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Abstract

Electrolyte in a rechargeable Li-ion battery plays a critical role in determining its ca-

pacity and efficiency. While the typically used electrolytes in Li-ion batteries are liquid, soft

solid electrolytes are being increasingly explored as an alternative due to their advantages in

terms of increased stability, safety and potential applications in the context of flexible and

stretchable electronics. However, ionic conductivity of solid polymer electrolytes is signifi-

cantly lower compared to liquid electrolytes. In a recent work, we developed a theoretical

framework to model the coupled deformation, electrostatics and diffusion in heterogeneous

electrolytes and also established a simple homogenization approach for the design of mi-

crostructures to enhance ionic conductivity of composite solid electrolytes. Guided by the

insights from the theoretical framework, in this paper, we examine specific microstructures

that can potentially yield significant improvement in the effective ionic conductivity. We

numerically implement our theory in the open source general purpose finite element pack-

age FEniCS to solve the governing equations and present numerical solutions and insights

on the effect of microstructure on the enhancement of ionic conductivity. Specifically, we

investigate the effect of shape by considering ellipsoidal inclusions. We also propose an

easily manufacturable microstructure that increases the ionic conductivity of the composite

electrolyte by forty times, simply by the addition of dielectric columns parallel to the solid

electrolyte phase.
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Chapter 1

Introduction

Rechargeable Li-ion batteries are expected to play a central role in the future of energy

storage–be it in the context of consumer electronics or sustainable vehicles [2, 3]. The

ramifications (and need) for renewable energy, and the critical role energy storage will play

in that context, hardly needs much discussion due to the extensive public discourse on the

topic and extensive scientific research [4, 5]. Germane to this, scientific research has focused

on both fundamental science as well as the designing the relevant materials and motifs to

engineer efficient, higher energy density, and safer batteries [6, 7, 8].

A typical Li-ion battery consists of several electrochemical cells connected in series or

in parallel. The three primary components of the cell are a negatively charged electrode

(cathode), its counterpart–the anode, and an intervening electrolyte that enables ion trans-

fer between the two electrodes. The ionic conductivity of an electrolyte quantifies how

mobile and available the ions are in an electrolyte [9], and in addition to other aspects such

as the design and chemistry of the electrodes, plays a critical role in the determination of

the power output of the cell [10]. An electrolyte should ideally be both an excellent ionic

conductor and electronic insulator, so that ion transport can be facile and self-discharge is

kept to a minimum [11].

Conventionally, electrolytes are liquid. However, increasingly, solid electrolytes are be-

ing considered as alternatives. Liquid electrolytes are extremely flammable and a battery

containing liquid electrolyte can be fire hazard in case of over-charging or short-circuiting

[12]. In contrast, solid electrolytes are thermally stable. Furthermore, liquid electrolytes

exhibit a greater propensity for uncontrollable dendritic growth [13] which can cause short

circuit conditions[14]. Finally, due to the growing interest in stretchable and flexible elec-

tronics, there is a strong impetus to develop soft solid electrolytes that can integrate with

such electronic devices [15, 16, 17, 18, 19].

1



Despite all the advantages that soft (polymer-based) solid electrolytes offer, their ionic

conductivity is significantly lower than their widely used liquid counterparts[20]. To that

end, several approaches have been proposed to increase the ionic conductivity in polymer

electrolytes1. As an example, a common method to ameliorate ionic conductance is the

addition of plasticizers which reduces the crystalline nature of the polymer matrix and can

increase the ion mobility of the structure [21]. However mechanical properties may be com-

promised (i.e. mechanical stability) [22].

Figure 1.1: Schematic of the spherulite structure. Reprinted from [1], with the permission
of AIP Publishing.

Another strategy involves creating composite electrolytes by embedding nanofillers in

a polymer matrix [23, 21, 24, 25]. Using such an approach, Croce and co-workers demon-

strated a significant enhancement in ionic conductivity [26]. Interestingly, have also shown

a decrease in ionic conductivity with the addition of nanofillers–e.g. Weston and Steele

reported no effect in ionic conductivity by addition of Al2O3 and even reduction in ionic

conductivity at high volume fractions [27]. The enhancement of ionic conductivity because

of addition of nanofillers was attributed to the formation of a spherulite structure in the

interphase region of the matrix-inclusion which consists of both highly crystalline structure

and amorphous region (as shown in Figure 1.1). This region possesses a much higher ion

mobility compared to the polymer electrolyte [28]. Recent studies have also shown that

the addition of nano-scale highly-conductive inorganic particulate fillers into polymer elec-

trolytes can not only significantly enhance the ionic conductivity of the electrolytes, but also
1Ionic conductivity is not the only feature of the electrolyte that is important to battery effectiveness.

The operating voltage range, thermal stability among others aspects are also interest. Our work, however,
is primarily focused on the improvement of ionic conductivity.
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improve its mechanical strength and stability[29]. Finally, mechanical deformation has also

been found to strongly influence ionic conductivity of polymer electrolytes [30, 31, 17]. A

linear relation between ionic conductivity was found by [31] (for up to 15% strain leading to

400 % improvement in ionic conductivity). The was confirmed by our previous theoretical

work [32] predicated on small-deformation theory.

Complementary to experimental efforts (–some of which we have cited in the preceding

paragraphs), several theoretical and computational works have also appeared to study the

coupled effect of deformation, ionic diffusion and electrostatics. Specifically in the mechanics

community, different groups have approached the theory of electrolytes in slightly different

manners and often with a different emphasis, or even for applications other than batteries

(e.g. ferroelectrics, polymer-metal actuators) [33, 34, 35, 36, 37, 38, 39, 40, 41]. The first

paper (that we know off) which proposed homogenization to design composite electrolytes

specific to the context of batteries is arguably that of Sillamoni and Idiart (2015) [42].

Very recently, we also proposed [32] a theoretical framework to address the coupling of

electrostatics, ionic diffusion and deformation in composite electrolytes. In particular, we

presented a simple homogenization procedure that allows the simplification of the rather

complicated nonlinear problem and reconciled the various experimental observations in the

literature. In our prior work, our approach was almost entirely analytical which limited our

modeling to simple microstructures. Guided and inspired by the insights of our prior work,

in this paper, we undertake a computational study to understand the effect of some specific

microstructures on the possibility of designing enhanced ionic conductivity. Specifically,

(i) we implement the pertinent governing equations in the open-source code of FEniCS ;

(ii) analyze composite electrolytes with ellipsoidal inclusions to understand the effect of

shape effects on ion conductivity enhancement; (iii) analyze the effect of size of embedded

inclusions; (iv) determine the effect of finite deformation on the effective ionic conductivity

of electrolytes–our prior work, due to its analytical nature, focused on small-deformation,

and (v) propose a specific, easily manufacturable, microstructure that can yield a significant

enhancement in ionic conductivity.

This paper is organized as follows, in chapter 2 we briefly summarize the theoreti-

cal framework. In chapter 3 we present the relevant details related to our computational
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procedure. The primary numerical results for validation are presented in chapter 4 and

numerical results for the shape effects and some novel structures are discussed in chapter

5. We conclude in chapter 6.
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Chapter 2

Theoretical Formulation

In this section, we briefly summarize the mathematical model of an electro-elastic-

diffusive system in an electrolyte we presented in [32].

Figure 2.1: An ionic-conductive electro-elastic-diffusive body in reference and current con-
figuration.

Consider Figure 2.1, where we assume that the thermodynamic state of the system is

described by deformation y(0, t) : ΩR → Ω(t), ionic volumetric concentration c(0, t) : ΩR →

R and the electric potential ξ : ΩR → R in the reference configuration. The deformation

gradient, Cauchy-Green tensor, and the Jacobian are denoted by

F = ∇y, C = FT F, and J = det∇y· (2.1)

Work can be done on the chemo-mechanical-electrical system body through the following

boundary conditions:

• Mechanical boundary conditions,


y(x, t) = yb(x, t) on SD,

applied external traction = te(x, t) on SN ,

(2.2)
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where yb(0, t) : SD → R3 is the prescribed boundary position and SD and SN (as

shown in Figure 2.1) are the subdivisions of ∂Ω.

• Electrical boundary condition,

ξ = ξe(x) on ∂ΩR, (2.3)

where ξe(x) is prescribed boundary electric potential on ∂ΩR which is controlled by

an external circuit.

• Chemical boundary conditions,


µ = µe(x, t) on ΥD,

J.n = Je on ΥN ,

(2.4)

where µe(0, t) : ΥD → R is the prescribed boundary chemical potential which is

usually dictated by the materials of active electrodes, and J(0, t) : ΩR → R3 is the

ionic flux.Also ΥD and ΥN are another subdivisions of ∂Ω.

By the conservation law of ions we have,

ċ + ∇.J = 0 in ΩR· (2.5)

The external system do work on the body by mechanical traction, transportation of ions

across the boundary and the applied electric voltage from the electrodes. The rate of work

done on the continuum body is

Ẇ =
∫

∂ΩR

ẏ.te −
∫

∂ΩR

(µe + qξe)(J.n) −
∫

∂ΩR

ξ( ˙̃D.n), (2.6)

where q is the electric charge associated with each mobile ion and as a result the electric

current density is given by Je = qJ [32]. Also D̃ = −ϵ(x)JC−1∇ξ is the nominal electric

displacement1.
1We remark that the presence of charge diffusion in a continuum body also relates to the so-called electret

materials except that in the latter, the charges are “frozen” and convect with deformation in the time-scale
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To achieve a closed differential system governing the electro-elastic-diffusion of the body

we need to define the free energy of the body through the hypotheses concerning the behavior

of the body in equilibrium and non-equilibrium states.

In equilibrium states the free energy of the body is assumed by the function

U(y, c) = Ub(y, c) + Ue,

and Ub(y, c) =
∫

ΩR
Ψ(∇y, c),

(2.7)

where Ψ : R3×3 × R → R is the free energy density and Ue is the electric energy associated

with charges and polarization. For simplicity we assume that the material is isotropic so

the rate of change of free energy of the body in isothermal process is given by

U̇b = d

dt

∫
ΩR

Ψ(∇y, c) =
∫

ΩR

[∂Ψ(F, c)
∂F .∇ẏ + ∂Ψ(F, c)

∂c
ċ]. (2.8)

For brevity we define the following terms,

P := DF Ψ(∇y, c) = ∂Ψ(F, c)
∂F ,

and µ := DcΨ(∇y, c) = ∂Ψ(F, c)
∂c ·

(2.9)

By substituting them in (2.8) and using conservation law of ions presented in (2.5) we

rewrite the equation as follows

U̇b =
∫

ΩR

[P.∇ẏ − µ∇.J]. (2.10)

As mentioned in (2.7) it is necessary to include the electrical energy associated with the

polarization and electric field generated by mobile ions. By neglecting dynamical effects the

electric field in reference configuration satisfies Maxwell equation

divD̃ = div(−ϵ(x)JC−1∇ξ) = q(c − c0(x)) in ΩR, (2.11)

where ϵ(x) is the electric permittivity and c0 : ΩR → R is the immobile ion concentration

that would neutralize the mobile ions in a natural equilibrium state. For simplicity also we

of interest [43, 44]
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assume that the electric permittivity is independent of deformation. Therefore polarization

in current configuration can be defined by p = −(ϵ − ϵ0)∇yξ in which ϵ0 is the vacuum

permittivity. Hence, the electrical energy stored in the system (Ue) is defined as follows,

Ue[y, c] =
∫

ΩR

[ϵ0
2 |∇yξ|2 + |p|2

2(ϵ(x) − ϵ0) ]· (2.12)

With a bit of technical calculation the final form of rate of change of electrical energy(Ue)

[33], can be written as

U̇e[y, c] =
∫

ΩR

[−ẏ.divΣΣΣMW + J.∇(qξ)] +
∫

ΩR
ẏ.(ΣΣΣMW)n, (2.13)

where ΣΣΣMW is identified as the Piola-Maxwell stress and is denoted as

ΣΣΣMW(x) = −ϵ(x)
2 J |F−T∇ξ|2F−T + ϵ(x)J(F−T∇ξ) ⊗ (F−T∇ξ)· (2.14)

From (2.6), (2.10) and (2.13) The rate of energy dissipation is written as

Ḋ = Ẇ − U̇ = Ẇ − U̇b − U̇e =∫
∂ΩR

ẏ.te −
∫

∂ΩR

(µe + qξe)(J.n)

+
∫

ΩR

[div(P + ΣΣΣMW).ẏ − J∇.(µ + qξ)]

+
∫

∂ΩR

[−ẏ.(P + ΣΣΣMW )n + (J.n)(µ + qξ)] ≥ 0·

(2.15)

The inequality is from the 2nd law of thermodynamics–the rate of energy dissipation

must always be a positive value (Ḋ ≥ 0).

Using the standard Coleman-Noll procedure the following arguments can be concluded:

• Non-negative rate of dissipation

−J.∇(µ + qξ) ≥ 0. (2.16)

• Interior mechanical balance

8



div(P + ΣΣΣMW) = 0 in ΩR· (2.17)

• Boundary conditions

(P + ΣΣΣMW )n − te = 0 on SN , (2.18)

and


µe + qξe = µ + qξ on ΥD,

J.n = 0 on ΩR\ΥD.

(2.19)

By (2.16) a constitutive response that is consistent with the second law of thermody-

namics which represents the simplest choice is the linear mobility/diffusion,

v = −γ(x)∇(µ + qξ), J = cv in ΩR, (2.20)

where γ(x) represents the ionic mobility of the material which depends on the position.

In this work, we will consider both finite and infinitesimal deformation to understand

not only the effect of deformation but also the importance (or not) of accounting for large

deformation behavior. For a linearized theory we expand the free energy density at a

reference equilibrium state as follows,

Ψ(F, c; x) ≈ 1
2(F − I).C(x)(F − I) + αel(c − c0(x))Tr(F − I)

+ β(x)
2 (c − c0(x))2 + µ̂(x)(c − c0(x)) + Ψ(I, c0; x),

(2.21)

where I is the identity matrix, and µ̂ denotes the chemical potential for pure ion, and C is

the forth-order elasticity tensor.

In the case of infinitesimal deformation, the complete coupled system of governing equa-

tions for (µ, ξ, u) using (2.21) can now be written as

9





∇.(−ϵr∇ξ) + q2

ϵ0β ξ = q
ϵ0β (µ + qξ − µ̂ − αel∇.u) in ΩR,

∇.[C∇u + αal
β (µ − µ̂ − αel∇.u)I] = 0 in ΩR,

∇.[(−γc∇(µ + qξ)] = ċ, c − c0 = (µ−µ̂−αel∇.u)
β in ΩR·

(2.22)

To account deformation nonlinearity, we will consider an incompressible neo-Hookean

material. However, we also note that the permeation of charged ions (or uncharged molecules)

induces significant volume change of the material. To model this phenomenon, we may en-

force a kinematic constraint

Φ(F, c) = detF − (1 + νi(c − c0)) = 0, (2.23)

where νi can be interpreted as volume of ions [32]. Accounting for the constraint, the free

energy density of the body ΩR can be written as

Ψ(F, c) = 1
2G(|F|2 − 3) + β

2 (c − c0)2 + µ̂(c − c0) − ΠΦ(F, c), (2.24)

where G is the shear modulus. So the governing equations then become



∇.(−ϵr∇ξ) + q2

ϵ0β ξ = q
ϵ0β (µ + qξ − µ̂ − Πνi) in ΩR,

∇.[P + ΣMW ] = 0 in ΩR,

∇.[(−γc∇(µ + qξ)] = ċ, c − c0 = (µ−µ̂−Πνi)
β in ΩR,

(2.25)

where P = GF − JΠF−T .

To demonstrate the fundamental behavior of the system in (2.22) and (2.25) and analyze

the homogenization of composite electrolytes, we consider a one-dimensional and homoge-

neous electrolyte body between two charge collectors ∆ξ = ξ1 − ξ0. We also introduce

electro-chemical potential,

Φ = µ + qξ, (2.26)
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and Debye length as the screening length for electrostatic interactions 2,

λ =
√

ϵ0β

q2 · (2.27)

Taking cognizance of the relation between the ionic flux J and the external electrical

current I = qJA, the ionic conductivity of electrolyte must satisfy equation,

J = −K
∆ϕ

d
, (2.28)

where ϕ is the electro-chemical potential and defined as ϕ = µ + qξ [32]. The electric

potential difference between the electrodes satisfies Ohm’s law ∆ξ = IR = qJAR.

To facilitate the interpretation of ionic conductivity, consider one-dimensional ion trans-

port in non-equilibrium process where J ̸= 0 which is the steady-state limit of (2.22). In

that case, we have the following relation for electrochemical potential difference,

∆ϕ = ϕ1 − ϕ0 = −Jd

K
= −

∫ d

0

J

γc(x)dx = −
∫ d

0

J
γ(c + ĉ)dx, (2.29)

where ĉ is the change of concentration due to ion transportation. Assuming the change of

concentration of ions is mostly due to the chemical potential difference in the boundaries

[32], we can safely neglect ĉ and rewrite (2.29) as below,

ϕ′ = J

γ(c + ĉ) ≈ J

γc
→ ∆ϕ ≈ −J

∫ d

0

1
γc(x)dx. (2.30)

Therefore using (2.28) the ionic conductivity K in one-dimension can be defined as

K = [1
d

∫ D

0

1
γc(x)dx]−1, (2.31)

where c(x) is the equilibrium ionic concentration obtained from solving (2.22) in steady

state equilibrium condition.

2The conventional homogenization the conductivity problem (predicated on the classical Poisson equa-
tion) is size-independent. However, in the current framework, due to the presence of the Debye length,
there is a characteristic length scale that renders the ionic conductivity dependent on the length-scale of the
microstructure. This is reminiscent of surface energy effects [45, 46, 47] or gradient-type continuum theories
[48, 49].
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Chapter 3

Finite Element Analysis Procedure

The governing partial differential equations for the chemo-electro-mechanical system

derived in the preceding section are very difficult to solve but for some very simple cases.

In this section, we described the finite element implementation to solve these numerically.

3.0.1 3.1. Dimensionless form of the governing equations

As a first step to derive the corresponding weak form of the coupled system of partial

differential equations, we non-dimensionalize them to simplify the calculations and facilitate

eventual physical interpretation. As evident, three primary variables are involved (ξ, µ, u)

denotes for the electric potential scalar field, chemical potential scalar field and displacement

vector field. The dimensionless parameters and the dimensionless constant coefficients are

presented below,

ξ̄ = ξq

µref
, ū = u

H
, µ̄ = µ

µref
, c̄ = c

cref
,

t̄ = t

T
, (T = µrefγref

H2 ),

β̄ = βc2
ref

Gref
, ¯̂µ = µ̂

µref
, c̄0 = c0

cref
,

γ̄ = γ

γref
, ᾱel = αelcref

Gref
, and ∇̄ = H∇,

(3.1)

where H, T are the non-dimensionalization parameters associated with the smallest length

scale and the time scale respectively and G is the shear modulus. Also, cref , µref , Gref and

γref are the normalization factors associated with the primary variables. For simplicity we

set cref = c0, µref = µ̂, Gref = G and γref = γ for the homogeneous electrolyte. With this,

the governing equations in dimensionless form are

∇̄.(−ϵr∇̄ξ̄) − Φ2

β̄
(µ̄ − ¯̂µ) + ᾱel

β̄

Φ2

Γ ∇̄.ū = 0, (3.2)
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∇̄.[ C
Gref

∇̄ū + ᾱel
Γ
β̄

(µ̄ − ¯̂µ)I − ᾱel
2

β̄
∇̄.ūI] = 0, (3.3)

and
∇̄.[−γ̄(Γ

β̄
(µ̄ − ¯̂µ) − ∇̄.ū ᾱel

β̄
+ c̄0)∇̄(µ̄ + ξ̄)] =

H2

µrefγref

1
T

d

d̄t
(Γ
β̄

(µ̄ − ¯̂µ) − ∇̄.u ᾱel

β̄
+ c̄0),

(3.4)

where Φ = Hqcref√
ϵ0Gref

and Γ = µrefcref
Gref

.

For the neo-Hookean case presented in presented in (2.25)), the additional dimensionless

parameters are,

ν̄i = νicref , Π̄ = Π
Gref

. (3.5)

The dimensionless form of the governing equations become,

∇̄.(−ϵr∇̄ξ̄) − Φ2

β̄
(µ̄ − ¯̂µ) + ν̄i

β̄

Φ2

Γ Π̄ = 0, (3.6)

∇̄.[∇̄ū + I − det(∇̄ū + I)Π̄(∇̄ū + I)−T] = 0, (3.7)

and
∇̄.[−γ̄(Γ

β̄
(µ̄ − ¯̂µ) − Π̄ ν̄i

β̄
+ c̄0)∇̄(µ̄ + ξ̄)] =

H2

µrefγref

1
T

d

d̄t
(Γ
β̄

(µ̄ − ¯̂µ) − Π̄ ν̄i

β̄
+ c̄0)·

(3.8)

3.0.2 3.2. Weak form

We write the weak forms of governing equations by employing three test functions ν, ωωω

and ρ for the scalar electric potential ξ, displacement vector u, and the chemical potential µ.

By multiplying the governing equations by the test functions, integrating over the volume,

and using the divergence theorem, the weak forms can be written as
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∫
∂Ω

∇̄.(−ϵr∇̄ξ̄)ν.nidS −
∫

Ω
(−ϵr∇̄ξ̄)∇̄νdV

−
∫

Ω
(Φ2

β̄
(µ̄ − ¯̂µ)ν + ᾱel

β̄

Φ2

Γ ∇̄.(ū))νdV = 0,

(3.9)

∫
∂Ω

[ C
Gref

∇̄ū + ᾱel
Γ
β̄

(µ̄ − ¯̂µ)I − ᾱel
2

β̄
∇̄.ūI]ωωω.nidS

−
∫

Ω
[ C
Gref

∇̄ū + ᾱel
Γ
β̄

(µ̄ − ¯̂µ)I − ᾱel
2

β̄
∇̄.ūI]∇̄ωωωdV = 0,

(3.10)

and ∫
∂Ω

[−γ̄(Γ
β̄

(µ̄ − ¯̂µ) − ∇̄.ū ᾱel

β̄
+ c̄0)∇̄(µ̄ + ξ̄)]ρ.nidS

−
∫

Ω
[−γ̄(Γ

β̄
(µ̄ − ¯̂µ) − ∇̄.ū ᾱel

β̄
+ c̄0)∇̄(µ̄ + ξ̄)]∇̄.ρdV =∫

Ω

H2

µrefγref

1
T

d

d̄t
(Γ
β̄

(µ̄ − ¯̂µ) − ∇̄.ū ᾱel

β̄
+ c̄0)ρdV·

(3.11)

Test functions ω, ν, and ρ on the boundary are constrained to be zero as stated below,

ωωω = ρ = ν = 0 on ∂Ω· (3.12)

Using (3.12) the first terms of (3.9),(3.10),(3.11) are equal to zero, as follows,

∫
∂Ω

∇.(−ϵr∇ξ̄)ν.nidS = 0, (3.13)

∫
∂Ω

[ C
Gref

∇̄ū + ᾱel
Γ
β̄

(µ̄ − ¯̂µ)I − ᾱel
2

β̄
∇.ūI]ωωω.nidS = 0, (3.14)

and ∫
∂Ω

[−γ̄(Γ
β̄

(µ̄ − ¯̂µ) − ∇̄.ū ᾱel

β̄
+ c̄0)∇̄(µ̄ + ξ̄)]ρ.nidS = 0· (3.15)

Using (3.13), (3.14) and (3.15) equations (3.9),(3.10) and (3.11) will be shorten to the

following forms,

−
∫

Ω
(−ϵr∇̄ξ̄)∇̄νdV −

∫
Ω

(Φ2

β̄
(µ̄ − ¯̂µ)ν + ᾱel

β̄

Φ2

Γ ∇̄.(ū))νdV = 0, (3.16)
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∫
Ω

[ C
Gref

∇̄ū + ᾱel
Γ
β̄

(µ̄ − ¯̂µ)I − ᾱel
2

β̄
∇̄.ūI]∇̄ωωωdV = 0, (3.17)

and

−
∫

Ω
[−γ̄(Γ

β̄
(µ̄ − ¯̂µ) − ∇̄.ū ᾱel

β̄
+ c̄0)∇̄(µ̄ + ξ̄)]∇̄.ρdV =∫

Ω

H2

µrefγref

1
T

d

d̄t
(Γ
β̄

(µ̄ − ¯̂µ) − ∇̄.ū ᾱel

β̄
+ c̄0)ρdV·

(3.18)

For the system in (2.25), the weak form can be written as follows,

−
∫

Ω
(−ϵr∇̄ξ̄)∇̄νdV −

∫
Ω

(Φ2

β̄
(µ̄ − ¯̂µ)ν + ν̄i

β̄

Φ2

Γ Π̄)νdV = 0, (3.19)

∫
Ω

[∇̄ū + I − det(∇̄ū + I)Π̄(∇̄ū + I)−T]∇̄ωωωdV = 0, (3.20)

and
−

∫
Ω

[−γ̄(Γ
β̄

(µ̄ − ¯̂µ) − Π̄ ν̄i

β̄
+ c̄0)∇̄(µ̄ + ξ̄)]∇̄.ρdV =∫

Ω

H2

µrefγref

1
T

d

d̄t
(Γ
β̄

(µ̄ − ¯̂µ) − Π̄ ν̄i

β̄
+ c̄0)ρdV·

(3.21)

3.0.3 3.3. Implementation in FEniCS

The governing equations presented in the previous section (in their weak form) are

solved using the general-purpose open-source PDE solver FEniCS. The weak forms and the

corresponding finite element discretization are specified using a domain-specific language,

named UFL (Unified Form Language) embedded in Python. The computational domain

is partitioned into non-overlapping triangular elements with quadratic interpolation for

displacement and linear interpolation for chemical and electric potential in a continuous

Galerkin function space. The discrete trial and test spaces are defined by constructing fi-

nite element shape functions over the union of all elements in Ω [50].
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Chapter 4

Benchmark Solutions

Before proceeding to analyze microstructures that are intractable analytically, to ensure

first that our finite element implementation is correct, we compare our numerical results with

some known analytical results in different sections for uniform electrolyte and a laminate

electrolyte structure.

4.1 Uniform electrolyte

We first analyze the the simplified problem of a one-dimensional and homogeneous

electrolyte as shown in the Figure 4.1 with electric potential difference between two charge

collectors ∆ξ = (ξ1 − ξ0). Elasticity is decoupled for this illustrative problem so we set

α = 0. The analytical result for the chemical potential along the thickness of the electrolyte

is given by,

µ(x) = µ0 − ηµd

1 − η2 e− x
λ + −ηµ0 + µd

1 − η2 e
x−d

λ , (4.1)

where λr is the Debye length and η = e− d
λr [32]. In Figure 4.2, we contrast the results of

our finite element calculation with the closed-form solution.

Figure 4.1: Schematic of a system of uniform electrolyte and electrodes in a battery.
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Figure 4.2: Normalized chemical potential across the normalized thickness of rectangular
uniform unit cell material.

4.2 Multi-layer composite solid electrolyte

As partially discussed the context of Figure 1.1, past research appears to indicate that

addition of nano-particles in a polymer alters the region in the vicinity of the particle

thus forming an interphase layer. The interphase layer, while substantively the same as

the polymer matrix in physical and mechanical behavior exhibits significantly higher ionic

mobility that the polymer[51]. In short, a three-phase composite consisting of an inclusion

(typically ceramic), its surrounding matrix (typically soft polymer) and an interphase region,

is an adequate description of actual solid composite electrolyte systems. Arguably, the

simplest possible composite electrolyte is a multi-layer laminate. The problem essentially

becomes one-dimensional in nature. In this section, we benchmark our numerical results

for three-layer solid electrolyte laminate structure (Figure 4.3).

Denoting the total thickness of the system by d, we refer to the inclusion, polymer and

interphase dimensions as dp, dint and df respectively. We define a constant of proportional-

ity, α, called interphase extension factor, to introduce the normalization of dint with respect

to the size of the inclusion as follows,
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Figure 4.3: Schematic of a multi-layer composite electrolyte consisting of a filler, an inter-
phase and a polymer.

dint = αdf = ανf d· (4.2)

To generate numerical results and study the effect of volume fraction, we fix the inclusion

size to a thickness of 2 nm, and vary the thickness of the polymer(dp). The calculations

are performed for different interphase extension factors. We note that the results are size-

dependent unlike classical conductivity problems.

Figure 4.4 shows the normalized effective ionic conductivity with respect to the volume

fraction of the filler νf = df
d for different values of α.

Figure 4.4: Normalized effective ionic conductivity with respect to the volume fraction of
the filler for different interphase extension factor(α).

We remark that, K0 is the ionic conductivity of the case when νf = 0. The α = 0 corre-

sponds to an absence of an interphase, and as expected, the effective ionic conductivity of
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the composite does not vary much with an increase in volume fraction of the inclusion phase.

However, when α > 0 we see a significant enhancement. This is hardly surprising since the

interphase region has been found to be highly conductive and larger this phase, higher

the effective ionic conductivity. This corresponds well with the thesis (and experimental

observation) that even though second phase particles may not be by themselves ionically

conductive, they alter the region around the particles to make it more conductive. In this

situation we consider γfiller = γpolymer = γinterphase

1000 the initial concentration is considered

as zero (cfiller
0 = 0) and for interphase and polymer we have cinterphase

0 = cpolymer
0 = 50mol

m3 .

The numerical values are λinterphase
r = λfiller

r = λpolymer
r = 4nm and ϵfiller

r = 10, ϵpolymer
r =

ϵinterphase
r = 3, µ̂polymer = µ̂interphase = 0.5eV and µ̂polymer − µ̂filler = 1eV.
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Chapter 5

Results and Discussion

We now turn to the central results of our paper where we analyze different microstruc-

tures that are not amenable to analytical solution.

5.1 Heterogeneous Electrolytes with Ellipsoidal

Inclusions–Shape Effects

The ellipsoidal shape allows us to study the effect of particle shape on the effective

conductivity enhancement. We remark that this specific insight does not appear to have

been discussed in the literature so far.

Figure 5.1: Schematic of an embedded elliptical inclusion.

As shown in Figure 5.1, we consider the two-dimensional case of an elliptical inclusion
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with the major and minor axes, 2b and 2a in a square unit cell of polymer matrix (of length

L). The interphase of thickness t is assumed to be uniform and we will analyze the steady-

state limit of the governing equations.

Figure 5.2: Normalized ionic conductivity with respect to the volume fraction of the filler
for different interphase extension factors(α).

In what follows, we fix the interphase thickness (t) and vary the interphase extension

factor(α) which can be defined as α = t
a . We first analyze the simplified case of circular

geometry (a = b). We remark that the case of a single circular inclusion case can indeed be

solved analytically (c.f. [32]) however homogenization can only proceed approximately. Of

course, in the case of a general elliptical inclusion neither the problem of a single inclusion

nor the homogenization are analytically tractable. For the circular inclusion case study, we

fix the size of the particle (a = b = 1nm) and volume fraction is altered by varying L. The

unit cell is subject to a constant electric potential difference ∆µ = 200 × µref = 100eV. In

equilibrium state (ϕ = 0), the ∆ξ = −∆µ
q = −100V.

Figure 5.2 illustrates the normalized effective ionic conductivity versus volume frac-

tion of an embedded circular filler in a square unite cell. Here, K0 represents the ionic

conductivity of a uniform polymer electrolyte. We observe essentially the same trend as
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in Figure 4.4 where the effective ionic conductivity of the composite reaches a maximum

point (for some specific volume fraction) and then decreases to its initial value. Consistent

with the one-dimensional study in the preceding section, the interphase plays a dominant

role and (as example) for α = 2 we see that the ionic conductivity enhances by an order

of magnitude. For any α > 0 the composite reaches it maximum effective ionic conduc-

tivity at the point where the interphase reaches it’s maximum volume fraction in a unit cell.

Figure 5.3: Schematic of a square unit cell matrix with an embedded circular filler with
α = 1 and a) νf = 0.78 b) νf = 0.43 and c) νf = 0.12 where the light blue, dark
blue and yellow colors represent the filler, interphase and polymer respectively.

To better illustrate this phenomena, Figure 5.3 presents three different schematics of a

square unit cell with an embedded circular filler with α = 1 for three different values for

volume fractions 0.78, 0.43 and 0.12. Each of these three schematics shows an individual

point on the yellow graph in Figure 5.2 where α = 1. So if we put Figure 5.2 and the yellow

graph in Figure 5.3 together, we are able to see the difference in effective ionic conductivity

in different structures. For instance, in Figure 5.3(a), where νf = 0.78, the unit cell is filled

with filler and interphase but K
K0

≈ 25 which is not the maximum value. Moving from

νf = 0.78 to νf = 0.43 (situation illustrated in Figure 5.3(b)) we can see from Figure 5.2

as the volume fraction of the filler decreases and size of interphase increases instead, the

effective ionic conductivity of the composite increases until a point from the unit cell in

filled with filler and interphase but the interphase has its maximum size. So after reaching

the maximum effective ionic conductivity at situation Figure 5.3(b), if we move from Figure

5.3(b) to Figure 5.3(c) where the volume fraction of the filler decreases and the unit cell

consists filler, interphase and polymer, according to the yellow graph on Figure 5.2 the
K
K0

≈ 25 again which means the effective ionic conductivity decreased by addition of extra
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polymer in the unit cell. Hence, the maximum effective ionic conductivity in a square unit

cell with an embedded circular filler can be reached where the interphase is at its maximum

volume fraction.

Figure 5.4: Chemical potential contour for a square unit cell matrix with an embedded
circular filler inclusion for α = 1 with different values for volume fraction (a)
νf = 0.78 (b) νf = 0.43 and (c) νf = 0.12

Figure 5.5: Electric potential contour for a square unit cell matrix with an embedded cir-
cular filler inclusion for α = 1 with different values for volume fraction (a)
νf = 0.78 (b) νf = 0.43 and (c) νf = 0.12

Figure 5.6: Concentration contour for a square unit cell matrix with an embedded circular
filler inclusion for α = 1 with different values for volume fraction (a) νf = 0.78
(b) νf = 0.43 and (c) νf = 0.12

Figures 5.4, 5.5 and 5.6 illustrate the chemical potential, electric potential, and concen-

tration contours respectively for all three different values of volume fraction of the filler,

0.78, 0.43 and 0.12 from (a) to (c) respectively under the same boundary conditions for
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the unit cell in equilibrium situation (ϕ = 0), where ∆µ = 200 × µref = 100eV and

∆ξ = −∆µ
q = −100V. So as we can see in Figure 5.4 the maximum electric potential

is reported 200 which is the value on the top boundary, and the minimum value for electric

potential is reported 0 on the bottom boundary which satisfy the applied boundary condi-

tions. Similarly in the electric potential contour presented in Figure 5.5 the top boundary

electric potential is -200 and the bottom boundary condition is 0 which satisfies the Dirichlet

boundary condition applied on the unit cell for all three situations.

Figure 5.7: Normalized ionic conductivity versus the normalized radius of the circular inclu-
sion in a constant volume fraction (νf = 0.2) for different interphase thickness
(tint) from 0 to 2nm which is normalized with debye length (λr = 4nm).

In a battery like system the electrolyte is under a potential difference from the elec-

trodes(anode and cathode), therefore as a result we can see in Figure 5.6 that the concen-

tration in all three situation in a unit cell reached its maximum value, 4.6, at the point where

the chemical potential is at its maximum value on the top boundary. Also the minimum

concentration is reported exactly at the point we have the minimum chemical potential on

the bottom boundary. Therefore the difference in effective conductivity in all these three

situations is not the difference in maximum and minimum value of concentration, however,

it is the result of concentration distribution and the difference in ion mobility of each layer
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at each individual element in the whole domain.

Since we now have insight into the filler volume fraction at which the maximum ionic

conductivity in a composite electrolyte is achieved, we can examine the effect of inclusion

size. To that end, we assume a constant volume fraction of filler (νf = 0.2) and vary the

radius of the inclusion from 1nm to 14nm for four different interphase extension factors.

Figure 5.7 illustrates the ionic conductivity of the composite with respect to the radius of

the inclusion. For a given volume fraction, there is an optimal size and thus our model

correctly resolves experimental observations that both an increase and decrease in ionic

conductivity can occur with addition of fillers—the tuning of volume fraction and size is

an important element to decide what behavior will be observed. We remark that for large

inclusion size, we approach the matrix ionic conductivity ( K
K0

= 1).

Figure 5.8: Normalized ionic conductivity with respect to the volume fraction of the ellip-
tical filler for different interphase extension factors(α).

After solving the simplified model of circular shape filler in a square unit cell matrix,

in another case study we consider an elliptical shape filler in a unit cell matrix where

a = 1nm, b = 0.5nm so the graph of normalized ionic conductivity vs volume fraction of
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the filler is presented in Figure 5.8. The same trend for the effective ionic conductivity of

the filler can be seen in this case study compared to simplified model in Figure 4.4. Which

again says the maximum effective ionic conductivity can be reached at the point that we

have the maximum amount of interphase with no polymer.

Comparing Figure 5.8 and Figure 4.4, we see that the maximum for elliptical fillers is

higher compared to circular counterparts. the situation that we had circular filler inclusion.

This prompts a closer examination fo ellipse aspect ratio. For that, we consider a square

unit cell matrix with fixed L = 10nm and elliptical inclusions with lengths a and b with

interphase expansion factor of α.

Figure 5.9: Schematics of a square unit cell matrix with an embedded elliptical inclusion
with α = 1 different a

b (a)0.25 (b)0.5 (c)1 (d)1.5 (e)3.5

Figure 5.9 illustrates 5 different situations with different value of a
b for α = 1 in

(a),(b),(c),(d) and (e) which represent 5 situations in a range of a
b from 0+ up to 4. For

instance, in Figure 5.9(a) we have a horizontal elliptical filler which is changing its shape

to a a circular filler from (a) to (c) and then it becomes a vertical elliptical filler in (e).

Figure 5.10 illustrates the normalized ionic conductivity of the square unit cell matrix

with an embedded elliptical filler with respect to the ratio a
b of the elliptical filler for

three different values of α with the same boundary conditions. We can conclude that as
a
b increases, the effective ionic conductivity of the composite get enhanced. Also as the

interphase thickness (tint) increases, the effect of a
b becomes more pronounced.
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Figure 5.10: Normalized ionic conductivity with respect to a
b for different interphase exten-

sion factor α. The ionic conductivity is normalized with the case of the α = 0
and a

b = 0.2.

5.2 Effect of Deformation on Ionic Conductivity of an

Electrolyte

In the previous sections the coupling between elasticity and electro-diffusion was ne-

glected for simplicity and get a better insight about the problem. In this section for studying

the effect of deformation on ionic conductivity of an electrolyte we consider a time-dependant

fully-coupled electro-elasto-chemical system of equations presented in (2.22). As shown in

Figure 5.11, an electrolyte is assumed to be stretched from two ends.

Figure 5.11: Schematic of a unit cell under a stretch of ϵ.

To study the effect of deformation on composite electrolytes, we consider a multi-layered
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system as previously shown in Figure 4.3. Figure 5.12 illustrates the normalized ionic

conductivity of a multi-layer composite electrolyte with respect to the applied strain for two

different extension factors. The dashed lines show the case for small deformation while the

solid lines are for the neo-Hookean elastically incompressible model. Clearly, deformation

can significantly enhance ionic conductivity. The small deformation model predicts a linear

relation between ionic conductivity and strain— also reported in experiments [31]. While,

there is a departure from this linear relation at large strains, the deviation is perhaps not

that high. We would, however, like to state that the polymer system examined in this work

is not too soft. For softer materials (like gels) nonlinear deformation effects are likely to be

more significant. Materials properties are considered as νf = 0.3, α = 10−6 × [80, 3, 3] and

Ey = [70, 0.03, 0.03]GPa.

Figure 5.12: Normalized ionic conductivity versus average strain for different interphase
extension factors α. The ionic conductivity is normalized with the case of the
homogeneous system.
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5.3 A Proposal for a Microstructure to Enhance Ionic

Conductivity: Columnar Dielectric Spacers

In this section we, based on the insights at hand, we propose a novel microstructure that

simply involves the addition of columnar dielectric spacer in parallel with the electrolyte

in parallel—as shown in Figure 5.13. The key idea is that when we set columnar spacers

parallel to electrolyte, the effective ionic resistance of the composite decreases to a smaller

value. As shown in Figure 5.14, when we increase volume fraction of the dielectric spacers,

the effective ionic conductivity can potentially increase by an order of magnitude. The

addition of the dielectric in parallel with the electrolyte also helps enhance the electric field

in the electrolyte which facilitates ion conduction. The compelling feature related to this

microstructure is that it is very easy to fabricate.

Figure 5.13: Schematic of a battery with an electrolyte and columnar dielectric spacers.

The governing equation for the electrostatics problem is as follows,


−λ2∇2ζ + ζ = ϕ

q in electrolyte,

∇2ζ = 0 in dielectrics.
(5.1)

The inter-facial condition across the electrolyte-dielectric interfaces should be as follows,

[[ζ]] = 0, [[ϵ∇ζ]].n = 0· (5.2)

Physically, the above inter-facial conditions means that there is no accumulation of free
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charges on the interface, though the free charge density (per unit volume) may be nonzero

in the electrolyte. Though the solution to (5.1), (5.2) may be complicated, from the linearity

we observe that the electric potential difference should depend on ∆ϕ linearly,

∆ζ = α1∆ϕ + α0· (5.3)

Figure 5.14 illustrates the normalized ionic conductivity of a an electrolyte located

between dielectric columnar spacers with respect to volume fraction of the columnar spacers.

In this model the size of the electrolyte is constant and the size of dielectric increase from zero

to infinity to have the range of volume fraction from 0 to 1. The graph shows enhancement in

the ionic conductivity of the composite electrolyte by addition of dielectric columnar spacers

and more importantly increase in the size of the spacers accelerate the enhancement of ionic

conductivity in the electrolyte.

Figure 5.14: Normalized ionic conductivity with respect to the volume fraction of dielectric.
γdielectric

γelectrolyte ≈ 0 the initial ionic concentration of the dielectric is considered as
zero (cdielectric

0 = 0) while for electrolyte we have celectrolyte
0 = 100mol

m3 .

30



Chapter 6

Concluding remarks

In this paper, we have presented a numerical implementation of the governing equations

that dictate the electro-chemo-mechanical behavior of soft deformable solid electrolytes

within an open-source finite element package FEniCS. The implementation is validated

with known analytical solutions for some simplified cases. The numerical implementation

allows us to design complex microstructures for the enhancement of ionic conductivity

of solid electrolytes. Specifically, we were able to obtain insights into how the shape of

embedded particles can influence the overall ionic conductivity of a composite electrolyte in

addition to propose new types of microstructures to achieve this objective. A good future

direction would be the use of topology optimization tools (including machine learning) to

find optimal microstructures. With composite electrolytes, such as those discussed in this

paper, durability of the chemo-mechanical-eletrical system under cyclic loading such as

discussed in other contexts also [52] is likely to become a significant issue.
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Appendix

Implementation in Python

FEniCS is an open-source program environment for solving ordinary and partial differ-

ential equations automating central aspects of the finite element method. FEniCS uses the

UFL (Unified Form Language) which takes a variational problem as an input together with

a set of finite elements and generates low-level code for the automatic computation of the

discrete system of equations. UFL is a domain-specific language embedded in Python for

specifying finite element discretizations of differential equations in terms of finite element

variational forms.

DOLFIN is a C++/Python library that functions as the main user interface of FEn-

iCS. A large part of the functionality of FEniCS is implemented as part of DOLFIN. It

provides a problem solving environment for models based on partial differential equations

and implements core parts of the functionality of FEniCS, including data structures and

algorithms for computational meshes and finite element assembly. To provide a simple and

consistent user interface, DOLFIN wraps the functionality of other FEniCS components

and external software, and handles the communication between these components [?]. In

this project we implement FEniCS in using DOLFIN in Python, therefore we first need to

import DOLFIN package as shown below.

from dolfin import *

In the first step of coding we need to define the domain. In every problem we solved in

this project we consider a main-domain as the unit cell and the specify the filler and the

interphase as the subdomains. The code below shows the way to specify a multi layer com-

posite electrolyte. rectangle3 represents the filler, rectangle2 represents the whole filler and

interphase, and the rectangle1 represents the whole unit cell including the filler, intephase

and polymer.

rectangle_1 = Rectangle(Point(0.0, 0.0), Point(Lx, Ly))
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rectangle_2 = Rectangle(Point(0.0, 0.0), Point(Lx, L2))

rectangle_3 = Rectangle(Point(0.0, 0.0), Point(Lx, L1))

domain = rectangle_1

domain.set_subdomain(1, rectangle_3)

domain.set_subdomain(2, rectangle_2 - rectangle_3)

domain.set_subdomain(3, rectangle_1 - rectangle_2)

Then, we import the mesh on the domain as

mesh = generate_mesh(domain, MeshResolution)

For applying boundary conditions we must specify the boundaries. We do this by

defining several classes, one for each boundary condition, as presented below,

class Left(SubDomain):

def inside(self, x, on_boundary):

return on_boundary and abs(x[0] ) < DOLFIN_EPS

class Right(SubDomain):

def inside(self, x, on_boundary):

return on_boundary and abs(x[0] - Lx) < DOLFIN_EPS

class Bottom(SubDomain):

def inside(self, x, on_boundary):

return on_boundary and abs(x[1] ) < DOLFIN_EPS

class Top(SubDomain):

def inside(self, x, on_boundary):

return on_boundary and abs(x[1] - Ly) < DOLFIN_EPS
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class Omega_down(SubDomain):

def inside(self, x, on_boundary):

return ( (x[1]-L1)<=DOLFIN_EPS)

class Omega_middle(SubDomain):

def inside(self, x, on_boundary):

return ( (x[1]-L2)<DOLFIN_EPS and (x[1]-L1)>-DOLFIN_EPS )

class Omega_up(SubDomain):

def inside(self, x, on_boundary):

return ( (x[1]-L2)>-DOLFIN_EPS)

We create a MeshFunction to store the numbering of the subdomains. When creating a

MeshFunction an argument specifying the type of the MeshFunction must be given. Allowed

types are ‘int’, ’size-t’, ‘double’ and ‘bool’,

subdomains = MeshFunction("size_t", mesh, 2, mesh.domains())

markers = MeshFunction(’size_t’, mesh, 2, mesh.domains())

subdomain_down = Omega_down()

subdomain_middle = Omega_middle()

subdomain_up = Omega_up()

subdomain_down.mark(markers, 0)

subdomain_middle.mark(markers, 1)

subdomain_up.mark(markers, 2)

To specify the weak form of the problem in FEniCS, we need to specify the function

space V along with a set of test functions (u, zeta, mu) and trial functions (vu, vzeta, vmu).

To specify the function space as the parameters are not all of the same type, we need to

specify each parameter first. For displacement we need a vector element with 2 components
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(V1) and for electric potential and chemical potential we simply need a finite element with

only one component (V1 and V2) as shown below,

V1 = VectorElement(’CG’, mesh.ufl_cell(), 2)

V2 = FiniteElement(’CG’, mesh.ufl_cell(), 1)

V3 = FiniteElement(’CG’, mesh.ufl_cell(), 1)

V = FunctionSpace(mesh, MixedElement([V1, V2, V3]))

vtest = TestFunction(V)

duinc = TrialFunction(V)

up = Function(V)

(u,zeta, mu)=split(up)

(v_u,v_zeta,v_mu)=split(vtest)

where ”CG” stands for Continuous Galerkin, implying the standard Lagrange family of

elements. Instead of ”CG”, we could have written ”Lagrange”.

To differentiate the material properties for each subdomain and constant coefficient in

each layer we wrote the following class,

class MaterialProperty3Layers(UserExpression):

def __init__(self, markers,L1_property,L2_property,L3_property, **kwargs):

super().__init__(**kwargs)

self.markers = markers

self.L1_property = L1_property

self.L2_property = L2_property

self.L3_property = L3_property

def eval_cell(self, values, x, cell):

if self.markers[cell.index] == 0:

values[0] = self.L1_property

elif self.markers[cell.index] == 1:

values[0] = self.L2_property

elif self.markers[cell.index] == 2:
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values[0] = self.L3_property

else:

values[0] = 1E+50

q = MaterialProperty3Layers(markers, q_1, q_2,q_3, degree=0)

E = MaterialProperty3Layers(markers, E_1, E_2,E_3, degree=0)

nu = MaterialProperty3Layers(markers, nu_1, nu_2,nu_3, degree=0)

C_0 = MaterialProperty3Layers(markers, C0_1, C0_2, C0_3, degree=0)

mu_h = MaterialProperty3Layers(markers, mu_h_1, mu_h_2, mu_h_3, degree=0)

ep_r = MaterialProperty3Layers(markers, ep_1, ep_2,ep_3, degree=0)

alpha = MaterialProperty3Layers(markers, alpha_1, alpha_2,alpha_3, degree=0)

beta = MaterialProperty3Layers(markers, beta_1, beta_2, beta_3, degree=0)

Gamma = MaterialProperty3Layers(markers, Gamma_1, Gamma_2, Gamma_3, degree=0)

G = MaterialProperty3Layers(markers, G_1, G_2,G_3, degree=0)

lmbda = MaterialProperty3Layers(markers, lmbda_1, lmbda_2, lmbda_3, degree=0)

The Dirichlet boundary conditions for all three main parameters(displacement, electric

potential, chemical potential) are defined with the normalized values as follows,

bcb_disp = DirichletBC(V.sub(0), Constant((0.0,0.0)), Bottom() )

bcb_zeta = DirichletBC(V.sub(1), Constant(0.0), Bottom() )

bcb_mu = DirichletBC(V.sub(2), Constant(0.0), Bottom() )

bct_zeta = DirichletBC(V.sub(1), Constant(-1.), Top() )

bct_mu = DirichletBC(V.sub(2), Constant(2.), Top() )

bct_disp = DirichletBC(V.sub(0), Constant((0.0,3.5)), Top() )

bcs = [bcb_zeta,bct_zeta, bct_disp, bcb_disp]

After defining the boundary conditions and the material properties, we need to write

the dimensionless weak form coupled system of equations that we derived in section 3.3 as

shown below,
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#Define Sigma

sigma = 2.0*G_bar*sym(grad(u)) + lambda_bar * tr(grad(u))*Identity(2)

sigma_alpha = alpha_bar * GM_bar / beta_bar * (mu - mu_h_bar ) *Identity(2)

- alpha_bar**2/beta_bar * tr(grad(u)) * Identity(2)

#Define Concentration

c_term = GM_bar / beta_bar * (mu - mu_h_bar) -

tr(grad(u)) * alpha_bar / beta_bar + C_0_bar

Eq_1_coupling_term = - Q_bar**2/beta_bar * (mu-mu_h_bar) *v_zeta*dx +

alpha_bar *Q_bar**2/beta_bar/GM_bar * tr(grad(u))*v_zeta *dx

Eq_1 = -dot(-ep_r * grad(zeta),grad(v_zeta)) * dx + Eq_1_coupling_term

Eq_2 = inner(-sym(grad(v_u) ), sigma )*dx + inner(-grad(v_u), sigma_alpha)*dx

Eq_3 = dot(-grad(v_mu), -Gamma_bar * c_term * grad(mu+zeta))*dx

Then we simply solve the system of equations using the solve command and differentiate

the solution for all the parameters as follows,

Func = Eq_1 + Eq_2 + Eq_3

solve(Func == 0, up, bcs,form_compiler_parameters=ffc_options,

solver_parameters={"newton_solver":{’linear_solver’ : ’mumps’})

(u1,zeta1,mu1)=up.split()

For time dependant problems we need to add the time dependant term to the equations

and put the solve command in a while loop and solve the system of equations for each time

step. The total time is set as 0.1 seconds and each time step is set as 0.02.

t=0

Total_time = 0.10

dt = Constant((0.02))

time = dt(0)
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while time<=Total_time:

t=t+1

Eq_3_time_dependent_term = GM_bar / beta_bar *(1.0/dt) * (mu - mu_old)

- (1.0/dt) ( tr(grad(u)) - tr(grad(u_old)) )* alpha_bar / beta_bar

Func = Eq_1 + Eq_2 + Eq_3 - v_mu * Eq_3_time_dependent_term *dx

solve(Func == 0, up, bcs,form_compiler_parameters=ffc_options,

solver_parameters={"newton_solver":{’linear_solver’ : ’mumps’})

(u1,zeta1,mu1)=up.split()

time+= dt(0)

up_old.assign( up )

(u_old,zeta_old, mu_old)=split(up_old)

cbar_sln = 1 / beta_bar * (mu1 - mu_h_bar) - tr(grad(u1))

* alpha_bar / beta_bar + C_0_bar

c_dimensional = C_ref * cbar_sln

time+= dt(0)

After solving the problem and fining value for the main parameters including displace-

ment, electric potential and chemical potential we can find the effective ionic conductivity

of composite electrolyte as follows,

cbar_sln = 1 / beta_bar * (mu1 - mu_h_bar) -

tr(grad(u1)) * alpha_bar / beta_bar + C_0_bar

c_dimensional = C_ref * cbar_sln

K = (1/(Ly)* assemble(1/(Gamma*c_dimensional)*dx))**(-1)
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