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The characteristics of subharmonic and ultraharmonic modes appearing in the forced, steady-
state oscillations of weakly nonlinear systems are considered from the physical, rather than
mathematical, viewpoint. A simple explanation of the differences between the two modes, and
in particular of the threshold effect usually exhibited by subharmonic oscillations, is
presented. The fundamental resonance in the case of weak excitation is also briefly

considered.

I. INTRODUCTION

Some degree of nonlinearity is present virtually in
every practical problem involving oscillations. Sometimes
this complication can be ignored and a linearized treatment
is adequate, but in very many cases the interest lies in the
very nonlinear aspects of the oscillations. In view of the
large number of applications to electronic circuits, control
theory, mechanical vibrations, and other branches of
physics, it appears desirable to develop a simple and di-
rect understanding of the essential characteristics of such
processes. The advantage would be twofold, making pos-
sible an intuitive appraisal of the effect of nonlinearities
in specific circumstances, and allowing the introduction
of such topics at an earlier stage in the educational cur-
riculum. The present paper is intended as a step in this
direction.

We discuss the forced, steady state oscillations of
weakly nonlinear systems, with particular emphasis on ul-
traharmonic and subharmonic modes and their differ-
ences. Duffing’s equation is used as a model for the dis-
cussion, which however is conducted in such a way as to
allow immediate generalization to other nonlinear equa-
tions.

The central part of this paper is constituted by Secs. III
and V. In the first one a simple method for identifying
the resonance frequencies of weakly nonlinear systems is
given; in the second one the physical reasons for the dif-
ferences exhibited by ultraharmonic and subharmonic os-
cillations are explained. Section II deals with some as-
pects of linear oscillations relevant for the following dis-
cussion, Sec. I'V contains a succinct presentation of some of
the salient features of nonlinear oscillations, and Sec. VI
deals with the fundamental resonance in the case of weak
excitation. Finally, Sec. VII presents a method for the higher
order perturbation analysis of weakly nonlinear systems in
steady state regime.

The amount of literature on nonlinear oscillations is so
extensive that no attempt has been made to give exhaus-
tive bibliographical indications. Furthermore, in all the
books of an introductory level known to this author, the
problem of nonlinear forced oscillations is approached by
‘“‘guessing’’ rather than deriving the form of the approxi-
mate solution.? In spite of this difference in outlook, it
has been deemed advisable to list some standard refer-
ences which the interested reader may find useful for a
deeper discussion, 2710

For the sake of brevity, physical examples of nonlinear
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systems have only been considered in a footnote. In this
connection a series of papers by Ludeke!! is recom-
mended.

II. LINEAR OSCILLATIONS

Consider the equation describing the motion of a
damped harmonic oscillator under the action of a sinusoi-
dal forcing function:

d:x dX 2
— +§,°X = Fcos§2t,
arr Tag Tt ‘

where t; is the (dimensional) time, )y the natural fre-
quency of the system, and f the friction coefficient. If L
and T are suitable length and time scales for the problem,
one can define the following dimensionless quantities:

x=X/L, t=t,/T, 2b=fT,
wy=27T, w=QT, P=FT*/L,
in terms of which the equation can be rewritten as

X +2b% + wy’x = P coswt 1)

where the dots denote differentiation with respect to dimen-
sionless time ¢. The general solution of this equation con-
sists of damped oscillations at frequency (wy® — b*)'2,
plus oscillations at the impressed frequency w:

x(t) = ag exp(~ bt) cos[(wy? = b))/ 2t + )
+ Qw, b)cos(wt+ @), (2)

where a,, i, are two constants determined by the initial
conditions and Q(w,b), ¢ are given by

(3a)
(3b)

Qw, b)= Pl (wy? = w?)? +4b%w* /2,
@ =tan"1[2bw/(w? = wy?)].

The quantity Q(w,b) is the response function of the linear
oscillator, and it presents the familiar resonance structure
with a sharp maximum at w? = w,? — 2b* (Fig. 1).

It is evident from (2) that, as time gets large in com-
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Fig. 1. The response function Q(w,b) of the linear oscillator for various
values of the damping parameter b [Eq. (3a)].

parison with 471, the first term (and with it the influence
of the initial conditions) disappears so that in the limit
t — > we obtain the steady state solution of (1) as

xp= Q(w, b) cos(wt+ @).

The disappearence of the oscillations at frequency
(wy? — b%)'2 is a consequence of the fact that in a linear
system there is no mechanism of energy transfer between
different modes, so that only the mode corresponding to
the driving frequency can sustain itself in the presence of
dissipative forces.

In view of later considerations we should like to note
here that the resonance structure of the response allows
an amplification of the excitation amplitude, so that even
a (dimensionless) weak driving force (of order e, say,
with |e|<<1) can produce a response of order one'? if
the dimensionless damping is sufficiently small (of order
€). Indeed, if we let P = €P’, b = B8, with P’, B8 quan-
tities of order one, we get from (3a)

Q(w, eB)~ P! /2Bw, for w~w,
which is of order one.

ITII. NONLINEAR OSCILLATIONS

To illustrate some general features of nonlinear sys-
tems, let us now consider a particular nonlinear oscillator
described by the well-known Duffing equation!3:

d’X  dX
& + fd_td +§y2X = FcosQt, + T'X3,
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where T is a real constant with dimensions (length X
time)~2. An equation of this type occurs very frequently in
problems involving oscillations, as soon as one tries to
take into account departures from linearity of the restor-
ing force. For instance, in the case of a pendulum for
which the restoring force is proportional to sinX, the ap-
proximation sinX ~X — X?/6 is very accurate for am-
plitudes of oscillation smaller than about 30°.4

We shall confine ourselves to the case of weak damp-
ing and weak nonlinearity, rewriting the equation in di-
mensionless form as

# +2efx +wlx=Pcos wt+ex?, @)

where € = L*T°T, |e| << 1, and B is a dimensionless
quantity of order one. Notice that the appearance of the
small parameter € in the damping term is not to be inter-
preted as suggesting a relationship between the physical
mechanisms giving rise to the nonlinear effects and the
energy dissipation, but only as indicating the order of
magnitude of the dimensionless damping, which can be
adjusted by varying 8.

It may be expected that the steady state solution of this
equation will be related to the solution of the linear equa-
tion obtained as € — 0, i.e., Eq. (1), so that it is natural
to introduce a new unknown y through

x=xy+y=Qcos(wi+@)+y, (5)

where O and ¢ are given by Egs. (3). Upon substitution
into (4), we are led to the following equation for y:

P+ 2eBP + wy?y = €[+ @(cos3wt + 3 coswt)
+3 @y(1+cos2wt) +3Qy* coswt +y°]. (6)

For simplicity of writing, the time origin has been shifted
by ¢/, so that cos(wt + ¢) —> coswt, and elementary
trigonometric relations have been used to express cos?wt,
cos3wr in terms of the multiple angles 2ewt, 3wt. It is easy
to see that, in spite of the small quantity e multiplying
the “‘forcing function’’ in the right-hand side (RHS) of
this equation, the response y is not necessarily small, be-
cause of the amplification effects mentioned in Sec. II.
For instance, the first term in the RHS of Eq. (6) would
make a contribution that would be of order one whenever
3w ~ w,. Notice that the appearance of the new fre-
quency 3w is an effect of the nonlinearity x*, which
causes a coupling of the first term of (5), xo, with itself.
We may now suspect that other resonating frequencies are
present in the RHS of (6), arising from the coupling of y
with x4, and of y with itself. They can be determined
without actually solving the equation by the following
simple reasoning.

Suppose that we had the correct expression for the y
appearing in the RHS of (6), yg, say, and that we are
then left to solve the resulting linear equation for the y
appearing in the left-hand side (LHS), y,. Of course this
should be done in such a way that, in the end, yp = y;.
Suppose also that we are interested only in terms of order
one, neglecting all terms of order € and smaller. The dis-
cussion of Sec. II shows that, in order to produce a com-
ponent of order one in y;, a term in the bracket in the
RHS of (6) should satisfy two requirements:
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Table 1. The new frequencies w, introduced to first order by the nonlinearity
in the RHS of Eq. (6).

Term [ Condition for resonance
(1/8)Q3 cos®wr 3w W ~ /3
® o~ Wy
@B/2)2%1 + cos2at)y Wy none
20+ wg impossible
y 2w~ W W ™ Wy
30v? cosax ) W~ Wy
2w+ @ impossible
209~ @ o~ 3wy
y8 wq none
3w, impossible

(a) it should have a frequency close to wy;

(b) it should have an amplitude of order one.

It follows from (a) that the only term of order one in y,
will have a frequency close to w,. However, since y, must
equal yg, it also follows from (b) that this same term is
the only one present in yp that we should consider to de-
termine the resonant frequencies to lowest order in €. We
therefore let y o cosw,t in the RHS of (6) and compute
the new frequencies introduced by the nonlinearity by
means of the trigonometric relation 2 cosa cosf
= cos(a + B) + cos(x — B). Whenever one of these fre-
quencies is close to wy, the corresponding term will produce
a response of order one. In this way we get the results shown
in Table 1.

We shall not be concerned here with the more complex
case of strong excitation of the fundamental resonance,
® ~ wy, but only with the wultraharmonic and
subharmonic resonances occurring when 3w ~ w, and
@ ~ 3w,, respectively. The reason for the naming is that
in the first case the strong response at ~ w, is at three
times the exciting frequency w, while in the second case
it is at one-third of w.

IV. ULTRAHARMONICS AND SUBHARMONICS

In the ultraharmonic region, w ~ wy/3, neglecting
terms that cannot produce resonance, we get from (6)

T+ 2B+ (Wl —2€@¥)y=Le@ cos3wt+eyd.  (7)

This equation is very similar to the original one, except
that the order of magnitude of the driving amplitude has
been lowered from one to €. In agreement with the dis-
cussion in the previous section, to determine the solution
of (7) to order one we now let

y=Cscos(3wt+ @3)+Ofe)

and retain only terms oscillating with frequency 3w. The
result is

[(Wo2 ~-9w? - %EQZ)Cs - %5033
- 1e@® cos@;] cos(Bwt + ¢3)

— [6ewBC; + L €@® sing,] sin(Bwit + ¢3) = O) =0,
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Fig. 2. Amplitude of the ultraharmonic, Cs, as a function of 3w/wy, as
determined by Egs. (8). The dashed portions of the curves correspond to
unstable oscillations. The dash-and-dot line is the ‘‘backbone curve,”
Eq. (9), and the dotted line Q(w,0), Eq. (3a).

from which

(o2 — 9w - 3eQ?)C;s — 3eC¥=Le@ cosg;, (8a)

- 66BwC;=%e@3sing;. (8b)

The amplitude C; determined by these equations is plot-
ted as a function of 3w/w, in Fig. 2 for two values of the
damping parameter 3. In the undamped case, 8 = 0, the
phase ¢3 can be either 0 or =, so that the first equation
becomes

(Bw/wyl=1-Fewy? @ — 2ewy?Cy? £ Lew,"2Cy Q%

It is clear from this equation that, as C; increases, the
two branches tend asymptotically to the curve

(Bw/we)’=1-}ew?Q® - §ew,2Cy2 (9)

also shown in Fig. 2. If 8 > 0, the two branches join to-
gether across this curve and the amplitude has a max-
imum. On the other hand, as-|3w — w,| increases, the
corresponding value of C, decreases. The situation is
therefore very similar to the resonance phenomenon in the
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linear case (Fig. 1), the only substantial difference being
the fact that the asymptotic curve is not a vertical straight
line, but is bent to the right or to the left according as
€ <0 or € >0.1% The bending of the resonance peak has
the important consequence (typical of nonlinear oscilla-
tions) that the function Cy(w) is multivalued in a certain
frequency range. A stability analysis shows that the in-
termediate value of C; corresponds to an unstable state!®
which therefore cannot be observed because any infinites-
imal disturbance will grow leading the amplitude towards
one of the other two (stable) values. The appearance of
one or the other of these values in the steady state oscilla-
tions is determined by the initial conditions of the mo-
tion. In contrast with the linear case, therefore, the steady
state nonlinear oscillations retain some memory of the
initial values of displacement and velocity.

To discuss the subharmonic oscillations,!” when
@ ~ 3w,, we start again from (6) retaining only the terms
capable of producing resonance according to Table I:

7+ 2By + (w2 —3e@?) y=3€Qy? coswt+ey’,  (10)
The structure of this equation is very different from (7)
because all terms of the RHS contain y: this circumstance
causes very profound differences between ultraharmonic
and subharmonic oscillations. If we let

y:C1/3cos(%wt+ Vy3)

2o T | T I

€=—-0.1as/P

—l ]
100 1.02 1.04 1.06 1.08 1.10
W/ 3woe

Fig. 3. Amplitude of the subharmonic, C5, as a function of /3wy, as
determined by Egs. (11). The dashed portions of the curves correspond
to unstable oscillations. The dotted line represents Q(w,0), Eq. (3a),
which, to zero order in ¢, is the total amplitude of the response in the
absence of the subharmonic.
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in (10) and retain only terms oscillating with frequency
w/3 we get, in place of (8),

(W’ —F w? = 3e@®)Cy /5 - §¢Cy /5
= %GQCI/SZ COS3¢1/3 ’ (lla)

-2ewBCy,3=1€QC,, s sin3¢, 5. (11b)

Two examples of the response curves determined by these
equations are plotted for the case € <0 in Fig. 3.

The first important remark to be made about Egs. (11)
is that Cy;3 = 0 is a solution for any value of ¢,;5. There-
fore, for any value of w and P, the steady state oscilla-
tions ordinarily will not contain a subharmonic compo-
nent, which however will be present if the initial values
of displacement and velocity lie in suitable ranges. For
this to happen, however, it is usually necessary that the
equilibrium state (or a pre-existing, steady, purely har-
monic oscillation) be perturbed quite substantially (shock
excitation of the subharmonic). Another possibility for the
appearance of the subharmonic at a particular frequency
is when the purely harmonic oscillations, C,3 =0, are
unstable. Although this does not occur in the case of
Duffing’s equation, it is nevertheless commonly found to
happen in other nonlinear systems. An example is shown
in Fig. 4, where the subharmonic response of order %
(i.e., occurring for w ~ 2w,) exhibited by the radial oscilla-
tions of a spherical gas bubble in an incompressible

08 T T T

STABLE
——-—— UNSTABLE

b = 0.05
. w=0.3
06 y =4/3
n =04

Fig. 4. Amplitude of the subharmonic response of order % (i.e., for
@ ~ 2wy) for the oscillations of a spherical gas bubble in an incompres-
sible, viscous liquid (from Ref. 16, Fig. 1). For a given liquid, the
natural frequency of the bubble, w,, depends only on its radius. The
bubbles whose radii are such that the corresponding w/w, lies in the
dashed interval in the vicinity of w/w,=2 develop a strong subhar-
monic component because the purely harmonic, C = 0, mode is unsta-
ble there. For bubbles of other radii both modes of oscillation, with and
without the subharmonic, are stable.
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liquid'® is shown. In the dashed frequency interval on the
abscissa axis, only the subharmonic oscillations corres-
pond to a stable mode.

Another striking characteristic of the subharmonic re-
sponse is obtained by considering the reality conditions
for C,3. It is a simple matter to show from Eqgs. (11) that
no subharmonic component can be present unless the fol-
lowing threshold condition for the driving amplitude is
fulfilled:

02> el =+ w? = [(w,? -+ w)? -3 e282w2]1/2,

It will be noticed that the RHS of this equation reduces to
zero if no damping is present.

In Fig. 3 the dotted line shows the function Q(w,ef) in
the subharmonic region. This quantity would be the total
amplitude of the response if no subharmonic were pres-
ent. Its comparison with the subharmonic response gives
an idea of the violence of subharmonic oscillations, which
is an important reason for their practical importance.!?

V. DISCUSSION

It has been shown that in a particular nonlinear system
large amplitude oscillations can occur at a frequency dif-
ferent from the driving frequency provided that there ex-
ists a mechanism capable of transferring efficiently (i.e.,
via resonance) the energy introduced at frequency w
into a mode close to the natural frequency of the system.
Obviously this result holds true also for more general
nonlinearities of the form ex™t", with m, n integers such
that m +n > 1. In this case, too, we let

x=xy+y=Qcos(wt+@)+y (12)

where the first term is the steady solution of the
linearized equation. Since the ultraharmonic oscillations
occur at a frequency higher than the driving frequency w,
it is obvious that the term x, in (12) is by itself sufficient
to feed energy into such modes. Indeed, upon substitution
into ex™", it will give rise to a term of the form eQ™*"
cos™wt + @) sin™(wt + ¢) which, when expressed in terms
of multiple angle functions, will contain frequencies kw ca-
pable of inducing large responses whenever kw ~ wy. Under
suitable conditions, also the coupling between x, and y
caused by the nonlinearity can introduce additional
‘“‘channels’’ through which energy can be transmitted to a
particular ultraharmonic mode, but even if these cou-
plings were absent, the mode in question would still be
capable of sustaining itself. In this respect the ultrahar-
monic oscillations behave basically like ordinary linear
forced oscillations, and they will occur whenever the fre-
quency is in an appropriate range, just as resonance oc-
curs in the linear case when @ — wqy| is not too large.
Their amplitude can always adjust itself in such a way
that the energy dissipated by the viscous forces equals the
energy input by the driving force because the dissipation,
— 2€efBy?, is proportional to C;2 (where C; is the amplitude
of the jth ultraharmonic), while the energy intake, xo*y, is
proportional to Q*C; (plus possibly terms containing the
second and higher powers of C;).

For the subharmonic oscillations the situation is fun-
damentally different. Since they occur at a frequency
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lower than the driving frequency, a mechanism for fre-
quency demultiplication of the energy input is required.
Mathematically, this mechanism is furnished by the cou-
plings x¢’ through the second term in the trigonometric
identities 2 cosar cosB = cos(a + B) + cos(a — B), etc. It
follows that the energy input term is now of the form
(xo»”)y, and is no longer proportional to the first power of
the amplitude, but to the second or higher, while the
characteristics of the energy dissipation are unchanged. It
may happen therefore that, for a given driving amplitude,
the resulting subharmonic amplitude is too low for the
system to absorb energy at a rate sufficient to balance the
dissipation. These considerations explain why subhar-
monic oscillations usually exhibit a threshold effect,
which however disappears as the damping is reduced to
Zero.

VI. THE FUNDAMENTAL RESONANCE

An exhaustive treatment of the fundamental resonance
for w ~ w, in the case of strong excitation is beyond the
scope of the present considerations. Nevertheless the case
in which the driving force is weak (of order €) can easily
be discussed. Consider therefore the equation

X+ 2eB% + wolx =P coswt +ex?, (13)

for the case when w ~ w,. Following a line of reasoning
similar to the one adopted in Sec. III we may let

x=Cycos(wt+¢,),

disregarding other harmonics which give no contribution
to zero order in €. Upon substitution into (13) the follow-
ing two equations are obtained:

(14a)
(14b)

(wo? = w? = 3€C?)C =€ePcosy,,

- 2eBwC =ePsiny;.

It is interesting to note the similarity of these equations
with Eqs. (8) for the ultraharmonic case. This analogy il-
lustrates from another point of view the affinity between
ultraharmonic and ordinary resonance. The shape of the
peak is similar to the one shown in Fig. 2, and can read-
ily be computed from (14).

VII. HIGHER ORDER APPROXIMATIONS

It is not difficult to extend the considerations of Sec.
III to obtain steady state solutions of a higher accuracy.
To this end we begin by letting

v=vo+ex =C,cosliw+¢,)+ex,

in (6), where i = % in the subharmonic case and i = 3 in
the ultraharmonic one; the amplitudes C; and phases ¢;
are given by Egs. (11) and Eqgs. (8) respectively. As an
example of the procedure, let us consider the subhar-
monic case here. The following equation for x, is ob-
tained:
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X |+ 2eB%, + wolvy =+ @(cos3wi+ 3 coswt) + 3 @*Cleos (Fwt + @)+ cos(Fwt + @)]

+3 QC%coswt + 3 cos(f wt+ @)+

1 C3cos(wt+39)

+e({3 @*(1 + cos2wi) + 3QC[cos(fwt+ @)+ cos(} wt = ¢)]+ 3 CY1+cosE wt+20)] Jx,

+3¢[@ coswt + Ccos (3 wt+ ¢)] x,% +€2x,%),

where for convenience of writing the subscript % has
been omitted. This is now a nonlinear equation for x,,
which can be dealt with in the same way indicated in
Sec. . We therefore let

— a0
X1=X1 t Y1,

where x,° is the solution of the equation obtained by ne-
glecting the terms in the curly brackets, and y, the correc-
tion of order one introduced by the terms in the curly
brackets oscillating with frequency close to w,. This pro-
cedure can clearly be continued, and an asymptotic ex-
pansion of the solution in the form

X=Xp+Y +e(x1°+y1°)+e2(x2°+y2°)+- e

can be obtained. It should be noted that all the terms y,°
in this expansion oscillate with frequency close to the
natural frequency w,.

To obtain a solution in a frequency region different
from the principal harmonic, ultraharmonic or subhar-
monic domains already considered, it is sufficient to
omit the term y, and to start by letting

x=Qcos(wt+ @) +ex,

in Eq. (4). The following equation for x; is then ob-
tained:

X 1 +26B%; + wy'xy =+ @ (cos3wt + 3 coswt)

+e[3 @2 (1 + cos2wt) x; + 3eQ coswitx +e2x,7].

(In writing this equation the time origin has again been
shifted by ¢/w.) By the same method used for the con-
struction of Table I it is easily found that, aside from the
resonance regions already considered, no other resonating
frequency is introduced by the terms in brackets to this
order.2?

The procedure outlined in this section essentially
amounts to an algorithm for the iterative solution of the
system of equations that would be obtained by expanding
x in a truncated Fourier series. Since the equations that
are obtained in this way are usually highly nonlinear, the
above method may have some computational advantages.
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