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Rayleigh–Bénard (RB) convection, the flow in a fluid layer heated from below and cooled
from above, is used to analyze the transition to the geostrophic regime of thermal con-
vection. In the geostrophic regime, which is of direct relevance to most geo- and as-
trophysical flows, the system is strongly rotated while maintaining a sufficiently large
thermal driving to generate turbulence. We directly simulate the Navier–Stokes equa-
tions for two values of the thermal forcing, i.e. Ra = 1010 and Ra = 5 · 1010, a constant
Prandtl number Pr = 1, and vary the Ekman number in the range Ek = 1.3 · 10−7 to
Ek = 2 · 10−6 which satisfies both requirements of super-criticality and strong rotation.
We focus on the differences between the application of no-slip vs. stress-free boundary
conditions on the horizontal plates. The transition is found at roughly the same param-
eter values for both boundary conditions, i.e. at Ek ≈ 9 × 10−7 for Ra = 1 × 1010 and
at Ek ≈ 3× 10−7 for Ra = 5× 1010. However, the transition is gradual and it does not
exactly coincide in Ek for different flow indicators. In particular, we report the character-
istics of the transitions in the heat transfer scaling laws, the boundary-layer thicknesses,
the bulk/boundary-layer distribution of dissipations and the mean temperature gradient
in the bulk. The flow phenomenology in the geostrophic regime evolves differently for
no-slip and stress-free plates. For stress-free conditions the formation of a large-scale
barotropic vortex with associated inverse energy cascade is apparent. For no-slip plates,
a turbulent state without large-scale coherent structures is found; the absence of large-
scale structure formation is reflected in the energy transfer in the sense that the inverse
cascade, present for stress-free boundary conditions, vanishes.

1. Introduction

Natural convection is ubiquitous in Nature. It is found not only in the Earth’s interior
and oceans, but also in planetary atmospheres and also inside stars (Marshall & Schott
1999; Miesch 2000; Roberts & Glatzmaier 2000; Heimpel et al. 2005). In all of those flows,
the background rotation induces a Coriolis force, which significantly affects the system,
changing not only the flow phenomenology but also the heat transport and the amount
of mixing of different species.

Rotating Rayleigh–Bénard (RB) convection, the flow between two rotating parallel
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plates heated from below and cooled from above, is commonly used as a model for study-
ing rotating thermal convection. Rotating a RB system induces many changes. In non-
rotating RB, the flow consists mainly of plume-like structures. With increasing rotation,
these plumes give way to columnar vortices (Rossby 1969; Zhong et al. 1993; Stevens et al.
2013a). For sufficiently large rotation, and also sufficiently low viscosity, the flow becomes
quasi-two-dimensional (Q2D) owing to the Taylor–Proudman theorem (Greenspan 1968).
This theorem implies that all slow, large-scale motions become two-dimensional (2D), i.e.
independent of the direction parallel to the axis of rotation. However, fast, small-scale
three-dimensional (3D) dynamics persists. The large-scale motions exhibit the so-called
geostrophic balance between the pressure gradient and the Coriolis force (Greenspan
1968). Thus, this strongly-rotating regime of natural convection has been referred to as
‘geostrophic turbulence’ (Sprague et al. 2006; Julien et al. 2012a,b). In particular, the
name “geostrophic turbulence” has been introduced to refer to flow phenomenology as
a state where vertical coherence of the flow has been lost (Julien et al. 2012b). This is
in contrast with the vertically aligned vortical plumes or the convective Taylor columns
with strong vertical correlation that characterize the classical regime. The geostrophic
regime, on which we focus here, has revealed distinctly different properties compared to
the ‘classical’ turbulent rotating convection with columnar vortices. For a recent review
on the classical regime, we refer the reader to Stevens et al. (2013a).

The difficulty of achieving the geostrophic regime is twofold. Rotation not only changes
the flow topology, but it also stabilizes the flow. Chandrasekhar (1961) demonstrated
using linear stability analysis that convective instability sets in at increasingly higher
temperature differences when rotation is applied, or, in other words, the critical value of
the Rayleigh number (the non-dimensionless temperature difference between the plates)
rises as a function of the non-dimensional rotation rate, i.e. the Ekman number. Both a
high rotation rate and a significant level of thermal driving, to remain turbulent even with
respect to the increased critical Rayleigh number, are needed to achieve the geostrophic
regime. Most earlier experimental and numerical studies of rotating RB (Rossby 1969;
Zhong et al. 1993; Julien et al. 1996; Liu & Ecke 1997; Vorobieff & Ecke 2002; Kunnen
et al. 2008a,b; Liu & Ecke 2009; Zhong et al. 2009; King et al. 2009; Schmitz & Tilgner
2009, 2010; Zhong & Ahlers 2010; Weiss et al. 2010; Stevens et al. 2010; Kunnen et al.
2010, 2011; Liu & Ecke 2011; Weiss & Ahlers 2011a,b; Stevens et al. 2012; Kunnen et al.
2013; Horn & Shishkina 2014) have not conclusively ventured deep into the geostrophic
regime. The distinction between the geostrophic regime and the classical regime has been
based on the results of numerical simulations (Sprague et al. 2006; Julien et al. 2012b)
which use a reduced set of the Navier–Stokes equations describing convection in the
asymptotic limit of rapid rotation as a function of the forcing parameter R̃a = RaEk4/3,
where Ra and Ek are the Rayleigh and Ekman numbers, respectively, to be defined later.
Using the reduced equations, Julien et al. (2012a) revealed the scaling laws relating heat

transfer and R̃a in the geostrophic regime, which were distinctly different from those
previously reported for other flow regimes. Recent experiments by Ecke & Niemela (2014);
Cheng et al. (2015), capable of simultaneously achieving very high Ra & 109 and very
low Ek . 10−6 have also found the transitions in the scaling laws for the heat transfer
reported previously.

Using the reduced equations, Rubio et al. (2014) have shown an inverse energy cascade
in the geostrophic regime. In an inverse cascade, unlike the regular cascade of 3D homo-
geneous isotropic turbulence, energy flows from the small length scales to larger ones.
This leads to the formation of large-scale structures that typically become comparable in
size to the domain in which they reside. Such self-organisation has also been reported in
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recent direct numerical simulations (DNSs) employing the full Navier–Stokes equations
and stress-free boundaries (Favier et al. 2014; Guervilly et al. 2014). The reduced equa-
tions automatically imply taking stress-free boundaries which excludes the no-slip-style
boundaries with their associated Ekman boundary layers (Greenspan 1968). Stellmach
et al. (2014) made the step to full Navier–Stokes simulations in the geostrophic regime
with no-slip boundaries. The initial findings include the absence of vortex condensation
and a higher heat flux for no-slip plates than for stress-free at the same parameter values
(Schmitz & Tilgner 2010). From a theoretical point of view, the geostrophic regime has
also received some attention. Ecke (2015) used weakly nonlinear theory to explain the
scaling laws relating heat transfer and driving near the onset of convection.

However, a complete picture on what is happening during the transition to the geostrophic
regime, and where it takes place in the parameter space is still missing. In this paper
we present numerical simulations covering the transition to geostrophic convective tur-
bulence using the full Navier–Stokes equations for a single Prandtl number. We analyse
in detail the effects of the choice of boundary conditions, i.e. including or omitting the
Ekman layers. In section 2 we describe the numerical method and give the parameter
values for the runs. The results for the convective heat transfer are presented in section 3.
In section 4 we consider the effects of rotation on the boundary layer scales and on the
volumetric distribution of kinetic-energy and thermal-variance dissipation, an approach
which has allowed for the Grossmann–Lohse theory of heat transfer in non-rotating RB
flow (Grossmann & Lohse 2000, 2001, 2004; Stevens et al. 2013b). The flow phenomenol-
ogy and its relation with the spectral energy transfer is considered in section 5. We
conclude with an interpretation and discussion of these findings in section 6.

2. Simulation details

We have conducted a set of direct numerical simulations (DNS) of 3D rotating RB
in a horizontally periodic Cartesian computational box. By using a second-order energy-
conserving, finite-difference code with fractional time-stepping (Verzicco & Orlandi 1996),
we march in time the Navier–Stokes equations plus an advection-diffusion equation for
temperature, with the usual Boussinesq approximations (Chandrasekhar 1961):

∂u

∂t
+ (u · ∇)u +

1

Ro
ez×u = −∇p+

√
Pr

Ra
∇2u + θez , (2.1)

∂θ

∂t
+ (u · ∇)θ =

1√
RaPr

∇2θ , (2.2)

with the incompressibility constraint

∇ · u = 0 , (2.3)

where u is the velocity vector, t is time, ez is the unit vector in the vertical direction,
Ra is the Rayleigh number, i.e. the non-dimensional temperature difference, defined as
Ra = gβ∆L3/(νκ) with L the height of the system, β the thermal expansion coefficient
of the fluid, g the gravitational acceleration, ∆ the temperature difference between the
bottom and top plates, and ν and κ the kinematic viscosity and thermal diffusivity of
the fluid, respectively. Ro is the Rossby number, i.e. the inverse rotation rate, defined as
Ro =

√
βg∆/L/(2Ω), where Ω is the angular rotation rate, Pr is the Prandtl number of

the fluid, Pr = ν/κ and θ the non-dimensional temperature. The equations (2.1)–(2.3)
are non-dimensionalized by using L, ∆, and the so-called free-fall velocity scale

√
βg∆L.
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Ra Ek Ro R̃a Γ Nx ×Ny ×Nz NuSF NuNS

1 × 1010 4.00 × 10−7 0.040 29.5 0.36 384 × 384 × 768 8.82 21.0
1 × 1010 4.00 × 10−7 0.040 29.5 0.71 768 × 768 × 768 9.13 21.0
1 × 1010 6.00 × 10−7 0.060 50.6 0.41 384 × 384 × 768 20.7 31.4
1 × 1010 9.00 × 10−7 0.090 86.9 0.46 384 × 384 × 768 46.2 50.2
1 × 1010 1.20 × 10−6 0.12 127.5 0.51 384 × 384 × 768 68.5 65.2
1 × 1010 1.50 × 10−6 0.15 171.7 0.55 384 × 384 × 768 91.0 76.0
1 × 1010 2.00 × 10−6 0.20 252.0 0.61 512 × 512 × 768 113.7 83.5

5 × 1010 1.34 × 10−7 0.030 34.3 0.25 512 × 512 × 1024 9.20 21.1
5 × 1010 1.79 × 10−7 0.040 50.4 0.27 512 × 512 × 1024 18.2 30.8
5 × 1010 2.95 × 10−7 0.066 98.3 0.32 512 × 512 × 1024 52.9 61.5
5 × 1010 4.02 × 10−7 0.090 148.6 0.36 512 × 512 × 1024 95.0 88.3
5 × 1010 4.92 × 10−7 0.11 194.2 0.38 512 × 512 × 1024 117.0 103.5
5 × 1010 6.71 × 10−7 0.15 293.6 0.42 512 × 512 × 1024 159.6 119.5

Table 1. Parameter values for the computations. For all runs Pr = 1. Each parameter set has
been run with both NS and SF boundary conditions. Included are: Rayleigh number Ra, Ekman

number Ek, Rossby number Ro, R̃a = RaEk4/3 (Sprague et al. 2006), domain aspect ratio Γ
and number of gridpoints Nx × Ny × Nz in the periodic directions and the vertical direction,
respectively. We also list the resulting Nusselt numbers NuSF and NuNS.

Note that centrifugal buoyancy is neglected here; this means that we are implicitly making
the customary assumption that the Froude number Fr = Ω2R/g � 1 (Stevens et al.
2013a), where R is the horizontal distance to the rotation axis, i.e. the radius of the
cylinder in most experiments and simulations. We also define the Nusselt number, i.e.
the non-dimensional heat transfer as Nu = (〈uzθ〉A,t − κ∂〈θ〉A,t)/(κ∆L−1), with 〈...〉A,t
representing the averaging operator in time and also spatially over a horizontal plane.

The explored parameter values are given in table 1. We vary the rotation rate Ro at
a constant thermal driving Ra for two values of Ra, while fixing the Prandtl number
to Pr = 1. The Ekman number, defined as Ek = ν/(2ΩL2) = Ro

√
Pr/Ra, is small

enough to enter into the geostrophic regime, as can be seen from the table. For com-
pleteness, we also define the Taylor number Ta = Ek−2. The aspect-ratio, Γ = D/L,
where D is the simulation box periodicity length in the horizontal directions, is set to ten
times the most unstable wavelength for convective instability Lc, i.e. Γ = 10Lc. Lc scales
asymptotically as Lc = 4.82Ek1/3 with minor corrections at finite Ek (Chandrasekhar
1961; Niiler & Bisshopp 1965). Here, we just take Γ = 48.2Ek1/3. The boundary condi-
tions for temperature are fixed as θ = 1 at the bottom plate and θ = 0 at the top plate.
For velocity we employ both no-slip (NS) boundary conditions, i.e. u = 0 at both plates,
and stress-free (SF) boundary conditions, i.e. ∂zux = ∂zuy = 0 and uz = 0 at the plates.

We tested the dependence on Γ of the simulations by running two cases at Ra = 1×1010

and Ro = 0.04 with a twice larger Γ (thus increasing the computational box size by a
factor four, and hence the computational load by at least that amount). The Nusselt
number is the same for no-slip plates but shows some difference in the stress-free case.
For no-slip plates we do not expect a strong dependence on Γ as long as it is large
enough. However, for stress-free plates differences may occur which are related to the
flow structure. This will be addressed in more detail in Section 5.

To indicate how the current simulations fit in with the previous work on this topic,
we display our current parameter values in the (Ek, Ra/Rac) phase diagram of figure 1,



Transition to geostrophic convection: the role of the boundary conditions 5

Ek

10
-8

10
-7

10
-6

10
-5

10
-4

R
a
/R

a
c

10
0

10
1

10
2

10
3

rotation-unaffected

rotation-affected

geostrophic

Ta

10
10

10
12

10
14

R
a

10
9

10
10

10
11

10
12

rotation-unaffectedrotation-affected

geostrophicnot turbulent

Figure 1. Phase diagram of rotating convection in the (Ra/Rac,Ek) parameter space, as sug-
gested by Ecke & Niemela (2014), and in the (Ta,Ra) parameter space. The blue circles indicate
the NS/SF simulation pairs of this work, these are either open for Ra = 1 × 1010 or filled for
Ra = 5× 1010. Three different regimes of convection can be discerned: non-rotating convection,
rotation-affected convection (classical rotating convection) and geostrophic convection. The lines
display various relations suggested in the literature that bound the regimes. Ecke & Niemela
(2014) suggested Ra/Rac = 3 as a lower bound of the geostrophic regime (dotted red line),
Ra = 0.25Ek−1.8 for the transition between the geostrophic and rotation-affected regimes, and
Ro = 0.35 for the transition to the non-rotating regime. The dash-dotted red line is a transition
valid for higher Pr ≈ 6 (Ecke & Niemela 2014). Two alternative predictions for the transition

to the geostrophic regime are also displayed: Ra = 1.4Ek−7/4 (King et al. 2009, black solid line

with triangles) and Ra ≈ 10Ek−3/2 (King et al. 2012, black solid line with squares).

where Rac is the critical Rayleigh number for the onset of the convective instability with
rotation, i.e. Rac = 8.7Ek−4/3 (Chandrasekhar 1961), and in the (Ta,Ra) phase diagram.
The left panel of this figure is based on figure 4 of Ecke & Niemela (2014), and shows
how the parameter values of the simulations in this manuscript are positioned relative
to some of the proposed bounds on the geostrophic regime. Typically, a lower bound for
the geostrophic regime is chosen such that the resulting flow is supercritical enough for
a turbulent flow to develop. We follow Ecke & Niemela (2014) by choosing Ra/Rac = 3
(dotted red line in figure 1). Ecke & Niemela (2014) discern two additional transitions
based on their heat transfer measurements in cryogenic helium with Pr = 0.7. When
reducing the Rayleigh number at constant Ek, the first transition seen is when rotation
starts to reduce the heat transfer. This is well-described by Ro = 0.35 (dashed red line in
figure 1). When Ra is reduced even further, a transition to a steeper scaling law relating
Nu and Ra was found. Ecke & Niemela (2014) interpreted this as the transition to the
geostrophic regime. This transition was best described by the relation Ra = 0.25Ek−1.8

(solid red line in figure 1) according to their data. For completeness, two other suggested
relations for the transfer to the geostrophic regime have also been included in figure 1:
Ra = 1.4Ek−7/4 as suggested by King et al. (2009) (black solid line with triangles)
and Ra ≈ 10Ek−3/2 from King et al. (2012) (black solid line with squares). From the
diagram, we expect our simulations to show a transition from the rotation-affected to
the geostrophic regime for all criteria, except the one suggested by King et al. (2009).
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3. Heat transfer

In this section, we investigate the convective heat transfer through the fluid layer as a
function of the applied control parameters. In the geostrophic regime, no consensus has
been reached on the heat-transfer dependence Nu(Ra, Pr,Ek), in particular because it
is challenging to achieve the extreme parameter values for Ra and Ek in both experi-
ments and simulations. We summarize the results from the literature reported earlier in
table 2, and indicate the method (experimental, numerical or from theory) and range of
parameters considered. It must be emphasized that most of these works are outside of
the geostrophic regime; the exceptions are the theories by King et al. (2012) and Julien
et al. (2012a), as well as the numerical simulations by the latter authors, which consider
the asymptotically reduced equations for rapid rotation.

The two recent experimental investigations which enter into the geostrophic regime
show quite different results. Ecke & Niemela (2014) achieved 4 × 109 < Ra < 4 × 1011

and 2 × 10−7 < Ek < 3 × 10−5 at Pr = 0.7 used cryogenic helium gas as the working
fluid. Their data could be described as Nu ∼ (Ra/Rac)

γ , with γ ≈ 1 using direct
measurement or 1.2 < γ < 1.6 after rescaling of the original data following existing
theoretical arguments. The scaling ranges were not extensive enough to decisively discern
between these scalings. On the other hand, Cheng et al. (2015) employed water as the
working fluid. In their tall, slender cell they could achieve 1 × 1010 < Ra < 1 × 1013

and 2× 10−8 < Ek < 2× 10−6 for 3.5 < Pr < 6.5. They also reported scaling as Nu ∼
(Ra/Rac)

γ , with a monotonically increasing γ from 1.8 at Ek = 10−3 to 3.6 at Ek =
10−7. However, at the highest rotation rates (lowest Ek) there may be a significant
effect of centrifugal buoyancy as at the sidewall the centrifugal acceleration can have a
magnitude of up to 40% of gravity.

Figure 2 showsNu as a function of Ek obtained from the present simulations. By simple
observation, it is clear that the boundary conditions (NS or SF) play a decisive role, even
in the slope of the graph, i.e. the exponent α of the local scaling law Nu ∼ Ekα. Both NS
and SF boundary conditions display a transition in the scaling law, (indicated with arrows
in the graph) at Ek ≈ 9×10−7 for Ra = 1×1010 and at Ek ≈ 3×10−7 for Ra = 5×1010,
as evidenced by the slope change. This transition is generally considered the boundary
between rotation-affected and rotation-dominated convection (Ecke & Niemela 2014). At
Ekman numbers below the transition we observe distinctly different scalings with Ek. The
SF exponents (α = 2.04 for Ra = 1× 1010 and α = 2.21 for Ra = 5× 1010) match fairly
well (especially for the lower Ra case) with the theoretically predicted exponent α = 2
of Julien et al. (2012a), found to be valid for simulations of the reduced equations, with
boundary conditions that can be described as stress-free.

However, the NS runs reveal effective exponents α = 1.07 for Ra = 1× 1010 and α =
1.36 for Ra = 5×1010, considerably lower than the SF runs and prounouncedly lower than
the correlations inferred by King et al. (2012) which predict α = 4 for NS plates. Schmitz
& Tilgner (2009, 2010) have reported simulations with both NS and SF boundaries; they
reported good agreement with the exponent 1.5, in fair agreement with the current NS
runs (at least at Ra = 5 × 1010) but somewhat low for SF. The experiments by Ecke
& Niemela (2014) have provided approximate scaling exponents between 1.6 and 2.1,
depending on the exact plotting convention to attain data collapse.

It is worth noting that there is quite a difference in the applied Ra between the
various works. Typically, values of Ra up to 5 × 109 are applied in experiments and
simulations (King et al. 2009; Schmitz & Tilgner 2009, 2010; King et al. 2012, 2013),
while only recently higher values have been attained (c.f. simulations by Stellmach et al.
(2014), experiments by Ecke & Niemela (2014); Cheng et al. (2015), as well as the current
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Figure 2. Heat transfer (Nusselt number Nu) as a function of the Ekman number Ek. Open
symbols are for Ra = 1 × 1010; filled symbols for Ra = 5 × 1010. The dashed lines depict fitted
power-law slopes. The arrows indicate the transition points as we inferred it from these graphs.
(a) SF plates. (b) NS plates.
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Figure 3. Compensated heat transfer (Nusselt number Nu) as a function of the Ekman num-

ber Ek using both the Nu ∼ Ra3Ek4 (left panel) and the Nu ∼ Ra3/2Ek2 (right panel) scaling
laws proposed by King et al. (2012) and Julien et al. (2012a). Open symbols are for Ra = 1×1010;
filled symbols for Ra = 5 × 1010, while red squares represent no-slip boundary conditions and
blue circles free-slip boundary conditions.

simulations). It is plausible that what we observe is a new scaling regime opening up at
such high Ra, strongly affected by rapid rotation (very low Ek ∼ O(10−7)) but still
vigorously turbulent (highly supercritical, i.e. Ra/Rac � 1), i.e. the geostrophic regime.

To further quantify the scaling laws, we show in figure 3 the compensated Nusselt
number with the two scaling laws proposed by both King et al. (2012) and Julien et al.
(2012a). Again, we can see that the Nu ∼ Ek2 captures well the Ekman number de-
pendence of the free-slip simulations, but the no-slip simulations present a very different
dependence. The Nu ∼ Ek4 scaling law can be seen to be a clear overestimate of the
scaling exponent relating Nu and Ek.

Another striking feature of this graph is that, at the same Ra, there is a range for
which Nu is lower for SF than for NS boundaries (Stellmach et al. 2014). Generally, NS
boundaries are expected to reduce the turbulence intensity of the flow by introducing
more friction than SF plates. However, the active nature of the Ekman boundaries,
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present for NS but absent for SF, can affect the dynamics of the entire fluid layer,
enhancing the heat transfer instead of reducing it. We will revisit these results in later
sections, where further differences between NS and SF runs are revealed and interpreted.

4. Boundary-layer and bulk dissipation

For RB convection one can derive from the Navier-Stokes equations with the Boussinesq
approximation exact relations for the total dissipation of turbulent kinetic energy and
thermal variance within the domain (Shraiman & Siggia 1990). The energy equations
are obtained by taking the inner product of u with eq. (2.1) and multiplying eq. (2.2)
with θ, respectively. After applying the boundary conditions, the dissipation relations in
dimensional form read:

εu =
ν3

L4
(Nu− 1)RaPr−2, εθ = κ

∆2

L2
Nu , (4.1)

where εu is the (time- and volume-averaged) total dissipation of turbulent kinetic energy
in the fluid layer and εθ is the total dissipation of thermal variance in the layer. These rela-
tions do not change when rotation is added: rotation only enters in the momentum equa-
tion (2.1), where we find for the Coriolis term in the energy equation that u·(ez×u) = 0.

The Grossmann–Lohse heat-transfer theory for non-rotating convection (see Ahlers
et al. (2009) for an overview) is based on a division of the total dissipations into bulk
and boundary-layer (BL) contributions. Several scaling regimes can be found depending
on the dominance of dissipation in either bulk or BL regions, for both εu and εθ. The
theoretical arguments by Julien et al. (2012a) employ such a division for εθ (no division
of εu given that in their SF case no kinetic BLs are formed) and show that the bulk limits
the overall heat transfer in geostrophic convection.

4.1. Boundary-layer scales

In this section we want to compare the distribution of dissipation for both NS and SF
plates. To this end, we first need to discern between BL and bulk. Several BL scales have
been already introduced in the RB literature. The thickness of the thermal BLs in the
non-rotating case is well-described by assuming that the bulk is isothermal, and that the
temperature drop is fully accomodated by the BLs. This leads to the definition δθ,Nu/L =
1/(2Nu). This relation is not appropriate for rotating RB convection, given that a mean
temperature drop across the bulk is sustained (Julien et al. 1996). We therefore rely on
the common definition of BL thicknesses in turbulence that uses the position of the peak
value of the root-mean-square of temperature fluctuations, denoted by δθ. Julien et al.
(2012b) found this definition to be the most appropriate one. For the kinetic (velocity)
BLs we use the positions of the peak root-mean-square of horizontal velocities, marked δν .

A comparison of these BL scales is presented in figure 4. Starting from the kinetic
BLs (black symbols), it is clear that they follow a single scaling, independent of Ra, i.e.
their thickness is exclusively determined by Ek. A power-law yields the relation δν/L =
4.0Ek0.51. Within error, the slope is consistent with the prediction δν ∼ Ek1/2 for linear
Ekman BLs (Greenspan 1968). It is worth noting that this scaling also matches nicely
with the BL scaling laws reported by Kunnen et al. (2010), even though the geometry
(cylinder instead of periodic cube) and the Prandtl number (Pr = 6.4 instead of Pr = 1)
are completely different.

On the other hand, the thermal BL thicknesses do reveal some variation with Ek.
Before the transition the thermal BL thickness steeply decreases when Ek is increased,
in contrast with to the kinetic BLs. In that Ek range, the local scaling laws relating Nu
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Figure 4. Boundary-layer thicknesses and their dependence on Ek. The arrows indicate the
transition points as inferred from these graphs, when the steeply decreasing δθ begins to flatten
out. (a) SF plates, thermal BL thickness (δθ). (b) NS plates, thermal BL thickness (δθ, red
squares) and kinetic BL thickness (δν , black triangles). A power-law fit δν/L = 4.0Ek0.51 is also
included (black dashed line). In both panels open symbols are for Ra = 1 × 1010; filled symbols
for Ra = 5 × 1010.

and Ek are steeper for SF than for NS. King et al. (2009) and King et al. (2012) proposed
that the transition to the rotation-dominated heat-flux scaling is described by the crossing
of the kinetic and thermal BL thicknesses, which happens around Ek = 7× 10−7 for NS
and Ra = 5× 1010 in this case. However, the slope change in the scaling laws (figure 2)
is found at lower values of Ek. For Ra = 1× 1010 a similar mismatch is observed.

A more natural definition of the transition, based on the BL scales as plotted in
figure 4, would be the evident slope change of δθ at Ek = 8 × 10−7 for Ra = 1 × 1010

and at Ek = 3× 10−7 for Ra = 5× 1010, which remarkably occurs around the same Ek
value for both NS and SF. This transition value matches better with the slope change
in the heat transfer statistics, even if they are not exactly coinciding. The transition to
the geostrophic regime thus appears to be gradual; different statistics display a change
in behaviour at different values of Ek.

4.2. Distribution of dissipation

Using the BL scales of §4.1 we can now assess how the total dissipation is distributed
between BL and bulk regions. This is shown in figure 5, which confirms the picture
that under rapid rotation the dissipation is mostly concentrated in the bulk. This is
the case even more for εu than for εθ. However, we also note that the fraction of εθ in
the BLs appears to start growing when Ek is reduced below ∼ 5 × 10−7 (∼ 2 × 10−7)
for Ra = 1 × 1010 (5 × 1010), with an earlier growth appearing for SF than for NS.
Looking back to figure 4, it is obvious that the thermal BLs are expanding when Ek is
reduced. The larger part of the volume inside the thermal BLs along with a persistent
input of thermal fluctuations from the Ekman BLs enhances the BL fraction of εθ at the
lowest considered Ek under NS conditions. For SF plates the thermal BLs are growing
even more as Ek is reduced; the increased volume of the BLs appears to be enough for
a higher fraction of εθ there.

Furthermore, the contribution of the kinetic BLs to the total εu is remarkable: for Ra =
5 × 1010, between Ek = 1.3 × 10−7 and Ek = 5 × 10−7 the BL thickness changes by a
factor 2, yet the fraction of εu in the BL remains roughly constant. This confirms that the



Transition to geostrophic convection: the role of the boundary conditions 11

10
−7

10
−6

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Ek

ε
B

L
/ε

to
ta

l

(a)  SF

10
−7

10
−6

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Ek

ε
B

L
/ε

to
ta

l

(b)  NS

Figure 5. Distribution of dissipations εθ and εu between bulk and BL. The fraction of total
dissipation located in the BL region is displayed. Open symbols are for Ra = 1 × 1010; filled
symbols for Ra = 5×1010. The arrows indicate the transition points as we inferred it from these
graphs. (a) SF plates, εθ. (b) NS plates, εθ (red squares) and εu (black triangles).

Ekman BLs, first thought to become passive at low enough Ek (Niiler & Bisshopp 1965;
Julien & Knobloch 1998), are still significantly affecting the flow dynamics (Stellmach
et al. 2014).

5. Flow phenomenology

A remarkable phenomenological change upon entering the geostrophic regime is the
disappearance of convective Taylor columns and plumes (Sprague et al. 2006; Julien et al.
2012b; Stellmach et al. 2014). These vortical structures have been frequently reported
ever since the first observation in turbulent rotating RB flow by Rossby (1969). In the
geostrophic regime, however, such coherent structures seem to be absent. The boundary
conditions largely determine the flow phenomenology. For SF plates large barotropic
vortices can be formed under the influence of an inverse energy cascade (Rubio et al.
2014; Favier et al. 2014; Guervilly et al. 2014), eventually growing to the scale of the
domain. For NS plates such a condensate is not formed; we compare the phenomenology
in two snapshots shown in figure 6, which depict the spatial distribution of vertical
vorticity ωz = ∂xuy − ∂yux in a horizontal cross-section at midheight. Panel (a) clearly
reveals the formation of a large cyclonic vortex in the top right, while the bottom-
right part and its periodic continuation on opposite sides hint at the formation of an
anticyclonic vortex. Note that this flow is still slowly evolving over time (Rubio et al.
2014; Favier et al. 2014; Guervilly et al. 2014). Panel (b) shows no condensate vortices.
Instead, a fluctuating state is found without large-scale long-lived coherent structure.
Ekman pumping, present only in the case of NS boundary conditions, can thus be a
source of small-scale fluctuations that prevent condensation into large-scale vortices.

5.1. Relation with spectral energy transfer

In previous works (Rubio et al. 2014; Favier et al. 2014) the energy transfer as a function
of wavenumber has been considered to indicate the presence of an inverse energy cascade.
Given that figure 6 reveals such a significant difference in flow phenomenology between
SF and NS, we anticipate that the spectral energy transfer must also be considerably
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Figure 6. Snapshot at midheight (z = 0.5) of the vertical vorticity from runs at Ra = 5× 1010

and Ek = 1.34 × 10−7. (a) SF plates. (b) NS plates. Red is positive (cyclonic) vorticity, while
blue is negative (anticyclonic) vorticity. Both plots have the same colour scale.

different. Following Favier et al. (2014), we define the spectral energy equation as

dE(K)

dt
=

∑
Q

T (Q,K)−D(K) + F (K) , (5.1)

which gives the temporal evolution of the energy E(K) as a function of horizontal
wavenumber K in terms of the energy transfer T (Q,K) from wavenumber shell Q to
shell K, the dissipation D(K) and the buoyant forcing F (K). We are particularly in-
terested in the transfer term T (Q,K); which we evaluate and average vertically over
the entire computational domain minus the BLs. We note that this quantity is anti-
symmetric by definition, i.e. T (K1,K2) = −T (K2,K1) and T (K1,K1) = 0 for any two
wavenumbers K1 and K2.

The spectral transfer at Ra = 5×1010 and Ek = 1.34×10−7 is depicted in figure 7, for
both SF and NS conditions. The SF picture compares favourably to the earlier studies
by Favier et al. (2014) and Rubio et al. (2014): a strong localised exchange of energy
between neighbouring wavenumbers across the diagonal, i.e., a certain mode P interacts
predominantly with its neighbouring modes P − 1 and P + 1. The sign of the transfer
reveals that this part of the cascade is direct: Energy is transferred to larger wavenumbers.
At low K . 7 and higher Q & 7, a range of inverse transfer is found where small-K modes
receive energy from modes Q > K. The input of energy into the large-scale vortex of
figure 6(a) can be recognised as an interaction of the smallest wavenumbers receiving
energy from a broad range of higher-order wavenumbers.

For the NS case (figure 7(b)), the picture changes. In particular, the ‘staircase’ of energy
transfer along the diagonal, which is prominent for SF, is not as strongly present for the
larger wavenumbers. Instead, the interactions between modes are less localised, meaning
that the interactions are spread more and mode combinations farther from the diagonal
are transferring energy. A direct cascade is formed along the diagonal for K,Q & 5.
Curiously, some signs of an inverse cascade remain: (i) for K ≤ 5, and (ii) transfers
from modes around Q ≈ 5 to K ≈ 10, which are non-localised. The absence of a large-
scale structure can be explaned by the fact that the lowest wavenumber is not actively
receiving energy.
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Figure 7. Spectral energy transfer T (Q,K) between wavenumber shells Q and K. Positive
values indicate that energy is taken from shell Q and transferred to shell K, negative values
imply that Q receives energy from K. Panel (a) is for SF and panel (b) for NS. Both plots have
the same colour scale.

5.2. Relation with mean temperature gradient

The characteristic flow phenomenology of rotating RB convection has been related to the
occurrence (and strength) of the persistent mean temperature gradient across the bulk
(Julien et al. 1996), unlike the statistically isothermal bulk of non-rotating RB. The origin
of this temperature gradient has been proposed to be increased by lateral mixing, induced
by interactions of like-signed vortical plumes. As in the geostrophic regime the flow
phenomenology is altered (c.f. figure 6), we can expect that this also affects the strength
of the mean temperature gradient. Figure 8 shows the mean temperature gradient as a
function of Ek. In the rotation-affected RB, lateral mixing being stronger that vertical
mixing leads to mean temperature gradients as large as −0.5 for NS and −0.4 for SF.
However, upon entering the geostrophic regime by further reducing Ek, the magnitude
of the gradient is gradually diminished. We thus expect that in the geostrophic regime
the mixing can become slightly more three-dimensional again.

This behaviour is consistent with previous simulations of the asymptotic equations
(Julien et al. 2012b), which predict that the geostrophic regime indeed still has a mean
temperature gradient, but less steep than when coherent vortical plumes are present.
Finally, even though the behaviour of the mean temperature gradient is qualitatively
similar for SF and NS plates, the location of the minimum temperature gradient, which
could be taken as an additional indicator for the transition, is certainly not coinciding
between the two cases.

6. Discussion

In the previous sections we have compared the transition to the geostrophic regime
of turbulent rotating Rayleigh–Bénard convection between stress-free (SF) and no-slip
(NS) boundary conditions on the horizontal plates. From the current results, it seems
clear that the nature of the bulk turbulence is extremely dependent on the boundary
conditions. Nevertheless, both types of boundary conditions display a transition in a
similar range of Ekman numbers around Ek = 9 × 10−7 (3 × 10−7) for Ra = 1 × 1010

(5 × 1010). This transition is found to be gradual, unlike other transitions in rotating
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Rayleigh–Bénard, such as those reported in confined geometries at higher Ek (Stevens
et al. 2009). Many diagnostic signs of flow transition can be found near the onset of the
geostrophic regime: The scaling with Ek of many quantities including Nusselt number,
thermal BL thickness, bulk–BL distribution of dissipation rates as well as the mid-plane
mean temperature gradient show a changing behaviour. We do not expect this list to be
exhaustive. All quantities show a transition centered at a specific Ek, so that the full
range of changes covers at least half a decade in Ek. In particular, at Ra = 1 × 1010

we inferred transitions in various statistics in the range 6 × 10−7 . Ek . 1.3 × 10−6;
at Ra = 5× 1010 in the range 2.4× 10−7 . Ek . 4.5× 1010. These ranges are the same
for SF and NS plates, however, individual statistics display transitions at different Ek
when comparing the two boundary conditions. So it appears to be all but impossible to
define a single criterion to distinguish the rotation-dominated geostrophic regime from
the rotation-affected regime characterised by vortical plumes or columns, as indeed the
flow may be transitioning, but the different diagnostic quantities may be sensitive slightly
before or slightly after the transition.

Regarding the actual nature of the transition, it is quite remarkable that the SF and
NS transition ranges are coinciding in Ek for similar Ra. This would suggest a common
origin. One of two candidates suggested in the literature may be the cause (or a com-
bination of both): either marginal (in)stability of the thermal BL, as suggested by King
et al. (2012), which leads to a theoretical scaling Nu ∼ Ra3Ek4; or a change in the bulk
dynamics where plumes cannot enter the stiff geostrophic bulk that throttles the heat
transport, suggested by Julien et al. (2012a), which gives a scaling Nu ∼ Ra3/2Ek2.
Both arguments could in principle be independent of the velocity boundary conditions,
given that either the thermal BLs or the bulk flow away from the BLs is involved. We
find mostly evidence supporting the Julien et al. (2012a) mechanism, but it is certainly
not conclusive:

• The geostrophic Nusselt number scaling of figure 2 matches fairly with the Julien
et al. (2012a) scaling for SF plates, but not for NS. The scaling proposed by King et al.
(2012) does not match with the current results for either boundary condition. In line
with the recent experimental results of Cheng et al. (2015), it is becoming clear that the
heat-transfer scaling exponent β for Nu ∼ Raβ measured at constant Ek is not the same
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for all Ek; equivalently, the exponent γ for Nu ∼ Ekγ at constant Ra will take different
values for different Ra.
• For the BL thickness (figure 4) we find a change in scaling at Ek = 8 × 10−7

(3× 10−7) at Ra = 1× 1010 (5× 1010) for both SF and NS, with steeper scaling with Ek
below the transition. The transition does not coincide with the crossing of the kinetic and
thermal BL thicknesses, which is the criterion proposed by King et al. (2009) and King
et al. (2012) to describe its origin. The sharp change of scaling indicates changes in the
structure of the thermal BL, which could be due to the crossing of the marginal stability
criterion for the BL. However, the corresponding limit of validity Ra . Ek−3/2 for the
argument (King et al. 2012) would at the current Ra = 5 × 1010 predict a transition
at Ek ≈ 7× 10−8, at significantly smaller Ek than we observe.
• Finally, the spatial distribution of dissipation of both turbulent kinetic energy (εθ)

and thermal variance (εu) between bulk and BL (figure 5) reveals that most of the
dissipation is found in the bulk, even more so for εu than for εθ. The fractional distribution
between bulk and BL reveals a slope change at Ek ≈ 6×10−7 (2×10−7) at Ra = 1×1010

(5× 1010) for both SF and NS.
For SF plates the Julien et al. (2012a) arguments fit best with our findings. However,

the case of NS plates requires a different description given the presence of Ekman layers
that are significantly affecting the flow dynamics in the entire fluid layer. We presently
cannot give a theoretical description now, but we expect that these results, together with
the recent findings by Stellmach et al. (2014) and Cheng et al. (2015), can form a starting
point for theories of no-slip geophysical convection.

In conclusion, it has become apparent in the last few years that the Ekman layers
remain a decisive and active part of geostrophic convection with no-slip plates, in spite of
their diminishing thickness. We have compared the transition to the geostrophic regime
between no-slip and stress-free boundaries. Both undergo a transition, at roughly the
same Ekman number, but the scaling laws for heat-transfer on both sides of the transition
are strongly dependent on the boundary conditions. The physical picture of geostrophic
convection is not fully complete, especially for no-slip plates.
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discussions. We acknowledge FOM, an ERC Advanced Grant, the PRACE resource Her-
mit based in Stuttgart at HLRS, and NWO for the use of Cartesius under Grant No.
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