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Abstract—Spectrum sensing, which aims at detecting spec- most bands are quiet most of the time. The FCC in the United
trum holes, is the precondition for the implementation of  States and the Ofcom in the United Kingdom, as well as
cognitive radio (CR). Collaborative spectrum sensing amog  raqyjatory bodies in other countries, have found that most

the cognitive radio nodes is expected to improve the ability . . .
of checking complete spectrum usage. Due to hardware limi- of the precious, licensed radio frequency spectrum regsurc

tations, each cognitive radio node can only sense a relatije ~ are inefficiently utilized 2], [[8].
narrow band of radio spectrum. Consequently, the available In order to increase the efficiency of spectrum utilization,
channel sensing information is far from being sufficient for  diverse types of technologies have been deployed. Cognitiv
precisely recognizing the wide range of unoccupied chanr@l 4 iq s one of those that leads to the greatest technologica
Aiming at breaking this bottleneck, we propose to apply . . . - o
matrix completion and joint sparsity recovery to reduce sesing Qa'” in wireless capacity. Through the detectlon and atiliz
and transmitting requirements and improve sensing results  tion of the spectra that are assigned to the licensed users
Specifically, equipped with a frequency selective filter, ezn  but standing idle at certain times, cognitive radio acts as a
cognitive. radio r!ode senses linear combinations.of multigl key enabler for spectrum sharing. Spectrum sensing, aiming
channel mfor_matlon and reports them to the fusion center, at detecting spectrum holes (i.e., channels not used by any
where occupied channels are then decoded from the reports . . " . .
by using novel matrix completion and joint sparsity recovey P“mary,lﬂse'rsl _'S the precoqqltlon for. the implementation
algorithms. As a result, the number of reports sent from the  Of cognitive radio. The Cognitive Radio (CR) nodes must
CRs to the fusion center is significantly reduced. We propose constantly sense the spectrum in order to detect the presenc
two decoding approaches, one based on matrix completion and of the Primary Radio (PR) nodes and use the spectrum holes
the other based on joint sparsity recovery, both of which abw \ithoyt causing harmful interference to the PRs. Hence,
exact recovery from incomplete reports. The numerical reslis . - . . L
validate the effectiveness and robustness of our approacke sensing the spectrgm in a rel_lable mannern is of vital im-
In particular, in small-scale networks, the matrix completion ~ Portance and constitutes a major challenge in CR networks.
approach achieves exact channel detection with a number of However, detection is compromised when a user experiences
samples no more than50% of the number of channels in  shadowing or fading effects or fails in an unknown way.
the network, while joint sparsity recovery achieves simila 14 get g petter understanding of the problem, consider the
performance in large-scale networks. . ) . o . .
Keywords: Collaborative spectrum sensing, matrix comple- followmg example: a typical Digital TV receiver operating
tion’ Compressive Sensing’ joint Sparsity recovery. n a 6 MHZ band must be able to deCOde a S|gna| |eVe| Of
at least -83 dBm without significant errofs [4]. The typical
thermal noise in such bands is -106 dBm. Hence a CR which

I. INTRODUCTION is 30 dBm more sensitive has to detect a signal level of -

Ever since the 1920s, every wireless system has beéht3 dBm, which is below the noise flodrl [S]. In such cases,
required to have an exclusive license from the government iRN® CR user cannot distinguish between an unused band
order not to interfere with other users of the radio spectrum@nd @ deep fade. In order to combat such effects, recent
Today, with the emergence of new technologies which enabfgiudies suggest collaboration among multiple CR nodes for
new wireless services, virtually all usable radio frequiesc IMProving spectrum sensing performance. _ _
are already licensed to commercial operators and governmen Collaborative spectrum sensing (CSS) techniques are in-
entities. According to former U.S. Federal Communicationdroduced to improve the performance of spectrum sensing.
Commission (FCC) chair William Kennard, we are facingBY allowing different secondary users to collaborate and
with a “spectrum drought[1]. On the other hand, not everyshare thelr information, PR detecu_o_n p_robab|I|ty can b_e
channel in every band is in use all the time; even for premiungreatly increased. CSS can be classified into two categories

frequencies below 3 GHz in dense, revenue-rich urban arean€ first category involves multiple users exchanging infor
mation [6], [7], and the second category uses relay trans-

A part of this work appeared in proceedings of IEEE ICASSP®201  mission [8]. Some recent studies on collaborative spectrum
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sensing include cooperative scheme design guided by gane@abling its reconstruction from only a small nhumber of
theory [9] and random matrix theory [10], cluster-basedits entries, and therefore, information about the complete
cooperative CSS[[11], and distributed rule-regulated CSSpectrum usage can be recovered from a small number
[12]; studies concentrating on CSS performance improveef reports from the CR nodes. This approach significantly
ment include[[1B] introducing spatial diversity technigue  reduces the amount of sensing and communication workload.
combat the error probability due to fading on the reporting The second approach is based on joint sparsity recovery
channel between the CR nodes and the central fusion cent§25]—[29], which is motivated by the observation that the
There are also studies concerning other interesting aspedpectrum usage information the CR nodes collect has a
of CSS performance under different constraints [10]] [14]-common sparsity pattern: each of the few occupied channels
[16]. Very recently, there are emerging applications of thes typically observed by multiple CRs. We develop a novel
compressive sensing concept for C§S [17]. algorithm for joint sparsity signal recovery, which is more

Existing literature mostly focuses on the CSS performanceffective than existing algorithms in the compressive sens
examination when the centralized fusion center receives arliterature since it can accommodate a large dynamic range
combinesall CR reports. In am channel cognitive radio of channel gains.
network withm CR nodes, the fusion center has to deal with In both approaches, every CR senses all channels (by
n *m reports and combine them wisely to form a channetaking random linear projections of the powers of all chan-
sensing result. However,it is known that wireless channelgels), and the CRs do not communicate. While they work
are subject to fading and shadowing. When secondary useirgdependently, their measurements are analyzed jointly by
experience multi-path fading or happen to be shadowed, tHéie detection algorithms running at the fusion center. &her
reports transmitted by CR users are subject to transmissidare, our approaches are very different from the existing
loss. As a result, in practice, no entire report data set isollaborative spectrum sensing schemes in which different
available at the fusion center. Besides, due to the fact th&tRs are assigned to different channels. Our approaches move
each cognitive radio can only sense a small proportion ofrom collaborative sensing to “collaborative” computatio
the spectrum with limited hardware, each CR user gatherand shift coordination from the sensing phase to the post-
only very limited information about the entire spectrum.  sensing phase.

Contributions: Our work is among the first that applies matrix completion

We seek to release CRs from sending, and the centr&F joint sparsity recovery to collaborative spectrum segsi
control unit from gathering, an excessively large number of? cognitive radio networks. Matrix completion and joint
reports, also target at the situations where there are only @arsity recovery are both being intensively studied in the
few CR nodes in a large network and thus unable to gathé&fompressive sensing community. \We present them both
enough sensing information for the traditional CSS. WePecause it is too early at this time to make a verdict of
propose to equip each cognitive radio node with a frequenc§n eventual winner.
selective filter, which linearly combines multiple channel _The rest of this paper is organized as follows: In Section
information. The linear combinations are sent as reports # the system model is given. The matrix completion-based
the fusion center, where the occupied channels are decodalgorithm for collaborative sensing is described in Sectio
from the reports by compressive sensing algorithms. As Bl and the joint sparsity based algorithm is described in
consequence, the amount of channel sensing at CRs and thgctiorlIV. After that, in SectidnlV we compare the two pro-

number of reports sent from the CRs to the fusion center ar@0Sed approaches, discuss their computational complesity
both significantly reduced. well as filter design and dynamic update. Simulation results

Following our previous work[T18],[T19] on compressive &€ presented in Sectign]VI, and conclusions are drawn in
sensing, we propose two approaches to collaborative spectr>€Ction VIl.
sensing. The first approach is based on solving a matrix
completion problem[[20]5[24], which seeks to efficiently Il. SysTeEM MODEL
reconstruct a matrix (typically low-rank) from a relatiyel We consider a cognitive radio network with CR nodes
small number of revealed entries. In this approach, thé¢hat locally monitor a subset af channels. A channel is
entries of the underlying matrix are linear combinations ofeither occupied by a PR or unoccupied, corresponding to
channel powers. Each CR node takes its local spectrutihe stated andO0, respectively. We assume that the number
measurements, but instead of directly recording channel of occupied channels is much smaller thanThe goal
powers, it uses its frequency-selective filters to takinear  is to recover the occupied channels from the CR nodes’
combinations of channel powers and reports them to theobservations. Since each CR node can only sense limited
fusion center. The total x m linear combinations taken by spectrum at a time, it is impossible for limited CRs to
m CRs form ap x m matrix at the fusion center. Considering observen channels simultaneously.
transmission loss, we allow the the matrix to be incomplete. To overcome this problem, we propose the scheme de-
We show that this matrix is low-rank and has the propertiepicted in Fig.[1. Instead of scanning all channels and



Licensed Band1 Licensed Band2 Licensed Band3
Unoccupied Occupied Unoccupied

sending each channel’'s status to the fusion center, using
its frequency-selective filters, a CR takes a small number

of measurements that are linear combinations of multiple O]
channels. The filter coefficients can be designed and imple- o

mented easily. In order to mix the different channel sensing ‘ B
information, the filter coefficients are designed to be rando — ;@
numbers. Then, these filter outputs are sent to the fusion =
center. Suppose that there ardrequency selective filters U
in each CR node sending out reports regarding the: oo ¥ ey
channels. For the non-ideal cases, where we have relatively Selective
less measurementsn < n, i.e., the number of reports sent
from all CRs is less than the total number of channels. The
sensing process at each CR can be representedpby a

filter coefficient matrixF. Let ann x n diagonal matrix R o
represent the states of all the channel sources usiagd cOmprescfi"}Egggg'z'EEm _—
1 as diagonal entries, indicating the unoccupied or occupied N=FRG
states, respectively. There areonzero entries imliag(R.).

In addition, channel gains between the CRs and channels afig- 1. System model.

described in amn x n channel gain matriG given by [30]:

Spectrum

=

Primary
User

Cognitive Radio
~ Node

Gij = Pi(di ) hi 1) « There exists a constapt, > 0 such that for all
i € [p], j € [m], we have}~;_, U7, < pos,

where P; is the i" primary user’s transmitted powed,
l primary POt Y1 V2, < hos.

is the distance between the primary transmitter usiig ! s
channel and the'* CR node,a is the propagation loss * Thelr/e2 existquy such that 35y, Uik Xk Vs [<
factor, andh; ; is the channel fading gain. For AWGN . _/”S ' ) o
channel,h; ; = 1,Vi, j; for Rayleigh channel,h; ;| follows .M is in general mcompletg because of transmission
independent Rayleigh distribution; and for shadowingriggi  failure. Moreover, each CR might only be able to collect
|h; ;| follows log-normal distribution[[30]. Without loss of & random (up tg) number of reports due to the hardware
generality, we assume that all PRs’ use unit transmit powépmltanon. Therefore, the fusion certain receives a stibse
(otherwise, we can compensate by altering the correspgndide € [p] x [m] of M's entries. We assume that the received
channel gains). The measurement reports sent to the fusiéftries are uniformly distributed with high probabiity

center can be written aszax m matrix Hence, we work with a model in which each entry shows
up in E identically and independently with probability
M,xm = FpxnRixn(Gmxn) - (2)  ¢//p xm. Given E,,,, the partial observation oM is

defined as @ x m matrix given b
Note that due to loss or errors, some of the entriedvbf Pxm 9 y

are possibly missing. The binary numbers on the diagonal 5 M;;, if (i,j) €E
of R are then—channel states that we shall estimate from M;; = { 0, otherwise
the available entries dw.

®)

We shall first recover the unobserved elementdvbffrom
MP¥. Then, we reconstru¢RG ") from the givenF andM
I1l. CSS MATRIX COMPLETION ALGORITHM using the fact that all but rows of (RGT) are zero. These
It is typically difficult for the fusion center to acquire all Nonzero rows correspond to the occupied channels. gince

entries ofM due to transmission failure, which means thatand m are much smaller than, our approach requires a
our observation is a subs& C [p] x [m] of M. However, much I_e_ss amount of sensing and transmission, compar_ed
it is possible to recover the missing entriesNdi since it 0 traditional spectrum sensing in which each channel is
holds the following two important properties [20] required Monitored separatively.
for matrix completion: In previous research on matrix completion [[21]={24], it
was proved that under some suitable conditions, a low-rank

1) Low Rank: rank(M) equals tos, which is the number ,
| matrix can be recovered from a random, yet small subset of

of prime users in the network and is usually very smal
2) Incoherent Property: GenerateF randomly (subject
to hardware Iimitation). FronE[l) and the fact tHat 1Depending on the different channel gain, the CRs will sethfferent
. , coding/modulation/power control schemes so that the vedesignal to
has onlys nonzeros on the diagon@I's SVD factors noise ratio can be maintained about a certain threshold.t®ttes reason,
U, X, andV satisfy theincoherence condition [23]. we can assume that the loss of information is uniformly itisted.



its entries by nuclear norm minimization: @) involves solving[(B) to reduce the nuclear normys.
. 1 512 Iterations based or](5) converge when the step sizeme
MglﬂéganHMH* t3 Z M, ; — M| (4)  properly chosen (e.g., less than 2, or select by line search)
(i,4)€E so that the first step ofI5) is not “expansive” (the other step

where|M||, denotes the nuclear norm of matfid andr is IS @lways non-expansive).
a parameter discussed in Section 1]I-C below. For notationa
simplicity, we introduce the linear operat@ that selects B. Approximate SVD Based Fixed Point Iterative Algorithm

the componentE out of ap x n matrix and form them into As stated in[[2R], the second step &1 (5) requires com-
a vector such thafPM — PMP”||3 = 37, [Mi; —  puting the SVD decomposition 6¥*, which is the main
M/;|. The adjoint ofP is denoted byP*. computational cost of{5). However, if one can predetermine
Recent algorithms developed fd] (4) include, but notthe rank of the matrixM, or have the knowledge of the
limited to, the singular value thresholding (SVT) algonith approximate range of its rank, a full SVD can be simplified
[21] and the fixed-point continuation iterative algorithm to computing only a rank-approximation toY’*. Combined
(FPCA) [22] for fast completion of large-scale matriceg)(e. with the above fixed point iteration, the resulting algaritts
more than1000x1000), a special trimming step introduced called fixed-point continuation algorithm with approximat
by Keshavan et al. il [23]. SVD (FPCA). Specifically, the approximate SVD is com-
For our problem, we adopt FPCA, which appears to rurputed by a fast Monte Carlo algorithm developed by Drineas
very well for our small-dimensional tests. In the following et al. [31]. For a given matriA € R™*" and parameters
subsections, we describe this algorithm and the steps e tak,, this algorithm returns an approximations to the largest
for nuclear norm minimization. Also, we study how to usek, singular values corresponding left singular vectors of the
the approximate singular value decomposition (SVD)-baseghatrix A in a linear time.
iterative algorithm introduced in [22] for fast executidhle
further discuss the stopping criteria for iterations towacs| C. Stopping Criterion for Iterations

optimal recovery. Finally we show how to obtalR from ,
the estimatiorML of M We tune the parameters in FPCA for a better overall per-

formance. Continuation is adopted by FPCA, which solves a
o _ _ ) sequence of instances 61 (4), easy to difficult, correspandi
A. Nuclear Norm Min. via Fixed Point Iterative Algorithm to a sequence of large to small valuesrofThe final 7 is
FPCA is based on the following fixed—point iteration:  the given one but solving the easier instances bf (4) gives
Yh — MF — §,P*(PMF — PME) intermediate solutions_ that warm _start_ the more diffiCl_JIt
{ MR = § 5 (YF) (5) ones SO that the entire s_olutlon time is r(_aduced. Solving
each instance of14) requires proper stopping. Because our
where 0, is step size andS,(-) is the matrix shrinkage ultimate goal is to recover 0/1 values on the diagonaRof

operator defined as follows: accurate solutions of{4) are not required. Therefore, vee us
Definition 1: Matrix Shrinkage Operator S,(-): As-  the criterion:
sume M < RPX™ agnd its SVD is given byM = ||Mk+1 _ Mk”F
Udiag(o)V?, whereU € RP*", o0 € R7,, andV € R™*". (LM < mtol 9)
Givena > 0, S,(+) is defined as ’ o
where mtol is a small positive scalar. Experiments shows
S-(M) := Udiag (sa(0)) V" (6)  thatle—° is good enough for obtaining optim#.

with the vectors, (o) defined as:
D. Channel Availability Estimation Based on the Complete

Sq(x) := max{z — o, 0}, component-wise. (") Measurement Matrix

Simply speaking,S-(M) reduces every singular values Since F has more columns than rows, directly solving
(which is nonnegative) oM by 7; if one is smaller than X := RGT in (@) from given M is under-determined.
«, it is reduced to zero. In additiors,, (M) is the solution However, each rowX; of X corresponds to the occupancy
of 1 status of channél Ignoring noise inM for now, X; contains

min o X[, + = [|X - M||§7 (8) apositive entry if and only if channe¢lis used. Hence, most

XeRmzn 2 rows of X are completely zero, so every coluni ; of

where|| - | 7 is the Frobenius norm. X is sparse and alX. ;'s are jointly sparse. Such sparsity

To understand[{5), observe that the first step[df (5) isallows us to reconstru from (@) and identify the occupied
a gradient-descent applied to the second termdn (4) anchannels, which are the nonzero rowsXf
thus reduces its value. Because the previous gradienediesc  Since the channel fading decays fast, the entrieXof
generally increases the nuclear norm, the second step bave a large dynamic range, which none of the existing



algorithms can deal with well enough. Hence, we develouperlinearly, more than the small values in that row, to the
a novel joint-sparsity algorithm briefly described as faldo  minimizing objective. In shortp close 1 loses joint sparsity
The algorithm is much faster than matrix completion andand p bigger than 1 penalizes large dynamic ranges. Our
typically needs 1-5 iterations. At each iteration, every- co new algorithm not only utilizes joint sparsity but also take
umn X. ; of X is independently reconstructed using theadvantages of the large dynamic rangeXaf

model min{} ", w;|X; ;| : FX.; = M. ;}, whereM. ; is The large dynamic range has its pros and cons in CS
the jth column of M. For noisy M, we instead use the recovery. It makes it easy to recover the locations of large
constraint| FX. ; — M. ;|| < 0. The same set of weighis;  entries, which can be achieved even without recovering the
is shared by allj at each iteratiomw; is set to 1 uniformly locations of smaller ones. On the other hand, it makes
at iteration 1. After channelis detected in an iterationy;  difficult to recover both the locations and values of the
is set to 0. Throughw;, joint sparsity information is passed smaller entries. This difficulty has been studied in our
to all j. Channel detection is performed on the reconstructegrevious work [[32], where we proposed a fast and accurate
X. ;'s at each iteration. It is possible that some reconstructedlgorithm for recovering 1D signals by solving several
X.; is wrong, so we let larger and sparser;'s have more (about 5-10) subproblems in the form of

say. If there is a relatively larg&’; ; in a sparseX. ;, then:

is detected. We have found this algorithm to be very reliable  Truncated; minimization: min{ || : Az = b}

The detection accuracy is determined by the accuradylof €T (11)

provided. where the index sef’ is formed iteratively as(1,...,n}
excluding the identified locations of large entries of
_ ) ) ) ) With techniques such as early detections and warm starts,
_In this section, we describe a new, highly effective algot achieves both the state—of-the—art speed and leasteequi
rithm for recovering ment on the number of measurements. We integrate the idea
Xoxm = Rnxn X (Gmxn) | (10)  of this algorithm with joint sparsity into the new algorithm
below. The framework of the proposed algorithm is shown

IV. CSS DINT SPARSITY RECOVERY ALGORITHM

and thusR by thresholdingX. The algorithm allows but
does not require the sanliefor all CRs, i.e., each CR can use Algorithm 1 Joint Detection Algorithm
a different sensing matri¥'. The design ofF® is discussed

. . T+ {1,...,n
in Sectior[V-C below. {1om}
repeat
In X, each column (denoted by. ;) corresponds to .
. Independence recovery:
the channel occupancy status received by £Rind each X < 0

row X, . corresponds to the occupancy status of channel
Ignoring noise for now, a row has a positive value (i.e.,
|X;..| > 0) if and only if channeli is used. Since there are
only a small number of used channel§,is sparse in terms

of the number of rows containing nonzero. In each nonzero
row X; ., there is typically more than one nonzero entry; in
other words, ifX; ; # 0, other entries in the same row are
likely nonzero. ThereforeX is jointly sparse. In the case
that the trueX contains noise, it is approximately, rather
than exactly, jointly sparse.

Joint sparsity is utilized in our algorithm to recovXr.
While there are existing algorithms for recovering jointly
sparse signals in the literature (e.g., in1[2B]+[27]), our
algorithm is very different and more effective for our un-in Table[]. At each iteration, every channel is first subject
derlying problem. None of the existing algorithms worksto independent recovery. Unlike minimiziny_, || X; .||,
well to recoverX because the entries & have a very which ties all CRs together, independent recovery allows
large dynamic range because, in any channel fading modd§rge entries ofX to be quickly recovered. Joint sparsity
channel gains decay rapidly with distance between CRmformation is passed among the CRs through a shared
and PRs. Most existing algorithms are based on minimizingndex setl’, which is updated iteratively to exclude the used
> I X, |l for p>1andp = co. If p=1, it is the same channels that are already discovered. Below, we describe
as minimizing the 1-norm of each column independently, seach step of the above algorithm in more details.
joint sparsity is not used for recovery. pf> 1 or p = oo, In the independence recoverystep, for every qualified
joint sparsity is considered, but it penalizes a large dyinam CR, a constrained problem in the form &f{11) with con-
range since the large values in a nonzero ro&afontribute ~ straints A; X. ; = b; in the noiseless case, ¢4, X. ; —

X,J — min{ZieT X@j : AjX.,j = bj,X.,j > 0} for
every CRj with enough measurements (In presence
of measurement noised; X.; = b; is replaced by
14;X.j = bjll < 0)
Channel detection:
select trustedX. ; and detect used channels from the
selections
Update of 7"
UpdateT" according to detected channels axXd

until the tail of X is small enough

ReportX, andR. by thresholdingX




bjll < o in the noisy case, is considered, whereis an False Alarm Rate vs Sampling Rate

01 T T T T T T L I

estimated noise level. As problem dimensions are sma
in our application, solvers are easily chosen: MATLAB's
‘linprog’ for noiseless cases and Mosék][33] for noisy cases
Both of these solvers run in polynomial times. This step
dominates the total running time of Algorithimh 1, but up to

2
2

m optimization problems can be solved in parallel. Paral- s e e T, Ty TR, TR e e e S TRy T e 1
lelization is simple for the joint-sparsity approach. Atka Sampiing Rate

outer iteration, all LPs are solved independently, and the 006 Miss Detection Rate vs Samping Rate N
have small scales relative to today’s LP solvers, like Girob o ———
[34] and its MATLAB interface Gurobi Mex[[35], where oo E"”EEE

Gurobi automatically detects and uses all CPU and core

for solving LPs. CRs without enough measurements (e.g
most of their reports are missing due to transmission losse ——— . .

* * =

or errors) are not qualified for independent recovery begaus fvt o o o o o S;ESIinQOEGate W
CS recovery is known unstable in such a case. Specificall

we require the number of the available measurements from

each qualified CR to exceed twice as many as used channé&l§- 2. False alarm and missing probability vs. sampling.rat
orn —|T].

When measurements are ample, the first iteration wil . . L .
. ) T - raction, [11) will yield a better solution in terms of a cart
yield exact or nearly exack. ;'s. Otherwise, insufficient .
' norm. In short, used channels lea¥e and in case of no

measurements can cause a completely wroag that . -
. SR . leaves, channels with larger joint valug¥; .||» leaveT.
misleads channel detection; neither the locations nor the _. . o : : .
Finally, the iteration is terminated when the tail &f

values of the nonzero entries are correct. The algorithm . o .
. ) . 15 small enough. One way to define the tail sizeXfis
therefore, filters trustedX. ;'s that must be either sparse . :
. A - - the fraction)_, - | Xi..lp/ > ier 1 X, ||p, i.€., the thought—
or compressible. Large entries in sugh;’s likely indicate L i ¥ i ’
) ; . . unused divided by the thought-used. Suppose Thaire-
correct locations. A theoretical explanation of this arg cisely contains the unused channels and measurements are
based on stability analysis fdr{11) is given n][36]. y

Used ch I detected the set of trugtel noiseless, then every recover&d; in channel detection is
sedchannels are detected among the SELoTusIes. - oy 50t 5o the fraction is zero; with noise, the fraction dejse

To further reduce the risk of false detections, we computee?n noise magnitude and is small as long as noise is small,

percentagz_for evlery chanlnel ";ia Wzy tEat thosle chann f T includes any used channel, the numerator will be large
corresponding to larger values K and whose values are \paer of notX. ;'s are (nearly) exact. In a sense, the tail

located in reIaungy sparng.,.?- S are given h|gh§r Percent ize measures how weK and 7’ match the measurements
ages. Here, relative sparsity is .defmed proportionallye t b and expected sparseness. Unless the true number of used
number of measurements; for fixed number of non-zeros %hannels is known, the tail size appears to be an effective

d_egree of comp_ressibility_, the more the measurements, ths?opping indicator.

higher the relative sparsity. Hencg(. ; corresponding to

more reported CH also tends to have a higher percentage.

In short, larger and sparse solutions have more say. The

channels receiving higher percentages are detected as ugedComplexity

channels. In the worst case, algorithial 1 reduces the cardinality
The index sefl" is set as{1,...,n} excluding the used of T by 1 per iteration, corresponding to recovering at

channels that are already detected. Obvioudly,needs least 1 additional used channel. Therefore, the number

to change from one iteration to the next; otherwise, twoof iterations cannot exceed the number of total channels.

iterations will result in an identica and thus the stagnation However, the first couple of iterations typically recoversno

of algorithm. Therefore, if the last iteration posts no apan of the used channels. At each iteration, the independence

in the set of used channels yet the stopping criterion (See nerecovery step solves up t@ optimization problems, which

paragraph) is not met, the channélsorresponding to the can be independently solved in parallel, so the complexity

larger|| X, .||2 are also excluded frorfi, and such exclusion equals a linear program (or second-order cone program)

becomes more aggressive as iteration number increases. Thihose size is no more than The worst case complexity is

is not an ad hoc but a rigorous treatment. It is shown in [3610(n?) but it is almost never observed in sparse optimization

that larger entries in an inexact CS recovery tend to be ththanks to solution sparsity. The two other steps are based

true nonzero entries, and furthermore, as long as the’hew on basic arithmetic and logical operations, and they run in

excludes more true than false nonzero entries by a certaii(p xn). In practice, algorithril1 is implemented and run on
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V. DISCUSSION



a workstation at the fusion center. Computational compfexi periodic structure with a unit element size around half wave
will not be a bottleneck of the system. As to the matrixlength of the frequency of interests. Both the metallic and
completion algorithm, according tb [22], FPCA can recoverdielectric materials can be used. To deal with the bandwidth
1000 x 1000 matrices of rank 50 with a relative error of unit elements in different shapes will be tested.

10~% in about 3 minutes by sampling only 20 percent of the

elements. D. Dynamic CS Update

Channel occupancy evolves over time as PRs start and
stop using their channels. Channel gains can also change
when the PRs move. However, the CS research has so far

The matrix completion (Section]Il) and joint sparsity focused on static signal sensing except the very recent path
recovery (Sectiof 1V) approaches both take linear channgbjiowing algorithms in [40], [41]. In the future work, we
measurements as input and both return the estimates of usggh investigate recovery methods for a dynamic wireless
channels. On the other hand, the joint sparsity approa@stakenvironment where based on existing channel occupancy
the full advantage oF, so it is expected to work with smaller information, an insignificant change of channel states can
numbers of measurements. In addition, even though onlge quickly and reliably discovered. Given existing channel
one matrix completion problem needs to be solved in th%ccupanch, each new report, which is an enthy;.; of M,
matrix completion approach, it still takes much longer thans compared with FX), .. If a significant number of such
running the entire joint sparsity recovery, and itis notyeas  comparisons show differences, then there is a change in the
parallelize any of the existing matrix completion algomith.  trye X. SinceX = (RGT), eitherR or G, or both, have
However, in the small-scale networks, in cases where toghanged. A change iR means new channel occupation or
much sensing information is lost during transmission orghe release. IfR. is unchanged, then those channel gainsGin
are too many active PRs in the network, which increas@orresponding to occupied channels have changed. It is easy
the signal sparsity level, joint sparsity recovery algurit tg deal with the latter case (i.eG changed, buR didn't)
with our current settings will experience degradation ingnd update the gains of occupied channels because it boils
performance. down to solving a small linear system. LEtand X denote

We, however, cannot verdict an eventual winner betweethe sub-matrices oF and X, respectively, formed by their
the two approaches as they are both being studied and irdolumns and rows corresponding to the occupied channels.
proved in the literature. For example, if a much faster matri Then, the new gains are given in the least-squares solution
completion algorithm is developed which takes advantage ajf M = FX, whereM shall include new reports arrived
F, the disadvantages of the approach may no longer existafter the previous recovery/update but may still have missi
entries. This system is easy to solve since the number of
occupied channels is small.

In a similar way it is easy to discover released channels as

The proposed method senses the channels, not by mdang as there is no introduction of new occupied channels.
suring the responses of individual channels one by onéfhe release of channél means rowX; of X turns into
but rather measures a few incoherent linear combinations @, or small numbers. Therefore, one can solve the system
all channels’ responses through onboard frequency-sedect M = F'X and find the released channels, which correspond
filter set. The filter coefficients which perform as the segsin to the rows of X with all zero (or small) entries. When
matrix should have entries independently sampled from ¢he systemM = FX is inconsistent, it means that the
sub-gaussian distribution, since this is known to be best foreceived reports cannot be explained by the previously
compressive sensing in terms of the number of measuremerdscupied channels, so there must be new channel occupation.
(given in order of magnitude) required for exact recoveryDiscovering new channel occupation is more difficult sirtce i
In other words, up to a constant, which is independenis to find changes in the previously unoccupied ones, which
of problem dimensions, no other type of matrix is yetare much more than the occupied channels. However, it
known to perform consistently better. However, other typegs computationally much easier than starting from scratch.
of matrices (such as partial Fourier/DCT matrides [37]][38 Let X,,,., and X denote the previous and current channel
and other random circulant matrices [39]) have been eitheénformation, respectively. ArguablyX,,., — X is highly
theoretically and/or numerically demonstrated to work assparse in the joint sense because only its rows corresppndin
effectively in many cases. These latter sensing matrices ato newly occupied or released channels can have large
often easier to realize physically or electrically. Formyde, nonzero entries. HenceX can be quickly recovered by
applying a random circulant matrix performs sub-samplegerforming joint sparsity recovery oK,,., — X over the
convolution with a random vector. constraintsMl = FX (or a relax version in the noisy case),

Frequency-selective surfaces (FSSs) can be used to realiaetask that can be done by the algorithms for stationary
frequency filtering. This can be done by designing a planarecovery.

B. Comparisons between the Two Approaches

C. Fregquency-Selective Filter Design and Adaptive Sensing
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Fig. 3. POD vs. sampling rate. Fig. 4. Noiseless AWGN channel (no. of CR = 5).

VI. SIMULATION RESULTS Fig.[2 shows the false alarm and miss detection rates at

The Probability of Detection (POD) and False Alarm Ratedifferent sampling rates for different numbers of PR nodes.
(FAR) are the two most important indices associated withtAmong all cases, the highest miss detection rate is no more
spectrum sensing. We also consider the Miss Detection Ratban 5%, and this is from only 20% samples which are
(MDR) of the proposed system. The higher the POD, theupposed to be gathered from the CR nodes regarding all
less interference will the CRs bring to the PRs, while fromthe channels. When the sampling rate is increased to 50%
the CRs’ perspective, lower FAR will increase their chanceand even when the channel occupancy is relatively high,
of transmission. There is a tradeoff between POD and FAR.€., 12% of the channels are occupied by the PRs, the miss
While designing the algorithms, we try to balance the CRdetection rates can be as low as no more than 2%. From
nodes’ capability of transmission and their interferenmes our simulation results, with a moderate channel occupancy
the PR nodes. Performance is evaluated in terms of POt 9%, the false alarm rates are around 3% to 5%. [Hig. 3

FAR and MDR defined as follows: shows the probability of detection at different samplingsa
FAR=No. False /(No. False+No. Hit) When the spectrum is lightly occupied by the licensed user
MDR=No. Miss/(No. Miss+No. Correct) at 3% channels being occupied, only 20% samples offer a
POD=No. Hit/(No. Hit+No. Miss) POD close to 100%, and when there is a slightly raise in

. ] sampling rate, POD can reach 100%. In the worst case of
where No. False is the number of false alarm$jo. Miss 1294 spectrum occupancy, 20% sampling rate still can offer

is the number of miss detectiorip. Hit is the number of 5 pop of higher than 95%, and as the sampling rate reaches
successful detections of primary users, &l Correct is 500, POD can reach 98%.

the number of correct reports of no appearance of PR. We

define sampling rate as ) ] ] )
B. Joint Sparsity Recovery Smulation

No. received measurements at the fusion center _ ) _ ) _
No. channels< No. CRs J_omt spars_lty recovery |s_de5|gned for large s_cale a_\pph-
) . cation, and simulations carried out for a larger dimendiona
where (No. channelNo. CR) is the amount of total sensing 5, jications with the following settings: We considep
workload in traditional spectrum sensing. node cognitive radio network within00x 500 meter square
area centered at the fusion center. Tdie CR nodes are
A. Smulation of Matrix Completion Recovery uniformly randomly located. These cognitive radio nodes
According to FCC and Defense Advance Researcleollaboratively sense the existence of primary users withi
Projects Agency (DARPA) reports [42], [43] data, we chosea 1000 x 1000 meter square area o500 channels, which
to test the proposed matrix completion recovery algorithnare centered also at the fusion center. We chose to test
for spectrum utilization efficiency over a range from 3%the proposed algorithm for the number of active PR nodes
to 12%, which is large enough in practice. Specifically, theranging froml to 15 on the given set of 500 channels. Since
number of active primary users is 1 to 4 on a given set ofhe fading environments of the cognitive radio networks
35 channels with 20 CR nodes. vary, we evaluate the algorithm performance under three
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% oss maaindl| channel model shows the worst POD, FAR, and MDR
% o et performance. With respect to POD, the performance gap
2 ~PR=9 || . .
£ o S  between these two models is at most 10%, which happens
s o i when the sampling rate is extremely low. For the Rayleigh
Q 055 7 .
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Sampling Rate of the total number of channels, for all tested cases we
001 MDRYs. Samping Rate B achievel00% POD. If there are less active PR nodes in the
2 000 _'I_Eiiii;i network, smaller number of samples are required for exact
no-PR=5 . .
ER e | detection. In essence, the proposed CCS system is robust to
8 no-PR= severe or poorly modeled fading environments. Cooperation
8 0.004 —8&—no-PR=9 L .
p e oPR=10 among the CR nodes and robust recovery algorithm allow
8

us to achieve this robustness without imposing stringent re
o 7 om omos  quirements on individual radios. We then evaluate the POD,
FAR, and MDR performance of the proposed joint sparsity
recovery performance in noisy environments. For all the
Fig. 6. Noiseless log-normal shadowing channel (no. of CR.= 5 simulations considering noise, we adopt the Rayleigh fadin
channel model. Fid. 10 and Fig.]11 show the corresponding
results. We observe that noise does degrade the performance
typical channel fading models: AWGN channel, RayleighHowever, as shown in Fi§. 10, when the number of active
fading channel, and lognormal shadowing channel. W#Rs is small enough (e.g., no. of PR = 1), even with signal
first evaluate the POD, FAR, and MDR performance of theo noise ratio as low as 15 dB, we still can achiev®%
proposed joint sparsity recovery performance in the nessel POD with a sampling rate of merely0%. Then with an
environment. Fig[4, Figl]5, and Fifl] 6 show the POD,increase in the signal to noise ratio, lower sampling rate
FAR and MDR performance at different sampling rate, forenables more PR nodes to be detected exactlyl Fig. 11 shows
AWGN channel, Rayleigh fading channel, and lognormalthe POD, FAR and MDR performance vs. sampling rate at
shadowing channel, respectively, when small number of CHlifferent noise level, each curve for a specific noise lesel i
nodes sense the spectrum collaboratively. Eig. 7, Eig. &elatively flat (i.e., performance varies a little as samgli
and Fig.[® show the POD, FAR and MDR performance atrate changes). This shows that the noise level has greater
different sampling rate, for the aforementioned three $ygfe  impact on the spectrum sensing performance rather than the
channel models, when there are more CR nodes involved isampling rate. At low noise level, e.g., SNR = 45 dBY%
the collaborative sensing of the spectrum. We observe thasampling rate enable)0% POD for 4 PR nodes. As SNR
log-normal shadowing channel model shows the best PODeduces to 15 dB, no more thai% POD will be achieved
FAR, and MDR performance no matter how many CR nodegven when the number of samples equals to the number of
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For comparison, we applied joint sparsity recovery al-

o
. R ) T =0 - SNR=15
gorithm on a small-scale network with the same setting: P AR
as we have used to test the matrix completion recoven g §| —4— s
Instead of using a 500-channel network, we use a networ 3 —— SNR=40

with only 35 channels. Simulation results show that joint ' o Sampling Rate

s MDR vs. Sampling Rate

sparsity recovery algorithm performs better than the matri . — ] —#—sNr=10
. . . . o« =0 - SNR=15
completion algorithm in the following aspects: 54 —A— s
. . 2 4 -8 - . .
1) Faster computation due to lower computational com gz{ " 3 S on T o B T Sk
Ay

ity: 8 ~ —%— SNR=40
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2) Higher POD for the spectrum utilization rate between Sampling Rate

3% and 12% in the noise free simulations;

To conclude, matrix completion algorithm is good for Fig. 10. POD, FAR, and MDR performance vs. sampling rate fiérént
small-scale networks, with relatively high spectrum uti-SNR.
lization, while joint sparsity recovery algorithm has the
advantage of low computational complexity which enables

fast computation in large-scale networks. Two novel decoding approaches have been proposed — one

based on matrix completion and the other based on joint
sparsity recovery. The novel matrix completion approach
VII. CONCLUSIONS recovers the complete CR—to—center reports from a small
In order to reduce the amount of sensing and transmissiomumber of valid reports and then reconstructs the channel
overhead of cognitive radio (CR) nodes, we have applie@ccupancy information. The joint sparsity approach, on
compressive sensing for collaborative spectrum detectiothe other hand, skips recovering the reports and directly
in cognitive radio networks. We propose to equip eactreconstructs channel occupancy information by exploiting
CR node with a frequency-selective filter, which linearly the fact that each occupied channel is observable by meltipl
combines multiple channel information, and let it send aCR nodes. Our algorithm enables faster recovery for large-
small number of such linear combinations to the fusionscale cognitive radio networks.
center, where the channel occupancy information is then The primary user detection performance of the proposed
decoded. Consequently, the amount of channel sensing approaches has been evaluated by simulations. The results
the CRs and the number of reports sent from the CRs to thef random tests show that, in noiseless cases, the number
fusion center reduce significantly. of samples required are no more than 50% of the number
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