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Abstract

The dynamics of nanoparticles in complex fluids are of great interest for applica-

tions in drug delivery, oil recovery, and materials processing. Particle mobility is well

described by the generalized Stokes-Einstein (GSE) relation when the nanoparticles

are much larger than the polymers. Violations of GSE predictions are observed, how-

ever, when the size of nanoparticles is comparable to or smaller than length scales

in polymer solutions. We investigate the microscopic origin of this anomalous be-

haviour using multi-particle collision dynamics (MPCD), an advanced algorithm for

rigorously modelling solvent-mediated hydrodynamic interactions in coarse-grained,

mesoscale simulations. We apply MPCD to study transport in nanoparticle-polymer

systems and the effects of many-body hydrodynamic interactions on this behaviour.

We demonstrate that the translational center-of-mass motions of both nanoparticles

and polymers are sub-diffusive on short times before transitioning into a diffusive

regime on longer time scales. In solutions of flexible, linear polymer chains, the

long-time diffusivities of nanoparticles collapse according to scaling predictions, in

accord with recent experiments. The sub-diffusive behavior predicted by MPCD sim-

ulations, by contrast, agrees with experiments, but significantly deviates from theo-

retical predictions. We show that this disagreement is due to a hitherto unreported

transport mechanism characterized by the tight coupling of the translational mo-

tions of the nanoparticle and polymer centers-of-masses, which is not accounted for

in current theories. We explore the consequences of this new coupling mechanism

and perform extensive MPCD studies to investigate how it is influenced by hydrody-

namic interactions and polymer concentration, stiffness, and morphology.
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Chapter 1: Introduction

Nanoparticles suspended in complex fluids have attracted significant interest due

to a variety of applications in science and industry, such as nanocomposite materials,

drug delivery, and oil recovery. Incorporation of nanoparticles into polymer matri-

ces produces nanocomposites with exceptional functional properties.1–3 Nanoparti-

cles also serve as drug delivery vehicles, providing controlled release of therapeutic

agents.4–7 Polymer-coated nanoparticles are usually superior to bare nanoparticles

when acting as surfactants in enhanced oil recovery processes due to their improved

solubility and stability.8 In many of these situations, nanoparticles are transported

through a complex fluid to reach an intended target or to achieve a desired disper-

sity. Understanding nanoparticle mobility and dispersion in polymer matrices is

therefore of fundamental importance for developing rational strategies for design-

ing nanoparticle-polymer systems to achieved improved performance in such appli-

cations.

Considerable theoretical and experimental efforts have been devoted to study-

ing nanocomposite systems. Although experimental methods have provided signifi-

cant insight into the behavior of nanoparticles and polymers in solutions and melts,

existing techniques cannot probe physical mechanisms that dictate short-time and

length-scale coupling between dynamics of particles and polymers in solution due to

their limited spatiotemporal resolution. Modern mesoscale simulation methods are

powerful modeling techniques that enable the structure and dynamics of soft matter

systems to be probed simultaneously. These methods are widely used to study poly-

mers and colloids because they can comfortably probe effective length (∼ 10−1 −104

nm) and time scales (∼ 10−9 −100 s) that complement those accessible with exper-

iment. These methods provide the spatiotemporal resolution necessary to quantify
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structure and dynamics of multiple components in solution and hence resolve com-

plex coupling behavior. Consequently, we have used molecular simulation techniques

to investigate the diffusion of nanoparticles in semidilute polymer solutions. Specifi-

cally, we employ a mesoscale simulation technique called multi-particle collision dy-

namics (MPCD),9–12 which provides an accurate description of the solvent-mediated

hydrodynamic interactions that are assumed to strongly influence polymer dynam-

ics in the semidilute regime. Whereas the MPCD method is used to treat particle-

solvent interactions, standard molecular dynamics (MD) algorithms are employed to

propagate the motions of the nanoparticles and polymers. We briefly describe these

algorithms below along with relevant theoretical background information needed to

understand polymer dynamics in solution.

1.1 Background

1.1.1 Polymer dynamics: Rouse and Zimm model

The main features of polymer dynamics come from the long-chain connectiv-

ity. The first model that successfully captured polymer dynamics was developed by

Rouse.13 The Rouse model describes a polymer as a linear chain of N monomer beads

connected by spring-like bonds. Assuming that the solvent is freely draining and that

the viscous drag force experienced by each monomer bead is independent, the total

friction felt by a Rouse chain with N beads is given by

ζR = Nζ, (1.1)

where ζ is the friction coefficient for a single monomer bead.

Inserting this expression into the Einstein relation14 yields the diffusivity of a

single Rouse chain,

DR = kBT
ζR

= kBT
Nζ

, (1.2)
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where kB is Boltzmann’s constant and T is temperature.

The Rouse time is defined as the characteristic time in which a Rouse chain moves

a distance comparable to its size R and is given by

τR ≈ R2

DR
≈ ζ

kBT
NR2. (1.3)

Similarly, using the Einstein relation, one can define a characteristic time scale

for bead motion, or Kuhn relaxation time, as

τ0 ≈ ζb2

kBT
, (1.4)

where b is the mean-square root of the size of the springs connecting adjacent beads

in the Rouse chain.

On intermediate times t between the Kuhn relaxation time τ0 and the Rouse time

τR, the mean-square monomer displacement scales as

〈[r j(t)−r j(0)]2〉 ≈ b2
(

t
τ0

)1/2
, τ0 < t < τR. (1.5)

In dilute environments, however, the viscous resistance experienced by each

bead is not independent. The motion of each bead perturbs the surrounding sol-

vent, which in turn influences the effective drag experienced by other beads. These

solvent-mediated hydrodynamic interactions are approximately captured by the

Zimm model,15 which treats the polymer chain as a solid moving object of size R

that drags solvent within its pervaded volume. The friction on the polymer chain is

thus given by

ζZ ≈ ηsR, (1.6)

3



where ηs is the solvent viscosity. The diffusion coefficient of a Zimm chain is then

DZ = kBT
ζZ

≈ kBT
ηsR

. (1.7)

Analogously to the Rouse relaxation time, the Zimm relaxation time is defined by

τZ ≈ R2

DZ
≈ ηs

kBT
R3. (1.8)

Finally, on intermediate times between the Kuhn relaxation time τ0 and the

Zimm time τZ, the mean-square monomer displacement is predicted to scale as16

〈[r j(t)−r j(0)]2〉 ≈ b2
(

t
τ0

)2/3
, τ0 < t < τZ. (1.9)

1.1.2 Nanoparticle dynamics in polymer solutions

Semidilute polymer solutions are non-Newtonian fluids that are commonly used

as ideal models for complex heterogeneous materials. They are well-suited for funda-

mental studies because the characteristic length scales associated with their struc-

tural heterogeneities, such as the polymer radius of gyration Rg, which is a measure

of the size of the polymer coil, and the correlation length ξ, a measure of separation

between polymer chains, are well-defined and easily tuned by changing the polymer

molecular weight and concentration.16

Nanoparticle transport is best understood in the limit of a large particle diffusing

through a continuous medium. In this limit, the diffusion coefficient of a Brownian

particle is described by Einstein’s theory,

D0 = kBT
ζ

= kBT
zπη0σNP

, (1.10)

where σNP is the nanoparticle’s diameter, η0 is the zero-shear viscosity of the back-
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ground solvent, kBT is the thermal energy scale, and z = 2 or 3 for slip or no-slip

boundary conditions at the particle surface, respectively.

Upon addition of polymer, the medium becomes viscoelastic. This relationship can

be extended for complex fluids by incorporating a complex (frequency-dependent) so-

lution viscosity η̃ according to the generalized Stokes-Einstein relation (GSER).17,18

GSER assumes that the suspended particle is large enough that any heterogeneity

of the fluid is negligible over the particle surface.

However, when the polymer radius of gyration Rg exceeds the nanoparticle di-

ameter, local heterogeneity can no longer be ignored and particles transport faster

than expected. In this case, SER fails to capture the particle dynamics and signifi-

cantly underestimates the diffusion coefficients,19–26 indicating that complex viscos-

ity η̃ alone is insufficient to predict the motion of particles in heterogeneous polymer

solutions.

In addition to the relative size, nanoparticle mobility is also affected by the con-

centration of polymer in solutions. When the solution is sufficiently dilute, the

nanoparticles do not experience any inhomogeneities arising from interactions with

the polymer and the background solvent can be considered uniform. When the con-

centration exceeds the overlap concentration c∗ (the concentration at which polymer

coils start to overlap), a large particle cannot transport through the medium without

interacting with the polymer barriers. The overlap concentration is given by:

c∗ = M
4
3πR3

g NA
, (1.11)

where M is the molecular weight of the polymer and NA is Avogadro’s number.

Early theories attempting to describe the diffusion of nanoparticles through poly-

mer meshes use obstruction models,28,29 hydrodynamic models,30–33 and free vol-

ume34 approaches. Obstruction theories treat the polymers as barriers through
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Figure 1.1: A schematic diagram of characteristic size scales of nanoparticles and
polymer solutions adapted from Ref. 27 with permission.

which the particles must transport, and the motion of particles is continuous and

stochastic. The hydrodynamic models treat the polymers as a porous network that

impedes solvent motion via hydrodynamic interactions.28 The hydrodynamic interac-

tions become increasingly screened as the concentration of polymers is increased. Fi-

nally, the free volume approach assumes that the diffusivity of particles is controlled

by rearrangement of volume not occupied by the polymers, which creates “holes” for

particles to pass through. These models are largely empirical.

More recent theories, by contrast, attempt to connect particle diffusivity to micro-

scopic physical phenomena. Mode-coupling theory (MCT)35,36 describes nanoparti-
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cle diffusion as a combination of contributions from binary collision, solvent density

mode, and the solvent transverse mode. Self-consistent Langevin equations37 have

been used to relate the fluctuations in the polymer matrix to the particle dynamics.

These theories largely focus on terminal diffusion of nanoparticles and do not

account for the relaxation of polymer chains. More recently, Cai, Panyukov, and

Rubinstein38 argued that it is the polymer dynamics that control the dynamics of

nanoparticles. This theory assumes that the nanoparticles are fully coupled to the

polymer segmental relaxations, and that the energy barrier presented by the poly-

mers is infinite. Particle dynamics are then predicted to exhibit subdiffusive dynam-

ics on short time scales and diffusive dynamics on long time scales. Furthermore,

the subdiffusive exponent of the nanoparticle αNP is predicted to exhibit a step-like

decay from 1 to 0.5 (according to Rouse relaxation) when particle size exceeds the

correlation length ξ. This fully coupling theory also suggests that the terminal diffu-

sivity of nanoparticles should be controlled by the relaxation of polymer matrix, and

scales as a power-law function with size ratio as

D/D0 ∼ (DNP/ξ)−2, (1.12)

where D0 represents diffusion in solvent (absent of polymers). This prediction devi-

ates from the previous models, which describe the long-time diffusivity as an expo-

nential scaling with concentration.

1.2 Simulation methodology

1.2.1 Molecular dynamics (MD)

Molecular dynamics (MD) is a computational technique for simulating the mo-

tions of model particle systems that allows for calculation of both equilibrium and

non-equilibrium properties.39 The main idea behind MD is that we numerically solve

Newton’s equations of motion for the particle system to follow its time evolution. Af-
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ter the system reaches equilibrium, we collect statistics to estimate thermodynamic

(e.g., energies), structural (e.g., particle-particle distribution functions), and dynam-

ical (e.g., diffusion coefficients) properties of the system.40 The system’s relaxation

towards equilibrium can also be monitored to investigate non-equilibrium behavior.

To build a model system, we put N particles into a simulation box, and assign

each particle a random initial momentum. Interactions among particles are de-

scribed using a classical force field that can, in general, capture both bonded and

non-bonded terms. Although one-body and many-body terms can be modeled, pair-

wise interactions are usually sufficient for modeling the simple nanoparticle-polymer

systems described herein. In the case of pair-wise interactions, the potential energy

of the system is calculated via

U(rN)=∑
j

∑
j>i

u(r i j), (1.13)

where rN is a 3N-dimensional vector specifying the Cartesian coordinates of the par-

ticles, u(r i j) is the inter-particle pair potential, and r i j is the separation distance

between particles i and j. One of the simplest models for non-bonded pair interac-

tions is the commonly used Lennard-Jones

uLJ(r i j)= 4ε
[(

σ

r i j

)12
−

(
σ

r i j

)6]
, (1.14)

where σ is the particle diameter and ε is the interaction well depth. The simplest

bonded interaction, which is commonly used for modeling freely-jointed polymer

chains, is the harmonic potential

ubond(r i j)= κ(r i j − r0)2, (1.15)

where κ is the spring constant and r0 is the equilibrium bond distance.
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Newton’s equations of motion are solved to obtain the time evolution of the parti-

cles in the system. Solving the equations of motion requires evaluating the net force

acting on each particle via

Fi = mi
d2ri(t)

dt2 =− ∂

∂ri
U , (1.16)

where ri(t) = (xi(t), yi(t), zi(t)) is the coordinate vector for particle i at time t, Fi is

the net force acting on the particle, and mi is the particle’s mass. The resulting set of

second-order differential equations for the N-particle system is solved using a finite

difference scheme. In the widely-used leapfrog integration scheme, for instance, the

equations for updating position and velocity are

ri(t+∆t)= ri(t)+vi(t)∆t+ 1
2

Fi

mi
∆t2 (1.17)

and

vi(t+∆t)= vi(t)+ 1
2

(
Fi(t)
mi

+ Fi(t+∆t)
mi

)
∆t, (1.18)

which allow the position and momentum of each particle at time t+∆t to be obtained

from those at time t.

Periodic boundary conditions (Fig. 1.2) are commonly used in simulation to mimic

an infinite domain and thus minimize spurious surface effects that would otherwise

arise from modeling small systems. These boundary conditions are equivalent to

having identical replicas of the system surrounding the main simulation cell. In this

paradigm, when a particle moves out of the main cell, for example, it is replaced by an

equivalent particle from a periodic image. In practice, however, the replicas are not

modeled explicitly, and the position vector of the exiting particle is simply wrapped

back into the main cell at the appropriate location. Because the artificial periodicity

imposed by periodic boundary conditions can introduce spurious long-range corre-
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Figure 1.2: A unit cell and its periodic images.

lations, special care must be taken in computing certain physical properties (e.g.,

diffusivities) and in treating long-range interactions (e.g., Coulomb forces).

1.2.2 Multiparticle collision dynamics (MPCD)

Computer simulation can in principle provide the spatiotemporal resolution nec-

essary to investigate coupling between nanoparticle and polymer dynamics in solu-

tion. Modeling a dilute dispersion of neutrally buoyant 10 nm particles at 10% vol-

ume fraction in water with rigorous methods such as molecular dynamics, however,

requires simulating ∼ 108 water molecules per particle, far beyond current computa-

tional capabilities. One approach to address this issue is to use a simplified solvent

model to reduce the computational cost of the simulations. This strategy underpins

the multi-particle collision dynamics (MPCD)9–12 method. The MPCD method, also

known as stochastic rotation dynamics (SRD), is a simulation technique in which

the background solvent is modeled as a collection of ideal-gas-like point particles.

Although the solvent particles do not interact through pair-wise forces, they are al-

lowed to exchange momentum periodically to ensure that the correct hydrodynamic

behavior naturally appears on large length scales in the system.10
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Figure 1.3 illustrates basic aspects of the MPCD algorithm. The positions and

velocities of the solvent particles are propagated in time through streaming and colli-

sion steps.10,41 In the streaming step, the motions of solvent particles are propagated

over a time interval ∆t using Newton’s equations,

ri(r+∆t)= ri(t)+∆tvi(t). (1.19)

The collision steps can be handled using a number of different schemes. In the

original SRD scheme, for example, the particles are first sorted into cubic cells. The

velocities of particles are then rotated (with respect to the center-of-mass velocity of

the assigned collision cell, vcm) around a randomly chosen axis by a fixed angle α,

v′
i(t)= vcm +R(α)[vi(t)−vcm], (1.20)

where R(α) is the rotation matrix. The center-of-mass velocity of the collision cell is

calculated using

vcm =
∑

mivi∑
mi

, (1.21)

where sums run over the number of particles in the collision cell.

Both the streaming and collision steps conserve the mass and linear momentum

of the system, thereby allowing hydrodynamic correlations to build up in the sys-

tem. The use of collisions cells, however, can lead to artifacts associated with loss of

Galilean invariance. This issue is typically addressed by randomly shifting the origin

of the MPCD cell grid before each collision step to restore Galilean invariance.10,43

The MPCD algorithm can be coupled with standard MD to study the dynamics of

solutes embedded in the MPCD solvent.9–12,42 In these MD-MPCD hybrid schemes,

solute trajectories are propagated using conventional MD techniques, while also ex-

changing momentum with the solvent during the streaming and/or collision steps of
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Figure 1.3: MPCD modeling, adapted from Ref. 42 with permission.

the MPCD. Small solutes such as polymer beads are typically treated similarly to sol-

vent particles and included directly into the MPCD collision step.10,41,42 Momentum

exchange with larger solutes such as nanoparticles, by contrast, is typically handled

using bounce-back schemes, in which solvent particles interact with the solute’s sur-

face during the streaming step.10,41,42 Additional technical details of the MPCD and

hybrid MD-MPCD schemes can be found in Ref. 42.

The following chapters describe how these techniques are used to model nanopar-

ticle and polymer dynamics: Chap. 2 focuses on nanoparticle dynamics in solutions

of fully flexible polymers, with and without hydrodynamic interactions; Chap. 3 ad-

dresses the effect of polymer flexibility by tuning stiffness of polymers; and Chap. 4

highlights the effect of polymer morphology by replacing linear polymers with ring

polymers.
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Chapter 2: Coupling of nanoparticle dynamics to

polymer center-of-mass motion in semidilute poly-

mer solutions

This chapter was previously published by ACS Publications: Chen, R.; Poling-

Skutvik, R.; Nikoubashman, A.; Howard, M. P.; Conrad, J. C.; Palmer, J. C., Macro-

molecules 2018, 51, 1865-1872.

2.1 Introduction

The Brownian dynamics of colloids suspended in a purely viscous fluid are tradi-

tionally described by the Stokes-Einstein (SE) equation, which relates the diffusivity

D to the ratio of thermal energy of the colloid to the viscous drag over the particle sur-

face. In complex fluids, e.g., polymer solutions, the colloid dynamics are in addition

affected by viscoelastic contributions, which can be incorporated into the generalized

Stokes-Einstein (GSE) expression through a complex viscosity η̃.17,18 An underlying

assumption of both the SE and GSE expressions is that the fluid can be regarded

as an effective continuum over the particle surface. When this continuum approx-

imation is broken by a particle that is comparably sized to a characteristic length

scale of the material, however, the particle dynamics deviate from these expressions

and a description based solely on the zero-shear viscosity of the material becomes

insufficient.19,21,33,44–48

Semidilute polymer solutions are non-Newtonian fluids used commonly during

polymer composite processing,2 as sweep fluids in enhanced oil recovery methods,49

and to produce hydrogels.50 They serve as ideal models for complex heterogeneous

materials because their characteristic length scales, such as the polymer radius of gy-
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ration Rg and the correlation length ξ, are well-defined and easily tuned by changing

the molecular weight and concentration of the polymer.16

As introduced in more detail in Chap. 1, transport of particles or molecules

through polymer solutions has traditionally been explained using geometric obstruc-

tion models,28,29 in which the diffusivity decreases with an increase in polymer con-

centration due to a higher frequency of collisions between the particles and poly-

mer chains, or using hydrodynamic models,30–33,51 in which the polymer chains in-

crease the solution viscosity and screen hydrodynamic interactions. The success of

these models, however, is typically limited to a narrow range of particle sizes, poly-

mer molecular weights, or polymer concentrations; furthermore, these models do not

specifically address the deviations of nanoparticle dynamics from SE predictions. Re-

cent theoretical treatments have employed modified mode-coupling theory35 or self-

consistent Langevin equations37 to relate the nanoparticle dynamics to local fluc-

tuations in the polymer mesh. Such treatments accurately reproduce the long-time

dynamics of the nanoparticles but have largely not investigated dynamics on shorter

time and length scales due to the sensitivity of the analytical calculations to the dy-

namic propagator of the polymer fluctuations. To model nanoparticle dynamics over a

wide range of time and length scales, Rubinstein coupling theory38 proposes that the

nanoparticle dynamics directly couple to the segmental relaxations of the surround-

ing polymer chains. Under this assumption, nanoparticles are locally trapped by the

polymer chains, leading to subdiffusive motion on short time scales. As the polymer

chains relax over the particle surface, the nanoparticle can break out of its local cage

and begin to freely diffuse through the solution with a size-dependent diffusivity,

which scales as σNP/ξ, where σNP is the nanoparticle diameter. Previous experimen-

tal work found excellent agreement between coupling theory and long-time particle

diffusivities, and for the short-time particle dynamics in the limit of small or large

nanoparticles relative to the characteristic length scales of the polymer solution (i.e.,
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σNP < ξ and σNP& 10ξ, respectively).26

Substantial deviations from the predicted behavior, however, were observed at

short times for particles of size comparable to the correlation length. Across a broad

range of polymer concentrations, the nanoparticle subdiffusive exponents αNP were

much larger than predicted, and varied with both particle size and polymer concen-

tration. Additionally, we found that long-range interparticle interactions affected the

subdiffusive motion of the particles.52 This result suggests that the energy barrier

for particle motion through the polymer mesh on short time and length scales is fi-

nite, in contrast to the infinite barrier required for full coupling of the particle and

polymer dynamics. Thus, despite the notable success of coupling theory in describing

the long-time dynamics in experiments22,26 and simulations,53 the physics under-

lying the subdiffusive particle dynamics on short time scales in polymer solutions

remains incompletely understood. Critical open questions are what causes the short-

time subdiffusive dynamics and what controls the crossover to long-time diffusion.

This understanding is essential for predicting particle transport and dispersion dur-

ing composite2 and hydrogel50 processing and in oil production and exploration.49

Simulations are an ideal method to probe short-time dynamics and have been ex-

tensively used to investigate nanoparticle dynamics in polymer melts.53–55 Extend-

ing these methods to investigate dynamics in polymer solutions, however, remains

challenging due to the computationally demanding nature of accurately modeling

solvent-mediated interactions. These interactions are strongly screened in melts,

but influence short-time dynamics in polymer solutions.

Here, we simulate the dynamics of nanoparticles in semidilute solutions of com-

parably sized polymers, using multiparticle collision dynamics (MPCD) to account

for solvent-mediated hydrodynamic interactions (HI).9–12,41,56–61 Complementary

Langevin dynamics (LD) simulations, which remove HI between particles, are also

performed. The friction coefficients employed in the LD simulations are chosen to
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reproduce the long-time nanoparticle and polymer center-of-mass (COM) diffusion

coefficients calculated from the MPCD simulations in the dilute regime, allowing us

to study short and intermediate time dynamics in the absence of HI while approxi-

mately preserving the long-time relaxation behavior observed in the MPCD simula-

tions. The MPCD simulations reveal trends that are qualitatively similar to previous

experiments – the nanoparticle dynamics are subdiffusive on short time scales and

diffusive on long time scales, with diffusivities that scale as predicted by coupling

theory. The subdiffusive exponents, however, are larger than the predicted value of

0.5 and smoothly decrease with increasing polymer concentration, similarly to what

is observed experimentally. Moreover, the subdiffusive exponents of the particle are

strongly correlated to those of the polymer COM, suggesting that coupling to the

motion of the polymer COM may provide an additional mechanism by which the

nanoparticles can move through a polymer solution. This coupling mechanism ap-

pears in both MPCD and LD simulations, indicating that many-body hydrodynamic

interactions are not required when the long-time dynamics are preserved.

2.2 Simulation methodology

Following recent studies,41,57–60 we model the polymers in solution as bead-spring

chains composed of Nm monomer beads with diameter σP. Polymer bonds are de-

scribed by the finitely extensible nonlinear elastic (FENE) potential:62

UFENE(r)=


−1

2κr0
2 ln

[
1− r2

r02

]
, r ≤ r0

∞, r > r0

, (2.1)

where r is the scalar separation distance between two bonded beads. Excluded vol-

ume interactions are modeled using the purely repulsive, shifted Weeks-Chandler-
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Andersen (sWCA) potential to simulate good solvent conditions:63

UsWCA(r)=


4ε

[(
σi j

r−∆i j

)12
−

(
σi j

r−∆i j

)6]
+ε, r ≤ 21/6σi j +∆i j

0, r > 21/6σi j +∆i j

, (2.2)

where ε controls the strength of the repulsion. For monomer-monomer interactions,

we set ∆i j = 0 and σi j = σP. Similarly, for nanoparticle-nanoparticle interactions,

∆i j = 0 and σi j = σNP. To account for the size asymmetry of the polymer monomers

and nanoparticles, however, we use ∆i j = (σNP −σP)/2 and σi j = σP for the cross

interactions.

All simulations were performed in a cubic box with a 40σP edge length and pe-

riodic boundary conditions in all directions. We used LAMMPS64 to conduct our

simulations. A value of ε = kBT was used for all particle interactions, where kB

is Boltzmann’s constant and T is temperature. The polymers were modeled using

Nm = 50 beads and the standard Kremer-Grest parameters for the bonded interac-

tions,65 i.e., κ= 30kBTσ−2
P and r0 = 1.5σP . Simulations using larger simulation cells

(60σP ) or longer polymer chains (up to Nm = 250) revealed no qualitative differences

in the scaling behavior of the nanoparticle dynamics. The radius of gyration at in-

finite dilution for this model is Rg,0 = 4.9σP, leading to an overlap concentration of

c∗ = Nm ×
(
4πR3

g,0/3
)−1 = 0.1σ−3

P . Hence, for the range of concentrations investigated

here (0.2− 8.0c/c∗), the simulated systems contain between 25 and 1000 polymer

chains. We use 5 nanoparticles in each simulation and set σNP = 6σP, such that

they are similar in size to the polymer coils. Figure 2.1 shows a typical simulation

snapshot for c/c∗ = 0.5.

Many-body HI interactions in the nanoparticle-polymer solutions were simulated

using the MPCD algorithm.9–12 In MPCD, mesoparticles (polymers and nanoparti-

cles) are immersed in an background solvent, which is modeled explicitly through
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Figure 2.1: Rendering of nanoparticles (red) dispersed in a solution of polymers
(blue) at c/c∗ = 0.5 simulated in our study.

an ensemble of point particles. These solvent particles exchange momentum with

nearby solvent and mesoparticles through stochastic collisions, which are designed to

ensure that hydrodynamic correlations emerge over sufficiently large length scales.11

The MPCD simulations for our model were conducted using a momentum conserv-

ing version of the Andersen thermostat66,67 that we implemented into LAMMPS’

existing stochastic rotation dynamics (SRD) module.68 This scheme, which is often

referred to as MPCD-AT, is described in detail elsewhere.66,67,69 The MPCD routines

for LAMPPS used in our study are available online,70 along with example scripts for

simulating solutions of polymers and nanoparticles.

The edge length, a, of the cubic MPCD collision cells dictates the spatial resolu-

tion of the HI,71 and we chose a = σP for our simulations. We assigned unit mass

m = 1 to each solvent particle and used an average MPCD solvent density ρ = 5m/σ3
P.

The collision time step was set to ∆t = 0.09τ, where τ =
√

mσ2
P/ (kBT) is the unit of
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time in the simulations. The reference positions of the cell were also randomly shifted

before each collision step to ensure Galilean invariance.43 These typical parameters

give rise to an MPCD solvent with Schmidt number Sc≈ 12.0 and dynamic viscosity

η0 ≈ 4.0τkBT/σ3
p. The motions of the polymers and nanoparticles in the MPCD simu-

lations were integrated using a velocity-Verlet scheme with a 0.002τ time step. Mo-

mentum transfer between solvent particles and polymers during the collision steps

was handled using the scheme described in Ref. 41, whereas solvent collisions with

the nanoparticles were treated using the stochastic boundary algorithm discussed in

Ref. 68 with slip conditions. The masses of the monomers (MP = ρσ3
P) and nanopar-

ticles (MNP = ρπσ3
NP/6) were set to achieve neutral buoyancy in the background sol-

vent. Dynamic properties reported for the nanoparticles were obtained by averaging

over at least 30 trajectories.

We also performed a complementary set of LD simulations to investigate the be-

havior of the solutions in the absence of many-body HI. The LD friction coefficients72

for the nanoparticles and polymer monomers were adjusted independently to match

the long-time nanoparticle diffusivity in pure MPCD solvent. Similarly, the friction

coefficient for the monomers was chosen in such a way that the long-time polymer

COM diffusion coefficients from MPCD and LD simulations matched in the absence

of nanoparticles at c/c∗ = 0.2.

2.3 Results and discussions

Coupling theory38 predicts that the nanoparticle dynamics are subdiffusive on

short time scales with a mean-squared displacement (MSD) that scales as a power-

law in time, 〈∆r2〉 ∼ tαNP . Nanoparticles smaller than the polymer correlation length

(e.g., σNP < ξ) are predicted to pass freely through the polymer mesh, so that αNP = 1.

Once σNP > ξ, the particles are predicted to be locally trapped by the polymer and can

only move according to the segmental Rouse relaxations of the surrounding chains,

so that αNP = 0.5. Indeed, this sharp transition has been observed in previous ex-

19



periments where the dispersed nanoparticles were chemically bound to transient

polymer networks.73 In our MPCD simulations of athermal nanoparticle-polymer

solutions, however, we observe a smooth, monotonic decay in αNP rather than the

predicted step function from αNP = 1 to 0.5 at σNP/ξ= 1 (Fig. 2.2). A similar trend was

observed in our previous experiments,26 recovering αNP = 0.5 only for large particles

at high polymer concentrations. The MPCD simulations and experiments therefore

collectively demonstrate that coupling theory correctly captures the dynamic behav-

ior in the limits σNP < ξ and σNP & 10ξ. However, they also reveal a surprisingly

broad crossover regime, where the subdiffusive exponent is significantly larger than

expected from coupling theory.
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Figure 2.2: Subdiffusive exponent αNP as a function of the ratio σNP to ξ for MPCD
(red circles) and LD (blue diamonds) simulations.

Comparison of the LD and MPCD simulations also suggests that HI influence the

short-time nanoparticle dynamics. In the dilute limit (i.e., c/c∗ → 0), both LD and

MPCD predict that αNP → 1, in accord with experiment (Fig. 2.2, σNP/2Rg,0 = 0.61

for simulations. Open symbols are experimental data from Ref. 26 for particles with
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σNP/2Rg,0 = 0.56 (M), 0.74 (/), 1.1 (O), 1.5 (.), and 3.7 (�). Dashed line is prediction

from coupling theory in Ref. 38). This behavior indicates that the nanoparticle dy-

namics become purely diffusive after transitioning from a ballistic regime on much

shorter time scales. Agreement between the two simulation methods is expected

in this regime because the LD friction coefficients are matched to explicitly repro-

duce the long-time diffusive relaxations from MPCD. Progressively larger deviations

between LD and MPCD are observed, however, as σNP/ξ (and c/c∗) increase. For

1 . σNP/ξ . 4, αNP in LD is approximately constant and deviates from the steady

decay with concentration observed in the MPCD simulations, suggesting that many-

body HI strongly affect the dynamics in this regime. Finally, for αNP & 4, αNP from

LD and MPCD scale similarly with polymer concentration. This behavior is consis-

tent with the expectation that many-body HI are screened in concentrated polymer

solutions.41,74–76

To investigate these short-time dynamics, it is instructive to examine the behav-

ior of both nanoparticles and polymer chains in the MPCD simulations. Qualitatively,

the MSD 〈∆r2〉 of the nanoparticles (Fig. 2.3(a), dashed and solid lines indicate diffu-

sive and subdiffusive dynamics, arrow indicates the observed diffusive crossover time

τc for the 8c∗ solution) exhibits the predicted features38 that have been observed in

experiments24,26 and simulations.77 On short time scales, the particles move subd-

iffusively with αNP < 1. On long time scales, the particle motion becomes diffusive

(i.e., αNP = 1) with a diffusivity D that decreases with increasing polymer concen-

tration. As an additional verification of the simulations, the MSD for the monomer

beads in the COM reference frame (Fig. 2.3(b), dashed and solid lines indicate Zimm

and Rouse dynamics, the Zimm time τξ ≈ η0ξ
3/kBT is estimated to be τξ ∼ 10τ for

8c∗ and hence is not shown) exhibits the expected Zimm scaling
(〈∆r2〉 ∼ t2/3) at low

polymer concentrations and Rouse scaling
(〈∆r2〉 ∼ t1/2) at higher polymer concentra-

tions. The transition from Zimm to Rouse relaxations confirms that HI are screened
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at high polymer concentrations, in agreement with polymer scaling predictions.74

Finally, the MSD for the polymer chain COM (Fig. 2.3(c), dashed and solid lines

indicate diffusive and subdiffusive dynamics, arrow indicates the estimated Rouse

relaxation time τR = τξ(Rg/ξ)4 for the 8c∗ solution) exhibits qualitatively similar be-

havior to that of the nanoparticles. On short time scales, the polymer COM motion is

subdiffusive with an exponent αP < 1, similar to what has been observed previously

in molecular dynamics simulations78 and experiments79 for polymer chains in un-

entangled melts. On long time scales, the polymer relaxations are dominated by the

longest Rouse mode, so that the COM moves diffusively. Additionally, comparison of

the nanoparticle and polymer COM MSDs at the same polymer concentration indi-

cates that both nanoparticles and polymer chains are mobile over similar time and

length scales.

Confirming that the MPCD simulations accurately capture the polymer relax-

ations, we now analyze the change in long-time particle diffusivity with increasing

polymer concentration (Fig. 2.4, closed symbols are MPCD (red circles) and LD (blue

diamonds) simulations with σNP/2Rg,0 = 0.61, open symbols are experimental data

from Ref. 26 for particles with σNP/2Rg,0 = 0.56 (M), 0.74 (/), 1.1 (O), 1.5 (.), and

3.7 (�), solid lines show coupling theory predictions from Ref. 38). At low polymer

concentrations where σNP/ξ< 1, the particle diffusivities are almost unchanged from

that of a pure solvent so that D/D0 ≈ 1, where D0 ∼ kBT/η0σNP is the diffusivity of the

particle in the absence of polymer and η0 is the solvent viscosity. For σNP/ξ> 1, the

particle diffusivities scale as D/D0 ∼ (σNP/ξ)−2, as predicted from coupling theory,38

where ξ= Rg,0(c/c∗)−ν/(3ν−1) is the polymer correlation length16 and ν is the inverse of

the polymer fractal dimension. For the bead-spring polymer model considered here

ν = 0.61, which is in good agreement with previous computational studies,41 with

the estimated value of 0.62 for the partially hydrolyzed polyacrylamide used in ex-

periment,26 and with the theoretically predicted value of 0.59 for flexible chains in a

23



good solvent.41

The scaling of the nanoparticle diffusivities with σNP/ξ for MPCD simulations

agrees with that observed in our recent experiments.26 The offset between the sim-

ulated and experimental data is attributable in large part to the difference in shear

viscosities (inset to Fig. 2.4(b), dashed line indicates predicted scaling behavior for

an ideal polymer solution). In both experiments and simulations, the solution viscos-

ity η was determined through shear measurements in the linear response regime.80

Whereas the simulations use a generic monodisperse polymer model in a good sol-

vent, the polymers used in experiment were highly polydisperse polyelectrolytes with

a charge functionality of ≈ 30%. It is well established that the viscosity of solutions of

charged polymers scales differently with concentration than that of neutral polymer

solutions,81,82 resulting in the order of magnitude difference between the viscosities

of the experimental and simulated solutions (inset to Fig. 2.4(b)). Specifically, the

shear viscosity of the experimental solution is approximately 60 times higher for

c/c∗ = 3. Hence, the fact that the normalized diffusivities D/D0 for the experiments

are lower than those computed from simulation is expected. Nevertheless, both data

sets exhibit the same qualitative trends.

To assess the changes in particle diffusivity relative to bulk solution proper-

ties, we compare the diffusivities from simulation and experiment to the Stokes-

Einstein predictions DSE ∼ kBT/ησNP, where η is the zero-shear solution viscosity.

For c/c∗ . 5, the diffusivities obtained from simulations are in statistical agree-

ment with the Stokes-Einstein predictions (Fig. 2.4(b), Stokes-Einstein prediction

DSE calculated from zero-shear solution viscosity as a function of polymer concentra-

tion c/c∗). At higher concentrations, however, the diffusivities begin to increasingly

surpass DSE, in accord with experiments. Thus, the MPCD simulations accurately

capture the change in the long-time nanoparticle dynamics with increasing polymer

concentration and semiquantitatively describe the deviations from Stokes-Einstein
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predictions at high concentrations.

Finally, we assess the effects of HI by comparing the diffusivities extracted from

the MPCD simulations to those from the LD simulations (Fig. 2.4(a)). LD is an

implicit-solvent simulation method that captures only the viscous drag on the in-

dividual particles but no short- or long-range HI. The friction coefficients for the

dispersed nanoparticles and monomers were chosen in such a way to match the

long-time diffusivity computed from the MPCD simulations under dilute conditions.

Hence, as expected, we observe agreement between the diffusivities extracted from

LD and from MPCD simulations in the dilute regime for σNP. 1, where the dynamics

were matched by construction. For σNP& 5, where HI are strongly screened,41,74–76

the diffusivities from LD and MPCD also exhibit similar scaling behavior. However,

deviations between LD and MPCD, similar to those observed for the subdiffusive ex-

ponent (Fig. 2.2), occur in the intermediate regime. Thus, our results suggest that

HI influence the long-time particle diffusivities for σNP. 5.83

In addition to the long-time nanoparticle dynamics, the MPCD and LD simula-

tions provide crucial insights on the coupling between nanoparticles and polymer

chains on short time and length scales, which are difficult to experimentally mea-

sure. Coupling theory assumes that the longest relaxation time of the polymer

τR = τξ(Rg/ξ)4 is much larger than the crossover time τc at which the nanoparti-

cle dynamics transition from subdiffusive to diffusive,38 so that the particle dynam-

ics are fully coupled to the polymer segmental relaxations. Under this assumption,

nanoparticle dynamics become diffusive once the polymer segments relax over the

particle surface. For the simulated polymer chains, the calculated Rouse time ranges

from 102τ to 103τ depending on polymer concentration, in good agreement with when

the polymer COM begins moving diffusively (Fig. 2.3(c)). Whereas coupling theory

assumes a separation of time scales, this Rouse time scale is comparable to the

crossover time of the particles (τc ≈ τR), indicating that the polymer COM motion
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cannot be neglected. Comparable time scales were also observed in previous exper-

iments.26 On the basis of the similarities of the MSDs (Fig. 2.3), we compare the

subdiffusive exponents for the nanoparticles and the polymer COM (Fig. 2.5(a,b)).

At low polymer concentrations, both particles and polymer chains move diffusively

(i.e., αNP,αP ≈ 1). As the polymer concentration increases, the particles and polymer

chains become subdiffusive with monotonically decreasing subdiffusive exponents.

Furthermore, the change in nanoparticle and polymer subdiffusive exponents are

similar in magnitude and shape, indicating that the particle and polymer dynam-

ics on short time scales are positively correlated. The subdiffusive exponents of the

nanoparticles are slightly lower than those of the polymers but are highly correlated

over the entire concentration range (Fig. 2.5(c)). Comparison of MPCD and LD simu-

lations reveals differences in the scaling of the subdiffusive exponents and long-time

diffusion coefficients at low to intermediate polymer concentrations due to HI (Fig.

2.2 and 2.4). Nonetheless, both methods find strong correlation between the nanopar-

ticle and polymer COM subdiffusive exponents. This key finding suggests that the

coupling is due to the comparable relaxation time scales of the nanoparticles and

polymers and not explicitly due to manybody HI. The high degree of correlation be-

tween nanoparticle and polymer dynamics within the subdiffusive regime indicates

that the COM polymer motion may indeed play a role in controlling the nanoparticle

dynamics.

The fact that the short-time nanoparticle dynamics are consistently more subd-

iffusive than those of the polymer COM (αNP . αP,Fig. 2.5(a,b)) suggests that the

nanoparticle dynamics may be coupled to additional relaxation modes beyond the

polymer COM dynamics. Because polymer chains are fractal in structure, there is a

distribution of relaxation mechanisms that control polymer dynamics. Moving over

similar time scales as the polymer, the nanoparticles likely couple to this distribu-

tion – from segmental Rouse motions to COM diffusion. Indeed, coupling theory38
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predicts that the segmental motions should play a role in controlling the subdiffu-

sive nanoparticle dynamics. Moreover, from this work and previous experiments,

we observe that nanoparticle coupling to segmental relaxations accurately predicts

the long-time nanoparticle diffusion across orders of magnitude in polymer concen-

tration and particle size, while the subdiffusive exponents of the nanoparticles and

polymer COM are highly correlated over an order of magnitude in polymer concen-

tration. To combine these contributions into a unified picture, the data suggest that

the nanoparticles generally move through polymer solutions via two mechanisms –

coupling to segmental relaxations to move relative to the polymer COM and coupling

to the COM motion to move with the polymer COM (Fig. 2.6). The combination of

these two mechanisms may lead to the long-time diffusivity of nanoparticles that

scales according to the length-scale ratio σNP/ξ and deviates from the zero-shear so-

lution viscoelasticity and to the short-time subdiffusive dynamics with subdiffusive

exponents 0.5≤αNP.αP ≤ 1 and crossover times τc ≈ τR.

While finalizing our article, Chen et al.83 published an MPCD study in which

they observed similar subdiffusive behavior for nanoparticles in semidilute polymer

solutions. Our findings are in good agreement with the results from their MPCD sim-

ulations performed with HI. Although they used a different interpretive framework

based on the empirical model of Hołyst and collaborators,84,85 the long-time diffusion

coefficients and subdiffusive exponents from their simulations can be collapsed on

the same scaling plots shown here and thus support our conclusions. The empirical

Hołyst model84,85 was not used in this study because, as we previously documented

in the Supporting Information of Ref. 26, it does not collapse the experimental data

as well as the coupling theory of Ref. 38.

Chen et al.83 also performed simulations without HI in their study. Rather than

using LD, however, they destroyed HI within the MPCD framework by randomiz-

ing the solvent positions and velocities. Interestingly, in contrast with our findings,
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Figure 2.6: Schematic illustrating the physical processes controlling nanoparticle
dynamics. (a) Segmental relaxation, described in Ref. 38. (b) Center-of-
mass (COM) motion of the polymer. (c) Combined coupling mode.

their simulations predict that the nanoparticle and polymer COM subdiffusive be-

havior decouples in the absence of HI. We hypothesize that this discrepancy arises

because their approach for destroying HI does not preserve the long-time nanoparti-

cle and polymer COM diffusive behavior, and thus it also likely distorts the relative

time scales associated with other relaxation processes in the system. Hydrodynamic

interactions influence various aspects of solution dynamics. Unfortunately, there is

no unique approach for removing HI from simulations that would allow an unam-

biguous characterization of its contributions at all time scales. The approach that

we have adopted preserves the long-time particle and polymer relaxation time scales

under dilute conditions. These relaxations are influenced by drag from the solvent

but, by definition, not by many-body contributions arising from momentum transfer

between nanoparticles and polymers. Even though these additional contributions

may influence relaxations at finite solute concentrations, this does not imply that
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they dictate the physical mechanisms controlling nanoparticle – polymer coupling.

Indeed, our results demonstrate that when the long-time relaxations of the system

are preserved, the nanoparticle and polymer COM subdiffusive behavior remains

strongly coupled even in the absence of many-body nanoparticle – polymer hydrody-

namic correlations.

2.4 Conclusions

We simulated the dynamics of nanoparticles in semidilute polymer solutions with

and without long-range hydrodynamic interactions. The long-time nanoparticle dy-

namics were well described by recent theoretical predictions based on coupling to

segmental relaxations; this coupling theory also captures the short-time dynam-

ics for particles smaller than or much larger than the polymer correlation length.

In agreement with experiments, however, the simulations revealed a surprisingly

broad crossover regime where the subdiffusive exponent was larger than predicted.

Analysis of the simulation trajectories suggests that the nanoparticles couple to the

subdiffusive dynamics of the polymer COM on short time scales, which provides an

additional mechanism by which nanoparticles can move through the solution. Anal-

ogous physical pictures have been proposed to explain tracer dynamics in colloidal

glasses86 and crowded biological material,87 in which the coupling between tracer

and crowder dynamics leads to subdiffusive dynamics.
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Chapter 3: Influence of polymer flexibility on

nanoparticle dynamics in semidilute solutions

This chapter was previously published by the Royal Society of Chemistry: Chen,

R.; Poling-Skutvik, R.; Howard, M. P.; Nikoubashman, A.; Egorov, S. A.; Conrad, J.

C.; Palmer, J. C., Soft Matter 2019, 15, 1260-1268.

3.1 Introduction

As described in the pervious chapters, the recent polymer coupling theory

(PCT),38 based on scaling arguments for polymer dynamics,74,88 assumes that the

nanoparticle (NP) dynamics fully couple to segmental relaxations of the polymers on

comparable length scales. This model, which predicts that the dynamics are con-

trolled by the ratio of σNP to the polymer correlation length ξ, correctly captures

the change in long-time diffusivity as the particle size or polymer concentration is

changed.26 On short length and time scales, however, experiments and simulations

suggest that the particle dynamics are incompletely coupled to the segmental dy-

namics of flexible polymers and additionally couple to the center-of-mass (COM) re-

laxations of the polymers.26,52,83,89

For semiflexible polymers, theoretical descriptions based on simple scaling laws

are expected to be even less fruitful because stiff macromolecules cannot be described

by a self-similar fractal structure. Instead, semiflexible chains are characterized by

several crossover length scales, such as the persistence and contour lengths, which

introduce a large number of disparate time and length scales that are relevant to de-

scribing their dynamics. Accordingly, it has been shown that even modest stiffness af-

fects both static90–93 and dynamic59,60,94 properties of polymer liquids. This scenario

is relevant for understanding transport through the intracellular space, crowded by
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actin, microtubules, and other semiflexible biopolymers.95,96 On short time scales the

motion of microscale particles (larger than the mesh size or correlation length) is sub-

diffusive, scaling with time with an exponent of 3/497,98 as predicted from the micro-

scopic relaxations of semiflexible polymers.99,100 Surprisingly, how smaller particles

couple to the dynamics of semiflexible chains has not been systematically explored

and is the focus of this study.

In this work, we use a combination of simulation and theory to probe NP dynam-

ics in solutions of semiflexible polymers, whose stiffnesses are characterized by the

persistence length lp. The colloidal suspensions are simulated using a hybrid molecu-

lar dynamics–multi-particle collision dynamics (MD–MPCD) scheme, which accounts

for hydrodynamic interactions through the use of an explicit coarse-grained solvent.

The simulation results are also compared with predictions from MCT35 for concen-

trated polymer solutions. The NP dynamics are subdiffusive on short time scales and

diffusive on long time scales. The long-time diffusivities scale with the polymer cor-

relation length at low polymer concentrations in agreement with PCT, but depend on

polymer stiffness at higher concentrations. Good agreement is also observed with the

long-time diffusivities calculated from MCT at high polymer concentrations, where

the theory is expected to be most accurate. The short-time subdiffusive dynamics, by

contrast, vary strikingly with the flexibility of the polymers. For fully flexible poly-

mers whose characteristic length scales are comparable to the NP size, we observe

that the subdiffusive behavior of the NPs is coupled to the polymer COM motion, in

accord with our previous study.89 As lp is increased such that the polymer chains

become more rigid, however, the dynamics of the NPs become more subdiffusive and

decouple from the dynamics of the polymer chain COM. These effects likely arise

from changes in the segmental relaxations as the chain stiffness is increased.
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3.2 Methods

Molecular dynamics simulations of the NP–polymer systems were performed with

LAMMPS.64 For convenience in describing the model system, we define σ, m, and

ε as the fundamental base units for length, mass, and energy, respectively. The

corresponding unit of time is τ=
p

mσ2/ε. All physical quantities are reduced using

these fundamental base units and reported in dimensionless form.

We adopted similar models to those used in our previous study of NP dynamics

in solutions of fully flexible polymer chains.89 Nanoparticles were modeled as large

spheres with diameter σNP = 5. Polymers were represented by the Kremer-Grest

(KG) model101 as linear chains composed of Nm = 32 smaller beads with diame-

ter σP = 1. Excluded volume interactions were modeled using the shifted Weeks-

Chandler-Andersen (sWCA) potential63

UsWCA(r i j)=


4εi j

[(
σi j

r i j −∆i j

)12
−

(
σi j

r i j −∆i j

)6]
+εi j, r i j ≤ rc

i j

0, r i j > rc
i j

, (3.1)

where r i j is the scalar separation distance between particles i and j, εi j = 1 is the

parameter controlling the strength of the repulsion, and the potential is truncated

and shifted at rc
i j = 21/6σi j+∆i j. For NP–NP and monomer–monomer interactions we

used σi j =σNP and σi j =σP, respectively, and set ∆i j = 0. For NP–monomer interac-

tions, we chose σi j =σP and ∆i j = (σNP −σP)/2 to account for their size asymmetry.

Adjacent beads on each polymer chain were connected by springs described using

the finitely extensible nonlinear elastic (FENE) potential,62

UFENE(r i j)=


−1

2 kr0
2 ln

[
1−

r2
i j

r02

]
, r i j ≤ r0

∞, r i j > r0

, (3.2)
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with spring constant k = 30 and a maximum bond extension r0 = 1.5. Chain stiffness

was incorporated into the KG model using the bending potential59,60,102–104

Ubend(Θi jk)= κ(1−cosΘi jk), (3.3)

where Θi jk is the angle between the bonds connecting consecutive beads i to j and

j to k (an angle of Θi jk = 0◦ corresponds to three beads in a line). The parameter κ

modulates the strength of the potential and stiffness of the chains. For sufficiently

stiff polymers (κ> 2), it is related to the chain persistence length via lp ≈ bκ,59 where

b is the equilibrium bond length (b ≈ 0.97 for the standard parameterization of the

KG model). The contour length of the chain is given by Lc = (Nm −1)b ≈ 30.

To study the influence of chain flexibility on NP dynamics, we performed simula-

tions using different values of κ ranging from 0 (fully flexible) to 32 (lp/Lc ≈ 1) (Table

3.1; Fig. 3.1). The edge length of the box (L = 64) was chosen to be approximately

eight times the radius of gyration Rg,0 of the stiffest polymer (κ= 32) at infinite dilu-

tion to minimize finite-size effects. All simulations were conducted in a cubic box with

periodic boundary conditions in each direction. For highly flexible polymers (κ ≤ 2),

the number of polymer chains Nc was varied from 200 to 4900, to achieve monomer

concentrations c = NcNmL−3 ranging from 0.025 to 0.5. At higher values of κ, how-

ever, the maximum value of c was further limited to avoid the well-characterized

isotropic-nematic transition in this system92 and stay within the isotropic phase (Ta-

ble 3.1). The number of NPs was fixed at 20 in each simulation (volume fraction ≈
0.005) to improve sampling while keeping NP–NP interactions negligible.

Molecular dynamics trajectories were propagated using a velocity-Verlet integra-

tor with time step 0.005. Each simulation was equilibrated for ≈ 105τ followed by

a production period of ≈ 106τ during which trajectories were saved for subsequent

analysis. Ensemble averages were computed from three independent simulations
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Table 3.1: Properties of the polymer systems investigated in this study.

κ lp/Lc Rg,0 ν cmin cmax
0 0.03 3.63 0.61 0.025 (0.16 c∗) 0.50 (3.13 c∗)
2 0.06 4.37 0.62 0.025 (0.27 c∗) 0.40 (4.37 c∗)
5 0.15 5.62 0.62 0.025 (0.58 c∗) 0.40 (9.29 c∗)
10 0.31 6.82 0.66 0.025 (1.04 c∗) 0.40 (16.61 c∗)
20 0.63 7.73 0.74 0.025 (1.51 c∗) 0.25 (15.12 c∗)
32 1.01 8.15 0.81 0.025 (1.77 c∗) 0.25 (17.72 c∗)

.

Notes: cmin and cmax are the minimum and maximum monomer concentrations investigated
in this study, and c∗ = 3Nm(4πR3

g,0)−1 is the overlap concentration.

(60 NP trajectories), and statistical uncertainties were estimated from the standard

error. Hydrodynamic interactions (HI) were incorporated by coupling the MD par-

ticles to a coarse-grained solvent modeled using the multi-particle collision dynam-

ics (MPCD) method.9–12 Implementation details of the hybrid MD–MPCD algorithm

are identical to those reported in our previous study.89 Briefly, the MD–MPCD sim-

ulations were performed using a collision cell edge length a = 1, a solvent particle

mass ms = 1, an average solvent density ρ = 5 (5 solvent particles per collision cell),

and a collision time step 0.09. Solvent collisions were handled using a momentum-

conserving version of the Andersen thermostat66,67 with a set temperature T = 1.

Further, the reference positions of the cells were randomly shifted before each col-

lision step to ensure Galilean invariance.43 These choices lead to an MPCD solvent

with Schmidt number Sc ≈ 12.0 and dynamic viscosity ηs ≈ 4.0. Solvent–polymer

collisions were handled using the scheme discussed in Ref. 41, whereas momentum

transfer between the solvent and NPs was treated using the stochastic boundary al-

gorithm described in Ref. 68 with slip conditions. To achieve neutral buoyancy in the

background solvent, the masses of the polymer beads and NPs were set to mP = ρσ3
P

and mNP = ρπσ3
NP/6, respectively.

To compare the simulated NP diffusivities to the SER and MCT, in both cases

the zero-shear viscosities η0 of the polymer solutions from simulation were used as

input parameters, the shear viscosities were determined through reverse nonequi-

librium molecular dynamics (RNEMD) simulations60,106 using HOOMD-blue with
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(a) κ= 0 (b) κ= 5

(c) κ= 10 (d) κ= 32

Figure 3.1: Nanoparticles (red) in solutions of (a) fully flexible (b,c,d) semiflexible
chains. Snapshots rendered using Visual Molecular Dynamics 1.9.3.105

MD107–109 and MPCD110 accelerated on graphics processing units. Stress was im-

posed on the solutions by generating a momentum flux, and the shear rate γ̇ was

extracted from the emerging flow profile, as described in Ref. 106. For the fully flex-

ible chains (κ = 0) we were able to directly access the linear response regime and

measure the zero-shear viscosity η0. As the stiffness was increased, however, the

37



polymer relaxation slowed down significantly, making a direct measurement of η0

computationally infeasible. In these cases, we extracted the zero-shear viscosity by

fitting our data to the Cross model.60,111,112

η(γ̇)= η∞+ η0 −η∞
1+ (τsγ̇)m , (3.4)

where η∞ is the asymptotic viscosity as γ̇→∞, τs is the characteristic time for the

onset of shear thinning, and m is a parameter sensitive to the degree of shear thin-

ning (m = 0 for Newtonian liquids; m → 1 for increasingly shear thinning fluids).

3.3 Results and discussions
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(b) c=0:20

Figure 3.2: Reduced viscosity η/ηs as a function of shear rate γ̇ with stiffness κ = 0
(©), 5 (�), and 32 (4), solid lines are fittings using the Cross model (eqn.
3.4).

The Cross model provided excellent fits to the RNEMD simulation data in each

case, independent of the polymer stiffness and concentration (Fig. 3.2). Further, for

fully flexible polymers (κ = 0), the values of η0 extracted using eqn. 3.4 were found
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Figure 3.3: Reduced zero-shear viscosity η0/ηs as function of stiffness κ, η0 was esti-
mated by fitting RNEMD simulation data to the Cross model (eqn. 3.4).

to be in excellent agreement with estimates obtained from standard linear response

analysis. Analysis of η0 reveals that it is a strong function of polymer stiffness and

concentration, varying by as much as an order of magnitude over the range of con-

ditions and parameters examined in our study (Fig. 3.3). These findings are consis-

tent with our recent simulation study examining the dynamics and shear rheology of

semiflexible polymers in solution using similar polymer models and computational

methods;60 we refer interested readers to this study for in-depth discussion of the

influence of polymer stiffness and concentration on these solution properties.

We then characterized the structure of the polymer chains as the stiffness κ was

varied. Polymer chains are fractal, and their radius of gyration in dilute solution

Rg,0 scales with the number of monomer beads Nm as Rg,0 ∼ Nν
m, where ν is the

excluded volume exponent. For fully flexible chains (i.e., κ = 0), we found ν ≈ 0.61

(Fig. 3.4; Table 3.1), which is in good agreement with theoretical predictions and

previous simulation results of self-avoiding chains in a good solvent.16,89 As the chain
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stiffness increased, the polymer chains became more rod-like, which is reflected by

the increasing excluded volume exponent ν. However, ν remained below the physical

limit for hard rods (ν= 1) and reached a value of ν≈ 0.81 for the largest investigated

stiffness of κ= 32 (Fig. 3.4; Table 3.1).

101 102
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101

102
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R
g;
0
> º=0:81

º=0:61

∙=0
∙=32

Figure 3.4: Scaling of Rg,0 as a function of the number of monomer beads Nm with
stiffness κ= 0 (4) and 32 (©). Dashed lines are power law fits.

After confirming that the simulated polymer structure agrees with theoretical

predictions, we analyzed the dynamics of the constituents of the suspensions. From

the MPCD simulations, we calculated the mean-squared displacement 〈∆r2〉 of the

monomers in the reference frame of the polymer centers-of-mass (COM), for the poly-

mer COM, and for the dispersed NPs as functions of chain stiffness κ (Fig. 3.5),

dashed and solid lines indicate diffusive (∼ t1) and subdiffusive (∼ tα,α < 1) scaling,

respectively. For fully flexible chains (i.e., κ = 0), monomers are hydrodynamically

coupled and move according to Zimm dynamics on short time scales with 〈∆r2〉 ∼ t2/3,

as expected.16 As κ increases, the monomers remain hydrodynamically coupled, but

the chains become stiffer and their segmental mobility decreases (Fig. 3.5(a)).
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The chain stiffness also affects the motion of the polymer COM (Fig. 3.5(b)). On

short time scales, the mean-squared displacement of the polymer COM develops a

subdiffusive region as κ increases, in which 〈∆r2〉 ∼ tα and α < 1 is the subdiffusive

exponent. On long time scales, the MSD of the polymer COM recovers diffusive

scaling α= 1 with the diffusivity decreasing with κ due to lower segmental mobility

and larger size of the stiffer chains. The motion of the NPs (Fig. 3.5(c)) is qualitatively

similar to that of the polymer COM with a pronounced subdiffusive region when

dispersed in solutions of stiff chains.

3.3.1 Long-time nanoparticle diffusivity

The effect of polymer stiffness on the dynamics of NPs was further character-

ized by calculating their long-time diffusivity D and short-time subdiffusive expo-

nent αNP. To facilitate quantitative comparisons with theory, the NP diffusivities

measured in the simulations, D(L), were corrected for finite-size effects using113

D =
(
1− ζσNP

3L

)−1
×D(L)≈ 1.08×D(L), (3.5)

where ζ = 2.837297. Eqn. 3.5 corrects for finite-size effects associated with long-

range hydrodynamic interactions between periodic images of the simulation box,

which vanish as L →∞ and are thus not present in infinite systems. This expression

is valid for NPs with a slip boundary condition at their surface, but analogous ex-

pressions have also been derived for no-slip boundary conditions.113 For the system

considered here (L = 64, σNP = 5), the correction is relatively small and increases the

diffusivity by ≈ 8%.

The values of D from simulation are significantly larger than the diffusivities

predicted by the SER (Fig. 3.6, closed symbols in (a) and (b) indicate diffusivities and

open symbols in (c) and (d) indicate ratios of diffusivities. Dashed lines in (c) and

(d) indicate a diffusivity ratio of unity), indicating that the motions of the NPs are
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Figure 3.5: Mean-squared displacement 〈∆r2〉 as a function of lag time ∆t at multiple
polymer stiffnesses and monomer concentration c = 0.20.
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incompletely coupled to the bulk viscosity of the background polymer solutions. De-

viations from SER predictions have also been observed in experimental studies per-

formed on NPs in solutions of similarly sized polymers,23,26 ranging from D/DSER ≈ 2

when σNP/2Rg,0 ≈ 0.9 to D/DSER ≈ 30 when σNP/2Rg,0 ≈ 0.6. They arise because the

NPs are comparably sized to the polymer chains, which violates the homogeneity as-

sumption underlying the SER.21 The deviations from SER predictions become more

pronounced as the chains become stiffer, indicating that the NPs become increas-

ingly decoupled from the bulk solution viscosity. For simulations of NPs in solutions

of infinitely rigid rods, these deviations were posited to develop because of constraint

release mechanisms in the rod matrix.114

We also compared our simulation results to calculations performed using a vari-

ant of MCT developed for dense polymer solutions.35,36 Details of the MCT calcu-

lations follow those in Ref. 35 and are thus not repeated here. Within MCT, the

overall NP diffusion coefficient DMCT is written as a sum of hydrodynamic and non-

hydrodynamic (microscopic) terms.35,36 The former is given by DSER, whereas the

latter contribution, Dmicro, arises due to the coupling of the NP motion to polymer

collective density modes.35,36 Calculation of Dmicro requires several structural (NP–

monomer and monomer–monomer radial distribution functions and Rg,0) and dy-

namical (monomer diffusion coefficient) quantities as input.35 These quantities can

be calculated directly from theory,35 but here we use input from the MD–MPCD sim-

ulation, as our main interest is to test the approximations inherent in MCT. In com-

puting Dmicro, we also include the contribution arising from the coupling to the self-

transverse current mode given in Ref. 115, which affects the dynamic shear viscosity

and has been shown to play an important role in treating diffusion in low-density

fluids.115 Although this additional contribution is negligible in dense systems, we

nonetheless include it in all MCT calculations and evaluate it using input from the

MD–MPCD simulation.
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Figure 3.6: NP diffusivity obtained from MD–MPCD simulations with finite size cor-
rection following Ref. 113 (D), from MCT calculations (DMCT), and from
the SER (DSER).

The relative contributions of DSER and Dmicro to DMCT depend on polymer con-

centration for the small particles examined here; DSER is comparable to Dmicro at

low polymer concentrations (c = 0.05, Fig. 3.7(a)) but much smaller than Dmicro at
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Figure 3.7: NP diffusivity obtained from the MCT calculations broken down into
hydrodynamic (DSER) and non-hydrodynamic (Dmicro) contributions.

high polymer concentrations (c = 0.20, Fig. 3.7(b)), as also seen in an earlier MCT

study.35 The overall diffusivities DMCT predicted by MCT are in excellent agreement

with those calculated from the MD–MPCD simulations (Fig. 3.6) at polymer concen-

tration c = 0.20 for all values of κ examined.

For lower concentration c = 0.05, however, deviations between MCT and simu-

lation are observed. Even with incorporation of the contribution from the coupling

to the self-transverse current mode, MCT systematically underestimates the NP dif-

fusivity at c = 0.05. This discrepancy is presumably due to the fact that additional

collective modes, which have not been taken into account, are important at these con-

ditions. Nevertheless, the overall agreement with simulation is reasonable, and MCT

correctly captures the increasingly significant deviations from SER as the polymers

become stiffer.

Lastly, we compared the behavior of the NP diffusivity with predictions from the

PCT developed in Ref. 38 for fully flexible polymers to explain deviations from the
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SER. This theory assumes that the NPs are locally caged by polymers until the sur-

rounding chains relax over the particle surface. Accordingly, the long-time NP dif-

fusivity is predicted to depend on the length-scale ratio of NP diameter to polymer

correlation length σNP/ξ and to scale as D/D0 ∼ (σNP/ξ)−2, where D0 is the nanopar-

ticle diffusivity in pure solvent. For c/c∗ > 1 we used ξ = Rg,0(c/c∗)−ν/(3ν−1) from

scaling theory,16 where c∗ = 3Nm(4πR3
g,0)−1 is the overlap concentration (Table 3.1).

For c/c∗ ≤ 1, we calculated ξ according to the mean geometric separation distance

Rg,0(c/c∗)−1/3. We verified this PCT prediction experimentally26 and with simula-

tions89 in previous work for fully flexible chains. By contrast, tests of PCT in com-

putational studies of nanoparticle-polymer composites modeled using flexible chains

have yielded inconclusive results.116 Here, we extend tests of this scaling relation to

semiflexible polymer systems (Fig. 3.8).

At very low polymer concentrations, the NP diffusivities remain mostly unaf-

fected by the polymers so that D/D0 ≈ 1. The diffusivities decrease with increasing

polymer concentration solely as a function of length-scale ratio σNP/ξ. In solutions of

flexible chains (κ≈ 0), the NP diffusivities eventually cross over and scale according

to D/D0 ∼ (σNP/ξ)−2 at large σNP/ξ, in agreement with the PCT predictions of Ref. 38.

Similar behavior for flexible chains was also observed in our previous study,89 where

the agreement with PCT was even more clear due to the use of longer polymer chains

(Nm = 50), which provided access to larger σNP/ξ. Slightly shorter chains (Nm = 32)

were used in this study to avoid approaching the isotropic-nematic transition in sys-

tems with stiff chains.91 For stiffer chains (large κ), however, the NP diffusivities

decrease more rapidly and deviate from the predicted scaling. According to PCT,

the long-time dynamics depend on the segmental relaxations of the polymer chains.

Thus, the different diffusivity dependences likely arise from the slower monomer

dynamics of the stiffer chains (Fig. 3.5(a)). As the monomer dynamics slow down

with increasing κ, the time required for the polymer mesh to relax over the particle
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surface increases. This longer relaxation thereby slows the long-time NP motion.
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Figure 3.8: Normalized NP diffusivity D/D0 as a function of size ratio σNP/ξ. Open
symbols are experimental data from Ref. 26 with σNP/2Rg,0 = 0.56 (4),
0.74 (�). Solid lines are scaling predictions (Ref. 38) D/D0 ∼ (σNP/ξ)−2.

3.3.2 Short-time subdiffusion

Beyond segmental mobility, the dynamics of the polymer COM also play an im-

portant role in controlling the subdiffusive motion of dispersed NPs.89 For flexible

chains, both Rouse and Zimm theories assume that the COM of polymer chains move

diffusively on all time scales.16 Experimentally, however, the COM dynamics of poly-

mers deviate from this diffusive assumption and move subdiffusively on short time

scales.75 Our simulations reveal that the subdiffusive dynamics of the polymer COM

depend on both polymer concentration and chain stiffness (Fig. 3.9). For both con-

centrations, the subdiffusive exponent αP for the polymer COM initially decays with

increasing κ before reaching a plateau. Higher polymer concentrations lead to lower

values of αP for all κ. The NP subdiffusive exponent αNP also decreases as the poly-

mer concentration and κ are increased, similar to αP. It does not, however, reach a
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plateau at high κ for the higher polymer concentration (c = 0.20), unlike αP.
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Figure 3.9: Subdiffusive exponent of NPs αNP (closed) and polymer centers-of-mass
αP (open) as a function of bending constant κ, for monomer concentra-
tions of c = 0.05 (orange) and c = 0.20 (purple).

When particles are much larger than characteristic length scales in the poly-

mer, (σNP À 2Rg,0), their short-time dynamics directly follow the segmental relax-

ations of the free polymer. This coupling results in subdiffusive particle dynamics

in the microrheological limit, with αNP = 0.5 in solutions of flexible polymer26,38,73

and αNP = 3/4 in solutions of semiflexible chains.97,98 The PCT developed for smaller

(nano)particles in Ref. 38 still assumes direct coupling of the NP to segmental relax-

ations of the surrounding polymer chains on short time scales, so that αNP exhibits

a step change and abruptly decreases from 1 to 0.5 at σNP/ξ= 1 (Fig. 3.10, open sym-

bols are experimental data from Ref. 26 with σNP/2Rg,0 = 0.56 (4), 0.74 (�), dashed

lines are predictions from PCT in solutions of flexible polymer chains.38). For flex-

ible chains, such a step change is not observed in experiments26 or simulations.89

Instead, αNP smoothly decreases as the size ratio σNP/ξ increases. For stiff chains,
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the shape of this decay changes (Fig. 3.10). At low polymer concentrations, αNP de-

creases with increasing polymer concentration independent of κ. At higher polymer

concentrations (i.e., larger σNP/ξ), the NP dynamics become increasingly subdiffusive

with increasing polymer stiffness. The steeper decays suggest that the NP dynamics

couple differently to the segmental mobility of stiffer chains.
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Figure 3.10: Subdiffusive exponent of NPs αNP as a function of particle diameter
σNP to polymer correlation length ξ size ratio for chains with varying
stiffness κ.

In previous work,89 we attributed the deviation from scaling predictions on short

time scales to the coupling of the NP dynamics to both the segmental relaxations of

the polymer chains and to the dynamics of the polymer COM. To assess the degree

to which NP dynamics couple to segmental relaxations and the dynamics of polymer

COM in solutions of semiflexible chains, we analyze the correlation between αNP and

αP (Fig. 3.11). At low polymer concentrations, the dynamics of the NPs and polymer

COM are largely diffusive for all κ with αNP = αP ≈ 1. As the polymer concentra-

tion increases, αNP decreases concomitant with αP for all κ, indicating that the NP
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Figure 3.11: Correlations between subdiffusive exponent of NPs αNP and polymer
centers-of-mass αP for polymers with varying stiffness κ. Dashed line
indicates αNP =αP.

and polymer COM dynamics are correlated in these solutions. At higher polymer

concentrations, however, αNP decouples from αP and decreases more rapidly with in-

creasing chain stiffness. The stronger subdiffusion of NPs in solutions of stiff chains

is a marked difference from the predicted microrheological behavior of micron-sized

particles in solutions of semiflexible chains in which αNP = 3/4.97,98 The decorrelation

of the short-time dynamics of nanoparticles and polymer COM suggests that the NPs

couple more strongly to the decreased monomer dynamics of the surrounding chains

in solutions of semiflexible chains. This hypothesis is consistent with the steeper

decay of αNP with polymer concentration shown in Fig. 3.10.

3.4 Conclusions

Understanding the effects of polymer stiffness on NP transport is critical to im-

proving the efficacy of composite processing and drug delivery. Here, we performed

hybrid MD–MPCD simulations of semidilute solutions of polymers with tunable stiff-
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ness to investigate the influence of polymer flexibility on the dynamics of NPs of

comparable size. The NPs exhibit subdiffusive dynamics on short time scales and

diffusive dynamics on long time scales. With increasing polymer stiffness the long-

time diffusivities of the NPs more markedly deviate from the SER, consistent with

decoupling from the bulk polymer solution viscosity, and from PCT, which was de-

veloped for flexible polymers. The long-time diffusivities are adequately predicted

by MCT, however, especially at high concentrations of the polymers where the the-

ory is expected to be most accurate. On short time scales, the dynamics of the NPs

become progressively more subdiffusive and decouple from the dynamics of the poly-

mer chain COM as the stiffness of the polymer chains is increased. These changes in

dynamics likely arise from differences in the segmental relaxations of the semiflexi-

ble chains. We anticipate that these predictions can be tested experimentally using,

e.g., nematic elastomers,117,118 dendronized polymers,119 or the well-characterized

biopolymers ds-DNA or actin. Finally, the results from our computational study may

aid in extending existing theories for describing NP transport in systems of flexible

chains (e.g., PCT) to solutions of stiff and semiflexible polymers.
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Chapter 4: Effect of polymer morphology: nanopar-

ticle dynamics in ring polymer solutions

4.1 Introduction

As discussed in the previous chapters, the study of nanoparticle (NP) transport

in polymer solutions is an active research field with relevance to a variety of prob-

lems1–8 in science and industry. Our previous simulation study revealed a hitherto

unreported dynamic coupling mechanism in which the short-time motions of NPs

couple to the center-of-mass (COM) motions of fully flexible polymers in semidi-

lute solutions.89 We subsequently observed a breakdown of this coupling mecha-

nism in solutions of semiflexible polymers – the COM motions of NPs and polymers

were found to gradually decouple as the polymer backbone stiffness increased and

the chain morphology shifted from coil-like to more elongated, rod-like conforma-

tions.120 This key result suggests that polymer morphology may strongly influence

NP-polymer coupling in semidilute solutions. Indeed, polymers with a wide variety

of chain architectures, ranging from linear to star-shaped morphologies, can be syn-

thesized. Ring polymers are a particularly intriguing system that have received con-

siderable attention because similar circular morphologies have been observed in bio-

logically relevant macromolecules such as DNA.121–123 Studies show that the closed

conformations of ring polymers lead to structural and dynamical properties that dif-

fer from those of systems with linear chains.122–127 Free chain ends play an impor-

tant role in polymer behavior and in development of theoretical models for polymers,

such as the reptation model for linear polymers128 and the back-folding model for

branched polymers.129 The absence of free ends poses unique challenges in develop-

ing theoretical models for ring polymers. As a result, many aspects of ring polymers
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remain poorly understood from a theoretical perspective.

It has been suggested that statics and dynamics of ring polymers are self-

similar,130 that is, similar conformations and motions are observed in any part of the

chain due to the circular symmetry along the contour length of the ring. Early the-

ories131–133 for describing the conformations and motions of a ring polymer were in-

spired by the de Gennes128 reptation model of a linear polymer, which describes mo-

tions of the entire molecule in terms of motions of “diffusing kinks” along the chain.

Deviating from the Gaussian-like linear chains, relatively compact structure125 is

observed for ring polymers and interpenetration is not entropically preferred. Cates

and Deutsch131 presented a Flory-like theory suggesting that the radius of the ring

scales as R ∼ N2/5. Grosberg134 described the ring as a crumpled globule with a frac-

tal dimension of 3. Theories for ring polymer dynamics have been proposed based

on the “diffusing kinks” picture135 and Rouse dynamics.136 Although the diffusion

coefficient of a ring polymer scales with contour length in a similar way to that of a

linear chain,131–133,135 the relaxation mode is quite different due to the absence of

free ends. A subsection of the ring relaxes immediately once any of the segments re-

laxes, whereas only those segments close to the chain ends relax as rapidly for linear

and branched polymers.

Knotting behavior is a second unique feature of ring polymers. Concatenated

rings that are irreversibly linked never relax over each other due to their permanent

topological constraints. For nonconcatenated rings, by contrast, no permanent con-

straints exist,137 and deviations from linear chain behavior arise solely from their

closed conformations. Nonconcatenated ring polymers in a melt or solution are bet-

ter understood as they are considered good models of chromatin and thus have been

widely investigated.125,126,130,138 Although not as widely studied, the effects of inter-

linking and knot concentration have also been explored.139,140

Despite these efforts, however, a clear description of both the statics and dynam-
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ics of ring polymers remains elusive. This knowledge gap is due in part to the dif-

ficulty in precisely controlling inter-linking between rings in experimental systems

and difficulty in simulating sufficient long chains in computational studies. Nonethe-

less, recent attempts have been made to understand NP transport in ring polymer

systems. Ge and Rubinstein138 used simulation to study the motions of NPs in en-

tangled melts of nonconcatenated ring polymers. They found that NP motions are not

as strongly suppressed as in melts of linear chains. They attributed the faster NP

dynamics to the absence of long-lived entanglement tubes in ring polymers, which

restrict polymer relaxations in linear melts. Here, we perform an analogous com-

putational study, but in unentangled semidilute solutions, where solvent-mediated

hydrodynamic interactions are expected to play a role in dictating how chain mor-

phology influences dynamic coupling between NPs and polymers.

4.2 Simulation methodology

Similar to our previous studies,89,120 we performed simulations of NP-polymer

solutions using our LAMMPS-based64 implementation of the hybrid of molecular dy-

namics (MD) and multi-particle collision dynamics (MPCD) algorithm. Following our

recent studies, NPs are modeled as soft spheres with diameter σNP = 5 and polymers

are described using the Kremer-Grest (KG) bead-spring model.101 Excluded volume

interactions are modeled using the shifted Weeks-Chandler-Andersen (sWCA) poten-

tial63

UsWCA(r i j)=


4εi j

[(
σi j

r i j −∆i j

)12
−

(
σi j

r i j −∆i j

)6]
+εi j, r i j ≤ rc

i j

0, r i j > rc
i j

, (4.1)

where r i j is the separation distance between particles i and j and εi j = 1 is the

energy scale that sets the strength of the interactions. The cutoff distance rc
i j =

21/6σi j ensure that the interactions are purely repulsive. Parameters σi j =σNP, σi j =
σP and ∆i j = 0 are used for NP–NP and polymer (P) monomer–monomer interactions,
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whereas σi j =σP and ∆i j = (σNP −σP)/2 are used for the NP–monomer interactions.

Spring-like bonds between adjacent monomers on the polymer chains are modeled

using the finitely extensible nonlinear elastic (FENE) potential,62

UFENE(r i j)=


−1

2 kr0
2 ln

[
1−

r2
i j

r02

]
, r i j ≤ r0

∞, r i j > r0

, (4.2)

with k = 30 and r0 = 1.5 as the maximum bond extension length.

Figure 4.1: Nanoparticles (red) in ring polymer solutions (colored by index), ren-
dered with Visual Molecular Dynamics 1.9.3.105

Models of nonconcatenated ring polymers are built by simply adding a bond be-

tween the first and last monomer beads of linear polymer chains (Fig. 4.1). Following

refs. 125 and 126, a weak constraint is applied to the bond angles with the bending

potential59,60,102–104

Ubend(Θi jk)= κ(1−cosΘi jk), (4.3)
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where parameter κ, which is related to the persistence length,59 is set to 1.5 to in-

troduce a small degree of chain stiffness.

To facilitate comparison between NP dynamics in solutions filled with ring and

linear polymers, we set the number of monomer beads per chain to Nm = 70 for ring

polymers and Nm = 42 for linear chains. These choices yield ring and linear chains

with approximately the same radius of gyration Rg,0 ∼ 5.0σP at infinite dilution,

which is equivalent to the diameters of the NPs used in our simulations. Additional

parameters used to model the NP-polymer systems in our study are listed in Table

4.1.

Table 4.1: Parameters for the model ring and linear polymer solutions simulated in
this study.

System Nm Lbox c/c∗ ξ

Ring 70 64.0 0.2 (min) 10.66
Ring 70 64.0 4.0 (max) 2.38
Linear 42 64.0 0.2 (min) 13.97
Linear 42 64.0 6.0 (max) 2.55

.

Notes: c∗ = 3Nm(4πR3
g,0)−1 is the overlap concentration; Lbox is the edge length of the cubic

simulation cell; ξ=p
3/(νL) is the mesh size of the polymer network (where ν is the number

of chains per unit volume and L is the contour polymer length).

Initial configurations for the ring polymer systems were built to avoid ring con-

catenation. The NP–polymer systems were first equilibrated by running Langevin

dynamics for a period of ≈ 3×105τ. Final configurations from the Langevin dynam-

ics simulation were subsequently used to initialize the MPCD simulations, which

were run for an additional ≈ 3×105τ. Integration time steps of dt= 0.005τ were used

in both the Langevin dynamics and MPCD simulations. Three independent MPCD

simulations (each with 20 NPs) were run for each polymer solution examined. Thus,

statistical quantities were computed by averaging over 60 NP trajectories for each

system. The remaining simulation parameters are identical to those reported in

Chap. 3.
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4.3 Results and discussions

From the MPCD trajectories, we calculated mean-squared displacements (MSDs)

for the NPs, for the ring polymer monomers in the chain COM reference frame, and

for the COM of rings (Fig. 4.2). The segmental dynamics are Zimm-like at short

time scales, as indicated by the t2/3 scaling of the monomer MSDs at early times.

The eventual crossover to t1/2 scaling indicates the Rouse dynamics are recovered at

longer times as hydrodynamic correlations decay. Remarkably, no significant quali-

tative differences are observed between the MSDs computed in solutions of ring and

linear polymers (Fig. 4.3). Although qualitatively similar, the dynamics in the ring

polymer solution are slower than those in the system with linear polymer chains.

The slow relaxations in the ring polymer solutions are due to the high monomer

concentration in these systems. Despite having the same Rg,0, the ring polymers

contain more monomers per chain than the linear polymers and hence yield solu-

tions with higher monomer densities at the same reduced concentration c/c∗. The

higher monomer densities frustrate relaxation, leading to slower dynamics in the

ring polymer solutions.

As discussed in the previous chapters, polymer coupling theory38 (PCT) assumes

that nearby polymer chains present an infinite energy barrier to NP diffusion. As a

result, NPs have to wait until the polymer chains relax to be able to escape the lo-

cal cage created by the surrounding polymers. According to this picture, the terminal

diffusivities of NPs depend on the relaxation of polymer matrix, and scale as a power-

law function of the NP diameter to polymer matrix mesh size ratio D/D0 ∼ (σNP/ξ)−2,

where D0 is the diffusivity in the absence of polymers. To test this prediction, we

estimate the mesh size using ξ = p
3/νL, where ν is the number of chains per unit

volume and L is the contour length. This definition of mesh size is derived purely

from geometric considerations and it is independent of polymer morphology. Thus it

provides a consistent definition of ξ for analyzing solutions of ring and linear poly-

57



102 103 104

¢t=¿

100

101

102

103

h ¢
r2
i =
¾
2

t®
(a) Particle

¿c

c=c ¤ =0: 2
c=c ¤ =1: 0
c=c ¤ =2: 0
c=c ¤ =4: 0

102 103

¢t=¿

100

101

h ¢
r2
i =
¾
2 t2=3

t1=2

(b) Monomer

102 103 104

¢t=¿

100

101

102

103

h ¢
r2
i =
¾
2

t® (c) Polymer COM

Figure 4.2: Mean-squared displacement 〈∆r2〉 for (a) nanoparticles, (b) monomers in
the polymer COM reference frame, and (c) polymer COM in ring polymer
solutions.
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Figure 4.3: Mean-squared displacement 〈∆r2〉 for (a) nanoparticles, (b) monomers
in the polymer COM reference frame, and (c) polymer COM in linear
polymer solutions.
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mers. Because all of the calculations are performed using NPs of the same size, the

ratio σNP/ξ is varied across different simulations by changing the polymer concen-

tration and hence ξ.

In our previous studies,89,120 we found that the PCT scaling prediction for D/D0

is obeyed in solution of fully flexible polymers for σNP/ξ≥ 1. Increasing violations of

this scaling law were observed, however, as polymer stiffness was increased, indicat-

ing that the NPs moved slower than predicted120 for large σNP/ξ. This behavior was

not entirely surprising because polymer segmental relaxations become slower with

increasing chain stiffness. Hence, if long-time NP dynamics are coupled to these seg-

mental relaxations, they should also become increasingly sluggish as chain stiffness

increases.

100 101

¾NP=»

10-2

10-1

100

D
=D

0

Linear
Ring

Figure 4.4: Normalized nanoparticle diffusivity D/D0 in ring (red circles) and linear
(blue diamonds) polymer solutions.

Figure 4.4 shows the long-time NP diffusivities in solutions of ring and linear

polymers. For comparison, experimental data from Ref. 26 are shown (open symbols

with σNP/2Rg,0 = 0.56 (M), 1.5 (.), and 3.7 (�)) along with the PCT scaling predic-
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tion38 D/D0 ∼ (σNP/ξ)−2 (solid lines). The results reveal that the long-time NP dif-

fusivities obey the predicted scaling behavior for σNP/ξ ≥ 1, independent of polymer

morphology. Even more surprising is the fact that, for a given size ratio σNP/ξ, the

values of the long-time diffusivities are similar in both types of solutions. For a given

σNP/ξ, the ring and linear polymer solutions have the same monomer density. Under

such conditions, the ring polymers are expected to relax faster than linear polymers

with the same contour length (same number of monomers, Nm) due to the absence of

free chain ends. The relaxation time, however, is also a function of the chain contour

length, and in our simulations the ring polymers contain more monomers than the

linear chains (Nm is 70 and 42 for the ring and linear polymers, respectively). Hence,

we posit that these two competing effects (i.e., polymer morphology and chain length)

may offset each other, resulting in comparable relaxations times for ring and linear

polymers in solutions with similar monomer densities.

100 101

¾NP=»

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

®
N
P

Linear
Ring

Figure 4.5: Subdiffusive exponents αNP for nanoparticle as function of size ratio
σNP/ξ in ring (red) and linear (blue) polymer solutions.

Figure 4.5 shows the subdiffusive exponents for the NPs in the ring and linear
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polymer solutions as a function of the size ratio σNP/ξ. Open symbols in Fig. 4.5 are

experimental data from Ref. 26 for particles with σNP/2Rg,0 = 0.56 (M), 0.74 (/), 1.1

(O), 1.5 (.), and 3.7 (�). The dashed line is the prediction from the PCT,38 which

posits that αNP should abruptly decrease from 1 to 0.5 at σNP/ξ= 1 due to complete

coupling of the NPs with the polymer segmental relaxations. In accord with our

previous studies89,120 and experiment,26 however, we observe that the short-time NP

dynamics in both the ring and linear polymer solutions deviate from PCT predictions.

Rather than abruptly changing, the subdiffusive exponents gradually decay as the

size ratio σNP/ξ increases. Moreover, as with the long-time diffusivities, the close

numerical agreement between the NP subdiffusive exponents in the ring and linear

polymer solutions suggests that this behavior is insensitive to polymer morphology

for the chain sizes and range of σNP/ξ examined in this study.

Finally, Fig. 4.6 shows the subdiffusive exponents for the NPs (αNP, closed sym-

bols) and polymer COM (αP, open symbols). We find that αNP and αP exhibit a very

similar concentration dependence (top panel), suggesting a tight coupling between

the subdiffusive dynamics of the NPs and polymers, which is consistent with our

previous study on solutions of flexible polymers.89 Evidence of coupling can be seen

more clearly by examining the dependence of αNP on αP (bottom panel). The data for

both the ring and linear polymer solutions fall onto the same straight line, indicat-

ing that the degree of NP–polymer coupling on short time scales is similar in both

systems and remarkably insensitive to polymer morphology. In our analogous study

of semiflexible linear chains, by contrast, we observed a decoupling of αNP and αP as

chain stiffness was increased. While this could be due to the change in morphology

of the polymers from coil-like to rod-like as stiffness is increased, the data here sug-

gest that size (i.e., radius of gyration) rather than morphology may be the dominant

factor. Indeed, as the stiffness of linear chains is increased, their radius of gyration

also increases, which could provide an explanation for the decoupling between the
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NP and polymer subdiffusive exponents observed in those systems. When the radius

of gyration is controlled, by contrast, as is the case of the similarly-sized ring and lin-

ear polymer solutions examined here, polymer morphology does not seem to strongly

influence NP–polymer coupling on subdiffusive time scales. The hypothesis that the

polymer radius of gyration is the dominant factor controlling NP–polymer coupling

on short-time is speculative at this point, but it is an interesting avenue for potential

future investigation.

4.4 Conclusions

To understand the effect of polymer morphology on NP dynamics in polymer so-

lutions, we performed simulations with nonconcatenated ring polymers and linear

chains of the same coil size. No significant difference is observed for both NP and

polymer dynamics in linear or ring polymer solutions on either short or long time

scales. Both NP and polymer COM exhibit a transition from subdiffusive to diffu-

sive dynamics, and the transition happens approximately on the same time scale in

solutions of linear and ring polymers. As we previously observed for linear flexible

polymers,89 the short-time dynamics of NPs and polymer COM are coupled for ring

polymers. We hypothesize that the striking similarity between the concentration

dependence of αNP and αP in solutions of linear and ring polymers indicates that

the size of polymer chains plays a dominant role in controlling the coupling between

nanoparticle and polymer dynamics. Additional studies of the dynamics of nanoparti-

cles in polymers of various sizes and monomer densities are needed to fully elucidate

the role of polymer morphology on nanoparticle dynamics.
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Chapter 5: Conclusions and future work

5.1 Conclusions

The work presented in this thesis was motivated by the challenges faced in under-

standing nanoparticle transport through complex fluids, a scenario that is encoun-

tered in a wide variety of scientific and applied settings. To develop fundamental

understanding, we performed hybrid MD–MPCD simulations to study nanoparticle

diffusion in polymer solutions. Our analysis focused on investigating how the dy-

namic coupling between nanoparticles and polymer chains influences transport be-

havior under quiescent conditions. In agreement with experiment, we found that the

nanoparticles exhibit subdiffusive dynamics on short time scales and normal Fickian

diffusion on long time scales. The long-time Fickian diffusivities collapse onto the

power-law relationship predicted by a recent coupling theory,38 which assumes that

the nanoparticle dynamics fully couple to polymer segmental relaxations. As also

observed in experiment,26 however, coupling theory fails to accurately predict the

short-time dynamics of the nanoparticles in simulation. Our analysis suggests that

this discrepancy arises from an extra nanoparticle-polymer coupling mechanism that

is not accounted for in the theory. In addition to coupling to polymer segmental relax-

ations, our simulations suggest that nanoparticle motions also couple to the center-

of-mass dynamics of the polymers on short time scales. This hitherto unreported

coupling mechanism is not accounted for in current theories and thus it explains

the breakdown of their predictive capabilities in describing the short-time dynamics

of nanoparticles in polymer solutions. Moreover, we found this new coupling mech-

anism is enhanced by many-body hydrodynamic interactions, suggesting that it is

necessary to model these interactions using advanced methods such as MPCD when
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studying nanoparticle transport in these systems.

We also extended our initial study on fully flexible polymers to investigate the

effects of chain stiffness on the dynamics of nanoparticles suspended in polymer so-

lutions. We observed that the long-time diffusivities of nanoparticles begin to deviate

from the predictions of coupling theory, which was developed for fully flexible chains,

as polymer stiffness increases. This observation suggests that the nature of the seg-

mental relaxations are fundamentally different for flexible and stiff chains. Alterna-

tively, it may suggest that the nanoparticles decouple from the segmental relaxations

of stiff polymers. A combination of both mechanisms is also possible. Independent

of chain flexibility, however, the long-time diffusivities were found to be accurately

predicted by mode-coupling theory, demonstrating the utility of this theory for de-

scribing nanoparticle transport in different polymer systems with disparate chain

properties. We also observe that short-time center-of-mass motions of the nanopar-

ticles and polymers also decouple a chain stiffness is increased. We posit that this

decoupling may be due to the change in chain morphology, which transitions from

coil-like to rod-like, as stiffness is increased.

Finally, while our investigation of chain stiffness suggested that polymer mor-

phology may influence nanoparticle-polymer coupling, we observed no substantial

differences in nanoparticle dynamics on either short or long time scales upon replac-

ing flexible linear chains with nonconcatenated ring polymers with similar radius of

gyration. This key result suggests that the radius of gyration, which sets the effective

nanoparticle-polymer collision diameter, may be the critical length scale responsible

for controlling the short time dynamic coupling between nanoparticle and polymer

center-of-mass motions observed in our computational studies. Future work will be

required, however, to fully test this hypothesis.
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5.2 Future work

5.2.1 Effects of ring concatenation on nanoparticle dynamics in ring poly-

mer solutions.

(a) Linked rings (b) Relaxed linked rings

Figure 5.1: A pair of linked ring polymers (a) and the relaxed configuration (b).
Snapshots rendered using Visual Molecular Dynamics 1.9.3.105

In our simulation of ring polymers, we only considered systems of nonconcate-

nated rings. An interesting future direction may be to introduce knots between

the rings (e.g., self-knots, ring inter-penetration, and ring concatenation) to examine

their effects on solution properties and nanoparticle transport. Understanding the ef-

fects of knots is of interest because they are prevalent in experimentally synthesized

ring polymer systems and in natural systems such as DNA.141,142 The presence of

concatenations in particular is expected to drastically change the polymer relaxation

modes, as linked rings are permanently coupled (Fig. 5.1). This coupling is expected

to lead to long-range correlations that may influence solution properties and also the

dynamics of suspended nanoparticles. We anticipate that the relaxation dynamics of

the solutions will dramatically slow as the fraction of concatenated rings increases,

which is also likely to suppress the motions of nanoparticles. Additionally, we expect

that there may be some non-trivial effects, particularly on short time scales because

67



concatenations effectively increase the polymer size. We anticipate that this size in-

crease will influence the center-of-mass motions of the polymers and how they couple

with the nanoparticle dynamics.

5.2.2 Effects of nanoparticle-polymer attractions on transport through

semidilute solutions.

Both experimental and simulation studies have been performed to investigate

the effects of attractive nanoparticle-polymer interactions on nanoparticle transport

in concentrated melts.73,143,144 These studies demonstrate that simulations can pro-

vide significant information on how short-time nanoparticle dynamics, which are dif-

ficult to resolve in experiment, are influenced by these attractive interactions. To our

knowledge, however, similar studies have not been performed in semidilute polymer

solutions, where hydrodynamic interactions are also important. We posit that the

presence of strong attractions between particles and polymer chains will enhance

dynamic coupling between these species. Attractive forces will also likely slow down

polymer relaxation near the particle surface.54 These two effects may significantly

alter nanoparticle dynamics and lead to significant deviations from the transport be-

haviors observed in solutions where only excluded volume interactions are present.

These effects could be investigated by performing computational studies in which

the strength of the attractions are systematically tuned to study their influence on

nanoparticle dynamics. The insights gained from such a study are expected to be

useful for understanding nanoparticle transport in many applied settings where sim-

ilar attractions between diffusing nanoparticles and components of the background

medium likely exist.
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