


c© Copyright by Nikhil Walani 2015
All Rights Reserved



Mechanics of Cellular Transport

A Dissertation

Presented to

the Faculty of the Department of Mechanical Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in Mechanical Engineering

by

Nikhil Walani

December 2015



Mechanics of Cellular Transport

Nikhil Walani

Approved:

Chair of the Committee
Ashutosh Agrawal, Assistant Professor,
Mechanical Engineering

Committee Members:

Yi-Chao Chen, Professor,
Mechanical Engineering

Kaspar Willam, Professor,
Civil and Environmental Engineering

Dong Liu, Associate Professor,
Mechanical Engineering

Gemunu Gunaratne, Professor,
Physics

Suresh K. Khator, Associate Dean,
Cullen College of Engineering

Pradeep Sharma, Department Chair,
Mechanical Engineering



Acknowledgements

This thesis is dedicated to my parents. Their love and support has allowed

me to pursue science without having to worry about taking care of family duties.

I am also highly indebted to my teachers who have instilled in me values to

pursue my interests. In particular, I would like to thank Prof. Anurag Gupta and

Prof. Durgesh C. Rai at IIT Kanpur, who motivated me towards mechanics.

I am thankful to my adviser, Prof. Ashutosh Agrawal, who has guided

me throughout my stay here and introduced me to the wonderful world of bio-

physics. This thesis has immense contribution from him both in terms of time and

substance. Needless to say that the shortcomings, if any, are because of me and

I would try to improve on them. I am also grateful for his patience in allowing

me to explore nuances of continuum mechanics which at times falls beyond the

realm of my research on cellular biology. Through this, I gained a leverage which

not other graduate students can have when their adviser is on a tenure track. I

would further like to acknowledge the support of Prof. Yi-Chao Chen and for

his courses on Finite Elasticity and Variational Methods in Mechanics. Also, for

the numerous instances when he has guided and helped me with my research.

Through the help of Prof. Gemunu Gunaratne, I have gained insights into criti-

cal phenomenon and phase transitions, and would cherish to use the theoretical

framework to understand the behavior of lipid membranes. I would also like to

thank Prof. Kaspar Willam and Prof. Dong Liu for reviewing my dissertation.

Prof. Pradeep Sharma has been a great mentor and is always around to help the

students. I thank him for constantly guiding me through the technical and non

technical aspects of being a good researcher in today’s academia.

I have been lucky to have friends here who have molded me not only as a

researcher but also as a person. The list is so big that I cannot accommodate all

v



of them here. Special thanks to Vaibhav and Vikash for guiding me through var-

ious phases of my research. Discussions with them have always been insightful

and thought provoking. From Dengke and Fatemeh, I have learned a lot about

statistical physics of interfaces. I have relished the discussions with Qian Deng

on micro-polar continuum, Cosserat surfaces and material symmetry aspects of

modeling continuum bodies. I would also like to thank my lab mates Shengjie,

Xin Yan, Xiao Bao, Yuranan, Shuyin, Himani, Mehdi, Ehsan, Dajla, Farah, Amit,

Sana and Tarek for making my stay cherishable. Last but not the least, I would

like to thank Ms. Laura Mora for providing me with a homely environment here

in Houston.

vi



Mechanics of Cellular Transport

An Abstract

of a

Dissertation

Presented to

the Faculty of the Department of Mechanical Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in Mechanical Engineering

by

Nikhil Walani

December 2015



Abstract

Lipid membranes are versatile structures that interact with various kinds of

proteins to maintain the shape and functionality of cells and their organelles. For

example, they are actively involved in the transport of various proteins and other

nutrients in and out of cells. The transport of macromolecules, which cannot dif-

fuse through these bilayer membranes occur through an extensive remodeling of

plasma membrane. This is executed by a designated set of membrane-deforming

proteins, which supply the energy and drive membrane remodeling leading to

formation of cargo-carrying vesicles.

In our study, we focus on the most commonly used transport pathway

termed “Clathrin Mediated Endocytosis”. We use continuum mechanics to study

the equilibrium of lipid bilayers in the presence of three key membrane-deforming

proteins, namely, clathrin, BAR and actin filaments.To the end, we generalize the

theory of lipid membranes to incorporate the anisotropic curvatures generated

by proteins. Our study reveals a protein-induced “Snap-through Instability” that

offsets tension in the lipid membrane and drives vesicle growth. It disentangles

the individual role of key proteins and provides mechanistic insights into funda-

mental debates in the field of cellular transport. Since these proteins (actin and

BAR proteins) are involved in other interfacial rearrangements in cells, our work

could provide new insights into biological processes in cells at-large. Motivated

by the observed instability, we derive the generalized stability conditions for het-

erogeneous lipid membranes. These theories, in the future, can provide physical

insights into the observed instability.
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Chapter 1 Introduction

1.1 Motivation

Evolution of life remains the biggest mystery since the beginning of scientific

pursuit by humans. Although the information of life is coded and stored in

nucleic acids, development and evolution of cells and organelles could not have

proceeded with the essential role of cellular membranes. This is evident in the fact

that the most primitive prokaryotic cells, bacteria and archaea have membranes

enclosing the cytoplasm, and the more evolved eukaryotic cells have organelles

and cells bounded by membranes (see Fig. 1.1).

Figure 1.1: Schematic of a Prokaryote and a Protozoan, depicting how eukary-
otic cells have evolved to compartmentalize various cellular functions
through organelles bound by membranes. Figure obtained from [1].
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Cellular membranes, bounding the organelles and the cells are made up of

amphipathic molecules called lipids. In a typical biological cell, the membranes

are composed of a wide variety of lipids and proteins.. Despite the heterogeneity,

all these lipid molecules have a common structure, a polar head (hydrophilic) and

non-polar (hydrophobic) core. Structure of a commonly observed phospholipid

is shown in Fig. 1.2. As with other amphipathic molecules, these are arranged in

various ways so as to shield their hydrophobic core from the polar solvent they

are present in, depending on the concentration of these molecules with respect to

the solvent. These lipids can arrange in unilamellar structures such as micelles or

multiple layer stacked on top of each other such as in liposomes or lipid bilayers

as shown in Fig. (1.3). These bilayers have a relatively small thickness of 3-5 nm

and were only imaged after the successful usage of electron microscopes in the

late 1950s.

Figure 1.2: Structure of a typical phospholipid with polar choline and phosphate
groups at the head fatty acyl chain in the tail. Obtained from website
of D. Chynoweth, University of Florida.

One of the basic function of a cell is to regulate the synthesis and transport

of proteins within the various organelles. Along with this, the cell controls the

absorption and release of cargo, including proteins, oxygen, water molecules,

charges (ferric, sodium, potassium, calcium, etc.) and other molecules so as to
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(a) (b) (c)

Figure 1.3: (a) Electron micrograph of lipid bilayer [2], (b) TEM of coexisting vesi-
cles and micelles [3] (c) Schematic of Liposomes, Micelles and Sheets
(source: Wikipedia)

maintain the concentration gradient of various molecules across the cell ([4, 5]).

Transport of these molecules through the cell and other organelles, invariably, has

to occur through the lipid membrane.

While some of the molecules like oxygen are small enough to diffuse through

the bilayer and transport of charges such as sodium, potassium and calcium oc-

curs via transmembrane proteins (ion channels) embedded in the lipid bilayer,

bigger molecules like ferric charges bound to proteins called transferrin, low den-

sity lipoprotein (LDL) or the proteins synthesized in the Endoplasmic Reticulum

of the cell, to name a few, cannot penetrate the lipid bilayer. Their transport is

achieved through extreme remodeling of the lipid bilayer, which leads to the for-

mation of a bud, and ends up in a cargo-carrying vesicle that detaches from the

parent lipid bilayer that delivers cargo inside the cytoplasm , as shown in Fig. 1.4.

This process is called endocytosis. A reverse process, called exocytosis, involves

fusion of vesicles with the cell membrane and is used to deliver cargo out of the

cells.
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Figure 1.4: Schematic for endocytic and exocytic pathways inside a typical mam-
malian cell, ‘R’ is used to represent the receptor. [6]

1.2 Clathrin Mediated Endocytosis (CME)

The focus of the current study is on gaining mechanistic insights into en-

docytosis. Endocytosis, itself can be of various types namely, Clathrin Mediated

Endocytosis (CME), Caveoli, Macropinocytosis or the Phagocytosis. This classifi-

cation is based on the type of cargo transported and the type of proteins involved

during transport (Fig. 1.5). CME remains the most widely observed pathway with

clathrin as the key protein involved in driving the invagination from an almost

lipid bilayer to a detached vesicle. In mammalian cells, clathrin trimers attach

from the cytoplasmic side and generate spherical vesicles with diameters ranging

from 70 nm to 350 nm. In contrast, in yeast cells, proteins form tubular invagina-

tions which eventually turn into elliptical vesicles with their longest axes around

50 nm in length [7].

CME involves collaborative efforts of more than 60 proteins at a particular

endocytic site. Moreover, most of the key proteins are conserved or have homo-
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Figure 1.5: Schematic of various endocytic pathways in a mammalian cell which
is phagocytosing a budding yeast cell, S.Cerevisiae. Figure obtained
from [8]

logues across all the eukaryotes, thus it is expected that the basic roles of these

proteins are also conserved across various species. Since the genomic structure

of yeast is fully mapped and homologous proteins are involved in mammalian

CME, studies concerning the roles of proteins in yeast CME are used to gain in-

sights into mammalian CME. To study the role or function of a specific protein

involved, cells are genetically mutated so that the concerned protein is knocked

out. Furthermore, colored fluorescence microscopy is used to measure the con-

centration and involvement of each protein at a particular stage of CME. Sections

of cells with endocytic site are viewed under electron microscope to view the lipid
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membrane profile. Correlation between the fluorescence microscopy and the elec-

tron microscopy yields the temporal and the spatial insights into the role of each

labelled protein.

CME can be broadly classified into the following four stages:

• Site selection

• Binding of cargo to the receptor on the surface lipid bilayer and that of

receptor to the clathrin coat.

• Budding and maturation of the endocytic vesicle attached to the parent lipid

bilayer via a neck.

• Pinching off of the matured vesicle by proteins responsible for scission.

In the initial stages, proteins like ubiquitin binding protein (Ede1p in yeast or

Epsin, Eps15 in mammalian cells) are suspected to break the symmetry of the

bilayer by wedge like insertions which initiates the formation of small buds al-

lowing the other membrane remodeling proteins such as clathrin to bind on [9].

Thereafter, binding of cargo to the receptors on the extracellular side„ triggers

the assembly of clathrin and adapter proteins (APs) from the cytoplasmic side

of the lipid bilayer. Clathrin coat (comprising of clathrin, adapter proteins and

other coat molecules) in mammalian cells deforms the lipid bilayer to reach the

maturation stage as its concentration at the endocytic cite increases. In contrast,

the bilayer remains almost flat in yeast cells even when the clathrin coat has com-

pletely adhered to the lipid bilayer (Fig 1.6). This difference is attributed to the

difference in the tension in the lipid bilayer for the two species. This was proved

by Ayscough and coworkers in a seminal study [10]. The study revealed that

the addition of sorbitol, which lowers the pressure across the cell membrane and

hence lowers the surface tension, allows the clathrin coat to form partial vesicles.
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In a recent study, Kirchchausen and coworkers showed that clathrin coat is unable

to form mature vesicles in mammalian cells when subjected to increased tension

either via external stretching or osmotic shock [11].

(a)

(b)

Figure 1.6: Schematics of endocytosis in (a) mammalian cells [12] , (b) yeast cells
[13]. Clathrin coat along with adapter proteins is able to form the
vesicle in mammalian cells but unable to do the same in yeast cells.

The estimates of membrane tension in mammalian cells range from (0.01−
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0.1) mN/m. The high end of this range is achieved for polarized cells where parts

of plasma membrane are stretched. In yeast cells, tension in the lipid membrane

is estimated to be greater than 0.5 mN/m. But cells are robust entities that adapt

to various environments to ensure uninterrupted transport. For overcoming the

inability of clathrin coat, actin filaments polymerize at the endocytic cite and

drive invagination. Actin involvement in stretched mammalian cells and yeast

endocytosis has been well established by experimental studies ([11, 14]).

After the vesicle has matured and is attached to the parent lipid bilayer via a

neck, specific scission proteins work with actin to pinch off the vesicle. In mam-

malian cells, dynamin polymerizes in a helical manner and squeezes the neck to

induce fission [15]. In yeast cells, scission is believed to require a collaborative

effort of actin, rod shaped BAR proteins (Rvs 161/167) and dynamin-like protein

Vps1.

There have been various attempts to classify the roles of individual proteins

for yeast studies. Since disruption of actin does not even lead to budding, it’s role

in scission events cannot be directly predicted. However, mutant studies of BAR

proteins have been used to determine the role of actin in scission. BAR mutant

studies have shown vesicle formation as well as stalling of invaginated vesicles

midway in equal proportions [16]. Only recently, Briggs and coworkers have used

cryogenic tomography studies to reveal that in BAR mutant cells, shallow vesicles

form but they undergo an unexpected rapid transition to form detached vesicles.

Their inability to observe the intermediate stage raises important questions about

the shape transition pathway during CME as a vesicle with a constricted neck is

required to have non-leaky transport.

This forms the basis of our study as we try to combine these experimental

findings from mammalian and yeast cells to shed light on mechanics of CME.

In the subsequent chapters we have tried to elucidate the mechanical role of the
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three key proteins - clathrin coat, BAR and actin filaments in countering tension

in the lipid bilayer to form vesicles during CME. We have not explicitly modeled

the scission but have tried to give insights into it based on the in-plane stresses

with the bilayer. We have used continuum mechanics and modeled lipid bilayer

as a two-dimensional surface embedded in 3 dimensional Euclidean space. This

is because lipid bilayer is only 3-5 nm thick and endocytosis involves simulating

the remodeling of lipid bilayer patch of more than 16000 nm2 of lipid bilayer for

a duration of around 2 minutes, a computationally expensive task for molecular

dynamics.

A brief outline of the following chapters is as follows. In the second chapter

we will expand on the differential geometry and the mechanics of lipid mem-

branes. The following chapter deals with proposing a mechanical model for me-

chanics of lipid membranes interacting with orthotropic rod like BAR proteins.

The fourth chapter will aim at bridging the gap between clathrin mediated en-

docytosis in mammalian and yeast cells. The mathematical models developed

would be put to use to explain the differences in the roles of clathrin coat, BAR

and actin filaments and how they are coupled to the tension in the lipid mem-

brane. The fifth chapter deals with the stability of lipid bilayer membranes and is

followed by conclusion and scope of improvement.
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Chapter 2 Differential Geometry of

Surfaces and Mechanics of Lipid

Membranes

For the subsequent analysis in this document, we will assume that a two

molecule thick membrane can be considered as thin enough to be represented by

a surface. The natural choice for this surface is the mid-surface, i.e., the inter-

face between two monolayers. Following the principle of continuum mechanics,

which is based on the assumption that each material point represents a large col-

lection of atoms, we assume that each material point on the surface of a lipid

bilayer represents a large number of atoms. At physiological temperatures bilay-

ers are fluidic in nature and the in-plane motion of the lipid molecules entails no

energetic cost. The principles of liquid crystal theory can be used to penalize the

relative mis-orientations of lipid molecules to define the strain energy for a bi-

layer. Such a surface can also be considered as a fluid Cosserat shell. [17, 18, 19].

A general theory of lipid bilayers can be developed based on the following sim-

plifying assumptions

• Lipid molecules are always aligned with the surface normal because of the

packing constraints.

• Director (d) at each point is represented by joining the heads of lipid molecules

from bottom monolayer to the top monolayer.

• The thickness of the lipid bilayer is constant.

• Area of the lipid membrane is assumed to be constant. This is based on the

experiments which reveal that lipid membranes cannot stretch by more than
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2-3% [20].

These assumptions allow a Cosserat shell to be considered as a Kirchoff Love

Shell, whose equivalence has been proved under the assumptions that the direc-

tor field is aligned with the surface normal and is inextensible [21]. Further, it is

assumed that the lipid bilayer is a hyper-elastic material. This means that there ex-

ists a scalar potential that represents the energy stored in the lipid bilayer, which

is dependent only on its current state and not the history of deformed states that

led to the current state. We now review the differential geometry of surfaces that

is needed to describe the energy and the equilibrium conditions of a bilayer.

2.1 Differential Geometry of Surfaces

The surface is considered to be a two dimensional Riemannian manifold

embedded in a 3 dimensional Euclidean space. Let (θ1, θ2) be the parameters

describing the surface. Subsequently we will represent the parameter space by

(θα). Here and henceforth, Greek indices represent values {1,2} and Einstein’s

indicial notation is used. This means that any index, if repeated twice, has to be

summed over the possible values in its set. The notations for symbols used in the

text are mentioned in Table 2.1.

Let the position of each material point on the surface be given by the map

from the parameter space r(θα). The tangent vectors for such a parameterization

are given by

aα = r,α. (2.1)

Above and henceforth, subscripted comma is used to denote the derivative with

respect to parameterizing variables θα. This map is associated with a metric at

each point on the surface, whose components are given by,

aαβ = aα · aβ. (2.2)
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We note here that the components of metric are symmetric.

Further, the vectors in the cotangent space to the surface are chosen such that

they map the tangent vectors to the real space and

aα · aβ = δα
β. (2.3)

Here, δ represents the Kronecker’s delta function. Thus, using vectors in cotan-

gent space, we get the metric which is inverse to the metric obtained from vectors

in the tangent space and its components are given by,

aαβ = aα · aβ. (2.4)

The normal to the surface at any material point is given by,

n =
1
2

εαβaα × aβ, (2.5)

where, εαβ = eαβ/
√

a with eαβ representing the permutation tensor such that

e11 = e22 = 0, e12 = −e21 = 1 and a = det(aαβ). Similarly, εαβ = eαβ

√
a and

eαβ = eαβ.

For doing calculus on the surface, we need to define the derivatives on the

surface. For any given scalar field φ(θα) defined on the surface, the change in φ

along any curve in the surface is

dφ = (∇φ) · dr = φ,αdθα, where dr = aγdθγ. (2.6)

Thus, the gradient of scalar field φ is

∇φ = φ,αaα. (2.7)

Similarly, change in a vectorial field v(θα), defined on the surface along a partic-

ular curve is

dv = (∇v)dr = v,γdθγ. (2.8)
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Thus, gradient of a vector field, v(θα), defined on the surface is

∇v = v,β ⊗ aβ. (2.9)

Here and henceforth, ⊗ is used to represent the tensor product. Since tangent

vectors aα and n form a basis that spans the 3 dimensional Euclidean space, we

can write,

v = (v · aα)aα + (v · n)n = vαaα + vn. (2.10)

Using the above equation and substituting it in (2.9), we obtain

∇v =

{
vα

,βaα + vαaα,β + v,βn + vn,β

}
⊗ aβ. (2.11)

Directional derivative of the tangent vector can be written as

aα,β = (aα,β · aγ)aγ + (aα,β · n)n = Γγ
αβaγ + bαβn, (2.12)

where,

Γγ
αβ = aγ · aα,β and bαβ = aα,β · n. (2.13)

Γγ
αβ represent the Christoffel symbols and bαβ are the components of the second

fundamental form. To evaluate n,β, we note that

n · n = 1, thus

n,β · n = 0.
(2.14)

This means that n,β lies in the tangent plane at any given material point and that

it can be written as

n,β = (n,β · aα)aα = −(n · aα
,β)aα ∵ (n · aα = 0). (2.15)

These yield the equations of Weingarten, where,

n,β = −bα
βaα. (2.16)
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Using (2.12) and (2.16), we can rewrite (2.11) as

∇v = (vα
,β + vλΓα

λβ − vbα
β)aα ⊗ aβ + (v,β + vαbαβ)n⊗ aβ

= (vα
;β − vbα

β)aα ⊗ aβ + (v,β + vαbαβ)n⊗ aβ.
(2.17)

Here we note that the subscripted semi colon ();α is used to denote the covariant

derivative of the quantity within parenthesis, i.e., the derivative with respect to

the metric aαβ. Thus, aαβ;γ = 0. For a scalar field the covariant derivative is same

as the directional derivative. Covariant derivatives of a co-vector is given by,

vα;β = vα,β − vλΓλ
αβ, (2.18)

a covariant second order tensor is given by,

Aαγ;β = Aαγ,β − AαλΓλ
γβ − AλγΓλ

αβ, (2.19)

and a contravariant second order tensor is given by

Aαγ
;β = Aαγ

,β + AαλΓγ
λβ + AλγΓα

λβ. (2.20)

Further, the surface Laplacian of a scalar φ(θα) on the surface is given by

∆φ = tr(∇∇φ) = tr([φ,αβ − φ,γΓγ
αβ]a

α ⊗ aβ). (2.21)

Since, φ;αβ = (φ,α);β, we obtain that

∆φ = φ;αβaαβ. (2.22)

Surface divergence of the vector field v defined on the surface can be written as

(using (2.17))

∇ · v = tr(∇v) = vα
;α − vbα

α. (2.23)

Curvature tensor (b) at any material point is defined as the negative of sur-

face gradient of the normal. Thus,

b = −n,α ⊗ aα, (2.24)
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which can be written using second fundamental form as,

b = bαβaα ⊗ aβ. (2.25)

Similar to the metric tensor, components of the second fundamental form are

symmetric. The invariants of the curvature tensor are mean (H) and Gaussian

curvature (K) defined as

H =
1
2

tr b =
1
2

bαβaαβ K = det b =
1
2

εαγεβλbαβbγλ. (2.26)

2.1.1 Compatibility Conditions

We note that,

r,αβ = aα,β = Γγ
αβaγ + bαβn. (2.27)

From equation (2.27) we note that we cannot choose aαβ and bαβ arbitrarily at each

point on the surface as there are 9 equations with 6 variables (3 each for aαβ and

bαβ). Thus, the components of metric tensor and curvature tensor have to satisfy

certain compatibility constraints. The compatibility constraints arise from the fact

that,

n,αβ = n,βα. (2.28)

Using the (2.16), we obtain,

n,αβ = −(bαγaγ),β = −(bαγ,βaγ + bαγ(a
γ
,β · aλ)aλ)− bαγ(a

γ
,β · n)n

= −(bαγ,β − bαλΓλ
γβ)a

γ − bαγbγ
βn,

(2.29)

and that,

n,βα = −(bβγ,α − bβλΓλ
γα)a

γ − bβγbγ
α n. (2.30)

From (2.28), (2.29) and (2.30) and equating components along aγ, we obtain

bαγ,β − bαλΓλ
γβ = bβγ,α − bβλΓλ

γα. (2.31)
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Subtracting bλγΓλ
αβ from both sides in above equation, we obtain

bαγ,β − bαλΓλ
γβ − bλγΓλ

αβ = bβγ,α − bλγΓλ
αβ − bβλΓλ

γα, hence,

bαγ;β = bβγ;β.
(2.32)

These are called the Mainardi-Codazzi equations. Further equating the compo-

nents along the normal direction, obtained from (2.29) and (2.30), we get

bαγbγ
β = bβγbγ

α . (2.33)

Along with (2.28), compatibility conditions also require that

aα,βγ = aα,γβ, (2.34)

where,

aα,βγ = (Γλ
αβaλ + bαβn),γ

= (Γλ
αβ,γ + Γλ

µγΓµ
αβ)aλ + (bαβ,γ + Γλ

αβbλγ)n− bαβbλ
γaλ.

(2.35)

Using similar operations as above, we obtain

aα,γβ = (Γλ
αγ,β + Γλ

µβΓµ
αγ)aλ + (bαγ,β + Γλ

αγbλβ)n− bαγbλ
βaλ. (2.36)

Equating coefficients of aλ in (2.35) and (2.36), we obtain

Rλ
αβγ = bαγbλ

β − bαβbλ
γ, (2.37)

where,

Rλ
αβγ = Γλ

αγ,β − Γλ
αβ,γ + Γλ

µβΓµ
αγ − Γλ

µγΓµ
αβ (2.38)

is the Riemann tensor. By equating the normal components of (2.35) and (2.36),

we recover the Mainardi-Codazzi equations. Riemann tensor can be used to write

Rλ
αβγ = aλη(aβµaγλ − aβλaγµ)bλ

α bµ
η

= aληεβγεµλbλ
α bµ

η

= aληKεηαεβγ.

(2.39)
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Hence, the Gaussian curvature ‘K’ can be completely described by the metric

tensor aαβ. The above equation is called as ‘Theorem Egregium’ and states that

the Gaussian curvature cannot be changed without changing the components of

the metric tensor, i.e., straining the surface.

The contravariant adjugate of bαβ can be written as

b̃αβ = (aαβaλγ − aαγaλβ)bλγ = εαλεβγbλγ. (2.40)

Thus, K = b̃αβbαβ. This can be used to write the Cayley-Hamilton theorem in the

form

b̃αβ = 2Haαβ − bαβ. (2.41)

2.1.2 Green-Stoke’s Theorem

Another useful entity that we will use in the remaining chapters is the Green

- Stokes Theorem, which states that for a surface ω bounded by the curve ∂ω and

vector field v(θα), ∫
ω
(∇× v) · n da =

∫
∂ω

v · dr. (2.42)

Curl of a vector field v = vγaγ + vn on a surface is,

∇× v = aα × v,α = aα × [(vγ;α − vbγα)aγ + (v,α + vγbγ
α )n]. (2.43)

Thus, the component along normal direction of the curl of vector field is,

(∇× v) · n = n · (aα × aγ)(vγ;α − vbγα) = εαγvγ;α = (εαγvγ);α. (2.44)

Assuming that the boundary to the surface ∂ω can be parameterized with arc

length ‘s’, we can write dr = τds with τ = ∂r
∂s as shown in Fig. 2.1. Arc length

parameterization would mean τ is a unit vector. In addition, we can define the

unit outward normal ν to the boundary at each point such that

ν = τ × n. (2.45)
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Using the above relation we can write,

v · dr = (v · τ)ds = v · (n× ν)ds. (2.46)

Since, ν is completely orthogonal to n, we can write ν = ναaα. Thus (2.46) reduces

to

v · dr = (vγaγ + vn) · (n× aανα) = vγ(aγ · εαβaβ)να = εαγvγνα. (2.47)

From (2.42), (2.44) and (2.47), we obtain,

∫
ω
(εαγvγ);α da =

∫
∂ω

εαγvγ ds. (2.48)

Defining uα = εαγvγ, we can rewrite the above equation as

∫
ω

uα
;α da =

∫
∂ω

uανα ds. (2.49)

Thus, for any vector field u = uαaα + un, the Green-Stoke’s theorem reduces to

∫
ω
(u · aα);α da =

∫
ω

u · ν ds. (2.50)

Figure 2.1: The three orthonormal vectors on a boundary ∂ω.

2.2 Mechanics of Lipid Membranes

Canham proposed the quadratic energy density in curvature for modeling

plasma membrane of the red blood cell [22]. Helfrich [23] then proposed the the-

ory for lipid bilayers based on the liquid crystal theory developed by Frank [24],

18



under the assumptions described in the early parts of this chapter. A Continuum

mechanics treatment for such surfaces was done by Jenkins [18] and Steigmann

[19], where they showed that the energy functional describing the mechanics of

such surface can be written as

E =
∫

ω
W∗(aαβ, bαβ) da +

∫
ω

λ(θα) da− pV(ω) (2.51)

with W∗ is the strain energy density in the current configuration, λ(θα) is the La-

grange multiplier corresponding to the local area constraint and p is the Lagrange

multiplier corresponding to a constraint on the volume enclosed by the bilayer

surface. Fluidity is accounted through the material symmetry arguments as pro-

posed for a simple fluid (inviscid) by Noll [25]. By considering unimodular map-

pings of the reference surface that do not change the strain energy density for all

admissible deformations, Jenkins and Steigmann showed that the energy density

depends on mean, Gaussian Curvatures and on the areal stretch J (J =
√

a/A).

Here, ‘A’ represents the determinant of the metric tensor for the reference sur-

face. Thus, in-plane deformations are only described by J, which measures the

areal changes and no cost is required to penalize the shear deformations. Thus,

strain energy density in the current state can be written as

W∗(aαβ, bαβ) = W(H, K). (2.52)

The quadratic energy density proposed by Helfrich and Canham [22, 23] was

of the form,

W(H, K) = kBH2 + k̄K. (2.53)

Here kB is the mean curvature modulus or the splay modulus, corresponding

to splay deformation of the lipids or the directors on the surface of the lipid

bilayer and k̄ is the Gaussian modulus. This form has been used extensively in the

literature to explain various morphologies of the lipid bilayer. For lipid bilayers
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which exist in closed vesicles, the term corresponding to Gaussian curvature can

be ignored as the Gauss Bonnet theorem states that,∫
ω

K da = 2πχ−
∫

∂ω
κg ds. (2.54)

where, χ represents the Euler-characteristic and depends on the genus for a closed

orientable surface, κg is the geodesic curvature at the edge of the surface. Since

for closed vesicles there is no edge and the cases when surface is not undergoing

any topological change or is not inhomogeneous in the sense that k̄ is uniform, the

contribution from the Gaussian modulus to the energy functional can be ignored.

Similar treatment also applies to surfaces with edges, when the edge has constant

geodesic curvature on its edge, through the course of deformation.

To account for inhomogeneity due to curvature inducing proteins, Helfrich

formulation is generally modified such that,

W = kB(θ
α)(H − H0(θ

α))2 + k̄(θα)K. (2.55)

Here {kB(θ
α), k̄(θα)} are the effective mean and Gaussian curvature modulus re-

spectively and H0(θ
α) specifies the preferred curvature field on the surface. Since,

the debate regarding the value or the sign of Gaussian modulus has not yet been

settled in the literature, it has mostly been ignored while accounting for the ef-

fects of inhomogeneities. For the sake of generality, we will not restrict to any

particular form of strain energy density to account for inhomogeneity, but in-

stead allow W to have an explicit dependence on the material point concerned

such that W = W(H, K; θα).

For a strain energy density W(H, K; θα), the variational formulation can be

used to find its extremum which furnishes the equilibrium configuration. The

principle of variation is considered such that for a particular configuration r (θα),

a family of placements is generated by considering an explicit dependence of the

mapping on another parameter ε (say), such that r = r(θα; ε). The Taylor series
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expansion of r in ε about ε = 0, which represents the surface at hand, can be

written as

r(θα; ε) = r(θα) + εu + O(ε). (2.56)

Defining the variational derivative as (̇) = ∂()
∂ε at ε = 0, we can write the

first variation (first order variational derivative) of the energy functional defined

in (2.51), as

Ė =
∫

ω
((WH Ḣ + WKK̇) + (W + λ) J̇/J) da− pV̇. (2.57)

Here H and K are as defined in (2.26), (WH, WK) represent the partial derivatives

of W with respect to H and K respectively. Thus, to compute the first variation of

the energy functional, we require the variations of H, K, J and V.

First variation in tangent vectors is given by

ȧα = ˙r,α. (2.58)

The superposed line with a superposed dot, (̇), is used represent the variational

derivative of the entity (). Since the variational derivative commutes with the

derivative with respect to parameterizing variables θα, we can write the above

equation as,

ȧα = u,α. (2.59)

Similarly, the first variation of the components of the metric tensor can be written

as

ȧαβ = ȧα · aβ + aα · ȧβ = u,α · aβ + aα · u,β. (2.60)

Using the relation,

aα;β = aα,β − aγΓγ
αβ = bαβn, (2.61)

we obtain that,

u;αβ = ḃαβn + bαβṅ. (2.62)
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Since n · n = 1, hence, n · ṅ = 0. Taking the inner product of the above equation

with n, we obtain the first variation

ḃαβ = n · u;αβ. (2.63)

Furthermore, using the relation that aβλaγλ = δ
β
γ, we obtain,

ȧαβ = ȧαγδ
β
γ + ȧβλδα

λ + aαγaβλ ȧγλ. (2.64)

This yields,

ȧαβ = −aαγaβλ ȧγλ. (2.65)

Hence, using (2.26) and (2.65), we obtain

2Ḣ = −bαβ ȧαβ + aαβḃαβ. (2.66)

The first variation in the Gaussian curvature at a material point is given by,

2K̇ = eαβeλµ

[
ḃαλbβµ + bαλḃβµ

a
−

bαλbβµ

a
ȧ
a

]
. (2.67)

Using the relations, a = 1
2 eαγeβλaγλ and eαγeβλ = δαβδγλ − δαλδβγ, we obtain

ȧ
a
= aαβ ȧαβ. (2.68)

Using the above relation, eq. (2.67) can be reduced to the form,

2K̇ = εαβελµ

[
(ḃαλbβµ + bαλḃβµ)− aγθ ȧγθbαλbβµ

]
, (2.69)

which on substituting b̃αβ = εαλεβγbλγ, yields,

K̇ = −Kaαβ ȧαβ + b̃αβḃαβ. (2.70)

First variation of J (J =
√

a/A) is given by (using (2.68)),

J̇
J
=

ȧ
2a

=
1
2

aαβ ȧαβ, (2.71)
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and that of the enclosed volume is given by,

V̇ =
∫

V
div u dV =

∫
ω

u · n da. (2.72)

Now, we decompose the first variation of the position vector, u, into the tangential

and the normal directions to obtain the equilibrium criterion (Ė = 0) along the

surface and normal to the surface.

2.2.1 Tangential Variations

For tangential variations, u = uλaλ, which yields,

u,α = uλ
;αaλ + (uλbλα)n. (2.73)

Using (2.60) and (2.73), we obtain,

ȧαβ = uα;β + uβ;α, (2.74)

which along with (2.63), yields the variation of the components of the second

fundamental form,

ḃαβ = uλ
;βbλα + uλ

;αbβλ + uλbλα;β. (2.75)

Since bαβ is symmetric in α and β, using (2.73), we obtain

bαβ ȧαβ = 2bαβuα;β. (2.76)

From (2.75) and (2.76), we obtain

2Ḣ = uαbβ
α;β. (2.77)

Using Mainardi-Codazzi equations, the above equation yields

Ḣ = uαH,α. (2.78)

Since, adjugate of the surface is divergence free (b̃αβ
;β = 0), we obtain,

b̃αβḃαβ = (uλ
;αbλβ + uλ

;βbλα)b̃αβ + uλ(bλαb̃αβ);β. (2.79)
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Using eq. (2.74), we get

aαβ ȧαβ = 2uα
;α. (2.80)

Hence, from equations (2.79) and (2.80),

K̇ = uαK,α,

J̇
J
= uα

;α.
(2.81)

Since u is tangential, V̇ = 0. Using the variations derived in (2.78) and (2.81),

and substituting them to (2.57), we obtain the in-plane equilibrium condition as

Ė =
∫

ω

{
uα(WH H,α + WKK,α) + uα

;α(W + λ)

}
= 0. (2.82)

Since,

W,α = WH H,α + WKK,α +
∂W
∂θα

, (2.83)

and from Leibniz rule for covariant derivative, uα
;α(W + λ) = (uα(W + λ));α −

uα(W + λ),α, we can rewrite the (2.83) as

Ė =
∫

ω

{
(uα(W + λ));α − uα

(
λ,α +

∂W
∂θα

)}
da. (2.84)

Using the Green’s-Stokes theorem, the first term in the above integral can be

reduced to the edge of the domain (∂ω), such that

Ė =
∫

ω
−uα

(
λ,α +

∂W
∂θα

)
da +

∫
∂ω

uα(W + λ)ναds. (2.85)

Thus, for equilibrium in the tangential plane of the surface, it is required that,

λ,α = −∂W
∂θα

. (2.86)

When the surface is homogenous, the above equation reduces to the criterion that

the surface tension field is constant (λ = constant). We will combine the edge

contributions from tangential and normal variations later to get the necessary

forces and moments at the boundary which keep the surface in equilibrium.
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2.2.2 Normal Variations

For normal variations u = u(θα)n. Thus,

u,α = (u,α · aβ)aβ + (u,α · n)n, (2.87)

which, reduces to

u,α = −ubβ
αaβ + u,αn. (2.88)

Hence, the first variation of the components of the first and the second funda-

mental forms, with the help of (2.60) and (2.63), are given by

ȧαβ = −2ubαβ (2.89)

and

ḃαβ = u;αβ − ubαλbλ
β . (2.90)

Furthermore, using (2.89) we obtain,

bαβ ȧαβ = −2ubαβbαβ. (2.91)

Using Cayley-Hamilton theorem, we obtain

bαβbαβ = (2Haαβ − b̃αβ)bαβ = 4H2 − 2K, (2.92)

and from (2.90), we get

aαβḃαβ = aαβu;αβ − u(4H2 − 2K). (2.93)

Using (2.91), (2.92) and (2.93), we obtain the variation of the mean curvature as

2Ḣ = ∆u + u(4H2 − 2K). (2.94)

From (2.89), we obtain

aαβ ȧαβ = −4uH, (2.95)
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and from (2.90), we obtain

b̃αβḃαβ = b̃αβu;βα − 2KHu. (2.96)

Using (2.95) and (2.96), we compute the variation of the Gaussain curvature and

areal stretch as

K̇ = 2uHK + u;αβb̃αβ, J̇/J = −2uH. (2.97)

Furthermore, the variation of the volume is given by

V̇ =
∫

ω
u da. (2.98)

Thus, for normal variation (2.57) reduces to

Ė =
∫

ω

1
2

WH

(
u;αβaαβ + u(4H2 − 2K)

)
+ WK(2KHu + b̃αβu;αβ)

− 2uH(W + λ) da− p
∫

ω
u da.

(2.99)

Since the metric is covariant constant and the contravariant adjugate is divergence

free, we obtain the following relations using the Leibniz rule,

u;αβWHaαβ = (aαβWHu,α);β + uaαβ(WH);βα − [uaαβ(WH),β];α and (2.100)

b̃αβWKu;αβ = (b̃αβWKu,α);β + ub̃αβ(WK);βα − [ub̃αβ(WK),β];α. (2.101)

Since the divergence terms can be transformed to integrals on the boundary, using

(2.99), (2.100) and (2.101), we obtain the following condition by setting the first

variation of the energy functional to zero

1
2

∆WH + (WK);αβb̃αβ + WH(2H2 − K) + 2H(KWK −W)− 2Hλ = p. (2.102)

The above equation represents the equilibrium criterion in the normal direction

and is commonly termed as the “shape equation” in the literature.
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2.2.3 Boundary Forces and Moments

The boundary terms obtained from the tangential and the normal variations

of the energy functional (ĖB) are,

ĖB =
∫

∂ω

[
uα(W + λ)να + aαβWHu,ανβ − uaαβ(WH),βνβ

+ b̃αβWKu,ανβ − b̃αβ(WK),βuνα

]
ds.

(2.103)

A natural choice for the parameter space on the boundary is given by the tangent

vectors τ and ν (along the curve and normal to it). Thus,

u′ = u,ατα, and u,ν = u,ανα, (2.104)

are the derivatives of u along and normal to the curve ∂ω, respectively. Using the

above equation, we can write

u,α = u′τα + u,ννα. (2.105)

Using the above relation, the boundary integral in (2.103) can be written as

ĖB =
∫

∂ω
[(τWK)

′ − 1
2

νβ(WH),β − b̃αβ(WK),βνα]u da

+
∫

∂ω

(
1
2

WH + κτWK

)
u,ν ds + ∑ uWK[τ].

(2.106)

In the above equation, κτ = bαβτατβ and τ = bαβτανβ represent the normal curva-

ture in the direction of τ and the twist in the surface, respectively. Furthermore,

the curvature in the normal direction ν is given by κν = bαβνανβ.

Using the relation,

u,ν = −τ ·ω− bν · u, (2.107)

with ω being defined such that ṅ = ω × n [26], the boundary integral can be

expressed as

ĖB =
∫

∂ω
(Fνν+ Fττ + Fnn) · u ds−

∫
∂ω

Mτ ·ω ds

+ ∑
i

fi · ui,
(2.108)
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where,

M =
1
2

WH + κτWK,

Fν = W + λ− κνM,

Fτ = −τM,

Fn = (τWK)
′ − 1

2
(WH),ν − (WK),βb̃αβνα,

fi = (WK[τ])in.

(2.109)

Here M represents the boundary moment per unit length. Fν, Fn and Fτ rep-

resent the forces per unit length acting on the boundary along the directions

ν, n and τ, respectively. Above fi represents the forces at the corners (if any)

of the boundary and [] represents the forward jump in τ at the corners of the

boundary.

Table 2.1: Notations

Notation Significance

θα Parameters describing the surface

r(θα) Position vector of the points on surface

aα Tangent vectors to the surface

aαβ Components of the metric tensor

aαβ Components of the dual metric tensor

eαβ Components of the permutation tensor

εαβ Components of the permutation tensor density

n unit normal to the surface at any given point

bαβ Components of the curvature tensor

b̃αβ Contravariant adjugate of bαβ

Ω Reference configuration

ω Current configuration

Continued on next page
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Table 2.1: Notations

Notation Significance

Ωa Areal domain of actin force in reference configuration

ωa Areal domain of actin force in current configuration

W Strain Energy density in the current configuration

p Transmembrane Pressure

V Volume enclosed by the membrane

J Areal stretch of the surface

a Determinant of the metric tensor in the current configuration

A Determinant of the metric tensor in the reference configuration

λ(θα) Surface tension field

τ Unit tangent to the boundary of the surface

ν Unit vector normal to τ and n at the boundary

M Moment per unit length at the boundary

Fτ Force per unit length acting on the boundary along the direction τ

Fν Force per unit length acting on the boundary along the direction ν

Fn Force per unit length acting on the boundary along the direction n

H0(θα) Preferred mean curvature field

D0(θ
α) Preferred deviatoric curvature field

Eb Free energy of the bilayer

E f Work done by actin forces

λ Direction of alignment of BAR protein

µ Direction perpendicular to λ of BAR in tangent plane

κλ Normal curvature along direction λ

κµ Normal curvature along direction µ

Continued on next page
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Table 2.1: Notations

Notation Significance

κ0
λ

Preferred normal curvature along direction λ

κ0
µ Preferred normal curvature along direction µ

kB Bending modulus of the bare lipid bilayer

k̄ Gaussian modulus of the bare lipid bilayer

R0 Normalizing radius of curvature

k0 Mean curvature modulus of the bare lipid bilayer

k̂B(θ
α) Bending modulus in the clathrin coated domain of membrane.

ˆ̄k(θα) Gaussian modulus in the clathrin coated domain of membranes.

k̂1(θ
α) Spatially varying modulus (C∞) associated with mean curvature.

k̂2(θ
α) Spatially varying modulus (C∞) associated with deviatoric curvature.

k̂3(θ
α) Spatially varying modulus (C∞) associated with Gaussian curvature.

f Force per unit area applied by actin in the current configuration

f̃ Force per unit mass applied by actin

ρ Mass per unit area in the current configuration

ρ0 Mass per unit area in the reference configuration
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Chapter 3 Orthotropic Spontaneous

Curvatures in Lipid Membranes

3.1 Introduction

Cellular membranes undergo dynamic remodeling for successful execution

of various processes such as cellular transport, cell mobility, cell division to name

a few [29, 30, 5, 31, 32, 33]. This, in general, entails local bending of the membrane

that could single-handedly or collectively be caused by i) curvature-inducing pro-

teins or lipids, ii) active forces-generating cytoskeletal filaments, and iii) symme-

try breaking enzymes [32, 33]. In the existing literature on membrane mechanics,

this bending effect has been modeled on the continuum scale by introducing a

so-called spontaneous curvature field. The application of this concept has ranged

from studies modeling shapes of biological structures such as red-blood cells to

studies modeling processes such as cellular transport [5, 29].

The idea of a spontaneous curvature field is tied to the form of the strain

energy function of a lipid membrane. For the Helfrich model, the strain energy

depends on the local mean curvature and the Gaussian curvature of the sur-

face [23, 34, 35]. For this model with quadratic dependence on mean curvature

and linear dependence on Gaussian curvature, a preferred geometry imposed

by curvature-inducing proteins can be generated by prescribing a resting mean

curvature and a Gaussian curvature. In general, the preferred mean curvature,

called the spontaneous curvature, has been used in the literature to regulate the

membrane geometry by shifting the vertex of the parabolic energy landscape (as-

sociated with the mean curvature) to the prescribed curvature.

This approach works well for proteins that form spherical coats and induce
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an isotropic curvature such as in clathrin. However, BAR proteins impose a cylin-

drical curvature instead of a spherical curvature [36, 37, 38, 39]. Fig. 3.1 shows

the two types of protein scaffolds and their effect on membrane geometry. As the

normal curvatures along the longitudinal axis and the circumferential direction

of a cylinder are different, spontaneous curvatures generated by such proteins

are anisotropic in nature. As a consequence, the standard Helfrich model is not

equipped to model such membrane-protein interactions because of the inherent

isotropy assumed for its derivation.

(a) (b)

Figure 3.1: Different types of protein scaffolds around the membrane (shown in
red). (a) A spherical scaffold made by proteins such as clathrin, and
(b) a cylindrical scaffold as those made by BAR proteins.

To address this issue, several studies have proposed a modified quadratic

strain energy in different contexts. A generalized energy for membranes where

tilting and chirality of lipids gives rise to anisotropic spontaneous curvatures was

proposed in [40]. In a series of papers, the effect of anisotropic inclusions was

studied via a mismatch tensor that energetically penalized the difference between

the intrinsic curvatures preferred by the inclusions and the local membrane cur-

vatures along the preferred directions [41, 42, 43]. For a nematic membrane made

of rod-like molecules, a strain energy that incorporated spontaneous curvatures

in both the normal curvatures and the twist was proposed in [44]. Models for
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BAR protein attachment that account for membrane-protein electrostatic interac-

tions and symmetry breaking by loop insertion have been reviewed in [45]. In

addition to these works, computational models and all atom molecular dynamics

model have been developed to investigate the interaction of BAR proteins with

the lipid membrane [46, 47, 48, 49, 50, 51, 52, 53]. For an extensive list of theo-

retical and computational studies on membrane-protein interactions, we refer the

reader to [54, 55].

In this chapter, we build upon these works to present a detailed derivation

of a generalized theory to model interactions of a membrane with non-spherical

protein scaffolds. In particular, we derive the Euler-Lagrange equations in a fully

nonlinear setting for an inhomogeneous membrane that is equipped to capture

spatial variations in membrane and protein coat properties. In addition to the

modified shape equation, we present the force equilibrium equation in the tangential

plane that has not been discussed before in the context of orthotropic membranes.

Furthermore, we derive the explicit expressions for forces and moment that act

locally at any arbitrary boundary in such a membrane.

3.2 Strain energy

Lipid membrane and the protein scaffold form a non-standard compos-

ite system. It bears similarity to fiber-reinforced solid materials that exhibit

anisotropy generated by the directionality of the fibers [56]. However, there is a

fundamental difference that distinguishes the two materials. In a fiber-reinforced

material, the fibers are embedded in the matrix and as a result, the fibers get con-

vected with the matrix when subjected to a deformation. In contrast, BAR pro-

teins are not transmembrane proteins and sit outside the outer monolayer. Thus,

while the protein shell is more solid-like, the membrane inside still remains fluid
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allowing lipids to diffuse over the surface. Furthermore, the curvature-inducing

proteins are more dynamic and can diffuse and reorient on the surface and self-

assemble in different configurations depending on their spatial distribution and

membrane geometry. As a result, these proteins cannot be modeled as embed-

ded entities that get convected with a deforming membrane. This fact limits the

use of symmetry arguments in reference configuration typically used to obtain

restrictions on the constitutive functions of fiber-reinforced materials. To circum-

vent this problem, we impose symmetry restrictions in the current configuration,

similar to the approach proposed in [41, 42, 43]. This ensures incorporation of

directional effects from the curvature-inducing proteins without picking-up un-

physical effects due to protein embedding.

Let ω be a two-dimensional surface with a non-uniform distribution of cres-

cent or banana shaped bar proteins that prefer anisotropic curvatures. The locus

of points on ω is tracked by the position vector r(θµ) where θµ (µ = 1, 2) are

the surface coordinates. The metric and curvature tensor on the surface are com-

puted based on this parametrization as mentioned in Chapter 2. We assume that

the curvatures induced by the proteins depend both on the geometry of the pro-

teins and their local concentrations. The orientation of a protein on the surface

is given by a unit vector λ(θµ) that is tangential to the 1-D curve that captures

the in-plane protein geometry as shown in Fig. 3.2(a). The orientational vector

λ and the surface normal n furnish a third orthonormal vector µ = n× λ which

together form a local triad {λ, µ, n} at any point on the surface.

Since a membrane behaves as a fluid shell offering bending resistance, the

strain energy function depends on the curvature tensor b. However, unlike the

classical model, for the present case we assume an additional dependance on a

structural tensor

M = λ⊗ λ− µ⊗ µ (3.1)
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to capture the anisotropic spontaneous curvatures generated from membrane-

protein interactions. Such a structural tensor is routinely used to define or-

thotropic symmetry in two-dimensional materials [57]. In the present setting,

we do not resort to a reference configuration and require the model to have or-

thotropic symmetry in the current configuration. This is motivated by the fact

that a banana shaped protein rotated by 1800 cannot be distinguished from the

original protein. As a consequence, the normal spontaneous curvatures they gen-

erate are also indistinguishable (Fig. 3.2(b)). As is necessary for any material, we

require the strain energy density W(b, M) to be Galilean invariant. This yields a

list of invariants

I = {tr(b), tr(M), det(b), det(M), tr(Mb)}. (3.2)

Since the second and fourth invariants above are constant scalar fields, the irre-

ducible basis comprises of three elements H, K, and D where H = tr(b)/2 is the

mean curvature, K = det(b) is the Gaussian curvature, and D = tr(Mb)/2 is the

curvature deviator. In addition to H and K present in the Helfrich model, W now

has dependence on a new element D because of the directionality imposed by an

orthotropic protein scaffold.

To get insight into the invariants, we compute them in terms of the local

principal curvatures. In the {aα, aβ} and {λ, µ} bases, they can be expressed as

H =
1
2

aαβbαβ = (κλ + κµ)/2,

K =
1
2

εαβεθψbαθbβψ = κλκµ − τ2,

D =
1
2

bαβ(λ
αλβ − µαµβ) = (κλ − κµ)/2,

(3.3)

where,

κλ = bαβλαλβ, κµ = bαβµαµβ, τ = bαβλαµβ (3.4)

are the normal curvatures along λ and µ, and the twist, respectively. Above, λα
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(a)

A

B

A

B

1800

Wednesday, December 4, 13

(b)

Figure 3.2: Protein attachment on the membrane. a) Orientation of the protein
in the tangential plane, and b) 1800 rotation of the protein about the
surface normal leads to an indistinguishable state.

and µα are the projections of λ and µ along the tangent vectors with

λα = λ · aα and

µα = µ · aα = (n× λ) · aα = εθαλψaθψ,
(3.5)

where εαβ = a−1/2eαβ, a = det(aαβ) and eαβ is the permutation tensor with

e12 = −e21 = 1 and zero if α = β. From eq. (3.3)3, it is evident that D is the

difference in the normal curvatures along the two orthogonal directions allowing

us to prescribe a new spontaneous curvature D0 that captures the protein-induced

anisotropic curvatures. This is similar to prescribing H0, the spontaneous curva-

ture associated with the mean curvature in the Helfrich model. Since {H, D}

together uniquely determine {κλ, κµ} and vice-versa (see eq. 3.3), prescribing

{H0, D0} is analogous to imposing preferred curvatures {κ0
λ, κ0

µ} in the two di-

rections λ and µ. In contrast, imposing a set of {H0, K0} can lead to infinitely

many combinations of {κ0
λ, κ0

µ}. Hence, the unique direction of attaching proteins

cannot be deciphered in a model that depends solely on H and K.
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3.3 Variations

Based on the Kirchhoff-Love Shell theory assumptions of constant thickness

and lipids aligned with the normal direction, we write the energy functional ac-

counting for lipid bilayer interacting with orthotropic proteins as:

E =
∫

ω
(W(H, D, K; θα) + λ(θα))da− pV(ω), (3.6)

with λ and p as Lagrange multipliers to constrain the area and volume enclosed

respectively.

We consider a family of surfaces generated by r(θα; ε). The virtual displace-

ment of the surface is given by u(θα) = ∂
∂ε r(θα; ε)|ε=0 = ṙ, where the superposed

dot refers to the derivative with respect to the parameter ε [27]. Variation of E in

(3.6) yields

Ė =
∫

ω
Ẇda +

∫
ω
(W + λ)( J̇/J) da− pV̇, (3.7)

where J =
√

a/A is the ratio of the material area after deformation to that before,

and

Ẇ = WH Ḣ + WKK̇ + WDḊ. (3.8)

The variations of the mean curvature and the Gaussian curvature are given by

2Ḣ = aαβḃαβ − bαβ ȧαβ,

K̇ = −Kaαβ ȧαβ + b̃αβḃαβ.
(3.9)

Variation of the curvature deviator, using (3.3)3, can be expressed as

Ḋ =
1
2
(κ̇λ − κ̇µ). (3.10)

Using (3.4), variations of κλ and κµ can be expressed as

κ̇λ = ḃαβλαλβ + 2bαβλ̇αλβ and

κ̇µ = ḃαβµαµβ + 2bαβµ̇αµβ.
(3.11)
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It is important to emphasize here that there are two mappings from the pa-

rameter space to the current configuration. One is the position field r (θα) and the

other λ(θα), which specifies the in-plane orientation of the protein dimers. These

proteins are convected to the surface such that they remain in the tangent plane

of the surface in all configurations. Thus, the variations have to be considered

such that ˙λ · n = 0. The superposed dot over the line represents the variation

of the overall quantity. Since, the orientation of protein along the surface is not

convected to the surface, it’s component along the surface is assumed to remain

constant while considering the variations such that,

˙λ · aαaα = 0. (3.12)

Hence, the variation of λ is completely normal to the surface and can be written

as,

λ̇ = (λ̇ · n)n. (3.13)

Similarly, variation of µ, is

µ̇ = ṅ× λ + n× µ̇ = ṅ× λ. (3.14)

Since n · n = 1, ṅ is perpendicular to n and lies in the tangent plane. As a

result, ṅ×λ is oriented along the normal whose projection in the tangential plane

vanishes.

Thus, using eq. (3.5), eq. (3.13), eq. (3.14) and the relation aα = aαγaγ, we

can compute

λ̇α = aαγ(λ · ȧγ) + (λ · aγ)ȧαγ and

µ̇α = aαγ(µ · ȧγ) + (µ · aγ)ȧαγ.
(3.15)

Substituting (3.11) and (3.15) in (3.10), we can finally obtain

Ḋ =
1
2

ḃαβ(λ
αλβ − µαµβ) + bαβ[aαγȧγ · (λβλ− µβµ)

+ ȧαγaγ · (λβλ− µβµ)].
(3.16)
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3.3.1 Tangential Variations

For tangential variation u = uλaλ, we have (chapter 2)

ȧγ = uη
;γaη + uλbλγn (3.17)

and

ȧαγ = −aαθaγψ(uθ;ψ + uψ;θ). (3.18)

Substitution of (3.17) and (3.18) in (3.15)1 furnishes

λ̇α = −λγaαθaγψ(uθ;ψ + uψ;θ) + aαθuγ
;θλγ. (3.19)

Since the metric is covariant constant,

aγψuψ;θ = uγ
;θ, and aαθuθ;ψ = uα

;ψ. (3.20)

Combining (3.19) with eq. (3.20) yields

λ̇α = −λψuα
;ψ. (3.21)

Following a similar procedure, we can show

µ̇α = −µψuα
;ψ. (3.22)

We employ (3.11), (3.21), (3.22) along with the Mainardi-Codazzi equations, and

the variation of the covariant components of the curvature tensor [27]

ḃαβ = uη
;αbηβ + uη

;βbηα + uηbηα;β (3.23)

to compute

κ̇λ = uηbαβ;ηλαλβ, and κ̇µ = uηbαβ;ηµαµβ. (3.24)

Substitution of (3.24) in (3.10) finally furnishes the variation of the curvature de-

viator

Ḋ = uηbαβ;η(λ
αλβ − µαµβ)/2. (3.25)
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Further, we note that since λ and µ span the tangent plane and are unit vectors,

we can write the contravariant basis such that,

aα = (aα · λ)λ + (aα · µ)µ. (3.26)

Thus we obtain,

aαβ = λαλβ + µαµβ. (3.27)

Using this we can write,

Ḋ = uηbαβ;η(2λαλβ − aαβ)/2. (3.28)

Having obtained Ḋ, we can now proceed to derive the force equilibrium equation

in the tangential plane. Since V̇ vanishes for tangential variations and J̇/J = uη
;η

[27], we can write eq. (3.7) as

Ė =
∫

ω
[Ẇ − uη(W + λ);η]da +

∫
ω
[uη(W + λ)];ηda, (3.29)

where

W,η = WH H,η + WKK, η + WDD,η + ∂W/∂θη. (3.30)

Making use of Ḣ = uη H,η and K̇ = uηK,η (derived in Chapter 2) together with eqs.

(3.8), (3.28), (3.29), (3.30) and the Stokes’ theorem, we compute the Euler-Lagrange

equation

λ,η = −∂W/∂θη −WDbαβ(λ
αλβ);η. (3.31)

The above equation allows for the computation of the surface tension field on

the surface. It generalizes the tangential equilibrium equation derived in [27,

18] for homogeneous membranes and in [28] for membranes interacting with

isotropic curvature inducing proteins. The first term on the right is a result of

spatial heterogeneities in membrane properties and holds both for isotropic and

anisotropic membranes. The second term is specific to anisotropic membranes

and is governed by the functional dependence of the strain energy on D and the
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orientation of the proteins. If the membrane is homogeneous and isotropic, right-

hand side would vanish, furnishing a uniform surface tension over the entire

surface. However, if the properties vary spatially or have a directionality, as is

expected in the present context, the right-hand side can be non-zero forcing the

surface tension to evolve over the surface.

3.3.2 Normal Variations

For normal variation u = u(θα)n, we follow a similar procedure. Using eq.

(3.15) and the relations

ȧα = u,αn− ubβ
αaβ, and ȧαβ = −2ubαβ,

ḃαβ = u;αβ − ubαγbγ
β

(3.32)

(from Chapter 2), we derive

λ̇α = ubγ
ψaαψλγ, and µ̇α = ubγ

ψaαψµγ. (3.33)

Substituting (3.32) and (3.33) in (3.11), we compute the variations of the normal

curvatures
κ̇λ = [u;αβ + ubαγbγ

β ]λ
αλβ and

κ̇µ = [u;αβ + ubαγbγ
β ]µ

αµβ,
(3.34)

which together with (3.10) yield

Ḋ = (u;αβ + ubαγbγ
β)(λ

αλβ − µαµβ)/2. (3.35)

Substituting (3.35), along with the relations

2Ḣ = ∆u + u(4H2 − 2K), J̇/J = −2Hu

and K̇ = 2KHu + (b̃αβu,α);β,
(3.36)
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from chapter 2 in eq. (3.7) and employing Stokes’ theorem, we compute the

associated Euler-Lagrange equation

1
2
[WD(λ

αλβ − µαµβ)];βα +
1
2

WD(λ
αλβ − µαµβ)bαγbγ

β + ∆(
1
2

WH) + (WK);βαb̃βα

+ WH(2H2 − K) + 2H(KWK −W)− 2Hλ = p.
(3.37)

This is the modified shape equation in the context of anisotropic membranes. Sup-

pressing the dependence of W on the curvature deviator D, yields the original

shape equation for the isotropic lipid membranes [28, 26, 27, 18].

3.3.3 Edge conditions

With the Euler-Lagrange equations (3.31) and (3.37) satisfied, the variation of

the energy E for a surface ω with a boundary ∂ω reduces to ĖB = Bt + Bn where

Bt =
∫

∂ω
(W + λ)uαναds (3.38)

and

Bn =
∫

∂ω

[
1
2
(WH −WD)ν

αu,α −
1
2
((WH),α

− (WD),α)ν
αu + (WK b̃αβ + WDλαλβ)νβu,α

− ((WK),αb̃αβ + (WDλαλβ);α)νβu
]

ds.

(3.39)

Similar to the derivation in chapter 2, we re-parameterize the surface at the

edge in terms of arc length and normal to the edge. We define a vector τ as the

unit tangent to ∂ω as shown in Fig. 2.1 by taking the derivative with respect to

arc length parameterizing the boundary ∂ω , τ = dr(θα(s))
ds . The unit normal to

the boundary lying in the tangent plane to the surface can then be defined by the

vector ν = τ × n. Using the orthonormality of ν and τ, we can decompose the

derivatives u,α in (3.39) as u,α = ταu′ + ναu,ν where u′ is the derivative along τ in

the direction of increasing arclength and u,ν is the normal derivative along ν [26].
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We combine this with u,ν = −τ · ω− (κνν + ττ) · u and u = u · n to recast the

edge contributions for a piecewise smooth boundary as

ĖB =
∫

∂ω
(Fνν+ Fττ + Fnn) · uds−

∫
∂ω

Mτ ·ωds

+ ∑
i

fi · ui,
(3.40)

where
M =

1
2

WH + κτWK + WDλαλβνβνα −
1
2

WD

Fν = W + λ− κνM

Fτ = −τM

Fn = (τWK)
′ − 1

2
(WH),ν − (WK),βb̃αβνα

+
1
2
(WD),ν − (WDλαλβ);βνα − (WDλαλβνβτα)

′

fi = (WK[τ] + WD[λ
αλβνβτα])in.

(3.41)

Square brackets indicate forward jumps in values within the brackets at corners

of the boundary, where there is a jump in τ. Above, M is the bending moment

per unit length, Fν is the in-plane normal force per unit length, Fτ is the in-plane

shear force per unit length, Fn is the transverse shear force per unit length and fi

is the force applied at i th corner of ∂ω. As expected, the anisotropic contribution

to the strain energy results in modified expressions for the boundary forces and

moment, furnishing an extension to the edge conditions derived for isotropic

membranes [58, 59, 60, 61].

3.4 Example

In this section, we test the proposed theory by simulating the constriction

of a cylindrical tubule by an exterior scaffold made of crescent shaped proteins,

such as BAR protein dimers. To this end, we customize the equations derived in

the previous section for axisymmetric surfaces parameterized by meridional arc
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length s and azimuthal angle θ. For such a surface,

r(s, θ) = r(s)er(θ) + z(s)k, (3.42)

where r(s) is the radius from axis of revolution, z(s) is the elevation from a base

plane and (er, eθ, k) form the coordinate basis. Since (r′)2 + (z′)2 = 1, we can

define an angle ψ such that

r′(s) = cos ψ and z′(s) = sin ψ. (3.43)

Above and in the rest of the section, ()′ = ∂()/∂s. With θ1 = s and θ2 = θ, we can

easily show that

a1 = r′er + z′k, a2 = reθ and

n = − sin(ψ)er + cos(ψ)k.
(3.44)

Using (3.44) and its derivative, we can show that the metric (aαβ) = diag(1, r2),

the dual metric (aαβ) = diag(1, 1
r2 ), and the covariant components of the curvature

tensor (bαβ) = diag(ψ′, r sin ψ). Together they furnish the two invariants

2H = ψ′ +
sin ψ

r
, and K = H2 − (H − (sin ψ)/r)2. (3.45)

The BAR proteins align in a helical pattern on the membrane tubule [38].

The lateral and tip to tip interactions between the dimers help to deform the

underlying membrane [51]. To achieve this efficiently, the BAR proteins maintain

close proximity and orient themselves on the cylindrical surface with low tilt

angle [37] (tilt with respect to the longitudinal axis of the tubule). Thus, for our

simulations, we neglect the small tilt angle and assume a continuous distribution

of crescent shaped dimers aligned in the circumferential direction. As a result,

the two orientation vectors are given by

λ = −eθ, and µ = cos ψer + sin ψk. (3.46)

The corresponding normal curvatures in the two directions become κλ = (sin ψ)/r

and κµ = ψ′. Together, they yield the curvature deviator D = [(sin ψ)/r− ψ′]/2.
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We consider an extension of the Helfrich energy W that is quadratic in the

mean curvature H and the curvature deviator D. For the time being, we suppress

the dependence of W on the Gaussian curvature K as the influence of protein coat

on the Gaussian modulus is not yet known. We discuss the possible consequences

of different Gaussian moduli in Section 3.4.1. The generalized form of W can

therefore be written as

W(H, D; s) = k̂1(s)(H − H0(s))2 + k̂2(s)(D− D0(s))2

+ 2k̂12(s)(H − H0(s))(D− D0(s)),
(3.47)

where H0(s) and D0(s) are the preferred H and D values that arise because of

the anisotropic curvatures generated by the protein scaffold. In addition to the

spontaneous curvatures, we assume the protein scaffold also alters the effective

bending moduli and hence, allow them to vary spatially. In the absence of the

protein coat, the last two terms vanish, furnishing the standard Helfrich energy.

To get some additional insight into the membrane-protein system, we can express

the above energy in terms of the normal curvatures in the λ and µ directions in

lieu of the mean curvature and the curvature deviator. With the help of (3.3)1 and

(3.3)3, eq. (3.47) can be written as

W = k1(s)(κλ − κ0
λ(s))

2 + k2(s)(κµ − κ0
µ(s))

2

+ 2k12(s)(κλ − κ0
λ(s))(κµ − κ0

µ(s)).
(3.48)

The link between the eqs. (3.47) and (3.48) is provided by the relations

k̂1 = k1 + k2 + 2k12, k̂2 = k1 + k2 − 2k12,

k̂12 = (k1 − k2),

H0 = (κ0
λ + κ0

µ)/2, and D0 = (κ0
λ − κ0

µ)/2.

(3.49)

In eq. (3.48), {κ0
λ, κ0

µ} and {k1, k2} are the spontaneous curvatures and the bending

moduli along the directions λ and µ and hence, provide a more intuitive picture

of the effect of the protein scaffold on the membrane in the two directions.
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The shape equation (3.37) for W(H, D; s) and axisymmetric geometry re-

duces to

p =
L′

r
+ WH(2H2 − K)− 2H(W + λ−WDD)

+
((WD)

′ cos ψ)

r
,

(3.50)

where

L/r =
1
2
[(WH)

′ − (WD)
′]. (3.51)

The equilibrium equation in the tangent plane (eq. (2.41)) takes the form

λ′ = −W ′. (3.52)

We account for the area incompressibility of the membrane by transform-

ing the independent variable from arclength s to area a employing the relation

da/ds = 2πr. In addition, we non-dimensionalize the system of equations and

define
r̄ = r/R0, z̄ = z/R0, ā = a/2πR0

2, κ̄λ = R0κλ,

κ̄µ = R0κµ, H̄ = R0H, D̄ = R0D, λ̄ = λR0
2/k0,

L̄ = R0L/k0, k̄1 = k̂1/k0, k̄2 = k̂2/k0,

and k̄12 = k̂12/k0.

(3.53)

where R0 is a reference radius of curvature and k0 is the bending modulus of the

uncoated membrane.

The uncoated tubule has a uniform circumferential radius (κ̄λ = 0.5) with k̄1 = 1,

k̄2 = k̄12 = 0 and κ0
λ = κ0

µ = 0. We simulate the shape evolution of the tubule for

a sequence of non-uniform protein concentrations (C1, C2, C3) shown in Fig. 3.3a.

In a realistic setting such a changing spatial concentration would correspond to

a binding-driven accumulation of the protein dimers. Since in the present study

we do not explicitly model the self-assembly dynamics of dimers, we prescribe

the protein concentration field a priori. We cap the concentration to a maximum

value as the protein size and geometry would impose a physical restriction on the
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packing density. We assume that the effective membrane parameters influenced

by the protein coat (H̄0, D̄0, k̄1, k̄2) depend linearly on the protein concentration

field (Fig 3.3b). A concentration dependent preferred curvature has indeed been

experimentally observed for the BAR domain attachments [36].
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Figure 3.3: (a) Three prescribed spatially varying protein concentration fields, and
(b) linear dependence of the various protein-induced parameters on
the concentration values

We assume that the protein scaffold prefers a narrower tubule and prescribe

a larger curvature (κ̄0
λ = 1) in the circumferential direction and zero curvature in

the longitudinal direction (κ̄0
µ = 0). In the (H, D) framework, these maximum di-

rectional curvatures transform to H̄0 = 0.5 and D̄0 = 0.5. These values correspond

to the maximum protein concentration and get scaled by the local concentration

values in the rest of the coated domain. In addition, we assume that the protein

coat results in increased effective bending modulus and set k̂1 = 2, k̂2 = 1 in

the highest concentration region. These parameters, computed from eq. (3.49),
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assume a two times stiffening of the membrane in the λ and µ directions. This

choice of parameters is in agreement with a stiffness of 20 ± 10 kBT for the BAR

proteins computed by the shape based coarse graining approach [46].

For the above mentioned parameters, we solve the differential equations

(3.43), (3.45)1, (3.50), (3.51) and (3.52) over an area domain varying from 0 to

ā0 = 30 for vanishing transmembrane pressure subject to the boundary condi-

tions
r̄(0) = 2, z̄(0) = 0, ψ(0) = π/2,

r̄(ā0) = 2, ψ(ā0) = π/2, and λ̄(ā0) = 1/16.
(3.54)

The last boundary condition is obtained from the solution of the standard shape

equation to maintain the original cylindrical geometry far away from the protein

coat domain.

The computed tubule geometry and the surface tension field are shown in

Fig 3.4. As the protein coat continues to grow, the preferred circumferential and

meridional curvatures are effectively imposed and the tubule attains a smaller

radius in the coated domain (Fig. 3.4a). It is important to note that the changes

in the geometry are accompanied by a concomitant change in the surface tension

values shown in Fig. 3.4b. The surface tension profile closely follows the concen-

tration profile. From a far away normalized resting tension of 0.06, the surface

tension increases to 0.27 in the protein coat domain (for C3 concentration field)

leading to an approximate increase by 450%. Such a drastic change in the surface

tension would be specifically relevant to comprehend the role and energetics of

fission proteins that form cylindrical coats. The role of the tangential equilibrium

equation in capturing the spatial variation in the surface tension can thus not be

undermined.
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Figure 3.4: (a) Tubule shapes for the three concentration fields. Red curve is the
protein coated segment while the green curve is the uncoated segment.
(b) Surface tension field for the three geometries.

3.4.1 Effect of Gaussian modulus

In the results presented so far, we have suppressed the role of Gaussian en-

ergy because of lack of experimental/numerical data on an estimate of the Gaus-

sian modulus in the protein-coated domain. If the modulus remains unaffected

by the scaffold, which appears rather non-intuitive, the equilibrium equations

and the boundary conditions remain unchanged and the results presented before

hold. If the modulus changes spatially, like the other bending moduli, it would

affect both the geometry and the membrane stresses. To get a quantitative in-

sight into this effect, we revisit the tubule problem with a modified strain energy

W̄(H, D, K; s) = W(H, D; s) + k̄(s)(K − K0(s)), where the first term is the energy

in eq. 3.47 and the second term is the contribution from the Gaussian curvature.

Since crescent shaped dimers prefer a cylindrical geometry, we set K0(s) = 0. In

the uncoated domain, we set k̄ = −k0 based on the recent findings of Deserno

and co-workers [62]. In the protein-coated domain, we perform a parametric

analysis and compute the equilibrium solution for a few different values of k̄. A
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similar approach was adopted by Das et al. to model the impact of Gaussian

modulus on the geometry of a membrane with two distinct phases of lipids [63].

Since the constraint on the Gaussian modulus from the stability condition is not

known for anisotropic membranes at present and will be a subject of future study,

we allow the modulus to span both the positive and the negative regimes. The

tubule shapes and the membrane tension variations for three specific values of

maximum k̄ (k̄ = k0,−k0,−3k0) corresponding to the C3 concentration field are

shown in Fig. 3.5. The changes in the overall geometry are rather subtle with

minor variations occurring near the membrane-coat interface. The changes in the

membrane tension, however, appear more significant, especially for the positive

value of the modulus. Overall, the variations in the Gaussian modulus do not

alter the qualitative response of the tubule.

3.5 Conclusions

We have derived the generalized theory for lipid membranes that interact

with protein scaffolds inducing anisotropic spontaneous curvatures. In addition

to the mean curvature and Gaussian curvature, the strain energy for a membrane

interacting with a protein scaffold with orthotropic symmetry depends on the

curvature deviator. Inclusion of this new invariant alters both the equilibrium

equations and the edge conditions as shown in this paper. The proposed theory

is equipped to model various kinds of spatial heterogeneities that may arise be-

cause of the membrane-protein interactions. We show the efficacy of the theory

by modeling squeezing of a tubule by crescent shaped proteins. We emphasize

the role of the equilibrium equation in the tangential plane by evaluating the sur-

face tension field on the surface and showing its non-uniform behavior. Since

membrane tension is a critical player in several cellular processes and remains
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Figure 3.5: (a) Tubule shapes for the three prescribed Gaussian moduli for C3
concentration field. Red curve is the protein coated segment while the
green curve is the uncoated segment. (b) Surface tension field for the
three geometries.

an enigma in experimental studies, modeling-based quantitative estimates of ten-

sion can prove to be of vital importance. We model the influence of Gaussian

modulus on the equilibrium geometry and the membrane tension. Although the

influence of protein-coat on the modulus is unknown at present, comparison of

the experimental data on tubule shapes with the simulation results might provide

an avenue to gain insight into the nature of the modulus.

Overall, the proposed framework would be valuable in comprehending bi-

ological phenomena where membrane-protein scaffold interactions play an im-

portant role. This bears special relevance for modeling of endocytic pathways in

yeast and mammalian cells as cylindrical protein coats play a critical role in both
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vesicle formation and fission. Lack of an apt mathematical framework may lead

to erroneous conclusions about the need and roles of different components of the

endocytic machinery. In addition, the proposed framework would form the basis

for formulating a dynamic model to capture self-assembly of such proteins on a

curved surface. This would be critical for understanding curvature-based protein

sorting and localization in cellular membranes.
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Chapter 4 Endocytic protein drive

vesicle growth via Snap through

Instability

4.1 Introduction

As discussed in Chapter 1, CME entails significant local bending of the mem-

brane, transforming an almost planar patch of a bilayer into a spherical vesicle.

This makes CME highly sensitive to the resting tension in the membrane. A

higher tension in a membrane makes a membrane taut, making it harder to bend,

thus, increasing the energetic cost required to form new vesicles. As a conse-

quence, in cells experiencing high membrane tension, such as yeast cells and

mammalian cells with polarized domains or those subjected to increased tension,

actin dynamics has been found to be necessary to provide additional driving force

to successfully complete CME [11, 16, 64, 65, 66, 67, 68]. Although this fact has

been established by seminal experimental studies, how actin forces actually drive

vesicle formation and can facilitate vesicle scission are not well understood. In

addition, the role of another key membrane remodeling protein- the BAR protein,

in overcoming tension has not yet been explored. In this chapter, we pursue a de-

tailed theoretical and computational analysis to unravel some new mechanisms

by which these key endocytic proteins (actin and BAR proteins) offset membrane

tension, drive vesicle growth and assist vesicle scission.

We begin by posing a conundrum. In yeast cells, clathrin, actin and BAR pro-

teins contribute to vesicle formation in different capacities. While the inhibition

of actin polymerization completely arrests endocytosis [16, 65, 67, 68], the absence

of clathrin and BAR proteins only leads to about 50% and 25% reduction in the
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internalization events, respectively [7, 16, 69, 70, 71]. Although a high scission rate

is maintained in BAR mutant cells, there is a fundamental difference between the

shape evolution process in these and the wild-type cells. In the wild-type cells,

a shallow invagination turns into an elongated vesicle with a constricted neck

prior to scission which is successfully imaged in experimental studies (Fig. 4.1)

[7, 16, 72]. In contrast, such an intermediate shape is not observed in BAR mutant

cells. After a shallow and broad invagination, experimental images are only able

to capture detached vesicles in the cytoplasm (Fig. 4.1 where lipid membrane is

shown in yellow, clathrin coat in red, actin filaments in blue, and BAR coat in

green) [7]. This is rather intriguing as the existing model of membrane scission

requires lipids to come in close proximity and pass through a hemifission state

prior to scission to avoid any leak during the topological transition [73, 74, 75, 76].

How then does a shallow invagination directly transform into a detached vesicle?

We will show in later sections that this conundrum is at the core of the shape-

evolution mechanism in the presence of resting tension in the plasma membrane

and is critical for understanding the roles of actin and BAR proteins in CME.

Several theoretical and computational studies have advanced our physical

understanding of CME in both mammalian and yeast cells [28, 77, 78, 79]. Liu

et al. [77] studied vesicle formation and scission in yeast cells under the action

of curvature-generating proteins and actin filaments. The study highlighted a

critical role of lipid phase boundary-induced line tension in budding and scission.

In a follow-up work, temporal and spatial coordination of endocytic proteins was

studied in an integrated model to simulate endocytosis in mammalian and yeast

cells [78]. The study showed a dynamic two-way coupling between the membrane

geometry and the various biochemical reactions. Agrawal and Steigmann [28],

employed a unified theory of heterogeneous membrane to show that clathrin

coat could drive vesicle formation without assistance from line tension in the
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Figure 4.1: In wild type yeast cells, actin and BAR proteins turn a shallow invagi-
nation into a mature vesicle with a tubular neck. In BAR mutant yeast
cells, the intermediate vesicle with a constricted neck is not observed.

absence of a resting plasma membrane tension. Agrawal et al. studied the roles

of epsin and clathrin in the nucleation of membrane vesicles [79]. Although these

studies have provided fundamental mechanistic insights into CME, the physical

underpinnings of the remodeling mechanism in the presence of tension and the

specific roles played by key proteins in countering tension remain unaddressed.

In this study, we simulate membrane-protein interactions at the continuum

scale to explore the consequences of finite tension. We first model the effect

of actin forces in driving the growth of a shallow clathrin-coated vesicle. We

find that until a critical force is reached, the vesicle undergoes smooth transition.

Once the critical force is crossed, it experiences a snap-through transition that

drastically elongates and squeezes the vesicle. This leads to a significant in-plane

stress in the tubular region of the vesicle that far exceeds the rupture tension.

We then model the effect of BAR proteins. We find that the attachment of BAR

proteins also drives vesicle formation by instability but it is much more gentle

compared to the actin case. To our surprise, we find that after the instability has
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occurred, the dissociation of BAR proteins leads to a larger elongation and growth

of the vesicle. We predict vesicle shapes at different stages of CME which closely

match those observed experimentally in yeast cells. To test the in-plane stress as a

criterion for membrane scission, we simulate the geometries of detached vesicles.

We find that the vesicles in the actin-driven case (in the absence of BAR proteins)

are smaller than the vesicles in the BAR-driven case. In the latter case, the BAR

proteins end up in the vesicle along with the clathrin coat as observed in [7]. We

finally show that the membrane tension is the key parameter that regulates vesicle

morphology.

4.2 The Model

The central feature of our model is that it incorporates protein-induced het-

erogeneities in the membrane in a seamless manner. As was shown in [28, 89],

this generalization has a crucial consequence. It breaks down the well known

requirement that the surface tension has to be uniform in the entire membrane,

as is the case for a homogenous membrane. This feature is very pertinent as

tension and its impact on membrane remodeling are at the center of this study.

The fact that non-uniform tension can exist in the plasma membrane of cells is

supported by experimental studies. The tension-based variation in the roles of

actin-dynamics on the apical and basolateral surfaces of polarized MDHK cells

[11] unambiguously shows that the tensions in the two parts of the same plasma

membrane are different. It is, therefore, extremely crucial to capture the local

variations in surface tension by allowing for heterogeneities in the membrane in

order to model all the nuances of the membrane-protein interactions and their

effect on membrane geometry. An overview of the key physical concepts that

govern membrane-protein energetics is discussed next.
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(a)

(b)

Figure 4.2: (a) Remodeling mechanisms of the three key endocytic proteins.
Clathrin coat imposes spherical geometry, actin filaments apply forces
and BAR imposes cylindrical geometry onto a lipid bilayer.

i) Lipid Membrane: The lipid bilayer is modeled as a two-dimensional sur-

face embedded in three dimensional space. Since a relative misalignment of the

lipids costs energy, a bilayer offers flexural stiffness. For an isotropic fluid bilayer,

the areal strain energy density depends on the local mean curvature (H) and the

Gaussian curvature (K) of the surface [5, 18, 19, 23, 29, 90]. For our model, we

employ the well known Helfrich-Canham energy density, W = kBH2 + k̄K, where

kB and k̄ are the bending moduli. The values of these parameters and those dis-

cussed later are presented in Table 4.1. Since a lipid bilayer sustains a very small

areal dilation (less than 2-3%) [5, 20, 29], we assume that any arbitrary patch on

the bilayer surface maintains its area. This results in a Lagrange multiplier field λ,

which is well known as the surface tension in the membrane. (Reader is referred

to Table 2.1 for notations)

ii) Clathrin coat: Tri-legged proteins, called triskelions, assemble to form a

clathrin scaffold that imparts a spherical geometry to the underlying bilayer (Fig.
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4.2a). The preferred mean curvature of the sphere, called the ‘spontaneous cur-

vature’, is isotropic in nature. In other words, the curvature induced by clathrin

is identical in all the directions in the tangent plane at any point on the coated

membrane surface. In addition to curvature generation, clathrin scaffold also stiff-

ens the membrane resulting in an increase in the bending moduli of the coated

domain [82]. These effects manifest themselves in the form of a modified strain

energy density W = k̂B(H − H0)
2 + ˆ̄kK, where H0 is the spontaneous curvature

and {k̂B, ˆ̄k} are the modified bending moduli.

iii) Actin forces: Polymerizing actin filaments apply a force f on membrane

invaginations. For a point on the surface with a unit surface normal n, projection

of f yields a normal component (f · n)n and an in-plane component f− (f · n)n

(red and blue arrows in Fig. 4.2a). Since the precise architecture of the actin net-

work in the vicinity of the invagination and the resulting forces are not yet well

established, we model a few different forcing scenarios shown in Fig. 4.2b. In the

first case, we assume that the actin filaments form a branched network and are

connected to a portion of the clathrin coat. Hip1R in mammalan cells and sla2p

in yeast cells have been known to establish this clathrin-actin link [14, 91, 92]. We

assume that the actin filaments apply a vertical distributed load on the invagi-

nation. This is inspired from the model proposed by Idrissi and coworkers [72]

based on their ultrastructural analysis of endocytic profiles obtained using im-

munoelectron microscopy [68]. A similar model was found to be the most likely

driving mechanism when the initial coat fails to deform the membrane signifi-

cantly [8]. In the second case, we assume that the actin filaments form bundles

that apply vertical forces on an annulus at the interface of the clathrin domain and

the uncoated membrane. This model is aligned with the dendritic actin network

with collar-like arrangement observed via high resolution platinum replica elec-

tron microscopy and electron tomography [93]. This is also in agreement with the
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parallel bundled network scenario proposed by Drubin and co-workers [16] and

used in the computational study by Liu et al. on yeast cells [78]. In the third case,

we assume that the actin bundles apply inward acting horizontal forces near the

base of the invagination. This loading condition has been discussed by Collins

et al. [93] and Kirchhausen and co-workers [11] in the context of mammalian

cells. For all the loading conditions, we assume that the downward acting forces

are balanced by equal upward acting forces that impose global force equilibrium.

This should be true in the real scenario as the actin network or bundle has to

take support from some structure to apply forces on to the budding vesicle. A

natural consequence of this condition is that it allows the parent bilayer to main-

tain planar geometry outside the remodeling domain as observed in experimental

images.

iv) BAR coat: BAR dimers are crescent shaped proteins that bend the under-

lying bilayer by forming a cylindrical scaffold (Fig. 4.2a). Such a bilayer possesses

local orthotropic symmetry and it’s strain energy depends on an additional phys-

ical parameter D, referred to as the curvature deviator as shown in previous chap-

ter. In addition, similar to the clathrin coat, the BAR coat also stiffens the mem-

brane [51]. To incorporate these effects, we prescribe bending energy which has a

quadratic dependence on D and a corresponding spontaneous curvature D0. The

resultant strain energy takes the form: W = k̂1(H − H0)
2 + k̂2(D − D0)

2 + k̂3K,

where {k̂1, k̂2} are the modified bending moduli and k̂3 is the modified Gaussian

moduli.

We combine these contributions from the membrane and the endocytic pro-

teins to construct the total free energy as,

E = Eb − E f , (4.1)

where,

Eb =
∫

ω
[W + λ(θα)]da− pV(ω), (4.2)
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and,

E f =
∫

ωa
ρf̃(θα) · (r− r0) da =

∫
Ωa

ρ0f̃(θα) · (r− r0) dA. (4.3)

In the above equations, λ(θα) represents the spatially varying Lagrange multiplier

to prevent the local areal dilation and is termed as the surface tension field. p is

the transmembrane pressure which is the Lagrange multiplier of V, the enclosed

volume by the membrane patch ω being studied. For the evolution of shapes

considered in simulations, the volume enclosed by an open patch of membrane is

not conserved. The transmembrane pressure has been set to zero as it is an order

lower than the pressure due to actin filaments. When the rupture stress is reached,

equilibrium shape of the detached vesicle is obtained by preserving the detached

area of lipid membrane and the volume enclosed by the vesicle. Moreover, it is

assumed that the force per unit mass applied by the actin filaments, f̃, is constant

from the reference to the current configuration.

Table 4.1: Parameters used for simulations

Symbol Significance Value Ref.
kB Bending Modulus of the bare lipid bilayer 20 kBT [80, 81]
k̂B Bending modulus of the clathrin coated domain 200 kBT [82]
C Preferred curvature of the clathrin coat 1/50 nm−1 [83]
p Transmembrane (Osmotic) pressure in the Yeast 1000 Pa [84]
f Max. force applied by the actin filaments 100− 200 pN [85, 86, 87]
f0 Force intensity applied by the actin filaments < 2x105 Pa [85, 86, 87]

H0 Preferred mean curvature of the BAR coat 0− (1/30) nm−1 [48, 88]
D0 Preferred deviatoric curvature of the BAR coat 0− (1/30) nm−1 [48, 88]
k̂1 Mean curvature modulus of the BAR coat 0 - 200 kBT [51]
k̂2 Deviatoric curvature modulus of the BAR coat 0 - 200 kBT [51]
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4.2.1 Variations

Variation of the total free energy of the membrane-protein system can be

written as

Ė = Ėb − Ė f , (4.4)

where

Ėb =
∫

ω
Ẇda +

∫
ω
(W + λ)( J̇/J) da− pV̇ (4.5)

and

Ė f =
∫

Ωa
ρ0f̃ · u dA

=
∫

ωa
f · u da.

(4.6)

J =
√

a/A is the ratio of the material area after and before the deformation. We

obtain the equilibrium equations in the tangent plane,

λ,η = −∂W/∂θη −WD(bαβ(λ
αλβ);η)− f · aη, (4.7)

and along the normal,

1
2
[WD(λ

αλβ − µαµβ)];βα +
1
2

WD(λ
αλβ − µαµβ)bαγbγ

β + ∆(
1
2

WH) + (WK);βαb̃βα

+ WH(2H2 − K) + 2H(KWK −W)− 2Hλ = p + f · n.
(4.8)

The in-plane component of the force intensity is added to the expression for spa-

tial variation in tension field and the normal component of the force intensity

gets added to the pressure when compared with equilibrium conditions obtained

in (3.31) and (3.37). Since, the forces being applied by actin are distributed on

the domain of the surface, they do not affect the boundary forces and moment

derived in (3.41).
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4.2.2 Axisymmetric Deformations

We assume that the deformations during membrane invaginations are ax-

isymmetric. We simplify the equilibrium equations (4.7) and (4.8) for axisymmet-

ric surfaces parameterized by meridional arc length θ1 = s and azimuthal angle

θ2 = φ. For such a surface,

r(s, φ) = r(s)er(φ) + z(s)k, (4.9)

where r(s) is the radius from axis of revolution, z(s) is the elevation from a base

plane and (er, eφ, k) form the coordinate basis. Since (r′)2 + (z′)2 = 1, we can

define an angle ψ such that

r′(s) = cos ψ and z′(s) = sin ψ. (4.10)

In the above equations, superposed prime represents derivative with respect to

arc length such that, ()′ = ∂()/∂s. For BAR coated domain, we consider a contin-

uous distribution of proteins on the surface with crescent shaped dimers aligned

in the circumferential direction such that,

λ = −1
r

a2 = −eφ =, µ = a1 = cos ψer + sin ψk. (4.11)

Same as the example solved in chapter 3, we obtain that

2H =
sin ψ

r
+ ψ′,

2D =
sin ψ

r
− ψ′, and

K = H2 − (H − (sin ψ)/r)2.

(4.12)

The normal curvatures κλ and κµ are (sin ψ)/r and ψ′ respectively. For this

choice of λ and µ, the shape equation (4.8) for an axisymmetric geometry reduces

to

p + f · n =
L′

r
+ WH(2H2 − K)− 2H(W + λ−WDD) +

((WD)
′ cos ψ)

r
, (4.13)
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where

L/r =
1
2
[(WH)

′ − (WD)
′]. (4.14)

The equilibrium equation in the tangent plane (4.7) takes the form

λ′ = −W ′ − f · a1. (4.15)

The above equilibrium equations (4.13), (4.14), and (4.15) remain valid even

for the uncoated and the clathrin coated domain of the membrane as the effective

membrane properties under the influence of clathrin and BAR proteins and the

forces due to actin filaments, are specified via a hyperbolic tangent function (tanh)

as shown in Fig. 4.3. This ensures continuity and differentiability of the strain

energy density, W, at the interfaces of the protein coated membrane or the actin

forcing domain. In order to maintain a control over the domains over which

0 1 2 3 4 5 6 70

0.2

0.4

0.6

0.8

1

ā

F
(ā
)

Figure 4.3: Function used to specify domains over which prescribed curvature
and force fields generated key proteins are applied. F(ā)= tanh [10(ā−
ā1)] - tanh [10*(ā− ā2)] with ā1 = 2, ā2 = 5 (for illustration).

clathrin, actin and BAR proteins interact with the membrane, we transform the

independent variable from arclength s to area a with by using the relation da =

2πrds.

The strain energy density is considered of the form,

W = k̂1(a)(H − H0(a))2 + k̂2(a)(D− D0(a))2. (4.16)
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In the clathrin coated domain k̂1 = k̂B, k̂2 = 0 and D0 = 0.The above can also be

written as

W = k1(κλ − κ0
λ)

2 + k2(κµ − κ0
µ)

2 + 2k12(κλ − κ0
λ)(κµ − κ0

µ). (4.17)

The bending moduli in the {H, D} and the {κλ, κµ} framework are related by

the following expressions k1 = k2 = (k̂1 + k̂2) and k12 = (k̂1 − k̂2). We have

ignored the effect of Gaussian modulus by assuming that the associated modulus

is constant in all the domains (clathrin coated, BAR coated and bare) of the lipid

bilayer and the edge has zero geodesic curvature.

We non-dimensionalize the parameters used to define,

r̄ = r/R0, z̄ = z/R0, ā = a/2πR0
2, κ̄λ = R0κλ, W̄ = WR0

2/k0,

κ̄µ = R0κµ, H̄ = R0H, D̄ = R0D, K̄ = R0
2K, λ̄ = λR0

2/k0,

L̄ = R0L/k0, k̄1 = k̂1/k0, k̄2 = k̂2/k0, p̄ = pR0
3/k0, f̄ = (R0

3/k0)f.

(4.18)

Here, R0 = 25 nm is the normalizing radius of curvature and k0 = 20kBT is the

normalizing bending modulus. Using the above mentioned normalized parame-

ters and defining the partial derivative with respect to ā, (̊) = ∂()/∂ā, the system

of equations to be solved can be written as

˚̄r = sin ψ/r̄, ˚̄z = cos ψ/r̄, (4.19)

ψ̊ = κ̄λ/r̄, (4.20)

L̄/r̄2 =
1
2
( ˚̄WH − ˚̄WD), (4.21)

˚̄L = p̄ + f̄ · n− W̄H(2H̄2 − K̄) + 2H̄(W̄ + λ̄− W̄DD̄)− ˚̄WD cos ψ, (4.22)

and

˚̄λ = − ˚̄W − f̄ · a1. (4.23)
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In terms of the normalized principal curvatures, Eqs. (4.21)-(4.23) can be ex-

pressed as,

˚̄L =

(
p̄ + f̄ · n + (κ̄λ + κ̄µ)(W + λ̄)− 2κ̄2

λ[k̄1(κ̄λ − κ̄0
λ) + k̄12(κ̄µ − κ̄0

µ)]

− 2κ̄2
µ[k̄12(κ̄λ − κ̄0

λ) + k̄2(κ̄µ − κ̄0
µ)]

)
− W̊D cos ψ,

(4.24)

˚̄κλ =
(cos ψ)κ̄µ

r̄2 − (sin ψ cos ψ)

r̄3 , (4.25)

and

˚̄λ = −
(

˚̄k1(κ̄λ − κ̄0
λ)

2 − 2k̄1(κ̄λ − κ̄0
λ) ˚̄κ0

λ + ˚̄k2(κ̄µ − κ̄0
µ)

2 − 2k̄2(κ̄µ − κ̄0
µ) ˚̄κ0

µ

+ 2˚̄k12(κ̄λ − κ̄0
λ)(κ̄µ − κ̄0

µ)− 2k̄12(κ̄µ − κ̄0
µ) ˚̄κ0

λ − 2k̄12(κ̄λ − κ̄0
λ) ˚̄κ0

µ

)
,

(4.26)

where,

W̊D = (2˚̄k1 − 2˚̄k12)(κ̄λ − κ̄0
λ) + (2k̄1 − 2k̄12)( ˚̄κλ − ˚̄κ0

λ)

+ (2˚̄k12 − 2˚̄k2)(κ̄µ − κ̄0
µ) + (2k̄12 − 2k̄2)( ˚̄κµ − ˚̄κ0

µ),
(4.27)

and

˚̄κµ =
L̄

2k̄2r̄2 + ˚̄κ0
µ −

˚̄k2

k2
(κ̄µ − κ̄0

µ)−
k̄12

k2
( ˚̄κλ − ˚̄κ0

λ)−
˚̄k12

k2
(κ̄λ − κ̄0

λ). (4.28)

The expressions for the boundary forces and moments reduce to (using

(3.41)),

F̄τ = −τ̄M̄ = 0,

M̄ = 2k̄2(κ̄µ − κ̄0
µ) + 2k̄12(κ̄λ − κ̄0

λ),

F̄ν = k̄1(κ̄λ − κ̄0
λ)

2 + k̄2(κ̄µ − κ̄0
µ)

2 + 2k̄12(κ̄λ − κ̄0
λ)(κ̄µ − κ̄0

µ) + λ̄− κ̄µ(2k̄2(κ̄µ − κ̄0
µ)

+ 2k̄12(κ̄λ − κ̄0
λ)),

F̄n = −L̄/r̄.
(4.29)
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Boundary Conditions:

The system of equations to be solved comprises of six simultaneous ODE’s

(4.19), (4.20), (4.21), (4.22), and (4.23). We prescribe the following six boundary

conditions at the two ends of the simulation domain as shown in Fig. 4.4, where

n represents the normal vector to the surface. Parametrization of surface is done

in terms of area rather than arc length to control the area over which clathrin

and BAR proteins attach to the membrane and actin filaments apply force on the

membrane. Directions of increasing area is represented with purple arrow while

direction for increasing theta is represented in green.

i) For the near end at ā = 0

r̄ = 0, ψ = 0 and L̄ = 0 (due to reflection symmetry about z axis) (4.30)

ii) For the far end at ā = ā0

z̄ = 0, ψ = 0 and λ̄ = λ̄0 (prescribed far end tension) (4.31)

The ODE’s along with the boundary conditions are solved in Matlab using ‘bvp4c

solver’.

r̄
0 0.5 1 1.5 2

z̄

-0.6

-0.4

-0.2

0

0.2

✓
ā dr̄

dz̄

1

r̄
dā

n

Monday, December 15, 14

Figure 4.4: Simulation domain where the boundary conditions are prescribed at
the end points (ā = 0, ā = ā0).
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4.3 Results

4.3.1 Actin forces drive membrane invagination via instability

We first present the actin-driven growth of a vesicle for loading case I (Fig.

4.2b) in the absence of BAR proteins. We assume an initial invagination has been

created by a clathrin domain of 3200 nm2. This estimate of coat size is based on the

study of Kukulski et al. [7] in which clathrin was found to form a hemispherical

coat on vesicles with an average size of 6400 nm2. We assume that the resting

tension in the membrane is 0.5 mN/m. This estimate is computed from the Young-

Laplace relation based on an estimated turgor pressure of 1 KPa in yeast cells [84]

which have an average cell diameter of one micron [96]. The vesicle shapes are

computed in response to an increase in the intensity of the actin forces. Such

an increase in the force intensity (force per unit area) is expected to arise from

an increasing filament density which is observed experimentally in the vicinity

of the vesicle [14]. Similar to Oster and co-workers [78], we neglect the pressure

across the membrane as the force intensity due to actin is an order of magnitude

higher than the osmotic pressure.

Fig. 4.5 presents our first key finding. The top row shows the vesicle mor-

phology at three discrete stages of actin loading. As expected, the invagination

grows as the actin force intensity is increased. The first shape is the initial invagi-

nation driven by the clathrin coat in the absence of actin forces (Fig. 4.5a). As the

actin forces are increased, the invagination grows deeper reaching the geometry

shown in Fig. 4.5b in a continuous manner. However, a further slight increase

in the actin force leads to an unexpected shape change characterized by a drastic

increase in vesicle length and a concurrent reduction in the tubule width (Fig.

4.5c). To gain insight into this discontinuous shape transition, we plot the force-

deflection response of the vesicle (Fig. 4.5d). On the y−axis is the net vertical
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downward force due to actin filaments and on the x−axis is the vertical distance

of the tip of the vesicle from the initial flat configuration. The force-deflection

curve exhibits a classic snap-through instability and comprises of three phases. In

the first phase, the invagination grows monotonically as the force intensity is in-

creased. This branch tracks shape evolution from the geometry in Fig. 4.5a to Fig.

4.5b. After reaching a peak force of about 190 pN, the system jumps to a point

on the third linear branch with a much larger invagination length and positive

slope. This represents the discontinuous transition from the shape in Fig. 4.5b

to that in Fig. 4.5c while the intermediate shapes are skipped during the loading

phase. The second branch with a negative slope is unstable and is never realized

by the system. Such a force-deflection response with instability bears some sim-

ilarity to that computed for a tether pulled out of a vesicle by a point force [97]

as shown in Fig 4.6. However, unlike the force-deflection curve in Fig. 4.5, this

response exhibits a horizontal third branch. As the pulling force is increased, the

tether elongates linearly till it reaches a critical point, beyond which it undergoes

a first order shape transition and continues to elongate at a constant force. In-

stability leading to morphological changes has also been observed in the context

of closed vesicles. For example, Smith et al. simulated the unbinding of an ad-

hered vesicle under the action of an applied point load and predicted a pathway

that passes through metastable shapes characterized by discontinuous transition

[98]. Agrawal and Steigmann showed that a closed vesicle with a preferred spon-

taneous curvature undergoes a snap-through transition when subjected to point

loads [26].

The simulated shape just prior to instability is very similar to the shallow

50 nm invaginations observed in BAR (Rvs 161/167) mutant yeast cells by Briggs

and co-workers [7]. In addition, the computed and experimentally measured an-

gles between the membranes (defined in Fig. 4.7) during the shape evolution
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Figure 4.5: (a) Vesicle shape at vanishing actin force. (b) Vesicle shape prior to
instability. (c) Vesicle shape post instability. (d) Force-deflection plot.
The jump undergone by the vesicle is highlighted with a red arrow.
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Figure 4.6: Force-deflection response in the absence of clathrin coat and counter
forces in the planar membrane adjacent to the vesicle site. Resting
tension in the membrane is 0.5 mN/m.
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presented in Fig. 4.8 show a very good agreement. As the membranes become

parallel for a cylindrical tubule and the ones where neck has formed, the angle

becomes zero. In contrast, a highly elongated vesicle after the instability pre-

dicted by our model has not been experimentally observed in these BAR mutant

cells. Instead, as mentioned earlier, the experiments report a detached vesicle

directly after a shallow invagination. This leads to a natural question- why is

the computed post-instability shape not seen in experiments? To investigate this

issue, we compute the surface tension and the tangential stress in the vesicle as

it undergoes shape evolution. It should be noted that unlike soap films, the net

tangential stress in bilayer comprises of two components- the surface tension and

the bending-induced stress. The stresses for the shapes just prior to and after

instability are presented in Fig. 4.9. Fν is the net in-plane stress and λ is the

surface tension. The maximum tangential stress in the vesicle just before the

snap-through transition reaches a value of 1 mN/m. After the transition, the

in-plane stress increases to 17 mN/m. To get a sense of how high this stress is,

we compute an average estimate of the lysis tension of a bilayer. Since a typical

bilayer can withstand a maximum of about 3% areal strain and has an average

stretch modulus of 250 mN/m [5, 20], it can endure a rupture stress of around

7.5 mN/m. The peak stress in the post-instability vesicle far exceeds this critical

value and as a result, before the elongated vesicle is realized, the bilayer is likely

to undergo rupture. Since the tubular domain is narrow (≈ 5 nm in diameter),

the lipids in the inner monolayer are adjacent to each other. This can allow a

non-leaky scission to proceed via the hemifission state. Thus, a snap-through

instability followed by a high stress-induced scission provides a mechanism by

which shallow invaginations can end up directly as detached vesicles, providing

a quantitatively tested answer to the mystery observed in BAR mutant yeast cells.
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4.3.2 BAR proteins act as facilitators

We now simulate the effect of BAR coat proteins on shape evolution. To

this end, we incorporate the effect of BAR proteins starting from an intermediate

stage corresponding to a net vertical actin force that is lower than the critical force

needed to induce snap-through transition. Here, we present the results for a net

actin force of 160 pN (84% of the critical force value). To isolate the effect of BAR

scaffold on vesicle growth, we hold the actin force and the clathrin domain fixed

during the shape evolution. We follow the BAR dimer assembly trend observed

in yeast cells characterized by two main phases- the polymerization phase where

dimers self-assemble on actin-driven partial invaginations at a uniform rate, and

the depolymerization phase, where they begin to dissociate at a uniform rate

[78, 99]. This observed change in BAR concentration could be a consequence

of either an increase in the areal density of the dimers, or an increase in the

area over which polymerization has occurred, or both. For our simulations, we

allow both the areal density and area of BAR-coated domain to increase and

decrease simultaneously in the two phases (Fig. 4.10a). We further assume that
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the BAR coat-induced curvatures and stiffnesses are linearly proportional to the

dimer concentration. This assumption is based on the rationale that an increased

proximity between the dimers would lead to a stronger lattice with enhanced

remodeling capabilities. Such a behavior has been experimentally observed for

amphiphysins that bind onto vesicles at dilute concentrations [100].
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Figure 4.10: (a) Areal density and surface area of the BAR. Vesicle shapes dur-
ing the (b)-(c): polymerization phase and the (d) depolymerization
phase. (e)-(g) Observed vesicle shapes in wild-type yeasts [7].

Fig. 4.10 (b through g) shows our second key finding. In the BAR-driven

case, the shape transition occurs in a more gradual and controlled fashion, in

contrast to the rapid and discontinuous transition in the actin-driven case. This is
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a consequence of the stabilizing effect of the BAR scaffold as it increases the flex-

ural rigidity of the coated domain, thereby reducing it’s compliance to bending.

The BAR proteins transform the shallow invagination to a more U-shaped invagi-

nation as shown in Fig. 4.10b. An increase in the BAR density and area, leads

to vesicle elongation and a narrowing of the neck domain (Fig. 4.10c). Once past

this point, a decrease in the density and the area of the BAR coat has a counterin-

tuitive impact on the vesicle morphology. Instead of decreasing the invagination,

the removal of the BAR coat leads to a further elongation and narrowing of the

vesicle (Fig. 4.10d). This irreversibility suggests that the vesicle again undergoes

instability during the shape transition, this time triggered by the BAR scaffold.

Thus, for a prescribed concentration (hence spontaneous curvatures and stiff-

ness), and area of BAR proteins, there exist two vesicle geometries corresponding

to the two branches (polymerization and depolymerization). The two solution

branches meet at a unique set of BAR coat values. For the simulated case, this

turning point corresponds to a preferred radius of curvature of 15 nm in the cir-

cumferential direction, bending moduli of 200kBT, and an area of attachment of

3700 nm2. We compare the computed vesicle geometries with those observed by

Briggs et al. for wild type yeast cells (Figs. 4.10e-g). The shapes show a remark-

able agreement at three different stages of vesicle formation. In addition, we also

see a very good agreement between a few other geometric parameters computed

from our simulations and those measured by Briggs et al. which are presented in

Figs. 4.11 and 4.12.

What makes the post-instability geometries in Fig. 4.10 experimentally tractable

for visualization? To explain this, we again compute the stresses in the vesicle as

it undergoes BAR-driven invagination. Unlike the highly invaginated vesicle in

the actin-case, the in-plane stress for the shapes in Figs. 4.10b-d are well below

the rupture limit making them stable structures that could potentially be imaged
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type case. Experimental data points are obtained from [7].

75



in experiments. If we continue to decrease the BAR density and the BAR domain

size, we see enhanced elongation and narrowing of the tubule leading to higher

internal stresses. Eventually, a shape is obtained for which the in-plane stress

reaches the critical rupture stress (Fig. 4.13). All the intermediate shapes are

therefore conducive to imaging and might be the reason for a variation in vesicle

shapes observed in wild type yeast cells [7].
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Figure 4.13: Scission stage for BAR-driven invagination. (a) Vesicle shape, and (b)
Membrane stresses. Total in-plane stress Fν crosses the rupture stress
of 7.5 mN/m.

4.3.3 Detached vesicle shapes support stress-based scission

criterion

To further test the role of membrane stresses in CME, we simulate the ge-

ometry of detached vesicles for actin-driven and BAR-driven cases. Although

scission is an intricate process in itself involving participation of special scission

proteins or lipids, like dynamin in mammalian cells or PIP2 in yeast cells, we

identify the probable sites for scission based on the in-plane stress profile. We

hypothesize that the external work needed from scission proteins/lipids for exe-

cuting membrane scission would be minimal at these sites. We therefore detach
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the vesicle at the site of maximum in-plane stress and simulate the geometry of

the closed vesicle. In addition, we constrain the area and volume of the detached

membrane domain before and after scission. The geometries of the vesicles for the

actin-driven and BAR-driven cases are shown in Fig. 4.14. Both vesicles exhibit

a prolate geometry, unlike the nearly spherical vesicles observed in mammalian

cells at low resting tension values. The vesicle in the actin-driven case possesses

a more tear drop geometry. Interestingly, the vesicles observed by Briggs and

co-workers in yeast cells also fall into two categories- tear dropped vesicles and

prolate vesicles [7]. Their study also revealed a size variation in the wild type

and BAR mutant cells. For the wild type cells, the vesicles had an average surface

area of 6400 nm2 and in the BAR mutant cells, the average size reduced to 5000

nm2. These values are in excellent agreement with the computed vesicle sizes of

5500 nm2 and 6480 nm2 for the actin and BAR-driven cases, respectively based

on the in-plane stress criterion. In addition to this match in overall vesicle ge-

ometry, our model makes another prediction that is aligned with an observation

made by Kukulski et al. [7]. They found the detached vesicles to be coated with

both clathrin and BAR proteins. This finding is different from the general notion

that the detached vesicles are coated with just clathrin proteins. Our simulations

support the findings of Kukulski et al. [7]. As the peak stress is reached at the

interface of the BAR coat and the uncoated membrane tubule, the BAR coated

domain, along with the clathrin-coated domain, becomes part of the detached

vesicle. This match between the simulations and experimental data further bol-

sters the peak-stress based criterion for scission.
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Figure 4.14: Detached vesicles obtained for the actin-driven (left) and BAR-driven
(right) shape evolutions. The scission was assumed to occur at the
site where the in-plane stress in the vesicle reaches the rupture stress.

4.4 Discussion

4.4.1 Actin-BAR synergy imparts robustness to the endocytic

machinery

Our study on actin-driven vesicle growth predicts a net vertical force of about

190 pN for inducing instability at a resting tension of 0.5 mN/m (Figs. 4.5 and

4.15). In terms of force per actin filament, it amounts to an average force of ap-

proximately 2.4 pN which is distributed over an area of 1600 nm2 in the clathrin-

coated domain. This value is comparable to the compressive load required to

buckle actin filaments obtained experimentally by Kovar et al. [87] and Footer

et al. [86]. However, if the BAR proteins begin to polymerize before the critical

actin force is reached, the instability could be induced sooner. In fact, BAR pro-

teins establish a new transition pathway that connects the equilibrium solutions

on the first and the third branches of the actin-driven force-deflection curve (Fig.

4.15). The BAR association phase (in cyan in Fig. 4.15) induces the instability and

drives the initial membrane invagination. Once the instability has been triggered

by the BAR proteins and the BAR proteins begin to dissociate, the vesicle has
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a natural tendency to go to the equilibrium solution on the third branch of the

force-deflection curve corresponding to the initial actin force at which the BAR

proteins began to polymerize. Thus, once the BAR polymerization has tipped the

system over, BAR disassembly reduces the stabilization effect of the scaffold and

the vesicle growth becomes more actin-driven. It is for this reason that the disas-

sembly of BAR proteins leads to larger elongation and tubulation of a vesicle.

The above discussion highlights a remarkable synergy between the actin and

BAR proteins in driving vesicle growth. If we look at the above findings from a

slightly different perspective, we can link the timing of the BAR activity to the

functionality of the BAR proteins. Drubin and co-workers, for example, observed

short phases of BAR polymerization and depolymerization after an initial phase

of actin dynamics. Such a timing of the arrival of BAR proteins and their brief

stay can now be seen to be more function-oriented than coincidental. The BAR

proteins arrive after the actin forces set the stage and bring the system close to

instability. The BAR proteins serve to tip the system over and depart, allowing

instability driven transition to proceed. Thus, a short but well timed activity of

BAR proteins is enough to drive vesicle growth and facilitate CME.

If we take this argument a step further, we can predict a domain over which

actin and BAR proteins can synergistically drive vesicle growth (shaded area in

Fig. 4.15). The upper limit of this domain is defined by the pure actin-driven

path. To define a lower limit, we require the vesicle after BAR dissociation to

experience rupture stress for successful completion of CME. For this pathway, the

green domain represents BAR polymerization-dependent invagination and the

cyan domain represents BAR depolymerization-driven invagination. The actin

force required for this path is approximately 30% lower than the critical actin-

force needed to induce instability in the absence of BAR proteins (double-sided

vertical arrow). For any force above this threshold value and lower than the peak
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force (shaded region in Fig. 4.15), actin and BAR can synergistically drive vesicle

formation and set the stage for scission. This showcases an inherent robustness of

the endocytic machinery where the two proteins can work together to complete

CME. If, in addition to in-plane stresses, other scission effects, such as the line

tension induced by PIP2, are at play, the actin force requirement would decrease

further thereby expanding the domain of actin-BAR cooperativity. However, a

certain actin force would always be needed to create an initial invagination on to

which BAR dimers can polymerize making actin forces indispensable for CME in

tense plasma membranes.

4.4.2 Tension differentiates CME in yeast and mammalian cells

Although membrane tension has been postulated to be an important factor

leading to differences in yeast and mammalian cells, it has not yet been quantita-

tively examined. Mammalian cells on an average have a lower resting tension in

the plasma membrane because of a lower turgor pressure [10]. The tension esti-

mates vary from 0.003 mN/m in chick neurons [101] to 0.02 mN/m in molluscan

neurons [102]. For the case of vanishing tension, clathrin-driven vesicle forma-

tion has been shown to reproduce the experimental findings [28]. For higher

tension (0.5 mN/m), we have shown a good match between the simulations and

the shape evolution in yeast cells [7, 16]. We now present the results for an inter-

mediate value of 0.08 mN/m, and compare them with the experimental findings

of [11] in mammalian cells subjected to increased tension generated by either os-

motic swelling or stretching. In addition to lowering the resting tension value,

we increase the clathrin coat size to 20,800 nm2, which is in between the value

used for yeast cells and that for a closed spherical coat (32000 nm2 for a spherical

vesicle of radius 50 nm) that would ideally form in low tension environment in

mammalian cells.
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Figure 4.15: Synergistic roles of actin and BAR proteins in executing CME.
Shaded region shows the domain over which final vesicle obtained
after complete BAR dissociation experiences close to rupture stress.

The computed shapes with the above parameters are shown in Fig. 4.16. The

shape in Fig. 4.16a corresponds to a clathrin-induced invagination in the absence

of actin forces. It matches well with the stalled vesicles (Fig. 4.16b) observed

by Boulant et al. [11]. The shape in Fig. 4.16c is obtained after the occurrence

of the snap-through transition which bears resemblance to the mature vesicles

observed by Boulant et al. [11] (Fig. 4.16d). The good agreement between the

computed vesicle shapes at different tension values and those observed in yeast

and mammalian cells provides quantitative evidence that tension indeed is a key

factor that differentiates CME in the two cell types. The vesicle in Fig. 4.16c has

a maximum in-plane stress of 0.46 mN/m, almost an order of magnitude less

than the rupture tension, thereby, making it stable. We would like to note that

vesicles with elongated tubular domains have also been observed in dynamin-

mutant mammalian cells [103]. Since actin burst in mammalian cells (under low

resting tension) occurs just prior to scission, our work suggests that actin forces

lead to elongation of the vesicles but are unable to dissociate vesicles from the

plasma membrane due to inadequate scission stress.
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4.4.3 Tension governs vesicle morphology

If we generalize the actin-driven shape evolution studies to a wider range

of tension values, we find that the vesicle geometry and the initiation and extent

of discontinuous shape transition is a function of the resting tension in the mem-

brane. Fig. 4.17a shows the critical force needed to induce instability as a function

of the resting tension in the planar bilayer. These results have been obtained for

a fixed clathrin coat size of 3200 nm2. The critical force increases monotonically

with an increase in the resting tension. This trend is aligned with the recent stud-

ies by Basu et al. [104] and Aghamohammadzadeh et al. [10] that found actin

requirement to be proportional to the turgor pressure and hence, resting tension,

in yeast cells. In addition, we compute the invagination length (Z1, marked blue

in Fig. 4.17) at the critical point prior to and after transition. An increase in ten-

sion reduces the initial invagination depth at which the snap-through transition

occurs in a linear fashion (Fig. 9b). In contrast, the jump in the invagination

length (Z2 − Z1, marked green in Fig. 4.17) increases almost linearly as the ten-

sion is ramped up. Elongation of vesicles is also accompanied with a narrowing

of the width of the tubular domain. Thus, beyond a critical resting tension, in-

vaginated vesicles after instability would experience significant in-plane stresses

making them experimentally intractable until stabilized by BAR coat proteins.

For a clathrin area of 3200 nm2, we predict this critical value to be around 0.2

mN/m. These predictions can be tested in experiments by systematically varying

tension in the plasma membrane, either by osmotic swelling or stretching, and

imaging the vesicles.
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Figure 4.16: Vesicle shapes in (a) absence of actin, (b) MDCK cells subjected to
increased tension and no actin [11], (c) presence of actin, (d) MDCK
cells with increased tension [11]

4.4.4 Actin induced in-plane stress should be a key determinant

of scission

Our study provides strong evidence that in-plane stress should play an inte-

gral role in governing membrane scission. Our explanation of the discontinuous

transition observed in BAR mutant yeast cells and the vesicle shapes and sizes

generated by our model support this prediction. Although other mechanisms

have been implicated in scission, membrane stress could facilitate the topological

transition and determine the site for membrane scission. For example, Oster et

al. proposed the role of line tension in vesicle formation and scission in yeast

cells [77]. The arrival of synaptojanin in the later stages hydrolyzes PIP2 in the

clathrin coated domain giving rise to a line tension at the interface of the clathrin

and BAR coated domains. However, it is important to note that even in the ab-

sence of BAR proteins, scission events occur in around 75-80 % of the endocytic

83



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.850

100

150

200

250

Tension (mN/m)

Fo
rc

e 
(p

N
)

 

 

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.741

42

43

44

45

46

47

Tension(mN/m)

Z
1
(n

m
)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7150

200

250

300

350

400

450

Z
2
−

Z
1
(n

m
)

 

 

(b)

Figure 4.17: Effect of resting tension. (a) The critical actin force required to induce
instability. (b) The invagination length prior to instability (Z1) and
the jump in the invagination length (Z2 − Z1)

events [7]. This alludes to a role of additional mechanisms in executing scission.

We propose actin-induced in-plane stress to be a potential candidate. In wild

type mammalian cells, since actin burst occurs in the latter part of endocytosis,

actin-induced stress could assist dynamin in scission. In addition, actin-induced

in-plane stress in the neck domain could facilitate dynamin polymerization [105].

This idea is supported by the recent work of Campelo et al. [106], which predicts

that high stress facilitates insertion of shallow proteins within the bilayer. Thus,

in-plane stress could act as a facilitator for dynamin-induced scission.
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4.4.5 Limitations

The major limitation of our mathematical framework is that it is not equipped

to model topological changes and hence, cannot be used to simulate vesicle scis-

sion. It is for this reason, the model predicts highly elongated vesicles after snap-

through transition that would otherwise undergo scission. The other limitation of

our study is that the actin loading scenarios modeled are based on the proposals

made in the literature and might not be very accurate. However, the findings

made above are true for both the distributed network and bundle type actin load-

ings (Cases I and II in Fig. 4.2b). Barring some minor quantitative differences, the

overall nature of the force-deflection response of the vesicle remains unchanged

for the first two cases (Fig. 4.18). This suggests that our predictions should hold

for a wide variation in the actin loading mechanisms. Only the horizontal loading

(Case III in Fig. 4.2b) requires a much higher actin force (almost twice), induces

negative in-plane stress in the tubule region and leads to short spherical vesicles

typically not seen in yeast cells (Fig. 4.18). These major differences indicate that

a purely horizontal force driven vesicle formation is not likely to exist in the high

tension regime. The shape evolutions for cases II and III are presented in Figs.

4.19 and 4.20.
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predicts smaller invaginations and larger forces to induce instability.

−50 0 50

−40

−20

0

20

40

z
(n

m
)

x (nm)

(a)

−40 −20 0 20 40

−50

−40

−30

−20

−10

0

10

z
(n

m
)

x (nm)

(b)

−200 0 200
−500

−400

−300

−200

−100

0

z
(n

m
)

x (nm)

(c)

500 1000 1500−5

0

5

10

15

20

25

30

S
tr
es
se
s
(m

N
/m

)

Area (nm2)

 

 

Fν
λ

(d)

Figure 4.19: Actin-driven vesicle growth for actin loading II. (a)-(c) Vesicle shapes
at different stages. (d) Stress profile for the shape after snap-through
instability shown in (c). The behavior is almost similar to loading I.
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Figure 4.20: Actin-driven vesicle growth for actin loading III. (a)-(c) Vesicle
shapes. (d) Stress profile for the shape after instability shown in (c).
Peak stress in the tubular domain in (c) reaches only 0.25 mN/m.

87



Chapter 5 Stability of Lipid Membranes

5.1 Introduction

The lipid bilayers exhibit a wide variety of morphologies, ranging from

spherical vesicles to spherocylindrical shapes in mitochondria to much more com-

plex shapes in endoplasmic reticulum. These shapes undergo drastic changes in

response to mechanical, electrical or thermal stimuli during numerous cellular

processes [108, 109, 110], making it pertinent to study the stability of these versa-

tile structures to model and comprehend their shape evolutions.

Several fundamental studies have investigated the stability of lipid mem-

branes. A rigorous derivation of the second variation for homogenous mem-

branes with quadratic strain energy (Helfrich-Canham energy) has been done in

[112, 113, 114, 115, 116]. The stability analysis has been applied to investigate

the shape transitions of spheres and cylinders. A classic example is the loss of

stability in membrane tubules, known as Pearling instability [117, 118]. The sta-

bility of flat discs have been recently studied in the context of HDL (high density

lipoproteins) [119] and disc-to-vesicle shape transition [120].

While the above studies have given fundamental insights into the stability

of homogeneous membranes with quadratic energy, there is a need to extend

the framework to study systems with heterogeneous properties and higher or-

der bending energies. The impact of heterogeneity on equilibrium configurations

has been revealed in [28, 89]. The effect of inhomogeneity-dependent instability

was also shown to be a key factor in determining cellular transport via clathrin-

mediated endocytosis in the previous chapter [121]. In addition, generalized

strain energies have been used to study sorting of lipids [55, 122] (where stiff-

ness of tubular membranes is observed to be a function of curvature) and phase
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transitions [123]. In this context, the Legendre-Hadamard condition for stabil-

ity of generalized fluidic shells was derived in [19, 123, 124] and the stability of

fluidic surfaces with multiple phases was investigated in [125]. In this work, we

extend the model to account for strain energy that can have arbitrary dependence

on the mean curvature and Gaussian curvature. In addition, our model allows for

material properties such as bending moduli or preferred curvatures to undergo

spatial variation due to heterogeneities induced by lipid composition and/or pro-

tein interactions [28]. We note that stability in continuous systems is only defined

with respect to a particular norm and choices of different norms could lead to

different results regarding inferring the stability, the details of which have been

discussed by Como and Grimaldi in [126]. We, as others, use the second Gateaux

derivative of the energy functional to define the stability criteria. Thus, the sta-

bility is examined with respect to a weaker norm (also mentioned as the energy

norm) for which the variations in the position and its higher order derivatives are

assumed to be bounded.

5.2 The Variations

Let r(θα) be the position of a material point on the surface where θα are the

surface coordinates that parametrize the surface. The tangent vectors at any point

on the surface are given by r,α = aα. The strain energy density of an isotropic

membrane depends on the mean curvature H and Gaussian curvature K as dis-

cussed in Chapter 2. Due to heterogeneities, the strain energy density can explic-

itly depend on θα [28]. In the presence of area and volume constrains, the energy

of an isotropic membrane is given by

E =
∫

ω
W(H, K; θα) da +

∫
ω

λ(θα) da− pV(ω), (5.1)
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where λ(θα) is the local Lagrange multiplier associated with local area constraint

commonly known as surface tension, p is the Lagrange multiplier associated with

the volume constraint and is commonly referred to as the transmembrane pres-

sure.

The variation of position vector is given by,

ṙ = u = uαaα + un. (5.2)

As derived in chapter 2, using (2.74), (2.89), (2.75) and (2.90), this yields the

following variations of the first and second fundamental form,

ȧαβ = uα;β + uβ;α − 2ubαβ,

ḃαβ = uλ
;αbλβ + uλ

;βbλα + uλbλα;β + u;αβ − ubαλbλβ.
(5.3)

Using the above relations, the variations of the mean curvature, Gaussian

curvature and scalar J, can be computed to be,

Ḣ = uαH,α +
1
2
(∆u) + u(2H2 − K),

K̇ = uαK,α + 2HKu + b̃αβu;αβ, and

J̇
J
= uα

;α − 2uH.

(5.4)

With the help of these variations and the procedure outlined in chapter 2,

the first variation of E can be expressed as

Ė =
∫

ω

{
− uα

(
λ,α +

∂W
∂θα

)
+ uG

}
da, (5.5)

where

G =
1
2

∆WH + (WK);αβb̃αβ + WH(2H2 − K) + 2H(KWK −W)− 2Hλ− p. (5.6)

Above, we have suppressed the boundary terms since we restrict our attention to

closed geometries in the current study.
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The first variation in Eq. (5.5) then furnishes the equilibrium equations in

the tangent plane

λ,α = −∂W
∂θα

(5.7)

and along the surface normal

G = 0, (5.8)

popularly known as the shape equation.

5.3 The second variation

The second variation of the position field can be expressed as

r̈ =
∂2r
∂ε2

∣∣∣∣
ε=0

= v = vαaα + vn, (5.9)

where vα and v are the tangential and normal components and are independent

of the vector components of the first variation. The second variation of the energy

E can be computed from Eq. (5.5) and is given by

Ë =
∫

ω

{
− u̇α

(
λ,α +

∂W
∂θα

)
− uα ∂Ẇ

∂θα
+ u̇G + uĠ

}
da (5.10)

subject to the incompressibility constraint,

J̇
J
= uα

;α − 2uH = 0, (5.11)

and the volumetric constraint

V̇ =
∫

ω
u da = 0. (5.12)

The variation of the tangential components of the first variation of the position

field u is given by

u̇α = u̇ · aα + u · ȧα,

= (v · aα) + (u · u,β)aαβ − (u · aγ)aαλ ȧλγ

(5.13)
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where
ȧα = aαβȧβ + ȧαβaβ, and

ȧαβ = −aαλaβγ ȧλγ.
(5.14)

Using the relation,

u · u,β =
1
2
(u · u),β = uηuη;β + uu,β (5.15)

in Eq. (5.13), we obtain

u̇α = vα + aαβ

(
uηuη;β + uu,β

)
− uγaαλ

(
uλ;γ + uγ;λ − 2ubλγ

)
,

= vα + uu,βaαβ − uγuα
;γ + 2uuγbα

γ.

(5.16)

Next, we compute the variation of the normal component of the first variation of

the position field,

u̇ = u̇ · n + u · ṅ,

= v− uαu,α − uαuγbγα.
(5.17)

Above, the variation of the surface normal has been be expressed as [127],

ṅ = −(n · u,α)aα. (5.18)

To proceed further, we define Iα(H, K; θγ) = ∂W
∂θα and compute its variation

İα = (Iα)H Ḣ + (Iα)KK̇

=
∂WH

∂θα

(
uγH,γ +

(∆u)
2

+ u(2H2 − K)
)
+

∂WK

∂θα

(
uγK,γ + 2uHK + b̃γβu;γβ

)
.

(5.19)

Next, we compute the variation of G. We decompose its variation into tangential

and normal parts denoted by Ġt and Ġn, respectively.

5.3.1 Tangential variations

The tangential variation of the first term of G in Eq. (5.6) can be written as

˙∆WH = ˙(WH);αβaαβ + (WH);αβ ȧαβ, (5.20)
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where (̇) signifies the variation of the overall quantity within the parentheses.

Expanding the first term in the above equation, we get

˙(WH);αβ =
˙

(WH),αβ − (WH),λΓλ
αβ. (5.21)

Here, we note the fact that variational derivative (signified by the superposed dot)

does not commute with the covariant derivative but it does commute with the

derivative with respect to parameterizing variables θα. Thus, the above relation

can be rewritten as,

˙(WH);αβ = (ẆH),αβ − (ẆH),λΓλ
αβ − (WH),λΓ̇λ

αβ. (5.22)

Substituting Eq. (5.22) in Eq. (5.20) yields

˙∆WH = (ẆH);αβaαβ − (WH),λΓ̇λ
αβaαβ + (WH);αβ ȧαβ, (5.23)

where the variation of the Christoffel symbols are given by ([113])

Γ̇λ
αβ =

1
2

aλη

{
ȧηβ;α + ȧηα;β − ȧαβ;η

}
. (5.24)

The tangential variations of aαβ, bαβ, H, K and J are given by (from chapter 2)

ȧαβ = uα;β + uβ;α; ḃαβ = uλ
;βbλα + uλ

;αbλβ + uλbλα;β;

Ḣ = uαH,α; K̇ = uαK,α;
J̇
J
= uα

;α.
(5.25)

Using Eqs. (5.14), (5.24) and (5.25), Eq. (5.23) can be expressed as

˙∆WH = (WHH Ḣ + WHKK̇);αβaαβ − (WH),λaλη(uη;αβ + uα;ηβ

− uα;βη)aαβ − (WH);αβaαλaβγ(uλ;γ + uγ;λ).
(5.26)

With the help of Eq. (5.25), Eq. (5.26) can be further rearranged and expressed as

˙∆WH =

(
uγ(WH),γ − uγ ∂WH

∂θγ

)
;αβ

aαβ − (WH),λuλ
;αβaαβ

− (WH),λaλη(uβ
;ηβ − uβ

;βη)− 2uα
;γaβγ(WH);αβ.

(5.27)
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To simplify the above relation, we use the definition of Riemann curvature tensor

Rα
βγη = Kaαλ

{
aλγaβη − aληaβγ

}
(5.28)

and the relationship

Rα
βηγuβ = uα

;γη − uα
;ηγ (5.29)

which holds for any arbitrary vector field lying in the tangent plane. With the

help of Eq. (5.29) along with the linearity of the Laplace operator and the chain

rule for covariant derivatives, Eq. (5.27) can be written as

˙∆WH =

(
uγ

;αβ(WH),γ + 2uγ
;α(WH);γβ + uγ(WH);γαβ

)
aαβ − ∆

(
uγ ∂WH

∂θγ

)
− (WH),λuλ

;αβaαβ − uγ(WH),λaληRβ
γβη − 2uα

;γaβγ(WH);αβ

= uγ((WH),αaαβ);γβ − ∆
(

uγ ∂WH

∂θγ

)
− uγ(WH),λaληRβ

γβη.

(5.30)

To derive Eq. (5.30)2, we have used the fact that metric is covariant constant

and torsion free. As a result, for any scalar field ‘(WH)’ defined on the surface,

(WH);αβ = (WH);βα. Using the definition of the covariant derivative of a vector

field along with Eqs. (5.29) and (5.28), Eq. (5.30) can be further reduced to

˙∆WH = uγ

[
((WH),αaαβ);γβ − ((WH),αaαβ);βγ

]
+ uγ(∆WH),γ − ∆

(
uγ ∂WH

∂θγ

)
− uγ(WH),λaληRβ

γβη

= uγ(WH),αaαηRβ
ηβγ + uγ(∆WH),γ − Rβ

γβηuγ(WH),λaλη − ∆
(

uγ ∂WH

∂θγ

)
= uγ(∆WH),γ − ∆

(
uγ ∂WH

∂θγ

)
.

(5.31)

The rightmost term in the above equation arises from the inhomogeneity in the

lipid membrane.

Next, we compute the tangential variation of (WK);αβb̃αβ in Eq.(5.6). We use the

Cayley-Hamilton theorem in the form

b̃αβ = 2Haαβ − bαβ (5.32)
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to obtain

˙
(WK);αβ(2Haαβ − bαβ) = 2Ḣ∆WK + 2H ˙∆WK −

˙
(WK);αβbαβ. (5.33)

Analogous to the variation of the surface Laplacian of WH, we can write

˙∆WK = uγ(∆WK),γ − ∆
(

uγ ∂WK

∂θγ

)
. (5.34)

Substituting Eqs. (5.25) and (5.32) in Eq. (5.33) yields

˙
(WK);αβ(2Haαβ − bαβ) = 2uγ

(
H∆WK

)
,γ
− ˙
(WK);αβbαβ − 2H∆

(
uγ ∂WK

∂θγ

)
.

(5.35)

The second term on the RHS of Eq. (5.35) can be expressed as

˙
(WK);αβbαβ =

(
(ẆK);αβ − (WK),λΓ̇λ

αβ

)
bαβ + (WK);αβḃαβ. (5.36)

Next, we substitue Eqs. (5.3), (5.14), (5.24) and (5.29) in Eq. (5.36) to obtain,

˙
(WK);αβbαβ =

(
uγ(WKKK̇ + WKH Ḣ)

)
;αβ

bαβ − 1
2
(WK),λaλη

{
ȧηβ;α + ȧηα;β

− ȧαβ;η

}
+ (WK);αβḃλγaαλaβγ + 2(WK);αβbλγaβγ ȧαλ

=

(
uγ(WK),γ

)
;αβ

bαβ −
(

uγ ∂(WK)

∂θγ

)
;αβ

bαβ − (WK),λbαβaλη(uη;βα + uβ;ηα

− uα;βη) + (WK);αβaαλaβγ

{
uη

;γbηλ + uη
;λbηγ + uηbηγ;λ

}
− 2(WK);αβbβ

λaαηaλθ(uθ;η + uη;θ)

=

(
uγ

;αβ(WK),γ + 2uγ
;α(WK);γβ + uγ(WK);γαβ

)
bαβ − uλ

;αβ(WK),λbαβ

− (WK),λbα
βaλη(uβ

;ηα − uβ
;αη) + uη(WK);αβ(bαβ);η − 2uα

;θ(WK);αβbβθ

= uγ(WK);βγαbαβ − (WK),λbα
βaληRβ

γαηuγ + uη(WK);αβ(bαβ);η

− bαβ

(
uγ ∂WK

∂θγ

)
;αβ

.

(5.37)
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We use the fact that the metric is torsion free and add-and-subtract uγ(WK);αβγbαβ

in the above equation to obtain,

˙
(WK);αβbαβ = uγ

{
((WK),βaβη);γα − ((WK),βaβη);αγ

}
bα

η

− (WK),λbα
βaληRβ

γαηuγ + uγ(WK);αβγbαβ

+ uγ(WK);αβ(bαβ);γ − bαβ

(
uγ ∂WK

∂θγ

)
;αβ

.

(5.38)

With the help of Eqs. (5.19) and (5.29), Eq. (5.38) can be further reduced to

˙
(WK);αβbαβ = uγ

(
(WK);αβbαβ

)
;γ
− bαβ

(
uγ ∂WK

∂θγ

)
;αβ

. (5.39)

We then substitute Eq. (5.39) into Eq. (5.35) to obtain

˙
(WK);αβ(2Haαβ − bαβ) = uγ

(
2H∆WK

)
,γ
− uγ

(
(WK);αβbαβ

)
,γ

+ bαβ

(
uγ ∂WK

∂θγ

)
;αβ

− 2H∆
(

uγ ∂WK

∂θγ

)
= uγ

(
(WK);αβb̃αβ

)
;γ
− b̃αβ

(
uγ ∂WK

∂θγ

)
;αβ

.

(5.40)

Similar to the tangential variation of ∆(WH), the second term in Eq. (5.40) arises

because of inhomogeneity in the membrane properties.

Next, we compute the tangential variations of the remaining terms of ‘G’ in Eq.

(5.6). These include

˙WH(2H2 − K) = (WHH Ḣ + WHKK̇)(2H2 − K) + WH(4HḢ − K̇)

= uγ

(
WH(2H2 − K)

)
,γ
− uγ

(
∂WH

∂θγ

)
(2H2 − K) and

(5.41)

˙2H(KWK −W) = 2Ḣ(KWK −W) + 2H(K̇WK + KWKH Ḣ + KWKKK̇

−WH Ḣ −WKK̇)

= uγ

(
2H(KWK −W)

)
,γ
− uγ2H

(
K

∂WK

∂θγ
− ∂W

∂θγ

)
.

(5.42)
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and

˙2λH = 2λḢ = uγ(2λH),γ − 2uγλ,γH. (5.43)

We now substitute Eqs. (5.31), (5.40), (5.41), (5.42) and (5.43) in Eq. (5.6), to

compute the tangential variation of G (Ġt)

Ġt = uγ

{
1
2

∆WH + (WK);αβb̃αβ + WH(2H2 − K) + 2H(KWK −W)− 2λH

− p
}

,γ
−
{

1
2

∆
(

uγ ∂WH

∂θγ

)
+ b̃αβ

(
uγ ∂WK

∂θγ

)
;αβ

+ uγ(2H2 − K)
∂WH

∂θγ

+ 2uγH
(

K
∂WK

∂θγ
− ∂W

∂θγ
− λ,γ

)}
.

(5.44)

Above, we have used the fact that pressure field is uniform on the surface. Using

Eq. (5.6), Eq. (5.44) can be expressed as,

Ġt = uγG,γ −
{

1
2

∆
(

uγ ∂WH

∂θγ

)
+ b̃αβ

(
uγ ∂WK

∂θγ

)
;αβ

+ uγ(2H2 − K)
∂WH

∂θγ

+ 2uγH
(

K
∂WK

∂θγ
− ∂W

∂θγ
− λ,γ

)}
.

(5.45)

Other than the terms arising from inhomogeneity, Eq. (5.45) is similar to the

tangential variations of an arbitrary scalar surface field ‘ f (r(θα))’ derived by

Capovilla et. al [113].

5.3.2 Normal Variations

For normal variations u = un, Eqs. (5.3) and (5.4) yield [27]

ȧαβ = −2ubαβ; ḃαβ = u;αβ − ubγ
α bγβ;

Ḣ =
1
2
(∆u) + u(2H2 − K); K̇ = u;αβb̃αβ + 2uHK.

(5.46)

First, we use Eq. (5.23) to compute the normal variation of ∆(WH). With the help

of Eq. (5.46), we compute the first term on the RHS of Eq. (5.23) and is given by

(ẆH);αβaαβ =

{
WHH Ḣ + WHKK̇

}
;αβ

aαβ

=

{
WHH

(
1
2

∆u + u(2H2 − K)
)
+ WHK

(
u;αβb̃αβ + 2uHK

)}
;αβ

aαβ.
(5.47)

97



We use Eq. (5.24) along with Cayley-Hamilton theorem and the fact that metric

tensor is covariant constant to compute the second term in Eq. (5.23)

− (WH),λΓ̇λ
αβaαβ = (WH),λaαβaλη((2ubηα);β − (ubαβ);η)

= (WH),λ

(
(2uHaβλ);β − (2ub̃βλ);β

)
.

(5.48)

We again use Eq. (5.46) to compute the third term in Eq. (5.23)

(WH);αβ ȧαβ = 2u(WH);αβbαβ. (5.49)

Finally, we substitute Eqs. (5.47), (5.48) and (5.49) in Eq. (5.23) to obtain

˙∆WH =

{
WHH

(
1
2

∆u + u(2H2 − K)
)
+ WHK

(
u;αβb̃αβ + 2uHK

)}
;αβ

aαβ

+ (WH),λ

(
(2uHaβλ);β − (2ub̃βλ);β

)
+ 2u(WH);αβbαβ.

(5.50)

Next, we use Eq. (5.46) to compute the normal variation of (WK);αβb̃αβ given by

˙
(WK);αβ(2Haαβ − bαβ) = (ẆK);αβb̃αβ − (WK),λΓ̇λ

αβb̃αβ + (WK);αβ
˙̃bαβ, (5.51)

where

(ẆK);αβb̃αβ =

{
WKH

(
1
2

∆u + u(2H2 − K)
)

+ WKK

(
u;αβb̃αβ + 2uHK

)}
;αβ

b̃αβ,
(5.52)

(WK),λΓ̇λ
αβb̃αβ = −(WK),λb̃αβaλη

[
(2ubηα);β − (ubαβ);η

]
= 0, (5.53)

and
˙̃bαβ = −εαλεβγ ȧ

a
bλγ + εαλεβγḃλγ

= 4uHb̃αβ + εαλεβγ(u;λγ − ubη
λbηγ).

(5.54)

Substituting Eqs. (5.52), (5.53) and (5.54) in Eq. (5.51) furnishes

˙
(WK);αβ(2Haαβ − bαβ) =

{
WKH

(
1
2

∆u + u(2H2 − K)
)

+ WKK

(
u;αβb̃αβ + 2uHK

)}
;αβ

b̃αβ + 4uH(WK);αβb̃αβ

+ εαλεβγ(u;λγ − ubη
λbηγ)(WK);αβ.

(5.55)
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Next, we use Eq. (5.46) to compute the normal variations of the remaining terms

of G in Eq. (5.6) which are given by

˙WH(2H2 − K) + 2H(KWK −W) =

{
WHH(2H2 − K) + 2HWH + 2KWK

+ 2HKWHK − 2W
}

Ḣ +

{
WHK(2H2 − K)−WH + 2HKWKK

}
K̇,

= (∆u)
{

1
2

WHH(2H2 − K) + HWH + HKWHK + (KWK −W)

}
+ u;αβb̃αβ

{
2HKWKK + (2H2 − K)WHK −WH

}
+ u

{
WHH(2H2 − K)2

+ WKK(2HK)2 + 4HK(2H2 − K)WHK + 4HWH(H2 − K)

+ 2(2H2 − K)(KWK −W)

}
,

(5.56)

and

2λḢ = λ(∆u + 2u(2H2 − K)). (5.57)

Combining Eqs. (5.50), (5.55), (5.56) and (5.57) yields the total normal variation of

G, which after some rearrangement can be written as

Ġn =
1
2

{
∆
[

WHH

(
1
2

∆u + u(2H2 − K)
)]

+ ∆
[

WHK

(
u;αβb̃αβ + 2uHK

)]
+ (WH),λ

(
(2uH);βaβλ − 2u,βb̃βλ

)}
+

{
WKH

[
1
2

∆u + u(2H2 − K)
]

+ WKK

[
u;λγb̃λγ + 2uHK

]}
;αβ

b̃αβ + εαλεβγ(WK);αβ(u;λγ − ubη
λbηγ)

− u(WH);αβb̃αβ + (∆u)
{

1
2

WHH(2H2 − K) + HWH + HKWHK

+ (KWK −W)

}
+ u;αβb̃αβ

{
2HKWKK + (2H2 − K)WHK −WH

}
+ u

{
WHH(2H2 − K)2 + WKK(2HK)2 + 4HK(2H2 − K)WHK − 4H3WH

− 2(2H2 + K)(KWK −W)

}
− 2λ

{
1
2

∆u− u(2H2 + K)
}
+ 4uH(G + p).

(5.58)
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5.3.3 Total Variations

We now combine Eqs. (5.16), (5.17), (5.19), (5.45), (5.58) to compute the second

variation of E

Ë =
∫

ω

{
− (vα + uu,βaαβ − uγuα

;γ + 2uuγbα
γ)

(
λ,α +

∂W
∂θα

)
− uα

{
∂WH

∂θα

(
uγH,γ +

1
2

∆u + u(2H2 − K)
)
+

∂WK

∂θα

(
uγK,γ + 2uHK

+ u;γβb̃γβ

)}
+ (v− uγu,α − uαuγbγα)G + uuγG,γ − u

{
1
2

∆
(

uγ ∂WH

∂θγ

)
+ b̃αβ

(
uγ ∂WK

∂θγ

)
;αβ

+ uγ(2H2 − K)
∂WH

∂θγ
+ 2uγH

(
K

∂WK

∂θγ
− ∂W

∂θγ
− λ,γ

)}

+ u

[
1
2

{
∆
[

WHH

(
1
2

∆u + u(2H2 − K)
)]

+ ∆
[

WHK

(
u;αβb̃αβ + 2uHK

)]
+ (WH),λ

(
(2uH);βaβλ − 2u,βb̃βλ

)}
+

{
WKH

[
1
2

∆u + u(2H2 − K)
]

+ WKK

[
u;αβb̃αβ + 2uHK

]}
;αβ

b̃αβ + εαλεβγ(WK);αβ(u;λγ − ubη
λbηγ)

− u(WH);αβb̃αβ + (∆u)
{

1
2

WHH(2H2 − K) + HWH + HKWHK

+ (KWK −W)

}
+ u;αβb̃αβ

{
2HKWKK + (2H2 − K)WHK −WH

}
+ u

{
WHH(2H2 − K)2 + WKK(2HK)2 + 4HK(2H2 − K)WHK − 4H3WH

− 2(2H2 + K)(KWK −W)

}
− 2λ

{
1
2

∆u− u(2H2 + K)
}

+ 4uH(G + p)

]}
da.

(5.59)
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Since at equilibrium, Eqs. (5.7) and (5.8) are satisfied and G,γ = 0, (as G = 0

is identically satisfied on all the material points on the surface), Ë reduces to

Ë =
∫

ω

{
− uα

{
∂WH

∂θα

(
uγH,γ +

1
2

∆u + 2u(2H2 − K)
)
+

∂WK

∂θα

(
uγK,γ

+ 4uHK + u;γβb̃γβ

)}
− u

{
1
2

∆
(

uγ ∂WH

∂θγ

)
+ b̃αβ

(
uγ ∂WK

∂θγ

)
;αβ

}

+ u

[
1
2

{
∆
[

WHH

(
1
2

∆u + u(2H2 − K)
)]

+ ∆
[

WHK

(
u;αβb̃αβ + 2uHK

)]
+ (WH),λ

(
(2uH);βaβλ − 2u,βb̃βλ

)}
+

{
WKH

[
1
2

∆u + u(2H2 − K)
]

+ WKK

[
u;αβb̃αβ + 2uHK

]}
;αβ

b̃αβ + εαλεβγ(WK);αβ(u;λγ − ubη
λbηγ)

− u(WH);αβb̃αβ + (∆u)
{

1
2

WHH(2H2 − K) + HWH + HKWHK

+ (KWK −W)

}
+ u;αβb̃αβ

{
2HKWKK + (2H2 − K)WHK −WH

}
+ u

{
WHH(2H2 − K)2 + WKK(2HK)2 + 4HK(2H2 − K)WHK − 4H3WH

− 2(2H2 + K)(KWK −W)

}
− 2λ

{
1
2

∆u− u(2H2 + K)
}
+ 4uHp

]}
da.

(5.60)

This is the generalized second variation of E at an equilibrium configuration. For

a system to be stable, Ë > 0 subject to the incompressibility constraint

uα
;α = 2uH, (5.61)

and the volumetric constraint,

∫
ω

u da = 0. (5.62)

We note here that although we have not restricted on the form of strain energy

density, W, it has to satisfy the Legendre-Hadamard condition for stability, as

derived in [123].
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5.4 Comparison with other models

We specialize Eq. (5.60) for the Helfrich-Canham energy given by

W = k(H − C0(θ
α))2 + k̄K. (5.63)

Above, k is the local bending modulus of the membrane and k̄ is the Gaussian

moduli. C0(θ
α) is the spatially varying spontaneous curvature field which could

potentially arise because of a heterogeneous composition of a bilayer or spatially

varying interactions with membrane remodeling proteins. Substituting Eq. (5.63)

in Eq. (5.60) and invoking the Gauss-Bonnet theorem yields

Ë =
∫

ω

{
uα

{
2k

∂C0

∂θα

(
uγH,γ +

1
2

∆u + 2u(2H2 − K)
)}

+ u
{

k∆
(

uγ ∂C0

∂θγ

))}

− 2u;αβkb̃αβ(H − C0) + u

[{
∆
[

k
(

1
2

∆u + u(2H2 − K)
)]

+ 2k(H − C0),λ

(
(2uH);βaβλ − 2u,βb̃βλ

)}
+ (∆u)

{
k(2H2 − K)

+ 2kH(H − C0)− k(H − C0)
2 − λ

}
+ u

{
k(2H2 − K)2 − 4kH3(H − C0)

+ 2k(2H2 + K)(H − C0)
2 − 2k(H − C0);αβb̃αβ + 2λ(2H2 + K) + 4Hp

}]}
da.

(5.64)

For a homogeneous membrane with a uniform preferred curvature C0, Eq. (5.64)

further reduces to

Ë =
∫

ω

{
u

[{
k∆
[(

1
2

∆u + u(2H2 − K)
)]

+ kH,λ

(
(2uH);βaβλ − 2u,βb̃βλ

)}
+ (∆u)

{
k(3H2 − K)− λ− k(C0)

2
}
− 2u;αβkb̃αβ(H − C0) + u

{
kK(K− 2H2)

+ 2(2H2 + K)(λ + kC2
0) + 4Hp− 4kHKC0 − kH;αβb̃αβ

}]}
da.

(5.65)

For C0 = 0 and W = k(2H)2, the above equation reduces to the one derived by

Guven and co-workers in [113]. As is expected, at equilibrium, the tangential vari-
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ations do not play a role in the stability criterion for a homogeneous membrane. It

is, however, important to note that for the cases with incompressibility constraint,

the tangential perturbations are related to the normal perturbations through Eq.

(5.61) (unless the surface at equilibrium is a minimal surface with H=0). As a

consequence, Eq. (5.61) can be used to write the entire second variation in terms

of the tangential variation and its derivates.
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Chapter 6 Summary and Future Work

6.1 Summary

In this study, we derive the theory of lipid membranes to model the effect

of orthotropic curvature-inducing proteins. The extended theory was used to

investigate the individual roles of actin and BAR proteins in executing CME in

high membrane tension environment. We presented a new snap-through insta-

bility driven remodeling mechanism that governs vesicle shape evolution. We

showed how actin-BAR synergy imparts robustness to the endocytic machinery.

Since actin dynamics plays an integral role in other endocytic pathways such as

phagocytosis, macropinocytosis and caveolae-mediated endocytosis, it is proba-

ble that such an instability could be at play in these processes. Our study reveals

that a presence of membrane tension and actin forces are reasons enough to in-

duce an instability-driven shape transformation. In addition, since other cellular

processes such as cellular division and locomotion are associated with large scale

remodeling of cellular interfaces, it would not be surprising if protein-induced in-

stabilities, regulated by interface tension, contribute to these processes as well. To

this end, we have extended the theory of stability of lipid membranes to account

for it’s interactions with isotropic curvature inducing proteins.

6.2 Future Work

Going forward, there are two main directions that can be pursued to gain

further mechanistic insights into CME. First, the derived stability conditions can

be used to investigate the stability of membrane invaginations. The analysis can

furnish the reason for the loss of stability at a critical geometry. Also, the analysis
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can be used to predict the nature of the forces and the curvatures needed from the

proteins to trigger the instability. In addition to CME, such an analysis can pro-

vide insights into the mechanics of other non-clathrin dependent endocytic path-

ways. Second, in the current study, the distribution of the key proteins (clathrin,

actin and BAR) on the membrane is imposed a priori. A parametric analysis

is then conducted to predict their effect on membrane remodeling. However,

in order to get more fundamental insights into CME and in particular, tension-

dependent adaptation in CME, it is important to model the self-assembly of these

proteins on to the membrane. Such an analysis would reveal the relative extent

to which the membrane stresses and the geometry regulate the self-assembly of

the membrane remodeling proteins, which is a subject of much speculation in

the literature. Motivated by our findings, we have extended the theory of stabil-

ity of isotropic membranes to account for the inhomogeneous interactions with

proteins.
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