along one dimension of the 

2D grid during image acquisition (the geometry is illustrated in Figure 3-2). This method 

is usually employed in an environment where either the imaging platform or the observed 

object is moving. Pushbroom scanning is extensively used because of the fast scanning 

time and the capability of being adapted to different platforms; the airborne HI sensor 

used in this dissertation is also a pushbroom sensor. The last approach, tunable filter 

imaging, is different from the first two as it acquires the spectral information iteratively. 

The tunable filter approach is an area scanning method, which collects one spectral band 

after another for the entire scene (Gat, 2000). Neither the scene nor the HI unit is moving 

in this approach, and it is only efficient when the number of acquired bands is low.  

 

Figure 3-2 Airborne pushbroom scanning to acquire 2D HI 
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3.2 Hyperspectral Imagery Processing 

In the Earth science domain, HI has been applied to many subjects such as 

vegetation studies, soil science, geology, biochemical studies, water quality monitoring, 

and atmospheric characterization (Manolakis et al., 2003). HI has also played a very 

important role in land cover classification applications using both supervised clustering 

and unsupervised pixel clustering, because of its capability to reveal the composition of 

object materials (Kerekes & Baum, 2002) with ample spectral information. When the 

objects of interest do not have a predefined spectrum shape, or when the relationship 

between received spectrum and the “real” spectrum of the material is unknown, i.e. the 

material composition is not accurately recognizable by examining a single spectrum, 

clustering of pixels is an efficient way to help interpret the imagery and control the 

overall error when the occasional misclassification of a single pixel is not significant.  

To efficiently utilize HI in classification applications, appropriate data processing 

techniques are needed to extract discriminative information from the contiguous and 

correlated HI bands. Processing of HI for classification usually starts with dimension 

reduction or a feature extraction step. Because a large number of bands are available for 

each pixel, feature reduction will diminish the amount of redundant information 

(Bioucas-Dias & Nascimento, 2008). Commonly used methods for feature reduction 

include principle component analysis (PCA) (Bateson & Curtiss, 1996), singular value 

decomposition (SVD) (Herries et al., 1996), maximum noise fraction (MNF) (Green et al., 

1988), independent component analysis (ICA) (Lennon et al., 2001) and others. These 

methods seek to transform the original data given certain optimal conditions. For 

example, PCA achieves an optimal transformation in a least squares sense by searching 
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for significant eigenvectors of the data covariance matrix. Singular value decomposition 

use the eigenvectors of the positive definite matrix which is the product of the data matrix 

and its transpose to form basis vectors, and then uses these vectors to represent the data 

with a lower rank. The MNF transform is similar to PCA, but adds a noise-whitened 

process to PCA to ensure the “important” components picked by the algorithm have 

higher signal-to-noise ratio than the rest. Independent component analysis “consists in 

finding a linear decomposition of the observed data into statistically independent 

components” (Nascimento & Dias, 2005), by finding the mixing and separating matrix of 

the “independent sources”. Dimension reduction is achieved by ICA by finding 

projection directions where maximum statistical independence exists and transforming 

the original data along these directions to a lower dimensional space.  

After transformation of HI to a new space where features can be efficiently 

extracted, a broad variety of machine learning algorithms are used for feature learning 

and labeling of the HI pixels. Classification based on feature reduction or discriminant 

analysis algorithms can be developed with orthogonal subspace projection (OSP) 

(Harsanyi & Chang, 1994) and linear discriminant analysis (LDA) (Du & Chang, 2001); 

these methods are mostly employed for unsupervised classification. Other common 

unsupervised classification (clustering) algorithms that have been applied to HI include 

k-means (Funk et al., 2001), Iterative Self Organizing Data Analysis Technique 

(ISODATA) (Liew et al., 2002) and hierarchical clustering (Kumar et al., 2002).  

Supervised classification of HI using a maximum likelihood classifier (MLC) on 

AVRIS data was performed as early as 1994 by Jia and Richards (1994), where MLC was 

applied to a dataset after unsupervised discrimination analysis to classify 7 land cover 
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types. However MLC requires a feature selection method to work efficiently and requires 

data to satisfy a certain distribution. To tackle the large number of spectral bands in HI 

and the often limited number of labeled training samples, kernel based methods have 

attained great popularity for HI classification (Camps-Valls & Bruzzone, 2005). Support 

vector machines (SVM) have been shown to be a very effective tool in HI classification 

(Gualtieri & Cromp, 1998; Melgani & Bruzzone, 2004), especially with the non-linear 

learning capability made available by a suitable kernel definition. In addition to spectral 

information, composite kernels can utilize both spatial and spectral information from HI 

(Camps-Valls et al., 2007). Other studies have used kernel learning in combination with 

other clustering methods, e.g., (Kwon & Nasrabadi, 2005; Baofeng et al., 2008; Ma et al., 

2010).  

Finally, ensemble learning uses many classifiers to deal with assigned tasks from 

the overall classification problem, and their decisions are weighted and combined to 

overcome the performance limitation of the original classifiers (Chan & Paelinckx, 2008). 

Popular ensemble learning algorithms include Adaboost (Freund & Schapire, 1996; 

Kawaguchi & Nishii, 2007) and random forest (Ham et al., 2005).  

Recent research into HI classification has focused on spectral-spatial joint 

classification development (Huang & Zhang, 2013; Lunga et al., 2014; Q. Zhang et al., 

2015), with the purpose of maximizing the utility of manifold data structure from HI. 

3.3 Complementary Characteristics of FWL and HI 

The latest HI classification research attempts to exploit both the spatial and 

spectral information for HI for optimal discrimination. Limited by the nature of HI, 



   

31 

image information only provides a two-dimensional description of the spatial 

neighborhood. On the other hand, FWL offers detailed three-dimensional spatial 

information, therefore allowing geometric properties to be extracted which are not limited 

to the imaged surface. For example, in a forested area, FWL records canopy cover, 

interlayer canopy, shape and height of vegetation, and ground topography at the same 

time (Asner et al., 2007), while HI can only detect canopy cover spectral information.  

HI captures object surface reflectance characteristics as a sampled spectrum, and 

FWL records the object backscattered energy as intensity values associated with each 

sample. Surface reflectance is a very good discriminator of the composition of an object, 

and the backscattering properties of the object can reveal both material information 

(although not as discriminatory as a HI spectrum) and surface roughness. Furthermore, 

although the apparent backscattering properties contained in FWL do reflect material 

composition, they are also significantly affected by the acquisition geometry (e.g. 

incidence angle) when the waveform was recorded. Whereas for HI, although the 

absolute scale of HI spectrum is also affected by the position of the sensor and imaged 

surface, a contiguous sampling of a broad spectrum range is available, which can 

normalize the scale differences by studying the relationship between different bands.  

Finally, the spatial resolution of airborne HI is generally at the meter level, 

whereas airborne FWL can have more than ten waveforms penetrating the voxel defined 

by the same size footprint (i.e., per square meter). With such dense spatial sampling, 

adding FWL to HI classification is expected to improve classification accuracy and 

potentially reduce the required number of ground training samples.   
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Chapter 4  Remote Sensing Data Classification 

4.1 Background  

Land cover and land use information is crucial for decision making in global 

change studies and environmental applications (Sellers et al., 1995). Remote sensing data 

is an important source for providing such information, because of the capability to 

provide measurements of a broad range of object characteristics at a large scale and fine 

resolution. The term classification refers to the extraction of the desired information from 

the remote sensing data. The classification problem can be defined as “given a set of 

training data points along with associated training labels, determine the class label for an 

unlabeled test instance” (Aggarwal, 2015). Remote sensing data classification techniques 

group pixels (or the minimal data size unit for non-rasterized data) with common 

properties to represent a variety of land cover features. Land cover feature examples 

include forested, urban, or agricultural areas. An example of remote sensing data 

classification is illustrated in Figure 4-1, where HI of a 1200m x 1200m area is classified 

into seven land cover classes with training data selected through manual interpretation of 

the HI.  

Applications of classification techniques for distinguishing land cover types 

developed rapidly with the increasing availability of remote sensing data sets beginning 

in 1970’s with the satellite-borne multispectral data from the Earth Resources 

Technology Satellite (Sinnock et al., 1974; Ulaby & McNaughton, 1975). More modern 

sensors include the Landsat multispectral scanner and thematic mapper system (Shlien & 

Smith, 1975; Nelson & Hoffer, 1981; Cibula & Nyquist, 1987; Ormsby, 1982) and, 
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SPOT (Satellite for observation of Earth) data (Shimoda et al., 1988; Franklin & Peddle, 

1990),both of which are used for automatic large scale classification of land in both 

forestry and hydrology applications. Synthetic aperture radar (SAR) has also been 

employed for classification since the launch of European Remote Sensing (ERS) 

satellites. Unlike the spectral information collected by Landsat or SPOT, SAR is an 

active microwave based remote sensing technique which measures the energy 

backscattered from illuminated targets. Because of this property, SAR can be used to 

infer terrain attributes and vegetation structure information, and has proven to be 

effective in distinguishing woody vegetation with different trunk characteristics (Craig et 

al., 1995). Airborne hyperspectral data merged as a data source for classification with the 

development of the airborne visible/infrared imaging spectrometer (AVIRIS) (Roger, 

1996; Harsanyi & Chang, 1994). The rich spectral information contained in HI provides a 

potential solid observation basis for separating a large number of ground cover classes in 

complex scenes. The potential use of LiDAR data for classification was first examined in 

(Jensen et al., 1987), where the LiDAR data was registered to a classification map 

generated from airborne multispectral imagery, and the class assignments showed strong 

correlation with a LiDAR derived height model. Early classification of LiDAR data used 

intensity and height information and was mainly applied to applications where the 

number of land cover classes was quite limited (Weed et al., 2002). Waveform LiDAR 

has also been applied to land cover classification, with a variety of structural features 

extracted mainly for forestry applications (Neuenschwander et al., 2009).  
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(a) 

 

(b) 
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(c) 

Figure 4-1 Remote sensing imagery and classified land cover map: (a) RGB band from HI; (b) Classification map; (c) 

Classification result with texture from HI band for better visualization 

4.2 Land Cover Classification Algorithms 

Classification algorithm can be broadly divided into two categories: supervised 

and unsupervised. For supervised classification, the patterns of data class dependence on 

the features hidden in the training samples are revealed and represented using a classifier 

model (Kotsiantis, 2007). The model is then applied to assign class labels to test samples. 

This process is conceptually illustrated in Figure 4-2.Unsupervised classification refers to 

methods employed when no training samples with class labels are available and the data 

can only be clustered by similarity, and the class labels are assigned by the user based on 

knowledge regarding land cover features in the scene. Unsupervised classification is 

automatic and usually can be achieved with simpler algorithms compared to supervised 

classification, but the accuracy of classification is difficult to evaluate and requires 

additional interpretation by the user.  
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Figure 4-2 Supervised classification flowchart 

4.2.1 Unsupervised Classification Algorithms 

The basic premise of unsupervised classification is the selection of a set of seed 

points around which clusters (groups of similar pixels) are built, where the membership 

of each cluster can be changed to achieve an optimal partition. A number of 

representative unsupervised classification techniques are briefly described in the 

following, but the discussion is by no means exhaustive.  

Iterative Self-Organizing Data Analysis Technique (ISODATA) is a popular 

method for unsupervised classification for remote sensing data, and was originally 

proposed for use in multispectral data classification (Gowda, 1984). The method is based 

on the K-means algorithm (MacQueen, 1967), K-means and ISODATA methods both use 

spectral distance as a similarity measure for assigning candidate pixels to clusters. 

Working in an iterative manner, ISODATA estimates the center of each cluster by 

moving each pixel from one cluster to another to reduce the quadratic spectral distance. 
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This procedure is applied to every candidate sample and the cluster centers are 

recalculated after assignment of each new sample.  

Neural networks are also used for unsupervised classification when the algorithms 

for individual “neurons” work in an unsupervised manner (Hara et al., 1994). The 

strength of neural networks is their ability to determine an appropriate similarity metric in 

the training process, and adjust the weighting of the entire system according to data 

reliability. Neural networks have been applied to both SAR data (Hara et al., 1994), 

multispectral data (Baraldi & Parmiggiani, 1995) and HI (Goel et al., 2003). Markov 

random fields (MRF) have been used for unsupervised parametric classification with the 

help of a K-means classifier for an initial coarse classification (Yamazaki & Gingras, 

1999). Discrimination analysis tools such as linear constrained distance-based 

discriminant analysis (LCDA) can also employ K-means or ISODATA as an initial 

coarse classifier (Du & Chang, 2001).  

Recent developments in unsupervised classification are mostly improvements to 

the methods above. The introduction of fuzzy sets theory to clustering techniques is an 

important development and is widely used (Tran et al., 2005). Fuzzy clustering methods 

change the method of determining cluster variance and cluster size to a “soft’ 

deterministic manner (Duda & Canty, 2002). The strength of fuzzy clustering methods is 

that data samples located in an area of overlapping clusters have little impact on the 

cluster parameters, which mitigates the influence of outliers, noise or points with high 

uncertainty.  
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4.2.2 Supervised Classification Algorithms 

In contrast to unsupervised methods, supervised classification algorithms require 

training data to adjust algorithm parameters in order to achieve efficient partitioning of 

the test feature space. As with the prior discussion of unsupervised classification methods, 

we briefly review several representative supervised classification methods in this section.  

The maximum likelihood classifier (MLC) is a supervised classification method 

that has been proven effective for a variety of remote sensing data sets, such as 

multispectral data (Strahler, 1980), HI (Jia & Richards, 1999), and SAR images (Kuplich 

et al., 2000). Another extensively used supervised classification method is the support 

vector machine (SVM) technique. According to (Huang, Davis, and Townshend 2002), 

SVM separates different classes by searching for optimal boundaries using optimization 

algorithms . Support vector machines are capable of adapting different learning functions 

as a “kernel” to meet the requirements of the training data (Melgani & Bruzzone, 2004). 

Both MLC and SVM are used in this dissertation and further details of these two 

classification methods will be given in Chapter 5. 

Besides MLC and SVM, a broad variety of machine learning techniques have 

been introduced to solve classification problems in a supervised manner. Decision tree 

classification iteratively divides the data set into smaller partitions using a set of tests 

defined at each branch of the tree. Decision trees are nonparametric and thus do not place 

assumptions on the distribution of data (Friedl & Brodley, 1997). This allows decision 

trees to learn nonlinear pattern between features and class labels, as well as employ 

mixing type of features (Pal & Mather, 2003). Ensemble learning is a family of methods 

that train a number of simple classifiers such as decision trees, and combine the decisions 
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through a weighted voting process. Adaptive boosting (Freund & Schapire, 1996) and 

random forests (Gislason et al., 2006) are important implementations of ensemble 

learning. Adaptive boosting is a boosting ensemble learning method which calculates the 

output using several different models and then combines the results using a weighted 

average approach. Random forest is a bagging ensemble learning method which 

decreases the prediction variance by incorporating random feature set selection, so a 

bootstrap sample of observations is available for each tree (Ham et al., 2005).  

4.2.3 Accuracy Assessment of Land Cover Classification 

The validity of classification results must be evaluated by an accuracy assessment 

process. In the context of using machine learning methods for supervised classification, 

quantitative analysis can be performed by comparing the predicted labels with the actual 

class label of reference samples (Foody, 2002). The confusion matrix is the most 

extensively used measure of classification accuracy in the remote sensing field. A 

confusion matrix is a cross-tabulation of the predicted label by the classifier against the 

reference data (Canters, 1997), that makes it possible to infer whether additional 

discrimination information is needed to separate correlated classes.  

Several measures are typically generated from a confusion matrix to assist in 

understanding overall system performance and better interpret the confusion matrix 

(Foody, 2002). An overall accuracy can be computed which quantifies the percentage of 

all correctly labeled instances. When the accuracy of individual classes is the focus, there 

are two ways methods of evaluation: producer’s accuracy and user’s accuracy (Congalton, 

1991). Producer’s accuracy is the fraction of correctly classified samples with regard to 

all samples of that class in the reference data. User’s accuracy is the fraction of correctly 
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classified samples with regard to the number of all samples assigned to the particular 

class by the classifier, and is therefore referred to as the reliability of the classification.  

Several measures derived from combinations of the producer’s accuracy and 

user’s accuracy have also been proposed with the goal of evaluating the classification 

performance from the view of both producer’s and user’s accuracies (Liu et al., 2007). 

Conditional kappa accuracy, or Cohen’s kappa coefficient, was originally introduced to 

quantify the agreement between two raters (Cohen, 1960), and is computed as the ratio of 

the actual relative agreement percentage against the probability of random agreement of 

two raters. In supervised land cover classification, the agreement between pre-assigned 

reference labels and the classification results of the reference data is used for evaluating 

kappa accuracy (Smits et al., 1999).  

4.3 Classification of Fused FWL and HI 

Early works addressing the issue of fusing FWL with passive remote sensing 

techniques have predominantly been limited to using FWL data that has been converted 

to a DSM and canopy parameter raster model for tree type recognition applications 

(Anderson et al., 2008; Asner et al., 2007; Paris & Bruzzone, 2015). The FWL data can 

also be processed in a similar way for HI feature extraction (Wu and Prasad 2013; M. J. 

D. Sarrazin et al. 2011), where feature extraction has been done by performing feature 

reduction techniques on raw FWL data, first and second derivatives, then the reduced 

feature sets are merged with HI feature sets. Fusion of FWL and HI can also be achieved 

by first decomposing the LiDAR waveforms and then registering the echo functions to HI, 

based on the process shown in Jung, 2011. The method of utilizing the whole waveform 

without fitting a model function has also been investigated in (Buddenbaum et al., 2013), 
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where the waveforms were reconstructed and processed at a coarse spatial level (50cm 

voxel height), and were only used for separating pre-selected trees-only training samples, 

without evaluating improvements to overall fused land cover classification.  

To summarize, classification of combined FWL/HI datasets have been mainly 

limited to certain types of targets (e.g., tree type classification), or land cover 

classification using similar procedures for feature generation from FWL and HI without 

thoroughly considering the characteristics of the different data sources. Furthermore, 3D 

information contained in FWL is often compromised in order to achieve co-registration 

with HI.  
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Chapter 5 Proposed Methods 

In this chapter, the proposed method for fusing and classifying features extracted 

from FWL and HI is presented. This includes georeferencing and voxelization of the 

FWL data, feature extraction and combination of the FWL and HI, and the classification 

scheme for the fused FWL/HI data set. Figure 5-1 contains a flowchart of the entire 

process.  

 

Figure 5-1 Flowchart of FWL/HI processing, fusion, and classification 

5.1 Waveform Data Processing 

5.1.1 Direct Waveform Georeferencing 

As discussed in Chapter 1, it would be beneficial for applications using FWL data 

to fix the location of each complete raw waveform in 3-D space and use the 

georeferenced waveform data to generate a vertical superposition response for targets 

within each raster cell, in order to have a one-to-one correspondence between HI pixels 

and FWL records. To achieve this, we adapt the existing georeferencing method for 

LiDAR discrete returns and apply them to waveform positioning.  

FWL returns are usually sampled at even time intervals ranging from 1 to 2 

nanoseconds, yielding a range resolution between waveform samples of 0.15 to 0.30 m. 
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Combined with the aircraft trajectory, the waveform sample ranges are used to locate the 

waveforms as 3D arrays in a global reference frame. First, the equivalent slant range from 

the sensor to each sample in the return waveform is computed from the time elapsed 

since laser pulse emission,  

 0* +
2

peak peak

c
R interval T T n T    ,                                            (5-1) 

where R is the slant range, c is the speed of light, interval is the time from the first sample 

on the outgoing pulse to the first sample on the return pulse, 𝑇𝑝𝑒𝑎𝑘is the peak time of the 

return pulse, 𝑇𝑝𝑒𝑎𝑘
0 is the peak time of the outgoing pulse (trigger start time), n is the 

sample location on the return waveform, and ∆𝑇 is the timing interval of the waveform 

digitizer.  

With the slant ranges calculated, each waveform sample can be georeferenced via 

a coordinate system transformation using data from the ALS POS (position and 

orientation) system. The transformed 3-D coordinates are given as (Glennie, 2007)  
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,                (5-2) 

where the output vector components X, Y and Z are the coordinates of a single waveform 

sample in a global coordinate frame, and X0, Y0, and Z0 are the coordinates at the origin of 

the navigation sensor (normally the INS center). The angles ω,φ,κ are the roll, pitch and 

yaw of the sensor with respect to the local level frame (as determined by the INS). The 

angles dω,dφ,dκ are the boresight angles that correct for the difference in alignment 

between the laser scanner and the INS measurement frame determined by boresight 
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calibration (Skaloud & Lichti, 2006). The lever arm offsets lx, ly, and lz are the physical 

offsets between the INS origin and the measurement origin of the laser scanner assembly. 

In this equation, the sensor measurement vector 𝑟𝑠(𝛼, 𝑅) is given as 
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,               (5-3) 

where the scan angle α and range R are measured and returned by the laser scanner. 

According to equation 5-2 and 5-3, the georeferencing accuracy of each waveform 

sample is affected by INS altitude errors, boresight errors, laser scanner errors, lever-arm 

offset errors, and GPS positioning errors, as well as the data acquisition parameters 

(flight height, scan angle range); detailed discussions of error analysis for kinematic laser 

scanning can be found in (Schaer et al., 2007; Skaloud & Lichti, 2006; Glennie, 2007).  

Using the formulas detailed above each FWL sample can be georeferenced and 

transformed from the time domain to the spatial domain. A georeferenced waveform can 

be viewed as a 3D array representing the laser pulse energy distribution along the laser 

travel path, where the energy distribution is represented by the amplitude of each sample. 

Note that the irregular spatial distribution of georeferenced FWL returns needs to be 

accounted for. In order to co-register the FWL with raster based remote sensing data. The 

spatially irregular georeferenced FWL samples need to be located in regular intervals 

aligned with the raster grid; this is accomplished via a 3-D voxel-based reference frame.  
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5.1.2 Waveform Voxelization and Synthesis 

5.1.2.1 Waveform Voxelization 

To build a 3-D voxel frame, the area illuminated by the laser scanner is first 

divided into a regular 2-D grid. The 2-D grid is then vertically extended into 3-D at 

regular vertical intervals, thereby forming vertical columns of voxels, where each voxel 

can be thought of as a rectangular prism. The georeferenced waveforms are then 

intersected with the columns to determine the waveform signature within each column. 

Note that waveforms can be divided and assigned to multiple columns. The process is 

illustrated in Figure 5-2.  

 

Figure 5-2 Waveform stacking for vertical FWL return profile 

All of the waveform samples that intersect a voxel column of interest can thus be 

indexed with the column signature, and combined using a waveform synthesizing 
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algorithm, discussed in the following section, to generate a single representative 

waveform for the column. Note that with this methodology all samples in a waveform are 

utilized instead of only retaining the locations of return echoes detected by Gaussian 

decomposition or other deconvolution techniques. Retaining the entire waveform is 

important for the following reasons: 1) return echo shapes may deviate from the assumed 

model function when the target surface is not flat, 2) waveform segments may contain 

return energy that is below the threshold for echo detection, and 3) superposition of 

waveform amplitudes using information from multiple scans may accentuate small 

echoes.  

It is essential to define an appropriate voxel size that takes into consideration the 

pixel size of the HI imagery (horizontal resolution) and also matches the sampling 

interval of the LiDAR waveform digitizer (vertical resolution). In this dissertation, the 

size of each voxel was chosen to match the size of the HI pixel and the raw waveform 

digitizing interval.  

5.1.2.2 Weighted Summation Methods for Waveform Synthesizing 

The optimal relationship when fusing LiDAR waveforms with HI pixels is a 1:1 

relationship, i.e., each pixel corresponds with one waveform. In order to achieve this, a 

method to synthesize all waveform profiles that intersect a single column of voxels is 

required.  

Several numerical waveform synthesizing methods were tested in our early work 

(Wang et al., 2013). We begin by examining empirical weighted interpolation methods. 
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For each voxel containing waveform samples, the interpolated intensity can be 

represented as  

1 1

/
n n

Voxel i i i

i i

I I 
 

  ,                                                       (5-4) 

where n is the number of waveform samples in a particular voxel, Ii is the intensity of 

each waveform sample in the voxel, ωi is the weighting coefficient for each sample, and 

Ivoxel is the weighted intensity which is retained for the voxel. In this way, a single 

response value is obtained for a single voxel no matter how many waveforms penetrate 

the voxel and how many waveform samples are allocated.  

Four different weighing methods were evaluated, including inverse distance from 

the geometrical center, inverse squared distance from the geometrical center, inverse 

distance from the centroid, and inverse squared distance from the centroid of the voxel. 

An example comparing the weighted interpolation methods for synthesizing waveforms 

is given in Figure 5-3. The waveforms were obtained over a column of voxels containing 

high vegetation. An original waveform having a look angle close to nadir was chosen as a 

reference for the reconstructed waveforms. It can be observed that the positions and 

shapes of the interpolated waveforms are close to the nadir waveform, despite some 

amplitude deviations. Furthermore, the different weighting methods do not affect the 

synthesized waveform shape significantly, which is because the waveform samples in a 

voxel tend to have a compact spatial distribution.  
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(a) 

 

(b) 

Figure 5-3 Waveform synthesis example: (a) All raw waveforms intersecting a voxel of interest, (b) reconstructed 

waveform using four different weighted interpolation methods 

To quantitatively evaluate the shape deviation between the synthesized 

waveforms and reference waveform (close to nadir original waveform), a waveform 

modeling and decomposition approach was used to describe the waveform shape using 

parameters of decomposed echo functions. Both the original and synthesized waveforms 

were decomposed into individual echo functions, and the parameters of the functions 

were compared. The experiment was carried on a data set of mixed urban and forested 

area. Since the system had a Gaussian-shaped transmitted pulse (Wang et al., 2013), both 

waveforms were decomposed into Gaussian echo functions. The parameters used for 

similarity comparison were the position, amplitude and width for the Gaussian 
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components, with the similarity quantified using a Canberra metric(Lance & Williams, 

1966),  

𝑝 = 1 −
1

𝑁
[∑ (

|𝑃𝑎𝑑𝑎𝑚𝑒𝑡𝑒𝑟𝑡𝑟𝑢𝑡ℎ−𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠|
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𝑖=1 ],                            (5-5) 

where N represents the number of voxels, and p is the similarity measurement. 

Experimental results are shown in Table 5-1; inverse square distance to center method 

achieved the highest agreement for all three parameters among all synthesizing methods.  

Table 5-1 Parameter agreement between reference and synthesized waveforms for all methods 

Fusion method/ 

Consistency 

Inverse 

distance to 

center 

Inverse square 

distance to 

center 

Inverse 

distance to 

centroid 

Inverse square 

distance to 

centroid 

Echo position  99.35% 99.46% 99.46% 99.46% 

Amplitude  85.05% 90.05% 82.41% 84.76% 

Width 72.27% 75.56% 72.41% 74.54% 

 

5.1.2.3 Maximum Amplitude Method for Waveform Synthesizing 

Although the waveform synthesizing interpolation methods are able to retain the 

waveform shape to a certain level, in the case where a return echo (potential target) is 

only captured by one waveform, the amplitude will be significantly reduced after the 

interpolation. However, we are trying to preserve all the possible waveform features. A 

further disadvantage is the requirement for interpolation within each voxel, which is 

computationally heavy given that each vertical waveform is generated from hundreds of 

voxels and numerous individual waveform returns.  
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Considering the drawbacks of the weighted interpolation methods, we have 

instead chosen a method that retains the maximum amplitude in each individual voxel 

(Hermosilla et al., 2014) to derive a synthesized waveform (SWF), which can be 

expressed as 

  1,2,...,
maxVoxel i i n

I I


 .                                    (5-6) 

The advantage of this approach is that the maximum amplitude contained in each voxel is 

likely to be a better estimate of the response of the target when hit by the laser pulse from 

the direction that maximizes the backscattering intersection, without being compromised 

by energy loss caused by reflections from other targets in the laser cone of diffraction. 

This approach also has the benefit of being computationally efficient and produces a 

smooth voxel waveform which provides superior fused classification accuracy; results are 

shown in Chapter 7.  

5.1.3 Vertical Energy Distribution Coefficient 

The goal of voxelizing and synthesizing the original waveforms is to preserve 

location and intensity information from the raw data without fitting the original 

waveforms to assumed model functions, e.g., Gaussian decomposition. Decomposition 

methods applied to the SWF for feature extraction are also not desirable given the 

increased complexity in the SWF generated from multiple overlapping scattering surfaces. 

Under these conditions the efficacy of using Gaussian parameter features will be 

impacted by the divergence between the SWF and fitted Gaussian models due to the 

increased SWF complexity.  
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Therefore, in order to discriminate SWF for different land cover classes, features 

describing the distribution of return energy along each waveform profile, i.e., metrics for 

both intensity and height information contained in the SWF, are desired. We propose to 

use vertical energy distribution coefficients (VEDC) as features to encapsulate the 

integrated intensity-height metrics of the SWF. The SWF of a column of voxels 

represents the reconstructed backscattered energy profile of targets in the vertical 

direction. By examining the ratio of return energy contained in defined segments of the 

SWF to the total SWF energy, an estimate of the energy distribution can be achieved. The 

VEDC metric is computed as follows: 

1. Each SWF is segmented according to the height distribution of samples using a 

constant interval. Details regarding the interval selection are given in Chapter 7.  

2. The backscattered energy contained in each SWF segment is estimated by 

computing the area under the SWF curve.  

3. The ratio of return energy for each segment with respect to the total energy of 

the SWF is computed, i.e., the VEDC is obtained as 

𝑉𝐸𝐷𝐶𝑖 =
∫ 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(ℎ)𝑑ℎ

ℎ𝑖+1
ℎ𝑖

∫ 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(ℎ)𝑑ℎ
,                                                 (5-7) 

where hi represents the starting height of the i th interval of VEDC, and hi+1 the starting 

height of the next VEDC interval. The function Intensity (h) is the intensity of the entire 

SWF.  

An example of VEDC for both a tree and ground SWF is shown in Figure 5-4. 

The tree SWF penetrates a thin canopy and also contains a ground return even though a 
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significant portion of the outgoing energy was reflected by the canopy. On the other hand, 

the energy of the ground SWF is mostly concentrated near the ground return (last return), 

which contains 87.40% of the total energy. The VEDC of these two SWF clearly show 

the differences between these two classes.  

 

(a)                                                                (b) 

Figure 5-4 Example of VEDC of waveforms from different classes: (a) tree, (b) ground.  

5.1.4 VEDC Feature Generation 

VEDC is a data-dependent feature of the SWF because knowledge of the 

elevation distribution of the SWF samples is necessary to determine both the number of 

VEDC segments and the span of each segment. The height range of the SWF in the 

targeted area is determined by examining the SWF of all voxels. Once the height range 

for the VEDC is fixed, only the number of VEDC components is required, since the 

height interval of each component is uniform.  

5.1.4.1 Supervised VEDC Feature Generation 

The dimension of VEDC can be determined using a supervised method: a portion 

of the SWF training samples can be classified using VEDC with varying dimensionality. 
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The classification accuracy can then be used as a metric to estimate the optimal VEDC 

dimension with respect to the inter-class discrimination provided by VEDC. Since VEDC 

does not require a large number of segments, i.e., number of features, this supervised 

VEDC generation method does not add significant computational burden.  

5.1.4.2 Unsupervised VEDC Feature Generation 

Supervised feature generation requires an appropriate classification technique for 

the accuracy evaluation. However, different classifiers may yield different optimal 

dimensions for VEDC. Therefore, an unsupervised feature generation method is desirable.  

According to equation 5-6, VEDC represents the ratio of the energy contained in 

each segment with respect to the total energy of the SWF. Therefore the sum of all 

components is always equal to 1, with individual component values determined by the 

segmentation. Thus, if we assume the probability that a single return in a waveform is 

reflected from a target located in the height interval of [ℎ𝑖 , ℎ𝑖+1] is 𝑃𝑖, then we have 𝑃𝑖 =

𝑉𝐸𝐷𝐶𝑖, the ith component of the waveform VEDC. If the dimension of VEDC is fixed at 

N, then based on the definition of VEDC, it is obvious that 

∑ 𝑃𝑖
𝑁
𝑖=1 = 1.                                                             (5-8) 

Based on these assumptions, the Shannon entropy of the VEDC feature can be 

computed to evaluate the unpredictability of the feature, serving as an efficacy metric for 

feature generation. Because VEDC is generated for classification, it is preferable that 

waveforms from different land cover classes be used for the entropy evaluation. Suppose 

the number of classes to be labeled is L and number of samples in class j is Mj; then the 

entropy of the ith component of the VEDC is 
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𝐸𝑖 = ∑ ∑ (𝑉𝐸𝐷𝐶𝑖)𝑗𝑚𝑙𝑜𝑔𝑛[(𝑉𝐸𝐷𝐶𝑖)𝑗𝑚]
𝑀𝑗

𝑚=1
𝐿
𝑗=1 .                             (5-9) 

The entropy value of each VEDC component can be summed to measure the total 

information content preserved by the segmentation of VEDC and, therefore, can be used 

to adjust the VEDC dimension. Furthermore, the entropy value of each VEDC 

component can be used to evaluate the importance of each component. Height intervals 

with significantly low entropy values can be combined with adjacent intervals to reduce 

the redundancy in the VEDC feature set. An illustration of the relationship between the 

entropy value and VEDC feature efficiency is given in Figure 5-5. With increasing 

entropy, the information contained in the generated VEDC features are more efficient for 

data separation, i.e. the samples from two classes show better in-class convergence and 

between class discrimination with a larger entropy value (8 band VEDC). This 

demonstrates that entropy can be used as a measure of VEDC feature information content. 

Details of using the unsupervised VEDC feature generation algorithm on actual datasets 

are given in Chapter 7.  

 

Figure 5-5 Entropy and VEDC information content 
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5.2 Feature Extraction for HI 

Feature extraction techniques for HI and HI classification methods are well 

developed, and the methodology was reviewed in Chapter 3. Principal components 

analysis (PCA) has long served as an efficient dimension reduction and feature extraction 

tool for better classification performance (Smith et al., 1985). Principal component 

analysis is by definition a particular kind of orthogonal linear transformation. Since HI 

bands are close in frequency and sensor spectral resolution is not infinitely fine, 

correlation may exist between HI bands. The PCA orthogonally transforms HI bands into 

a new space where the correlation among transformed bands is minimized. Furthermore, 

PCA preserves data variance within a smaller number of bands, making class 

discrimination in PCA transformed data easier to utilize.   

Covariance analysis of the input data is the first step when performing PCA. If we 

consider the input data, i.e., an HI data cube, as an 𝑚 × 𝑛  matrix X, where column 

number n denotes the number of pixels (the 2D imagery is reshaped as a 1D array 

because spatial information is not considered) and row number m represents the number 

of spectral bands, the PCA method studies the pattern of the data matrix X by calculating 

its covariance matrix 

𝑆 = ∑ (𝑥𝑖 − 𝑥̅)(𝑥𝑖 − 𝑥̅)𝑇𝑛
𝑖=1 ,                                   (5-10) 

where 𝑥̅  denotes the mean spectrum vector computed from X, and xi is the spectrum 

vector of each pixel. Once the covariance matrix is obtained, the eigenvectors are 

determined by finding vectors λ satisfying the condition 

|𝑆 − 𝜆𝐼| = 0,                                    (5-11) 
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where I is the identity matrix with dimension m. These mutually orthogonal eigenvectors 

represent patterns within the input data. The eigenvalues associated with the vectors 

represent the corresponding variance; therefore, eigenvectors with larger eigenvalues are 

considered the principal components of the data. By ignoring eigenvectors with smaller 

eigenvalues, the dimension of the data can be reduced with the majority of HI variance 

information preserved. Typically a very high percentage of variance of the input data is 

preserved with a relative small number of PCA bands. The final data after PCA 

transformation can be expressed as (Smith, 2002)  

𝐹𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑀𝑎𝑡𝑟𝑖𝑥 × 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝐷𝑎𝑡𝑎,                        (5-11) 

where FeatureVectorMatrix is the transformation matrix composed of the selected 

principal components, and AdjustedData is the original data with the mean subtracted and 

transposed. After PCA, each vector in the final data is a linear combination of the HI 

bands in the original data.  

5.3 Fusion of FWL and HI 

If we build the voxels for FWL using the HI pixel locations, then each SWF is 

aligned with a corresponding HI pixel at its spatial center. In this research, the HI and 

FWL data were acquired using the same onboard POS; therefore, the HI and FWL data 

are already located in the same 3-D coordinate frame after georeferencing. An example of 

the registered SWF and HI data is shown in Figure 5-6. The intensity image is generated 

by assigning the value of maximum intensity from the SWF to each voxel to a pixel. 

Once the SWF data and HI are registered, an integrated feature space can be generated by 

stacking the HI and SWF features.  
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                                          (a)                                                                                         (b) 

Figure 5-6 Registered FWL and HI: (a) Intensity image of FWL; (b) HI of the same area.  

5.4 Classification Method 

5.4.1 Pairwise Classifiers 

A stacked feature set comprised of both HI and SWF features offers information 

on spectral reflectance as well as target backscattering geometric properties and is 

therefore expected to enhance classification performance compared to using each dataset 

independently. An important issue to be considered in the process of designing a 

classifier for FWL/HI data is that the performance of HI and SWF features for 

distinguishing different classes can vary significantly. For instance, it is hard to separate 

asphalt covered roads and concrete covered roads using only SWF, while HI has 

difficulty correctly classifying ground cover that is shadowed by a high vegetation 

canopy.  

With these considerations, an optimal classification technique for the fused 

features of HI and SWF should have the ability to choose subsets of features or even 

different classifiers for different target classes. The proposed solution is based on the 

framework of pairwise classifiers. Pairwise coupling for classification is an alternative to 
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the problem of multiclass polychotomous labeling (Friedman, 1996; Hastie & Tibshirani, 

1998). A pairwise classifier decomposes a multiclass discrimination problem into a series 

of two-class classification problems to simplify the process.  

The pairwise classifier framework has been utilized for the classification of 

remote sensing data such as Synthetic Aperture Radar (SAR) (Crawford, 1999), and HI 

(Kumar et al., 2001), and has been shown to improve classification given a relatively 

large number of input classes. There has also been some preliminary work using a 

Bayesian based pairwise classifier for FWL (Neuenschwander et al., 2009). Although a 

pairwise classifier shows potential advantages for classification of combined datasets 

from different sources, this method has been primarily limited to classification of a single 

data source or similar data sources (e.g., Polarimetric and Interferometric SAR), and has 

not been considered for classification of spatially and spectrally different modalities such 

as HI and FWL together. 

The basic concept of pairwise classification is shown in Figure 5-7. First, if we 

assume the number of classes is N, the classification problem can be divided into 𝐶𝑁
2 two-

class problems (Friedman, 1996). For each pair of two-class problems, a different 

classifier can be trained to give optimized discrimination between the two classes. Since 

classification problems are usually solved by optimizing the value of a mis-classification 

risk function, two-class classification can be achieved with target function in a 

significantly simpler form. After each individual classifier is trained, using training 

features from the two classes, test data is fed to each classifier to get an estimate of 

likelihood or a vote for the class label. The final label of a test feature vector is assigned 

by applying appropriate decision rules based on the votes from all individual classifiers.  
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Figure 5-7 Architecture of a pairwise classifier 

Commonly used decision rules used for assigning votes from all individual 

classifiers are maximum vote number and maximum posterior probability rules. The 

maximum vote number decision rule looks for the class label with the highest frequency 

in the output of all individual classifiers for one input feature vector, and assigns that 

label as the final class. The maximum posterior probability rule considers the posterior 

probability output by the classifier, and assigns the label with maximum probability value 

as the final class.  

Pairwise classification simplifies the multiple classes labeling problem, and more 

importantly provides the flexibility to use different types of classifiers and subsets of 

feature spaces for each class pair. Such flexibility can be quite helpful for SWF/HI fused 

data due to the reasons discussed earlier in this section. In this dissertation, both a 

maximum likelihood classifier (MLC) and a support vector machine (SVM) are tested as 

candidates for each individual pairwise classifier.  

5.4.2 Maximum Likelihood and SVM Classifier 

The application of a pairwise classifier relies on the appropriate selection of each 

individual classifier. Herein, both a maximum likelihood classifier (MLC) and a support 
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vector machine (SVM) are evaluated because they are the most commonly used linear 

(MLC) and non-linear (SVM) classification techniques, and have been shown in the 

literature to be efficient for classification of both HI (Jia & Richards, 1994; Gualtieri & 

Cromp, 1998) and FWL data (Neuenschwander et al., 2009; Jung et al., 2014).  

Maximum likelihood classification assumes that the probability distribution of a 

target class is determined by a multivariate normal distribution with the same dimension 

as the input feature vector (Richards & Jia, 2006). Under this assumption, the 

discriminant function for the maximum likelihood function can be written as  

𝑔𝑖(𝑥) = −𝑙𝑛|Σ𝑖| − (𝑥 − 𝑚𝑖)
𝑡Σ𝑖

−1(𝑥 − 𝑚𝑖), 𝑖 = 1,2,∙∙∙, 𝑁,                             (5-12) 

where x is a feature vector, mi is the mean feature vector obtained from class i training 

samples, Σi is the covariance matrix of class i samples, and N is the number of classes. 

The label for a test feature vector x is assigned by finding the largest 𝑔𝑖(𝑥) among all the 

N classes. Because of the nature of MLC (it relies on a multivariate distribution estimate), 

it is very sensitive to the ratio of training sample number to its dimension. In cases when 

the number of training sample is limited, an efficient feature selection algorithm is 

required to reduce the dimensionality.  

The SVM has been found to be advantageous in many applications for remote 

sensing data classification (Melgani & Bruzzone, 2004). Linear SVM aims to find an 

optimal hyperplane that separates two classes of samples, and makes the distance from 

the closest sample point to the hyperplane a minimum (Burges, 1998). To describe this 

problem, we begin with the assumption that we want to assign a class label 𝑦𝑖 ∈

{−1, +1} to each feature vector x in a d-dimensional feature space Rd to separate the 
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feature vectors with a hyperplane. We then assume there exists a plane with normal 

vector w and bias b that separates the two classes. We can then build a discriminant 

function as:  

𝑓(𝑥) = 𝑤 ∙ 𝑥 + 𝑏,                                                       (5-13) 

and the label is assigned to each x using decision function 𝑠𝑖𝑔𝑛[𝑓(𝑥)]. The hyperplane 

can thus be fixed by estimating w and b by:  

𝑦𝑖 ∗ 𝑓(𝑥) > 0, 𝑖 = 1,2,∙∙∙, 𝐿,                                              (5-14) 

where L is the number of training samples. With the goal of optimizing the hyperplane by 

maximizing the geometrical margin between two classes, which can be represented as 
2

‖𝑤‖
, 

this problem can be translated into  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ‖𝑤‖2/2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑦𝑖 ∗ 𝑓(𝑥) ≥ 1.                                        (5-15) 

This is an optimization problem with linear constraints that can be solved by converting it 

to a dual problem using a Lagrangian formulation which is given as  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒: ∑ 𝛼𝑖

𝐿

𝑖=1

−
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 ∙ 𝑥𝑗)

𝐿

𝑗=1

𝐿

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝛼𝑖𝑦𝑖
𝐿
𝑖=1 = 0 𝑎𝑛𝑑 𝛼𝑖 ≥ 0.                                       (5-16) 

The most interesting characteristic of SVM is its capability to address nonlinear 

classification with the help of a kernel function. In cases where the decision surface 
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function is a nonlinear function, a similar optimization process of separating the two 

classes can be achieved if we can find a nonlinear transformation Φ that maps the feature 

vectors to a higher-dimensional space where they are linearly separable again. We can 

see from equation 5-16 that the solution for the hyperplane involves computation of the 

inner product (𝑥𝑖 ∙ 𝑥𝑗); therefore, solving this problem in a transformed feature space 

requires computation of a transformed inner product [Φ(𝑥𝑖) ∙ Φ(𝑥𝑗)] . If a “kernel 

function” K can be found to satisfy the following condition: 𝐾(𝑥𝑖 , 𝑥𝑗) = [Φ(𝑥𝑖) ∙ Φ(𝑥𝑗)], 

then it is possible to avoid solving for Φ and computing [Φ(𝑥𝑖) ∙ Φ(𝑥𝑗)]; we can use 

𝐾(𝑥𝑖, 𝑥𝑗) instead. Therefore equation (4-5) is transformed to 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒: ∑ 𝛼𝑖

𝐿

𝑖=1

−
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 ∙ 𝑥𝑗)

𝐿

𝑗=1

𝐿

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝛼𝑖𝑦𝑖
𝐿
𝑖=1 = 0 𝑎𝑛𝑑 0 ≤ 𝛼𝑖 ≤ 𝐶,                             (5-17) 

where C is a constant introduced in the nonlinear case in order to control the error 

(Burges 1998). The exact implementation of nonlinear SVM depends on the form of the 

kernel function. Common kernel functions include linear, polynomial and Gaussian radial 

basis function (RBF) kernels. Under the condition that the number of features is not 

extremely large, RBF kernels shows advantages over the other two including: capability 

for handling nonlinear cases, requiring less parameters to be determined compared to the 

polynomial kernel, and maintaining stable performance with a broad range of parameters, 

i.e., the numerical risks for RBF is relatively low (Chang et al., 2010). Therefore, RBF is 

employed in this research. The form of RBF can be expressed as  
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𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

),                                     (5-18) 

where ϒ is a tunable parameter that defines the range one single training sample could 

reach. With the introduction of a kernel function, SVM can effectively implement 

nonlinear learning, and this is proven to be very advantageous in some cases when MLC 

fails to deliver sufficient accuracy (Melgani & Bruzzone, 2004).  

Using SVM for multi-class classification involves the selection of an appropriate 

implementation strategy (one-against-all, one-against-one), since it is capable of only 

two-class separation. However when employed in a pairwise classifier frame, each 

individual SVM classifier faces only one two-class labeling problem and therefore is not 

necessary to adapt it for the multi-class case.  

5.4.3 Feature Selection Algorithms 

To optimize the performance of each pairwise classifier, appropriate feature 

selection methods are also required. Feature selection is widely used prior to applying a 

classification method; because, in many cases, a reduced feature space is beneficial for 

pattern learning, especially for HI (Serpico & Bruzzone, 2001). Two key components of 

feature selection are the search strategy and the criteria for feature importance. Search 

strategies can be separated into optimal and suboptimal searches. Optimal feature 

searches aim to find the best subset of features subject to the evaluation criteria, while the 

suboptimal search finds a good solution but is not guaranteed to be the best subset. 

Because an exhaustive search is difficult to avoid for an optimal search, suboptimal 

searches are usually more computationally effective. In this dissertation, because feature 
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selection needs to be applied to each individual classifier for feature subset optimization, 

a suboptimal search is the more realistic solution (Serpico & Bruzzone, 2001).  

Sequential Floating Forward Selection (SFFS) is an effective tool for suboptimal 

feature selection, and works well with a large number of input features (Ververidis & 

Kotropoulos, 2008). It utilizes the correct classification rate (CCR) of a classifier as the 

criterion for feature ranking in a wrapper-based framework. Sequential searching means 

the SFFS algorithm adds or removes features one at a time into the subset for a wrapper. 

Starting from an empty set and incrementally adding features is called forward selection, 

whereas starting from the whole set and deleting one feature at a time is called backward 

selection. The SFFS consists of a forward step (insertion) and a conditional backward 

(deletion) step, which assists in avoiding convergence to a local maxima of the criterion 

function. The SFFS search is optimized by running a series of statistical tests whose 

accuracy relies on estimation of the variance of the CCR during cross-validation 

repetitions. SFFS can be used with any classifier in the context of any wrapper and 

therefore is used as the feature selection tool for pairwise classifiers with both MLC and 

SVM in this dissertation.  
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Chapter 6 Data Sets Description 

Two data sets with simultaneous FWL and HI acquisition are analyzed in this 

dissertation. The first data set is located in Moran, Wyoming, close to the Snake River. 

The second data set was acquired over the Eel River Critical Zone research site named 

“Rivendell” located in Mendocino, California. The data sets will be referred to as Moran 

and Rivendell hereafter. Both data sets were collected by the National Center for 

Airborne Laser Mapping (NCALM). System characteristics and configuration, data set 

details, and methods for determining a reference classification sample for each data set 

are discussed in this chapter.  

6.1 Moran Data Set 

6.1.1 System Characteristics and Acquisition Details 

Full waveform LiDAR, HI, and high resolution orthophotography were collected 

by NCALM in August 2012, with all sensors mounted on the same airborne platform. 

The FWL data set was collected with an Optech Aquarius LiDAR system with a green 

(532 nm) laser scanner using a 12-bit full-waveform digitizer. The system produced both 

discrete return and FWL data simultaneously. The HI was acquired with a CASI-1500, a 

visible and near-infrared wide array hyperspectral imager. Seventy-two spectral bands 

were recorded across the working spectrum of the CASI-1500, with a ground pixel spatial 

resolution of 1.2 m. The HI imagery was processed and georeferenced using data from 

the same POS system as the FWL. High-resolution aerial photography was also flown for 

the area using a DIMAC 60 Mpixel digital camera. The imagery was orthorectified with a 

final ground pixel size of 5 cm, which is significantly higher spatial resolution than the 
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HI. System and acquisition parameters for the FWL, HI and orthophotography are given 

in Tables 6-1, 6-2, and 6-3.  

Table 6-1 LiDAR system specification and acquisition parameters 

Specifications 

Parameter (Unit) Value 

Laser wavelength (nm) 532 

Range capture Up to 4 range measurements 

Pulse width (FWHM in ns) 8.3 

Digitization interval (ns) 1 

Analog-to-digital quantization 4096 (12-bit) 

Scan field of view (degree) 0 - 25 

Beam divergence (mrad) 1 

Pulse repetition rate (KHz) 33, 50, 70  

Flight height (Above ground level, m) 300 - 600 

Acquisition parameters 

Pulse repetition rate (KHz) 33 

Flight height (Above ground level, m) 510 

Shot density (1/m2) 4.2 

Scan field of view (degree) 20 
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Table 6-2 CASI-1500 (Hyperspectral) specification and acquisition parameters 

Specifications 

Parameter (Unit) Designed Value 

Spectral rage (continuous coverage) (nm) 380 - 1050 

Number of spectral channels Up to 288  

Number of spatial pixels 1500 

Total field of view (degree) 40 

Instantaneous field of view (IFOV, mrad) 0.49 

Focal ratio f/3.5 

Spectral resolution (FWHM) (nm) < 3.5  

Pixel size (μm) 20 Χ 20 

Acquisition parameters 

Spectral rage (continuous coverage) (nm) 366.4 - 1043.7 

Number of spectral channels 72 

Flight height (Above ground level, m) 2016.6 

Pixel size on the ground (m) 1.2 

 

 

Table 6-3 DIMAC specification and acquisition parameters 

Specifications 

Parameter (Unit) Designed Value 

Sensor size (mm) 53.9 Χ 40.4 

Pixel size (μm) 6 Χ 6 

Lens focal length (mm) 70 

Shutter (sec) 1/125 to 1/500  

Image output pixels 8984 Χ 6732 (60MP) 
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Acquisition parameters 

Flight height (Above ground level, m) 510 

Pixel size on the ground (cm) 5 

 

 

Figure 6-1 Moran area overview and experimental site in RGB (643 nm, 548 nm, and 462 nm) bands. 

The selected study area is a complex close to the Snake River, with a size of 

1200m × 1200m. It consists of a built up area in the center, a surrounding forested area, 

and portion of the Sane River river bank on the south and west sides, as shown in Figure 

6-1.  

6.1.2 Ground Truth Labeling 

Ground truth labeling was accomplished using manual interpretation of the high-

resolution orthophotos and HI. Given the different ground pixel sizes between the 

orphophoto and HI (see prior section), one HI pixel corresponds to 576 orthophoto pixels. 
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A comparison of the HI and orthophoto resolution is shown in Figure 6-2. In order to 

avoid zooming issues, the region of interest (ROI) for each class was first chosen in the 

HI. Since the HI and aerial photographs were obtained on the same platform, and 

georeferenced by the same GNSS/INS integration system, the ROIs could be reconciled 

via a common map projection using the ENVI (Environment for the Visualization of 

Images, version 4.8, Exelis Visual Information Solutions, Boulder, Colorado) ROI tool. 

Once the HI identified ROIs were viewed on the orthophoto, pixels of classes other than 

the one of interest were trimmed from the ROIs. The final ROIs were used as high-

resolution orthophoto validated ground truth for the classification experiments.  

Nine natural and synthetic target classes were identified for the study area: trees, 

bare ground, healthy grass, stressed grass, concrete road, asphalt road, building, sand, and 

water. The training and validation sample ROIs for each class are shown in Figure 6-3. 

Note that the ratio of training to validation samples is approximately 2:1. The training 

samples were selected such that samples from each class are spatially distributed (i.e., not 

clustered in a single portion of the image) when they exist in multiple locations of the 

study area. The validation samples were selected such that they are spatially separated 

from the training samples whenever possible, enabling a location based stratified 

sampling pattern.  
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(a) 

 
(b) 

Figure 6-2 A comparison of HI and aerial photograph level of detail for a common area: (a) HI level of detail sample;   

(b) Orthophoto level of detail sample. Pixel sizes are 1.2 m and 0.05 m, respectively.  



   

71 

 
                                                                            (a) 

 
                                                                            (b) 

Figure 6-3 Color coded images of training and validation samples: (a) Training samples; (b) Validation samples.  
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6.2 Rivendell Data Set 

6.2.1 System Characteristics and Acquisition Details 

The Rivendell data set was collected in July 2014 and contains the South Fork Eel 

River on the west side going from north to south and Elder Creek in the center going 

from east to west. The data was acquired with an approximate coverage of 4000m (east-

west) by 5000m (north-south). Full waveform LiDAR data and HI were collected by 

NCALM using the same systems introduced for the Moran data set (see tables 6-1 

through 6-3).  

Table 6-4 Acquisition parameters for the Rivendell data set 

LiDAR 

Parameter (Unit) Value 

Pulse repetition rate (KHz) 33 

Flight height (Above ground level, m) 600 

Shot density (1/m2) 3.57 

Scan field of view (degree) 20 

Hyperspectral Sensor 

Spectral rage (continuous coverage) (nm) 368.8 - 1041.3 

Number of spectral channels 48 

Flight height (Above ground level, m) 435.8 

Pixel size on the ground (m) 1 

 

Relevant differences in the data acquisition parameters are summarized in Table 

6-4. The Rivendell data set is introduced as the second test data set because of it contains 
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several vegetation types with similar spectral signatures but different height ranges and 

canopy shapes; therefore, it can be used for testing the capability of the proposed 

methods for separating similar targets based on vertical structure. Also, the training 

sample set was created by expert with in-depth knowledge regarding vegetation grown in 

this area, with the help of multiple kinds of remote sensing data and ground observation, 

thus the quality of the training sample will benefit the assessment of classification 

accuracy.  

6.2.2 Ground Truth Labeling 

Ground truth labeling was obtained in a different manner than for the Moran data 

set. Six types of ground covers were identified by interpreting high-resolution imagery 

and a 1 m resolution LiDAR-generated DEM (this work was performed by Collin Bode at 

the Department of Integrative Biology, University of California, Berkeley) and are listed 

as follows: building, riparian, meadow, chaparral, broad leaf vegetation, and conifer 

vegetation. An overview of the area with the distribution of identified targets is shown in 

Figure 6-4.  

The ratio of training and testing data is 1:2, with the class-specific details listed in 

Table 6-5. This ratio is chosen because more reference samples are available for the 

Rivendell data set than Moran, so a smaller percentage could be kept as training samples 

and still provide enough instances to train the classifiers. Also this change of the ratio 

tests the performance of the proposed classification framework under different working 

conditions. All classes except the building have 2000 training samples and 4000 

validation samples due to the limited amount of buildings in the study area. Coverage for 

the building class is quite limited in the study area; only 135 voxels were picked for this 
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class. Half of the training data were used to determine VEDC dimension for the SWF and 

classification parameters; the remainder were used to train the classifiers.  

Table 6-5 Size of training and testing data by class (in number of HI pixels) 

Class Number of training sample Number of testing sample 

Broad leaf 2000 4000 

Building 45 90 

Chaparral 2000 4000 

Conifer 2000 4000 

Meadow 2000 4000 

Riparian 2000 4000 

 

To evaluate the performance of the proposed methods for separating targets with 

structural complexity and spectral similarity, the broad leaf and conifer vegetation classes 

were further identified at the species level. Madrone and oak trees were identified in the 

broadleaf class, and douglas-fir and redwood trees in the conifer class. Note that not all 

samples in the broad leaf and conifer vegetation class can be positively identified as one 

of the individual species; thus, the samples for the four specific tree types are limited, 

with 6000 samples identified for the madrone and douglas-fir species and 1500 samples 

for the oak and redwood, respectively.  
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Figure 6-4 Rivendell data set with ROI



   

76 

Chapter 7 Experimental Results and Analysis 

In this chapter, results generated by the proposed FWL/HI classification methods 

are presented. Feature selection from the FWL/HI feature space is performed, and the 

pairwise classifier framework is applied using two widely used classifiers, MLC and 

SVM. Classification accuracy is evaluated using FWL and HI individually for 

comparison, with the results indicating classification improvement when using the 

combined FWL/HI data sets. Since a discrete LiDAR point cloud (LPC) was collected 

simultaneously with the FWL data, it is also evaluated both alone and in conjunction with 

the HI for classification tasks. The FWL and LPC data is further compared to evaluate the 

effectiveness of waveform data for classification performance.  

7.1 Results and Analysis of Moran Data Set 

7.1.1 Waveform Voxelization 

The voxel reference frame was defined to match the georeferenced HI pixel 

locations. The ground footprint of each voxel was a 1.2m × 1.2m square corresponding to 

the HI pixel size. A total of one million voxel columns were constructed in the 

experimental area. A small percentage (about 2%) of voxel columns contained a very 

small number of return samples and were thus removed from further processing. The 

height of each voxel was set to be 15 cm, which corresponds with the FWL digitizer 

interval of 1 ns. An example of a SWF generated from all samples located in one column 

of voxels is shown in Figure 7-1.  
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(a) 

 

(b) 

Figure 7-1 Waveform synthesis example: (a) All waveform samples Intersecting a Voxel Column (containing 240  

voxels), (b) Synthesized waveform.  

A total of 10,209,526 raw waveforms from 13 LiDAR flight lines with partial or 

full coverage over the experimental area were used to generate the SWFs. With such a 

high density of original waveforms, each SWF was generated from an average of 

approximately 10 original waveforms. A waveform density map of the experimental area 

is shown in Figure 7-2.  
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Figure 7-2 Waveform density map 

7.1.2 Disjoint Data Classification 

7.1.2.1 VEDC Feature Generation 

The dimension of the VEDC was determined using both supervised and 

unsupervised methods. This was done because the optimal dimension and height 

segmentation of VEDC may vary for different data sets. The unsupervised approach 

determines VEDC dimension based on the accuracy of VEDC only classification. 

However, in instances where multiple classifiers are used, an unsupervised approach may 

be preferred. Therefore, an unsupervised feature generation method is designed attempt 

to maximize the entropy of VEDC features using a relatively low number of bands.  

The supervised VEDC feature generation was first conducted by examining the 

relationship of classification accuracy using VEDC features only versus the number of 

VEDC components. The training SWFs were aligned by height, and the height range of 

interest for VEDC chosen as the range that 80% of the return samples with an intensity 
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higher than 20% of the maximum return intensity fell into. The VEDCs were then 

computed based on the voxel components falling within this height interval. The 

relationship between classification accuracy using VEDC only versus the dimensionality 

of VEDC is shown in Figure 7-3. The best performance for SVM classification was 

achieved with 7 VEDC bands (65.47%), with the classification accuracy decreasing to 

approximately 60% when the dimensionality (number of bands) is increased beyond 8. 

The supervised VEDC dimension was therefore set to be 7 for this data set. As previously 

mentioned, the height of the last return, penetration depth, maximum amplitude, and 

skewness of the SWFs were also calculated as additional vertical waveform features, 

producing a feature vector with 11 components describing each SWF. For the HI, 15 

principal components were retained for each HI pixel after PCA, representing over 99% 

of the cumulative variance. Feature extraction for the synthetic waveforms generated 

from the LPC was implemented in the same manner as for SWF.  

 

Figure 7-3 Classification accuracy using SVM for VEDC only 
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As reviewed in Chapter 5, VEDC feature generation via unsupervised methods is 

more flexible, particularly when using multiple classifiers, and is thus more appropriate 

for many applications. Based on the method introduced in Chapter 5, the number of 

VEDC bands is determined using the entropy sum for all bands.  

If we assume the VEDC band number is N, then the entire height range H can be 

divided into N parts, with the starting height hi of the ith part given as  

ℎ𝑖 = (𝑖 − 1) ∗
𝐻

𝑁
.                                                         (7-1) 

Thus, we can evaluate the overall entropy against varying VEDC dimension for the 

training data. It can be inferred from the supervised VEDC dimension determination 

reviewed in the prior paragraph that VEDC features are able to preserve useful 

waveform information with relatively low dimensionality. Using half of the training 

data, the overall entropy as a function of band numbers, ranging from 1 to 30 is 

shown in Figure 7-4. Note that the band number describes the total number of bands 

of VEDC over the entire vertical observation range, and doesn’t refer to a band 

index. The actual relationship of summed entropy value versus the unsupervised 

VEDC band number can be fitted by a two factor exponential function. Although the 

entropy shows constant grow with an increasing number of bands, the pace slows 

after a certain point. This point can be found be examining the curvature of the fitted 

function curve, the closest integer to the peak of curvature ranging from 1 to 30 is 10. 

Therefore, the 10 bands are selected as our initial VEDC dimension.  

The entropy of each VEDC band is displayed in Figure 7-5 along with the entropy 

contributed by each land cover class. According to the plots, bands 2 and 3 contribute 
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relatively little information, and a majority of the land cover classes do not contain 

significant information in bands 2 and 3. Therefore, we combined band 2 with band 1, 

and band 3 with band 4, and reduce the overall VEDC band number to 8. Classification 

results of using both VEDC generation methods (supervised and unsupervised) will be 

compared in Section 7.1.3.2 to validate the unsupervised method.  

 

Figure 7-4 Entropy value versus VEDC band number 
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(b) 

Figure 7-5 Component-specific entropy: (a) Entropy of each VEDC component; (b) Entropy of each land cover class 

7.1.2.2 Classification Accuracy 

Classification results using solely SWF, HI and synthetic waveform generated 

from LPC (still denoted by LPC in the table) are shown in Table 7-1, the overall accuracy 

of each method is listed and κ denotes the kappa agreement coefficient. Using HI data 

with the SVM pairwise classifier achieved the best overall performance whereas the LPC 

showed the poorest performance for both classifiers. The SWF with MLC achieved an 

acceptable performance with the 11 extracted features, demonstrating that the VEDC 

features are effective metrics for quantifying the intensity-height distribution information 

from the SWF, and they also provide a significant advantage over just using metrics 

derived from the LPC.  

Table 7-1 Classification accuracy and kappa agreement of using FWL, HI and the discrete LiDAR point cloud 

 

Data type Overall accuracy (%) Kappa agreement (%) 

MLC SVM MLC SVM 

SWF 79.83 71.30 75.48 65.68 

HI 78.01 85.82 74.76 82.12 

LPC 65.66 60.17 50.88 53.72 
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7.1.3 Fused Data Classification 

7.1.3.1 Classification using the entire SWF 

The SWFs created using the method described in Chapter 5 can be directly used 

for classification without performing the VEDC feature extraction. Combining each 

waveform’s 240 samples with the 15 PCA bands from HI produces a feature vector with 

255 dimensions. Classification with these fused feature vectors using MLC produces a 

low overall accuracy of 43.7%, potentially due to the large dimension of the input feature 

vectors. However, an acceptable overall accuracy of 82.0% was achieved using SVM, 

classification details are presented in Table 7-2.  

Table 7-2 Confusion matrices of SVM classification for direct integration of entire SWF and HI 

Predicted 

 

Actual 

Tree Healthy 

grass 

Ground Road Pitch 

road 

Building Sand Water Stressed 

grass 

Total 

Tree 458 6 4 0 0 0 0 0 4 472 

Healthy 

grass 

7 478 0 0 0 0 0 0 25 510 

Ground 79 1 698 0 0 0 0 0 44 822 

Road 0 0 7 381 0 1 65 0 0 454 

Pitch road 0 1 2 16 119 0 0 0 0 138 

Building 1 7 13 39 14 42 111 0 0 227 

Sand 0 0 1 71 3 4 265 2 0 346 

Water 4 3 0 0 1 0 0 372 0 380 

Stressed 

grass 

4 22 121 0 0 0 0 0 306  453 

Total 553 518 846 507 137 47 441 374 379 0.820 
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Another approach to prepare waveforms for classification is to transform the 

SWFs using PCA, similar to the approach commonly applied to HI. By examining the 

covariance structure of the waveforms, 35 bands were extracted from each synthesized 

waveform, representing over 99% of the cumulative variance. Therefore the input feature 

vector has a reduced dimension of 50 (compared with directly using all waveform 

samples). The accuracy of MLC classification increases to 69.3% (an improvement of 

25.6%), which is most likely due to the significant reduction in the feature vector 

dimension. However, the accuracy of SVM classification dropped to 56.0%, indicating 

that the transformed waveform intensity may not sufficiently preserve discriminatory 

information from the SWFs. Possible reasons why PCA was not able to effectively 

extract information from SWF include: 1) spatial information is disregarded in the PCA 

transformation, and therefore the discriminatory power of SWFs is reduced by only 

examining the intensity information; 2) certain components of SWFs may contain noise 

which would be considered as large variance bands by PCA.  

In general, the performance of direct fusion of SWF or PCA transformed SWF 

with HI falls below standalone classification of HI only, which suggests an effective 

feature extraction method designed for SWF is required. Therefore, a classification 

experiment is carried out after VEDC feature extraction in the following section.  

7.1.3.2 Classification using proposed methods 

Proposed methods utilize a pairwise classification framework with MLC and 

SVM used as the individual pairwise classifiers. The features used for each classifier and 

each pair of classes were selected using a SFFS approach. Feature selection and 

classification results are shown in this section.  
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(1) Feature selection results 

Classification of the fused SWF and HI data set using the proposed methods 

required feature selection for each individual classifier by exploiting a portion of the 

training data. We used 20% of the training samples to perform a feature importance 

estimation for each method (MLC or SVM). SWF and HI features were ranked together, 

features are selected using SFFS method based on classification accuracy; the selected 

features for each class are shown in Table 7-3. The numbers above the brackets are the 

index of the features in the supervised VEDC or HI principal component bands. For 

unsupervised VEDC, HI features selection remain the same, SWF features selection 

shifted bands in some cases due to the different height segmentation, but the total number 

of class pairs choosing SWF features remains the same. Acronyms were used for the 

other four LiDAR derived features: HLR for height of last return, PD for penetration 

depth, MA for maximum amplitude, and SW for SWF skewness.  

The important features for MLC and SVM may differ for each pair of classes, but 

generally they contain many common features. It can be easily observed in Table 7-3 that 

the VEDC components were the more important SWF features in most cases. The 

penetration depth feature was also chosen in several pairs, but the height of last return, 

maximum amplitude, and skewness features were seldom chosen in any class pair. The 

chosen HI components for the pairwise classifiers were mostly from the first 10 

components of PCA, indicating that the number of preserved principal components was 

adequate for classification. When using MLC for feature ranking, HI features were 

picked for all class pairs (36 total), and SWF features were picked for 30 class pairs. 

SVM feature ranking reserved HI features for 34 pairs and SWF features for 32 pairs. In 
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most cases, when SWF features were less important than HI, the ground class was 

involved. Both the MLC and SVM classifiers determined that only HI features were 

necessary for separating ground from concrete roads or asphalt roads. This is a natural 

complement to SWF because reflected waveforms from ground and the two type of roads 

are quite similar.  

Table 7-3 Selected features for each type of classifier and each pair of classes; HLR stands for height of last return, PD 

for penetration depth, MA for maximum amplitude, and SW for SWF skewness. 
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 (2) Classification accuracy evaluation 

Classification accuracies of supervised and unsupervised VEDC feature fused 

with HI are compared in Table 7-4. We can see that the VEDC features generated by the 

unsupervised method have a slightly lower MLC accuracy (by 2.9%) and higher SVM 

accuracy (by 2.6%). Because in most cases an unsupervised method is optimal for VEDC 

feature generation, and the unsupervised VEDC achieved the best accuracy out of all four 

combinations, we will use unsupervised VEDC for all further experiments.  

Classification accuracy for each class using the chosen features, as well as the 

overall accuracy is shown in Table 7-5. It is obvious that the LPC/HI was outperformed 

by SWF /HI in all cases, indicating that the point cloud is not as effective as SWF when 

used in combination with HI. Considering that a similar conclusion was reached earlier, 

we can safely infer that using the proposed features extracted from a LPC is not able to 

offer the same level of classification information content as what is provided by SWF.   

For fused SWF and HI, the classification accuracy with either type of classifier 

exceeded the accuracy of using either data set alone. The best performance individually 

was achieved by HI alone with a SVM classifier, this accuracy was exceeded by 0.3% 

with MLC and 9.4% with SVM using the fused SWF/HI dataset. The gain in kappa 

agreement was also more significant with the fused data. Therefore the conclusion can be 

drawn that the fusion of SWF and HI provides a significant improvement in classification 

accuracy.   
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Table 7-4 Classification accuracy comparison between two types of VEDC 

 Supervised VEDC+HI Unsupervised VEDC+HI 

MLC 89.0 86.1 

SVM 92.6 95.2 

 

Table 7-5 Classification accuracy using MLC and SVM with fused SWF/HI and LPC/HI 

Class User’s Accuracy (%) Producer’s accuracy 

SWF+HI LPC+HI SWF+HI LPC+HI 

MLC SVM MLC SVM MLC SVM MLC SVM 

Tree 86.2 95.6 86.2 88.1 75.5 98.0 65.2 64.0 

Ground 85.9 100 98.7 94.5 99.3 96.8 96.3 99.4 

Healthy grass 90.6 96.9 83.5 95.5 75.4 92.9 84.4 82.4 

Stressed grass 85.7 92.1 79.5 79.7 84.3 97.4 85.5 96.0 

Concrete road 89.2 99.8 92.9 98.5 79.9 85.2 82.4 95.7 

Asphalt road 43.5 90.6 47.1 78.3 100 87.4 36.5 100 

Building 96.9 60.8 43.2 95.6 77.7 99.3 43.0 81.3 

Sand 87.6 98.6 87.0 93.1 98.7 100 100 100 

Water 84.7 99.5 46.3 59.5 100 100 98.9 100 

Overall Accuracy 

Accuracy 86.1 95.2 80.9 88.7 86.1 95.2 80.9 88.7 

κ 84.0 94.5 78.0 87.0 84.0 94.5 78.0 87.0 

 

As shown in Table 7-5, the performance of SVM exceeded MLC for most classes, 

and the difference in overall accuracy was 9.1% for SWF/HI. A possible explanation for 

the difference between classifiers is that the distribution of features from the two data 

sources may deviate from the MLC assumption that all features are associated with a 

common Gaussian distribution. The only exception was for buildings, where MLC 

showed better accuracy than SVM. By examining the confusion matrices given in Table 

7-6, we can see that SVM confuses these classes with similar classes more frequently 

than MLC, i.e., the concrete road and asphalt road classes are confused with the building 

class, and healthy grass, bare ground and tree classes are confused with the stressed grass 
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class. It is possible that even after transforming input features to a higher dimensional 

space, the samples are still difficult to separate via the SVM method because of their high 

homogeneity. However, the higher MLC user accuracies for the building classes does not 

necessarily indicate a stronger discrimination ability, but more likely that the distribution 

model obtained inside MLC was over-estimating the probability of presence of these two 

classes, at the cost of under-estimating the probability of similar classes. Furthermore, 

SVM exhibits a more stable performance among classes (12.4% user’s accuracies 

standard deviation) than MLC (15.4%), which is an important characteristic that supports 

the use of SVM in this application.  

Table 7-6 Confusion matrices of MLC and SVM classification for the fused data: (a) MLC results, (b) SVM results 

(a) 

Predicted 

 

Actual 

Tree Healthy 

grass 

Ground Concrete 

Road 

Asphalt 

road 

Building Sand Water Stressed 

grass 

Total 

Tree 407 16 4 0 0 11 0 0 34 472 

Healthy 

grass 

17 462 0 0 0 0 0 0 31 510 

Ground 63 33 706 0 0 19 0 0 1 822 

Concrete 

Road 

10 4 0 405 0 31 4 0 0 454 

Asphalt 

road 

0 16 0 61 60 0 0 0 1 138 

Building 0 0 0 7 0 220 0 0 0 227 

Sand 10 2 0 24 0 2 303 0 5 346 

Water 16 32 0 10 0 0 0 322 0 380 

Stressed 

grass 

16 48 1 0 0 0 0 0 388 453 

Total 539 613 711 507 60 283 307 322 460 0.861 
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(b) 

Predicted 

 

Actual 

Tree Healthy 

grass 

Ground Concrete 

Road 

Asphalt 

road 

Building Sand Water Stressed 

grass 

Total 

Tree 451 13 6 0 2 0 0 0 0 472 

Healthy 

grass 

5 494 0 0 0 0 0 0 11 510 

Ground 0 0 822 0 0 0 0 0 0 822 

Concrete 

Road 

0 0 0 453 0 1 0 0 0 454 

Asphalt 

road 

0 0 1 12 125 0 0 0 0 138 

Building 0 1 10 62 16 138 0 0 0 227 

Sand 0 0 0 5 0 0 341 0 0 346 

Water 2 0 0 0 0 0 0 378 0 380 

Stressed 

grass 

2 24 10 0 0 0 0 0 417 453 

Total 460 532 849 532 143 139 341 378 428 0.952 

 

7.2 Results and Analysis of the Rivendell Data Set 

Based on the results of the Moran data set, the efficacy of the proposed method 

was validated, and the fusion of unsupervised VEDC and HI with the SVM classifier 

exhibited the best performance among all possible candidates. To further evaluate the 

performance of the proposed method in an environment comprised of different target 

classes with similar vertical structures, the Rivendell data set is introduced for additional 

experiments.  
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7.2.1 Waveform Voxelization and Feature Extraction 

As before, the reference frame of the georeferenced HI is used for voxel 

construction, with the voxel footprint size set to 1 m × 1 m (same as HI pixel size) and 

voxel height set to 15 cm to match the FWL digitizing frequency. Since the experimental 

area for Rivendell is much larger than the Moran data set (almost 13 times larger), and 

the number of class is smaller (6 general classes for Rivendell versus 9 for Moran), not 

all possible voxels were built for waveform voxelization and synthesizing in the 

experimental area. Only the training and validation voxels necessary for the analysis 

herein were built and the intersecting waveforms processed. Five partially overlapping 

FWL scans were flown over the area. Each column of voxels had approximately four 

intersecting waveforms from which to reconstruct the SWFs.  

After the SWFs were obtained over each column of voxels, both the supervised 

and unsupervised VEDC approach were used for waveform feature extraction in the same 

manner as described in Chapter 5 and implemented for the Moran data set. Using half of 

the training data, the SVM classification accuracies with changing VEDC dimensions are 

shown in Figure 7-6 and the overall entropy as a function of number of bands, ranging 

from 1 to 30, is shown in Figure 7-7. The supervised approach suggests 8 bands provides 

the optimal option. For the unsupervised approach, although the entropy shows constant 

growth with an increasing number of bands, in agreement with the Moran entropy values, 

the pace begins to slow after a point of maximum curvature, which is also 8 bands in this 

case.  
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Figure 7-6 Classification accuracy using SVM for VEDC only 

 

 

Figure 7-7 Entropy value verses VEDC band number for the Rivendell data set  
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(a) 

 

(b) 

Figure 7-8 Component-specific entropy for the Rivendell data set: (a) Entropy of each VEDC component; (b) Entropy 

contribution for each land cover class 

The entropy of each VEDC feature is compared with class specific details in 
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size of class 2 training data. Unlike the Moran data set results, there are no VEDC bands 

that provide significantly less information than the other bands; therefore, all the 8 bands 

of VEDC are used as waveform features for fusion and classification. Since supervised 

approach also suggests an 8 band VEDC and none of the bands were merged for the 

unsupervised approach, both the VEDC methods will generate the same VEDC feature 

set for Rivendell data set. Finally, PCA of the HI indicated that 12 PCA bands are 

sufficient to encapsulate more than 99% of the data variance. Combined with the four 

additional SWF shape features, the same as used in the Moran data set (HLR, PD, MA, 

and SW), a feature vector with 24 bands is created for each voxel column. 

7.2.2 Disjoint Data Classification 

Classification results from SWF, and HI alone as well as the fused SWF/HI 

feature vectors using MLC and SVM are shown in Table 7-7. For SWF classification, 

SVM classification outperforms MLC significantly; whereas the two classifiers yield 

similar results for HI. Among the single data set classification combinations, HI 

outperforms SWF with both classifiers, and SVM for HI achieves the best overall 

accuracy of 89.72%. The confusion matrices generated from the SVM results for SWF 

and HI are shown in  

Table 7-8 where it can be seen that although the overall performance is similar, 

SWF outperforms HI in chaparral, meadow, and riparian classes, whereas HI outperforms 

SWF in the other three classes.  

Table 7-7 Classification accuracies of standalone data set and fused data 

Data type Overall accuracy (%) κ (%) 

MLC SVM MLC SVM 

SWF 64.67 84.14 55.92 81.15 
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HI 83.02 89.72 78.82 87.18 

SWF+HI 84.98 97.13 81.27 96.43 
 

Table 7-8 Confusion matrices: (a) VEDC classification using SVM; (b) HI classification using SVM.  

(a)  

Predicted 

 

Actual 

Broad leaf Building Chaparral Conifer Meadow Riparian Total 

Broad leaf 2820 0 307 789 7 77 4000 

Building 1 38 13 12 0 26 90 

Chaparral 156 1 3655 188 0 0 4000 

Conifer 669 0 304 2977 0 50 4000 

Meadow 2 0 0 15 3785 198 4000 

Riparian 60 0 0 182 130 3628 4000 

Total 3708 39 4279 4163 3922 3979 0.841 

 

 

(b) 

Predicted 

 

Actual 

Broad leaf Building Chaparral Conifer Meadow Riparian Total 

Broad leaf 3210 0 373 306 25 86 4000 

Building 0 75 9 0 0 6 90 

Chaparral 406 0 3408 137 0 19 4000 

Conifer 265 0 64 3577 0 94 4000 

Meadow 1 0 2 0 3996 1 4000 

Riparian 50 2 15 166 8 3759 4000 

Total 3932 77 3871 4216 4029 3965 0.897 
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7.2.3 Fused Data Classification 

7.2.3.1 Six Class Land Cover Classification 

To select the optimal feature subset for the fused data set, 20% of the training 

samples were used to perform a feature importance estimation for each classification 

method (MLC and SVM). The SWF and HI features were ranked together, features are 

selected using SFFS method based on classification accuracy; the selected features for 

each class are shown in Table 7-9. Features selected for MLC and SVM may differ for 

each pair of classes, but similarities can be observed. It is shown in Table 7-9 that the 

VEDC components were the more important SWF features in most cases. The other four 

waveform features are only selected in a few instances. When using MLC for feature 

ranking, HI features are picked for 14 class pairs (15 total), and SWF features are picked 

for 14 class pairs. Feature ranking for SVM reserved HI features for 14 pairs and SWF 

features for 14 pairs. For the only one classifier pair waveform features are not selected, 

the two target classes are meadow and riparian, both of which contain little vertical 

structural information.  

Per Table 7-7, the fused data set has the best overall performance, exceeding the 

standalone HI accuracy for both classification methods, e.g., a 7.41% improvement for 

the SVM. The gain in kappa agreement is also significant for the fused data compared to 

the standalone SWF or HI. This observation agrees with the Moran data set in that the 

fusion of SWF and HI provides a significant improvement in classification accuracy. A 

12.15% accuracy difference is also observed between SVM and MLC for fused SWF and 

HI, which shows a similar trend with the Moran data set. Confusion matrices of MLC and 

SVM classification for the fused Rivendell data set are shown in Table 7-10 where it can 
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be observed that most MLC misclassification occurs in the broad leaf, chaparral and 

conifer vegetation classes. This may be due to their overlapping height ranges and 

spectral signatures. However, with SVM, these classes are still well separated.  

Table 7-9 Selected features for data set 2 

 

Table 7-10 SVM and MLC results for fused data set: (a) MLC results; (b) SVM results.  

(a) 

Predicted 

 

Actual 

Broad leaf Building Chaparral Conifer Meadow Riparian Total 

Broad leaf 3027 0 397 441 52 83 4000 

Building 23 39 0 0 2 26 90 

Chaparral 357 0 3364 279 0 0 4000 

Conifer 481 0 205 3241 6 67 4000 

Meadow 14 0 305 0 3611 70 4000 

Riparian 87 28 10 46 38 3791 4000 

Total 3989 67 4281 4007 3709 4037 0.850 
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(b) 

Predicted 

 

Actual 

Broad leaf Building Chaparral Conifer Meadow Riparian Total 

Broad leaf 3838 0 50 94 17 1 4000 

Building 1 75 0 0 4 10 90 

Chaparral 88 0 3831 81 0 0 4000 

Conifer 122 0 81 3789 0 8 4000 

Meadow 4 0 0 1 3988 7 4000 

Riparian 1 0 0 2 4 3993 4000 

Total 4054 75 3962 3967 4013 4019 0.971 

 

7.2.3.2 Vegetation Species Classification 

An overall SVM classification accuracy exceeding 97% was achieved using the 

proposed methods for separating the six land cover classes for Rivendell. To further 

evaluate the performance of the fused data set for separating objects with similar 

properties (spectral or structural), a deeper classification is performed where multiple 

trees species were identified within the broadleaf and conifer vegetation classes. Madrone 

and oak trees are discriminated from within the broadleaf class, and douglas-fir and 

redwood trees from within the conifer class.  

The HI spectrum of the different tree specifies in a common class are quite similar, 

as shown in Figure 7-9, with distinguishable scale differences only in certain bands (25 – 

50). In this situation, the VEDC feature may be useful if the different species within one 

general class have different canopy structure, as shown in Figure 7-10. The VEDC 

features are presented in Figure 7-11 where it is clear that the oak species (e.g., live oak, 
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black oak and tan oak) have a higher first VEDC value than madrone. Since the madrones 

found in this area are mostly shade-intolerant, they have more open canopy then the oaks 

(Rivendell training data set description, Bode 2016). The individual madrone tree crowns 

do not develop into a continuous layer, making the canopy more easily penetrated by 

laser light, this is visual illustrated in the photographs of the canopy shown in Figure 7-11 

(a) and (b). These characteristics cause the value of first VEDC band to be higher and the 

last lower, for madrones as compared to oaks. Similarly for the conifer class, douglas-firs 

tend to have conical tops, and redwoods broader, umbrella shaped tops (Berrill et al., 

2013) (Figure 7-11 (c) and (d)). The differences in shape are reflected in the VEDC 

profiles shown in Figure 7-10. These observations are also supported by the feature 

selection results shown in Table 7-11, where classifiers dealing with madrone versus oak 

and, douglas-fir versus redwood, select the first VEDC band, indicating that structural 

differences between these similar trees exist in the tree canopies.  
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(b) 

Figure 7-9 (a) Mean spectrum of madrone and oak (both broadleaf) from a training sample; (b) Mean spectrum of 

douglas-fir and redwood (both conifer) from a training sample 
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(b) 

Figure 7-10 (a) Mean VEDC of madrone and oak (both broadleaf) from training sample; (b) Mean VEDC of douglas-

fir and redwood (both conifer) from training sample 

Since the broad leaf and conifer classes have been subdivided into more specific 

species classes, the number of land cover classes is increased from six to eight. The 

number of training samples for the madrone was 2000 (4000 validation samples) and 500 

(1000 validation samples) for the oaks. The same training and validation sample sizes 

apply to the douglas-fir and redwood species, respectively. Classification results using 

the stand-alone SWF and HI data sets and the fused data set are shown in Table 7-12. 

With the six general classes separated into eight species, we can see that the classification 

accuracy improves for all cases even though the overall class number increases. The 

classification accuracy achieved with SWF (92.5%) and HI (93.3%) is very similar. 

However, an interesting observation is that SWF performs better for broad leaf trees, 

whereas HI is better at separating conifer trees. A possible explanation is that the 

redwoods may show a red tone as compared to the blue-green color of douglas-firs, and 

this difference may be captured by HI. Fusion of the SWF and HI provides both structural 
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and spectral information for the target classes, and yields a high overall accuracy of 

98.6%, with no strong correlation between different classes evident. The overall accuracy 

of the eight class fused fata set is also 1.5% higher than the six class fused data set. This 

may indicate that treating different tree species as a single class increases the difficulty 

for a classifier to learn a common pattern within the data.  

                   

(a)                                                                          (b) 

                   

(c)                                                                       (d) 

Figure 7-11 Canopy structure: (a) Madrone; (b) Oak; (c) Douglas-fir; (d) Redwood. 
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Table 7-11 Selected features for 8 classes 
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Table 7-12 (a) Confusion matrix for SWF classification using SVM; (b) Confusion matrix of HI classification using 

SVM; (c) Confusion matrix for fused data classification using SVM.  

(a) 

Predicted 

Actual 

Broad leaf-

Madrone 

Building Chaparral Conifer-

Douglas 

fir 

Meadow Riparian Broad 

leaf- 

Oak 

Conifer- 

Redwood 
Total 

Broad leaf-

Madrone 

3836 0 8 71 0 0 0 85 4000 

Building 0 68 7 0 0 15 0 0 90 

Chaparral 17 11 3779 192 0 0 1 0 4000 

Conifer-

Douglas fir 

151 3 381 3391 0 47 6 21 4000 

Meadow 2 1 0 2 3850 145 0 0 4000 

Riparian 2 25 0 82 155 3734 2 0 4000 

Broad leaf- 

Oak 

1 0 0 1 0 0 990 8 1000 

Conifer- 

Redwood 

142 0 1 34 0 0 42 781 1000 

Total 4151 108 4176 3773 4005 3941 1040 896 0.925 

 

(b) 

Predicted 

Actual 

Broad leaf-

Madrone 

Building Chaparral Conifer-

Douglas 

fir 

Meadow Riparian Broad 

leaf- 

Oak 

Conifer- 

Redwood 

Total 

Broad leaf-

Madrone 

3519 0 179 238 19 38 3 4 4000 

Building 0 75 9 0 0 6 0 0 90 

Chaparral 253 0 3664 76 1 5 1 0 4000 

Conifer-

Douglas fir 

190 0 73 3633 0 71 8 25 4000 

Meadow 2 0 6 0 3992 0 0 0 4000 

Riparian 101 0 25 106 11 3757 0 0 4000 

Broad leaf- 

Oak 

4 0 5 6 4 0 981 0 1000 

Conifer- 

Redwood 

1 0 1 5 0 0 2 991 1000 

Total 4070 75 3962 4064 4027 3877 995 1020 0.933 
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(c) 

Predicted 

Actual 

Broad leaf-

Madrone 

Building Chaparral Conifer-

Douglas 

fir 

Meadow Riparian Broad 

leaf- 

Oak 

Conifer- 

Redwood 

Total 

Broad leaf-

Madrone 

3891 0 18 89 0 0 0 2 4000 

Building 0 79 0 2 0 9 0 0 90 

Chaparral 7 0 3890 103 0 0 0 0 4000 

Conifer-

Douglas fir 

23 0 44 3931 0 0 0 2 4000 

Meadow 2 0 0 0 3998 0 0 0 4000 

Riparian 1 0 0 0 4 3995 0 0 4000 

Broad leaf- 

Oak 

0 0 0 0 0 0 1000 0 1000 

Conifer- 

Redwood 

4 0 0 4 0 0 1 991 1000 

Total 3928 79 3952 4129 4002 4004 1001 995 0.986 

 

With the proposed methodology, a vegetation species and ground cover 

classification map can be obtained, as shown in Figure 7-12. These results indicate that 

the improved classification enabled by the proposed fusion methods could be used for 

voxel-sized natural resources evaluation applications.  
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Figure 7-12 Rivendell data set classification map 
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Chapter 8 Conclusions and Future Work 

8.1 Summary and Conclusions 

In this dissertation, we investigated methods for the voxelization of FWL, fusion 

of FWL and HI, and then tested classification of a fused feature set on two representative 

data sets. The proposed methods were also compared to existing fusion methods found in 

the current literature. The proposed voxelization and fusion method synthesizes vertical 

waveforms, which are co-registered with the HI in a regular 3D grid, from the 

intersection of the original, slanting waveforms with the voxel columns using a maximum 

amplitude method. Novel VEDC and standard features were then extracted from the 

SWFs and combined with the HI for land cover classification and tree species 

identification tasks employing MLC and SVM classifiers using a the pairwise 

classification framework.  

A novel waveform feature descriptor, VEDC, was proposed to extract information 

from the synthesized waveforms (i.e., SWFs) for use in subsequent classification 

algorithms. The VEDC feature provides information about the distribution of 

backscattered energy in the vertical direction within each column of voxels. Since VEDC 

is a data-dependent feature, parameters defining the dimension and span of VEDC are 

required for each data set. Both supervised and unsupervised VEDC parameter 

approaches were proposed and evaluated, with the unsupervised VEDC parameters 

producing slightly better classification performance when used in combination with a 

SVM classifier. This is a desirable results since the unsupervised method is generic and, 

by definition, requires much less user interaction. The discrimination performance of the 
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VEDC features was examined in the SFFS feature selection step, which is performed 

prior to the classification, and found to be effective. For most pairs of classes, VEDC was 

an effective feature for discrimination. The HI features were selected by keeping 

principal components from PCA that represents more than 99% of the HI imagery 

variance. The joint feature space was then used for classification.  

The classification method used in this dissertation was adapted from a pairwise 

classifier framework, which enabled unique feature selection for each pair of classes, as 

well as the use of multiple classifiers. Two classifiers, MLC and SVM, were applied to 

simultaneously acquired FWL and HI data sets. The proposed voxelization, fusion and 

classification methods were first applied to the Moran data set with nine ground cover 

types containing both natural and man-made objects. The analysis led to the following 

conclusions:  

1) Unsupervised VEDC shows similar or better performance compared with 

supervised VEDC when used in combination with different classifiers.  

2) SWF features show promising potential for classification, with an overall 

classification accuracy of nearly 79.8% when using SWF features only in a 

pairwise MLC classifier. On the other hand, using only discrete LPC features 

was far less reliable for classification, with an accuracy of only 61.9%, for the 

same scheme.  

3) Feature level fusion of SWF and HI improved the classification accuracy 

compared to using either feature set alone. Using fused SWF and HI with a 
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pairwise SVM classifier outperformed standalone HI - SVM classification by 

9.4%.  

4) SVM-based pairwise classifiers outperformed MLC-based pairwise classifiers 

in overall user accuracy and kappa coefficient values in seven of the nine 

individual classes. This is due to the nonlinear learning capacity of SVM using 

kernel functions. In addition, performance of SVM was less variable among 

classes, which was also an important advantage over MLC.  

The Rivendell data set was introduced to test the performance of the proposed 

methods, particularly the value of the VEDC features, to separate different ground cover 

types having similar heights and spectral characteristics but differing vertical structure. 

The SVM classification of fused unsupervised VEDC and HI features shows significant 

improvement over standalone classification (7.4 percent better than HI and 12.0 percent 

better than SWF in overall accuracy). To further evaluate the power of fusing VEDC’s 

structural information with HI spectral information, the general tree classes (broadleaf 

and conifer) were broken down into the individual species of madrone and oak from the 

broadleaf class and douglas-fir and redwood from the conifer class. Classification using 

SWFs only (92.5%) has a comparable performance with HI only (93.3%), but the fused 

data set is able to separate the tree species with an accuracy of 98.6%. These results 

indicate that the VEDC features are complementary to HI information for discriminating 

spectrally similar tree classes in complex forested areas by taking advantage of the ability 

of the VEDC features to encapsulate vertical structural differences that exist between the 

tree classes.  
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8.2 Future Work 

This dissertation has proposed a complete framework for feature extraction from 

FWL and HI data sets, and the use of fused FWL and HI features for land cover 

classification. However, some subjects could benefit from further investigation. Even 

with the same data source, land cover classification applications may have differing 

focuses, e.g., man-made objects classification and extraction for urban planning, versus 

tree type characterization for forestry applications. To adapt the proposed methods for 

different applications, the process can be applied with different combinations of 

algorithms employed in each step, and even with different fusion levels of data sets.  

8.2.1 Using Proposed Methods for Different Fusion Levels 

In this dissertation, the fusion of FWL and HI is achieved on a data level since 

several similar object classes are broadly distributed in both data sets. Fusion of FWL and 

HI can also be applied at different levels, e.g., the object level or the decision level. 

Object level fusion has been discussed in the literature for discrete return LiDAR and HI 

data sets (Chen & Gao, 2014; Man et al., 2015), where LiDAR elevation and intensity 

information were used for image segmentation prior to fusion with HI for classification. 

The segmentation is usually achieved by use of elevation and intensity information of 

objects with relatively large contiguous area, e.g., building and parking lot (Man et al., 

2015). With the inclusion of VEDC features derived from FWL data, the discrimination 

based on energy distribution at any layer of an object would be possible, thus achieving 

segmentation with less knowledge required from the user and potentially better accuracy.  
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8.2.2 Further Investigation into Implementation of the Pairwise Classifier 

Three components determine the methodology for implementing a pairwise 

classifier: the individual classifier used, the feature selection tool, and the voting strategy. 

A broad variety of classification algorithms can be used under the framework of pairwise 

classification. For example, a boosted decision tree classifier (Nourzad & Pradhan, 2012) 

has the potential for use with fused FWL and HI features because the decision tree-based 

method does not impose strict requirements on the input features, and also works well 

with multiple-source input data.  

The feature selection method used in this thesis is a wrapper based SFFS method, 

where the feature selection target was set to best accuracy for each individual classifier. 

The searching strategy of the wrapper method includes sequential, exhaustive, and 

random searching (Kohavi & John, 1997; Liu & Yu, 2005). A sequential method was 

used in this dissertation. An exhaustive method searches for all possible combinations, 

and while accurate is not practical for use on any large feature sets. Random searching 

starts from a randomly chose features set and randomly inserts of deletes features. Both 

exhaustive and random searching were not evaluated in this dissertation, but the use of 

these two search methods are worth investigating. For example exhaustive searching is 

the only method that looks for a global optimal feature subset, and therefore could be 

used for class pair that are difficult to separate. Within the framework of pairwise 

classification, different feature selection methods can also be combined.  

The voting strategy is also crucial for successful pairwise classification because it 

directly affects the final output of the whole system. Based on different kinds of classifier 

outputs, the voting strategy can be applied to either class label, class ranking or soft 
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output, i.e., a value representing the likelihood that one sample falls in a particular class, 

for any classifier. This dissertation utilized as voting strategy for class label because 

different type of classifiers were used and the labeling didn’t to be normalized between 

different classifiers. However, a voting strategy using soft output is still worth 

investigating because many classification algorithm1s yield s oft output including, e.g., 

MLC and SVM. The voting strategy for soft output aims to reduce the uncertainty in the 

final labeling. For example, Bayesian classifier fusion methods could be applied on 

classifiers whose output is posterior possibilities. Choosing an appropriate voting strategy 

gives the system extra flexibility to adapt different classifiers and application 

requirements.  

8.2.3 Hyperspectral FWL 

Several prototype hyperspectral FWL systems have been demonstrated in 

laboratory environments, where a laser with a broad spectrum range is employed as the 

LiDAR light source. This enables both target range and spectral response to be 

simultaneously measured, with the collected spectrum shape reported to be similar to 

passive HI (Hakala et al., 2012; Li et al., 2014). Assuming the future availability of 

airborne hyperspectral FWL data, the waveform voxelization and synthesizing 

approaches proposed in this dissertation would enable the ability to observe a vertical 

target spectrum, thereby supporting the extraction of target spectral features at different 

elevations within targets with complex vertical structures at the fine spatial resolution 

provided by digitizing FWL systems. Such systems hold great potential for use in land 

cover classification.    
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