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Abstract—Spectrum sensing, which aims at detecting spec-
trum holes, is the precondition for the implementation of
cognitive radio (CR). Collaborative spectrum sensing among
the cognitive radio nodes is expected to improve the ability
of checking complete spectrum usage. Due to hardware limi-
tations, each cognitive radio node can only sense a relatively
narrow band of radio spectrum. Consequently, the available
channel sensing information is far from being sufficient for
precisely recognizing the wide range of unoccupied channels.
Aiming at breaking this bottleneck, we propose to apply
matrix completion and joint sparsity recovery to reduce sensing
and transmitting requirements and improve sensing results.
Specifically, equipped with a frequency selective filter, each
cognitive radio node senses linear combinations of multiple
channel information and reports them to the fusion center,
where occupied channels are then decoded from the reports
by using novel matrix completion and joint sparsity recovery
algorithms. As a result, the number of reports sent from the
CRs to the fusion center is significantly reduced. We propose
two decoding approaches, one based on matrix completion and
the other based on joint sparsity recovery, both of which allow
exact recovery from incomplete reports. The numerical results
validate the effectiveness and robustness of our approaches.
In particular, in small-scale networks, the matrix completion
approach achieves exact channel detection with a number of
samples no more than50% of the number of channels in
the network, while joint sparsity recovery achieves similar
performance in large-scale networks.

Keywords: Collaborative spectrum sensing, matrix comple-
tion, compressive sensing, joint sparsity recovery.

I. I NTRODUCTION

Ever since the 1920s, every wireless system has been
required to have an exclusive license from the government in
order not to interfere with other users of the radio spectrum.
Today, with the emergence of new technologies which enable
new wireless services, virtually all usable radio frequencies
are already licensed to commercial operators and government
entities. According to former U.S. Federal Communications
Commission (FCC) chair William Kennard, we are facing
with a “spectrum drought” [1]. On the other hand, not every
channel in every band is in use all the time; even for premium
frequencies below 3 GHz in dense, revenue-rich urban areas,
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most bands are quiet most of the time. The FCC in the United
States and the Ofcom in the United Kingdom, as well as
regulatory bodies in other countries, have found that most
of the precious, licensed radio frequency spectrum resources
are inefficiently utilized [2], [3].

In order to increase the efficiency of spectrum utilization,
diverse types of technologies have been deployed. Cognitive
radio is one of those that leads to the greatest technological
gain in wireless capacity. Through the detection and utiliza-
tion of the spectra that are assigned to the licensed users
but standing idle at certain times, cognitive radio acts as a
key enabler for spectrum sharing. Spectrum sensing, aiming
at detecting spectrum holes (i.e., channels not used by any
primary users), is the precondition for the implementation
of cognitive radio. The Cognitive Radio (CR) nodes must
constantly sense the spectrum in order to detect the presence
of the Primary Radio (PR) nodes and use the spectrum holes
without causing harmful interference to the PRs. Hence,
sensing the spectrum in a reliable manner is of vital im-
portance and constitutes a major challenge in CR networks.
However, detection is compromised when a user experiences
shadowing or fading effects or fails in an unknown way.
To get a better understanding of the problem, consider the
following example: a typical Digital TV receiver operating
in a 6 MHz band must be able to decode a signal level of
at least -83 dBm without significant errors [4]. The typical
thermal noise in such bands is -106 dBm. Hence a CR which
is 30 dBm more sensitive has to detect a signal level of -
113 dBm, which is below the noise floor [5]. In such cases,
one CR user cannot distinguish between an unused band
and a deep fade. In order to combat such effects, recent
studies suggest collaboration among multiple CR nodes for
improving spectrum sensing performance.

Collaborative spectrum sensing (CSS) techniques are in-
troduced to improve the performance of spectrum sensing.
By allowing different secondary users to collaborate and
share their information, PR detection probability can be
greatly increased. CSS can be classified into two categories.
The first category involves multiple users exchanging infor-
mation [6], [7], and the second category uses relay trans-
mission [8]. Some recent studies on collaborative spectrum
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sensing include cooperative scheme design guided by game
theory [9] and random matrix theory [10], cluster-based
cooperative CSS [11], and distributed rule-regulated CSS
[12]; studies concentrating on CSS performance improve-
ment include [13] introducing spatial diversity techniques to
combat the error probability due to fading on the reporting
channel between the CR nodes and the central fusion center.
There are also studies concerning other interesting aspects
of CSS performance under different constraints [10], [14]–
[16]. Very recently, there are emerging applications of the
compressive sensing concept for CSS [17].

Existing literature mostly focuses on the CSS performance
examination when the centralized fusion center receives and
combinesall CR reports. In ann channel cognitive radio
network withm CR nodes, the fusion center has to deal with
n ∗m reports and combine them wisely to form a channel
sensing result. However,it is known that wireless channels
are subject to fading and shadowing. When secondary users
experience multi-path fading or happen to be shadowed, the
reports transmitted by CR users are subject to transmission
loss. As a result, in practice, no entire report data set is
available at the fusion center. Besides, due to the fact that
each cognitive radio can only sense a small proportion of
the spectrum with limited hardware, each CR user gathers
only very limited information about the entire spectrum.

Contributions:
We seek to release CRs from sending, and the central

control unit from gathering, an excessively large number of
reports, also target at the situations where there are only a
few CR nodes in a large network and thus unable to gather
enough sensing information for the traditional CSS. We
propose to equip each cognitive radio node with a frequency
selective filter, which linearly combines multiple channel
information. The linear combinations are sent as reports to
the fusion center, where the occupied channels are decoded
from the reports by compressive sensing algorithms. As a
consequence, the amount of channel sensing at CRs and the
number of reports sent from the CRs to the fusion center are
both significantly reduced.

Following our previous work [18], [19] on compressive
sensing, we propose two approaches to collaborative spectral
sensing. The first approach is based on solving a matrix
completion problem [20]–[24], which seeks to efficiently
reconstruct a matrix (typically low-rank) from a relatively
small number of revealed entries. In this approach, the
entries of the underlying matrix are linear combinations of
channel powers. Each CR node takes its local spectrum
measurements, but instead of directly recording channel
powers, it uses its frequency-selective filters to takep linear
combinations of channel powers and reports them to the
fusion center. The totalp×m linear combinations taken by
m CRs form ap×m matrix at the fusion center. Considering
transmission loss, we allow the the matrix to be incomplete.
We show that this matrix is low-rank and has the properties

enabling its reconstruction from only a small number of
its entries, and therefore, information about the complete
spectrum usage can be recovered from a small number
of reports from the CR nodes. This approach significantly
reduces the amount of sensing and communication workload.

The second approach is based on joint sparsity recovery
[25]–[29], which is motivated by the observation that the
spectrum usage information the CR nodes collect has a
common sparsity pattern: each of the few occupied channels
is typically observed by multiple CRs. We develop a novel
algorithm for joint sparsity signal recovery, which is more
effective than existing algorithms in the compressive sensing
literature since it can accommodate a large dynamic range
of channel gains.

In both approaches, every CR senses all channels (by
taking random linear projections of the powers of all chan-
nels), and the CRs do not communicate. While they work
independently, their measurements are analyzed jointly by
the detection algorithms running at the fusion center. There-
fore, our approaches are very different from the existing
collaborative spectrum sensing schemes in which different
CRs are assigned to different channels. Our approaches move
from collaborative sensing to “collaborative” computation
and shift coordination from the sensing phase to the post-
sensing phase.

Our work is among the first that applies matrix completion
or joint sparsity recovery to collaborative spectrum sensing
in cognitive radio networks. Matrix completion and joint
sparsity recovery are both being intensively studied in the
compressive sensing community. We present them both
because it is too early at this time to make a verdict of
an eventual winner.

The rest of this paper is organized as follows: In Section
II, the system model is given. The matrix completion-based
algorithm for collaborative sensing is described in Section
III, and the joint sparsity based algorithm is described in
Section IV. After that, in Section V we compare the two pro-
posed approaches, discuss their computational complexityas
well as filter design and dynamic update. Simulation results
are presented in Section VI, and conclusions are drawn in
Section VII.

II. SYSTEM MODEL

We consider a cognitive radio network withm CR nodes
that locally monitor a subset ofn channels. A channel is
either occupied by a PR or unoccupied, corresponding to
the states1 and0, respectively. We assume that the number
s of occupied channels is much smaller thann. The goal
is to recover the occupied channels from the CR nodes’
observations. Since each CR node can only sense limited
spectrum at a time, it is impossible for limitedm CRs to
observen channels simultaneously.

To overcome this problem, we propose the scheme de-
picted in Fig. 1. Instead of scanning all channels and



sending each channel’s status to the fusion center, using
its frequency-selective filters, a CR takes a small number
of measurements that are linear combinations of multiple
channels. The filter coefficients can be designed and imple-
mented easily. In order to mix the different channel sensing
information, the filter coefficients are designed to be random
numbers. Then, these filter outputs are sent to the fusion
center. Suppose that there arep frequency selective filters
in each CR node sending outp reports regarding then
channels. For the non-ideal cases, where we have relatively
less measurementspm < n, i.e., the number of reports sent
from all CRs is less than the total number of channels. The
sensing process at each CR can be represented by ap × n
filter coefficient matrixF. Let ann× n diagonal matrix R

represent the states of all the channel sources using0 and
1 as diagonal entries, indicating the unoccupied or occupied
states, respectively. There ares nonzero entries indiag(R).
In addition, channel gains between the CRs and channels are
described in anm×n channel gain matrixG given by [30]:

Gi,j = Pi(di,j)
−α/2|hi,j | (1)

wherePi is the ith primary user’s transmitted power,di,j
is the distance between the primary transmitter usingjth

channel and theith CR node,α is the propagation loss
factor, andhi,j is the channel fading gain. For AWGN
channel,hi,j = 1, ∀i, j; for Rayleigh channel,|hi,j | follows
independent Rayleigh distribution; and for shadowing fading,
|hi,j | follows log-normal distribution [30]. Without loss of
generality, we assume that all PRs’ use unit transmit power
(otherwise, we can compensate by altering the corresponding
channel gains). The measurement reports sent to the fusion
center can be written as ap×m matrix

Mp×m = Fp×nRn×n(Gm×n)
⊤. (2)

Note that due to loss or errors, some of the entries ofM

are possibly missing. The binary numbers on the diagonal
of R are then–channel states that we shall estimate from
the available entries ofM.

III. CSS MATRIX COMPLETION ALGORITHM

It is typically difficult for the fusion center to acquire all
entries ofM due to transmission failure, which means that
our observation is a subsetE ⊆ [p] × [m] of M. However,
it is possible to recover the missing entries inM since it
holds the following two important properties [20] required
for matrix completion:

1) Low Rank: rank(M) equals tos, which is the number
of prime users in the network and is usually very small.

2) Incoherent Property: GenerateF randomly (subject
to hardware limitation). From (1) and the fact thatR

has onlys nonzeros on the diagonal,M’s SVD factors
U, Σ, andV satisfy theincoherence condition [23].
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Fig. 1. System model.

• There exists a constantµ0 > 0 such that for all
i ∈ [p], j ∈ [m], we have

∑s
k=1 U

2
i,k ≤ µ0s,

∑s
k=1 V

2
i,k ≤ µ0s.

• There existsµ1 such that|∑s
k=1 Ui,kΣkVj,k |≤

µ1s
1/2.

M is in general incomplete because of transmission
failure. Moreover, each CR might only be able to collect
a random (up top) number of reports due to the hardware
limitation. Therefore, the fusion certain receives a subset
E ⊆ [p]× [m] of M’s entries. We assume that the received
entries are uniformly distributed with high probability1.
Hence, we work with a model in which each entry shows
up in E identically and independently with probability
ǫ/
√
p×m. Given Ep×m, the partial observation ofM is

defined as ap×m matrix given by

ME
ij =

{

Mij , if (i, j) ∈ E

0, otherwise.
(3)

We shall first recover the unobserved elements ofM from
M

E. Then, we reconstruct(RG
⊤) from the givenF andM

using the fact that all buts rows of (RG
⊤) are zero. These

nonzero rows correspond to the occupied channels. Sincep
and m are much smaller thann, our approach requires a
much less amount of sensing and transmission, compared
to traditional spectrum sensing in which each channel is
monitored separatively.

In previous research on matrix completion [21]–[24], it
was proved that under some suitable conditions, a low-rank
matrix can be recovered from a random, yet small subset of

1Depending on the different channel gain, the CRs will selectdifferent
coding/modulation/power control schemes so that the received signal to
noise ratio can be maintained about a certain threshold. Dueto this reason,
we can assume that the loss of information is uniformly distributed.



its entries by nuclear norm minimization:

min
M∈Rp×n

τ‖M‖∗ +
1

2

∑

(i,j)∈E

∣

∣Mi,j −M
E
i,j

∣

∣

2
(4)

where‖M‖∗ denotes the nuclear norm of matrixM andτ is
a parameter discussed in Section III-C below. For notational
simplicity, we introduce the linear operatorP that selects
the componentsE out of ap×n matrix and form them into
a vector such that‖PM − PME‖22 =

∑

(i,j)∈E
|Mi,j −

M
E
i,j|2. The adjoint ofP is denoted byP∗.
Recent algorithms developed for (4) include, but not

limited to, the singular value thresholding (SVT) algorithm
[21] and the fixed-point continuation iterative algorithm
(FPCA) [22] for fast completion of large-scale matrices (e.g.,
more than1000×1000), a special trimming step introduced
by Keshavan et al. in [23].

For our problem, we adopt FPCA, which appears to run
very well for our small–dimensional tests. In the following
subsections, we describe this algorithm and the steps we take
for nuclear norm minimization. Also, we study how to use
the approximate singular value decomposition (SVD)-based
iterative algorithm introduced in [22] for fast execution.We
further discuss the stopping criteria for iterations to acquire
optimal recovery. Finally we show how to obtainR from
the estimationM̃ of M.

A. Nuclear Norm Min. via Fixed Point Iterative Algorithm

FPCA is based on the following fixed–point iteration:
{

Y
k = M

k − δkP∗(PMk − PME)
M

k+1 = Sτδk(Y
k)

(5)

where δk is step size andSα(·) is the matrix shrinkage
operator defined as follows:

Definition 1: Matrix Shrinkage Operator Sα(·): As-
sume M ∈ R

p×m and its SVD is given byM =
Udiag(σ)VT , whereU ∈ R

p×r, σ ∈ R
r
+, andV ∈ R

m×r.
Givenα > 0, Sα(·) is defined as

Sτ (M) := Udiag (sα(σ))V
T (6)

with the vectorsα(σ) defined as:

sα(x) := max{x− α, 0}, component-wise. (7)

Simply speaking,Sτ (M) reduces every singular values
(which is nonnegative) ofM by τ ; if one is smaller than
α, it is reduced to zero. In addition,Sα(M) is the solution
of

min
X∈Rm×n

α‖X‖∗ +
1

2
‖X−M‖2F (8)

where‖ · ‖F is the Frobenius norm.
To understand (5), observe that the first step of (5) is

a gradient-descent applied to the second term in (4) and
thus reduces its value. Because the previous gradient-descent
generally increases the nuclear norm, the second step of

(5) involves solving (8) to reduce the nuclear norm ofY
k.

Iterations based on (5) converge when the step sizesδk are
properly chosen (e.g., less than 2, or select by line search)
so that the first step of (5) is not “expansive” (the other step
is always non-expansive).

B. Approximate SVD Based Fixed Point Iterative Algorithm

As stated in [22], the second step of (5) requires com-
puting the SVD decomposition ofYk, which is the main
computational cost of (5). However, if one can predetermine
the rank of the matrixM, or have the knowledge of the
approximate range of its rank, a full SVD can be simplified
to computing only a rank-r approximation toYk. Combined
with the above fixed point iteration, the resulting algorithm is
called fixed-point continuation algorithm with approximate
SVD (FPCA). Specifically, the approximate SVD is com-
puted by a fast Monte Carlo algorithm developed by Drineas
et al. [31]. For a given matrixA ∈ R

m×n and parameters
ks, this algorithm returns an approximations to the largest
ks singular values corresponding left singular vectors of the
matrix A in a linear time.

C. Stopping Criterion for Iterations

We tune the parameters in FPCA for a better overall per-
formance. Continuation is adopted by FPCA, which solves a
sequence of instances of (4), easy to difficult, corresponding
to a sequence of large to small values ofτ . The final τ is
the given one but solving the easier instances of (4) gives
intermediate solutions that warm start the more difficult
ones so that the entire solution time is reduced. Solving
each instance of (4) requires proper stopping. Because our
ultimate goal is to recover 0/1 values on the diagonal ofR,
accurate solutions of (4) are not required. Therefore, we use
the criterion:

‖Mk+1 −M
k‖F

max{1, ‖Mk‖F }
< mtol (9)

wheremtol is a small positive scalar. Experiments shows
that 1e−6 is good enough for obtaining optimalR.

D. Channel Availability Estimation Based on the Complete
Measurement Matrix

SinceF has more columns than rows, directly solving
X := RG

⊤ in (1) from given M is under-determined.
However, each rowXi of X corresponds to the occupancy
status of channeli. Ignoring noise inM for now,Xi contains
a positive entry if and only if channeli is used. Hence, most
rows of X are completely zero, so every columnX·,j of
X is sparse and allX·,j ’s are jointly sparse. Such sparsity
allows us to reconstructX from (1) and identify the occupied
channels, which are the nonzero rows ofX.

Since the channel fading decays fast, the entries ofX

have a large dynamic range, which none of the existing



algorithms can deal with well enough. Hence, we develop
a novel joint-sparsity algorithm briefly described as follows.
The algorithm is much faster than matrix completion and
typically needs 1-5 iterations. At each iteration, every col-
umn X·,j of X is independently reconstructed using the
model min{

∑

i wi|Xi,j | : FX·,j = M·,j}, whereM·,j is
the jth column ofM. For noisyM, we instead use the
constraint‖FX·,j−M·,j‖ ≤ σ. The same set of weightswi

is shared by allj at each iteration.wi is set to 1 uniformly
at iteration 1. After channeli is detected in an iteration,wi

is set to 0. Throughwi, joint sparsity information is passed
to all j. Channel detection is performed on the reconstructed
X·,j ’s at each iteration. It is possible that some reconstructed
X·,j is wrong, so we let larger and sparserX·,j ’s have more
say. If there is a relatively largeXi,j in a sparseX·,j , theni
is detected. We have found this algorithm to be very reliable.
The detection accuracy is determined by the accuracy ofM

provided.

IV. CSS JOINT SPARSITY RECOVERY ALGORITHM

In this section, we describe a new, highly effective algo-
rithm for recovering

Xn×m = Rn×n × (Gm×n)
⊤ (10)

and thusR by thresholdingX. The algorithm allows but
does not require the sameF for all CRs, i.e., each CR can use
a different sensing matrixF. The design ofF is discussed
in Section V-C below.

In X, each column (denoted byX·,j) corresponds to
the channel occupancy status received by CRj, and each
row Xi,· corresponds to the occupancy status of channeli.
Ignoring noise for now, a row has a positive value (i.e.,
|Xi,·| > 0) if and only if channeli is used. Since there are
only a small number of used channels,X is sparse in terms
of the number of rows containing nonzero. In each nonzero
row Xi,·, there is typically more than one nonzero entry; in
other words, ifXi,j 6= 0, other entries in the same row are
likely nonzero. Therefore,X is jointly sparse. In the case
that the trueX contains noise, it is approximately, rather
than exactly, jointly sparse.

Joint sparsity is utilized in our algorithm to recoverX.
While there are existing algorithms for recovering jointly
sparse signals in the literature (e.g., in [25]–[27]), our
algorithm is very different and more effective for our un-
derlying problem. None of the existing algorithms works
well to recoverX because the entries ofX have a very
large dynamic range because, in any channel fading model,
channel gains decay rapidly with distance between CRs
and PRs. Most existing algorithms are based on minimizing
∑

i ‖Xi,·‖p for p ≥ 1 andp = ∞. If p = 1, it is the same
as minimizing the 1-norm of each column independently, so
joint sparsity is not used for recovery. Ifp > 1 or p = ∞,
joint sparsity is considered, but it penalizes a large dynamic
range since the large values in a nonzero row ofX contribute

superlinearly, more than the small values in that row, to the
minimizing objective. In short,p close 1 loses joint sparsity
and p bigger than 1 penalizes large dynamic ranges. Our
new algorithm not only utilizes joint sparsity but also takes
advantages of the large dynamic range ofX.

The large dynamic range has its pros and cons in CS
recovery. It makes it easy to recover the locations of large
entries, which can be achieved even without recovering the
locations of smaller ones. On the other hand, it makes
difficult to recover both the locations and values of the
smaller entries. This difficulty has been studied in our
previous work [32], where we proposed a fast and accurate
algorithm for recovering 1D signalsx by solving several
(about 5-10) subproblems in the form of

Truncatedℓ1 minimization: min{
∑

i∈T

|xi| : Ax = b}

(11)
where the index setT is formed iteratively as{1, . . . , n}
excluding the identified locations of large entries ofx.
With techniques such as early detections and warm starts,
it achieves both the state–of–the–art speed and least require-
ment on the number of measurements. We integrate the idea
of this algorithm with joint sparsity into the new algorithm
below. The framework of the proposed algorithm is shown

Algorithm 1 Joint Detection Algorithm

T ← {1, . . . , n}
repeat

Independence recovery:
X← 0
X·,j ← min{∑i∈T Xi,j : AjX·,j = bj , X·,j ≥ 0} for
every CR j with enough measurements (In presence
of measurement noise,AjX·,j = bj is replaced by
‖AjX·,j − bj‖ ≤ σ)
Channel detection:
select trustedX·,j and detect used channels from the
selections
Update of T :
UpdateT according to detected channels andX

until the tail ofX is small enough
ReportX, andR by thresholdingX

in Table 1. At each iteration, every channel is first subject
to independent recovery. Unlike minimizing

∑

i ‖Xi,·‖p,
which ties all CRs together, independent recovery allows
large entries ofX to be quickly recovered. Joint sparsity
information is passed among the CRs through a shared
index setT , which is updated iteratively to exclude the used
channels that are already discovered. Below, we describe
each step of the above algorithm in more details.

In the independence recoverystep, for every qualified
CR, a constrained problem in the form of (11) with con-
straintsAjX·,j = bj in the noiseless case, or‖AjX·,j −



bj‖ ≤ σ in the noisy case, is considered, whereσ is an
estimated noise level. As problem dimensions are small
in our application, solvers are easily chosen: MATLAB’s
‘linprog’ for noiseless cases and Mosek [33] for noisy cases.
Both of these solvers run in polynomial times. This step
dominates the total running time of Algorithm 1, but up to
m optimization problems can be solved in parallel. Paral-
lelization is simple for the joint-sparsity approach. At each
outer iteration, all LPs are solved independently, and they
have small scales relative to today’s LP solvers, like Gurobi
[34] and its MATLAB interface Gurobi Mex [35], where
Gurobi automatically detects and uses all CPU and cores
for solving LPs. CRs without enough measurements (e.g.,
most of their reports are missing due to transmission losses
or errors) are not qualified for independent recovery because
CS recovery is known unstable in such a case. Specifically,
we require the number of the available measurements from
each qualified CR to exceed twice as many as used channels
or n− |T |.

When measurements are ample, the first iteration will
yield exact or nearly exactX·,j ’s. Otherwise, insufficient
measurements can cause a completely wrongX·,j that
misleads channel detection; neither the locations nor the
values of the nonzero entries are correct. The algorithm,
therefore, filters trustedX·,j ’s that must be either sparse
or compressible. Large entries in suchX·,j ’s likely indicate
correct locations. A theoretical explanation of this argument
based on stability analysis for (11) is given in [36].

Used channels are detected among the set of trustedX·,j ’s.
To further reduce the risk of false detections, we compute a
percentage for every channel in a way that those channels
corresponding to larger values inX and whose values are
located in relatively sparserX·,j ’s are given higher percent-
ages. Here, relative sparsity is defined proportionally to the
number of measurements; for fixed number of non-zeros or
degree of compressibility, the more the measurements, the
higher the relative sparsity. Hence,X·,j corresponding to
more reported CRj also tends to have a higher percentage.
In short, larger and sparse solutions have more say. The
channels receiving higher percentages are detected as used
channels.

The index setT is set as{1, . . . , n} excluding the used
channels that are already detected. Obviously,T needs
to change from one iteration to the next; otherwise, two
iterations will result in an identicalX and thus the stagnation
of algorithm. Therefore, if the last iteration posts no change
in the set of used channels yet the stopping criterion (see next
paragraph) is not met, the channelsi corresponding to the
larger‖Xi,·‖2 are also excluded fromT , and such exclusion
becomes more aggressive as iteration number increases. This
is not an ad hoc but a rigorous treatment. It is shown in [36]
that larger entries in an inexact CS recovery tend to be the
true nonzero entries, and furthermore, as long as the newT
excludes more true than false nonzero entries by a certain
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Fig. 2. False alarm and missing probability vs. sampling rate.

fraction, (11) will yield a better solution in terms of a certain
norm. In short, used channels leaveT , and in case of no
leaves, channels with larger joint values‖Xi,·‖2 leaveT .

Finally, the iteration is terminated when the tail ofX
is small enough. One way to define the tail size ofX is
the fraction

∑

i∈T ‖Xi,·‖p/
∑

i6∈T ‖Xi,·‖p, i.e., the thought–
unused divided by the thought–used. Suppose thatT pre-
cisely contains the unused channels and measurements are
noiseless, then every recoveredX·,j in channel detection is
exact, so the fraction is zero; with noise, the fraction depends
on noise magnitude and is small as long as noise is small.
If T includes any used channel, the numerator will be large
whether or notX·,j ’s are (nearly) exact. In a sense, the tail
size measures how wellX andT match the measurements
b and expected sparseness. Unless the true number of used
channels is known, the tail size appears to be an effective
stopping indicator.

V. D ISCUSSION

A. Complexity

In the worst case, algorithm 1 reduces the cardinality
of T by 1 per iteration, corresponding to recovering at
least 1 additional used channel. Therefore, the number
of iterations cannot exceed the number of total channels.
However, the first couple of iterations typically recover most
of the used channels. At each iteration, the independence
recovery step solves up tom optimization problems, which
can be independently solved in parallel, so the complexity
equals a linear program (or second-order cone program)
whose size is no more thann. The worst case complexity is
O(n3) but it is almost never observed in sparse optimization
thanks to solution sparsity. The two other steps are based
on basic arithmetic and logical operations, and they run in
O(p×n). In practice, algorithm 1 is implemented and run on



a workstation at the fusion center. Computational complexity
will not be a bottleneck of the system. As to the matrix
completion algorithm, according to [22], FPCA can recover
1000 × 1000 matrices of rank 50 with a relative error of
10−5 in about 3 minutes by sampling only 20 percent of the
elements.

B. Comparisons between the Two Approaches

The matrix completion (Section III) and joint sparsity
recovery (Section IV) approaches both take linear channel
measurements as input and both return the estimates of used
channels. On the other hand, the joint sparsity approach takes
the full advantage ofF, so it is expected to work with smaller
numbers of measurements. In addition, even though only
one matrix completion problem needs to be solved in the
matrix completion approach, it still takes much longer than
running the entire joint sparsity recovery, and it is not easy to
parallelize any of the existing matrix completion algorithms.
However, in the small-scale networks, in cases where too
much sensing information is lost during transmission or there
are too many active PRs in the network, which increase
the signal sparsity level, joint sparsity recovery algorithm
with our current settings will experience degradation in
performance.

We, however, cannot verdict an eventual winner between
the two approaches as they are both being studied and im-
proved in the literature. For example, if a much faster matrix
completion algorithm is developed which takes advantage of
F, the disadvantages of the approach may no longer exist.

C. Frequency-Selective Filter Design and Adaptive Sensing

The proposed method senses the channels, not by mea-
suring the responses of individual channels one by one,
but rather measures a few incoherent linear combinations of
all channels’ responses through onboard frequency-selective
filter set. The filter coefficients which perform as the sensing
matrix should have entries independently sampled from a
sub-gaussian distribution, since this is known to be best for
compressive sensing in terms of the number of measurements
(given in order of magnitude) required for exact recovery.
In other words, up to a constant, which is independent
of problem dimensions, no other type of matrix is yet
known to perform consistently better. However, other types
of matrices (such as partial Fourier/DCT matrices [37], [38]
and other random circulant matrices [39]) have been either
theoretically and/or numerically demonstrated to work as
effectively in many cases. These latter sensing matrices are
often easier to realize physically or electrically. For example,
applying a random circulant matrix performs sub-sampled
convolution with a random vector.

Frequency-selective surfaces (FSSs) can be used to realize
frequency filtering. This can be done by designing a planar

periodic structure with a unit element size around half wave-
length of the frequency of interests. Both the metallic and
dielectric materials can be used. To deal with the bandwidth,
unit elements in different shapes will be tested.

D. Dynamic CS Update

Channel occupancy evolves over time as PRs start and
stop using their channels. Channel gains can also change
when the PRs move. However, the CS research has so far
focused on static signal sensing except the very recent path
following algorithms in [40], [41]. In the future work, we
can investigate recovery methods for a dynamic wireless
environment where based on existing channel occupancy
information, an insignificant change of channel states can
be quickly and reliably discovered. Given existing channel
occupancyX, each new report, which is an entryMi;j of M,
is compared with(FX)i;j . If a significant number of such
comparisons show differences, then there is a change in the
true X. SinceX = (RG

T), eitherR or G, or both, have
changed. A change inR means new channel occupation or
release. IfR is unchanged, then those channel gains inG

corresponding to occupied channels have changed. It is easy
to deal with the latter case (i.e.,G changed, butR didn’t)
and update the gains of occupied channels because it boils
down to solving a small linear system. LetF̂ andX̂ denote
the sub-matrices ofF andX, respectively, formed by their
columns and rows corresponding to the occupied channels.
Then, the new gains are given in the least-squares solution
of M = F̂X̂, whereM shall include new reports arrived
after the previous recovery/update but may still have missing
entries. This system is easy to solve since the number of
occupied channels is small.

In a similar way it is easy to discover released channels as
long as there is no introduction of new occupied channels.
The release of channeli means rowXi of X turns into
0, or small numbers. Therefore, one can solve the system
M = F̂X̂ and find the released channels, which correspond
to the rows ofX̂ with all zero (or small) entries. When
the systemM = F̂X̂ is inconsistent, it means that the
received reports cannot be explained by the previously
occupied channels, so there must be new channel occupation.
Discovering new channel occupation is more difficult since it
is to find changes in the previously unoccupied ones, which
are much more than the occupied channels. However, it
is computationally much easier than starting from scratch.
Let Xprev andX denote the previous and current channel
information, respectively. Arguably,Xprev − X is highly
sparse in the joint sense because only its rows corresponding
to newly occupied or released channels can have large
nonzero entries. Hence,X can be quickly recovered by
performing joint sparsity recovery onXprev −X over the
constraintsM = FX (or a relax version in the noisy case),
a task that can be done by the algorithms for stationary
recovery.
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Fig. 3. POD vs. sampling rate.

VI. SIMULATION RESULTS

The Probability of Detection (POD) and False Alarm Rate
(FAR) are the two most important indices associated with
spectrum sensing. We also consider the Miss Detection Rate
(MDR) of the proposed system. The higher the POD, the
less interference will the CRs bring to the PRs, while from
the CRs’ perspective, lower FAR will increase their chance
of transmission. There is a tradeoff between POD and FAR.
While designing the algorithms, we try to balance the CR
nodes’ capability of transmission and their interferencesto
the PR nodes. Performance is evaluated in terms of POD,
FAR and MDR defined as follows:

FAR=No. False /(No. False+No. Hit)
MDR=No. Miss/(No. Miss+No. Correct)
POD=No. Hit/(No. Hit+No. Miss)

where No. False is the number of false alarms,No. Miss
is the number of miss detections,No. Hit is the number of
successful detections of primary users, andNo. Correct is
the number of correct reports of no appearance of PR. We
define sampling rate as

No. received measurements at the fusion center
No. channels× No. CRs

where (No. channel×No. CR) is the amount of total sensing
workload in traditional spectrum sensing.

A. Simulation of Matrix Completion Recovery

According to FCC and Defense Advance Research
Projects Agency (DARPA) reports [42], [43] data, we chose
to test the proposed matrix completion recovery algorithm
for spectrum utilization efficiency over a range from 3%
to 12%, which is large enough in practice. Specifically, the
number of active primary users is 1 to 4 on a given set of
35 channels with 20 CR nodes.
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Fig. 4. Noiseless AWGN channel (no. of CR = 5).

Fig. 2 shows the false alarm and miss detection rates at
different sampling rates for different numbers of PR nodes.
Among all cases, the highest miss detection rate is no more
than 5%, and this is from only 20% samples which are
supposed to be gathered from the CR nodes regarding all
the channels. When the sampling rate is increased to 50%
and even when the channel occupancy is relatively high,
i.e., 12% of the channels are occupied by the PRs, the miss
detection rates can be as low as no more than 2%. From
our simulation results, with a moderate channel occupancy
at 9%, the false alarm rates are around 3% to 5%. Fig. 3
shows the probability of detection at different sampling rates.
When the spectrum is lightly occupied by the licensed user
at 3% channels being occupied, only 20% samples offer a
POD close to 100%, and when there is a slightly raise in
sampling rate, POD can reach 100%. In the worst case of
12% spectrum occupancy, 20% sampling rate still can offer
a POD of higher than 95%, and as the sampling rate reaches
50%, POD can reach 98%.

B. Joint Sparsity Recovery Simulation

Joint sparsity recovery is designed for large scale appli-
cation, and simulations carried out for a larger dimensional
applications with the following settings: We consider a20-
node cognitive radio network within a500×500 meter square
area centered at the fusion center. The20 CR nodes are
uniformly randomly located. These cognitive radio nodes
collaboratively sense the existence of primary users within
a 1000 × 1000 meter square area on500 channels, which
are centered also at the fusion center. We chose to test
the proposed algorithm for the number of active PR nodes
ranging from1 to 15 on the given set of 500 channels. Since
the fading environments of the cognitive radio networks
vary, we evaluate the algorithm performance under three
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Fig. 5. Noiseless Rayleigh fading channel (no. of CR = 5).
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Fig. 6. Noiseless log-normal shadowing channel (no. of CR = 5).

typical channel fading models: AWGN channel, Rayleigh
fading channel, and lognormal shadowing channel. We
first evaluate the POD, FAR, and MDR performance of the
proposed joint sparsity recovery performance in the noiseless
environment. Fig. 4, Fig. 5, and Fig. 6 show the POD,
FAR and MDR performance at different sampling rate, for
AWGN channel, Rayleigh fading channel, and lognormal
shadowing channel, respectively, when small number of CR
nodes sense the spectrum collaboratively. Fig. 7, Fig. 8,
and Fig. 9 show the POD, FAR and MDR performance at
different sampling rate, for the aforementioned three types of
channel models, when there are more CR nodes involved in
the collaborative sensing of the spectrum. We observe that,
log-normal shadowing channel model shows the best POD,
FAR, and MDR performance no matter how many CR nodes
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Fig. 7. Noiseless AWGN channel (no. of CR = 10).

are involved in the spectrum sensing. While the AGWN
channel model shows the worst POD, FAR, and MDR
performance. With respect to POD, the performance gap
between these two models is at most 10%, which happens
when the sampling rate is extremely low. For the Rayleigh
fading channel model, when the number of samples is62%
of the total number of channels, for all tested cases we
achieve100% POD. If there are less active PR nodes in the
network, smaller number of samples are required for exact
detection. In essence, the proposed CCS system is robust to
severe or poorly modeled fading environments. Cooperation
among the CR nodes and robust recovery algorithm allow
us to achieve this robustness without imposing stringent re-
quirements on individual radios. We then evaluate the POD,
FAR, and MDR performance of the proposed joint sparsity
recovery performance in noisy environments. For all the
simulations considering noise, we adopt the Rayleigh fading
channel model. Fig. 10 and Fig. 11 show the corresponding
results. We observe that noise does degrade the performance.
However, as shown in Fig. 10, when the number of active
PRs is small enough (e.g., no. of PR = 1), even with signal
to noise ratio as low as 15 dB, we still can achieve100%
POD with a sampling rate of merely50%. Then with an
increase in the signal to noise ratio, lower sampling rate
enables more PR nodes to be detected exactly. Fig. 11 shows
the POD, FAR and MDR performance vs. sampling rate at
different noise level, each curve for a specific noise level is
relatively flat (i.e., performance varies a little as sampling
rate changes). This shows that the noise level has greater
impact on the spectrum sensing performance rather than the
sampling rate. At low noise level, e.g., SNR = 45 dB,40%
sampling rate enables100% POD for 4 PR nodes. As SNR
reduces to 15 dB, no more than70% POD will be achieved
even when the number of samples equals to the number of
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Fig. 8. Noiseless Rayleigh fading channel (no. of CR = 10).

channels in the network.

C. Comparison between Matrix Completion Algorithm and
Joint Sparsity Recovery Algorithm

For comparison, we applied joint sparsity recovery al-
gorithm on a small-scale network with the same settings
as we have used to test the matrix completion recovery.
Instead of using a 500-channel network, we use a network
with only 35 channels. Simulation results show that joint
sparsity recovery algorithm performs better than the matrix
completion algorithm in the following aspects:

1) Faster computation due to lower computational com-
plexity;

2) Higher POD for the spectrum utilization rate between
3% and 12% in the noise free simulations;

To conclude, matrix completion algorithm is good for
small-scale networks, with relatively high spectrum uti-
lization, while joint sparsity recovery algorithm has the
advantage of low computational complexity which enables
fast computation in large-scale networks.

VII. C ONCLUSIONS

In order to reduce the amount of sensing and transmission
overhead of cognitive radio (CR) nodes, we have applied
compressive sensing for collaborative spectrum detection
in cognitive radio networks. We propose to equip each
CR node with a frequency-selective filter, which linearly
combines multiple channel information, and let it send a
small number of such linear combinations to the fusion
center, where the channel occupancy information is then
decoded. Consequently, the amount of channel sensing at
the CRs and the number of reports sent from the CRs to the
fusion center reduce significantly.
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Fig. 9. Noiseless log-normal shadowing channel (no. of CR = 10).
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Fig. 10. POD, FAR, and MDR performance vs. sampling rate at different
SNR.

Two novel decoding approaches have been proposed – one
based on matrix completion and the other based on joint
sparsity recovery. The novel matrix completion approach
recovers the complete CR–to–center reports from a small
number of valid reports and then reconstructs the channel
occupancy information. The joint sparsity approach, on
the other hand, skips recovering the reports and directly
reconstructs channel occupancy information by exploiting
the fact that each occupied channel is observable by multiple
CR nodes. Our algorithm enables faster recovery for large-
scale cognitive radio networks.

The primary user detection performance of the proposed
approaches has been evaluated by simulations. The results
of random tests show that, in noiseless cases, the number
of samples required are no more than 50% of the number
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Fig. 11. POD, FAR, and MDR performance vs. noise level for different
number of PR.

of channels in the network to guarantee exact primary user
detection for both approaches; while in noisy environments,
at low channel occupancy rate, we can still have high
probability of detection.
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